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A Keystone Mutualism Drives Pattern
in a Power Function
John Vandermeer1,2* and Ivette Perfecto2

Data that can be described by a power function are ubiquitous in nature. Although there is
consensus that such data frequently emerge generally from nonlinear complex systems, a variety of
specific mechanisms may be responsible for creating the pattern in particular cases. Here, we report
on the distribution of a scale insect (Coccus viridis) that is a common agricultural pest. Its
distribution in an organic coffee farm in southern Mexico generally follows a power function,
but there are subtle deviations from that function. We offer a biological explanation for both
adherence to the power functions and associated deviations, along with supporting evidence.

T
he distribution of clusters of organisms,
much like other patterns in nature (1, 2),
is frequently characterized by a power

function (3). For a variety of distinct dynam-
ic scenarios, when cast in a spatial frame-
work, biological interactions of several distinct
types are capable of generating spatial pattern
characterized by power law scaling (4). This
pattern is usually interpreted as a signal of self-
organization resulting from spatial extension. In
most ecological examples, clusters are formed
through various biological interactions manifest
in a spatial context, such as local depletion of
resources (5), local disturbance regimes (6) or
predator-prey interactions (7). That clusters
form in the first place is an interesting aspect
of these theories, but the evidence that the
distribution of individuals within those clusters
approximates a power law is the most
intriguing aspect of self-organization (2). Any
spatial process that combines a local spread (for
example, local production of a prey population)
with a regional control (for example, a search-
ing predator that ranges widely) will likely
generate clusters (8). A similar mechanistic
statement is more elusive for the power func-
tion nature of those clusters.

For the green coffee scale (C. viridis), the
formation of clusters is of little interest be-
cause each Bcluster[ is a population of scale
insects on a coffee bush. However, the ecol-
ogy of this organism offers a potential expla-
nation of both the evident power law and
subtle deviations from it at high and low pop-
ulation sizes.

The green coffee scale is a common herbi-
vore, frequently noted as a pest in greenhouses
and a known pest of coffee (9, 10). Although
normally maintained by natural enemies below
critical damage thresholds, it can sometimes
reach pest status (11). It is tended by a variety
of ant species in a classic mutualistic form:
The homopteron supplies honeydew to the
ant, and the ant protects the homopteron from
predators (12). Azteca instabilis, a mutualist of
C. viridis in southern Mexico (13), is a tree-
nesting species that occurs in obvious spatial
clusters (14) in the shade trees of coffee farms.
Those coffee bushes that are near a tree oc-
cupied by A. instabilis are frequently sites of
large concentrations of C. viridis. At least
two species of encyrtid wasps are parasitoids
on C. viridis and the coccinelid beetle Azya
orbigera is a voracious predator. Direct ob-
servations and experimental results indicate
that the A. instabilis ants are efficient pro-
tectors of the scale insects in the face of these
natural enemies (15), and casual observations
leave little doubt that the ants collect honey-
dew from the scales.

To investigate the spatial pattern of C. viridis,
we set up a 45-ha plot on an organic coffee farm
in southwestern Mexico (16), identified each
shade tree therein, and assessed whether or
not it contained an A. instabilis colony (13). Of
10,597 trees located, 276 contained A. instabilis
colonies. We systematically chose five loca-
tions surrounding such a colony and four loca-
tions that were clearly outside of the influence
of any such colony (17). In each of the nine
sites, we determined the scale abundance (17)
on approximately 50 to 100 coffee plants, for a
total of 678 coffee plants surveyed.

The frequency distribution of scale insect
numbers per tree is shown in Fig. 1. A power
function is clearly suggested by the approxi-
mately linear nature of the points. However,
subtle deviations from the power function at
both high and low scale densities are also
evident by casual observation. Because of the
deviations at both high and low densities, we
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Fig. 1. Log-log plot of population size versus
frequency of size of cluster. The line is a re-
gression based on the data points located be-
tween 3.5 and 4.5 on the abscissa (17). Slope of
power function is –2.72.
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considered points in the intermediate range
(between log category size 3.5 and 4.5) as a
basis for casting a regression line (Fig. 1) (17).

Underlying biological processes may ac-
count for both the power function and its
deviation. Assume that each propagule of
C. viridis encounters coffee bushes randomly.
That propagule will begin population growth
that is effectively exponential, at least for a
time. Thus, if the exponential growth parameter
is normally distributed, the limiting distribution
of scales ought to be lognormal. Consequently,
we expect a lognormal distribution as the neu-
tral base, which translates directly into a power
function. Although this is the expectation at the
limit, the approach to that power law may be
extremely slow, depending on the mean value
of the intrinsic rate of natural increase and its
variability. Moreover, the system is substantial-
ly complicated by its existence in an extended
space. When the exponential process, operative
independently at the level of each individual
coffee bush, is augmented by random additions
of individuals resulting from the spatial exten-
sion of the system, the approach to the power-
law scaling may be significantly accelerated.
The general pattern to be expected can be seen
in a simple simulation (18), as shown in Fig. 2.
Notably, as the overall distribution approaches
a lognormal (Fig. 2A), the power function
emerges (Fig. 2B). Furthermore, it is the ap-
parent disappearance of the effect of space (i.e.,
when the late arrivals of populations at bushes
are swamped by the population growth on those
bushes) that represents a critical state, that is,
the state of the pure power function without the
deviations (e.g., after eight iterations in Fig. 2).
That is, once all or almost all bushes are oc-
cupied by at least a single scale insect, the
overall dynamics rapidly become dominated by

the distributed exponentials with the emerging
power law. Before that time, many bushes will
have zero or very low occupancies, which main-
tains an extended tail on the lognormal distribu-
tion. Thus, the point of Bcriticality[ is when the
random process thought to represent space in
this model reaches the critical point of filling
all coffee bushes with at least one scale insect.
The general idea of criticality and the self-
organization that goes along with it (3) is thus
repeated in this system, although here we are
dealing with a second order of critical state,
which is to say, the disappearance of the space
effects.

Evidence that this dynamic is operative in
the system under study is gained from an
examination of the frequency distribution of
the logs of scale numbers (Fig. 3) compared
with the lognormal expected from the under-
lying biology (local reproduction on a coffee
bush), shown by an approximate normal curve
superimposed on the data in Fig. 3. It is qual-
itatively clear from Fig. 3 that there is a strong
deviation from the lognormal at the low pop-
ulation size category, much as observed in
simulations before the moment of criticality
(compare Fig. 3 with Fig. 2A). We thus con-
clude that the system is near its critical point, in
which the random allocation of scales to bushes
is almost complete.

However, there is also a less obvious, but
equally important deviation from the lognormal
distribution at the high end of the spectrum.
This is the same deviation that can be seen in
the log-log graph presented in Fig. 1. We
hypothesize that this high cluster deviation is
a consequence of the key mutualism operative
in the system. When the coffee bush is near to
an ant colony, the inherent limitation on the
population, probably due to predation and

parasitism, is reduced, and the local population
is released to reach much higher values.

Support for this hypothesis is strong if
we eliminate those sampling sites in which an
A. instabilis colony is resident. Plotting only the
antless sites from Fig. 1, we obtain the points
displayed as solid circles in Fig. 4, which is
evidently a linear function with no obvious
deviation at high cluster sizes. We take this
power law to be the underlying power law that
derives from independent populations growing
exponentially and randomly dispersing in space.
The key mutualism acts to generate a deviation
at high cluster sizes from the basic pattern, given
by the dotted line in Fig. 4 (with the same slope
as the ant-free distribution but with a higher y
intercept corresponding to the higher numbers
of total scales in the pooled samples).

In sum, the basic power law that C. viridis
seems to follow is a product of independent
populations growing exponentially, giving rise
to a basically lognormal distribution, but or-
ganized in space such that extremely small
populations are common as a consequence of a
time delay in the dispersal of individuals to new
bushes. The large-cluster deviation from this
basic law is caused by the key mutualism
between C. viridis and A. instabilis. Thus, both
the power law and the key deviation from the
power law are understandable in terms of sim-
ple biological processes.

Interpretation of the power law in this
particular case is of interest in its own right
and represents one of the few cases where it is
easy to recognize biological phenomena that
can account for the pattern. However, the result
may also have practical applications. In the
case of a potential pest species, it is always
necessary to be able to project the population
into the future to determine when control ac-
tivities may be necessary Ethe so-called action

Fig. 2. Results of simulations of
the simple exponential model
coupled with random dispersal
(18). (A) Frequency diagrams of
the log of number of scales per
bush for three different iterations.
(B) Log-log plot of frequency
versus category of number of
scales per bush, showing how the
system approaches a classical
power function in time.
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threshold (19)^. In a spatial context, if all
bushes are occupied by scales and density
dependence can be ignored, projecting the

overall population into the future is a simple
matter of applying an exponential function to the
total scale abundance. However, if that critical
point where all bushes are occupied has not
been reached, applying the simple exponential
law will necessarily underestimate future pop-
ulation sizes, because the actual spatial dy-
namic will include newly occupied bushes in
the future. Consequently, determining wheth-
er the system is at its critical value, at which
point the application of the simple exponen-
tial would indeed be appropriate, has obvious
practical importance. Thus, the degree to
which spatial data adhere to a power function
can be taken as an indication of the legitimacy
of applying an exponential rule to population
projections.
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Nuclear Receptor Rev-erba Is a
Critical Lithium-Sensitive Component
of the Circadian Clock
Lei Yin,1 Jing Wang,1 Peter S. Klein,2 Mitchell A. Lazar1*

Lithium is commonly used to treat bipolar disorder, which is associated with altered circadian
rhythm. Lithium is a potent inhibitor of glycogen synthase kinase 3 (GSK3), which regulates
circadian rhythm in several organisms. In experiments with cultured cells, we show here that
GSK3b phosphorylates and stabilizes the orphan nuclear receptor Rev-erba, a negative component
of the circadian clock. Lithium treatment of cells leads to rapid proteasomal degradation of
Rev-erba and activation of clock gene Bmal1. A form of Rev-erba that is insensitive to lithium
interferes with the expression of circadian genes. Control of Rev-erba protein stability is
thus a critical component of the peripheral clock and a biological target of lithium therapy.

G
enetic and biochemical analysis re-
veals that a 24-hour circadian rhythm is
present throughout the animal kingdom

(1–3). In mammals, circadian rhythm is a fun-
damental regulatory factor for many aspects
of behavior and physiology, including sleep-
wake cycles, blood pressure, body temperature,
and metabolism (1–3). Disruption in circadian
rhythms leads to increased incidence of many

diseases, such as cancer and mental illness (1, 3).
Bipolar disorder in particular is associated with
disturbed circadian rhythm (4).

Cells throughout the body also display 24-
hour rhythms (3, 5). These are entrained by
signals from a central clock located in the su-
prachiasmatic nucleus (SCN) of the hypothal-
amus, which is reset daily by light (3). Cellular
rhythms are generated and maintained through

interconnected transcriptional feedback of clock
genes (3, 6). The cycle starts when two bHLH-
PAS domain proteins, BMAL1 and CLOCK,
heterodimerize to activate a number of clock
genes including Per1, Per2, Cry1, and Cry2. As
a negative feedback loop, PER and CRY
accumulate in the cytosol and then translocate
into the nucleus. Once inside the nucleus, the
PER-CRY complex inhibits its own transcrip-
tion by binding to BMAL-CLOCK (3, 6–8). An
additional negative feedback loop requires the
transcription repression function of the or-
phan nuclear receptor Rev-erba, which re-
presses the transcription of Bmal1 during
circadian night and is responsible for rhythmic
expression of the Bmal1 gene (9–11). Rev-erba
itself is activated by BMAL1-CLOCK and
thereby represents the link between the positive
and negative loops of the circadian clock (9).

Posttranslational modifications also play an
essential role in resetting the clock (2, 3, 12).
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Fig. 4. Log-log plot of population size versus
frequency of population sizes for sites away
from the influence of an A. instabilis colony
(solid circles), and all data (small open circles
repeat the data of Fig. 1). Slope is –2.48, fitted
to the points located between 3.5 and 4.5 on the
abscissa (17). The evident deviations from the
power function at high population densities (small
open circles) are not present in this data sample.
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