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ecological models: a graphical interpretation
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Abstract

The capability of ecological models to make precise predictions was questioned with the discovery of chaos. Here it is shown
that an alternative form of unpredictability is associated with some nonlinear models. The notion of a Wada basin, in which three
or more basins share complexly interdigitated boundaries, represents this new form of unpredictability. It signifies that a single
point seemingly balanced between two basins of attraction may in fact just as easily travel to a third, seemingly unconnected,
basin. A circle map approximation to coupled predator prey pairs is used to demonstrate certain qualitative properties associated
with the equilibria within the basins.Most important is the demonstration that the ultimate basin in which a trajectory comes to lie
may not be confidently predicted from detailed knowledge of the point of initiation. Furthermore, when Wada basin boundaries
become large, a small amount of stochastic forcing may create chaos-like behavior (though not formally chaotic) in a system
that has, mathematically, only stable equilbria. The generation of Wada basins is discussed, using piecewise linear maps.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The standard goal of ecological models is to pre-
dict the behavior of ecosystems, either in a precise
engineering-like fashion or as qualitative generaliza-
tions (Levins, 1966; May, 1973). Ambitious simulator
models are usually able to predict the actual state of an
ecosystem only approximately, and it has been much
more common to seek qualitative predictions—on
the one hand “how many individuals will be in the
population next year?” and on the other “will the
population persist or go extinct?” For example, in
predicting the population density of an agricultural
pest, practitioners might wish to predict exact pop-
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ulation densities, but usually are content if they are
able to predict whether or not the population exceeds
the economic threshold. Similarly, conservation biol-
ogists are mainly concerned with whether a species
will persist or become extinct, not with estimates of
its exact population density.
The ability of ecological models to make precise

predictions was severely compromised with the dis-
covery of chaos (May, 1976; Hastings et al., 1993):
sensitive dependence on initial conditions means that
precise prediction of particular states is effectively im-
possible. A similar warning of inherent unpredictabil-
ity was issued later (May, 1977) for a different but
ultimately related reason: If alternate states exist, for
any trajectory initiated at the boundary of the basins
of attraction of those alternate states it would be dif-
ficult to predict which state would ultimately capture
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the trajectory, a phenomenon similar to sensitive de-
pendence on initial conditions.
Yet an alternative arrangement has recently been

reported in other models (Neubert, 1997; Sommerer
and Ott, 1993; Ott et al., 1994; Ding and Yang, 1996;
Huisman andWeissing, 1999, 2001; Vandermeer et al.,
2001). This alternative suggests that even qualitative
prediction may be practically unfeasible. For example,
consider the simple arrangement illustrated in Fig. 1.
A one dimensional state space for a hypothetical pop-
ulation is illustrated with three attractors, one at zero
(extinction of the population), one at the population’s
carrying capacity (K), and one at an intermediate pop-
ulation density. Between any pair of attractors is a re-
pellor that indicates the position of the separatrices (α
and β) of the three basins of attraction. This is similar
to the case of two alternative attractors in two basins
(May, 1977; Vandermeer and Yodzis, 1999) in which
it is difficult to predict which attractor will capture a

Fig. 2. Basins of attraction for a simple population model. The model is x(t + 1) = ai + bix(t), where the values of ai and bi depend
on the value of x(0). When x(t) ≥ 1.0, x(t + 1) = 1.0 and when x(t) ≤ 0, x(t + 1) = 0. The separatrices are not points, but rather small
regions with boundaries α and α′, β and β′. When 0 < x(0) < α, i = 1; when α < x(0) < α′, i = 2; when α′ < x(0) < β, i = 3;
when β < x(0) < β′, i = 4; when β′ < x(0) < 1.0, i = 5. In the present case, α = 0.33, α′ = 0.34, β = 0.66, β′ = 0.67, K = 1.0,
a1 = a5 = 100, a2 = −51, a3 = −0.0625, a4 = −49, b1 = −32, b2 = 17.85, b3 = 0.53125, b4 = 32.83, b5 = −67. (a) Basins for
the whole state space where separatrices are seen approximately at 0.33 and 0.66; (b) expansion of the region around the 0.33 separatrix
illustrating that all three basins are contained within this region; (c–f) repeated expansion of small areas within the region of the separatrix
illustrating the fractal nature of the basin boundary, including all three basins at all scales.

Fig. 1. State space for a simple population model in which there are
three attractors, extinction (0), carrying capacity (K), or equilibrium
(N∗). The basin of attraction for the extinction attractor is between
0 and α, the basin for the equilibrium is between α and β and
the basin for the carrying capacity is between β and K. Standard
interpretation of such an arrangement would suggest that a point
initiated at α would go to either extinction or equilibrium, while
a point initiated at β would go to either equilibrium or carrying
capacity.

trajectory initiated at the separatrix (e.g., a point lo-
cated very near to α would generate a trajectory lead-
ing to either 0 or N∗, but predicting which of those
two results would be increasingly difficult the closer
the initiatiation point to the separatrix α).
However, a surprising result emerges from some

simple ecological models (Vandermeer et al., 2000). If
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the basins are multiply intersecting and fractal, which
is to say they are “Wada basins” (Nusse and Yorke,
1996), a trajectory initiated at either separatrix may
approach any of the three attractors. This phenomenon
is illustrated in Fig. 2 for a simple piecewise linear
map. As the region surrounding the separatrix is re-
peatedly magnified all three basins are seen to occur
in what appeared to be a single point when viewed
macroscopically. This multiple presence of all three
basins at all scales illustrates not only that the basin
boundary is fractal, but also that all three basins are
interdigitated in this fractal structure. The basins are
thus Wada basins (Nusse and Yorke, 1996).
The basic structure described above emerges from

a variety of physical models (Nusse and Yorke, 1996)
and recently in ecological models, specifically in sys-
tems that involve two or more predator prey pairs in-
teracting with one another in some way (Vandermeer
et al., 2001). The existence of such structure in nature
remains to be investigated. In the following sections
I first describe a simple circle map approximation to
multiply coupled oscillators and illustrate how such a
model may lead to multiple attractors with basins that
are Wada, and second, provide a graphical interpreta-
tion of the origin of this peculiar structure.

2. The circle map approximation to coupled
oscillators

Normally the two variables considered in preda-
tor prey dynamics are P, the population density (or
biomass) of the predator and V (victim), the popula-
tion density (or biomass) of the prey. The model that
has seemingly become standard for the representation
of this system,
dP
dt

= −mP+ aPV/(1+ bV) (1a)

dV
dt

= rV(1− V) − aPV/(1+ bV) (1b)

where the prey exhibits density dependence and the
system is characterized by a type II functional re-
sponse, with b as the half-saturation constant. The pa-
rameters a, m and r are constants which reflect the
underlying biology of the species in question.
The behavior of equations 1 has been well charac-

terized. For purposes of the present communication,

we will be concerned with the situation in which a
limit cycle exists. That is, we are concerned with the
cases where 2mb < (1− b)(m + a). Given a limit cy-
cle, the system can be represented as a single variable,
with the following transformation,

Θ = tan−1
(

Ct − C∗

Rt − R∗

)

(2)

where C∗ and R∗ refer to the average value of each
of the two variables as they traverse the limit cycle
(note that C∗ and R∗ will normally be near to the un-
stable focal point equilibrium of the system). By ana-
lyzing the transformed parameter Θ, it is possible to
study the qualitative behavior of the underlying system
(Vandermeer, 1994; Vandermeer et al., 2001) much as
is done in the study of physical oscillators (Bak, 1986;
Bohr et al., 1984; Cvitanovic et al., 1990; Jensen et al.,
1984). It is a simple matter to describe the general be-
havior of the overall system simply by knowing the
value of Θ. On the other hand, information on the
absolute value of predator or prey populations is dis-
carded. The focus of studies of the parameter Θ is on
the qualitative behavior of the system and not on the
absolute value of P or V.
Let the basic system be forced by a periodic func-

tion (e.g. seasonality) or let it be coupled to another
predator–prey system (we shall repeatedly refer to one
of the systems as the forcer, even though the develop-
ment here is general and includes both the situation
of a true forcing function and a coupled system). We
begin by examining the behavior of the system when
both oscillators are completely independent of one an-
other (i.e., begin with no coupling). Define a poincaré
section as the repeated values of one of the systems
(say V1, P1) as the other system reaches some criti-
cal value (say V2max where max refers to the peak of
V2 in its limit cycle). A trajectory cutting the poincaré
section will repeatedly cut through the same point if
both oscillators have exactly the same frequency. If
the forcing oscillator has a period slightly greater than
the other oscillator, the point at which the trajectory
cuts the poincaré section will not be the same at each
winding, and the repeated trajectories will eventually
trace out a series of points that are located on the orig-
inal limit cycle of the second oscillator.
Now connect the two oscillators. Biologically this

means that, for example, the predator of the second
oscillator (P2) begins to eat the prey of the first oscilla-
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tor (V1); or, the two prey (V1 and V2) begin competing
with one another; or, if the first oscillator is a period-
ically forcing oscillator, the first oscillator may deter-
mine the value of the intrinsic rate of natural increase
of the prey in the second oscillator. Many other exam-
ples of connections could be imagined. The point is
that the two oscillators are coupled to one another in
some way. When this happens, if the coupling is weak
(below we deal with the situation of strong coupling),
both oscillators will entrain, which is to say, the tra-
jectories will eventually come to repeat themselves as
if the two oscillators had the same frequency. Wher-
ever the trajectory starts, it eventually winds up at a
single trajectory, which is an equilibrium point.
Recalling the transformation of Eq. (2), we now ex-

amine the behavior of Θ as the trajectory repeatedly
cuts through the poincare section. If the two oscilla-
tors are completely unconnected but have identical pe-
riods, Θ will be the same each time around the first
cycle. That is, if Θ(1) represents the first time around,
Θ(2) the second time around, and so forth, a graph
of Θ(t + 1) versus Θ(t) will be simply a straight line.
Thus, if we represent the dynamics of this four dimen-
sional system as Θ(t + 1) = f(Θ(t)), we have in this
case, f(Θ(t)) = Θ(t). However, if the oscillators are
connected, f will no longer be the identity function.
The simplest function that satisfies the qualitative na-
ture of this picture is,
Θ(t + 1) = Θ(t) + k sin(Θ(t) (3)

where k represents the degree to which the function
deviates from the simple 45 degree line. Eq. (3) is an
example of a circle map. Scaling the map so that Θ

ranges from 0 to 1 (rather than from 0 to 2!), we can
alter Eq. (3) to read,

Θ(t + 1) = Θ(t) +
(

k

2π

)

sin(2πΘ(t)) (4)

In the uncoupled situation k = 0 and Eq. (4) reverts
to the simple Θ(t + 1) = Θ(t), as discussed earlier
(i.e., the uncoupled situation). The parameter k thus
represents the strength of coupling. However, recall
that Θ(t + 1) = Θ(t) represents the case in which not
only is there no coupling, but the two oscillators have
exactly the same period. If the period is not the same,
Θ will deviate slightly each time around. Thus, the
appropriate equation would be,
Θ(t + 1) = Ω + Θ(t) (5)

where Ω is the angular difference in the point each
time through the poincaré section. Combining Eq. (5)
with Eq. (4) we obtain,

Θ(t + 1) = Ω + Θ(t) +
(

k

2π

)

sin(2πΘ(t)) (6)

which is the form commonly referred to as the stan-
dard circle map. Note that this model treats the
predator–prey system only from the point of view of
the period of the oscillations, ignoring the amplitude.
For example, in a seasonally forced predator–prey
case, the value of Θ is recorded each time a constant
value for the season is reached (i.e., the values of
predator and prey at that point in the season are trans-
formed with the above trigonometric transformation
and thus characterized by the angle Θ).
Now consider a system that contains more than two

oscillators, i.e., there are more than two predator prey
pairs or more than a single forcing function. At low
levels of coupling we expect two alternative equilib-
rium points on the poincare section of one of the os-
cillating pairs, one associated with phase locking on
one of the coupled systems, the other with phase lock-
ing on the other of the coupled systems. This may
not always happen, since even if two of the oscillators
have no direct connection with one another they are
connected through the third oscillator. However, there
are certain situations in which two independent oscil-
lators have an effect on the third such that the third
one will entrain on one or the other of these oscilla-
tors. For example, consider the case where predator
prey system number one is affected by two others,
called 0 and 2, such that system 0 receives no input
from system 1 and system 2 likewise receives no in-
put from system 1. This could occur if, for example,
the predators of systems 0 and 2 consume the prey
item of system 1, but receive no benefits from such
consumption. Systems 0 and 2 are thus independent
of inputs from any but their own dynamics while sys-
tem 1 is affected by both system 0 and 2. Thus, at
low levels of coupling, system 1 must phase lock with
either system 1 or system 2, depending on initial con-
ditions.
In this situation the poincare section will show two

attractors and two repellors. The behavior of those
attractors and repellors on a map of Θ(t) versus Θ(t +
1) is illustrated in Fig. 3, where the necessary form of
f (in Θ(t + 1) = f(Θ(t))) is obvious.



J. Vandermeer / Ecological Modelling 176 (2004) 65–74 69

Fig. 3. Construction of the circle map from the poincaré section
of a forced or coupled predator prey system, where there are
three coupled systems. (a) A poincaré section where there are
two attractors and two repellors, each attractor represents phase
locking with one pair of oscillators. The graph is of one of the
predator prey pairs (predator on ordinate and prey on abcissa), and
the dynamics result from the coupling to the other two oscillators
and (b) circle map resulting from the poincaré section.

The simplest function corresponding to the qualita-
tive pattern in Fig. 3 is,

Θ(t + 1) = Θ(t) + ksin(bΘ(t)) (8)

where b refers to the number of attractors in the sys-
tem. Following the development of the circle map
above, we can rewrite Eq. (8) as,

Θ(t + 1) = Ω + Θ(t) +
(

k

2πb

)

sin(2πbΘ(t)) (9)

where all parameters are as defined earlier (note that
the parameter b appears in the denominator of the con-
stant multiplier of the sine function—this is to retain

the feature that k = 1 represents the point of nonin-
vertability of the system).
In the context of a larger community, b represents

a measure of species richness (actually the number of
species, S, is 2b+ 2), while k is a measure of the con-
nectivity of the community. As an example of a larger
assemblage, set b = 5, Ω = 0.5 and k = 8. With
this parameter setting equation 1 has five distinct at-
tractors. Initiating the system at some particular value
of Θ fixes which of the five attractors will eventually
be approached, but the basins of the five attractors are
all interdigitated, and occupy a large fraction of the
state space. This is shown in Fig. 4, where successive
magnifications of sections of the state space illustrate
clearly the fractal nature of the space. But unlike the
other example, here there is not a seemingly single
point that might be called the separatrix, but rather
very large regions for which it will be in practice im-
possible to predict which basin will capture the trajec-
tory. This is a level of unpredictability that goes be-
yond chaos, for the system illustrated in Fig. 4 is not
in chaos but rather has five distinct attractors (note that
the state space in this example refers to the trigono-
metric transformation of the predator–prey ratio, as
described above, and thus, each equilibrium value of
Θ represents a limit cycle in the predator–prey space).
It is also worth noting that if a small stochastic

force is added to Eq. (9), the system moves indetermi-
nately around the state space in apparent chaotic mo-
tion (Fig. 5). The behavior is as unpredictable as chaos
yet it is not formally chaotic (the Lyapunov exponent
for this example is approximately −0.066).

3. Generation of Wada basins in piece-wise linear
maps

Consider the one-dimensional map, g, on the real
line,

g = f1 = b(x − a)

0.5− a
for x ≤ 0.5 (10a)

g = f2 = 0.5− a(1− b) + b(x − 1)
0.5− a

for x > 0.5 (10b)

which is illustrated for the interval 0–1 in Fig. 6.
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Fig. 4. Basins of attraction for the circle map with five alternative attractors. Each color signifies one of the basins. (a) The entire state
space; (b) 5% of the state space (the 5% indicated by the small rectangle in a); (c–e) successively smaller 5% segments of each previous
section of state space. Note the presence of all basins of attraction at all scales.

The intersection of f1 with the 45 degree line is

x(t + 1) = ab
a + b − 0.5

It is clear from Fig. 6 that the system will remain in a
chaotic state as long as,

(1− b) > ab/(a + b − 0.5)

or

(a/b) < (1.5− b)/(2b − 1)

Reversing the inequality means that the system will
diverge to ±∞ with the boundary between the two
basins fractal.
Any interval between (1.5 − b)/(2b − 1) and 0.5,

will exponentially decline to zero in the limit as the
inverse of g is applied. To see this consider the special
case of a = 0, b = 1. Thus, we have, f1 = 2x with
inverse x = 0.5f1. The interval {x0, x0 + ε} will thus
be {0.5x0, 0.5x0 + 0.5e} on the first reverse iteration
and {0.25x0, 0.25x0 + 0.25ε} on the second iteration.

Thus, the size of the interval will be 0.5nε after n iter-
ations. By inspection, this behavior is obvious for any
interval, except that the interval will approach one of
the unstable singularities rather than zero. Thus, the
origin of any interval between the two unstable sin-
gularities will be a series of intervals of exponentially
decreasing size moving towards either of those two
singularities.
Finally, each inverse step initiatiates a new interval,

as illustrated in Fig. 7. And each of those new inter-
vals initiates yet another new interval, each of which
generates a cascading series of reverse iterations. And,
as is clear from the graph, those iterations are multi-
ply interdigitated, such that the area between A and B
(Fig. 7) is completely riddled with intervals that will
take points through forward iterations into the first in-
terval (which projects to the −∞ basin). This graphi-
cal argument can be repeated starting with the interval
that projects into the +∞ basin, whence it is obvious
that the entire area between A and B is riddled with
intervals of all sizes that project to either of the two
basins. This is an intuitive model to see how riddled or
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Fig. 5. Trajectories of Eq. (9) (with k = 15.8, b = 5). Top five
graphs illustrate approach to each of the five equilibrium points,
after a short period of chaos-like behavior. Bottom graph illustrates
behavior with an added stochastic factor (uniform random, 0–0.1),
illustrating the complete chaos-like behavior. Trajectory is not
chaotic (Lyapunov exponent = −0.066).

fractal basin boundaries may arise. It does not, how-
ever, correspond to the idea of a Wada basin since it
only deals with two basins.
To see similar behavior leading to Wada basins, the

model needs to be extended. Consider the following
extended model.

f1 = b(x − a)

c − a
for x < c (11a)

Fig. 6. The piece-wise linear map (see text).

f2 = c − a(1− b) + b(x − 1)
c − a

for x > 1− c

(11b)

f3 = 0.5 for c ≤ x ≤ 1− c (11c)

which will either diverge to ±∞ or stabilize at 0.5,
depending on initial x. This function is illustrated in
Fig. 8, along with several backwards projections illus-
trating the intermingling of all three basins. It is clear

Fig. 7. Inverse projection of interval, illustrating how each initi-
ated interval generates an exponentially decreasing interval which
approaches the unstable singularity in the limit.
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Fig. 8. Extended linear model (system 11) with three basins. The
backward projections are color coded corresponding to the three
basins, thus indicating on the x axis to which basin the trajectory
will eventually tend.

from Fig. 8 that the dynamic producing intermingled
basins in system 10 is the same as the dynamic in the
extended model (system 11), providing a formal ren-
dering of the origin of the three intermingled basins
which thus form Wada basins.
The extended model also provides insight into the

qualitative nature of Wada basins, as illustrated in
Fig. 9. Fig. 9a and b represents two different parame-

Fig. 9. The three qualitatively distinct arrangements for a piece-wise linear model of the general form as system 11 (i.e., three separate
linear pieces—equations 11 cannot provide for exactly what is graphed in part c, but the qualitative behavior is nevertheless clear).

ter settings for the extended model, specifically,

b < 1− a/(c − b)

specifies case a and reversing the inequality speci-
fies case b. Case c requires a different model which
is not specified here, since the graphical interpreta-
tion of the function is the significant point. Case a
represents the simple case of three alternative attrac-
tors with non-fractal basin boundaries. Case b repre-
sents the case of Wada basins, the same case as an-
alyzed in Fig. 3. Case c represents what might be
called a pseudowada formation, since there are still
three basins of attraction, but only two of them are
intermingled.

4. Discussion

It has been shown how simple ecosystem models
can generate qualitative unpredictability above and
beyond simple chaos or alternate basin structures.
This phenomenon is largely the result of basin bound-
aries intermingling in complicated fractal, patterns, as
has been noted for a variety of more realistic models
(Neubert, 1997; Huisman and Weissing, 2001; Ding
and Yang, 1996; Sommerer and Ott, 1993;
Vandermeer et al., 2001). It should be emphasized
that, just as all models do not generate alternative
states, not all models that generate alternate states
have fractal basin boundaries (Cavalieri and Koçak,
1999). Here it is shown how three or more basins may
have complex interdigitated boundaries, such that a
system seemingly perched between basins A and B
may in fact converge on a limit within basin C. Such
a structure is termed a Wada basin, after a legendary
Mr. Wada of Japan (Alligood et al., 1996).
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It is worth noting that the formalism of this
manuscript is thought to represent a generalization
of other ecological models (e.g., Vandermeer et al.,
2001). The conditions under which chaos emerges
are the standard conditions normally associated with
one-dimensional iterative maps, but in this case the
condition on the eigenvalue is thought to represent
the more complicated conditions normally associated
with chaos in other, more complicated, ecological
models. The important point of this paper is not the
generation of chaos per se, but rather the fractal na-
ture of the basin boundaries, which leads to a distinct
form of unpredictability.
The implications of these results for ecosystem

models are cautionary. For systems having Wada
basins, attempts at qualitative generalization may be
inherently compromised. Stipulation of alternative
possibilities based on simple basin structure could
be misleading if alternative basins, seemingly far
removed in state space from the basins under con-
sideration, actually exist and share fractal boundaries
with them. For example the seasonally forced Lotka
Volterra system has one parameter combination that
results in three alternative limit cycle attractors with
three distinct oscillatory patterns Vandermeer et al.,
2001). It may be of interest for an ecosystem manager
to predict which of the three patterns will exist for a
given time period. Knowing that the present condition
is somewhere between pattern A and pattern B does
not allow the manager to conclude that pattern C is
unlikely to occur. Thus, even the qualitative predic-
tion of “either pattern A or B” is not strictly possible
if the current state is near any of the basin boundaries.
This phenomenon must be added to the now

well-known ideas of alternative equilibria (May,
1977) chaos (May, 1976), as influencing the ability
to predict ecosystem behavior. While these previous
cautionary tales emphasized the impossibility of mak-
ing quantitative predictions, the existence of Wada
basins suggests something more troublesome. It may
have been difficult to predict which of two equilibria
would be approached when starting on the border of
the two basins (May, 1977), and the boundaries be-
tween those two basins may become large and riddled
(Neubert, 1997; Huisman and Weissing, 2001) but
it had always been tacitly assumed one or the other
of the two possibilities would ultimately capture the
trajectory. The results here suggest that even though

a system is perched on the separatrix between two
alternative states, it may in fact wind up in a third (or
fourth or fifth) state, and unpredictably so.
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