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Sensory ecology provides a conceptual framework for considering how animals ought to design
sensory systems to capture meaningful information from their environments. The framework has
been particularly successful at describing how one should allocate sensory receptors to maximize
performance on a given task. Neural networks, in contrast, have made unique contributions to
understanding how ‘hidden preferences’ can emerge as a by-product of sensory design. The two
frameworks comprise complementary techniques for understanding the design and the evolution of
sensation. This article reviews empirical literature from multiple modalities and levels of sensory
processing, considering vision, audition and touch from the viewpoints of sensory ecology and
neuroethology. In the process, it presents modifications of extant neural network algorithms that
would allow a more effective integration of these diverse approaches. Together, the reviewed
literature suggests important advances that can be made by explicitly formulating neural network
models in terms of sensory ecology, by incorporating neural costs into models of perceptual evolution
and by exploring how such demands interact with historical forces.
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1. INTRODUCTION
All of animal behaviour can be considered a series of
choices—at any given moment an animal must decide
whether to mate, eat, sleep, fight or simply rest. Such
decisions require estimates of the immediate environ-
ment, and despite the diversity of those estimates, they
are all carried out by sensory systems and the neural
functions contingent on them. This functional diver-
sity is central to the concept of sensory drive (Endler

1992; figure 1), which notes that animal mating,
foraging and other activities are evolutionarily coupled
through their shared dependence on sensory systems
and local environments. In light of the many demands
made of a sensory system, what does it mean to design
one well?

It is often useful to consider how an ideal receiver
would perform on a given task. Aside from the potentially
conflicting demands posed by different aspects of one’s

environment, there are additional reasons to think that
such an approach may not be complete. The climb to a
global optimum can be a tortuous one, complicated by
genetic drift, allelic diversity and phylogenetic history.
Analytic models often focus on defining the best possible
performance and neglect the existence of alternative local
optima, or the ability to arrive at such optima through
evolutionary processes. In sexual selection, researchers
have suggested pleiotropy in sensory systems may be a

key feature that shapes the direction of evolution
(Kirkpatrick & Ryan 1991). Pleiotropy could emerge
when building a complex structure from a limited
number of genes or from the multiple functions fulfilled
tribution of 15 to a Theme Issue ‘The use of neural networks
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by a common structure. Female guppies, for example,
prefer orange males, and they also prefer orange food
items (Rodd et al. 2002). We need means of under-
standing how such coincident preferences emerge, and
what their consequences are for behavioural evolution.
In this review, I advocate a dual approach that combines
first principles of sensory ecology with neural network
models to gain a more balanced and nuanced view of
sensory design.

Neural network models have been used to investi-
gate the origins of hidden preferences—attributes of
nervous systems that inadvertently bias their
interactions with the outside world. Early studies
used model visual systems, simple ‘feed-forward’
networks, to investigate how biases towards signals
that were symmetric or exaggerated could emerge as a
by-product of selection on simple recognition tasks
(Enquist & Arak 1992, 1993; Johnstone 1994).
Additional advances came from linking such studies
to empirical data from particular species (Phelps &
Ryan 1998; Phelps et al. 2001), permitting an
assessment of the external validity of the models.
These studies provided a broader view of sexual
selection, a field that has historically focused on the
strategic design of signals (e.g. Zahavi 1975). One
insight from the neural network models was that
preferences could emerge for stimuli as a by-product
of selection in other contexts. Potential indicators of
male condition were not necessarily favoured for their
ability to reveal male status, but rather for their
conformity to the pre-existing perceptual biases of the
receiver (Basolo 1990), a phenomenon known as
‘sensory exploitation’ (Ryan 1990; Ryan et al. 1990b).
Such complexity is not easily explained. Since neural
network models simulate complex decision making,
and arrive at those decisions through evolutionary
q 2007 The Royal Society
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Figure 1. Sensory drive depicts the coupling of multiple
ecological factors with the design of sensory systems and its
influence on interaction between organisms. Interactions
corresponding to ‘sensory exploitation’ are depicted in grey.
Based on Endler (1992).
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processes, they provide a logical complement to

more abstract models that describe performance at a

global optimum.

This manuscript aims to briefly survey work on each

of several modalities (vision, audition and touch) and

levels of sensory processing (peripheral and central).

Firstly, within each domain, I describe work in sensory

ecology which takes broad models for how receivers

ought to be designed and compares them with

physiological and behavioural data. Secondly, I also

examine work from neuroethology, which often has the

same general assumptions but is not always focused on

testing whether sensory performance is optimal for a

given task. Lastly, in each section, I suggest novel

neural network models that could further inform our

understanding of perceptual allocation. By exploring

what it would mean to design a sensory system

optimally, one can test whether a given system con-

forms to those expectations. No less importantly, one

can also detect deviations from predictions that might

direct us to the roles of other evolutionary forces. By

making these questions explicit, and by outlining how

extant neural network models could be modified to ask

such questions, this review aims to stimulate thought

and experiment on how evolution shapes nervous

systems to accommodate a multitude of tasks.

Before beginning our survey, it may be useful to

review a few basic concepts in sensory design for

readers unfamiliar with neuroscience. The first is to

remind the reader that each sensory modality corres-

ponds to a type of stimulus energy able to change the

voltage of a sensory receptor. Within a modality, there

are subtle variations of energy that include wavelengths

of light, frequencies of sound, and the depth and the
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duration of touch. The investment in one modality or
submodality over another is assumed to reflect its value.
How does value interact with the costs of receiving and
processing such information? Such questions are
central to receiver design, and by extension to questions
in foraging, mating and the various other choices which
comprise an animal’s behavioural repertoire. I begin
our exploration with a discussion of empirical work on
visual allocation at the periphery and how such
allocation influences behavioural decisions.
2. ALLOCATION AT THE PERIPHERY
(a) Vision
To what extent can a visual system be said to be
operating ‘optimally,’ and in what ways may we
estimate its efficacy? Some of the most sophisticated
ecological analyses of animal sensation have focused on
how the tuning and abundance of colour cones reflect
evolutionarily important properties of the environment
(see Osorio & Vorobyev 2005 for recent review).
A central formalism in this work describes the
‘quantum catch’, the number of photons (Q) absorbed
by a sensory system (Wyszecki & Stiles 1982)

QZ

ð
Q0ðlÞ$RðlÞ$T ðl; d Þ$SðlÞ dl: ð2:1Þ

In this equation, Q0(l) is the distribution of coloured
light in an environment, a value called the quantum
flux and expressed as a function of wavelength (l). This
has been shown to vary as a function of the openness of
terrestrial habitats, or depth of aquatic ones (Lythgoe &
Partridge 1991; Endler 1992, 1993). It is shaped by
both the distribution of wavelengths in sunlight, and by
the reflectance and absorbance properties of organisms
within the local environment. R(l) is the reflectance
pattern for an object to be detected—whether that
object is a patch of coral or the epaulet of a red-winged
blackbird. The product of these two represents the
stimulus energy emerging from the target. T(l, d )
represents the transmittance of light in the environment
at a distance d. Lastly, S(l) is the spectral sensitivity of
the photopigment of interest. The quantum catch of
multiple kinds of cones can be calculated independ-
ently. These can be summed across cone classes to
generate a measure of luminance, or differences
between cones can be used to estimate chroma.
Based on such calculations, one can visually sample
local environments and calculate how well the visual
system is equipped for detecting objects varying in
brightness and hue. As a perceptual allocation
problem, the aim is to understand how the organism
should tune its eye to extract the most useful
information.

Extracting chromatic information requires multiple
cones tuned to different wavelengths. The simplest
such system is dichromatic vision, found in most
mammals, in which animals possess a pair of cones
each tuned to a different wavelength. In contrast,
stomatopods may possess eight or more narrowly tuned
receptor types, providing the potential for fine
discrimination of individual differences in body spot
coloration (Cheroske & Cronin 2005). The eyes of
Lycaena butterflies express four cone types; wing colour
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Figure 2. Use of a feed-forward network to explicitly
investigate sensory drive. The proposed architecture at top
(a) is similar to that used by Enquist & Arak (1993). (b) The
task is to require recognition of either (i) a conspecific or (ii) a
food item using distinct output neurons, but not to respond to
a stimulus consisting of only (iii) background illumination. (c)
A hypothetical distribution of reflected light from targets and
background, posing the neural network task in terms of
sensory ecology. Note that the coding of colour is not
specified, and represents a non-trivial attribute of this model.
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and receptor tuning vary by species, and sexes vary in
the relative abundance of cone types across the eye.
Females use long-wavelength cones to detect host
plants and, in accord, this cone can be found in the
dorsal portion of the female eye (Bernard & Remington
1991). Assessments of colour perception by bees have
utilized knowledge of cone absorbance and colour
opponency (combinations of cones used to perceive
colour) to predict performance in foraging tasks. These
studies demonstrate that chromatic contrast predicts
rates of flower detection (Lunau et al. 1996; Spaethe
et al. 2001).

Among fishes, the diversification of visual signalling
is particularly interesting in the cichlid fishes of Lake
Victoria, a group well known for its recent and
explosive radiation. Closely related sympatric species
differ substantially in sexually dimorphic coloration;
environmental degradation has caused increased
turbidity and a breakdown of visual barriers to
hybridization (Seehausen et al. 1997). Cones differ
substantially in their relative abundance across species
(Carleton & Kocher 2001) and there is evidence of
selection on opsin loci associated with variation in
colour and habitat (Terai et al. 2002; Spady et al. 2005).
Interestingly, there is also substantial phenotypic
plasticity in receptor allocation. Halstenberg et al.
(2005) demonstrate a diurnal rhythm in opsin
expression that is entrained by light. Similarly, in
killifish, Fuller et al. (2003, 2004, 2005) find both
heritable and environmental variations in opsin distri-
bution across killifish lineages occupying clear and
tannin-stained waters.

Most mammals are dichromats, and so the evolution
of trichromatic vision within primates is remarkable.
The emergence of trichromacy has evolved in two
distinct ways. First, in old world apes, the medium/
long-wavelength opsin locus has duplicated and
diverged, generating red- and green-responsive cones
(Surridge et al. 2003). Visual samples of primate
habitats combined with quantum flux calculations
reveal that trichromacy substantially improves the
detectability of both new leaves and ripe fruits
(Sumner & Mollon 2000; Surridge et al. 2003). New
leaves tend to reflect more red wavelengths; both
leaves and fruits are more nutritious and less tough
(Dominy & Lucas 2004). In both old and new world
primates, trichromats are more likely to eat red-shifted
leaves (Lucas et al. 2003). In new world primates, there
is a surprising condition in which trichromacy has
emerged not by duplication of a locus, but by allelic
divergence within a locus. Some New World monkeys
have as many as five different medium/long-wavelength
alleles at a single locus ( Jacobs & Deegan 2005). Using
visual models and images of natural tamarin foods,
Osorio et al. (2004) suggest both frequency-dependent
selection and heterozygote (trichromatic) advantage in
the evolution of such polymorphism.

(b) Modifying a visual neural network

The feed-forward network seems a promising tool for
modelling complex scenarios of visual allocation.
Enquist & Arak (1993) used a simple feed-forward
network to discriminate between stimuli representing
long-tailed conspecific and short-tailed heterospecifics,
Phil. Trans. R. Soc. B
and observed emergent preferences for still longer tails.

(A network similar to theirs is presented in figure 2a.)

As one might predict, coevolutionary simulations result

in the evolution of still longer tails. What variations on

this architecture might be used to investigate sensory

drive more broadly?

The traditional feed-forward network used in these

studies has an input layer corresponding to a retina that

detects illumination, a hidden layer that extracts

features from the pattern on the retina and a single

output neuron that conveys whether a target pattern

has been detected. Genetic algorithms code network

architectures as lists of weights, and select those best at

performing the desired task (Mitchell 1996). Instead of

this original Enquist & Arak (1993) formulation, one

might allow each pixel to have a distribution of

reflectance intensities defined by the function, R(l).

The image falling on the retina is derived from the

product of the reflectance intensities, the environ-

mental transmittance T(l) and the ambient light Q0(l)

(figure 2b). Figure 2c shows distributions of reflected
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Figure 3. Matched filters in auditory coding. (a) Conceptual
example showing the relationship between the dominant
frequency (DF) for (i) a noise-free call, (ii) a noisy call and the
corresponding (iii) best excitatory frequency (BEF) in an
auditory organ acting as a matched filter for the species-
specific call; after Capranica & Moffat (1983). (b) Plot of DF
and BEF for 36 species of anurans, from Gerhardt &
Schwartz (2001). (c) Similar plot of nine species of grass-
hoppers, from Meyer & Elsner (1996).
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wavelengths (Q0(l)$R(l)) for each of several potential
views. The investigator could allow the sensitivity of the
receiver S(l) to wavelengths to vary genetically,
perhaps assigning each spot in the retina one or more
of several available cone classes. Such a model could
also incorporate some formulation of colour theory,
defining the networks as dichromats or trichromats and
using existing models to extract hue and luminance
(Wyszecki & Stiles 1982).

A second modification might allow networks to
make multiple decisions. For example, a network could
use separate output neurons to represent mating and
feeding decisions (figure 2a). Would the processing of
food-related cues compel signallers to evolve exagger-
ated versions of these stimuli? Such a finding would be
consistent with sensory exploitation and sensory drive.
It would also be strikingly reminiscent of the ethologi-
cal notions of ‘ritualization’ and ‘emancipation’
whereby cues from one domain become exaggerated
and freed from their original source, as suggested for
the elaboration of pheasant trains (Bradbury &
Vehrencamp 1998). These considerations begin to
take us beyond peripheral allocation, into how sensory
representations impinge on the decisions that comprise
an animal’s behavioural repertoire.

In short, such neural network models can readily be
cast in terms of conventional sensory ecology. They
provide valuable supplements to more general models
because they facilitate the investigation of complex
interactions between phenotypes and settings. Since
parameters of interaction can be controlled precisely,
they can be used to uncouple the components of
sensory drive and to observe how these components
interact to produce the higher level patterns that
characterize behavioural evolution.

(c) Audition
Neuroethologists recording from the periphery of the
auditory system find that its frequency sensitivity
roughly matches the distribution of frequencies in
species-specific acoustic signals (figure 3). Tuning that
favours mating signals has been found in insects
(Meyer & Elsner 1996), fish (Sisneros et al. 2004),
frogs (Frishkopf et al. 1968) and songbirds (Konishi
1969; Dooling et al. 1971). Similarly, both bats and
barn owls contain ‘acoustic fovea’ matching the
echolocation calls used for navigation and hunting
(Bruns & Schmieszek 1980; Vater 1982; Koppl et al.
1993). Capranica & Moffat (1983) point out that such
tuning can be considered a ‘matched filter’, a receiver
design that in many conditions serves as an optimal
signal detector (Dusenberry 1992).

The tuning curves from different species are
obtained in a diverse number of ways. For example,
in amphibians, these may include recording directly
from the eighth nerve or from more central midbrain
neurons; sounds may be broadcast as ‘free field’ stimuli
or coupled to the auditory apparatus of the organism.
Moreover, thresholds are estimates of the minimum
stimulation required to evoke some fixed response from
a population of neurons. They are an incomplete
representation of the abundance and nature of neurons
coding information about a given frequency. Owing to
these ambiguities, researchers in the neuroethology of
Phil. Trans. R. Soc. B
audition have focused on the relationship between the
frequency to which the receiver exhibits the lowest
threshold (the ‘best excitatory frequency’; BEF) and
the dominant frequency (DF) of an advertisement call.
The match between signal and receiver is surprisingly
strong (figure 3). In a definitive review of matched
filters in anurans, Gerhardt & Schwartz (2001)
demonstrate that there is a very strong correlation
between the DF of a call and the BEF estimated from
neurophysiologic data; similar findings have been
reported in orthoptera (Meyer & Elsner 1996; see
Gerhardt & Huber 2002 for discussion). These data
demonstrate a remarkable congruence between recei-
ver perception and signal design, even in the absence of
data concerning sources of background noise and
signal degradation imposed by a given environment.

Following the ‘quantum flux’ model for visual
observers, one can imagine a similar formalism for
the sound energy (E) captured by a receiver.

E Z

ð
Cð f Þ$T ð f; d Þ$Sð f Þdf : ð2:2Þ

In this equation, C( f ) represents the spectral content of
the signal as function of frequency ( f ), T( f, d )
corresponds to the transmission of energy at a
particular frequency ( f ) and distance (d ) and S( f )
corresponds to the sensitivity of the receiver to various
frequencies. One can describe the information capacity
of the frequency domain by measuring the difference
between the total sound energy perceived by a receiver
when a signal is present and when it is not. Defining the
energy in the target plus background as CTCB( f ) and
the background as CB( f ), one can describe the
information content (HT) of a signal received at a
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given distance as follows:

HT Z log2

ð
CTCBð f Þ$T ð f ; d Þ$Sð f Þdf

� �

Klog2

ð
CBð f Þ$T ð f ; d Þ$Sð f Þdf

� �
: ð2:3Þ

As in vision, the efficacy of communication is
contingent on receiver, signal and environment. In
contrast to the studies of vision, there is little work that
combines all three measures into a common assess-
ment. Most studies have focused on the interaction of
signal and environment, the two simplest parameters to
measure. The acoustic adaptation hypothesis (Morton
1975; Wiley & Richards 1978, 1982), for example,
predicts that signals evolve to minimize the degradation
due to environmental differences between habitats. In
equation (2.3), this is analogous to designing signals to
maximize CTCB( f )$T( f, d ). A related idea, that of an
‘acoustic window’ (Waser & Waser 1977; Waser &
Brown 1984) posits that signals should use frequencies
least evident in the background, roughly equivalent to
minimizing CB( f ). These ideas have certainly met with
considerable success. Even after considering such
factors, however, there is a great deal of variation in
signal structure that is not readily explained by habitat.
Ryan & Brenowitz (1985), for example, report that
although natural variation in vocalization frequency is
significantly predicted by habitat, body size is a far
better predictor.

To consider how one might integrate perceptual
allocation into considerations of transmission, environ-
mental noise and call structure, it is worth considering
the communication system of the cricket frog, Acris
crepitans. Cricket frogs are small temperate frogs
inhabiting the south and eastern United States. Studies
by Ryan et al. have focused on two populations in
Central Texas, Acris crepitans crepitans, which lives in
wet pine forest, and Acris crepitans blanchardi, which
lives in open habitats. Perhaps surprisingly, it does not
seem that each call is specialized to minimize
degradation within its own habitat. Instead, calls from
the more acoustically challenging pine forest transmit
with greater fidelity in both pine and open habitats
(Ryan et al. 1990a). To examine population differences
in receivers, Wilczynski et al. (1992) measured the
auditory tuning of frogs and found that the average
tuning of the basilar papilla is similar to the dominant
frequency in each call (see also Capranica et al. 1973;
Ryan et al. 1992). To examine the interaction of
receiver tuning, call structure and transmission fidelity,
Sun et al. (2000) recorded calls at varying distances
from a speaker. They removed background noise from
recordings, passed the calls through an acoustic filter
approximating the auditory tuning curve for each
population and estimated how well the receivers
would be able to detect a call at short and long
distances. Their results describe how the transmission
environment can alter the ideal receiver tuning
depending on the distance at which a signal is
perceived. What is striking, however, is that receivers
from the more challenging pine forest are much better
in both habitats. Similarly, Witte et al. (2005) find that
tuning curves from the pine forest animals are better at
Phil. Trans. R. Soc. B
filtering equivalent intensities of background noise
from either habitat. Combined with earlier data, it
seems both signal and receiver from the pine habitat are
more effective.

Although the cricket frog work uniquely assesses
the interaction of auditory allocation, transmission
environment and signal structure, Witte et al. (2005)
note the importance of one missing variable,
potential habitat differences in absolute background
noise level. As background gets more intense, the
relative difference between a sound sample
containing the signal and one that does not get
smaller (equation 2.3). An appropriate follow-up
might measure calls without filtering out background
noise, and use equation (2.3) to compare the sound
energy received with and without the call present. If
the information is no more valuable in the pine
forest than in the open forest, and the pine forest
proves to be louder, the total amount of information
transmitted in the two systems may be equivalent.
Indeed, if the costs of communication are higher in
the pine forest, one may find that the net
information transmitted has gone down despite the
efficiencies of signal and receiver. This hints at the
need to assess the costs of communication to both
receiver and signaller, features rarely treated empiri-
cally (see Bradbury & Vehrencamp 1998, 2000).

I have emphasized the optimal design of receivers,
and how they might interact with signallers. However,
as mentioned in §1, matching of signal and receiver do
not explain the entirety of receiver design. In auditory
communication, there are a number of examples of
poor matches between signallers and receivers (e.g.
Schul & Patterson 2003). In the case of cricket frogs,
though the pine forest animals have a peak frequency
tuned to within 80 Hz of the dominant call frequency,
the mismatch in open habitat animals is 740 Hz. Does
this reflect other uses of the auditory system? Certainly
it is possible. Auditory systems are likely means of
detecting nearby predators, and the presence of
frequency responses outside the range of mating signals
is often interpreted as serving this function (e.g. frogs,
Frishkopf et al. 1968; birds, Konishi 1969; insects,
Schul & Patterson 2003). Receiver compromises
between detecting mates and predators are in principle
amenable to analytic treatments. Are there other, less
readily explained patterns of peripheral tuning? In
another anuran example, at first it seems that the
basilar papilla of túngara frogs is tuned to roughly
match the dominant frequency of a call component
called a chuck. Congeners possess similar tuning,
however, despite lacking the capacity to chuck
altogether—a finding suggesting the tuning substan-
tially predates the evolution of its ‘matched’ target
(Ryan et al. 1990b; Wilczynski et al. 2001). In this
example, the matching of signal and receiver can more
easily be attributed to the evolution of the signal than to
the design of the sensory system. Any complete
understanding of sensory function and perceptual
allocation must include the possibility that receivers
depart from optimal performance due to the con-
tingencies of history and genetic architecture. I now
describe a neural network model of call recognition that
enabled the exploration of such forces. As with
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the visual networks discussed above, these auditory
networks model higher level decision processes as well
as peripheral mechanisms of stimulus filtering.
input

feature
detector
layer

context
layer

output

Figure 4. Recurrent neural network used to model call
recognition in túngara frogs. The network has a recurrent
loop between the feature detector and context layers that
allows the detection of time-varying stimuli. The stimulus is a
matrix of Fourier transform coefficients from a túngara call
presented to the input layer one time interval per step. From
Phelps & Ryan (1998).
(d) A simple auditory model

We began with the intent of understanding how
historical and contemporary selection on species
recognition mechanisms could produce patterns of
mate-choice preference. This approach was motivated
both by prior work emphasizing how the selection for
simple recognition mechanisms could generate hidden
preferences (Enquist & Arak 1993), and by data
suggesting evolutionary history was a significant
contributor to the responses of túngara frogs (Ryan &
Rand 1995). Unlike prior neural network studies,
however, we hoped to anchor the evolutionary
simulations to a specific model system so that we
could compare our results to data from behavioural
studies.

We chose a simple recurrent network similar to an
Elman net (Elman 1990), consisting of a frequency-
specific set of input neurons, two reciprocally con-
nected hidden layers (called feature detector and
context layers, by analogy with an Elman net), and a
single output layer (Phelps & Ryan 1998; figure 4). The
reciprocal connections between hidden layers enabled
neurons to make responses to current frequency inputs
contingent upon prior patterns of stimulation. This
struck us as the simplest possible abstraction of neural
processing that could recognize a túngara frog call in a
biologically realistic manner. We settled on this general
model because the precise mechanisms underlying
túngara frog call recognition are not known.

We next performed fast Fourier transforms to
generate a time-by-frequency breakdown of the
túngara call suitable for presenting to the networks.
We trained networks using a genetic algorithm in which
networks were represented as binary strings corres-
ponding to a concatenated list of neuron weights and
biases. A more complete discussion of the network
architecture and the training algorithm is provided in
Phelps & Ryan (1998) and Phelps (2001). During
training, the calls were randomly placed within a time
window large enough to house any of the potential test
stimuli. We made a matching noise signal by randomly
assigning the energies in a given time window to a new
frequency. Additional noise was added to both stimuli
by adding a small, fixed probability of being assigned a
value at random. Networks were selected to distinguish
between calls and noise according to a fitness function
defined as

W Z
X ðCiKNiÞ

2

n

� �1=2

C0:01: ð2:4Þ

In this equation, W is fitness, Ci is the network response
to a given call i, Ni its response to a noise and n is the
number of calls presented. The small constant 0.01
provides an external component of fitness which
minimizes the chance that networks will get caught at
early local optima. We found that not only could neural
networks evolve to discriminate this call from noise, but
also the generalizations they made to novel call stimuli
were excellent predictors of the responses made by
Phil. Trans. R. Soc. B
females in phonotaxis tests (34 stimuli, R2Z0.88,
p!0.001; Phelps & Ryan 1998). A surprisingly large
amount of variation in female responses could be
explained solely on the basis of selection for conspecific

recognition.
Owing to data suggesting that historical forces had

shaped responses of female túngara frogs, we next set
out to manipulate histories of neural network models
and observe the consequences on the emergent
patterns of preference. To do so, we selected networks

to recognize a call corresponding to the reconstructed
ancestor of the túngara frog clade (figure 5). Once
networks were reliably able to do so, responses to this
call were no longer explicitly selected, and networks
were selected to recognize the next node along the

trajectory leading to the call of the túngara frog. The
influence of past recognition mechanisms was immedi-
ately evident in the increasing ease with which networks
evolved to recognize each new target call (Phelps
2001). To control the cumulative variety of target calls,
we also generated a control history in which the

trajectory was rotated in a multidimensional call
space defined by a principal components analysis
(PCA) of variation within the clade. This ‘mirrored’
history possessed an equal number of steps as the
‘mimetic’ history. Also, like the mimetic history, the
mirrored history converged on the call of the túngara

frog. We found that the two history types were equally
able to recognize the call of the túngara frog, but
differed substantially in how they generalized to other
novel calls (Phelps & Ryan 2000). Assessing the pattern
of responses across such novel calls, we found the
mimetic history was significantly better than the

mirrored history at predicting female responses, a
finding consistent with the hypothesis that females
harboured biases which were vestiges of their
evolutionary histories (Phelps & Ryan 2000).
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Figure 5. Vestigial preferences in neural networks and túngara
frogs. (a) Networks were given one of the two histories matched
for the diversity of the calls in training set. The mimetic history
consisted of a series of representing reconstructed ancestral
nodes in the path leading to túngara frogs; the mirrored history
is a control made by rotating this trajectory in a call space
defined by PCA and synthesizing the resulting calls. Sonograms
on right depict frequencyon the y-axis and time on the x-axis for
corresponding histories. (b) Mimetic history networks retain an
ability to recognize calls with short time to half frequencies,
resembling ancestors. Mirrored histories exhibit biases in the
opposite direction (not shown). (c) Number of females (of 20)
approaching calls synthesized to resemble a reconstructed
ancestor (left of túngara), or control calls of comparable
similarity to túngara frog calls (right of túngara). Real females
respond significantly more often to ancestor-like calls than to
controls that donot resemble an ancestor. Figure modified from
Phelps et al. (2001).
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To further assess the vestigial preferences, we
constructed a series of stimuli that varied in only a
single call parameter—the time to half frequency, a
measure that varied significantly between mimetic and
mirrored histories. The resulting stimuli were different
from training stimuli, yet networks exhibited clear
asymmetries in their patterns of preference, favouring
calls resembling those of ancestors to those that did not
(Phelps et al. 2001; figure 5b). To examine females for
comparable markers of vestigial preferences, we
constructed a series of stimuli that varied along a
dimension which ranged from the extant túngara call to
the reconstructed call of an ancestor in one direction, to
equidistant calls that did not resemble an ancestor in
another direction. We tested such calls in both one- and
two-choice phonotaxis experiments. We found that
females, like the neural networks, exhibited strong
preferences for calls resembling those of ancestors
(figure 5c).

Despite their simplicity, the neural network models
were able to demonstrate how history and species
recognition could interact to produce a complex pattern
of responses in an extant species. One can imagine
supplementing the extant studies with the sort of
modifications described for feed-forward networks—
assessments and manipulations of the ambient noise or
call transmission, or the performance of multiple tasks.
I suggest, however, a novel set of parameters often
omitted from sensory ecology, that of perceptual cost.

(e) Incorporating costs

Since perceptual resources are limited, organisms must
decide how much they will invest in information
processing, and how to allocate those resources across
alternative tasks. Consider two extreme examples: the
energy budget attributed to the human brain is 20% of
basal metabolic rate (Clarke & Sokoloff 1999); and for a
mormyrid electric fish, it is 60% of basal metabolic rate
(Nilsson 1996). Within mammalian nervous systems,
Ames (2000) estimates approximately 5–15% of this
budget is attributable to maintaining neuron function,
approximately 30–50% to maintaining and recycling the
contents of synapses and approximately 50–60% to
maintaining ion gradients needed for initiation and
propagation of voltage changes.

Fortunately, each of these major categories has an
obvious and quantifiable analogue in neural network
models. Neuron maintenance costs can be assigned by
multiplying the maintenances cost per neuron by the
number of neurons in the network (cmn) or, if neuron
number is not allowed to vary, the number of neurons
active in the task. The costs of maintaining synapses
can be assigned by summing the values of weights
across the network (

PP
wijcw, where wij is the weight

between a pair of neurons i and j and cw is the cost per
unit of synapse). If one keeps track of the output of each
neuron in each time-step, one could assign costs based
on the activity of each neuron as well (

PP
csðaÞ, where

cs(a) is the function describing how signalling costs
accrue as a function of activity, summed across neurons
and time-steps). In fact, it seems as if costs of
perceptual allocation could be modelled using extant
neural networks simply by altering fitness functions.
Using the example given for the túngara frog network,
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the modified fitness function would simply be
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The function cs(a) describing how costs increase with
firing rate merits special attention, because it lies at the
heart of work on the design of efficient coding schemes.
Laughlin et al. (1998) point out that the relationship
between energy use and information coding (bit rate)
is not linear. Instead, energy use is an accelerating
function of bit rate—at high bit rates, doubling the
amount of information encoded more than doubles its
cost. As a result, it is often more efficient to parse
the coding of information between two neurons rather
than sustain the high costs of coding the same
information in a single neuron. Indeed, this is a general
feature of intensity coding (Gardener & Martin 2000).
In the auditory system of anurans, for example, many
of the frequency thresholds shown in figure 3b
correspond to the minimum intensity needed to elicit
some basal level of population-level activity. An
examination of the firing thresholds for individual
neurons reveals that the intensity of a given frequency is
coded by a distributed set of neurons that vary in their
individual thresholds (e.g. Konishi 1969; Capranica &
Moffat 1983). If efficient coding is a major concern of
sensory design, neural networks could prove invaluable
tools for its exploration.
3. CENTRAL ALLOCATION
Sensory information does not, of course, end at the
periphery. Sensory stimuli must ultimately reach brain
regions that combine sensory and affective information
to influence behaviour. A comprehensive review of
higher levels of sensory processing or its intersection
with downstream decision mechanisms is well beyond
our current aims. Even a broad survey of classic
literature, however, reveals a remarkably congruent
picture of perceptual allocation.

Sensory receptors coming from a peripheral organ
converge on relay sites, each of which transforms the
information into more useful forms. These relays and the
higher representations they feed into exhibit a topo-
graphical representation of sensation. In other words,
adjacent neurons represent similar domains of sensory
space. Notably, the configuration of a map does not
faithfully reproduce the structure of the sensedworld, but
is distorted in favour of certain highly sensitive and highly
important areas. The primary visual cortex, for example,
consists of a series of columns of neurons that arrange
visual information by eye, position and orientation. The
representation of the fovea, however, is far in excess of the
size of the corresponding visual field. Similarly, in
moustache bats, the primary auditory cortex exhibits an
inflated representation of 60–62 kHz sounds, a range
corresponding to the echolocation calls used to navigate
and hunt (reviewed in Covey 2005). I now discuss a
Phil. Trans. R. Soc. B
well-studied representation, that of somatosensation,
or touch.

(a) Touch
The mammalian somatosensory cortex has been a
long-standing subject for neurophysiologists. Marshall
et al. (1941) recorded the activity of neurons in
somatosensory cortex in response to touching different
regions of an animal’s body surface. Penfield and
colleagues demonstrated that such maps were causally
related to perception by asking epileptic patients,
whose cortices were being probed to uncover the foci
of seizures, what they felt in response to electrical
stimulation at different sites (Rasmussen & Penfield
1947). The resulting maps depict a homunculus
distorted by the density of sensory innervations in
distinct body parts (indeed, we now know there are
multiple such maps; Kaas et al. 1979).

It is now accepted that topographic maps are not
static representations of the periphery, but are gradu-
ally modified by experience. Jenkins et al. (1990)
trained monkeys to perform a task that involved
touching a disk with their fingertips; over the ensuing
months the representation of fingertips grew at the
expense of the adjacent phalanges. String players
display an enlarged representation of left but not right
fingers, and such changes are correlated with the ages
at which musicians began playing (Elbert et al. 1995).
Even the nature of the topography can be modified by
experience. Adjacent fingers are next to one another,
for example, but somatosensory maps contain sharp
divisions between neurons of one finger and those of
another. A notable exception occurs when patients
suffer from congenital syndactyly, in which fingers are
fused. Surgically freeing the digits causes the individua-
tion of the representations of the formerly joined
fingers (Mogilner et al. 1993).

Topographical representations and their distortions
reflect the underlying ability of an organism to resolve
physical differences between stimuli. This relationship
is born out by studies of species diversity in the
organization of somatosensory cortex. Welker and
colleagues, for example, demonstrated that coatimun-
dis, which have relatively sparse representation of the
front paw in the somatosensory cortex, have less digit
dexterity than the related and more elaborately
represented raccoon (Welker & Seidenstein 1959;
Welker & Campos 1963). More dramatic, perhaps, is
a series of studies on the star-nosed mole, Condylura
cristata, an insectivore which possesses an elaborate
star-shaped mechanosensory organ on the tip of its
nose. The organ appears to be an elaboration of a basal
mole pattern in which the rostrum is specialized for
touch (Catania 2005). The high surface area of the star
is combined with a fovea-like sensitivity of the central
appendages (Catania & Kaas 1997). This peculiar
arrangement facilitates capture of small prey on the
order of 230 ms, a handling time that makes even
tiny items surprisingly profitable (Catania & Remple
2005). This high value for mechanosensory input
is accompanied by an enlarged representation of
somatosensory cortex, and a disproportionate amount
of this region allocated to the central appendages of the
star (Catania & Kaas 1997; Catania & Remple 2005).
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Figure 6. A self-organizing feature map trained by Kohonen’s
winner-take-all algorithm. Graphs depict frequency contours
over short time-frames (approx. 100 ms) for Finnish
phonemes. (a) Points along the contour served as inputs to
a map. (b) In a trained map, adjacent neurons map similar
space. The phoneme in (a) is most similar to the ‘winning’
neuron at the centre of the concentric grey circles. In a
training phase, the winning neuron would cause the
neighbouring neurons to update their weights to be more
similar to the winning weights. This neighbourhood function
drives the map’s ability to topographically map complex
stimuli. Figure modified from Kohonen (2003).
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(b) Neural network models of topographic maps

It may seem at first that such complexity is beyond the
scope of immediate modelling efforts in animal
behaviour. Although the rules by which the nervous
system assembles maps of sensory space are an active
area of investigation (for recent review of somatosen-
sory cortex, see Feldman & Brecht 2005), there are a
number of surprisingly simple algorithms appropriate
for modelling the emergence of such maps. Such rules
tend to focus on changing weights based on patterns of
correlation between neurons (‘Hebbian’ rules, after
Hebb 1949), or on competitive interactions between
neurons (e.g. Kohonen 1982; Kohonen & Hari 1999).
Hebbian mechanisms have long been the focus of
physiological work on map assembly (e.g. Bear et al.
1987). Competitive learning methods, in contrast, are
the focus of more computational work and less
physiological work; their mechanisms are biologically
feasible, however, and seem likely to be a component of
natural map formation. Since one type of competitive
learning map, Kohonen’s self-organizing map
(Kohonen 1982; Kohonen & Hari 1999) is readily
available in a number of software packages (e.g.
MATLAB), I will briefly describe how it could be used
to investigate perceptual allocation. The same ques-
tions could be asked of Hebbian maps as well.

Kohonen’s self-organizing map (SOM) commonly
begins with an array of neurons which randomly weight
each dimension of an input vector. The dimensions of
this vector can be considered the activities of a set of input
neurons. In each round of training, the map neuron
which is most active in response to an input pattern, the
‘winner’, increases each of its weights in proportion to the
activity of each input (figure 6), thereby increasing its
response to the same input on future presentations. The
winning neuron influences adjacent neurons to perform
an analogous update, and the magnitude of the
modification declines with the distance from the most
active neuron. This simple procedure produces a two-
dimensional map of a complex, multidimensional input,
in which the resulting topography reflects underlying
similarities between input patterns. In one example,
maps trained on short-time spectra of Finnish language
sounds produce an ordered map of phoneme structure
(figure 6; Kohonen 2003).

Studies of these maps reveal interesting patterns. First,
as in Hebbian learning, the maps tend to be biased
towards the most common types of input patterns.
Interestingly, the magnification of the representation is
found to correspond to the frequency of a pattern raised
to a power (Haykin 1994). That power typically varies
from 1/3 to 1, indicating that as a rule, the number of
neurons that represent a feature is an increasing but
decelerating function of its frequency of occurrence
(Kohonen & Hari 1999). How can one relate such
parameters to natural patterns of allocation? I have
mentioned that innervation density at the periphery
tends to predict cortical area and behavioural discrimin-
ation. What is the quantitative nature of such relation-
ships and how are they modified by mechanisms of map
formation? How do changes in peripheral allocation alter
the ability to represent information at higher levels? Such
questions seem central to linking sensory drive to the
compatible traditions of neuroethology.
Phil. Trans. R. Soc. B
In order to ask such questions, one must first identify a
metric that describes how well the map preserves
information relevant to identification of ecologically
relevant patterns. This is not a trivial task, but assume
for the moment that has been done. How could one
incorporate it into evolutionary models? Using a genetic
algorithm, one can encode the relevant learning
parameters, the size of the map and perhaps the
distribution of responses at the periphery (the ‘innerv-
ation density’). Based on a set of inputs, one could train
networks with these parameters to produce a map of the
input space. Using a fitness function analogous to the one
described for peripheral allocation, one could select
networks to form efficient representations that preserved
meaningful distinctions from within that input space.
How would the mechanisms of map formation—
Hebbian, competitive or otherwise—interact with the
demands of efficient coding to produce higher level
allocations? Are there regularities one can predict
between the costs of representationand the magnification
of peripheral inputs? Can such considerations help us
understand why some animals have multiple maps for
complex representations,while othershave lost all but the
lowest level maps (e.g. the lack of secondary auditory and
visual cortex in the brains of shrews, Catania 2005)?Such
questions seem highly relevant to receiver design, but are
unlikely to merit serious treatment by biologists focused
on understanding human brain function.
4. COMMON THEMES, UNCOMMON
OPPORTUNITIES
This review has touched on a broad range of examples
from both empirical and modelling studies. Running
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through this diversity are common threads worth
articulating. The first is that the principles of sensory
ecology have proved remarkably predictive of natural
variation. This power has the limits of any theory that
describes how animals ought to be designed—selection
can only act locally, and the topology of the fitness
landscape is likely to be influenced by the sub-optimal
contingencies of genetics and history. A second thread
is that treatments of receiver design need to explicitly
address the costs of perceptual resources. Such costs
are implicit in analytic models but are rarely dealt with
directly. Beyond these themes are a number of more
specific commonalities.

In principle, meaningful information could be
extracted at either early or late stages of processing.
Nevertheless, the periphery does attend selectively to
certain kinds of information. This is evident not only in
the peripheral tuning of sensory systems, but also in
electrophysiological studies which demonstrate that
biologically relevant stimuli are often more faithfully
represented than arbitrary stimuli (e.g. Machens et al.
2001). Given that the allocation of neurons to higher
order representations is shaped by the distribution of
resources at the periphery, the earlier in the processing
stream one can isolate information likely to be mean-
ingful, the greater the efficiency of emergent represen-
tations. As knowledge of peripheral sensory structures
becomes more advanced, more explicit and more
elaborate evolutionary models for such processing
seem to be on the horizon.

The efficacy of a nervous system must ultimately be
measured by its ability to make decisions that
contribute to an organism’s fitness. In sensory ecology,
as in the communications theory upon which much of
the field is based, this is measured as an attempt to
discriminate meaningful from unmeaningful stimuli.
Dusenberry (1992) notes that there are multiple such
measures, each having a different formulation, but all
maximizing the ratio of the likelihood the stimulus is
present to the likelihood it is not. In signal detection
theory, this decision corresponds to a threshold (which
might be further weighted by the values of various
kinds of decisions, as by Green & Swets 1966). In
information theory, this would likely take the form of
the logarithm of this ratio, as in equation (2.3). In
particular applications in sensory ecology, similar
measures may be used without explicit reference to
such theory. In an elegant study on dichromatic marine
fishes, for example, Cummings (2004) measures the
distribution of colours in the environment and in food-
laden corals; using quantum flux calculations, she finds
that for multiple species the receptor tuning is ideally
suited to discriminate a coral target from background
lighting. The same conceptual framework can describe
the fitness functions of most evolutionary neural
network studies. In our túngara frog example, we
selected a network to maximize its output in response
to a túngara call, and minimize its response to
background noise. This is synonymous with maximiz-
ing how much information the output of the network
conveys regarding the presence of a conspecific call.
Similarly, in an elegant study on the coevolution of
model signallers and receivers, Hurd et al. (1995)
demonstrate that visual signals and feed-forward neural
Phil. Trans. R. Soc. B
networks coevolve to maximize signal discriminability.
Darwin’s ‘principle of antithesis’ and the ethological
‘sign stimulus’ both emphasize the tendency of signals
to evolve to extreme, easily detected forms (Darwin
1872; Tinbergen 1951). The ability to discriminate
among biologically meaningful categories can be
formalized in many ways, but the common crux is
that detection is valuable, and receivers are active
investors in information acquisition.

Thus far, discussion of perceptual allocation has
focused on the ability to detect a target within a
background noise—certainly a critical task, and the
focus of much study in both sensory ecology and
network evolution. However, it is worth noting that not
only can there be multiple targets, as exemplified by the
numerous mate choice and feeding examples dis-
cussed, but also there are tasks not readily described
as target detection. A number of studies have, for
example, investigated the tuning of visual receptors for
wavelengths abundant in the natural environment, a
task referred to as ‘luminance detection’ (Wyszecki &
Stiles 1982). For example, the need to navigate in one’s
surroundings requires the ability to detect abundant
and variable stimulus energies. Such background
sampling is often at odds with a simple ‘matched filter’
strategy. A complete examination of perceptual allo-
cation will need to address how background and target
detection are accomplished simultaneously. The allo-
cation of resources to potentially conflicting tasks is
interesting in its own right, and more so when coupled
to the interacting participants in sensory drive.

Another limitation of our first-order description of
perceptual allocation is that not all tasks will have equal
value. The optimal allocation to a task must balance the
cost of each additional neuron with the value expected
from the information gained. The most effective
representation does not simply maximize the resolution
of frequent stimuli—it maximizes the expected value of
that information, which is the product of its frequency
and value. Returning to the example of somatosensory
cortex, over a lifetime the glans of the penis is not likely
to receive much more frequent use than a correspond-
ing area of skin on the adjacent body surface, and yet,
for obvious reasons, its uses contribute much more to
fitness, and its innervation density reflects that value. It
is interesting to note that the importance of value on
perceptual allocation is currently an exciting topic in
sensory neuroscience. For example, playing tones to rats
while stimulating ascending projections from the ventral
tegmentum, a region encoding positive value, enhances
the representation of those frequencies in auditory cortex
(Bao et al. 2001; see also Kilgard & Merzenich 1998).
Similarly, Suga and colleagues have used bats to show
that making tones more meaningful by linking them to
negative reinforcement causes an expansion of their
representation in early auditory centres (Gao & Suga
2000). The view from behavioural ecology suggests that
this is likely to be a rather general process.

Sensory ecology and neural network models have
been successful in isolation. The underlying unity in
their concern with sensory design suggests how neural
network studies could gain from the clarity provided
from the mathematical methods of sensory ecology. In
turn, sensory ecology could stand to be sullied by the
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complexities of evolutionary processes captured in

genetic algorithms and elaborate receivers. These

complementary approaches make it possible to titrate

the compromises faced by model organisms—to titrate

the costs, histories and tasks to observe the complex

interplay of ecological and evolutionary forces. The

resulting hybrid promises not dilution and extinction,

dilution and but diversity and rigour. By exploring the

strengths and the weaknesses of sensory ecology

through the neural network models, we are likely to

gain a deeper understanding of its power, limits and its

ability to direct novel experiments in a diversity of taxa.
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R. Soc. B 267, 1633–1639. (doi:10.1098/rspb.2000.1189)

Phelps, S. M., Ryan, M. J. & Rand, A. S. 2001 Vestigial
preference functions in neural networks and túngara
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