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Evolutionary origins of Gondwanan interactions:
How old are Araucaria beetle herbivores?
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Studies of a variety of phenomena, ranging from rates of molecular substitution to rates of diversification, draw on
estimates of geological age. Studies incorporating estimates of timing from fossils or other geological evidence are
largely of relatively young, Tertiary divergences, to which older systems may provide useful comparisons. One
apparently old assemblage comprises the beetle groups associated with the ancient genus Araucaria that share
comparable, ostensibly Gondwanan distributions with their host. Our previous studies suggested a possibly
Cretaceous age for Araucaria associations in bark beetles. However, the absence of confirmed bark beetle fossils
earlier than the Tertiary has been taken as evidence of Cretaceous absence, and their confirmed phylogenetic
position within the primitively angiosperm-feeding weevil family rules out pre-angiosperm, Jurassic origins.
Nevertheless, an early shift from angiosperms to Araucaria seemed plausible in the light of Araucaria fossil history
which spans the Mesozoic since the Jurassic. To resolve the phylogenetic affinities and to estimate divergence times
of the Australian and South American bark beetle genera affiliated with Araucaria we analysed DNA sequences
of nuclear and mitochondrial genes: protein coding elongation factor alpha, enolase and cytochrome oxidase I. The
most parsimonious reconstruction of the host relationships of Tomicini from the combined dataset corroborates the
ancestral association with the genus Araucaria of both South American and Australian Tomicini. Bayesian estimation
of divergence times indicates that the divergence between the Australian and the South American Araucaria-feeding
taxa occurred at the very latest in the Cretaceous/Paleocene border and that the age of the first Scolytinae—Araucaria
association would then be during the later stages of the Late Cretaceous, while other known beetle/Araucaria
associations are Jurassic. © 2001 The Linnean Society of London

ADDITIONAL KEY WORDS: Tomicini — bark beetles — South America — Australia — phylogeny — cytochrome
oxidase I — elongation factor 1o — enolase — Bayesian inference — age estimation — Late Cretaceous divergence.

INTRODUCTION up to the mid-Tertiary in age, over some 30 million
years (Brower, 1994; Harrison & Crespi, 1999; Pellmyr
& Leebens-Mack, 1999; Farrell, 2001; Sequeira et al.,
2000a; Gillespie et al., 1994; Juan, Oromi & Hewitt,
1995, 1996; Juan et al., 1998). Older associations (e.g.
of Mesozoic age) seem much less frequently studied,
perhaps because extinctions and shifts have obscured
early patterns (but see Moran, 1996). However, it
seems important to sample assemblages across as
broad an array of time intervals as possible to provide

The time over which species have been associated with
particular hosts or geographic regions is relevant to
study of a variety of phenomena, ranging from es-
timation of the absolute rate of nucleotide substitutions
(Moran et al., 1993; Peek, Vrijenhoek & Gaut, 1998),
to assessing the apparent degree of adaptation (Farrell,
2001; Lutzoni & Pagel, 1997), evaluating the stability
of mutualistic or parasitic interactions (Pellmyr &

Leebens-Mack, 1999) and the diversity of radiations
(Gillespie, Croom & Palumbi, 1994; Liebherr & Zimm-
erman, 1998; Sequeira et al., 2000a; Sequeira, Nor-
mark & Farrell, 2000b). Studies of timing typically
combine fossil or geological information with estimates
of molecular divergence to calibrate systems ranging
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the context for comparative studies.

A potential source of older comparisons may come
from the disjunct biota associated with the now widely
separated continents of South America, Africa and
Australia of the south temperate zone. However, many
groups occupy only two of these three formerly Gond-
wanan continents (precluding comparisons of their
phylogenetic relationships to the temporal vicariance
sequence predicted by the history of continental drift),
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and their distributions are thus assumed to reflect
early to late Cretaceous divergences (depending on the
pair), since postulation of more recent (i.e. Tertiary)
origins would also posit very long distance dispersal
that may be unrealistic for any but the most vagile
groups of organisms. The many prominent examples
of such disjunct distributions in vertebrates and plants
have been the subject of debate for most of the century
(e.g. Darlington, 1957, 1965; Nelson & Platnick, 1981)
but an increasing number of insect groups have also
been shown to have these disjunct distributions (Table
1), and thus provide a potentially useful comparative
context within which to establish whether these share
a common history, or arise in different ways, as would
be suggested if they represent a wide range of ages.
Indeed, some disparity in age is suggested by the range
of taxonomic ranks of Gondwanan insect groups as
these span levels from the family to the genus (Table
1), even within a given lineage. For example, of the
very few groups of insects represented in all three
areas, the mydid dipteran subfamily Mydinae and the
genus Apiocera in the mydid subfamily Apiocerinae
show phylogenetic concordance with the tectonic his-
tory of these three continents (Yeates & Irwin, 1996).
However, most other groups of insects are restricted
to only two of these Gondwanan continents, most often
Australia and South America, a disjunction that sug-
gests a minimum mid-Cretaceous age (Rosen, 1978;
Smith, Hurley & Briden, 1981; Thayer, 1985; Pollock,
1995). While these distributions strongly suggest
Gondwanan origins, more direct evidence on their ages
(e.g. from fossils or molecular divergence) has not yet
been assembled.

In comparison, several Gondwanan plant groups
have substantial fossil records, potentially also il-
luminating the history of their associated insect
faunas. Of the various Gondwanan plant groups (Craw,
1985; Humphries, Cox & Nielsen, 1986, Heads, 1990;
Linder & Crisp, 1995; Renner, Foreman & Murray,
2000), the conifer genus Araucaria (Kuschel & May,
1990, 1996, 1997; Morrone, 1997; Farrell, 1998; Mecke,
Engels & Galileo, 2000a; Mecke, Galileo & Engels,
2000b; Sequeira et al., 2000b) and the angiosperm
genus Nothofagus (McQuillan, 1993) have the best
known herbivore faunas. The insect fauna associated
with Araucaria is especially rich in beetles, of which
five groups share comparable distributions with their
Araucarian hosts in southern South America and Aus-
tralia (Table 1). These present the possibility of joint
study of both the assembly of a biogeographic realm
and of a plant fauna (Farrell & Mitter, 1998; Sequeira
et al., 2000b; Farrell, 2001). Such systems should per-
mit, in principle, distinguishing younger colonists from
early inhabitants, perhaps illuminating patterns in
timing and lending the historical context for evaluation
of degree of adaptation and diversity (Farrell, 2001).

Araucaria has a rich fossil history extending from
the dJurassic through the Early Tertiary (Fig. 1;
Stockey, 1982; Stockey, Nishida & Nishida, 1994; Pole,
1995; Pole & Douglas, 1999), and Araucaria-containing
beds also contain beetle body fossils in chrysomelid,
nemonychid and belid groups today associated with
these plants and which therefore represent some of
the original Mesozoic herbivore associations (Arnol’di
et al., 1992; Kuschel & Poinar, 1993; Kuschel & May,
1990; Farrell, 1998). However, Araucaria-associated
bark beetles in the curculionid subfamily Scolytinae
are not known earlier than the Tertiary, and their
phylogenetic position within an angiosperm-feeding
group strongly implies a post-Jurassic origin (Kuschel,
1995; Marvaldi, 1997; Farrell, 1998; Kuschel, Leschen
& Zimmerman, 2000; Marvaldi, Sequeira & Farrell,
in prep.).

Our previous studies suggested a possibly Late Cre-
taceous age for Araucaria associations in bark beetles,
because currently associated scolytine genera (Hy-
lurgonotus, Xylechinosomus and Sinophloeus) in the
tribe Tomicini in South America comprise the basal
lineages of scolytid beetles (Sequeira et al., 2000b). We
have also recently confirmed the origin of the entire
group within the primitively angiosperm-feeding wee-
vil family Curculionidae (Marvaldi et al., in prep.).
Nevertheless, an early shift from angiosperms to Ar-
aucaria seemed plausible in light of Araucaria fossil
history.

Although the 19 extant species of Araucaria today
show a disjunct distribution in the Southern Hemi-
sphere, each endemic either to Australia, New Ca-
ledonia, New Guinea or South America, Araucaria was
much more widely distributed in the past, and was
available for beetle colonization on all continents ex-
tending back at least into the Jurassic (Fig. 1). Thus
the present distribution of Araucaria, though Gond-
wanan in character, is often said to be relictual, re-
sulting from a different process of ‘vicariance’ via
extinction in the northern part of their range over
similar Cretaceous intervals as the tectonic separation
of South America and Australia. Nevertheless, the
absence of confirmed bark beetle fossils earlier than
the Tertiary has been taken as evidence of Cretaceous
absence, and their phylogenetic position rules out pre-
angiosperm, Jurassic origins. Fortunately, potential
clarification of the timing of origin of the bark beetles
is presented by the existence of Araucaria-associated
tomicine bark beetles in the Australian region. Two
bark beetle genera, Hylurdrectonus and Pachycotes,
are restricted to Australia, New Zealand and Papua
New Guinea where they are associated with Araucaria
bidwillii, A. cunninghamii and A. heterophylla. If these
proved to be the closest relatives of the South American
affiliates of A. araucana (Table 1) and their molecular
divergence is commensurate with divergence in the
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Figure 1. Cladogram depicting the relationships of the Araucaria feeding bark beetle lineages located according to
the landmass distribution of each taxon (X. v.: Xylechinosomus valdivianus; S. p.: Sinophloeus porteri; Hl. a: Hylurgonotus
antipodus; HI. t.: Hylurgonotus tuberculatus; Hy. c: Hylurdrectonus corticinus; Hy. p: Hylurdrectonus pinarius; P. sp.:
Pachycotes sp.). Distributions of Araucariaceae fossils. Mesozoic fossils are circles and Cenozoic fossils are squares.
Jurassic: white; Lower Cretaceous: gray; Upper Cretaceous: black; Palaeocene: white; Eocene: gray; Oligocene: black.
Numbers beside each fossil location correspond to the publication of either the description of the fossil or the placement
in a phylogenetic framework. 1: (Ibafiez & Zamauer, 1996); 2: (Cuneo, 1991); 3: (Gee, 1989); 4: (Kendall, 1949); 5:
(Stockey, 1980); 6: (Boureau, 1949); 7: (Bose & Jain, 1964); 8: (Sukh & Zeba, 1976); 9: (Archangelsky, 1994); 10: (del
Fuego, 1991); 11: (Archangelsky, 1963); 12: (Duarte, 1993); 13: (Barale, 1992); 14: (Alvarez Ramis & Fernandez Marron,
1992); 15: (Wilde & Goth, 1987); 16: (Alvin, Watson & Spicer, 1994); 17: (Nissenbaum & Horowitz, 1992); 18: (Bandel
& Vavra, 1981); 19: (Rottlaender & Mischer, 1970); 20: (Brattseva & Novodvorskaya, 1979); 21: (Krasilov, 1965); 22:
(Cantrill, 1992); 23: (Zastawniak, 1994); 24: (Torres & Biro Bagoczky, 1986); 25: (Cevallos Ferriz, 1992); 26: (Raubeson
& Gensel, 1991); 27: (Meijer, 1997); 28: (Erasmus, 1976); 29: (Schultze, 1966); 30: (Veillet Bartoszewska, 1956); 31:
(Kar, Ambwani & Agarwal, 1998); 32: (Bose & Maheshwari, 1973); 33: (Voronova & Smykov, 1972); 34 and 35: (Stockey
et al., 1994); 36: (Pole, 2000); 37: (Pole, 1995); 38: (Pole & Douglas, 1999); 39: (Rowett, 1992); 40: (Pole, 1998); 41:
(Carpenter & Pole, 1995); 42: (Martin, 1993); 43: (Christophel et al., 1992); 44: (Hill & Bigwood, 1987); 45: (Pole, 1992);
46: (Barreda, 1997).

Cretaceous or earlier, this would disfavour the hypo- of the Australian and South American bark beetle
thesis that these are of Tertiary, post-Gondwanan ori- genera affiliated with Araucaria.
gins.
Here we present results of the analysis of DNA MATERIAL AND METHODS
sequences of nuclear and mitochondrial genes: protein
coding elongation factor alpha (EF-1a), enolase (eno) SAMPLES

and cytochrome oxidase I (CO1) to both resolve the Bark beetles from 9 of the 14 genera in the Tomicini
phylogenetic affinities and estimate divergence times and two of the three genera in the Hylastini were
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collected from colonized hosts (see Table 2 for habits
and distributions). Members of two different tribes
from the weevil subfamily Cossoninae (Rhyncolini and
Araucarini), the putative sister-group of Scolytinae
(Kuschel et al., 2000; Marvaldi et al., in prep.), are
included as outgroups.

DNA PREPARATION, PCR AMPLIFICATION AND
SEQUENCING

DNA was extracted from individual beetles preserved
in ethanol, DNA for six of the Dendroctonus species
was kindly provided by Dr Scott Kelley. PCR and cycle
sequencing were used to obtain partial sequences of
three genes: EF-1a, CO1 and enolase. Primers and
conditions for amplification and sequencing are de-
tailed in Normark, Jordal & Farrell (1999) for CO1,
Sequeira et al. (2000b) for EF-1a and Farrell et al.
(2001) for enolase. Double stranded PCR products were
purified using the Qiagen PCR purification kit to re-
move primers and unincorporated dNTPs prior to se-
quencing. Cycle sequencing reactions were performed
with the ABI prism Dye Terminator Cycle Sequencing
Kit (Perkin-Elmer). Both strands of the PCR product
were sequenced in an ABI 370A automated sequencer.
All sequences were compiled using Sequencher 3.1
(Genecodes Corporation, Ann Arbor, MI). For EF-1a
and enolase, evidence of two loci that differ in intron/
exon structure was found in some taxa but only the copy
with one middle intron was used for EF-1o (Normark et
al., 1999) and the non-intron copy for enolase (enol-

ni) (Farrell et al., 2001).

PHYLOGENETIC ANALYSIS

Saturation levels for each of the gene regions due to
multiple substitutions were identified by plotting ts/
tv ratios versus the number of transversions and by
comparing with the ts/tv expected values based on the
base composition as described in Holmquist (1983)
(Fig. 2A,B,C). Each dataset was analysed separately
and then combined in a total evidence matrix (1968
characters: for relative contribution of each gene region
to the total of informative characters see Table 3, for
accesion numbers see Table 2). All substitutions were
weighted equally. Phylogenetic analysis was performed
by maximum parsimony using PAUP* (Swofford,
2000). The parsimony ratchet procedure (Nixon, 1999)
was performed five times using 200 replicates each
and repeated with varying percentages of weighted
characters (12, 15 and 18). Batch files to implement
this procedure were constructed using Pauprat (Sikes
& Lewis, 2000) where an assigned percentage of char-
acters selected at random in each replicate are given
additional weight and branch swapping is performed
on that tree using the reweighted matrix. This batch
file is then executed in Paup*. The ratchet samples

many tree islands with fewer trees from each island
providing faster accurate estimates of a consensus
(Nixon, 1999). For bootstrapping and incongruence
testing (Farris et al., 1995) 100 replications and 20
random-addition starting trees were used. Autodecay
4.0 (Eriksson, 1998) was used to create the constraint
trees for the nodes from the combined MP tree and
TreeRoot (Sorenson, 1999) was used to calculate the
partitioned Bremer support indices for each of the
three gene regions (Baker & DeSalle, 1997; Baker, Yu
& DeSalle, 1998). Decay indexes (Bremer, 1994) were
calculated from the runs performed in Paup using
heuristic searches with 100 random additions.

BAYESIAN INFERENCE OF DIVERGENCE TIMES

An approximation of the likelihood ratio test (LRT)
(Felsenstein, 1981; Huelsenbeck & Rannala, 1997) was
performed using maximum likelihood branch length
optimizations of the three datasets independently, en-
forcing and not enforcing a molecular clock (thus test-
ing for deviation from the molecular clock), over the
strict consensus of the six MP trees obtained for the
combined dataset using the ‘describe tree’ feature in
Paup (HKY +T, estimating I', using the empirical base
frequencies, estimating Ts/tv ratio).

Divergence times were estimated with Bayesian ana-
lysis and the nucleotide data with the clock tree (with
optimized branch lengths) as a prior and running
multiple Markov chain for 100 000 generations, with
sampling every 100 generations using Mr Bayes 1.1
(Huelsenbeck, 2000). The first 10000 generations of
each chain were discarded (as recommended by the
author). By calculating the posterior probabilities and
using the provided dataset and tree with branch-
lengths, Mr. Bayes will infer the branching time of the
root of the tree and any additional parts of the tree
that are provided as constraints. The median, mean
and standard deviation of the age estimates resulting
from the four 100 000 Markov chains are then used as
estimates of the divergence times for the nodes of
interest. The calibration specified for the origin of
Scolytinae was as follows: a maximum of 135 million
years ago (Mya), around the time of the origin of
angiosperms, because Scolytinae appears to be nested
deep within a primitively angiosperm-feeding clade of
weevils (Kuschel, 1995; Marvaldi, 1997; Farrell, 1998;
Kuschel et al., 2000; Marvaldi et al., in prep.), and a
minimum of 40 Mya, the age of the oldest body fossil
reported for any of the taxa in the tree: Hylastes and
Hylurgops: Late Eocene amber; Larsson, 1978) (Fig.
3).

The utility of each gene partition was further in-
vestigated by plotting the partitioned Bremer support
against the age estimated as above for that node. For
nodes of the same age the mean and standard deviation
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of the partitioned Bremer support values for those
nodes were calculated (Fig. 2D).

RESULTS

Independent analysis of each dataset (EF-1a, enolase-
ni, CO1 amino acids and nucleotides), resolve re-
lationships at different levels. CO1 nucleotides (almost
entirely third codon positions) provide support close to
the tips of the tree but not at higher levels (Fig 3). As
in our earlier studies of bark beetles (Normark et al.,
1999; Farrell et al., 2001), the higher ts/tv ratio in
third codon positions (ts/tv ratio total =1.16; 1st=1.02;
2nds =0.92; 3rds =1.14) plus the asympotic divergence
(suggesting saturation) in third positions indicates the
use of COl1l amino acids for the analysis. As in an
earlier study in scolytine beetles (Jordal, Normark &
Farrell, 2000), the level of saturation due to multiple
substitutions was higher for mitochondrial genes, in
this case CO1, than for the two other gene regions and
mostly comprises changes in the third codon positions
(Fig. 2C). However, the amino acid sequences for this
rapidly evolving mitochondrial gene prove to be useful
to resolve the deeper nodes of this phylogeny (Figs
2D, 3), exhibiting a higher proportion of informative
characters (Table 3) and higher mean divergence val-
ues than the amino acid sequences of the other two
nuclear regions (4% for EF-1a, 12% for CO1 and 5%
for enolase-ni).

Partition homogeneity tests indicate no significant
incongruence among the three datasets (P=0.0698).
Regardless of the percentage of characters weighted,
all ratchet runs performed using the combined dataset
resulted in 6 MP trees of 2469 steps, the strict con-
sensus of which is shown in Figure 3. The phylogeny
estimate from the combined dataset indicates ancestral
association with Araucaria and Tomicini paraphyly
with respect to Hylastini, though not highly supported,
but concordant with previous studies (Sequeira et al.,
2000b). The five Araucaria-feeding genera (Hylur-
gonotus, Xylechinosomus, Sinophloeus, Hylurdrect-
onus and Pachycotes) predominate in the basal
branches of the tree (Fig. 3). The Araucaria-feeding
genera from the Australian region are basal and the
South American taxa form a well-supported mono-
phyletic group.

The LRT performed as a maximum likelihood branch
length optimization of the CO1 nucleotide data on the
topology of the strict consensus of the 6 MP trees from
the combined data indicates nonsignificant deviation
from the molecular clock (X=30, df =20, P=0.0698),
the other two gene regions rejected the molecular clock
hypothesis (P<0.005). CO1 nucleotide data, though not
resolving relationships at deep nodes (probably due to
saturation at third codon positions: Fig. 2C), is the
most suitable for dating this divergence due to its

clocklike variation rates and shows enough variation
in first and second codon positions (reflected in the
aminoacid sequences) that allow resolution of these
deep nodes. The Bayesian estimation of divergence
times is shown on a time scale on the phylogram in
Figure 4. For several nodes the median (M), mean and
standard deviation for the dates were calculated in
the four chains of 100 000 generations, sampling every
100 generations (4000 estimations). These estimates
indicate that the divergence between the Australian
and the South American Araucaria-feeding taxa oc-
curred at the very latest near the Cretaceous/Paleocene
border (78 Mya [range 65-91 Mya] in Fig. 4]). The
age of the first Scolytinae-Araucaria association would
then be during the latest stages of the Late Cretaceous
(80 Mya [range 67-93 Mya] in Fig. 4).

As regards the relative utility of the three gene
partitions (Fig. 2D), both nuclear genes, EF-1a and
enolase-ni, provide greater support for Oligocene—
Miocene divergences and lose informativeness ap-
proaching the Paleocene, whereas CO1 amino acids
contribute resolution closer to the Cretaceous/Pa-
leocene border and even well within the late Cre-
taceous.

DISCUSSION
DIVERGENCE TIMES AND FOSSIL EVIDENCE

The divergence times and phylogenetic evidence that
we present here supports the hypothesis advanced
previously that the lineages of Tomicini that today
breed in Araucaria are surviving remnants of a re-
version to conifer-feeding in ancestral scolytids that
appears to have occurred late in the Mesozoic, when
Araucaria still formed a major component of the woody
flora (Sequeira et al., 2000b; Farrell et al., 2001).

Fossil galleries in early Cretaceous conifer bark have
been interpreted as evidence of Scolytinae (Brongniart,
1877; Wood cited in Boucot, 1990; Falder et al., 1998),
as well as reports of scolytines from the early/mid
Cretaceous Araucaria-derived Lebanese amber (Whal-
ley cited in Jarzembowsky, 1990). Our results lend
support to an association with conifers that has prob-
ably persisted since the common origin of these tribes,
some 78 Myr (413 Myr), somewhat later in the Cre-
taceous, closer to the Cretaceous/Paleocene border.
This late Cretaceous age would be also consistent with
the plant fossil record, because by the late Cretaceous
the family Pinaceae was well established and the genus
Pinus, host to the remaining Tomicini plus Hylastini,
was already highly diversified and widespread (Miller,
1977, 1988; Millar, 1993; Savard et al., 1994).

BIOGEOGRAPHIC SCENARIOS

The basal scolytine associations with Araucaria could
result from contraction from a formerly more wide-
spread (almost worldwide) distribution with their hosts
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Figure 2. A-C, plots of transition/transversion ratios versus transversions for first and second codon positions combined
and third positions in each gene region. Values of expected Ts/tv ratio ratio (Holmquist, 1983) are shown on the lines
in each graph. D, partitioned Bremer support for each of the three data partitions against the divergence time estimated
for that node with Bayesian analysis. The mean and SD are shown for nodes of the same age.

Table 3. Properties of gene partitions; Ti and tv signify transitions and
transversions respectively

Gene region Characters % informative Ti/tv ratios
characters
EF-1a all pos 921 27 1.7
1 307 11 1.5
2 307 3 0.75
3 307 68 1.8
aa 307 7 —
COI all pos 1386 42 1.3
1 462 26 1.0
2 462 7 0.92
3 462 82 1.14
aa 462 23 —
Eno-ni all pos 585 11 1.5
1 195 11 1
2 195 4 0.8
3 195 70 1.1
aa 195 9 —
Combined 1968 EF1-a, 47
COI aa, 21

Eno-ni, 32
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Figure 3. Strict consensus of six MP trees from the combined analysis of CO1 amino acids, EF-1a and enolase-ni
nucleotides (1968 characters: 462 CO1; 921 EF-1a; 585 enolase). Length =2469; Ci=0.587; Ri=0.591. Numbers above
the internal branches indicate bootstrap support and Bremer support for the node to the right in the combined analysis.
Letters below the branches indicate which of the independent analysis supports that node with: more than 50%
bootstrap support (letters in bold) or less than 50% bootstrap support (C: COI amino acids; c: COI nucleotides; ef, EF-
lo.; en: enolase non-intron). Patterns on the branches correspond to conifer family/beetle associations; stippled:
Araucariaceae; solid grey: Pinaceae. Codes with bars on the branches mark changes in feeding modes (Ph: phloem-
feeding, Xy: Feeding in xylem). Bars beside taxon names indicate tribe classification after Wood (1986; Wood & Bright,
1992) and Bright & Skidmore (1997). * marks the node where the calibration was specified.

(Fig. 1). A northern origin of the beetle Araucaria somewhat earlier in the Cretaceous, closer to the onset
association plus worldwide dispersal before 80 Mya of angiosperm diversification, the main hosts of the
would seem to place the origin of the bark beetles apparent weevil ancestors of scolytines (Crowson,
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six MP trees obtained for the combined dataset. Histograms correspond to the distribution of age estimations for the

Upper Cretaceous Araucariaceae fossils have been re-

constrained nodes obtained via the Markov chain in Mr. Bayes 1.0, with the SD of the mean for each estimation.

ported, Zastawniak (1994)) or in the Australian region

1967; Thompson, 1992; Kuschel, 1966, 1995; May,
1993; Lyal, 1995; Lyal & King, 1996; Marvaldi, 1997,
Farrell, 1998; Farrell et al., 2001; Marvaldi et al., in
prep.). However, a southern origin of the beetles and
dispersal through Antarctica with later contraction to
the present distribution could be on the more recent
side of our estimated range. The surviving Araucaria
associated bark beetle lineages, though now very isol-
ated, could have originated either in Antarctica (where

Ranges on the time axis correspond to +SD for each estimation and the median of the distribution.

and have dispersed to both Southern continents (South

America and Australia) when these land masses where
still close to each other (70 Mya: Pollock (1995); Rosen

(1978) and Thayer (1985)).
The most compelling evidence on the question of
origins is the restriction of Tomicini to the basal Ar-
aucaria sections Bunya, Intermedia and Araucaria,
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plus the basal species in the most derived section
Eutacta, which is thought to have radiated post-Eocene
(Setoguchi et al., 1998). The sections Bunya, Inter-
media and Araucaria, in contrast, together form a
monophyletic group whose fossil distribution is ex-
clusively on New Zealand, Australia and Argentina in
70-80 Myr-old deposits (Fig. 1; Ohsawa, Nishida &
Nishida, 1995; Stockey, Nishida & Nishida, 1992) and
therefore favouring the model of southern vicariance
during the mid to late Cretaceous for the distribution
of Tomicini/Araucaria associations. More northern
Araucaria fossils are not currently attributed to any of
the sections used by Tomicini. If these fossils eventually
prove to fall in derived sections of Araucaria, while
sections Bunya, Intermedia and Araucaria remain
basal, the origins of Araucaria would be in the South-
ern Hemisphere and their current distribution would
be the result of Gondwanan vicariance, as with their
beetle herbivores.

Further study of the bark beetle sister group, the
Cossoninae, may permit resolution of the homology
(and thus greater age) of the Araucaria associations
of Araucariini with those of basal Scolytinae, possibly
clarifying their geographic origins as well. Indeed, the
distributions and associations of the remaining genera
are similarly Gondwanan. The Australian genera Cop-
tocorynus, Mastersinella and Xenocnema are all as-
sociated with Araucariaceae in Australia, while New
Zealand harbours Xenocnema (also on New Caledonia)
plus Inosomus, the sole genus associated with Podo-
carpaceae, the sister group to Araucariaceae (Seto-
guchi et al., 1998). Moreover, the remaining genus
previously placed in the Araucariini, Amorphocereus
(new placement in the Molytinae, Alonso-Zarazaga &
Lyal, 1999), is associated with Cycadaceae in South
Africa, where Araucaria is now extinct. If these as-
sociations of Tomicini and Araucariini with Arau-
cariaceae reflect descent from a shared ancestor, the
origin of the association would be even deeper in the
Cretaceous.

Also suggestive of age are the otherwise very rare
shifts from phloem to xylem feeding in these Araucaria
beetles, as well as a unique origin of leaf mining
(Farrell et al., 2001) (Table 2). Similarly, Kuschel (1966)
suggested that the morphological disparity among the
cossonine genera in the Araucariini indicates ancient
divergences.

Even an early Cretaceous origin of association of
Scolytinae, Araucariini or both with Araucariaceae
could be reconciled with their placement in the prim-
itively angiosperm-feeding weevils, but strongly pre-
dates the previously assigned origin of the group in
the Tertiary. While it is clear that these beetle tribes are
thus Late Cretaceous in age, there remain a number of
insect groups — their ranks ranging from families to
genera — that have comparable distributions, whose

age remains to be investigated (Table 1). Because both
the phylogeny and fossil record place other Araucaria
herbivores well within the Jurassic, it seems that
the evolutionary origins of the Gondwanan Araucaria
fauna spans much of the Mesozoic. Demonstration that
these plants were also colonized in the Tertiary by as
yet unstudied herbivores would further expand the
set of comparisons of older and younger herbivores,
permitting assay of the relative closeness of their
adaptation to these hosts.
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