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resolution Imaging Spectroradiometer) sen- 
sor on the Earth Observing System satellite. 
MODIS provides an enhanced remote-sens- 
ing capability (33) that will enable precise 
monitoring not only of the interaction of 
smoke with clouds but also of the spatial 
distribution of precipitable water vapor, 
presently available only from sparse radio- 
sonde data. At that time, testing the hy- 
pothesized impact of water vapor on the 
smoke-cloud interaction will be possible. 
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Explosive Basaltic Volcanism from Cerro Negro 
Volcano: Influence of Volatiles on Eruptive Style 

Kurt Roggensack,* Richard L. Hervig,t Steven B. McKnight,t 
Stanley N. Williams 

The 1992 and 1995 basaltic eruptions of Cerro Negro volcano, Nicaragua, had con- 
trasting eruptive styles. Although they were nearly identical in composition, the 1992 
eruption was explosive, producing a 7-kilometer-high sustained ash column, whereas 
the 1995 eruption was essentially effusive. The differences in water and carbon dioxide 
contents of melt inclusions from the two eruptions define minimum saturation pressures 
and show how decompression of initially similar magmas influences' eruptive style. 
Before eruption, the explosive 1992 magma retained water and carbon dioxide while 
ascending to a moderate crustal level (about 6 kilometers), whereas the nonexplosive 
1995 magma lost all carbon dioxide by degassing during ascent to shallow crustal levels 
(about 1 to 2 kilometers). 

Exsolution of water and carbon dioxide 
from erupting magmas provides the energy 
for explosive volcanism (1), but it has been 
difficult to correlate preeruptive volatile 
contents of magmas with eruption style (2) 
because factors such as conduit geometry, 
magma viscosity, and degassing history may 
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also affect the explosivity of eruptions. Most 
earlier work has concentrated on silicic 
rather than basaltic explosive eruptions. 
Here, we contrast two recent eruptions of 
basaltic magma from the Cerro Negro vol- 
cano, Nicaragua, that show different erup- 
tive styles, despite a common composition 
and vent geometry. 

Cerro Negro is a small (-250 m high) 
basaltic volcano (Fig. 1) that has frequent 
but highly variable activity. The volcano's 
two most recent events highlight these dif- 
ferences. The April 1992 eruption, the first 
since 1971, was particularly energetic for a 
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Table 1. Major element analyses of eruptives from Cerro Negro volcano. 
All analyses are given in weight % oxide normalized to 100% on a volatile- 
free basis; the total iron is reported as FeO. Ml and MG analyses were 
determined by an electron microprobe with a 10- to 20-[Lm beam, 1 5-keV 
accelerating voltage, and 1 0-nA beam current. Most analyses represent a 
single analysis point. Sodium was counted first in the analysis cycle, and 
on-peak counting times were limited to 10 s to minimize Na loss. The 
typical percentage standard deviation based on counting statistics is as 
follows: SiO2, 1; TiO2, 4; A1203, 1.5; FeO, 4; MnO, 25; MgO, 5; CaO, 2; 

Na2O, 4; K20, 5; P205, 25; S, 17; and Cl, 15. Bulk rock analyses were 
determined by x-ray fluorescence on fused lithium tetraborate disks. 
P14(avg.) represents the average of four separate lapilli analyses. Three 
lava analyses from 1995 eruption are identical within analytical error. The 
phenocryst assemblage was dominated by calcic plagioclase (An74 93) 
with lesser amounts of clinopyroxene (En44Wo48Fs8-En41Wo4jFs18), oli- 
vine (Fo71-83), and magnetite. The crystal abundances of 1992 and 1995 
eruptives are -40 and 43% (by volume), respectively. The dashes indicate 
that values were not determined. 

Sample Year Type SiO2 TiO2 A1203 FeO MnO MgO CaO Na2O K20 P205 S Cl Orig. total 

P1 4(avg.) 1992 Bulk 50.12 0.78 19.03 10.17 0.19 5.17 11.75 2.20 0.48 0.11 - - 98.93 
P1 4-db 1992 Bulk 48.84 0.74 18.02 10.11 0.19 6.07 11.79 2.02 0.43 0.10 - - 98.31 
95L1 1995 Bulk 50.17 0.77 17.99 10.14 0.20 6.46 11.44 2.25 0.46 0.11 - - 98.93 
2H 1992 Ml 48.64 0.71 18.35 10.42 0.17 6.23 13.17 1.90 0.34 0.07 0.08 0.07 91.45 
7B1a 1992 Ml 50.05 0.91 16.39 12.30 0.20 6.07 1 1.14 2.44 0.47 0.02 0.08 0.08 95.53 
5M 1992 Ml 52.15 1.07 16.49 11.47 0.21 5.49 9.80 2.67 0.55 0.11 0.00 0.12 94.41 
4a-2 1995 Ml 48.11 0.71 18.59 10.14 0.15 6.96 12.95 2.11 0.19 0.09 0.13 0.07 95.05 
4a-4c 1995 Ml 52.19 1.00 15.74 10.84 0.22 5.70 11.11 2.47 0.56 0.17 0.06 0.11 95.24 
4a-11 1995 Ml 51.15 1.01 16.06 12.97 0.26 5.39 9.54 2.79 0.66 0.17 0.03 0.15 96.09 
7B1 1992 MG 54.49 1.44 14.43 14.58 0.27 3.46 9.44 2.91 0.85 0.18 - - 95.20 
4A 1995 MG 55.66 1.54 12.80 14.18 0.25 3.51 8.30 2.62 0.87 0.25 - - 98.31 

basaltic eruption (3) and produced a high 
(U7 km) sustained ash column (4). In con- 
trast, the 1995 eruption began with small 
discrete ash explosions (<2 km in height) 
from May to August. Eruptive activity re- 
sumed in November with lava emission and 
ash explosions of varying intensity and fre- 
quency (columns as high as 2.5 km) (5, 6). 

Despite differences in eruptive style, the 
1992 and 1995 eruptions were similar in 
composition (Table 1) (7). The composi- 
tions of melt inclusions (MIs) trapped in 
growing olivine (Fo7183) crystals varied 
widely in both eruptions (for example, K20 
values varied from 0.15 to 0.73 weight %). 
Partitioning of Fe and Mg between olivine 
and trapped melt (8) indicates that less 
than 3% of the inclusion crystallized after 
the melt was trapped. Careful inspection of 
crystals before polishing eliminated cracked 
MIs, thus minimizing the possibility of vol- 
atile leakage. We took these samples to 
represent magma present earlier in time, 
yielding snapshots of the evolution of the 
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Fig. 1. Location map of the Cerro Negro volcano 
(24). 

magma feeding each eruption. Analyses of 
matrix glass (MG) showed slightly higher 
K20 values [0.85 and 0.87 weight % (Table 
1)] than the most evolved MI, suggesting 
that the variation in MI composition can be 
explained by fractional crystallization. 

The volatile contents of the MIs from 
the 1992 and 1995 eruptions were differ- 
ent, as were their calculated saturation 
pressures (Fig. 2) (9). MIs with high vol- 
atile contents would be saturated with a 
C02-H20 gas at pressures from 0.3 to 

>0.5 GPa (depths of -10 to 15 km). 
These MIs showed relatively primitive 
compositions (high MgO and low K20 
contents) and quite variable trace element 
abundances (10). Volatile contents for 
low-pressure MIs (<0.3 GPa) from the 
two eruptions varied systematically with 
the degree of crystal fractionation [for ex- 
ample, K20 content (Fig. 3)] (11). Al- 
though similar degrees of crystallization 
(-50%) were represented by both erup- 
tions, the low volatile contents in the 

Table 2. Melt inclusion water and C02 contents determined by infrared spectroscopy (22) and their 
corresponding equilibrium vapor saturation pressures (9). The analytical error is less than 10% for H20. 
The analytical error for C02 increases from -15% at >400 ppm to -100% at -50 ppm. Below 
detection limit, b.d.l. 

Sample Eruption K20 H20 C02 Pressure SaPle year (weight %) (weight %) (ppm) (GPa) 

2B 1992 0.14 6.08 1039 0.62 
2D 1992 0.17 5.36 499 0.44 
2J 1992 0.20 5.16 674 0.44 
1H 1992 0.24 5.27 951 0.51 
2Ka 1992 0.24 3.21 388 0.20 
2H 1992 0.34 3.82 902 0.35 
7B1-1 1992 0.47 4.23 311 0.27 
2Kb 1992 0.48 2.93 145 0.12 
21 1992 0.51 4.20 267 0.26 
5M 1992 0.55 3.75 342 0.23 
2F 1992 0.58 4.70 b.d.l. 0.24 
7C2* 1992 0.60 4.28 106 0.22 
5B* 1992 0.61 4.00 185 0.22 
5K 1992 0.67 4.22 b.d.l. 0.19 
4a-2 1995 0.19 4.23 651 0.34 
4a-4a 1995 0.29 3.09 373 0.18 
4a-1 Ob 1995 0.29 3.16 67 0.12 
4a-5a 1995 0.31 5.15 320 0.36 
4a-3b* 1995 0.35 4.08 10 0.18 
4a-9 1995 0.43 1.18 b.d.l. 0.01 
4a-8 1995 0.48 3.07 b.d.l. 0.09 
4a-1Oa 1995 0.49 2.95 64 0.10 
4a-4c 1995 0.56 3.37 b.d.l. 0.12 
4a-1 1 1995 0.66 2.80 b.d.l. 0.08 

UMI with high TiO2 (23). 
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Fig. 2. CO2 and H20 variation in olivine Mls from 
the 1992 (filled circles) and 1995 (filled squares) 
eruptions. Open symbols indicate Mls with high 
TiO2 (23). Lines are fluid-saturation isobars (0.05 
to 0.5 GPa) (9). The arrows show schematic 
trends for open-system decompression degas- 
sing (labeled 1) and fluid-saturated isobaric crys- 
tallization (labeled 2). The hatched area (labeled A) 
shows a possible parent to the 1992 and 1995 
low-pressure (<0.3 GPa) Mls. 

1995 MIs indicate that they were trapped 
at shallower depths than the 1992 MIs. 

There is growing evidence from MIs 
(12) and experimental work ( 13) that high 
volatile contents, like those measured at 
Cerro Negro, are common in basaltic mag- 
mas associated with subduction zones. Vol- 
atile-rick magmas will begin to degas upon 
reaching volatile saturation in the crust, 
and our data indicate that, before the erup- 
tion, the 1992 melt did not rise as high in 
the crust as the 1995 melt. As a result, the 
1992 melt evidently retained a greater abun- 
dance of volatiles (H20 and CO2) and 
erupted explosively. Several of the 1992 MIs 
that fall on the low-pressure 1995 trend can 
be explained as xenocrysts or, more likely, as 
a small part of the 1992 melt that reached 
shallow levels before the 1992 eruption. 
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Fig. 3. Correlation of Ml fluid-saturation pressures 
(CO2 and H21) with fractionation index. Symbols 
are as in Fig. 2. The schematic arrows were drawn 
visually. The error bars are based on conservative 
estimates of Fourier transform infrared spectros- 
copy (FTIR) error (see Table 2) and electron probe 
counting statistics. 

Variations in other parameters linked to 
eruptive style are small compared with the 
observed differences in preeruptive volatile 
contents. For example, the bulk composi- 
tion and the crystal content [which affects 
viscosity (14)] were similar in the two erup- 
tions (Table 1). Vent geometry (15) is un- 
likely to have varied greatly, because Cerro 
Negro's cone morphology was unchanged 
since the 1992 eruption and the vent loca- 
tion has been stable for nearly 150 years 
(16). The basaltic explosive eruptions have 
not been as destructive or voluminous as 
silicic plinian eruptions, which tend to de- 
stroy their volcanic plumbing systems. Thus, 
the dominant variable controlling eruptive 
style is preeruptive volatile content. 

Magma rise speed may also affect erup- 
tive style (17) and is geologically well con- 
strained. The 1992 event was a sustained 
explosive eruption (3), indicating that mag- 
ma rose from -6-km depth at a high rate 
that prevented bubble coalescence (17). 
Magma rise speed for the 1995 eruption 
may have been lower, or; more likely, vari- 
ations in rise speed may have caused the 
changing character of the eruption. 

Extensive studies of mostly effusive erup- 
tions on Hawaii have formed the basis for 
models of nonexplosive basaltic volcanism 
(18). However, it is clear that explosive ba- 
saltic volcanism is also common (19). These 
explosive eruptions are not merely a result of 
secondary processes (for example, magma in- 
teraction with ground water) nor are they 
exceptionally vigorous nonexplosive activity 
(that is, fire fountaining). Instead, events 
such as Cerro Negro's 1992 eruption are 
truly explosive basaltic volcanism. Our re- 
sults demonstrate how the decompression 
history of initially similar magmas can great- 
ly influence basaltic eruption styles (20). 
Our results also identify the importance of 
volatiles in explosive basaltic volcanism (21) 
and suggest that explosive basaltic eruptions 
could also occur on other planets. 
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Measurements of the Cretaceous Paleolatitude 
of Vancouver Island: Consistent with the 

Baja-British Columbia Hypothesis 
Peter D. Ward,* Jose M. Hurtado, Joseph L. Kirschvink, 

Kenneth L. Verosub 

A previously unsampled outcrop of gently dipping or flat-lying Upper Cretaceous sed- 
imentary strata in the Vancouver Island region, which contains unaltered aragonitic 
mollusk fossils, yielded a stable remanent magnetization that is biostratigraphically 
consistent with Cretaceous magnetochrons 33R, 33N, and 32R. These results, char- 
acterized by shallow inclinations, indicate an Upper Cretaceous paleolatitude of about 
25 ? 3 degrees north, which is equivalent to that of modern-day Baja California. These 
findings are consistent with the Baja-British Columbia hypothesis, which puts the Insular 
Superterrane well south of the Oregon-California border in the Late Cretaceous. 

The Cordillera of western North America 
is composed of an amalgamation of tectonic 
terranes, which were accreted at various 
times onto the stable North American con- 
tinent (Fig. 1). The accretional history of 
the Insular Superterrane (1), which is com- 
posed of the northern Cascades of Wash- 
ington State, the Coast Ranges of western 
British Columbia, Vancouver Island, the 
Queen Charlotte Islands, and a large region 
extending from southeastern Alaska to the 
Wrangel Mountains in northern Alaska, is 
currently in dispute. Two conflicting and 
mutually exclusive hypotheses are favored 
(2). The first hypothesis suggests that the 
Insular Superterrane lay north of the Fran- 
ciscan-Sierran convergent plate boundary 
in California during most, if not all, of the 
Cretaceous period (3). The second hypoth- 
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esis is that all of the Insular Superterrane 
north of latitude 49?N and up to 58?N was 
situated at a minimum of 2400 km south of 
its present position relative to North Amer- 
ica 90 million years ago (Ma) (4, 5, 6). In 
this model, the Intermontane Superterrane 
(Fig. 1) is also expected to be found at least 
1000 km south of its modern-day position 
in the mid-Cretaceous (2). This latter hy- 
pothesis is called the Baja-British Colum- 
bia (BBC) hypothesis because it predicts 
that, 90 Ma, the Vancouver Island region 
would have been offshore of present-day 
Baja California (2, 4). 

Evidence that can be used to refute 
either or both of these hypotheses comes 
from two main sources: geological and pa- 
leomagnetic evidence. Geological evi- 
dence includes (i) provenance studies of 
sediments included within the Insular Su- 
perterrane, (ii) the correlation of features 
found within the Insular Superterrane 
with similar features found inboard of it, 
and (iii) features limiting the offset across 
transcurrent faults to values less than 
those proposed by the BBC hypothesis. 
Paleomagnetic evidence relies on the de- 
termination of paleolatitudes, which are 
derived from either igneous or sedimenta- 

ry rocks. Bedded sedimentary rocks are 
preferred because the paleohorizontal can 
be readily observed, eliminating the prob- 
lem of anomalously low paleolatitudes due 
to tilting and deformation. 

Three sets of paleomagnetic data from 
the region (Fig. 1), for which tilt correc- 
tions have been performed (Mount Stuart 
batholith, Silverquick conglomerate and 
volcanics, and the Duke Island ultramafic 
complex), support the BBC hypothesis (6, 
7). Only the Duke Island Complex, howev- 
er, comes from the Insular Superterrane; the 
others are from the Coast Mountains oro- 
gen and the Intermontane Superterrane. 
Furthermore, until now, no paleomagnetic 
data, from either superterrane, have come 
from well-bedded sedimentary rocks of Cre- 
taceous age in which the original horizon- 
tality is unambiguous. Here we present pa- 
leomagnetic evidence from well-bedded 
sedimentary rocks of the Insular Superter- 
rane south of Alaska that is consistent with 
the BBC hypothesis. 

We sampled strata from the Upper Cre- 
taceous Nanaimo Group of Vancouver Is- 
land, which had been considered unsuitable 
for paleomagnetic investigation, because all 
previous sampling efforts showed a pervasive 
remagnetization (8). However, we located 
previously unsampled outcrops along the 
eastern margin of the Nanaimo basin that 
contain ammonite and inoceramid bivalve 
fossils composed of unaltered aragonite con- 
taining organic macromolecules within con- 
cretionary mudstone and siltstone facies. It 
has been proposed that the presence of such 
unaltered fossil material is an indication that 
thermal and chemical remagnetization is 
minimal to absent (9) because (i) the con- 
version temperature of aragonite to calcite 
(-100?C) is lower than the blocking tem- 
perature of the fine-grained ferromagnetic 
particles (-400? to 580?C) that record the 
natural remanent magnetism (NRM) in 
many clastic sediments and (ii) the presence 
of organic macromolecules in the fossils in- 
dicates that little fluid has passed through 
the sediment after deposition, retarding di- 
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