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Aguiar, C., André, G. and Quartau, J. A. 2005. Canopy insect herbivores in the
Azorean Laurisilva forests: key host plant species in a highly generalist insect
community. �/ Ecography 28: 315�/330.

This article explores patterns of insect herbivore distribution in the canopy of the
Laurisilva forests on seven islands in the Azores archipelago. To our knowledge, this is
one of the first extensive study of this type in tree or shrub canopies of oceanic island
ecosystems. One of the most frequently debated characteristics of such ecosystems is
the likely prevalence of vague, ill-defined niches due to taxonomic disharmony, which
may have implications for insect-plant interactions. For instance, an increase in
ecological opportunities for generalist species is expected due to the lack of predator
groups and reduced selection for chemical defence in host plants. The following two
questions were addressed: 1) Are specialists species rare, and insect herbivore species
randomly distributed among host plant species in the Azores? 2) Are the variances in
insect herbivore species composition, frequency and richness explained by host plants
or by regional island effects? We expect a proportional distribution of herbivore species
between host plants, influenced by host frequency and distinct island effects; otherwise,
deviation from expectation might suggest habitat preference for specific host tree
crowns. Canopy beating tray samples were performed on seven islands, comprising 50
transects with 1 to 3 plant species each (10 replicates per species), giving 1320 samples
from ten host species trees or shrubs in total. From a total of 129 insect herbivore
species, a greater number of herbivore species was found on Juniperus brevifolia (s�/65)
and Erica azorica (s�/53). However, the number of herbivore species per individual tree
crown was higher for E. azorica than for any other host, on all islands, despite the fact
that it was only the fourth more abundant plant. In addition, higher insect species
richness and greater insect abundance were found on the trees of Santa Maria Island,
the oldest in the archipelago. Insect species composition was strongly influenced by the
presence of E. azorica , which was the only host plant with a characteristic fauna across
the archipelago, whereas the fauna of other plant crowns was grouped by islands. The
great insect occurrence on E. azorica reflects strong habitat fidelity, but only four
species were clearly specialists. Our findings indicate a broadly generalist fauna. The
simplicity of Azorean Laurisilva contributed to the understanding of insect-plant
mechanisms in canopy forest habitats.
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Patterns of spatial variation in species distribution,

abundance and richness are central topics in community

ecology (Gaston and Blackburn 2000). Presently, under-

standing the mechanisms influencing these species para-

meters, and their relationship with habitat conditions,

have become important issues in ecological studies.

Conversely, species diversity on oceanic islands is a

poorly studied subject, except for some specific topics,

including the species-area relationship and faunal taxo-

nomic disharmony (lack of entire taxonomic groups

which are expected in equivalent continental ecosystems)

(Whittaker 1998). In particular, little is known about

patterns of specialist versus generalist insect herbivore

species in different host plant species, both within and

between islands (Holloway 1996). Empirical data show a

depauperate grassland insect herbivore fauna in the

young isolated Azorean islands (Borges and Brown

1999). We suggest that such patterns may result from

the relaxation of selective pressure for plant defence.

Along with the lack of entire group of predators, this

could increase opportunities for generalist insect herbi-

vores.

The broadly discussed theory of insect-plant interac-

tions based on co-evolutionary response at the level of

chemical defence/resistance has over-emphasized the

importance of specialist herbivores. Bernays and Funk

(1999, but see Tune and Dussourd 2000) have discussed

the likely uncommonness of polyphagy due to neural

constraints. Nevertheless, the conventional wisdom that

monophagy must have evolved as a response to deterrent

effects of chemical secondary defences has been ques-

tioned by many authors, including Bernays and Graham

(1988) and Bernays and Minkenberg (1997). Recent

ecological surveys in the tropics (Basset et al. 1996,

Novotny et al. 2002, Ribeiro 2003) and experimental

studies (Bernays and Minkenberg 1997, Singer and

Stireman 2003) have shown that generalists might be

more important than previously thought.

However, Novotny et al. (2002) state clearly that the

pattern of high proportion of generalists found in some

tropical rainforests reflects specialization at the generic

level. Chemical and mechanical evolutionary constraints

for extreme polyphagy, combined with effects of plant

traits and predator escape are likely mechanisms in

favour of selection of specialisation, either in feeding

behaviour or habitat preferences. In this context, the

recent findings in the tropics are still consistent with the

idea of the widespread presence of specialists, as far as

the concept is applied in a broader sense, assuming

oligophagy as a similar evolutionary output. As also

stated by Novotny et al. (2002), the lack of closely

related plant species could make species appear mono-

phagous in certain plant communities. Ribeiro (2003)

has discussed the possibility that the proportion of

specialist/generalist insects may vary substantially with

vegetation type, being specialists more frequent in harsh

scleromorphic plant communities (Fernandes and Price

1991, Price et al. 1998, Ribeiro and Brown 1999, Ribeiro

et al. 1999).

There is not a straightforward relation between

chemical deterrence and toxicity (Bernays and Minken-

berg 1997). The evolution of specialist herbivores may

also result from different pressures, such as predator or

parasite escape (Bernays and Graham 1988, Gross and

Price 1988, Losey and Denno 1998, Sabelis et al. 1999).

In this case, the irreversibility of host specificity could

depend on the maintenance of selective pressure at the

third trophic level (Sabelis et al. 1999). Nevertheless, in

highly heterogeneous tropical forest canopies, escape

from predation and diseases, as well as adaptation to

nutrient deficiency, may evolve by some other poorly

understood ecological processes rather than host specia-

lization, thus resulting in the noticeably high diversity of

generalists.

Habitat simplification and taxonomic disharmony

found on oceanic islands (Whittaker 1998) could be a

distinct evolutionary cause of increased generalism

evolution. The absence of sustainable herbivore popula-

tions during the early plant colonization releases the

herbivory pressure on the evolution of defences in plant

species. Subsequently, when herbivores eventually colo-

nize these plants, only weak selective pressure would be

expected favouring specialist genotypes, whatever the

plant secondary chemicals that function as deterrent or

host recognition mechanisms. Toxicity can result in

significant loss of fitness for a non specialised insect

herbivore species, but not for a specialist one (Hägele

and Rowel-Rahier 2000). However, without such evolu-

tionary advantage, there are few theoretical reasons to

expect feeding specialization to evolve. Furthermore,

known mechanisms of neo-specialists evolving on in-

vading species, such as crop plants, result from a priori

specialist herbivores in related host plants (Andow and

Imura 1994), and thus would not apply to the Azorean

insect community.

Relaxation of natural selection has been proposed as

an important cause of evolution of generalists on

oceanic islands, in various trophic levels (Givnish

1998). In addition, the lack of entire groups of predators

(e.g. ants) could also be responsible for a high propor-

tion of generalists (although the likely occupancy of

predation vague niches by a large number of spider

species needs further studies �/ Borges and Brown 2004).

Hence, this community evolutionary process could result

in a highly generalist insect herbivore guild.

Usually herbivore insect guilds have components

which are locally absent in the Azores (Borges and

Brown 2004). This fact could have implications for

insect-plant interactions in a vague niche rich commu-

nity, and eventually may reinforce a trend toward

increase of generalist species. The present study aims

to assess patterns of canopy phytophagous insect
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distribution and species richness among island and host

plants. In addition, we explore the possibility of insect

species fidelity to the early successional shrub-arboreal

species, Erica azorica , assuming as a null hypothesis the

existence of a largely generalist insect herbivore guild.

Specifically the following questions were addressed: 1)

Are specialist species rare and randomly distributed

among host plant species in an isolated oceanic archi-

pelago like the Azores? 2) Are the variances in insect

herbivore species composition, frequency and richness

explained by host plant effects or regional island effects?

Assuming a highly generalist insect guild, the hypoth-

eses predictions are: insect faunal composition, alpha

diversity and local density should be constant among

host species, or if they vary, 1) the occurrence of

specialists should be rare and randomly distributed

among host species; 2) at each island and in the area

sampled they should be proportional to host species

frequency.

To our knowledge, this is one of the first (but see

Schowalter 1994, Schowalter and Ganio 1999) extensive

surveys of distribution patterns, specialization and

richness of phytophagous insect species in tree canopies

of isolated oceanic island ecosystems.

Methods

Site description

This study was conducted in the Azores, an isolated

northern Atlantic archipelago located at the junction of

the North American, Eurasian and African plates. The

archipelago shows recent volcanism and seismic activity

and comprises nine islands, as well as several islets and

seamounts distributed from northwest to southeast,

roughly between 378 and 408N and 248 and 318W. The

Azorean islands extend for ca 615 km and are situated

across the Mid-Atlantic Ridge, which separates the

western group (Flores and Corvo) from the central

(Faial, Pico, S. Jorge, Terceira and Graciosa) and the

eastern (S. Miguel and S. Maria) groups. The islands

have a relatively recent volcanic origin, ranging from

8.12 Myr BP (S. Maria) to 300 000 yr BP (Pico) (Nunes

1999). The temperate oceanic climate is characterized by

high relative humidity that can reach 95% at high

altitude native forests, and low thermal variation

throughout the year. Frequent storms come from the

west, but the islands are also influenced by the ‘‘Leste’’, a

series of sand storms that originate in North Africa (Reis

et al. 2002).

The predominant vegetation form is the ‘‘Laurisilva’’,

a humid evergreen broadleaf and microphyllous (here-

after short-leaf) laurel type forest that originally covered

most of western Europe during the Tertiary (Dias 1996).

Dominant trees and shrubs include short-leaf Juniperus

brevifolia (Cupressaceae) and Erica azorica (Ericaceae),

both endemics, and the broadleaf species Ilex perado

Ait. ssp. azorica (Aquifoliaceae) (endemic), Laurus

azorica (Lauraceae) (native) and the shrub Vaccinium

cylindraceum (Ericaceae) (endemic). This type of forest

is characterized by reduced tree stature (usually up to

5 m, rarely reaching 10 m), shaped by the shallow soil

and fractured terrain, which is raised up to the tree tops

in some points, and lowered five to six meters below in

others. A high crown foliage density and thus low

canopy openness is typical of these forests, as well as a

particularly dense cover of moss and liverwort epiphytes.

Some bryophytes also cover leaves in higher altitude

humid forests.

Experimental design

In seven out of the nine Azorean islands native vegeta-

tion was surveyed within defined Natural Forest Re-

serves and/or NATURA 2000 protected areas. A total of

16 protected areas were investigated (Table 1). For more

details on the protected areas considered see Borges et al.

(2005). During the summer of 1999 and 2000 at least two

150 m long random transects were performed in each

protected area, except in some large reserves where more

transects were surveyed. In most cases the sampling was

split equally between the two years. In each transect, ten

replicates of the three most abundant and common

woody plant species (trees and shrubs) were sampled.

The sampling followed a block design in which one

branch of each of the most common species was sampled

at each 10 m interval along the transect. In most cases

only three plant species clearly appeared to dominate

over the remaining species and the choice was quite

obvious. In some transects, however, less than three

woody plant species were present and only those could

be considered. Table 2 summarizes the plant species

sampled in the protected areas. Juniperus brevifolia was

the most common species in most of the study sites,

occurring in 70% of the transects.

Arthropod sampling and identification

For the canopy arthropod sampling a modified beating

tray was used, which consisted of an inverted cloth

funnel pyramid of 1 m wide and 60 cm deep (after Basset

1999a). A plastic bag was placed at the tip where

arthropods, leaves and small branches were collected.

For each selected plant, a branch was chosen at random,

the beating tray placed beneath and the branch hit five

times with a beating stick. Whenever possible, the

sampling was performed on warm, sunny days, and

always when the vegetation was dry. Sample bags were

labelled and frozen until they were sorted. Finally, the

sorted specimens were stored in 70% ethanol with

glycerol.
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A total of 1320 samples were collected, Arthropod

identification was performed in four stages: 1) trained

parataxonomists sorted samples into morphospecies

(or RTUs�/recognizable taxonomic units, sensu Oliver

and Beattie 1996) using a non-complete reference

collection; 2) a senior taxonomist (P. A. V. Borges)

performed a detailed correction in identification of each

sorted sample, adding new species or morphospecies

to the reference collection; 3) morphospecies were sent

for formal identification to expert taxonomists (see

acknowledgments); 4) specimens properly identified

were used to correct datasheets and the reference

collection prior to the second sampling year (Appendix

1). Immature stages were also considered in the identi-

fication process. Validation of the identification of

immature forms was performed mainly in the second

stage of the identification process, and based on previous

experience of the taxonomists involved in the project

(Borges 1999, Borges and Brown 1999). In spite of some

recent criticism of immature identification (Derraik et al.

2002), such an approach was possible due to the low

level of species richness found in this study.

The following insect phytophagous groups were in-

vestigated: Orthoptera, Hemiptera (Homoptera and

Heteroptera), Thysanoptera, Coleoptera and Lepidop-

tera. The species sampled are only the free-living

Table 1. List of the studied reserves with its code, name, island of occurrence (FAI�/Faial; PIC�/Pico; STM�/S. Maria; FLO�/

Flores; SJG�/S. Jorge; SMG�/S. Miguel; TER�/Terceira), area, altitude (minimum and maximum), as well as the altitude and the
list of the sampled trees or shrubs in each of the transects (Call�/Calluna vulgaris ; C�/Clethra arborea ; E�/Erica azorica ;
J�/Juniperus brevifolia ; I�/Ilex perado azorica ; L�/Laurus azorica ; Myrs.�/Myrsine africana ; M�/Myrica faya ; P�/Picconia
azorica ; V�/Vaccinium cylindraceum ).

Code Name Island Area (ha) Altitude (m) No.
transects

No.
samples

Sampled plants and altitude (m)

STM-PA Pico Alto STM 4 470�/575 2 60 (E; L; P; 530); (E; L; V; 530)
SMG-A Atalhada SMG 15 425�/530 2 30 (J; I; 425); (I; 450)
SMG-G Graminhais SMG 27 850�/925 2 60 (J; L; V; 870); (L; I; V; 925)
SMG-PV Pico da Vara SMG 742 400�/1103 3 60 (E; C; 450); (J; L; I; 674) (E; 800)
TER-BF Biscoito da Ferraria TER 391 475�/808 2 60 (J; V; Myrs.; 530); (J; L; I; 600)
TER-SB Serra de Sta Barbara

e M. Negros
TER 1274 550�/1025 7 240 (J; V; Myrs.; 630); (J; I; L;V; Myrs; 740)

(J; I; Myrs; 760)
(J; Call; 800); (J; I; L; V; Myrs; 910);
(I; L; 971)
(J; I; V; Myrs; 990)

TER-TB Terra Brava TER 450 600�/700 2 30 (I; J; 630); (L; 659)
TER-M Matela TER 25 350�/393 2 60 (J; E; L; 350); (E; L; V; 430)
FAI-CF Cabeço do Fogo FAI 54 400�/529 2 30 (M; 425); (E; J; 510)
PIC-LC Lagoa do Caiado PIC 131 800�/939 3 90 (J; E; Myrs.; 820); (J; I; V; 830);

(J; I; V; 834)
PIC-MP Mistério da Prainha PIC 643 425�/841 5 140 (E; L; I; V; 500); (J; L; I; 525);

(I; 800); (J; E; I; 800); (J; E; I; 800)
PIC-C Caveiro PIC 199 850�/950 2 60 (J; L; I; 900); (J; L; I; 920)
SJG-P Pico Pinheiro SJG 293 600�/780 2 60 (J; V; Myrs.; 630); (E; J; V; 670)
SJG-T Topo SJG 2257 0�/942 2 60 (J; I; V; 850); (J; I; V; 875)
FLO-FR Caldeiras Funda e

Rasa
FLO 459 350�/600 4 70 (J; 400); (E; V; 450); (E; 487);

(J; I; V; 500)
FLO-MA Morro Alto e Pico

da Sé
FLO 1558 300�/915 8 200 (J; Call; 525); (J; 575); (J; L; Call; 600);

(J; L; I; 625);
(J; V; Call; 675); (J; V; Myrs.; 700);
(J; V; Call; 700); (J; V; 890)

Table 2. Number of transects per island in which each of the host plant species was sampled and the percentage of occurrence in all
transects (n�/50).

Host plant species Island

Endemic Flores S. Miguel Terceira Faial S. Jorge Pico Sta. Maria Total (%)

Juniperus brevifolia yes 10 3 9 1 4 8 0 70
Ilex perado azorica yes 2 4 8 0 2 9 0 50
Vaccinium cylindraceum yes 6 2 6 0 4 3 1 44
Laurus azorica no 2 3 8 0 0 4 2 38
Erica azorica yes 2 2 2 1 1 4 2 28
Myrsine africana no 1 0 6 0 1 1 0 18
Calluna vulgaris no 4 0 1 0 0 0 0 10
Myrica faya no 0 0 0 1 0 0 0 2
Piconnia azorica yes 0 0 0 0 0 0 1 2
Clethra arborea no 0 1 0 0 0 0 0 2
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chewing and sucking insect species captured with

beating-trays, because surveying leaf-miners and stem-

borers efficiently would require other sampling methods.

Voucher specimens and all sorted data are housed in the

insect reference collection in the Dept of Agriculture at

the Univ. of the Azores.

Data analysis

ANOVA models were constructed using the General

Linear Model Procedure of SPSS 11.5, in order to

analyse arthropod species richness and abundance per

tree and per island. Only the dominant host species were

taken into account in order to achieve orthogonal

combinations and to compensate for an unbalanced

sample design. The unbalanced sample design was,

unavoidable, due to the absence of all host species in

some reserves or islands. To overcome this problem, two

separate models were designed to test host and island

factors on complementary data sets, without discarding

information (Potvin 2001). In addition, an ANOVA

design employing Type III sums of squares was chosen,

as it is more appropriate to deal with unequal sample

sizes (Shaw and Mitchell-Olds 1993, Potvin 2001). The

lack of consistency in the relative densities of host plants,

and hence the sample effort per plant did not affect the

main conclusions (tested by comparing E. azorica and

J. brevifolia in equal and different combinations of

sample sizes on the same islands).

To reach a more balanced model, the islands of São

Jorge, Pico and Faial were analyzed as a unique

biogeographic set. This grouping procedure seems rea-

sonable since these islands are much closer to each other

than any further set of islands in the archipelago, and are

of similar geological age (actually, it is the youngest

group in the Azores).

Therefore, a combination of different models was

used, in order to test hypotheses about the role of

islands and host species on herbivore species richness

and abundance. Two models were statistically tested: 1)

all islands with the three dominant host species Erica

azorica , Laurus azorica perado and Vaccinum cylindra-

ceum and 2) all important host species Erica azorica ,

Laurus azorica , Vaccinium cylindraceum , Ilex perado

azorica and Juniperus brevifolia on all islands but Santa

Maria.

Due to the unequal distribution of host species

amongst sampling transects and reserves, no blocking

effect could be analysed in either model. However, the

effect of blocking environmental heterogeneity without a

good understanding of the heterogeneity of the environ-

ment is of doubtful value. At the scale of tested

hypothesis (i.e. the effect of host species distribution

among islands) the effect of within-island heterogeneity

might also be impossible to explore (Potvin 2001), and

therefore reserves may not be real independent variables.

The 10 host plants sampled in one transect were

considered as a single sample set and an average value

was calculated. Parameter estimates were used to test

specifically the a priori hypothesis of differences between

Santa Maria Island and other islands in model (1) using

a t-test, based on confidence interval adjustment from

the main factor. Post-hoc multiple comparisons based on

least significant differences (LSD) was used to explore

any differences found whether between islands or host

species in model (2).

Further analysis of insect community composition

was performed using Reciprocal Averaging multivariate

analysis and clustering by Ward’s method, using Bray-

Curtis distances using the software CAP (Henderson

and Seaby 2004).

To obtain an estimate of the level of specialization of

each herbivore species to the host plant we applied the

Lloyd index (L), as proposed by Basset (1999b). The

Lloyd index was computed only for insect species

represented by a minimum of 10 specimens, because

these species could theoretically have been collected from

ten possible plants. To standardize sampling effort

among host plants, the number of specimens was

averaged based on the samples available for each host

plant, prior to applying the index. As the frequency

distribution of abundance within each species was shown

to be right skewed, the geometric mean was chosen

instead of the arithmetic mean, since it provides a much

more accurate representation of the central tendency

(Zar 1996). The geometric mean also has the advantage

of overcoming the problem of underestimating the mean

due to high numbers of zeros. A species was considered

to be a specialist (as opposed to a generalist) on a

particular substrata if L]/2.5. A specialist species in the

present context is only a species that showed preference

for a particular host, the value of the index increasing for

more specialized species (Basset 1999b).

Results

A total of 129 herbivore species were recorded in the

present study. The cumulative number of herbivore

species per host plant was greater on Juniperus brevifolia

(n�/65) and Erica azorica (n�/53), although there was

only a 31.3% similarity between the faunas of these two

important host trees (Fig. 1). Erica azorica was sampled

on all surveyed islands, comprising 10.7% of the sampled

plants. Juniperus brevifolia was the most common tree

species in mature forests, comprising 26.7% of the

sampled plants, excluding Santa Maria Island, where

the species does not occur in native vegetation patches

(Table 2).
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A great number of rare insect species was found.

Indeed, 45% of sampled insect species were singletons

(i.e. appeared just one time), and most species occurred

scarcely. For instance, half of transects (�/10 trees from

one species) had 30�/70% sampled trees with no herbi-

vore insects. However, it is noticeable that such a pattern

is not applicable to E. azorica , which had only 8% of its

sampled trees lacking the herbivore guild. These data

suggest that alpha diversity, taking individual crowns as

local units, is higher for the insect herbivore fauna

associated with this tree species than with any other, a

pattern confirmed by the ANOVA models. The effect of

E. azorica was remarkable, overcoming individual effects

of islands and of other more frequent host species

(L. azorica , V. cylindraceum , J. brevifolia , and I. perado ;

Table 2), and thus supporting the third hypothesis.

1) Model of all islands containing Erica azorica ,

Laurus azorica and Vaccinium cylindraceum �/ signifi-

cant differences in insect species richness and abundance

between hosts and between islands were found in these

models (Table 3). However, island effect was strongly

influenced by Santa Maria Island alone. Multiple

comparisons confirmed that host trees on Santa Maria

supported more species and individuals of insect herbi-

vore species than trees on any other island (richness:

t�/2.49, pB/0.02; abundance: t�/2.15, pB/0.04) (see also

Figs 1 and 2). On the other hand, this pattern was

influenced by the greatest number of insects on

E. azorica , which resulted in no significant interaction

effect between factors (Table 3; Fig. 2). Despite island

idiosyncrasies in species composition, the pattern of

higher insect species richness and abundance on

Fig. 1. Mean insect species
richness per host plant species,
for each studied island
(�/standard error), sampled in
the summer of 1999 and 2000.

Table 3. ANOVA models designed using General Linear Procedures for (1) species richness and (2) log-transformed abundance of
insect herbivores, testing Erica azorica , Laurus azorica and Vaccinium cylindraceum in all studied islands.

1) Species richness

Source SS DF MS F-test p

Model 510.74 14 36.48 5,25 0.0001
Islands 230.94 4 57.73 8,30 0.0001
Host plants 207.33 2 103.66 14,91 0.0001
Islands�/Hosts 72.48 8 9.06 1,30 0.27
Within cells 278.17 40 6.95
Total 788.91 54 14.61

2) Abundance

Source SS DF MS F-test p

Model 66.70 14 4.76 8,56 0.0001
Islands 14.11 4 3.52 6,33 0.0001
Host plants 49.96 2 24.98 44,86 0.0001
Islands�/Hosts 2.64 8 0.33 0,59 0.78
Within cells 22.27 40 0.56
Total 88.98 54 1.65
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E. azorica was consistent across the whole archipelago

(Figs 1 and 2). Nonetheless, data suggests that geological

age may play an important role, thus supporting the

second hypothesis prediction.

2) Model of Erica azoria , Laurus azorica , Vaccinium

cylindraceum , Juniperus brevifolia , and Ilex perado

azorica in all studied islands except Santa Maria �/ this

model showed that significant differences in insect

herbivore species richness and abundance were found

across host species (Table 4). Erica azorica had the

greatest number of species per tree crown (12.759/0.9

morphospecies per tree crown; LSD: mean differences

varying from 2.3 to 5.3, pB/0.05), and V. cylindraceum

the smallest (6.759/0.7 morphospecies per crown; LSD:

mean differences varying from 2.17 to 5.3, pB/0.05),

while the remaining trees did not differ among species

(LSD: mean differences varying from 0.11 to 0.9, p�/

0.05). Similarly, E. azorica had the greatest value of

insect abundance per tree crown than other species,

followed by J. brevifolia , and I. perado azorica , which

had higher abundance than L. azorica and V. cylindra-

ceum (LSD: mean differences varying from 0.9 to 2.9,

pB/0.05). The latter two species did not differ in insect

abundance (LSD: mean difference�/0.34, p�/0.05). The

island factor had no effect on species richness without

Santa Maria (Table 4), but Pico still had less abundance

per averaged tree crown than other islands (4.169/0.2

individuals per crown; LSD: mean differences varying

from 0.6 to 1.5, pB/0.05).

No island-host plant interaction was found. This fact,

along with the great insect occurrence on E. azorica in

relation to the other host plants, on any island, was

Fig. 2. Mean insect species
abundance per host plant
species, in each studied island
(�/standard error), sampled in
the summer of 1999 and 2000.

Table 4. ANOVA models designed using General Linear Procedures for (1) species richness and (2) log- transformed abundance of
insect herbivores, testing Erica azorica , Juniperus brevifolia , Ilex perado azorica , Laurus azorica and Vaccinium cylindraceum in all
studied islands but Santa Maria.

1) Species richness

Source Type III SS DF MS F-test p

Model 11047.02 20 552,35 69.92 0.00001
Island 49.87 3 16,62 2.1 0.1
Host species 251.17 4 62,79 7.95 0.00001
Islands�/Host species 160.75 12 13,39 1.69 0.08
Within cells 710.98 90 7,9
Total 11758 110

2) Abundance

Source SS DF MS F-test p

Model 2400.95 20 120,05 209.71 0.0001
Island 13.24 3 4,415 7.71 0.0001
Host species 42.714 4 10,68 18.65 0.0001
Islands�/Host species 3.034 12 0,25 0.44 0.94
Within cells 51.524 90 0,57
Total 2452.47 110
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suggestive of strong host fidelity by its insect fauna,

which was found to be highly similar between transects

(Fig. 3). Other host species had a skewed distribution of

insect species between transects, toward low similarity

values, considering the similarity indexes between trans-

ect combination pairs, within and across islands (Fig. 3).

In other words, in these host species the fauna found on

the crowns seem to vary more in response to location

than in E. azorica . For instance, V. cylindraceum had a

mean similarity of 42% between transects, L. azorica

48%, M. africana 50%, I. perado azorica 51%, J.

brevifolia 54%, while E. azorica had 61%, slightly

skewed towards high similarities.

Reciprocal averaging (RA) analysis confirmed the

pattern of high diversity and fidelity of the fauna on

E. azorica compared with other species, and regardless

of islands. RA for insect herbivore species frequency

(Fig. 4) shows that each host plant species accumulates

particular herbivore fauna in response to islands. Erica

azorica is the exception, sustaining a uniform herbivore

fauna across the archipelago and, consequently, trees of

this species group together regardless of islands. Both

insect fidelity to E. azorica and scarcity of species on

other hosts may be influencing the patterns described by

RA, as rare species were not down weighted in the

analyses. A striking exception was Santa Maria Island,

which grouped all host trees in it, including E. azorica

(Fig. 4). Yet, within this island E. azorica has a some-

what characteristic insect fauna compared with other

plant species, and this species plot stands slightly

displaced from others within the Santa Maria group

(Fig. 4).

A likely explanation for the pattern found in Santa

Maria Island could be the absence of J. brevifolia , which

may then inflate the number of generalists in E. azorica ,

which are usually more frequent on the former species

when it is present. Reciprocal averaging did not show an

arch effect or data distortion, which are commonly

associated with this technique.

Additional analyses on faunistic dissimilarity indices

for all combinations of sampled trees on all islands

reinforced that samples from E. azorica were more

similar to each other despite islands of origin (in this

analysis, only E. azorica from Pico island is not clustered

with the other E. azorica samples from the remaining

islands), while samples taken from other host species

were clustered by islands (Fig. 5). No clear pattern of

faunal dissimilarity increasing with distance or island

size was found (Figs 4 and 5). Flores, the most distant

and one of the smallest islands had high similarity with

islands of the central group. A slight dissimilarity was

found in São Miguel, the largest island. Therefore, apart

Fig. 3. Frequency distribution
of Sorenson’s similarity index
values between transects for the
most important host species,
regardless of reserves and
islands. A skewed distribution
towards low similarity was
observed in all studied plants
except for E. azorica.
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from the high species accumulation found in the oldest

island, Santa Maria, no other clear biogeographic

pattern was detected.

The observed pattern of herbivore fidelity to E.

azorica seems to result from two independent causes:

gathering of a great number of generalists, and a higher
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Fig. 4. Ordination plot based on Reciprocal Averaging analysis of insect species frequency on each host plant per islands, for the
ordination axes 1 and 2. The letters of each code correspond to the island: FL �/ Flores, SJ �/ S. Jorge, PI �/ Pico, TE �/ Terceira, FA
�/ Faial, SM �/ S. Miguel and MA �/ S. Maria. The plant species are represented by symbols: Calluna vulgaris (crosses), Clethra
arborea (diagonal crosses), Erica azorica (filled triangles), Ilex perado azorica (filled squares), Juniperus brevifolia (filled circles),
Laurus azorica (open squares), Myrica faya (open triangles), Myrsine africana (open diamonds), Picconia azorica (filled diamonds)
and Vaccinium cylindraceum (open circles). The plant samples of E. azorica are linked with a perimeter line.

Fig. 5. Dissimilarity clustering between host species grouped by island (Ward’s method, using Bray-Curtis distances). Legend for
island-host codes as follows: the first two letters of each code correspond to the island: FL �/ Flores, SJ �/ S. Jorge, PI �/ Pico,
TE �/ Terceira, FA �/ Faial, SM �/ S. Miguel and MA �/ S. Maria. The remaining letters are the plant species: C �/ Calluna vulgaris ,
C �/ Clethra arborea , E �/ Erica azorica , I �/ Ilex perado azorica , J �/ Juniperus brevifolia , L �/ Laurus azorica , MYR �/ Myrica faya ,
MYS �/ Myrsine africana , P �/ Picconia azorica and V �/ Vaccinium cylindraceum .
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frequency of oligophagous compared to other host

species. Indeed, only 10 out of the 131 herbivore species

sampled could be considered specialists according to the

Lloyd index, and half of them were specialized on

E. azorica (Table 5). Furthermore, three out of the

four endemic species considered to be specialists were

specialized on E. azorica .

Partially, the prediction of a low number of specialist

species was upheld, but uniform distributions among

host species was not, due to a biased distributions

towards E. azorica , this suggests that habitat preference,

related to this species crown and leaf traits, may

confound other island effects.

Discussion

Herbivore species accumulation on islands and

polyphagy

Studies of community structure of canopy arthropods

are virtually absent in the Azores, let alone in any other

Atlantic islands, or even in oceanic islands in general

(Holloway 1996). Our study, covering seven islands, ten

vascular plants (five Azorean endemics) and a large

sampling effort, is the first quantitative survey of free-

living tree or shrub insects in an oceanic Atlantic

archipelago.

This study suggests that free-living insect herbivores

are mainly generalists, as expected for a relatively young

and isolated volcanic archipelago. This pattern of a high

proportion of generalists was also found by Olesen et al.

(2002) for Azorean pollinators and is common for other

island guilds of phytophagous insects (e.g. Lepidoptera),

as in Norfolk Island (Holloway 1996). Olesen et al.

(2002) explain the super-generalization of pollinators in

the Azores by the low interspecific competition. This

same explanation, along with generally low predation

and parasitic pressures, could also account for the

generalization found among the free-living herbivore

insects foraging in the canopies of native and endemic

shrubs and trees of the Azores.

Given the high incidence of generalist species in this

community, it becomes imperative to understand the

processes involved in their evolution. A problem of

studying polyphagy in the wild is that most revisions or

experimental trials to test phytochemical toxicity have

been done using herbivore insects associated with

ruderal plant communities or cultivated species. These

systems do not cover the variety of habitat constraints

and/or biochemical background such as that found in a

tropical forest, or a Macaronesian Laurisilva canopy

environment. Host plant physiological adaptations to

shallow, poor, or extremely heterogeneous soils, along

with the predictability and complexity of the canopy

habitat, must provide a suite of completely differentT
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selective forces on insect feeding patterns. Why should

insects in such a complex environment have neural

constraints to recognize food sources and why should

specialisation become an advantage? How do sensory

systems interact with a variable and complex, versus a

predictable and simple habitat? Many important ques-

tions like these will remain unanswered until researchers

perceive the importance of linking studies between

macroecology and experimental insect-plant interaction,

particularly those performed in the wild rather than in

disturbed urban or agricultural ecosystems.

Despite the common belief in the widespread advan-

tage of monophagy, high numbers of generalists have

been reported in many tropical forests, as well as in

temperate natural forests of the Azores. Selective pres-

sure favouring specialist herbivores may be less common

than previously expected, or at least more important in

particular types of vegetation. For instance, specialists

seem to be more frequent in evolutionarily old commu-

nities, adapted to harsh abiotic and nutritional condi-

tions (Price et al. 1998, de Souza Mendonça 2001,

Ribeiro and Brown 2002, Novotny et al. 2002, Ribeiro

2003). Host-shifting in these plant communities is likely

to affect patterns of insect speciation, even though all

new species end up with a restricted feeding behaviour

due to increased reproductive success (de Souza Men-

donça 2001, Novotny et al. 2002) or larval develop-

mental constraints, mainly in endophagous insects.

Therefore, changes in host choice may become a

mechanism of herbivore species radiation rather than

of increasing generalism. Ribeiro (2003) argues that such

insect communities may have evolved strictly in response

to severe feeding constraints, and that generalists may

predominate in many other types of vegetation.

Bernays and Graham (1988) discuss potential ecolo-

gical advantages related to host plant fidelity in oligo-

phagous species, such as sequestration of chemical

protection, which is an adaptative (though reversible)

trait, strictly related to constant feeding on the same or

similar host plants. Micro-habitat conditions may also

contribute to general host plant fidelity. Nevertheless,

the same mechanism of protection against predators (or

parasitoids) can result in a mixed diet and phagostimu-

lation by secondary compounds which should favour

either specialists or polyphagous insects (Bernays et al.

2000, Singer and Stireman 2003).

Erica azorica as a predictable and widespread
habitat for insects

A small-scale high plant density may result in herbivore

accumulation, as described by Straw (1994). Such a

process is also compatible with the present pattern of

species accumulation and generalist-with-fidelity insect

herbivore guilds, found in E. azorica . Crawley (1983)

among others (Straw and Ludlow 1994, Krüger and

McGavin 2000) argued that a widespread host plant may

support more insect species due only to ‘‘sampling’’

various local faunas, which might be the case of J.

brevifolia in the present study. However, it is not

expected that such tree species would support more

herbivores per individual crown than a similar-sized host

plant in the same place. In this study, J. brevifolia

accumulated a greater number of herbivore species than

E. azorica , although the latter supported higher species

richness per tree crown.

Moreover, in this study the highest densities of the few

specialist species were recorded in E. azorica . Among

those, both Argyresthia atlanticella Rebel (Lepidoptera,

Yponomeutidae) and Cleora fortunata azorica (Lepidop-

tera, Geometridae) cause substantial impact on plant

architecture, with potential consequences for its compe-

titive success during the successional process (Ribeiro et

al. 2003). Dense populations of specialist herbivore

insects may act as a significant selective force in

preventing the dominance of E. azorica in climax

Laurisilva forest, as well as acting as an evolutionary

force favouring both the evolution of arborescence in E.

azorica and herbivory resistance or tolerance (Givnish

1998, Ribeiro et al. 2003, Ribeiro et al. unpubl.).

A possible mechanistic explanation for the evolution

of the pattern discussed above may be drawn from a

metapopulation hypothesis of Hanski (1994, see also

Krüger and McGavin 2000). This hypothesis predicts a

decrease in local extinction due to regional immigration,

thus causing a positive correlation between distribution

and abundance (Gaston and Blackburn 2000). Taken in

a proper temporal context, the idiosyncratic evolution-

ary history of each island may be overcome by the

widespread and long term presence of E. azorica . The

hypothesis states that the presence and, particularly, the

local dominance of this host species results in insect

habitat similarities, hence allowing a particular section of

the insect community to be widely distributed, by

following conditions created by E. azorica .

In fact, an evolutionarily old host species could

accumulate an enormous diversity of herbivore species

on it (Birks 1980, Kennedy and Southwood 1984), by the

simplest fact of being a predictable habitat. In this sense,

evolutionary time may mask other island biogeographi-

cal factors (Borges and Brown 1999) that otherwise

could appear as a typical null hypothesis output (taking

biogeographic theory as a neutral theory, sensu Hubbell

2001). On the contrary, the Azorean canopy herbivore

guild seems to respond to more directed evolutionary

and ecological forces, which clearly define patterns of

species diversity and survival after colonization far

beyond a possible explanation based on MacArthur

and Wilson’s neutral assumptions. Hence, it is expected

that such species populations will evolve in response to

this insect pressure, but that may or may not result in
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accumulation of specialists, which instead depends on

how long the species have been in the ecosystem (Ribeiro

and Brown 1999). Therefore, host and habitat fidelity

(which varies from oviposition sites, to food resources,

lack of predator/parasitism, or even feeding speciality)

could be one of the most reasonable explanations

for faunistic association with this plant species �/ Erica

azorica .

Conclusions

The results described here agree with the general pattern

of community simplification in island ecosystems: dom-

inance of generalist species and strong island regional

effects on species composition (Borges and Brown 1999).

However, one early successional plant species, E. azor-

ica , seems to play an important functional role by

hosting a common set of phytophagous insect species

throughout most of the Azorean islands. Polyphagy in

these free-living herbivore insects may have a strong

correlation with the high floristic similarity found

among all the Azorean islands, and is compatible with

an expected ecological community shaped by taxonomic

disharmony.

Regardless of the strong effect of habitat caused by

E. azorica , other patterns of insect herbivore species

distribution were not clearly distinct from those found

in canopy ecosystems of world continental biomes.

The pattern of low tree individual occupancy was similar

to those found in tropical savannas. On the other hand,

the mean number of herbivore species per tree crown

was two and half fold lower than in Brazilian savanna

vegetation, which is a species-poor tropical plant

community, at least concerning free-living herbivores

(Ribeiro et al. 2003). On the other hand, the high

proportion of local singletons (45%) was similar to

that found by Novotny and Basset (2000) in tropical

rainforest in Papua New Guinea. The patterns described

here are supported by a large comprehensive data

base for forest canopies in the Azores, and may

contribute to understanding of general insect-

plant mechanisms which might shape insect herbivore

guild structures in any canopy forest habitat of the

world.
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Appendix 1. Abundance per plant in each island of most common (more than 10 specimens) sampled herbivore arthropod species. For each species information is

given concerning its colonization status (Col.: E�/endemic, N�/native; I�/introduced), taxonomic affiliation, morphospecies code (MF), Lloyd’s Index and number

of plants occurrence. For each island (FLO�/Flores; FAI�/Faial; PIC�/Pico; SJG�/S. Jorge; TER�/Terceira; SMG�/S. Miguel; SMA�/S. Maria) the number of

transects for each plant is given in brackets.

MF Species Col. Order Family Calluna Clectra Ilex Juniperus

Lloyd No.

plants

FLO

(3)

TER

(1)

SMG

(1)

FAI

(1)

FLO

(2)

PIC

(4)

SJG

(1)

SMG

(2)

STM

(2)

TER

(2)

FLO

(2)

PIC

(9)

SJG

(2)

SMG

(4)

TER

(8)

FAI

(1)

FLO

(10)

PIC

(8)

SJG

(4)

SMG

(3)

TER

(9)

MF90 Cleora fortunata

azorica

E Lepidoptera Geometridae 4.41 8 0 0 1 109 57 59 11 23 95 75 0 1 0 0 0 2 0 0 0 0 0

MF19 Argyresthia

atlanticella

E Lepidoptera Yponomeutidae 4.03 10 326 5 5 291 400 1562 0 436 351 328 89 192 46 39 36 60 2665 1018 1512 27 127

MF167 Kleidocerys ericae N Hemiptera Lygaeidae 3.25 7 0 0 3 29 785 1 0 151 1880 27 3 1 0 5 2 7 9 2 1 5 0

MF276 Heliothrips

haemorrhoidalis

I Thysanoptera Thripidae 2.93 5 0 0 23 0 2 0 1 1 0 5 0 0 0 0 0 0 0 0 0 4 0

MF534 Toxoptera aurantii I Hemiptera Aphididae 2.80 2 0 0 0 0 0 0 0 0 0 0 0 162 0 0 0 0 0 4 0 0 0

MF316 Cixius azofloresi E Hemiptera Cixiidae 2.60 7 10 0 0 0 6 0 0 0 0 0 69 0 0 0 0 0 752 0 0 0 0

MF78 Anaspis proteus N Coleoptera Anaspidae 2.54 7 0 0 1 0 0 61 3 19 0 0 2 9 0 0 21 0 1 10 0 0 10

MF211 Rhopobota naevana I Lepidoptera Tortricidae 2.53 5 0 0 0 0 0 1 1 0 0 3 7 198 5 45 137 0 1 5 2 0 0

MF12 Cyclophora

pupillaria granti

E Lepidoptera Geometridae 2.49 5 0 0 0 0 0 0 5 0 45 0 0 0 0 0 0 0 0 0 0 0 2

MF176 Cyclophora

azorensis

E Lepidoptera Geometridae 2.16 8 0 0 2 0 10 13 2 26 0 3 1 8 1 4 4 1 18 21 3 0 22

MF141 Calacalles

subcarinatus

E Coleoptera Curculionidae 2.16 6 0 0 0 0 0 2 2 0 0 0 57 39 0 28 20 0 1 3 1 2 1

MF412 Gen. sp. ? Lepidoptera ? 2.12 6 0 0 0 0 0 0 0 0 2 0 0 6 17 0 0 0 0 91 123 0 0

MF195 Trioza laurisilvae N Hemiptera Psyllidae 2.01 9 2 0 4 0 0 5 0 1 19 6 9 29 5 17 10 0 20 20 6 12 8

MF44 Cinara juniperi N Hemiptera Aphididae 1.93 7 0 11 0 0 0 2 0 0 0 0 1 5 0 2 7 58 39 494 28 55 1211

MF587 Cixius azopifajo

azojo

E Hemiptera Cixiidae 1.93 5 0 0 0 0 0 0 0 0 0 0 0 0 190 0 0 0 0 0 135 0 0

MF118 Scolopostethus

decoratus

N? Hemiptera Lygaeidae 1.90 3 0 0 0 1 0 0 0 0 76 0 0 0 0 0 0 0 0 0 0 0 0

MF557 Strophingia hartensi E Hemiptera Psyllidae 1.88 8 0 0 5 6 46 125 0 44 125 9 0 19 0 1 0 0 0 2 3 2 0

MF7 Cixius

azoterceirae

E Hemiptera Cixiidae 1.83 7 0 1 0 0 0 0 0 0 0 15 0 0 0 0 325 0 0 0 0 0 223

MF7 Cixius

azomariae

E Hemiptera Cixiidae 1.65 4 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0

MF137 Pinalitus oromii E Hemiptera Miridae 1.63 10 4 0 4 7 0 161 0 33 83 1 2 123 6 14 10 7 181 175 89 3 30

MF9 Ommatoiulus

moreleti

I (?) Diplopoda Julidae 1.58 7 6 1 0 37 65 56 0 1 0 8 6 16 2 0 5 8 26 37 6 4 13

MF487 Gen. sp. ? Hemiptera Margaroidae 1.53 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

MF413 Gen. sp. ? Lepidoptera Blastobasidae 1.49 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 20 0 0 6

MF124 Cyphopterum

adcendens

N Hemiptera Flatidae 1.49 9 1 0 8 0 1 13 0 22 1 3 23 65 0 17 79 18 226 38 65 7 84

MF414 Xanthorhoe

inaequata

E Lepidoptera Geometridae 1.35 8 0 0 3 0 0 43 0 75 17 5 0 4 1 3 2 0 2 19 3 0 2

MF295 Cixius azopifajo E Hemiptera Cixiidae 1.27 6 0 0 0 0 0 154 0 0 0 0 0 459 0 0 0 0 0 341 0 0 0

MF255 Cixius insularis E Hemiptera Cixiidae 1.19 6 0 0 2 0 0 0 0 44 0 0 0 0 0 224 0 0 0 0 0 85 0

MF636 Gen. sp. E? Hemiptera Aleyroridae 1.01 3 0 0 0 0 0 11 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

MF363 Popillia japonica I Coleoptera Scarabaeidae 0.88 3 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 3

MF671 Isoneurothrips

australis

I Thysanoptera Thripidae 0.87 3 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0
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MF102 Pseudophloeophagus

tenax

N Coleoptera Curculionidae 0.60 6 0 0 0 0 1 1 0 0 0 0 0 0 0 0 5 1 1 4 3 2 3

MF372 Gen. sp. I Lepidoptera Tortricidae 0.60 2 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 9 2 0 0

MF440 Eudonia

melanographa

E Lepidoptera Pyralidae 0.55 5 0 0 0 0 0 0 0 0 0 0 11 28 8 8 13 0 2 11 3 4 11

MF42 Orthomana

obstipata

N Lepidoptera Geometridae 0.53 9 0 0 2 0 0 3 0 0 2 1 0 4 0 6 1 0 0 1 0 0 4

MF630 Gen. sp. E? Lepidoptera ? 0.50 5 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 17 5 1 0

MF116 Scoparia

coecimaculalis

E Lepidoptera Pyralidae 0.46 6 0 0 0 0 0 5 0 0 0 0 0 5 0 2 0 0 3 2 1 0 0

MF519 Gen. sp. I Lepidoptera Tortricidae 0.45 4 0 0 0 0 1 2 0 0 11 10 0 0 0 0 0 0 0 0 0 0 0

MF418 Gen. sp. I Lepidoptera Tortricidae 0.41 5 0 0 0 0 0 2 0 0 0 0 0 2 0 0 3 0 4 8 0 0 15

MF476 Monalocoris filicis N Hemiptera Miridae 0.32 5 0 0 0 0 1 0 0 0 0 4 0 1 0 1 0 0 2 2 0 0 0

Appendix 1. Cont.

MF Species Col. Order Family Laurus Myrica Myrsine Picconia Vaccinium

Lloyd No.

plants

FLO

(2)

PIC

(4)

SMG

(3)

STM

(2)

TER

(8)

FAI

(1)

FLO

(1)

PIC

(1)

SJG

(1)

TER

(6)

STM

(1)

FLO

(6)

PIC

(3)

SJG

(4)

SMG

(2)

STM

(1)

TER

(6)

MF90 Cleora fortunata

azorica

E Lepidoptera Geometridae 4.41 8 0 1 0 2 0 1 0 0 0 0 2 0 0 0 0 3 1

MF19 Argyresthia

atlanticella

E Lepidoptera Yponomeutidae 4.03 10 32 50 5 11 36 31 0 33 30 13 11 154 35 192 8 8 28

MF167 Kleidocerys ericae N Heteroptera Lygaeidae 3.25 7 2 1 1 55 1 0 0 0 0 0 21 4 1 2 0 11 1

MF276 Heliothrips

haemorrhoidalis

I Thysanop-

tera

Thripidae 2.93 5 0 3 0 0 1 0 0 0 0 0 0 0 4 0 0 0 1

MF534 Toxoptera aurantii I Homoptera Aphididae 2.80 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MF316 Cixius azofloresi E Homoptera Cixiidae 2.60 7 22 0 0 0 0 0 9 0 0 0 0 28 0 0 0 0 0

MF78 Anaspis proteus N Coleoptera Anaspidae 2.54 7 0 1 0 0 10 0 1 8 0 2 0 1 0 0 0 1 0

MF211 Rhopobota

naevana

I Lepidoptera Tortricidae 2.53 5 0 0 2 0 2 0 0 0 0 0 0 0 1 1 0 0 3

MF12 Cyclophora

pupillaria granti

E Lepidoptera Geometridae 2.49 5 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 3

MF176 Cyclophora

azorensis

E Lepidoptera Geometridae 2.16 8 1 15 0 0 14 16 0 1 1 15 0 1 2 3 0 0 1

MF141 Calacalles

subcarinatus

E Coleoptera Curculionidae 2.16 6 1 4 1 0 2 0 0 0 0 2 0 2 1 0 0 0 1

MF412 Gen. sp. ? Lepidoptera ? 2.12 6 0 7 0 0 0 0 0 0 1 1 0 0 0 30 0 0 0

MF195 Trioza laurisilvae N Homoptera Psyllidae 2.01 9 48 164 48 122 106 0 0 0 0 2 19 0 26 3 6 5 7

MF44 Cinara juniperi N Homoptera Aphididae 1.93 7 0 0 1 0 6 0 1 2 0 8 0 0 0 2 0 0 1

MF587 Cixius azopifajo

azojo

E Homoptera Cixiidae 1.93 5 0 0 0 0 0 0 0 0 6 0 0 0 0 27 0 0 0

MF118 Scolopostethus

decoratus

N? Heteroptera Lygaeidae 1.90 3 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 0 0
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MF557 Strophingia

hartensi

E Homoptera Psyllidae 1.88 8 0 3 2 23 46 0 0 4 0 0 11 0 1 2 0 3 0

MF7 Cixius azoterceirae E Homoptera Cixiidae 1.83 7 0 0 0 0 109 0 0 0 0 36 0 0 0 0 0 0 39

MF7 Cixius azomariae E Homoptera Cixiidae 1.65 4 0 0 0 10 0 0 0 0 0 0 12 0 0 0 0 2 0

MF137 Pinalitus oromii E Heteroptera Miridae 1.63 10 2 70 1 2 14 16 1 5 9 7 3 25 13 28 1 1 27

MF9 Ommatoiulus

moreleti

I (?) Diplopoda Julidae 1.58 7 4 16 2 1 5 0 0 1 0 1 0 12 3 5 0 0 1

MF487 Gen. sp. ? Homoptera Margaroidae 1.53 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

MF413 Gen. sp. ? Lepidoptera Blastobasidae 1.49 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MF124 Cyphopterum

adcendens

N Homoptera Flatidae 1.49 9 16 44 0 12 48 0 0 0 56 61 25 21 30 55 0 1 38

MF414 Xanthorhoe

inaequata

E Lepidoptera Geometridae 1.35 8 0 1 1 4 7 0 0 2 2 2 3 2 2 6 0 2 0

MF295 Cixius azopifajo E Homoptera Cixiidae 1.27 6 0 75 0 0 0 0 0 18 0 0 0 0 19 0 0 0 0

MF255 Cixius insularis E Homoptera Cixiidae 1.19 6 0 0 225 0 0 0 0 0 0 0 0 0 0 0 74 0 0

MF636 Gen. sp. E? Homoptera Aleyroridae 1.01 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

MF363 Popillia japonica I Coleoptera Scarabaeidae 0.88 3 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

MF671 Isoneurothrips

australis

I Thysanop-

tera

Thripidae 0.87 3 0 0 0 5 0 0 0 0 0 0 1 0 0 0 0 0 0

MF102 Pseudophloeophagus

tenax

N Coleoptera Curculionidae 0.60 6 0 0 0 0 2 0 0 0 0 3 0 1 0 1 0 0 0

MF372 Gen. sp. I Lepidoptera Tortricidae 0.60 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MF440 Eudonia

melanographa

E Lepidoptera Pyralidae 0.55 5 2 3 1 0 8 0 0 0 2 4 0 0 1 3 0 0 6

MF42 Orthomana

obstipata

N Lepidoptera Geometridae 0.53 9 0 0 0 2 12 3 1 1 1 5 2 0 1 0 0 0 3

MF630 Gen. sp. E? Lepidoptera ? 0.50 5 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

MF116 Scoparia

coecimaculalis

E Lepidoptera Pyralidae 0.46 6 0 2 2 0 2 0 0 1 0 0 0 2 1 1 5 0 1

MF519 Gen. sp. I Lepidoptera Tortricidae 0.45 4 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0

MF418 Gen. sp. I Lepidoptera Tortricidae 0.41 5 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

MF476 Monalocoris filicis N Heteroptera Miridae 0.32 5 0 1 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0
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