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ABSTRACT

Aim To investigate the phylogeography and execute a historical-demographic

analysis of the Neotropical rattlesnake, Crotalus durissus, thereby testing the

hypothesis of a Pleistocene central Amazon corridor of dry forest or savanna that

partitioned the Amazonian rain forest into western and eastern portions.

Location South America.

Methods Using sequences of three mitochondrial genes, we estimated the

phylogeography, gene and nucleotide diversity across the South American range of

C. durissus. Tree topology tests were used to test alternative biogeographical

hypotheses, and tests of population genetic structure and statistical parsimony

networks and nested clade phylogeographic analysis (NCPA) were used to infer

connectivity and historical population processes on both sides of the Amazon basin.

Results Tree topology tests rejected the hypothesis of a coastal dispersal in favour

of a central corridor scenario. Gene diversity was similar on both sides of the

Amazon basin. Nucleotide diversity indicated that the populations from north of

the Amazon basin represented ancestral populations. Analysis of molecular

variance (amova) showed that intra-population molecular variation was greater

than between regions. Historical-demographic statistics showed significant

population expansion south of the Amazon, and little differentiation in the

north, indicating moderate past gene flow between north and south of the

Amazon. The parsimony network connected clades from the Roraima and

Guyana populations with Mato Grosso, suggesting an Amazonian central

corridor, and NCPA supported allopatric fragmentation between north and

south of the Amazon.

Main conclusions The distribution of C. durissus on both sides of the Amazon

basin is evidence of changes in the distribution of rain forest vegetation during

the Pleistocene. Our results suggest a formerly continuous distribution of this

rattlesnake along a central Amazonian corridor during the middle Pleistocene.

Allopatric fragmentation inferred from NCPA is consistent with vicariance

resulting from a subsequent closure of this habitat corridor. This study

emphasizes the potential of trans-Amazonian open formation species to inform

the debate on the past distribution of rain forests in the Amazon Basin.
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INTRODUCTION

Many historical hypotheses have been proposed to explain the

extraordinary species richness of the Amazon basin (Haffer,

1969, 1997; Bush, 1994; Moritz et al., 2000; Cheviron et al.,

2005; Wüster et al., 2005a). These hypotheses generally invoke

vicariance events in explaining the origin of such diversity (but

cf. Endler, 1982; Schneider et al., 1999 regarding the ecological

gradient hypothesis). The hypothesized causes of vicariant

events include Andean uplift, riverine barriers, palaeoclimatic

shifts resulting in forest refugia, and marine transgressions

(Chapman, 1917; Sick, 1967; Haffer, 1969; Nores, 1999, 2004).

To a large degree, all these hypotheses were formulated based

on geographical distribution patterns of selected taxa.

The most controversial vicariance hypothesis has been the

Pleistocene refugia hypothesis (PRH), first formulated by

Haffer (1969). This hypothesis postulates that the area of

Amazon forest was reduced during the dry periods due to

global climatic fluctuations occurring throughout the late

Pliocene and Pleistocene. In its earlier formulations (Haffer,

1969; Vanzolini & Williams, 1970; Prance, 1973), the PRH

envisaged extensive fragmentation of the rain forests into

isolated pockets, or refugia, separated by expanses of savanna

or other open, dry formations (Haffer, 1969, 1997; Potts &

Behrensmeyer, 1992; Vrba, 1993; Pennington et al., 2000). The

savanna and seasonally dry forests are assumed to have

functioned as barriers separating populations of rain forest

species, facilitating allopatric speciation (Haffer, 1969, 1997;

Prance, 1973; Haffer & Prance, 2001).

Although the PRH was initially widely accepted, it has

received increasing criticism in more recent years. The main

debate about the PRH has focused on the fact that

palynological evidence provides little support for widespread

savanna vegetation in Amazonia, at least during the last glacial

maximum and late Pleistocene (the past 18,000–50,000 years)

(Bush, 1994; Colinvaux et al., 1996, 2000, 2001; Haberle &

Maslin, 1999; Kastner & Goñi, 2003). However, pollen records

from the Early and Middle Pleistocene are lacking, so a

hypothesis of rain forest fragmentation in the Middle or Early

Pleistocene can be neither rejected nor confirmed by the

palynological evidence currently available (Wüster et al.,

2005a,b). Moreover, while palynological data can reject

widespread savanna vegetation at the time of the last glacial

maximum, the pollen profiles resulting from dry, deciduous

forests are much more difficult to distinguish from rain forest

pollen (Pennington et al., 2000). Recent synthetic analyses

using palaeoclimatological, palynological and palaeoecological

data suggest that Pleistocene rain forest fragmentation remains

a possible scenario, and does not necessarily contradict the

notion that the forests have been largely stable through the last

glacial maximum (Haffer, 1997; Hooghiemstra & van der

Hammen, 1998).

In addition to the lack of palynological evidence for

widespread Pleistocene savannas, molecular phylogenetic

studies of a variety of Amazonian rain forest taxa indicate

that most divergences between sister species of rain forest

vertebrates significantly predate the Pleistocene (Hass et al.,

1995; Moritz et al., 2000; Patton et al., 2000; Salazar-Bravo

et al., 2001; Cheviron et al., 2005; Ribas et al., 2005), including

some of the taxa used during the early formulations of the

PRH (Glor et al., 2001). Furthermore, the genetic fingerprints

of Quaternary range expansion in temperate biota (Hewitt,

2004) have not been detected in Amazonian biota (Lessa et al.,

2003; Cheviron et al., 2005). However, it is important to note

that pre-Pleistocene speciation in rain forest taxa indicates

only that Pleistocene rain forest fragmentation did not cause

the speciation event, and cannot disprove its occurrence

(Wüster et al., 2005a). The lack of evidence of range expansion

comes from taxa distributed in the western Amazon, which is

more likely than eastern and central parts of the basin to have

retained a continuous cover of tropical rain forest.

Savanna and seasonal dry forests are located around the

periphery of the Amazon basin, with isolated enclaves within

the rain forest (Eiten, 1972; Pennington et al., 2000; Cardoso

da Silva & Bates, 2002). Several savanna vertebrate taxa occur

on both sides of the basin and in the enclaves (Fig. 1). Of these

taxa with a disjunct distribution, the most studied are birds

(Eberhard & Bermingham, 2004), but other taxa show similar

distribution patterns (Ávila-Pires, 1995; Cardoso da Silva &

Bates, 2002; Campbell & Lamar, 2004; Courtenay & Maffei,

2004; Frost, 2004; Wüster et al., 2005a). Phylogeographic

studies of trans-Amazonian taxa may have the potential to

provide stronger evidence on changes in rain forest cover and

the existence of dry corridors than studies of forest species,

since evidence of recent connectivity between open formations

north and south of the Amazon constitutes strong evidence of

past rain forest fragmentation, much more so than lack

of Quaternary speciation in forest species provides evidence of

lack of fragmentation (Pennington et al., 2000, 2004; Wüster

et al., 2005a).

Three main corridors connecting northern and southern

savanna regions have been proposed (Fig. 2): the Andean

Corridor connects the southern block of savannas directly with

the Colombian and Venezuelan llanos and the savannas of

Roraima through the Andean slopes; the Central Amazonian

Corridor connects the southern block of savannas with patches

of savannas north of the Amazon basin (Monte Alegre, Parú

and Roraima); the Coastal Corridor connects the southern and

northern blocks through savanna patches (e.g. Marajó and

Amapá as well as the coastal savannas of the Guyanas) and is

located close to the Atlantic coast (Webb, 1991; Haffer, 1997;

Cardoso da Silva & Bates, 2002). The distributional patterns of

some savanna vertebrate taxa are congruent with the Andean

and Coastal corridor, but to date there has been less

distributional evidence supporting the Central Amazonian

corridor (Silva, 1995; Ávila-Pires, 1995; Pinto-Henriques &

Oren, 1997; Silva et al., 1997; Cardoso da Silva & Bates, 2002).

However, relying only on distributional patterns without

incorporating their phylogenetic component may hide intra-

specific population-level connections that can reflect past

effects of corridors. A phylogeographic approach, relating the

phylogeny of mitochondrial haplotypes to the geographical

Trans-Amazonian vicariance of the Neotropical rattlesnake

Journal of Biogeography 34, 1296–1312 1297
ª 2007 The Authors. Journal compilation ª 2007 Blackwell Publishing Ltd



distribution of this genetic variation, can help reconstruct the

biogeographical history of the taxa involved (Avise, 2000). In

addition to a simple phylogenetic approach, different biogeo-

graphical events (long-distance dispersal, range expansion,

range fragmentation) all leave different genetic traces. This

means that different hypothesized events lead to different

predictions of genetic variation in the populations affected,

and these predictions can be tested by comparison with

observed patterns. New phylogeographic and population

approaches such as measurements of nucleotide diversity

(Hewitt, 1996, 2004; Zink et al., 2000), statistical parsimony

and nested clade phylogeographic analysis (NCPA) (Temple-

ton, 2004), and neutrality tests (Fu, 1997; Ramos-Onsins &

Rozas, 2002; Cheviron et al., 2005) can be used to infer genetic

connections and population-level processes. In particular,

haplotype networks constitute one of the most promising

methods to infer intraspecific phylogenetic relationships by

identifying multiple possible genetic connections between

haplotypes (unique combination of DNA polymorphisms in

a sample, inherited as a unit). They thus provide more realistic

representations of phylogenetic relationships within popula-

tions than traditional phylogenetic methods, and can be used

to determine the genetic composition of ancestral populations

(Posada & Crandall, 2001).

Among trans-Amazonian open-formation taxa, the Neo-

tropical rattlesnake, Crotalus durissus, is one of the best studied

(Wüster et al., 2002, 2005a,b; Campbell & Lamar, 2004). This

species is found only in savanna and dry seasonal forests, but

not in tropical rain forests (Campbell & Lamar, 2004; Wüster

et al., 2005a,b), although it is quick to colonize anthropogen-

ically deforested areas within the rain forest zone (Sazima &

Haddad, 1992; Marques et al., 1998; Bastos et al., 2005).

Tropical rock lizards Tropidurus
(MODIFIED FROM AVILA-PIRES 1995)

Saffron finch Sicalis flaveola Crab eating fox Cerdocyon thous
(CARDOSO DA SILVA AND BATES 2002) (COURTENAY AND MAFFEI 2004)

Tree frog Hyla crepitans
(FROST 2004)

Figure 1 Distribution patterns of trans-

Amazon vicariant taxa. The diversity of taxa

involved and similarity of distributional

patterns suggests that changes in dry

vegetation (seasonal forests and savannas)

and the development of the Amazon basin

affected regional biota in a similar way. Maps

are based on Ávila-Pires (1995), Cardoso da

Silva & Bates (2002), Frost (2004) and

Courtenay & Maffei (2004).
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Recent studies on rattlesnakes from temperate deserts provide

evidence for a mixture of genetic tracks of lineage differenti-

ation caused by tectonic events and climate cycles during the

late Tertiary and Quaternary (Pook et al., 2000; Douglas et al.,

2006; Castoe et al., 2007), demonstrating the potential of these

snakes for unravelling the Pleistocene history of regional biota.

These genetic signatures of dispersal, vicariance and range

expansion can be investigated in the phylogeographic pattern

of the Neotropical rattlesnake (Wüster et al., 2005a).

In a previous study, we described and dated the gradual

dispersal of C. durissus from its centre of origin in Mexico and

Central America through the Central American Isthmus and,

after the uplift of the Isthmus of Panamá, the more rapid

dispersal into and across South America (Fig. 2; Wüster et al.,

2005a), demonstrated by the monophyly of the South Ameri-

can populations. The low sequence divergence between

populations from north and south of the Amazon rain forest

was consistent with mid-Pleistocene divergence c. 1.08 Ma.

Based on this, we postulated that the Amazonian rain forests

must have become fragmented or at least shrunk considerably

during that period, allowing rattlesnakes to cross the Amazon

Basin and to colonize more southerly parts of South America

(Wüster et al., 2005a). This idea provoked some controversy

on the basis of alternative explanations of the phylogeographic

pattern (Gosling & Bush, 2005; Wüster et al., 2005b).

Our previous work (Wüster et al., 2005a) focused solely on

the interpretation of phylogenetic trees derived from mitoch-

ondrial DNA sequences, and the dating of important nodes on

the tree. Here we use a number of additional molecular genetic

methods in a more explicitly hypothesis-testing framework,

with the aim of testing alternative hypotheses for the history of

the current, discontinuous distribution of C. durissus in South

America. Our approach is founded on the basis that different

biogeographical histories predict different genetic and phylo-

geographic structures for these populations, and these predic-

tions can be tested with appropriate analytical methods. For

instance, long-distance dispersal over existing barriers will

result in a different genetic structure than will a vicariant event

separating a formerly continuous population, even though the

resulting distribution may be the same. Moreover, these

methods can allow us to infer the location of past connections

between presently isolated populations.

METHODS

The sampling, laboratory protocols, mtDNA sequence data

and GenBank accession codes used in this study are given in

Wüster et al. (2005a). For most analyses in this study, we used

the better sampled two-gene data set of Wüster et al. (2005a),

consisting of 1332 base pairs (bp) (657 bp of ND4 and 675 bp

of cytochrome b) of aligned sequences. We also used the three-

gene data set, including an additional 671 bp of the ND2 gene

for additional phylogenetic analyses, and in particular tests of

alternative tree topologies. For phylogenetic analyses of the

two-gene data set, we included sequence data of an additional

specimen from Filadelfia, Paraguay (GenBank accession num-

ber DQ899736 for cytochrome b and DQ899735 for ND4).

Phylogeography and tree topology tests

Our original paper (Wüster et al., 2005a) was based on a

phylogeographic approach (the phylogenetic analysis of a

mitochondrial gene tree), but did not use an explicitly

statistical approach to test and compare alternative biogeo-

graphical hypotheses. Different biogeographical hypotheses

predict different mitochondrial gene trees. Using statistical

methods such as the Wilcoxon signed ranks test (Templeton,

1983) and the Shimodaira–Hasegawa (SH) test (Shimodaira &

Hasegawa, 1999), the actual, observed gene tree recovered

from the animals can be compared statistically with the trees

predicted by alternative biogeographical scenarios. A statisti-

cally significant difference indicates that the observed data

reject the gene tree predicted by the alternative biogeographical

scenario.

Here we used tree topology comparisons to test the

hypothesis that the populations of C. durissus south of the

Amazon Basin are a result of dispersal along a past coastal

corridor. This hypothesis predicts that north-eastern Brazil

would have been the first part of southern South America to be

colonized, and thus that the most basal haplotypes south of the

Amazon should be found there, whereas haplotypes from
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Figure 2 Sampling localities for the Crotalus durissus complex in

South America. Numbers for localities correspond to Wüster et al.

(2005a) and are as discussed in the text and in Figs 4, 5 and 8.

Arrows represent major hypothesized corridors connecting nor-

thern and southern blocks of South American open formations

(Cardoso da Silva & Bates, 2002): (a) Andean corridor; (b) central

Amazonian corridor; (c) Coastal corridor.
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southern and south-western South America should be

monophyletic (Fig. 4).

We reconstructed the phylogeny of the South American

populations, using haplotypes from Belize and El Salvador

(haplotypes Belize 3 and Salvador in Wüster et al., 2005a) as

outgroups. All phylogenetic analyses were carried out in paup

4.0b10 (Swofford, 2002) unless stated otherwise. Maximum

parsimony (MP) analysis involved heuristic searching with tree

bisection–reconnection (TBR) branch swapping and 10,000

random addition sequence replicates. Internal support for

nodes was assessed using nonparametric bootstrap analysis

(Felsenstein, 1985) under exclusion of uninformative charac-

ters, using 1000 bootstrap replicates with five random addition

sequence replicates each (two-gene data) or 10,000 replicates

with 10 random addition sequence replicates each (three-gene

data) and TBR branch swapping. For maximum likelihood

(ML) analyses, the appropriate model of sequence evolution

was estimated using modeltest 3.0 (Posada & Crandall,

1998). We selected the model favoured under the Akaike

information criterion, and fixed the parameters in a heuristic

ML search using a neighbour-joining (NJ) starting tree and

TBR branch swapping. Bootstrapping involved 100 replicates

with NJ starting trees and nearest-neighbour interchange

(NNI) (two-gene data) or subtree pruning-regrafting (SPR)

(three-gene data) branch swapping.

To test whether the uncovered phylogeographic pattern is

consistent with the coastal corridor hypothesis, we then used

the same methods to generate constraint trees in which

haplotypes from southern and south-western South America

were constrained to be monophyletic to the exclusion of

haplotypes from north-eastern Brazil (states of Bahia,

Maranhão and Pernambuco) (Fig. 4). We compared these

constrained trees with the optimal trees using Wilcoxon signed

ranks tests under the MP criterion (Templeton, 1983) and

using the SH test (Shimodaira & Hasegawa, 1999), run in

paup* using the full option and 1000 bootstrap replicates,

under the ML criterion.

Population structure

Historical events such as dispersal and vicariance leave genetic

‘footprints’ that can be revealed and interpreted with appro-

priate statistical tools. Several studies have suggested that

higher levels of nucleotide diversity are indicative of popula-

tion ancestry (Hewitt, 1996, 2000, 2004; Zink et al., 2000;

Cheviron et al., 2005). By comparing these parameters in

different populations of C. durissus in South America, we

aimed to distinguish ancestral areas from more recently

colonized areas. We used analytical methods often used to

describe population structure from nucleotide sequence

information (reviewed by Schneider et al., 2000). Gene diver-

sity and nucleotide diversity (p) are equivalent measures of the

degree of polymorphism within a population. In this study we

inferred ancestral vs. derived populations based on p.

Analysis of molecular variance (amova) is similar to

hierarchical analysis of variance in that it separates and tests

levels of genetic diversity: among groups of populations,

among populations within groups, and among individuals

within a population. amova differs from analysis of variance in

that it can accommodate different evolutionary assumptions

without modifying the basic structure of the analysis. Hypo-

theses are tested using permutational methods that involve few

assumptions about the statistical properties of the data

(Excoffier et al., 1992; Schneider et al., 2000). amova results

provide information regarding the degree of genetic differen-

tiation among populations compared with within-population

variation.

For analyses of population structure, we compared the

populations from north of the Amazon with those from south

of the Amazon. The northern group consisted of populations

on the northern periphery of the Amazon rain forest, including

Aruba island, the Venezuelan savannas, and populations from

coastal Guyana and Roraima state, northern Brazil (popula-

tions 9–14; Fig. 2). The southern group encompasses all the

18 populations from the southern border of the Amazon rain

forest to far southern Paraguay (populations 15–25, 27–29, 31,

33, 34, 37; Fig. 2). Estimates of population structure for the

regions were based on gene diversity and amova among the

two regions using arlequin 2.0.6 (Schneider et al., 2000).

Levels of nucleotide diversity (p) were calculated within each

region using standard equations (Nei, 1987) using DnaSP

4.10.3.5 (Rozas & Rozas, 1999).

Nested clade phylogeographic analysis

Whereas conventional phylogeographic approaches focus

primarily on the visual synthesis of a gene tree and the

geographic distribution of haplotypes, NCPA (Templeton &

Sing, 1993; Templeton, 1998, 2004) uses nested networks of

haplotypes to make statistical inferences on the causes of

observed patterns. It thus has potential for discriminating

between the different causal hypotheses for observed

patterns, such as range expansion, long-distance waif

dispersal and vicariance. Moreover, NCPA includes an

explicit test of sampling adequacy as part of the procedure,

thus guarding against false interpretations caused by samp-

ling gaps, and the procedure has been validated extensively

by testing with existing data with strong a priori expecta-

tions of the biogeographical processes involved (Templeton,

2004). By establishing the most parsimonious connections

between haplotypes, NCPA also has the potential to reveal

past connections between currently separated sets of popu-

lations.

As a first step during NCPA, a parsimony-based haplotype

network is obtained, which takes account of multiple connec-

tions between haplotypes. In a statistical parsimony network,

the most parsimonious connections are evaluated with a

confidence level (Posada & Crandall, 2001). Based on the

parsimony network thus obtained, NCPA defines a series of

nested clades following a proposed nesting procedure

(Templeton & Sing, 1993; Clement et al., 2000; Templeton,

2004). Then a permutation analysis is used to test statistically

J. Adrian Quijada-Mascareñas et al.
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for phylogeographic associations based on the combination of

nested design and haplotype sampling locations.

After phylogeographic structure is detected, NCPA uses the

geographical distances within and among nested clades (clade

distance, Dc and nested clade distance, Dn) to make inferences

about the causal mechanisms of the statistically significant

phylogeographic associations. The biological interpretations of

the results are made using an explicit inference key (Temple-

ton, 2004). If sample size is adequate, the practical inference

procedure yields many insights into restricted but recurring

gene flow, isolation by distance, allopatric fragmentation,

contiguous range expansion, long-distance colonization, and

historical factors that can contribute directly to the process of

population differentiation (Templeton, 2004).

In order to infer statistical parsimony networks, we used the

TCS 1.13 program (Templeton et al., 1992; Clement et al.,

2000). The program collapses the sequences into haplotypes

and calculates the haplotype frequencies in the sample

(Clement et al., 2000). Haplotypes differing by up to 15 muta-

tional steps had > 95% probability of being connected

parsimoniously; TCS was used to construct networks for these

haplotypes. In addition, we allowed a 93% probability of

parsimonious connection in order to include the marginal

connection between the Venezuelan clade and the Southern

clades. As we stated in our previous paper (Wüster et al.,

2005a), Venezuelan populations represent the ancestral clades

of the clades from South of the Amazon. With this in

consideration, we included those clades with a marginal

probability. These networks were used to define a nested

cladogram following the nesting rules described by Templeton

& Sing (1993).

We used GeoDis 2.0 (Posada et al., 2000) to calculate Dc,

Dn, and comparisons of these measures among interior and tip

clades using the derived nested cladogram. Then distance

between individuals and clade centre was calculated using great

circle distances. Comparisons of these measures were calcula-

ted using 100,000 random permutations of clades against

sampling locality to test the null hypothesis of no geographic

association among haplotypes or clades at each nesting level.

Geographic association was based on contrasts between large

or small clade distances or interior–tip. The inference key given

by Templeton (2004) was used to infer the process most

consistent with the observed statistically significant pattern at

those nesting levels.

Historical demographic analysis

In order to infer past demographic changes, we used a set of

analytical methods to measure deviations of mtDNA poly-

morphisms from molecular neutrality. These neutrality tests

provide statistical estimates of historical changes in population

size (Fu, 1997), which can test inferences derived from

phylogeographic patterns. Evolutionary and biogeographical

hypotheses can thus be tested by combining the findings from

the application of neutrality tests, NCPA and other phyloge-

ographic methods (Cheviron et al., 2005).

In this study, we performed Tajima’s D and Fu’s Fs tests (Fu,

1997) to detect past population changes based on the

nucleotide composition between north and south Amazon,

and undertook further analyses of clades and subclades

inferred from NCPA. Significant positive values indicate

long-term isolation, and negative values indicate recent

population expansion. Significance was determined based on

10,000 coalescent simulations under a model of population

growth–decline size.

Mismatch distributions (Rogers, 1995) were also calculated

to compare the demographic histories of C. durissus popula-

tions, as smooth Poisson mismatch distributions are charac-

teristic of rapid demographic expansion. The distribution is

usually multimodal in samples drawn from populations at

demographic equilibrium, as it reflects the highly stochastic

shape of gene trees, but is usually unimodal in populations

having passed through a recent demographic expansion

(Rogers, 1995). The frequency of pairs of randomly chosen

individuals differing by a given number of nucleotide substi-

tutions, and expected frequencies under a model of rapid

demographic expansion, were calculated using DnaSP 4.10.3.5

(Rozas & Rozas, 1999). These expected frequencies were then

overlaid onto the observed frequencies. The raggedness index

(Harpending, 1994) was used to measure the smoothness of

the observed distributions, and the significance of raggedness

indices was calculated using 10,000 coalescent simulations. We

compared the value of these indexes at different hierarchical

levels and among nested clades, beginning with the all-South

America clade and then performing the analysis at nested clade

levels.

RESULTS

Phylogeography and tree topology tests

Maximum parsimony analyses yielded 44 equally most

parsimonious trees of 259 steps (CI ¼ 0.7220) for the two-

gene data, and four trees of 323 steps (CI ¼ 0.7833) for the

three-gene data (Fig. 3). Maximum likelihood analyses

revealed a single optimal tree for both the two-gene and three-

gene data ()ln L ¼ 3232.60517 and 4475.23181, respectively).

The optimal trees for the South American C. durissus

complex were broadly similar to those published previously

(Wüster et al., 2005a), with the important difference that the

populations from south of the Amazon were no longer

monophyletic (except in the three-gene ML analysis), haplo-

types PLacerda from Mato Grosso (Wüster et al., 2005a) and

Paraguay instead forming a sister group to the Guyanan and

Roraima haplotypes. However, bootstrap support for this

relationship was weak in all cases, as was the case for the

monophyly of the southern haplotypes in previous analyses

(Wüster et al., 2005a).

The trees obtained above differ both qualitatively and

statistically from the tree topology predicted by a hypothesis of

dispersal along a coastal corridor (Fig. 4). In the case of the

two-gene data, the difference between the observed tree and

Trans-Amazonian vicariance of the Neotropical rattlesnake
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that predicted by the coastal corridor hypothesis was not

significant in the MP analysis (Wilcoxon signed ranks test,

Z ¼ )1.5000 to )1.8974, P > 0.05), but the SH test revealed a

significant difference between the optimal ML tree and the

constrained tree (d()ln L) ¼ 18.85746, P ¼ 0.047). In the case

of the three-gene data, the difference between the optimal and

constrained trees was significant in the MP and ML analyses

(Wilcoxon signed ranks test, Z ¼ )2.1106 or )2.3333,

P ¼ 0.0196 or 0.0348; SH test, d()ln L) ¼ 19.42484,

P ¼ 0.016).

Nucleotide diversity and AMOVA

There were striking differences between the patterns of gene

and nucleotide diversity indexes (Table 1). The populations

north of the Amazon displayed the highest nucleotide diversity

(p), indicating that these areas represent ancestral populations.

This trend contrasted with gene diversity indices, which

showed similar values on both sides of the Amazon, suggesting
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Figure 3 Maximum likelihood phylograms of (a) two-gene data; (b) three-gene data. Tip labels correspond to haplotype codes; locality

codes from Wüster et al. (2005a) are given in parentheses. Support values are given as MP bootstrap/ML bootstrap support. –, Support
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Figure 4 Phylogeographic pattern predicted under the hypothe-

sis of dispersal along coastal corridor: (a) north-eastern Brazilian

haplotypes are expected to be basal to a monophyletic group of

haplotypes from southern Brazil; (b) schematic representation of

observed phylogeographic pattern of Crotalus durissus in South

America (three-gene data; Fig. 3). South-western Brazilian

haplotypes are basal, north-eastern haplotypes are nested deeply

among other more southerly haplotypes.

Table 1 Summary of population structure and historical demographic analysis of Crotalus durissus in South America.

Region n Gene diversity Nucleotide diversity (p) (· 100) Raggedness (P) Fu’s Fs (P) Tajima’s D (P)

North Amazon 9 1.00 ± 0.052 2.00 ± 0.28 0.0679 (0.49) 1.048 (0.182) 0.5403 (0.773)

South Amazon 23 0.97 ± 0.020 0.84 ± 0.09 0.106 (0.009) )5.961 (0.025) )1.371 (0.082)

Total 32 0.99 ± 0.012 1.45 ± 0.12 0.0071 (0.023) )8.222 (0.012) )1.092 (0.1324)
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a comparable degree of differentiation on each side (Fig. 6).

amova analysis showed that 44% of molecular variation was

between populations and 56% within populations

( Fst ¼ 0.4407, P < 0.001), indicating moderate differentiation

between both regions and more variation within populations

in a given region (Table 2).

Statistical parsimony and NCPA

Three haplotype networks were recognized by the TCS

program (95% confidence, Fig. 5). The average number of

mutational steps connecting haplotypes was five

(X ¼ 4.846 ± 0.869 SE). The largest network included clades

from both north and south of the Amazon, which were

connected by 12 mutational steps (e.g. Roraima and Guyana,

northern populations 13–14 with South Amazon populations

18–19). Marginal parsimonious connections (93% confidence)

connected other northern populations with South Amazon

populations (populations 11–12 with 29–24). These connec-

tions suggest the existence of a past central Amazon corridor

connecting Roraima with Mato Grosso.

We performed the NCPA in the largest network due to the

higher nesting clade resolution obtained (Fig. 6). In a few of

the clades analysed the NCPA rejected the null hypothesis of

no geographical associations of nesting clades (Table 3),

indicating phylogeographic structure in these clades. For

lower-level clades, NCPA indicated restricted gene flow and

range expansion, particularly in one-step clades nested in clade

2-2 (southern Brazil). Within higher-level clades the analysis

indicated allopatric fragmentation between clades north and

south of the Amazon (Table 4). Support for this inference

resulted from analysis of clades 4-1, 4-2 and 4-7, correspond-

ing to the Venezuelan and Guyana–Roraima clades, and the

clades south of the Amazon. The Venezuela and Guyana–

Roraima clades are separated from the other clades by the

Amazon rain forest. These clades display non-overlapping

distributions and are connected to one another by a larger-

than-average number of mutational steps. According to

Templeton’s inference key, this is consistent with allopatric

fragmentation. Similarly, NCPA indicated allopatric fragmen-

tation between clades of Guyana and Roraima. NCPA analysis

suggests a continuous distribution in the past, and is consistent

with a discontinuous Amazonian rain forest scenario during

the early to middle Pleistocene. Haplotype network distribu-

tion, probable corridor connections, and our preferred scen-

ario are shown in Fig. 8.

Historical demographic analysis

Comparisons using several neutrality tests between north and

south of the Amazon basin show striking differences (Table 1).

Mismatch distributions between north and south of the

Amazon differed on obvious evidence of demographic expan-

sion (Fig. 7). The haplotypes from south of the Amazon

presented a smooth Poisson distribution, which is supported

by a significant raggedness index (r ¼ 0.0091, P ¼ 0.01), in

contrast to populations from north of the Amazon

(r ¼ 0.0679, P ¼ 0.51). The significantly smooth Poisson

distribution south of the Amazon suggests population expan-

sion in contrast to north of the Amazon, where the non-

significant raggedness suggests constant population size.

Historical demographic analysis of the entire South Ameri-

can C. durissus rattlesnake clade is consistent with a dispersal

event in the past, followed by limited population differenti-

ation and vicariance. Mismatch distribution of the entire

South America clade showed a slightly smooth Poisson

distribution with a non-significant raggedness index

(r ¼ 0.0086, P ¼ 0.056). Additionally, values for Tajima’s

and Fu’s indices were incongruent (D ¼ )0.992, P ¼ 0.14;

Fs ¼ )7.455, P ¼ 0.01), but most consistent with a population

Table 2 Summary of amova results com-

paring north and south Amazon populations

of Crotalus durissus.

Source of

variation d.f.

Sum of

squares

Variance

components

Percentage of

variation P

Among regions 1 76.616 5.45569 Va 44.07 < 0.001

Within region 30 200.803 6.92424 Vb 55.93 < 0.001

Total 31 277.419 12.37994

Significance level (P) was determined by a random permutation test with 10,000 replicates.
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Figure 5 Networks inferred by the TCS 1.13 program repre-

senting parsimonious connections between haplotypes within the

limits of statistical parsimony (95%, maximum 15 mutational

steps). Numbers in circles, sampled haplotypes; grey circles, north-

of-Amazon haplotypes. Dots along connecting lines indicate

number of mutational steps connecting haplotypes; black dots

along connecting lines are mutational steps of connections above

the significance level (93%, 17 mutational steps).
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expansion (negative values). Further analysis of clades and

sub-clades suggested an incipient trend towards population

expansion and differentiation. Tajima’s D and Fu’s Fs statistics

showed non-significant negative values in clades distributed

south of the Amazon, but positive values in the north.

Particularly, clade 4-1, which includes ancestral subclades

south of the Amazon, presented significant Fu’s and ragged-

ness indices (Fs ¼ )5.462, P ¼ 0.007; D ¼ )0.952, P ¼ 0.174;

r ¼ 0.0154, P ¼ 0.004), indicating that this clade was the

result of population growth and expansion.

DISCUSSION

The data presented in this study shed additional light on the

distributional history of the Neotropical rattlesnake in South

America and the Amazon. Previously, we inferred (Wüster

et al., 2005a) that the populations of this species from open

formations south of the Amazon basin originated from mid-

Pleistocene dispersal across the Amazon basin, and interpreted

this as supporting a hypothesis of Pleistocene fragmentation of

the Amazonian rain forests. The question of how much

modification of forest cover in the Amazon this allows us to

infer, and in particular the question whether the phylogeog-

raphy of C. durissus suggests fragmentation of the rain forests,

or whether limited shrinkage around the edges can account for

Table 3 Results of permutational contingency test for clades

analysed by nested clade phylogeographic analysis.

Clade v2 P

1–3 6.0 0.354

1–13 3.0 0.328

2–2 12.38 0.008

2–3 3.0 0.333

2–4 7.0 0.047

3–1 12.00 0.007

3–2 14.0 0.001

4–1 16.0 0.001

4–2 4.0 0.31

Total cladogram 94.11 0.0001
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the observed pattern, was subject to subsequent debate

(Gosling & Bush, 2005; Wüster et al., 2005b). Here we show

that the phylogeographic pattern of C. durissus is best

explained by a Pleistocene trans-Amazonian corridor of

continuous distribution: past savanna or dry forest vegetation.

Our analyses do not support the hypothesis of a coastal

corridor, which only suggests limited shrinkage of the rain

forests. This hypothesis would predict that the most basal

haplotypes south of the Amazon should be found in north-

eastern Brazil, whereas haplotypes from further south and

south-west in southern South America should be monophy-

letic. Instead, the most basal and divergent haplotypes south of

the Amazon originate from western-central Brazil (western

Mato Grosso) and Paraguay, whereas the north-eastern

haplotypes are nested deeply among haplotypes from southern

and central-western Brazil. The phylogeny predicted by the

coastal corridor hypothesis, involving basal north-eastern

haplotypes, is rejected by significant tree topology tests. This

finding suggests that the populations of C. durissus south of the

Amazon had their origin in the western part of southern South

America, which is consistent with a corridor through the

central Amazon basin, but not with the coastal corridor

hypothesis.

Using haplotype networks, we found a statistically signifi-

cant parsimonious genetic connection between rattlesnake

populations from Roraima and Mato Grosso, but not with

populations from north-eastern Brazil. Furthermore, the

nested clade analysis supports range fragmentation, rather

than long-distance dispersal, as the cause of the trans-

Amazonian break in the distribution of C. durissus. In other

words, the genetic structure of these populations bears the

hallmarks of a past continuous distribution. Gosling & Bush

(2005) suggested that the current distribution may be due to

dispersal ‘through a series of staging areas as different regions

altered in response to different climate changes’, for instance

due to dispersal corridors opening and closing asynchronously

in different parts. However, this ‘shifting mosaic’ model

suggests extensive isolation of a relatively small dispersing

population. As a result, the resulting population structure of

the southern populations would probably have been more akin

to that resulting from long-distance dispersal, rather than that

expected from vicariance in a formerly continuous distribu-

tion.

The ancestral haplotypes for the southern populations

appear to be located in southern Brazil, not north-eastern

Brazil. This suggests that C. durissus dispersed from present-

Table 4 Nested clade phylogeographic analysis results for Crotalus durissus in South America.

Haplotypes One-step clades Two-step clades Three-step clades Four-step clades

No. Dc Dn No. Dc Dn No. Dc Dn No. Dc Dn No. Dc Dn

23 0.0 104.16 1–9 200.60 395.45 2–2 573.65* 629.06 3–1 648.72 657.28 4–1 601.39** 1474.01

29 0.0 298.84 1–3 0.0* 490.20 2–5 0.0 644.21 3–7 0.0 371.132** 4–2 686.40 2459.65

24 0.0 104.16 1–11 0.0 806.27 I ) T – – I ) T 648.72 286.15 4–7 112.07* 1539.44

25 0.0 104.16 I–T 75.21 )351.60* I ) T – –

I ) T 0.0 )48.67

1-2-11-YES 1-2-11-12-NO 1-2-3-5-6-7-YES 1-2-3-4-9-NO

Range expansion

Implies range expansion in

clades from south western

Sao Paulo area

Contiguous range

expansion

Implies range expansion

from south-west area to

north-east and Mato

Grosso, especially evident

in clade 2-2

Restricted gene flow/

dispersal but with some

long-distance dispersal

Implies a dispersal event

between clades from the

Sao Paulo area to north-east

Brazil (Fig. 7)

Allopatric fragmentation

Indicated by allopatric

distribution between

Venezuelan and Guyana–

Roraima–South Amazon

clades separated by the

Amazon rain forest

33 0.0 89.84 1–8 0.0* 416.33 2–8 0.0** 2976.8 3–3 0.0 861.00

34 0.0 313.16 1-8b 0.0 312.15* 2–9 0.0 119.56 3–11 0.0 570.03

I ) T 0.0 313.16 I ) T 0.0 104.17 I ) T 0.0 1490.5** I ) T 0.0 290.97

1-2-3-5-6-7-8-YES 1-19-NO

Restricted gene flow/

dispersal but with some

long-distance dispersal

Implies a dispersal event

between populations 21

and 16 (Fig. 7)

Allopatric fragmentation

Indicated by allopatric

separation between Guyana

and Roraima clades

Dc ¼ clade distance; Dn ¼ nested clade distance; I ) T ¼ Internal minus tip clades in Dc and Dn values. Inferred processes are in bold, followed by

the implication for the phylogeographic pattern of C. durissus.

*P < 0.05, **P < 0.001.
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day Roraima to Mato Grosso and south-eastern Brazil, then

from there to other locations south of the Amazon Basin. The

populations of C. durissus in north-eastern Brazil thus appear

to be the result of dispersal from south-eastern or central

Brazil, not from the Guyanas along the Atlantic coast. Again,

these genetic patterns suggest dispersal across the centre of the

Amazon Basin, suggesting the presence of a savanna and/or dry

forest corridor across the centre of the Amazon basin. This

contention is supported further by neutrality tests and

nucleotide diversity indices.

Our biogeographical interpretations based on topology tests,

haplotype network connections and neutrality tests are sup-

ported by NCPA. However, there are some limitations

regarding the conclusions of this analysis. First, our data set

consisted of a limited sample size per locality. NCPA is quite

sensitive to sample size and low geographical variation (e.g.

few individuals and localities sampled), which can lead to an

inconclusive inference (Templeton, 2004). Nevertheless,

despite our limited sampling, we were able to follow Temple-

ton’s inference key and to find allopatric fragmentation as the
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most likely process at higher nesting levels. In particular, the

NCPA indicates allopatric fragmentation, not long-distance

dispersal, as the explanation for genetic structure in the

Venezuelan and Guyana–Roraima–South Amazon clades,

which are separated by the Amazon rain forest and are

connected to one another by a larger-than-average number of

mutational steps. Despite the limited sample size, our data thus

suggest that allopatric fragmentation of the range of C. durissus

is the result of the mid-Pleistocene closure of a habitat corridor

that once connected populations from north and south of the

Amazon Basin, as a result of expansion of the Amazon rain

forest. The accuracy of NCPA has previously been questioned,

based on simulations and comparing the outcomes of the

inference key (Knowles & Maddison, 2002; Masta et al., 2003),

the main criticism being that NCPA can lead to a high rate of

false-positive conclusions. In order to resolve these problems,

Templeton (2004) provided a revised and more conservative

version of the inference key. We therefore believe that the

accuracy of our results based on NCPA is robust, especially

taken in conjunction with the other analyses, which all provide

congruent results.

In summary, all our analyses reveal phylogeographic and

genetic patterns most consistent with dispersal along a central

Amazonian corridor, followed by later vicariance due to

expanding rain forests, and dispersal into north-eastern Brazil.

It is theoretically possible that this pattern may have been

caused by an initial coastal dispersal, followed by extinction of

north-eastern Brazilian populations, and later recolonization

from the south. Consistent with this hypothesis, there is

evidence of Pleistocene increases in forest cover across north-

eastern Brazil, connecting the Atlantic forest and the Amazon

Basin (Lynch, 1988; De Oliveira et al., 1999; Puorto et al.,

2001; Costa, 2003). However, several lines of evidence weaken

the extinction–recolonization hypothesis for north-eastern

Brazil:

1. the high degree of endemism in the Atlantic forest and the

often basal position of Atlantic forest organisms in phyloge-

ographic studies of tropical South American organisms

(Patton et al., 2000) all suggest that rain forest cover in

north-eastern Brazil is very unlikely to have been complete

enough to lead to extinction of C. durissus in that region;

2. an explanation of colonization via north-eastern Brazil,

followed by extinction and recolonization, is less parsimonious

than one of dispersal across the central Amazon and then up to

north-eastern Brazil;

3. the divergence between the western Mato Grosso haplotype

(PLacerda) and all other southern populations followed very

rapidly after the divergence between Guyanan and southern

populations: the molecular dating analysis of Wüster et al.

(2005a) estimated the divergence between the Guyanan and

southern populations at 1.08 Ma, and the divergence between

PLacerda and other southern haplotypes at 0.95 Ma.

Moreover, in our analysis here the monophyly of the

southern populations is supported only weakly by the three-

gene data and not at all by the two-gene data. This suggests

that genetic diversification began in south-western Brazil

immediately after the crossing of the Amazon. A coastal

dispersal route followed by extinction and recolonization

would predict a greater hiatus between the initial north–

south divergence and later divergence in south-western

Brazil.

We did not explicitly test the possibility of an Andean

corridor for C. durissus, as the observed distribution and

phylogeographic pattern make this hypothesis extremely

unlikely. Dispersal along an Andean corridor would predict

that the haplotypes closest to those of the southern popula-

tions should be found in north-western South America

(western Venezuela, Colombia), and predict the existence of

remnant populations along the western edge of the Amazon

Basin or within the Andes. In fact, as shown earlier, the north-

western haplotypes are the most basal and most distant from

the southern haplotypes, and relict populations are found

in the central Amazon (Santarém, Roraima, Humaitá,

Cachimbo), whereas there are none along the western edge

of the Amazon or in the Andes.

In summary, our analyses suggest that dispersal across the

central Amazon Basin is a more likely explanation for the

observed phylogeographic pattern than alternative scenarios

involving coastal dispersal followed by multiple extinction and

dispersal events.

Gosling & Bush (2005) criticized our interpretation of a

phylogeographic analysis of C. durissus as supporting a

hypothesis of Pleistocene fragmentation of the Amazonian

rain forests. They offered alternative scenarios to explain the

occurrence of C. durissus in some of the enclaves, and

suggested peripheral changes in the rain forest cover and

niche-habitat shift in C. durissus. As previously outlined, there

is no evidence for historical shifts in the habitat requirements

of C. durissus (Wüster et al., 2005b). The data presented here

refute Gosling & Bush’s scenarios on the basis of phylogenetic

population-level analyses, which have identified the most

parsimonious corridors and dispersal routes. The most parsi-

monious explanation for the pattern observed is dispersal and

a subsequent continuous distribution across the central

Amazon (Fig. 6), followed by later vicariance. Again, data

from isolated populations within the Amazon basin, partic-

ularly those isolated deep inside Amazonia and in the path of a

likely trans-Amazonian dispersal corridor, such as Humaitá,

Santarém and Serra do Cachimbo (Campbell & Lamar, 2004),

would provide powerful additional evidence on the distribu-

tional history of C. durissus in South America.

Many critics of the PRH argue that the hypothesis

oversimplifies the process of speciation in the Amazon (e.g.

Bush, 1994, 2005). They rightly argue that the high degree of

Amazonian species diversity is due to a complex suite of

mechanisms. The data presented here and previously (Wüster

et al., 2005a) lead us to argue that some kind of fragmentation

of the Amazonian rain forests is very likely to have been one of

the mechanisms explaining some aspects of Amazonian

diversity, or at least affecting distributional and population

genetic patterns. The precise nature of this disruption remains

unclear. The more extreme scenarios calling for semi-arid

Trans-Amazonian vicariance of the Neotropical rattlesnake

Journal of Biogeography 34, 1296–1312 1307
ª 2007 The Authors. Journal compilation ª 2007 Blackwell Publishing Ltd



formations and extensive savannas have been contradicted by

palynological evidence, at least for the late Pleistocene

(Colinvaux et al., 2001; Mayle et al., 2004). Alternative

suggestions have included deciduous forests (which are more

difficult to differentiate palynologically from tropical rain

forests and thus are much easier to reconcile with the existing

palynological evidence; Pennington et al., 2000) or at least

reduced canopy density in many parts of the basin, including a

corridor across the middle of the Amazon basin (Cowling

et al., 2001; Maslin et al., 2005). These scenarios are in accord

with modelling of the distribution of forest species during the

climatic conditions of the last glacial maximum (Bonaccorso

et al., 2006). The degree of perturbation of the Amazonian

forests required to account for dispersal and subsequent

vicariance by species such as C. durissus and co-distributed

taxa remains unclear in the absence of a better understanding

of the fundamental niches of these species (Bush, 2005).

The role of possible Pleistocene rain forest fragmentation or

perturbation in causing speciation among Amazonian forest

taxa remains unclear. Many speciation events in the Amazon

clearly pre-date the Pleistocene by a considerable margin

(Moritz et al., 2000; Patton et al., 2000; Glor et al., 2001; Ribas

et al., 2005). However, high speciation rates in rain forest taxa

have occurred during the Pleistocene, for instance in tree

genera such as Ruprechtia and Inga, the phylogenetic patterns

of which reflect an outstanding diversification in the Amazon

rain forest during the Pleistocene (Richardson et al., 2001). On

a smaller geographical scale, patterns of molecular diversifica-

tion in mammals (Steiner & Catzeflis, 2004), amphibians

(Noonan & Gaucher, 2006; Noonan & Wray, 2006) and snakes

in the Atlantic forest (Grazziotin et al., 2006) have also

demonstrated the genetic footprint of Pleistocene range

perturbation. We believe that other taxa may show a similar

mixture of processes in their diversification patterns, and that

allopatric differentiation due to historical climate change has

to be considered as a factor in the complex model of

Amazonian speciation (Noonan & Wray, 2006; Rull, 2006).

The results of this study re-emphasize the potential for

open-formation taxa with disjunct trans-Amazonian distribu-

tions as ideal organisms for detecting the effects of past climate

changes on Amazon forest fragmentation and the presence of

refugia. Savanna and seasonal dry forests might themselves

now be refugia for species adapted to drier habitats (Penning-

ton et al., 2000). Diverse taxa share this distributional pattern

(Pennington et al., 2000, 2004; Fig. 1), and it can be

hypothesized that they share a common biogeographical

history, a hypothesis that can be tested using similar approa-

ches to that exemplified here and by Wüster et al. (2005a).

These species thus have the potential to provide a rich source

of evidence on the Pleistocene history of the Amazonian

forests.
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