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1. Introduction

Competition occupies a central place in modern ecological
theory. There are generally two extremes on a continuum of
thinking about how communities are organized by this
process, niche-oriented versus non-niche-oriented (Wills
et al., 1997). At one extreme some communities are thought
to be organized through niche differences such that competi-
tion among species is sufficiently weak to allow for coex-
istence (MacArthur, 1970; Levine, 1976; Grubb, 1977; Pacala and
Tilman, 1993; also referred to as equilibrium communities,

Connell, 1978; or dominance-controlled communities, Yodzis,
1989). At the other extreme some communities are thought to
contain species that effectively occupy the same or similar
niches, such that they would be expected to eliminate one
another eventually (Hubbell and Foster, 1986; Silvertown and
Law, 1987, also referred to as non-equilibrium communities,
Connell, 1978; or founder-controlled communities, Yodzis,
1989). This latter point of view was immortalized in the
observations of Hutchinson popularly known as the ‘‘paradox
of the plankton’’ (Hutchinson, 1961). Several kinds of diverse
assemblages of species, from rain forest trees to phytoplank-

ton have been postulated as possibly falling into this category,
with competition coefficients large enough to cause eventual
extinction of all but a single species, either through active
competitive exclusion or, in the case of perfectly equivalent
species, through random drift. It is the latter type of
community (non-niche, or non-equilibrium, or founder-con-
trolled) that we analyze in this paper, taking the extreme
situation in which a suite of competitors have competition
coefficients large enough to insure the extinction of all but one
species, in a purely competitive situation.

It has long been thought that oneway of stabilizing such an

inherently unstable competitive assemblage of species is with
predatory pressure (Chase et al., 2002). It seems intuitively
compelling that a predator or a suite of predators (or
herbivores or parasites) could reduce competitive pressure
and thus allowwhatwould seem to be an unstable community
to become stable. We refer to this idea as the natural enemies
hypothesis. This hypothesis takes many forms, from observa-
tions of Darwin (1998) (also see Van Valen, 1974), to an explicit
statement by Hutchinson (1948), to the classic experiments
that established the central idea of the keystone predator
(Paine, 1974), to experiments with herbivores in grasslands
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(Harper, 1969; Ryerson and Parmenter, 2001; Bakker and Olff,
2003), to the so-called ‘‘Janzen/Connell hypothesis’’ (Janzen,
1970; Connell, 1971) to more recent work with more compli-
cated food webs (Spiller and Schoener, 1990; Yodzis, 1995; de

Roos et al., 1991, 1998; Vandermeer et al., 2002) and the implied
top down effect of predators on a lower trophic level (e.g.,
Schmitz, 2003). Recently, a variant of the basic idea has been
proposed as a partial explanation for the hyper-diverse
communities of tropical rain forests (Wills, 1996). A key
component in much of this literature, although not necessa-
rily explicitly recognized as such, is the degree of specializa-
tion or generalization in the food habits of the predators of
concern (Levine, 1976).

Mathematical theory has been employed to demonstrate
the natural enemies effect at least since 1970 where computer

simulations suggested that a generalist predator could not
stabilize a two-species bistable competitive system (Parrish
and Saila, 1970). Subsequent analytical work (Cramer andMay,
1972; Fujii, 1977; Vance, 1978; Hsu, 1981; Vandermeer, 1991)
demonstrated that indeed a generalist predator, under certain
parameter combinations, could stabilize two or more compe-
titors that would otherwise compete one another to extinc-
tion. All of these examples were in the context of either a
single stable equilibrium, or one of the competitors dominat-
ing the other, but never the bistable case. Most important for
the present work are the results of Hutson and Vickers (1983)

demonstrating that a single generalist predator cannot
convert an unstable (bistable) two-species competitive system
to a stable one. The competitive system considered in this
paper is inherently unstable, or multistable, in the sense that
only one of a group of competitor species will survive in
perpetuity in the absence of predation. The extension of
Hutson and Vickers’ result to a multi species case demon-
strated that a generalist predator would be unable to deter the
process of competition in an inherently unstable case
(Schreiber, 1997, 1998; Butler and Wolkowicz, 1986; Wolk-
owicz, 1989). On the other hand, Kirlinger (1986) was able to
show that two properly chosen specialist predators could

stabilize an unstable pair of competitor species, suggesting
that it was the generalist nature of the predator in Hutson and
Vickers’ model that disabled the controlling effect of preda-
tion, an important observation for the results of the present
communication. Finally, Schreiber (1997, 1998) generalized
Kirlinger’s result to n-species, demonstrating that a minimum
of n specialist predators are required to reverse competitive
exclusion of n competitors in a non-equilibrium (non-niche,
founder-controlled, multistable) situation. Several authors
have noted the importance of repelling heteroclinic cycles in
this predator control dynamic (Kirlinger, 1986; Schreiber, 1997,

1998).
Here, we add to this body of theoretical work by examining

the case of multiple competing species located intermediate
on the continuum formed by complete generalization versus
complete specialization of predators. It is the case that, for a
particular range of parameter values, neither completely
specialist nor completely generalist predators are able to
maintain a species-rich assemblage of prey when competition
is strong among the prey species. However, for those same
parameter values, the potential of predators to maintain a
species-rich assemblage of prey depends on the polyphagous

nature of the predators, with an intermediate level of
polyphagy providing that maintenance service. Furthermore,
under these circumstances, the transition from maintenance
of a large number of the competitors together, to the exclusion

of all but one, is accompanied by a critical bifurcation of a
heteroclinic cycle from repelling to attracting, as explained
below.

2. The model and results

Assume that each competitor is preyed upon by a particular
predator, but the predator is able to consume alternative
species at some rate that is smaller than the rate at which it
consumes its specialist prey. Thus, a system of many

competitors and their predators may be thought of as a series
of predators using a suite of weighted competitors, Q all of
which are competing with one another. Hence,

Qi ¼ xi þ c
X

x j

where the summation is over all j 6¼ i, xi is the density of the ith
competitor, c the conversion factor that converts a unit of
competitor j into a unit of predator i, where 0 < c < 1.0. In other
words, the populations consumed by a particular predator are
a collection composed of a principal competitor plus a series of
other competitors that are consumed in proportion to the

consumption of the principal competitor (i.e. c). Thus, the
parameter c is the ‘‘degree of polyphagy’’ of the predators.
To be clear, when c = 0, all predators are specialist, when c = 1
all predators are generalists, and when 0 < c < 1, all predators
are intermediate, which is to say, polyphagous, with an inter-
mediate degree of specialization.

If Qi represents the competitors that are prey for the ith
predator, the dynamic equations can be written in standard
Lotka–Volterra (with density dependence and type II func-
tional response) form as:

dPi
dt

¼ #mPi þ
aQiPi
1þ bQi

(1a)

dxi
dt

¼ xi 1# xi # a
X

x j

! "
# axiPi

1þ bQi

# $
# ac

X xiPi
1þ bQ j

(1b)

where Pi is the density of the ith predator, a the predation rate,
m the mortality rate of the predator, b the parameter of the
functional response, a is the competition coefficient, and the
summation is taken over all j 6¼ i, for j = 0, 10. This way of
writing the functional response for multiple species is chosen
as a direct extension of the form normally used for a single
species, where, instead of a single competitor generating the

response, we use the ‘‘effective’’ competitor (i.e. Q), and
employ a type II functional response. If b and a are set to zero,
system 1 becomes equivalent to the extended Lotka–Volterra
system with simple density dependence—all solutions are
simple focal point attractors and, assuming that a <m, extinc-
tion is impossible for any c (in the range 0–1).

However, if b is set sufficiently large (keeping a = 0) such
that all uncoupled two-dimensional subsystems (any pre-
dator/competitor pair) exhibit limit-cycle behavior, a sub-
stantially different pattern is observedwhen the parameter c is
increased. As c becomes larger, eratic cycles may be generated
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in which both competitor and predator can become so small
that their extinction from the system is virtually assured
through a very small stochastic effect. Under such circum-
stances, it must be assumed that there is some critical lower
boundary to the size of the population, such that any
population dipping below that critical value can be thought
of as essentially extinct. To simulate this extinction force, the

critical lower limit at which a population is regarded as extinct
was set at 10#6, that is, allowing a population density range of 0
to 100,000.

When c is equal to zero (perfectly specialist predators), and
a = 1.1, for all parameter values investigated in this study
(a = 0–40, in intervals of .04, b = 0–4, in intervals of .008) the
system generates extinction of all but one competitor. Clearly,
there are other parameter values for which coexistence is
possible, as demonstrated by Kirlinger (1986), who provides
precise conditions for such a stabilizing effect for both a four
species and six species system (two predator prey pairs and
three predator prey pairs), and Schreiber (1997, 1998) who

provides those precise conditions for n-species. We studied
the part of the parameter space in which completely specialist
predators did not change the ultimate conclusion of compe-
titive exclusion.

At the other end of the spectrum, with c equal to 1.0
(defined as completely generalist predators), there is also a
complete elimination of all but one competitor, a well-known
result (Schreiber, 1997, 1998). Thus, for a wide range of
parameter values (a and b), neither perfectly specialist nor
perfectly generalist predators change the inevitable Gausean
outcome of elimination of all but one of the competitors (a, the

competition coefficient, is always 1.1 in these simulations,
assuring the elimination of all but one of the competitors).
Thus, for the parameter values studied here, the predators
apply added negative pressure to each of the competitor
populations such that all but one disappears.

However, even when parameters are such that neither
specialist nor generalist predators are able to deter compe-
titive exclusion (as in the cases studied here), the introduction
of an intermediate degree of polyphagy (intermediate values
of c) results in a different pattern (Fig. 1). Many or all
competitors coexist in a window of intermediate polyphagy.

For the particular example chosen in Fig. 1, this window is
when c is approximately between 0.03 and 0.16. This example
suggests that the only way in which predators could act to
deter the ultimate complete competitive exclusion, is if there
is an intermediate amount of polyphagy in the system.

The underlying mechanism giving rise to this pattern can
be intuitively seen by eliminating the critical minimum that

generates extinction and graphing the minimum of any of the
competitors as a function of the degree of polyphagy, as has
been done in Fig. 2. There is a clear transition at approximately
0.3 (most clearly visible in Fig. 2b), at which a heteroclinic cycle
seems to appear for all higher values of polyphagy. The
heteroclinic nature of the trajectories can be seen in a time
series, as shown for all 11 competitor species in Fig. 3. After the
initial 8000 iterations (Fig. 3a), the typical pattern is for one
species to dominate while all others remain very close to zero,
only to be replaced by other specieswhich then dominate for a
while, which are then replaced by others, and so forth. Fig. 3b
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Fig. 1 – Average number of coexisting competitors as a function of the specialization of the predators, based on system 1.
Parameter values are m = 0.8, b = 1.5, a = 15. Iterations were carried out to 1000 time steps. The critical minimum value for
persistence is 10S6.

Fig. 2 – Bifurcation diagram of the minima of the log of x3 as
a function of degree of polyphagy (c) from system 1.
Parameters as in Fig. 1 except there was no critical
minimum for persistence. (a) Limited range of log of x,
showing position of critical extinction line (dotted
horizontal line). (b) Expanded range of log of x showing the
critical heteroclinic bifurcation. Dotted rectangle in (b) is
the area represented in (a).



shows the same time series after 30,000 iterations. The time
that one species predominates is now much longer than at
earlier times in the simulation, indicating that the system is
approaching a heteroclinic cycle and thus lingers near each
focal saddle point for an ever longer period of time. This
pattern continues, as far as we can tell from these numerical
solutions.

To the left of the bifurcation point that results in the
heteroclinic cycle (see Fig. 2a), the system is apparently in

chaos, although constrained by the remnants of the same
heteroclinic cycle (Huisman and Weissing, 2001). These
dynamic patterns explain the origin of the coexistence
window in Fig. 1. By choosing some critical value of the
minimumallowable population (in this case 10#6, as indicated
by the dotted horizontal line in Fig. 2a), the size of the
coexistencewindow can be chosen from Fig. 2, but onlywithin
the limits of the heteroclinic bifurcation, that is, the limits of
the window can never extend to the right of that bifurcation,
for, no matter how small the critical value chosen, it will
always be transcended since all population trajectories

approach zero asymptotically.

3. Visualizing the heteroclinic cycle in lower
dimension

The basic heterolinic cycle can be visualized in a special four-
dimensional form. Consider the four-dimensional system
formed by allowing xi = Pi = 0 for i = 2, 10, which is to say only
the first and second (i = 0, 1) predator/prey exist. We now
examine the systemwith c = 0.375, a value chosen to bewithin

the zone of heteroclinic orbits. Inmany locations in parameter
space (including the particular point examined here) the
system appears to oscillate between domination of the x1, P1
subsystem and domination of the x2, P2 subsystem, inter-
spersedwith a close approach to extinction of one or the other
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Fig. 3 – (a) Time series for all 11 competitors in the 22 species system, with c = 0.35. (b) Same time series for later iterations.
Parameter values as in Fig. 1.

Fig. 4 – Phase space of four-dimensional system projected
onto the DP vs. Dx space where D refers to the difference
between the two variables (either P1 vs. P2 or x1 vs. x2).
Parameters the same as in Fig. 3 with c = 0.375.



of the xi. In such cases, we can visualize this four-dimensional
system in twodimensionswith the following transformations:

Dx ¼ x1 # x2; DP ¼ P1 # P2:

In Fig. 4, we present the trajectory for system 1 with c = 0.375
plotted as Dx versus DP, where the expected pattern of a
heteroclinic cycle is evident (note that in Fig. 4 there are four
saddle singularities, each identified with a small x, but two of
those are oscillatory saddles).

4. Discussion

In a recent review (Chase et al., 2002), it is concluded that
Yodzis (1986) got it right, in that simple models dealing with

predatory effects on competition show that predation ‘‘can
have positive, negative or no effect on coexistence,’’ perhaps a
less than satisfying conclusion. However, the enormous
literature on this topic includes an extensive mix of special
conditions (e.g., a trade-off between predator vulnerability
and competitive ability or predator switching or spatial
dynamics; Sommer and Worm, 2002), which makes it
unsurprising that almost any result is possible depending
on how the problem is formulated (Chase et al., 2002). Here, a
very special case is treated, in which all competitors are
equivalent and compete with one another very intensely—the

competition coefficients are set at 1.1 so as to insure complete
extinction of all but one species in the absence of predation.
Given this assumption, it is shown that, for certain parameter
combinations, the critical feature of the predation is not its
intensity, but its degree of specialization. Under these condi-
tions, neither of the two extremes of completely specialist
predators nor extremely generalist predators (effectively, a
single predator that eats all competitors equally) is effective at
deterring competitive exclusion. Rather, an intermediate level
of polyphagy functions to reduce thenumberof extinctionsdue
to competition. This result emerges from the cycling nature of
the predator/prey systems, reflecting recent, perhaps surpris-

ing, results that emerge from adding extra non-linearities (e.g.,
functional response) to the basic Lotka Volterra system (e.g.,
ArmstrongandMcGehee, 1980;Abrams, 1999;AbramsandHolt,
2002; Vandermeer et al., 2004).

These results have an indirect bearing on previous reports
concerning weak links in food webs (McCann et al., 1998;
Neutel et al., 2002). The ‘‘links’’ in the food web under study
here are, effectively, the competition coefficients (which are
set constant at 1.1), the rate atwhich the specialist competitor
is consumed (which is set equal to a = 15 here), and the rate at
which the alternative competitors are consumed (c, varying

from 0 to 1). The weak connections in this food web are thus
the connections between predators and their alternative
competitors, equal to the value of c. It is found that
small values of c can cause an otherwise non-persistent
system to become persistent in perpetuity (the window of
coexistence at low values of c). This then is another example
of weak connections ‘‘stabilizing’’ food webs, lending a note
of further generality to previous observations (McCann et al.,
1998).

It is possible to provide an intuitive explanation for these
results from the point of view of a single competitor species

(Fig. 4). The predator consumes its main prey at some rate
(label a—the bold arrow in Fig. 4). If that rate is large relative to
the rate at which the alternate competitors are consumed
(label c in Fig. 4), the prey either becomes very scarce and the

predator is unable to obtain sufficient quantities of it to
survive, or the prey itself is directly driven to extinction by the
predator. At the other extreme, if polyphagy is strong (label c in
Fig. 4 approaches a), the predators exert downward pressure
on all the competitors and the competitors are excluded due to
this added effect. As the general pool of competitors becomes
scarce, the predators are excluded, one by one. Between these
two extremes is a zone of balance between direct exclusion of
the principal prey and direct exclusion of all prey, where
neither pattern dominates and there is a sort of indirect
mutualism (Vandermeer, 1980) where the predator has a

negative effect on the alternate prey which in turn have a
negative effect on the principal prey, thus leading to a net
indirect positive effect of the predator on the principal prey
(Vandermeer, 2004). Thus, there are three patterns that
might be expected: (1) competitor species are excluded
because of overexploitation by their specialist predator, and
subsequently predator species are excluded due to loss of
their principal food source, followed in turn by competitive
exclusion of competitor species (when polyphagy is small
and the interaction labeled ‘‘a’’ in Fig. 5 is dominant), or (2)
competitor species are generally excluded due to downward

pressure from all predators, followed by exclusion of
predator species, and later exclusion of remaining compe-
titor species through competition (when polyphagy is large
and interactions a and c are dominant), or (3) all species are
maintained in perpetuity (when the indirect interaction
symbolized as the combination of c and a in Fig. 4 dominates
over the direct effect of a and c).

A more mathematical interpretation of these results is
suggested from the qualitative behavior of the heteroclinic
cycle. Consider the case of a relatively large amount of
polyphagy, such that the system is in its heteroclinic phase
(i.e. to the right in Fig. 2b). As polyphagy is reduced, the

attraction of the heteroclinic cycle is reduced, and eventually
reaches a bifurcation point at which the heteroclinic cycle
becomes repelling (the obvious switch in behavior of the
system at c = approximately 0.34). However, there is at least
one internal repellor that remains in the system, such that
there is pressure away from the boundaries (i.e. the zero
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Fig. 5 – Qualitative conceptualization of the dynamics
(system 1) (see text for explanation).



values on all axes) caused by the repelling heteroclinic cycle,
but pressure outward (i.e. toward the boundaries) caused by
the internal repellor(s). The balance of these two forces creates
a zone of chaos that has a restricted lower boundary. Further

reduction in polyphagy increases the strength of the internal
repellor relative to the repelling heteroclinic cycle, causing the
oscillations to become more extreme.

These results could obviously change if some of the
simplifying assumptions imposed on the system are relaxed.
For example, in the basic formulation there is no provision
for density-dependent switching of prey type. A type III
functional response that would result from switching
could modify the general result. Another simplification is
the mean field approach, which ignores the explicit nature
of space (Durrett and Levin, 1994, 1998; Pascual et al.,

2001; Caswell, 1978). In fact the above cited proposition of
Wills was formulated with an explicit reference to space.
Repeating the analysis presented here with a spatially
explicit model would be of great interest, but has not yet
been done.

Another issue of concern is the symmetry of the whole
system. Beginningwith the symmetrical case seemed to be the
most rational approach, even though perfect symmetry
obviously never exists in nature. However, relaxing the
assumption of symmetry is not an obvious exercise since
there are a wide variety of qualitatively distinct ways of doing

so. At the most obvious level, each of the parameters in the
system could be given variance. Thus, for the parameters a

and b, simulation experiments indicate that with a range of
a = 14 + 0.2i, and b = 1 + 05i (where i is the index value of one of
the species and varies from 0 to 10), the qualitative results
reported in this paper are only very slightlymodified. It cannot
be said how a larger variance of these parameters might
change the results, a subject for further study. However, for
these deviations from the perfectly symmetrical case, our
results are virtually unchanged. Nevertheless, it is also the
case that the connectionsmade through the parameter c could
take a variety of forms. For instance, with c taking on a binary

condition of either greater than 0 or equal to zero, the number
of qualitatively distinct possibilities of making the polyphagy
connections is enormous. Studies are currently underway
examining these qualitatively distinct forms of polyphagy for
a six species situation (three predators and three prey), in
which the competitors form a competitive chain (two
dominant and one subordinate competitor) and there are
only two omnivorous connections (Vandermeer et al., 2004).
Even with such restrictions, this case provides us with five
qualitatively distinct arrangements and is surprisingly resis-
tant to generalization. Clearly such questions are important

and are under investigation currently, but certainly it is
important to understand the ‘‘base line’’ case, the case of
perfect symmetry.
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