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Background. Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the
distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time
series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA’s Terra and Aqua
satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis,
more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor
data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis.
Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases
of the Fourier harmonics. Methodology/Principal Findings. We present a novel spline-based algorithm that overcomes the
processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected
values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The
algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005.
Conclusions/Significance. Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance,
day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced
Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution,
combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-
temporal data sets, mean that these data may be used with greater confidence in species’ distribution modelling.
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INTRODUCTION
Environmental variables, such as temperature and vegetation

greenness, are important determinants of the distributions of many

species [1]. The presence or absence of a species in any area is

often distinguished not only by the absolute levels of climate or

vegetation values, but also by subtle differences in the seasonality

of these variables [2], which can only be captured by repeated

measurements over time. Such time series may be derived from

ground-based meteorological records, but acquiring spatially

continuous, global records of these environmental variables is

only practical using remotely sensed data from Earth-orbiting

satellites. Historically, the National Oceanographic and Atmo-

spheric Administration (NOAA) series of satellites carrying the

Advanced Very High Resolution Radiometer (AVHRR) have

provided time series of global imagery more or less continuously

since 1981 [3–5]. These time series have been used to produce,

among others, images of Land Surface Temperature (LST) [6] and

of the Normalised Difference Vegetation Index (NDVI), a

correlate of vegetation productivity, biomass and climatic

conditions [7].

Serial correlation among successive observations taken over a

period of time reduces the statistical utility of captured imagery.

Data reduction (ordination) methods are usually employed to

remove these correlations and provide one or more transformed

images without such correlation, which can then be used in further

analyses or applications. One ordination approach commonly

applied to multi-temporal imagery is principal components

analysis (PCA, e.g. [8]), but explicit measures of seasonality are

lost in the ordination process. PCA thus achieves data reduction at

the expense of biological descriptiveness. Alternative methods that

retain information about seasonality include polynomial functions

[9,10] and temporal Fourier analysis [11–19].

Temporal Fourier analysis (TFA) transforms a series of

observations taken at intervals over a period of time into a set of

(uncorrelated) sine curves, or harmonics, of different frequencies,

amplitudes and phases that collectively sum to the original time

series. For many multi-temporal satellite data, the most important
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harmonics are those that correspond to the annual, bi-annual and

tri-annual cycles of seasonal changes, and these harmonics often

have a clear biological interpretation [13]. Both longer period

cycles (variation on inter-annual scales) and shorter period cycles

(high frequency intra-annual variation) can also be identified by

TFA, but tend to be less important biologically, as well as in terms

of their contributions to the overall variance of the signal [13].

Thus TFA achieves data ordination in a biologically transparent

way.

An additional advantage of TFA is that it can be used to smooth

noisy data. Fourier analysis moves between the time and frequency

domains: forward analysis produces a frequency domain repre-

sentation of the original time series and inverse analysis moves

from the frequency domain back to the time domain. Filtering

noisy data is easier in the frequency domain because most noise is

associated with high frequencies which can therefore be dropped

before inversion to produce a smoothed version of the original

time series. Equivalent filtering in the time domain is less

straightforward, because the high frequency components are

mixed in with all other frequency components and so cannot easily

be separated from them. Different degrees of smoothing occur

when different frequency ranges are excluded during the filtering

process. Here the primary objective is not to smooth the data, but

to capture their seasonality. Smoothing should be regarded as an

additional advantage of the Fourier approach to capturing

seasonality; an advantage that is all the more important when,

for various reasons, the satellite signal is above (e.g. sun-glint) or

below (e.g. cloud contamination) its correct value.

Until relatively recently, global remotely sensed time series data

have been available either with low spatial resolution for long time

periods (e.g. 20 years of AVHRR at 8 km resolution) or with

higher resolution for a shorter time period (e.g. 4 years of AVHRR

at 1.1 km resolution) [20]. These data, when temporal Fourier

processed [20], have been used successfully to predict the

distributions of species [13,14,21–27], diseases [2,17,28–37],

endemic bird areas [38], livestock [39], and human poverty [40].

Since 2000, new time series of higher resolution (250 m to

1 km) remotely sensed data from the MODerate-resolution

Imaging Spectroradiometer (MODIS) on board the NASA Terra

and Aqua satellites have been made freely available to the research

community [41]. The advantages of MODIS data over previously

available global satellite data include greater repeat frequency with

global image collection on an almost daily cycle by each satellite,

and enhanced stability of both spectral and geolocational accuracy

[42–44]. Nevertheless, the quality of MODIS images, as with

AVHRR, is affected by atmospheric contamination (clouds and

aerosols). MODIS images are therefore composited over 8 or

16 days using cloud-screening algorithms, shorter time intervals

than the 10 day (dekads) or one month intervals over which

AVHRR images were maximum value composited. Whilst the

dekadal and monthly composites of AVHRR data can be analysed

by standard temporal Fourier processing methods, since their

mean capture dates may be assumed to be spread equally

throughout the year, the 8- and 16-day MODIS data present

unique problems to such algorithms, because the timing of the

samples near year-end do not overlap to give these same inter-

sample intervals (a strict requirement of temporal Fourier analysis).

Further problems may arise from data points with very low or

‘‘drop-out’’ values which occur frequently in some pixels despite

compositing. These need to be treated carefully during image

processing, because they do not represent earth surface conditions

at the time of image capture.

Here we present a novel algorithm to deal with both the data

drop-outs and the irregular timing problems of MODIS data to

produce global 1 km resolution temporal Fourier processed layers

that describe the seasonality in MODIS Terra NDVI, Enhanced

Vegetation Index (EVI), Middle Infrared (MIR), and daytime and

night-time LST for the period 2001 to 2005 inclusive.

MATERIALS AND METHODS

Data
Time series of nominal 1 km spatial resolution MODIS data from

the NASA Terra satellite were downloaded from NASA’s EOS

data gateway (http://edcimswww.cr.usgs.gov/pub/imswelcome/)

for five complete years, January 2001 to December 2005. MODIS

data are produced in the sinusoidal projection (MODLAND

Sinusoidal Grid) and made available as 460 tiles covering the

Earth, each tile measuring 10u610u and consisting of 120061200

0.859 km2 (926.63 m6926.63 m) pixels. All available images per

time interval (as of 8 January 2007), called granules, were acquired

for 229 tiles, including all tiles between 90uN and 60uS, except for

129 oceanic tiles and 62 tiles containing small islands, for two data

sets: MODIS/Terra Land Surface Temperature/Emissivity 8-day

L3 Global 1 km SIN grid (MOD11A2, version 4, [45]) and

MODIS/Terra Nadir BRDF-Adjusted Reflectance 16-day L3

Global 1 km SIN grid (MOD43B4, version 4, [46]). MODIS data

sets are provided in Hierarchical Data Format (HDF), and were

imported to ERDAS Imagine 9.0 (Leica Geosystems, Norcross,

GA) and converted to ERDAS LAN format.

The MOD11A2 data set comprises 8-day composited land

surface temperature (LST) for daytime (dLST) and night-time

(nLST) overpasses [45]. A complete time series for each tile of the

MOD11A2 data would therefore consist of 46 granules at 8-day

intervals for each of five years, or 230 granules in total.

The MOD43B4 data set provides nadir Bidirectional Reflec-

tance Distribution Function (BRDF)-adjusted reflectances for

Terra MODIS spectral bands 1–7 computed with the mean solar

zenith angle of each 16-day interval over which data were

composited [46]. The BRDF removes directional effects of view

angle and illumination, providing reflectance values as if every

pixel were viewed from nadir. Pre-processing excluded pixels with

unreliable BRDF corrections, identified by quality control flags

provided with the data set (QC Word 2 value .10). For each pixel

a MIR channel (MODIS band 7, 2105–2155 nm) was extracted

and the NDVI ([near infrared (NIR)–RED]/[NIR+RED], where

NIR is MODIS band 2 and RED is band 1, 841–876 nm and

620–670 nm, respectively) and the EVI (2.5*[[NIR-RED]/

[NIR+6.0*RED–7.5*BLUE+1.0]], where BLUE is MODIS band

3, 459–479 nm, [43]) were calculated. The MIR band was

selected as being similar to band 3 in AVHRR, which has been

shown to correlate with a number of vegetative processes including

forest re-growth [47]. A complete MOD43B4 time series for each

tile would consist of 23 granules at 16-day intervals for each of five

years, or 115 granules in total. Although finer resolution data are

available for NDVI and EVI (MODIS/Terra Vegetation Indices

16-day L3 Global 250 m resolution, MOD13Q1), MIR and LST

data are only available at 1 km resolution. For consistency across

products and given the much greater time involved in processing

higher resolution data on a global scale, 1 km resolution data were

therefore used for all products.

After temporal Fourier processing (described below), outputs for

all five products were mosaicked and georeferenced (parameters in

Table S1). Ocean pixels in all output layers were masked using the

MODLAND Digital Elevation Model (DEM) and Land/Water

Mask version 4, downloaded from ftp://landsc1.nascom.nasa.

gov/pub/outgoing/dem_sin_old for all 229 tiles and processed in

Fourier Processed MODIS Data

PLoS ONE | www.plosone.org 2 January 2008 | Issue 1 | e1408



ERDAS Imagine 9.0 and ArcInfo 9.1 (ESRI, Redlands, CA).

Since the MOD11A2 data set had been masked by the version 4

land/water mask prior to production, and this mask did not match

the later version 5 mask extents based on MOD43B4 reflectance

data [48], the version 4 mask was used throughout. Information

on inland water and ephemeral water bodies was also extracted

from the MODLAND version 4 land/water mask.

Temporal Fourier analysis
TFA describes environmental cycles, such as temperature,

precipitation, and vegetation phenology, as the sum of a series of

sine curves with different amplitudes and phases. A time series [xt]

may be described by its Fourier series representation [49] where

xt~a0z
XN=2{1

p~1

½ap cos (2ppt=N)zbp sin (2ppt=N)�

zaN=2 cos pt, (t~1,2,:::,N)

ð1Þ

with coefficients [ap, bp] defined as follows, where x̄ is the

arithmetic mean of the time series:

a0~�xx

aN=2~

P
({1)txt

N

ap~
2
P

xt cos (2ppt=N)ð Þ
N

bp~
2
P

xt sin (2ppt=N)ð Þ
N

9>=
>;

p~1,:::,N=2{1:

ð2Þ

The component at a frequency vp = 2pp/N is called the pth

harmonic, and for all p ? N/2 these harmonics may be written in

the equivalent form

ap cos vptzbp sin vpt~Rp cos (vptzwp) ,

where

Rp~the amplitude of the pth harmonic

~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a2

pzb2
p)

q ð3Þ

and

wp~the phase of the pth harmonic

~ tan{1 ({bp=ap):

Full TFA partitions the variability of the time series into

orthogonal (i.e. uncorrelated) harmonics at frequencies of 2p/N,

4p/N, 6p/N …, p, or periods equal to 1, K, 1/3, … 2/N times the

duration over which N observations were made. Full TFA exactly

describes the original time series, because there are as many

harmonic variables (a,b) as there are data points. However, in

practice only a few harmonics usually contribute substantially to

the overall variance, and only these need to be calculated for most

purposes. For the MODIS data only the three harmonics

corresponding to the annual, bi-annual and tri-annual seasonal

cycles were extracted and saved.

The contribution of each of the N/2 harmonics to explaining

the total variance has been shown by Parseval’s theorem:

X
(xt{�xx)2=N~

XN=2{1

p~1

R2
p=2za2

N=2 ð4Þ

where R2
p/2 is the contribution of the pth harmonic.

Equation 4 shows that the Fourier harmonics are statistically

orthogonal, because the total variance of the time series is

described in terms of their harmonics only, and not of their co-

variances. However, in contrast to the principal components of

PCA, each of the harmonics of TFA has a clear interpretation in

terms of intra- and inter-annual cycles of changes in their

respective variables [13].

Temporal Fourier analysis applied to artificial data
In applying temporal Fourier analysis to time series data, most

standard TFA algorithms require that the data points are equally

spaced in time [50]. For the extraction of annual, bi-annual and

tri-annual harmonics, the data should be collected or composited

at intervals that divide an integer number of times into a 365-day

year, with a nominal collection date half-way through each

interval. The historic AVHRR data essentially conformed to these

requirements (e.g. [20]); each month was divided into 3 dekads (of,

on average, just over 10 days’ duration), without any difference in

timing over year’s end. However, MODIS data sets are provided

at fixed 8- or 16-day intervals, regardless of calendar dates and

always beginning at the start of each year (i.e. the first image of

each calendar year always refers to the first 8 or 16 days of the

year, counting from January 1st). Not only do these intervals not

divide an integer number of times into a year, but the last interval

of the previous year overlaps with the first interval in a given year

(with the degree of overlap varying between leap and non-leap

years).

The MODIS intervals divide into a 365-day year 45.63 or 22.81

times, for the 8- and 16-day intervals, respectively, and either 46 or

23 images per year are produced. The compositing period of the

last image of each year therefore overlaps that of the first image of

the following year and its nominal sampling date is taken here as

exactly one sample interval after that of the previous image. Since

the day counter is reset on January 1st each year, this means that

there is irregular timing of the images at the end of each year.

Ignoring the effects of both sample interval and unequal timing

causes errors in TFA outputs using standard TFA algorithms. The

precise extent of these errors was investigated by constructing

artificial time series of daily data by summing annual, bi-annual

and tri-annual harmonics, whose amplitudes and phases were

selected at random from realistic ranges of values (0.05–1.0 for

amplitudes and 0–2p for phases). The artificial time series were

generated repeatedly (9900 times) and then sampled on exactly the

same dates as the mid-points of the MODIS imagery, i.e. artificial

MODIS data with known amplitudes and phases were generated.

These artificial MODIS time series were then analysed using

standard TFA methods (i.e. assuming equal spacing of the

imagery) and the outputs (calculated amplitude and phases) were

compared, using least-squares linear regression, with the input

amplitudes and phases. Analyses were performed using the TFA

module in IDRISI Andes (Clark Labs, Worcester, MA) and

customised TFA algorithms developed by the authors. There were

sufficient discrepancies between the input and output amplitudes

and phases (see Results) to merit the development of an alternative

approach to eliminate them.

Fourier Processed MODIS Data
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Temporal Fourier analysis of MODIS data
Three problems need to be addressed when TFA processing

MODIS data: data drop-out and the two problems of timing in the

MODIS data sets (see above). The following processing chain,

developed to overcome all three problems, was implemented in

QuickBASIC 4.0 (Microsoft, Redmond, WA) and applied to each

pixel (Figure 1).

i) For each pixel, the full time series was extracted from

the LAN files and examined for obvious drop-out values

and for missing granules. Drop-out values were

identified by low (0) or very high (.32500) digital

numbers and removed from the series. If more than

80% of any time series was classified as drop-outs, the

TFA output layers were set to zero, indicating that no

TFA was possible for this pixel. If 80% or fewer of the

values were classified as drop-outs, then the algorithm

moved to the next step. This rather high value of 80%

was selected so as not to exclude far more pixels–

especially in higher latitudes–thus preventing the

production of TFA imagery for these regions.

ii) The digital numbers of the time series were converted

to geophysical values using the scales and offsets of the

relevant MODIS product. If these geophysical values

were outside a wide range considered reasonable for

each product (Table 1), the value for that particular

granule was deemed unreliable. Again, if more than

80% of the values in a time series were classified as

unreliable, the TFA output layers were set to zero.

iii) A pixel passing the first two steps of processing thus

potentially contained a suitable time series, although

many pixels still had numerous drop-out values. At this

stage, missing values were linearly interpolated from

adjacent sample dates with acceptable geophysical

values. Linear interpolation often spanned multiple

missing values, and occasionally was also necessary at

the end of the time series, where data wrap-around to

the start of the time series was assumed. Linear

interpolation was adopted as the simplest gap-filling

approach; more complicated methods would have been

more time consuming and would involve additional

arbitrary decisions (e.g. the number of data points either

side of any gap to include in any local, non-linear gap-

filling algorithm). In general TFA is itself a non-linear

gap-filling routine (from the viewpoint of the entire time

series), so that the details of local gap filling are probably

immaterial.

iv) After linear interpolation of the missing values in the

time series, cubic splines were fitted to the time series.

These splines not only passed through all the values in

the time series, but also joined them smoothly. The

spline fits could therefore be calculated at any point in

the time series and at user-specified intervals, e.g. daily,

5-day, etc., as required. By sampling the spline fits at the

mid points of 5-day intervals throughout the year

(beginning at day 2.5), a new time series was produced

with 73 5-day interval values per year, making the series

suitable for subsequent standard TFA processing.

v) The Fourier fit to the time series was produced by

summing the mean and annual, bi- and tri-annual cycles

(only), and this was compared to the spline-interpolated

data. Where the spline-interpolated data departed (both

positively and negatively) from the Fourier fit by more

than a user-specified threshold (see Table 1) the data

were again considered unreliable, removed and linearly

interpolated from adjacent, reliable values in the spline-

fitted series. TFA was applied again to this new series,

examined for departures as before, interpolated if

necessary, and Fourier processed again. Re-processing

continued until no departures from the current fit

exceeded the threshold or until 20 iterations were

completed.

The characteristics of these final Fourier fits were saved as a

series of output layers, including the mean (a0), amplitudes (a1–

a3), and phases (p1–p3), the minimum (mn), maximum (mx) and

variance (vr), and the proportions of the signal variance captured

by the annual, bi-annual and tri-annual cycles (d1,d2, and d3,

respectively) and by all cycles combined (da). The percentage data

loss at steps i) and ii), as well as the percentage of departures of the

spline-fitted values from the initially fitted Fourier series (step v)

were also stored in separate layers (e1–e3), to aid the quality

assessment of output layers.

RESULTS

Data
52144 granules were acquired for the MOD11A2 data set, and

25697 for MOD43B4, representing 99.0% and 99.3% of the

potential granules respectively (note MOD43B4 data were not

produced for 4 tiles north of 80uN). The median number of

missing granules per tile was 2 (range 1–6 granules) for MOD11A2

and 0 (0–11) for MOD43B4 (insets in Figure 2). The larger

number of missing granules in the MOD11A2 data set was due to

a power supply anomaly in the sensor from 16 June to 1 July 2001,

preventing data collection during one or two 8-day intervals

(Julian day 169 and 177) for every tile. Several granules were

missing during the winter months for tiles located at high latitudes,

as there was insufficient sunlight to reflect back to the satellite.

Other sensor problems and failed storage tapes at the data

distribution centre accounted for further missing granules.

Temporal Fourier analysis applied to artificial data
An example time series of the artificial MODIS data subjected to

standard TFA is shown in Figure 3a. The slippage between the

observed and fitted values at the end of the first year is visible.

TFA has assumed an equal interval throughout the 2-year time

period of these artificial data, and predicts the signal at these

intervals throughout. This assumption affected the estimated

values of amplitudes and phases, so that the fitted values (in red)

did not capture the signal satisfactorily (obvious at the very first

fitted value, but noticeable throughout). This would also occur if

only one year’s worth of MODIS-type data were analysed by TFA

since the method assumes the time series continues, as measured,

forever. Application of the new TFA algorithm to the same time

series is shown in Figure 3b. The 5-day spline interpolated time

series, itself an accurate representation of the input time series, was

described very accurately by TFA, and provides more accurate

estimates of the input values of mean, amplitudes and phases.

Figure 4 highlights errors in the calculation of both annual

amplitudes (Figure 4a) and annual phases (Figure 4b), found when

many artificially generated MODIS time series, such as that shown

in Figure 3, were subjected to standard TFA and the input

amplitudes and phases compared with the TFA-calculated

amplitudes and phases. These errors, both positive and negative,

appeared to be approximately constant in their absolute values

across the range of input values used, with the consequence that

Fourier Processed MODIS Data
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Figure 1. Processing chain of MODIS temporal Fourier analysis. Data storage requirements for each product (in MB) and software used are
indicated on the right.
doi:10.1371/journal.pone.0001408.g001
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the proportional errors were very much greater at smaller input

values of amplitude and phase. Thus Fig. 3a shows that using

standard TFA, the annual amplitude may be estimated with an

error of as little as about 62% at high amplitude values, but as

high as 620% at low values. The equivalent values for phase are

63% and 630%, respectively.

Spline interpolation and resampling, followed by standard TFA,

overcame the two problems of the irregular sampling dates of the

raw MODIS data over all ranges of amplitudes and phases tested

(Figure 4b,d).

Temporal Fourier analysis of MODIS data
An example of the TFA of an NDVI time series for a single pixel

in northern Europe is shown in Figure 5. The Fourier-fitted series,

consisting of the summed annual, bi-annual and tri-annual

harmonics, provided a good fit to the mean seasonal variation of

the observed data (Figure 5a). The annual harmonic dominates

the annual cycle of vegetation growth and has a large amplitude,

indicating a major change between summer and winter NDVI

values (Figure 5b). The second and third harmonics contribute less

to the overall fit, but perform the important function of

modulating the simple sinusoidal annual cycle. Figure 5b shows

that the amplitude and phase of the tri-annual harmonic bring

about a flattening and widening of the peak of the annual cycle,

and thus improve the fit to the observed signal. The dominance of

the annual cycle in Figure 5 is not surprising in a northern

temperate habitat. Nearer the equator, and with other vegetation

types, the bi-annual and tri-annual harmonics may modulate the

annual cycle to a greater extent.

Global output layers of TFA for dLST and EVI for 2001–2005

are displayed in Figure 2 as three-channel colour composites,

showing the mean, phase and amplitude of the first Fourier

harmonic in the red, green and blue channels respectively. In

Figure 2, areas in red indicate where the mean values are high and

relatively constant throughout the year; those in bright green

indicate where both mean and annual amplitude values are low

and the peak values are reached later in the year; and those in

bright blue indicate where the mean is relatively low, the peak

occurs relatively early in the year and the annual amplitude of the

signal is very pronounced. Areas in yellow ( = red+green),

therefore, indicate high mean values and late peaks in the signal’s

annual cycle, and those in purple ( = red+blue) indicate high mean

values and high annual amplitudes with early peaks. A little

experience with this RGB colour scheme allows a direct, visual

interpretation of habitat seasonality.

To gain a more regional view, as well as display all Fourier

harmonics, Figure 6 provides a selection of the 17 output layers for

EVI across Africa. Specifications for all output layers for all

products are given in Table S2.

Overall, the first three Fourier harmonics describe the observed

seasonal pattern fairly well as shown by the percentage of variance

explained (for MIR 55.7623.9 [mean6SD], NDVI 58.8632.1,

EVI 51.9630.6, dLST 83.1621.0, nLST 79.1624.7). The high

level of variation around these global mean values of explained

variance is often associated with habitat types. For example,

deciduous woodland savannah vegetation shows a marked

seasonality in NDVI and EVI, and a large proportion of the total

variance of the signal is explained by the sum of the variances of

the annual, bi-annual and tri-annual harmonics. Evergreen

tropical rainforests on the other hand, do not show so much

seasonality in the vegetation indices, and much of this variation

appears to be noise; in these habitats the sum of the annual, bi-

annual and tri-annual variances does not explain a large

percentage of the (lower total) signal variance.

DISCUSSION
The processing chain presented here provides a powerful method

for reliably and accurately capturing the synoptic seasonal dynamics

of several environmental variables derived from the MODIS sensor.

Major characteristics of the seasonality of each environmental

variable can be described by only three Fourier harmonics involving

seven variables (the mean, three amplitudes and three phases).

Compared to the full time series, this represents a 16-fold reduction

for reflectance-derived products collected at 16-day intervals (115

granules/7 output layers) and a 32-fold reduction for temperature

products at 8-day intervals (230/7). These Fourier processed Terra

MODIS data provide enhanced descriptions of the seasonality of

natural environments at finer spatial and temporal resolution,

compared with previous data sets (e.g. AVHRR) and thus should

allow refined predictions of species’ distributions.

Critique of data and processing methodology
Although MODIS provides some of the finest spatial resolution

multi-temporal global imagery available, several inescapable

problems remain. The data are provided with a geolocational

accuracy of 50 m (1s) at nadir [44], but within a time series, pixels

are viewed at different view angles with each repeat observation.

The view angle determines the actual area of the Earth’s surface

observed by each pixel. Due to sensor geometry and the Earth’s

curvature, MODIS scans are elongated so that at the scan edge

with high view zenith angles, the surface area actually viewed by

Table 1. Number of granules used, and permitted geophysical values during temporal Fourier processing.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Product No. of granules
minimum geophysical
value

maximum geophysical
value maximum departure

dLST 52144 220uK 390uK 5uK

nLST 52144 220uK 390uK 5uK

MIR{ 25697 0.0001 1 0.1

NDVI{ 25697 20.2 1 0.2

EVI{ 25697 20.2 1 0.2

Column (i) lists the 5 products processed, i.e. daytime Land Surface Temperature (dLST), night-time LST (nLST), Middle Infrared Reflectance (MIR), Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI).Column (ii) contains the number of granules available from 2001–2005 for 229 MODIS tiles. Column (iii)
and (iv) give the permitted minimum and maximum geophysical values during temporal Fourier processing, and column (v) the maximum permitted departure of the
spline interpolated geophysical value from the fitted Fourier value.
{MIR, NDVI and EVI are dimensionless ratios.
doi:10.1371/journal.pone.0001408.t001..
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Figure 2. Temporal Fourier analysis of global (a) daytime Land Surface Temperature (dLST) and (b) Enhanced Vegetation Index (EVI). The
analyses were based on the period 2001–2005 using 230 images at 8-day intervals for dLST (a) and 115 images at 16-day intervals for EVI (b), both
resampled at 5-day intervals after cubic spline interpolation. Data are displayed as three-channel colour composites with the mean, phase and
amplitude of the annual harmonic in the red, green and blue channel, respectively. For display purposes, values in each band were stretched across
the full range of intensities within the image processing system using histogram equalization. The insets show the 229 MODLAND tiles that were
processed, indicating the number of missing granules in each. Data are displayed in MODIS sinusoidal projection.
doi:10.1371/journal.pone.0001408.g002
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one pixel is twice as long and 4.8 times wider than at nadir (the so-

called ‘‘bow-tie’’ effect, [44]). Therefore each granule in a time

series for a pixel relates to a different surface area on the Earth,

depending on the view zenith angle (‘‘pixel shift’’, [51]). This

might be overcome by excluding pixels with high view zenith

angles during compositing or by aggregating pixels to coarser

resolution [51].

Despite a high repeat frequency and a five year time series,

insufficient reliable data were available to permit TFA in several

cloudy or dark regions, e.g. the coastal regions of Nigeria and

Cameroon in West Africa, the mountains of Venezuela, and many

high latitude regions (see Figure 2, Figure 6b). Cloud contamina-

tion occurs at the same time each year in many of these regions,

making elimination of such data gaps difficult. As longer time

Figure 3. Examples of temporal Fourier processed artificially generated MODIS data for two years using (a) a standard TFA algorithm and (b) a
standard TFA algorithm applied to spline-interpolated data. The signal (black line) is a daily time series artificially generated by summing annual,
bi-annual and tri-annual cycles of known, randomly chosen amplitudes and phases. The ‘satellite sample’ (blue vertical lines) samples this signal at the
MODIS 16-day interval and on the MODIS mid-sample date, which gives unequal intervals spanning each year end (upper tick marks on x-axis). The
Fourier fit (red vertical lines) is the fit to the satellite signal that ignores this beginning/end of year anomaly and thus assumes a constant interval
throughout, corresponding to the 23 images per year of the satellite sample (lower tick marks on x-axis). In (b) the daily spline fit (yellow line) is the
cubic spline fit to these irregular satellite sample data. The Fourier fit (red vertical lines) is the TFA fit to the spline fit resampled every 5 days (lower
tick marks on x-axis). Notice that there are no end-of-year anomalies here, resulting in a more accurate estimate of the harmonics used to generate
the signal. The end of year anomaly is also present in MODIS data that run for only one year and hence affects TFA outputs in the same way, but is
more clearly demonstrated visually in multi-year data.
doi:10.1371/journal.pone.0001408.g003
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series become available, these gaps are more likely to be filled,

although TFA will then first require some averaging across several

years’ of data.

Land surface temperatures, especially nLST, were noticeably

lower over inland waters and their surrounding land pixels

compared with more distant land pixels. This was due to cloud

contamination above the inland waters, especially at night-time.

The MODLAND land/water mask, which allows identification of

inland and ephemeral water bodies, is therefore included within

the data archive.

In addition to these geophysical constraints, there was a

processing problem whereby the pixels in the westernmost

column and northernmost row of each LST tile have lower

values than the adjacent pixels, especially noticeable with

Figure 4. Comparisons between actual and calculated annual amplitudes (a,b) and phases (c,d) for artificially generated MODIS data.
Amplitudes and phases were either calculated by standard temporal Fourier analysis (TFA) using the TFA module in IDRISI Andes (a,c) or by using the
TFA algorithm described here (b,d). Lines represent least-squares regression slopes with the following equations: (a) 0.00393+0.99928x, F1,9898

= 1.159e+07, R2 = 0.9991; (b) 29.398e-06+1.0x, F1,9898 = 2.367e+10, R2 = 1.0; and (d) 7.140e-05+1.0x, F1,9898 = 38.9e+10, R2 = 1.0, all highly statistically
significant (P,0.001). IDRISI Andes provides phase estimates in radians which are here re-expressed in terms comparable to the input data. Because
the points in the upper left part of (c) strongly influence regression calculations, no regression was fitted to these data. Instead, the line of equality
(x = y) is shown in (c) to aid visual comparison of the results.
doi:10.1371/journal.pone.0001408.g004
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nLST. This was due to simplifications in the MOD11A2

processing algorithm necessitated by processing limitations (Z.

Wan, pers. comm.). Swath edges are clearly visible in the LST

input and output layers. These problems are being resolved in

future releases of the MOD11A2 data set (Z. Wan, pers.

comm.).

The algorithm presented here first identified and then

interpolated drop-out or suspect values, as these can affect the

calculated TFA values if they are ignored rather than interpolated.

Whilst other, non-linear interpolation methods may produce

better TFA results than the linear interpolation used here, it was

felt that the additional processing time required was not merited.

Local, non-linear interpolation brings its own problems, e.g.

choice of the range of data points over which to interpolate. TFA

of the linearly interpolated results is itself a non-linear smoother of

the entire time series, and so brings with it the advantages of global

rather than local smoothing.

Although TFA as applied here provides a highly efficient data

reduction method, capturing the seasonality of a time series for a

synoptic year, it assumes that there were no longer-term cycles of

any importance, or directional changes over time. Longer-term

cycles may be captured by including multi-year Fourier harmonics

in the output data sets, whilst trends may be captured by carrying

out TFA over shorter periods of time, e.g. single year, 2 years, etc.

and then looking for trends in the output layers (means, amplitudes

and phases). However, whilst both longer-term cycles and trends

can be important for investigating range changes and dynamics,

the synoptic Fourier harmonics presented here should be sufficient

for most species distribution modelling requirements that generally

rely on historic data, often collected over long periods of time.

Figure 5. An example of temporal Fourier analysis. TFA of NDVI from a pixel in the Yorkshire Dales, England (2uW, 54uN) for the years 2001–2005. (a)
shows the observed NDVI time series (squares), the resampled cubic spline-fitted data (crosses and line), the five year mean synoptic annual series
(thick black line, displaced by 20.1 to ease viewing), and the Fourier fit (grey line), i.e. the sum of the annual, bi-annual and tri-annual harmonics of
the TFA. Drop-out values are shown as 20.2. Details of the annual (solid line), bi-annual (dashed) and tri-annual (dotted) harmonics are shown in (b).
The sum of these three harmonics is shown in grey for 1.5 years, as in (a). The horizontal line represents the overall mean and the vertical lines
indicate the phase (timing) of the first peak of each of the Fourier harmonics in year 2001. The inset magnifies one year.
doi:10.1371/journal.pone.0001408.g005
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Future
Longer time series of MODIS data offer several advantages. First,

TFA of longer time series provides more representative measures

of seasonality and allows assessment of change over time. Second,

data gaps due to prolonged cloud contamination have a higher

probability of being filled.

With the release of version 5 MODIS data sets, produced with

improved processing algorithms, many of the problems highlighted

above should be eliminated. Availability of finer spatial resolution

(500 and 250 m) data sets will provide more locational detail. In the

future, more accurate data sets will become available by combining

data gathered by the Terra and Aqua satellites, both carrying the

Figure 6. Selection of MODIS Enhanced Vegetation Index (EVI) temporal Fourier-processed output layers. Panels show: (a) mean, (b) the
percentage of missing values in the time series and (c) the proportion of variance in the original time series described by annual, bi-annual, and tri-
annual cycles combined. Amplitude of the (d) annual, (e) bi-annual, and (f) tri-annual cycle are shown in addition to the phase of the (g) annual , (h)
bi-annual, and (i) tri-annual cycle in months. Data are histogram-equalized for display from minimum (black) to maximum value (white). A coastline
was added to (b) to show the missing values (white) more clearly. Data are displayed in the MODIS sinusoidal projection.
doi:10.1371/journal.pone.0001408.g006
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MODIS sensor. Other products, such as rainfall, vapour pressure

deficit, evapotranspiration and snow cover are also suitable for TFA,

although the abrupt nature of snow and rainfall (close to zero for

some of the year, with intense periods at other times) may require

more than three harmonics to fit the time series satisfactorily.

Whilst the Terra satellite is already beyond its originally scheduled

operational lifespan, NASA appears to be committed to maintain the

supply of MODIS data until the sensor becomes non-operational or

until c. 2013 when the Visible/Infrared Imager/Radiometer Suite

(VIIRS) sensor is scheduled to begin acquiring data. Barring

accidents or unexpected equipment failures, it is thought that the

MODIS sensor might continue working for another c. 6 years.

These global temporal Fourier processed MODIS data layers for

2001–2005 represent a new and valuable resource for the scientific

community, and are available to collaborators upon request.

SUPPORTING INFORMATION

Table S1 Geo-referencing information for global MODIS data.

Found at: doi:10.1371/journal.pone.0001408.s001 (0.04 MB

DOC)

Table S2 Description of Temporal Fourier Analysis output

layers. The table gives details of scaling factors to be applied to the

data (i.e. the digital numbers, x, stored in the files), the resulting

data units and observed geophysical ranges. The minimum (mn)

and maximum (mx) layers are derived from the TFA fit to the data

and may therefore occasionally exceed the possible geophysical

limits. In the absence of data drop-outs, the mean (a0) would also

be the arithmetic mean of the input data; in practice the TFA

mean is the arithmetic mean of the interpolated satellite data to

which the final Fourier fit is made.

Found at: doi:10.1371/journal.pone.0001408.s002 (0.22 MB

DOC)
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