Coupled Oscillations in Food Webs: Balancing Competition and Mutualism in Sim...

John Vandermeer )
The American Naturalist; Jun 2004; 163, 6; Research Library

pg. 857

VOL., 163, NO. 6 THE AMERICAN NATURALIST JUNE 2004

Coupled Oscillations in Food Webs: Balancing Competition

and Mutualism in Simple Ecological Models

>
John Vandermeer

Department of Ecology and Evolutionary Biology, University of
Michigan, Ann Arbor, Michigan 48109

Submitted May 15, 2003; Accepted December 3, 2003;
Electronically published May 12, 2004

ABSTRACT: As in other oscillating systems, oscillations of consumer
resource pairs in ecological systems may be coupled such that com-
plex behavior results. The form of that coupling may determine the
nature and extent of this behavior. Two biologically significant forms
of coupling are here investigated: first, where consumers consume
each other’s resources (CR coupling, representing competition be-
tween the two consumers), and sccond, where the resources are in
competition with one another (RR coupling, potentially representing
indirect mutualism between the two consumers). Interestingly, CR
coupling leads to in-phase synchrony of the oscillations, whereas RR
coupling leads to antiphase synchrony. With either form of coupling,
if the coupling remains weak, synchronous behavior is generated in
the two systems. At strong levels of coupling, when the two forms
act simultancously, a balance between competition and mutualism
is generated, which is manifest differently at different levels of re-
source coupling.

Keywords: coupled oscillators, competition, mutualism, chaos.

Attempting to answer questions about nature by exam-
ining the structure of food webs has a long history, as
summarized in several key volumes (Cohen 1978; Pimm
1982; DeAngelis et al. 1983; Kerfoot and Sih 1987; Car-
penter 1988; Cohen et al. 1990; Higashi and Burns 1991;
DeAngelis 19925 Polis and Winemiller 1995). Since May’s
(1973) counterintuitive result that increased species di-
versity leads to lowered community stability, many studies
have sought to ferret out those aspects of food web struc-
ture that are at least partly determinant of various com-
munity features, ranging from stability and persistence to
productivity (Winemiller and Polis 1995), and many key
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contemporary concepts have little meaning outside of the
context of food webs (e.g., apparent competition [Holt
1977], indirect mutualism [Vandermeer 1980], or trophic
cascades [Carpenter et al. 1987]). Most recently, there has
been a great deal of activity aimed at understanding food
web dynamics in the context of the theoretical constructs
normally associated with the ideas of complexity theory.
Examples are too numerous to mention but include the
observation of chaos in a simple three-species food chain
(Hastings and Powell 1991), generation of chaos in cou-
pled predator prey systems (Vandermeer 1993; Vander-
meer et al. 2002), competitive chaos (Huisman and Weiss-
ing 2001a; Passarge and Huisman 2002), fractal basin
boundaries (Vandermeer and Yodzis 1999; Huisman and
Weissing 2001b), weak link stability (McCann ct al. 1998),
and complex patterns from environmental forcing (Kot
and Schaffer 1984; Rinaldi et al. 1993; Pascual et al. 2000;
Vandermeer et al. 2001).

In conceptualizing food webs, the most elementary unit
is normally consumption (a consumer and its resource, a
predator and its prey, a carnivore and a herbivore, and so
on). It has long been known that this basic unit is oscil-
latory. If the elementary unit is oscillatory, when those
elementary units arc connected, the conceptual framework
is one of a system of coupled oscillators. Systems of cou-
pled oscillators have served as model frameworks for many
applications in nature, including physical systems (van der
Pol and van der Mark 1927; Pikovsky et al. 2001; Bennet
et al. 2002), physiological systems (Winfree 1980), and
many others (Strogatz 2003). Conceptualizing ecosystems
as systems of coupled oscillators has been previously noted
(Vandermeer 1993) at least in the context of consumer
resource dynamics.

Despite the obvious fact that food webs are, by their
basic definition, systems of coupled oscillators, the un-
derlying nature of the coupling has not been systematically
explored. From elementary ecological considerations, there
are two obvious ways in which the coupling can occur
(fig. 1). First, as conceptualized originally by MacArthur
(1970), consumers can be thought of as specializing on a
particular resource but consuming an alternative resource
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Figure 1: Diagrammatic illustration of the two coupling modes of two
consumer/resource oscillators. Each pair of consumer and resource rep-

resents an oscillator; a represents the CR mode of coupling the two
oscillators, whereas b illustrates the RR mode of coupling.

on which some other consumer specializes (fig. 1a). This
form is frequently thought of as representing competition
mechanistically, since the competition (between the two
consumers) is reflected in their consumption rates, which
represents the mechanism of the competition. This form
has been analyzed in a variety of contexts (Abrams 1980,
1986; Vandermeer 1980; Chesson 1990) and is here re-
ferred to as CR coupling. Second, the resources themselves
may be in competition with one another, which can be
represented in a phenomenological fashion (fig. 15). That
is, the phenomenon of competition is defined with no
reference to any underlying mechanism, which is the clas-
sic form for modeling competition. In the context of two
consumer resource systems, when the resources are in
competition, the consumers may be indirectly mutualistic
with one another (Levine 1976; Vandermeer 1980). This
form is referred to as RR coupling,.

Here 1 describe the behavior of the system with CR
coupling, with RR coupling, and, as must be the case with
many if not most ecosystems, a combination of CR and
RR coupling.

The Model

If the system illustrated in figure 1 is modeled using the
standard form, we obtain

dc, a¥,C;

— = =Gy (1a)
dt 1+ b¥,

IR K—R,—ak C. C

aR; _ ,-,1\),( pa ’)7411\’,( 8o e G (1b)
dt K 1+ 0¥, 1+ bY,

fori=1,2,j=1,2,and j # i, where C; is the ith con-
sumer, R, is the ith resource, r; is the intrinsic growth rate
of the ith resource, m is the death rate of the consumer,
a is the resource consumption rate, K is the carrying ca-
pacity of the resource, « is the competition coefficient, b

is the parameter of the functional response, and ¥, is given
as

% = R, + BR,.

Model 1 conforms to the standard form with density de-
pendence operating on the resources and a type II func-
tional response acting on the consumers. If we set o =
B = 0, we have two independent oscillators, each corre-
sponding to the standard model of resource/consumer
(predator/prey) ecology. Witha = 0 and 8 > 0, the system
is CR coupled (as in fig. la), and with 8 = 0 and « >0,
the system is RR coupled (as in fig. 1b).

It is well known that the basic two-dimensional system
has three fundamental modes, as originally articulated by
Rosenzweig and MacArthur (1963). If the consumer iso-
cline, which is R = m/(a — bm), falls to the left of the
peak of the hump of the resource isocline, which is
R* = (Kb — 1)/2b, the system is normally a limit cycle
attractor (sustained oscillations). If it falls to the right of
the carrying capacity of the resource, the consumer goes
extinct, and if it falls between the carrying capacity of the
resource and the peak of the hump of the resource isocline,
the system is a focal point attractor (damped oscillations;
May 1972).

For many parameter sets, the system exhibits oscillations
in which one or more of the state variables approach ever
closer to 0 (much like the system described by May and
Leonard [1975]). From a biological point of view, even
though all variables may never actually reach 0 and may
approach it only asymptotically, that approach effectively
means extinction. For biological reasons, I follow May and
Leonard (1975) in assuming that a system in which very
low population levels are approached, for all practical pur-
poses, indicates exclusion of that population. Part of the
argument that follows is dependent on the pattern in
which rare values of the various populations are expressed.

The system’s general typology with CR coupling and no
RR coupling is one of interspecific competition between
the two consumers. Thus, we would expect that as CR
coupling increases, eventually the point of Gausian exclu-
sion will be reached. This is normally what happens with
system (1), depending on the values of the other param-
eters in the system. However, the intermediate stages be-
tween little competition (small 8) and competitive exclu-
sion (large ) can be quite complicated (Vandermeer 1993,
1994), and it is also possible to choose the parameters a,
b, and r, in such a way that extinction does not occur, even
with the largest value of 8 = 1.0. With RR coupling and
no CR coupling, the magnitude of the competitive effect
(), if large enough, would be expected to remove one of
the resources, which is indeed what happens. Again, the
intermediate stages between little competition and com-
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petitive exclusion (this time the exclusion of one of the
resources) can be quite complicated.

If the parameter of functional response is set to 0, the
system (1) reverts to a modification of MacArthur’s clas-
sical system (Levine 1976) in which each isolated oscillator
is a focal point attractor, exhibiting damped oscillations
to extinction. With such a system, we know that if a is
near 0, the RR coupling will tend to exclude one of the
resources (through classic Gausian extinction). If one of
the resources is excluded, it is also the case that both of
the consumers cannot survive, given that a single resource
is available, a result strongly dependent on the assumption
that b = 0. However, if b > 0, even if RR coupling is large
and one of the resources is excluded, it is still possible for
both consumers to persist (Armstrong and McGehee
1980). These preliminary observations suggest that the pat-
tern of coexistence of the consumers is a complicated in-

terplay of both CR and RR coupling.

Nearly Identical Oscillators and Weak Coupling

We begin with the system set such that the uncoupled
oscillators generate an equilibrium point that is locally
unstable but globally constrained; that is, the consumer
isocline is to the left of the hump of the resource isocline.
Thus, we study the system where 2bm is smaller than
Kab — Kmb* — a + bm. Very weak coupling has a gener-
ally predictable effect, much like weak coupling in any
system of coupled oscillators: synchrony. But here there is
a very consistent pattern, obtained for a wide variety of
parameter values: CR coupling leads to in-phase syn-
chrony, while RR coupling leads to antiphase synchrony
(fig. 2).

This generalization about the phase orientation in syn-
chrony is reflected in the circle map (Vandermeer 1994).
Construction of the circle map begins with the simple
transformation

G, =10
O = tan 1( )

R,— R’

for each of the CR oscillators, where C* and R* refer to
the mean values of C and R over the whole time series.
Then the value of © for one of the oscillators is used as
a strobe variable, and observations are made of the © of
the other oscillator. Thus, if ©, is the value for the first
CR system, we examine the value of O, at some particular
recurring value of ©,. This formulation is commonly used
to study behavior of weakly coupled oscillators in both a
physical context (Bak 1986) and a biological one (Van-
dermeer 1994; Vandermeer et al. 2001). The standard circle
map is then given as
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ot+1) =Q+0@ + (%)sin 2IIO1)] (Mod 1), (2)

where Q is the difference in the period of the two oscillators
(which will be 0 in the case of identical oscillators) and k
is proportional to the strength of the coupling. Given the
observation that CR coupling leads to in-phase synchrony
and RR coupling leads to antiphase synchrony, the circle
map can reflect these two qualitatively distinct modes with
a simple adjustment of the sign of the coupling parameter
k. Set @ = 0 (i.e., the two oscillators are identical) and
the strobe angle at .5 such that in-phase synchrony (k>
0) will result in the response variable © asymptotically
approaching 0.5 (fig. 3a), while the antiphase synchrony
(k < 0) will result in © gradually approaching 0 or 1.0 (fig.
3d). This is the case if |k| < L.0.

Extensive simulations with system (1) with weak cou-
pling suggest the behavior deduced from the circle map
is a general rule. With CR coupling, the system always
synchronizes in an in-phase fashion, and with RR cou-
pling, it always synchronizes in an antiphase fashion. Fur-
thermore, when the perfect symmetry is altered sufficiently
(by changing the equality of any of the parameters), the
behavior of the system tends to be quasi-periodic or quasi-
periodic chaos, following qualitatively the predictions of
the circle map, as has been reported for similar models
elsewhere (Rinaldi et al. 1993; Vandermeer ct al. 2001).

Since there is an obvious and dramatic difference be-
tween CR and RR coupling, the question arises as to how
this difference would be resolved if these two forms of
coupling occur together, as they certainly must in nature.
An a priori expectation might be that when CR coupling
is large compared with RR coupling, there should be in-
phase synchrony, while when RR coupling is large relative
to CR coupling, there will be antiphase synchrony. This is
what is found for all parameter values for which either
simple antiphase or in-phase synchrony is involved, that
is, for all cases of weak coupling. However, it might also
be expected that between these two obvious extremes there
will be some range in which there is effective competition
between the two modes, perhaps generating chaos. With
extensive simulation experiments, with weak coupling, this
pattern is inevitably observed, albeit with some compli-
cations. The phase transition from the dominance of RR
coupling (which gives antiphase synchrony) to CR cou-
pling (which gives in-phase synchrony) is frequently char-
acterized by complicated quasi periodicity and quasi-
periodic chaos. For example, consider system (1) with the
modification

o= pw,

B=0-pu
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Figure 2: Time series of the two consumers with (a) CR coupling and (b) RR coupling, illustrating the distinct patterns of phase coordination. In
the case of CR coupling (a), the coordination is synchronization (the peaks of the oscillations tend to occur together after transients have died
down), while in the case of RR coupling (b), the coordination is phase reversal (the peaks of the oscillations are reversed, with the peak of one
occurring at the valley of the other). The illustrated time series are transient, but the qualitative behavior of in-phase synchronization (a) or antiphase
synchronization (b) remains constant for very long simulation runs. Parameter values were a = 2, m = 0.1, b = 1.3, K = 1, andr, =r, =14,
o = 0,8 = 0.0015 b, a = 0.075 8 = 0.

so that w and » can be set small (for modeling weak circle map must be thought of as a more complicated

coupling generally) and their relative contribution mod-  function modeling the process of coupling in this partic-

eled with p. For w = 0.15 and v = 0.003, a plot of the ular system, even at very low coupling values. For example,

local maximum of either of the consumers yields the pat-  the following modified circle map,

tern illustrated in figure 4. It is also the case that the phase

transition (in fig. 4) is characterized by either quasi pe- ot+1) =

riodicity or quasi-periodic chaos (note the invariant loop

in the peak to peak map at two values of p in fig. 4b, 4c).
The quasi-periodic nature of this transition phase sug-

gests that if the circle map is to be taken as an approximate

model for this coupling, the parameter k in the standard (3)

Bk + 1)k — 1) + O() +

%)sin [2ITO(1)] (Mod 1),
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results in the system slowly changing from phase syn-
chrony (fig. 3a) at one extreme through phase reversal (fig.
3d) at the other extreme, with various forms of quasi-
periodic and potentially quasi-periodic chaos forms in-
termediate (fig. 30, 3¢). Further detailed analysis of this
particular model is unwarranted here. It is only worth
noting that, even for weak coupling of the CR and RR
form, in transitioning from in-phase synchrony to anti-
phase synchrony, quasi-periodic or quasi-periodic chaos
may be encountered. As will be seen, this transition be-
havior can become extremely complicated with stronger
coupling yet takes on a form that has distinct biological
significance.

Strong Coupling of Identical Oscillators

The study of the system with weak coupling of identical
oscillators was undertaken mainly to provide a foundation
on which to build the more general study of coupling, to
which we now turn. Since the process of interspecific com-
petition between the two consumers is modeled with the
CR coupling, we expect that an increase in the strength
of CR coupling will eventually generate competitive ex-
clusion of one or the other consumer, an expectation from
classical ecological theory (i.e., Gause’s principle). Indeed,
this is the result normally encountered, as illustrated in
figure 5a, where oscillations of C, become very large as
the strength of CR coupling increases (here the logs of the
local minima are plotted). While system (1) does not have
formal equilibria precisely located at any of the C, = 0 or
R; = 0, the oscillatory patterns generated are frequently
heteroclinic cycles (May and Leonard 1975; Hofbauer and
Sigmund 1989), in which the state variables, while never
attaining the 0 value, become ever closer to 0 with cach
oscillatory cycle, whether chaotic or not. Thus, for bio-
logical realism, we must sct some arbitrary lower limit
below which the population is declared locally extinct or
excluded. The horizontal line located at In(C,) = — 2.6
is positioned in figure 5, indicating the critical minimal
value of C, below which the population is deemed ex-
cluded. Tn particular, for zero RR coupling, the pattern
resulting from increased CR coupling (fig. 5a) may be very
complicated (quasi-periodic, quasi-periodic chaos, period
doubling cascades, intermittent chaos, and seemingly other
forms [ Vandermeer ct al. 2001]) but leads to the qualitative
result that at some critical value of CR coupling, the pop-

Figure 3: Graphs of circle maps for various values of oscillator coupling
(parameter k). a, In-phase synchrony. b, In-phase quasi-periodic pattern.
¢, Antiphase quasi-periodic pattern. d, Antiphase synchrony.
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Figure 4: a, Local maxima of C, as a function of the balance between CR and RR coupling (p) for weak coupling. Parameters as in figure 2, with
w = 0.15 and v = 0.003. Values toward the origin (p small) are where the system is in strict in-phase coordination, while values toward the right

(p large) are where the system is in strict antiphase coordination. Intermediate values of p generate a zone of quasi periodicity, as illustrated by the

trace of invariant loops in b and c.

ulation will be driven to exclusion, as indicated by the
dashed vertical line in figure 5a.

While RR coupling alone leads to antiphase synchrony,
elementary biological considerations allow us to engage
the a priori expectation that eventually one of the resources
will be eliminated from the system (since RR coupling is
competition between the two resources), which then
would result in either the maintenance of two consumers

on a single resource (Armstrong and McGehee 1980) or
the elimination of one of the consumers. For a variety of
particular parameter settings, the changes in C; resulting
from increasing RR coupling to its ultimate exclusion from
the system may be quasi-periodic, quasi-periodic chaotic,
or other forms of extreme oscillatory behavior (not illus-
trated here), ultimately leading to the transcendence of the
lower limit of one of the state consumers in the system.
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Figure 5: Local minima of the log of C, as a function of the CR parameter (§3) for various values of the RR parameter (). As the CR parameter

increases, the variable C, exceeds the lower threshold of —2.6, reflecting competitive exclusion (the C, variable persists). Immediately before the

exclusion event, the system exhibits some form of chaotic behavior. The critical CR (B) value for which exclusion occurs (indicated by the intersection

of the dashed line on the abcissa) changes nonmonotonically with changes in the RR (a) parameter. Parameter values as in figure 2, and initial

values C, = 0.1353, C, = 0.1877, R, = 0.2886, and R, = 0.5019.

Thus, there are cffectively two distinct bifurcation pat-
terns: eventual elimination of one of the consumers be-
cause of increased CR coupling (fig. 54) and eventual elim-
ination of one of the consumers because of increased RR
coupling (not illustrated). Both bifurcation patterns are
commonly observed over a broad range of parameter val-
ues. One can encounter situations in which the consumer
reaches the point of extinction without going through the
chaotic phase, situations in which the chaotic phase has
more of the character of period doubling chaos than of
quasi-periodic chaos, and situations in which the chaotic
phase is in a much broader zone of the coupling parameter.
But the general pattern seems to be consistent over a very
broad range of parameter values.

However, a rather remarkable behavior is sometimes
encountered when CR and RR coupling are combined in
the same model, reflecting the complications discussed for
weak coupling above. 'lypically, as the parameter 3 is in-
creased, the system eventually reaches the point of com-
petitive exclusion (i.e., when competition becomes too in-
tense, as explained earlier). Usually the system enters a
chaotic zone just before the exclusion event (fig. 5a). How-
ever, the value of 8 at which that exclusion occurs depends
on the value of «. That is, we have an unusual result in
which RR coupling affects the degree to which CR coupling

(classic consumer competition) causes competitive exclu-
sion (fig. 5). A biological explanation of this result is sug-
gested below.

The pattern whereby RR coupling affects CR coupling
is not a monotonic one as suggested from an examination
of the intersection of the vertical dashed lines in figure 5
for different values of RR coupling (o). At low values of
« (low RR coupling), the critical value of 8 (i.c., that which
generates the extinction event) increases with more RR
coupling; that is, species coexistence is enhanced by com-
petition between the resources (see, e.g., fig. 5a-5¢). How-
ever, there is a reversal of this pattern at an intermediate
value of RR coupling (fig. 5¢-5¢), whereby further in-
creases in o result in a lowering of the critical value of
CR coupling. Thus, when RR competition is small, in-
creasing it raises the critical level of CR competition that
leads to exclusion. In contrast, when RR coupling is large,
increasing it lowers the critical level of CR competition
that leads to exclusion.

The general pattern is qualitatively understandable as a
complication of the pattern described above for weak cou-
pling. For any individual bifurcation diagram in figure 5,
the left-hand side of the diagram is dominated by the
influence of RR coupling (since CR coupling is small),
while the right-hand side of the diagram is dominated by
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the influence of CR coupling. However, as RR coupling
increascs, the distinction between the two forms is lost
and, ultimately, the RR coupling pattern dominates. The
consequence of this intermingling of the two chaotic pat-
terns is the general pattern shown in figure 6; where at
low levels of RR coupling the critical value of CR coupling
that leads to exclusion increases when RR coupling is small
and increasing but decreases when RR is large and
increasing.

The pattern shown in figure 6 seems to be common for
many parameter sets, although many variants on that pat-
tern are possible. Furthermore, it is hardly worth men-
tioning that certain parameter values can generate a com-
pletely monotonic graph of critical 8 versus «, either
positive or negative. Such will occur when the parameter
values favor the dominance of either RR coupling or CR
coupling exclusively. Clearly, the point of interest is in that
collection of parameter values that do not generate such
monotonicity, such as those explored here.

Discussion

The results reported have certain parallels to the more
general literature on coupled oscillators (a popular sum-
mary of which appears in the recent book by Strogatz
[2003]). The seventeenth century observations of Christian
Huygens were foundational for everything from electrical
oscillators to physiological rhythms. As has been so fre-
quently reported, two pendulum clocks affixed to the wall
of his study were repeatedly observed with their pendula
in antiphase synchrony. Even when set in motion with
identical phase oscillations, in time they came to oscillate
with an antiphase coordination. It turns out that the wall

B

on which the clocks were mounted acted as a connection
between them. The subtle vibrations set off by the oscil-
lations mutually affected the motion of both pendula
through that wall (Pikovsky et al. 2001; Bennet et al. 2002).

Synchronization of coupled oscillators can take on a
variety of forms (Pikovsky et al. 2001) dependent mainly
on the coupling between oscillators being weak and the
oscillators being nearly identical. One form of particular
interest for this work is due to the work of Blekhman (as
reported in Pikovsky et al. 2001), in which one particular
formulation of Huygens’s clocks generates both antiphase
and in-phase synchrony. For oscillators with very different
amplitudes and/or phases or for larger coupling strengths,
the situation becomes far more complicated, with various
dynamical behaviors appearing and disappearing, strongly
depending on the details of the model. Nevertheless, in
the case of consumer/resource (CR) models, there is reg-
ular and predictable qualitative behavior of even very dif-
ferent oscillators with strong coupling (Vandermeer 1993,
1994). Of particular importance, as in the case of physical
oscillators, the general qualitative behavior depends on the
details of how the coupling is manifest, the key point in
the present work.

One of the most basic of all building blocks for eco-
logical communities (consumption of resources) is an os-
cillator, most generally stated as a consumer population
oscillating with a resource population (or a predator/prey
or host/parasite combination). Furthermore, it has not
escaped the attention of ecologists that the physical met-
aphor of coupled oscillators could also provide a kernel
for further theoretical development in ecology (Vander-
meer 1993; Blasius et al. 1999). The result that different
forms of coupling of these ecological oscillators can gen-
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erate dramatically different population behavior is new to
the literature and demands, on the one hand, an intuitive
grasp of its origin (if possible) and, on the other hand, a
discussion of its possible significance for ecology.
Regarding an intuitive explanation of the results, an
approximate way of looking at the system is as a balance
between mutualism and competition. With reference to
figure 10, the indirect effect of C, on C, (and the reverse)
may be mutualistic, since the reduction in a competitor
for the food is a positive effect (the enemy of my enemy
is a friend), corresponding to the well-known idea of in-
direct mutualism (Levine 1976; Vandermeer 1980). Thus,
the RR coupling can be, in essence, a positive benefit to
the consumers through the operation of the food web.
However, the CR coupling is always competitive, which is
to say, CR coupling is detrimental to both consumers. At
low levels of RR coupling, the mutualistic effect over-
whelms the competitive effect, and the system is less prone
to extinction. However, when RR coupling is large, the
competitive pressure exerted on both resources becomes
severe, effectively adding to the pressure already exerted
by the consumers. The peak of the curve (fig. 6) represents
a break point from one type of behavior (where mutualism
trumps competition) to another type of behavior (where
two forms of competition exert a combined pressure on
the system). This interpretation might be applied to food
webs more generally, examining the degree to which pos-
itive indirect effects (mutualism) may be dominant over
the negative indirect effects (competition), which is effec-
tively the framework, loop analysis, suggested long ago for
looking at complex systems at equilibrium (Levins 1974).
Regarding the general significance of these results, en-
visioning ecological systems as coupled oscillators has, di-
rectly or indirectly, generated notable patterns in the the-
oretical literature, as discussed in the first section of this
article. It is likely that a deep study of any of those patterns
will be affected to one degree or another by the results
reported herein. Consider, for example, the work of
McCann et al. (1998), which specifically notes that system
stability tends to be promoted by the action of a stabilizing
oscillator on a destabilizing one in several food web con-
texts, leading to the important conclusion that weak in-
teractions can have an overriding effect on stabilizing eco-
systems. This conclusion, as in the other cited cases, derives
from the conceptualization of the ecosystem as a system
of coupled oscillators. However, in the specitic case of
stabilization of food webs by the action of one oscillator
on another (McCann et al. 1998), the results herein are
particularly instructive. If the extra connection represented
by RR coupling is weak, its increase represents a stabilizing
influence: it takes a larger “competition coefficient” (CR
coupling) to cause competitive exclusion of one of the
consumers. However, if the RR coupling is strong (greater
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than about 0.8 for the parameter set leading to fig. 6),
increasing the strength of the RR coupling has the opposite
effect. Thus, it could be said that increasing the strength
of the weak coupling has a stabilizing effect, contrary to
an increase in the strength of the strong coupling. While
this may have nothing to do with the actual number of
weak interactions in a complex food web (McCann ct al.
1998), it is clearly an example of the way in which a strong
web connection can have the opposite effect of a weak
one.

At a more general level, it might be noted that many,
perhaps most, studies of food webs are concerned with
the way in which various populations interact with one
another. Diagrams of food webs thus typically have nodes
that are populations with the connections between them
representing either interaction types (e.g., compctition,
predation) or energy transfer. The results herein actually
suggest a slightly different framework for representing food
webs. If we consider CR and RR coupling to be the major
two forms of coupling and a consumer/resource system
to be the key unit (the “atom” of construction), then the
nodes in the web will be oscillators rather than popula-
tions, and the connections will be either in-phase or anti-
phase coherent (CR or RR couplers). While the behavior
of a simple two node system (eqq. [1]) has been discussed
here, we can perhaps expect new insights about the struc-
ture of food webs with this new framework applied to
larger webs.
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