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Abstract

Possible causes to explain platform drowning have been hotly debated by carbonate sedimentologists for more than a

decade now. In this paper, we present multiple evidence to explain the drowning of a carbonate megabank that covered most

of the modern Northern Nicaragua Rise (NNR) during an interval spanning from late Oligocene to early Miocene by the

interaction of several environmental factors. The recovery during ODP Leg 165 of late Oligocene to middle Miocene

sedimentary sequences in the sub-seafloor of the modern channels and basin, Pedro Channel and Walton Basin, respectively,

that dissect the NNR (Site 1000) and south of the rise in the Colombian Basin (Site 999), combined with information from

dredged rock samples, allows us to explore in more detail the timing and possible mechanisms responsible for the drowning

of the megabank and its relationship to Miocene climate change. The modern system of isolated banks and shelves dissected

by a series of intervening seaways and basins on the NNR has evolved from a continuous, shallow-water carbonate

bmegabankQ that extended from the Honduras/Nicaraguan mainland to the modern island of Jamaica. Available information

suggests that this megabank broke apart and partially drowned in the late part of the late Oligocene at around 27 Ma and

finally foundered during the late early Miocene around 20 Ma, resulting in limited neritic coral growth in the areas where the

modern isolated carbonate banks and shelves are occurring today. Available information also suggests that the southern and

central parts of Pedro Channel were already a deep-water area before the major episode of platform drowning, and its

formation predates the initiation of the Caribbean Current. However, after the partial drowning of the megabank, the channel

has become a major pathway for the Caribbean Current. Stratigraphic units identified in deep-water carbonates sampled at

ODP Sites 999 and 1000 help to constrain the environmental setting leading to the drowning of the banks. Changes in

lithology and mass accumulation rates of both the carbonate and non-carbonate fraction parallel stable isotope shifts and

likely indicate regional changes in climate and circulation during the late Oligocene–middle Miocene interval. Carbonate

mass accumulation rates (MARs) at Site 999 suggest increased regional productivity during the early Miocene. Terrigenous

MARs at both Sites 999 and 1000 show a general increase from the Burdigalian through the Serravallian. The temporal

association among episodes of neritic platform deposition, followed by increased productivity as identified by higher
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carbonate MARs and positive excursion in carbon isotopes, suggests that oceanographic changes such as local upwelling and

nutrification have led to the partial drowning of the NNR bmegabankQ.
D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The stratigraphic record comprises many cases of

drowned platforms (Schlager, 1981; Hallock and

Schlager, 1986). This occurrence constitutes a scien-

tific paradox, as the growth potential of platforms

exceeds the rates of sea-level rise available for

drowning. Since the identification of the drowning

paradox (Schlager, 1981), carbonate sedimentologists

have hotly debated what processes can cause platform

drowning. Recently, Schlager (1999) has demonstra-

ted that the growth potential of carbonate platforms

follows a scaling trend. The long-term (million-year)

drowning of carbonate platforms requires that the

reduction of growth during long time scales is largely

caused by environmental factors. It has been demon-

strated in Jurassic settings that platform drowning is

associated with abrupt shallow facies changes (Blo-

meier and Reijmer, 1999) and, based on fluid

inclusion paleobarometry, that water depth has

increased at slower rates than normal platform growth

(Mallarino et al., 2002). These findings require

environmental changes for platform drowning. How-

ever, no known cases so far have directly demon-

strated changes in the ocean environment concomitant

to drowning episodes. In this paper, we present

multiple lines of evidence for the gradual and partial

drowning of a large carbonate platform (megabank)

that covered the modern Northern Nicaraguan Rise

(NNR) on its entire length from the late Oligocene

until the late early Miocene by the interaction of

several environmental factors.

The carbonate platforms of the NNR (see Fig. 1)

provide a modern example of a carbonate system

where oceanography plays an important role on

biotic assemblages and stratal architecture. The

NNR platforms, banks, and shelves, despite being

located in tropical waters remote from terrigenous

influx, are relatively deep and support almost no

coral-reef development (Hallock and Elrod, 1988;
Hallock et al., 1988; Hine et al., 1988). Hallock et

al. (1988) suggested that intermediate trophic

resources, resulting from topographic-induced

upwelling, sustain algal–sponge dominated benthic

communities with Halimeda bioherms (Hine et al.,

1988) rather than coral–algal dominated reef sys-

tems as found in the Bahamas (e.g., Illing, 1954).

In addition, sediment accumulation on the bank and

shelf tops has been strongly influenced by some

strong ocean surface currents (Caribbean Current)

whereas the easterly winds play a secondary role in

winnowing the fine sediments produced on the bank

and shelf tops and preferentially dumping those on

a down current instead of down wind directions,

leaving a thin cover of coarse sediments on the

bank and shelf tops (Hine et al., 1988; Glaser and

Droxler, 1993).

Based on the interpretation of a high-resolution

seismic grid and analyses of dredged shallow-water

limestones cropping out on the sea-floor, Droxler et

al. (1992) showed that the modern system of banks,

seaways, and basins on top of the NNR have evolved

from a continuous, shallow-water carbonate mega-

bank that extended from the Caribbean shelf of

Honduras and Nicaragua and the western and central

part of the Jamaica mainland, and suggested that this

megabank broke apart and partially foundered in the

middle Miocene (Figs. 2 and 3). It is postulated that

the partial foundering of the megabank led to the

opening of this major intra-Caribbean gateway and to

the initiation and evolution of the Caribbean Current

and thus contributed at that time to the intensification

of the Gulf Stream (Droxler et al., 1998). It has been

suggested that the foundering of the NNR megabank

was possibly related to a reorganization of the

spreading within the Cayman Trough as a result of

extensional forces created by changing tectonic

activity in the boundary zone between the North

American and Caribbean plates (Droxler et al., 1992,

1998; Duncan et al., 1999).
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The recovery during ODP Leg 165 of sedimentary

sequences of late Oligocene to middle Miocene age in

present-day channels (Pedro Channel) of the NNR and

north and south of the NNR (Site 998 in the Yucatan

Basin and Site 999 in the Colombian Basin, respec-

tively) (Sigurdson et al., 1997; Roth et al., 2000;

Kameo and Sato, 2000), combined with information

from dredged rock samples (collected During Leg II

of research cruise CH9204), allows us to explore in

more detail the timing and possible mechanisms for

the drowning of the megabank and its relationship to

Miocene climate change. In addition, we can evaluate

linkages between platform drowning, climate change,

and related changes in the ocean environment.

Objectives of this paper are: 1) to discuss the lines

of evidence available from seismic data and dredged

samples to constrain the timing of drowning; 2) to

present data on sedimentological and physical proper-

ties and mass accumulation rates of slope sediments

sampled at Sites 1000 and 999 by ODP Leg 165; 3) to

establish a late Oligocene–Miocene stable-isotope

record from bulk samples recovered at Sites 1000

and 999 as proxy of climate and circulation changes;

and 4) to evaluate different hypotheses and discuss

potential causes for the Miocene partial drowning of

the NNR carbonate megabank.
2. Geological and oceanographic setting

The Nicaragua Rise is a major NE–SW trending

active structural feature on the northwestern part of

the Caribbean Plate on which carbonate platforms

have been established on basement highs (Arden,

1975; Duncan et al., 1999). It is bounded by the

Cayman Through to the north and by the Hess

Escarpment to the south (Fig. 1). The rise is divided

by the Pedro Fault Zone in the Northern and Southern

Nicaragua Rise. The Northern Nicaraguan Rise

(NNR) is a structural high which extends from

Honduras and Nicaragua on the southwest to the

island of Jamaica on the northeast, and is character-

ized by a series of carbonate shelves and isolated

carbonate banks separated by channels and basins

(Figs. 1–3). To the south is the Southern Nicaragua

Rise, a deeper region of highly variable relief with

rare scattered small carbonate banks, separated from

the Colombian Basin by the Hess Escarpment.
The most significant oceanographic feature con-

trolling today’s sedimentation on the NNR is the

northward flow of the Caribbean Current across the

top of the rise and through its relatively narrow and

shallow seaways (Roberts and Murray, 1983; Triffle-

man et al., 1992). Acceleration of the Caribbean flows

over the rise induces topographic upwelling, which

can raise sea-surface chlorophyll levels threefold or

more with minimum temperature perturbations (Hal-

lock and Elrod, 1988; Hallock et al., 1988). Sponge–

algal communities in the photic zone dominate this

upwelling, nutrient-rich environment. Because of the

lower growth rate of sponge–algal communities, these

platforms have failed to keep up with sea-level rise,

and as a result are covered by 20–40 m of water.

Because neritic carbonate production decreases rap-

idly with water depth, the submerged shelves and

banks of the NNR were considered to be either

bdrownedQ or bincipiently drownedQ (Hine and Stein-

metz, 1984). However, recent studies have shown that

these carbonate shelves and banks on the NNR

produce a large volume of neritic metastable carbo-

nate sediment (fine-grained biogenic aragonite and

magnesian calcite) much of which is exported offbank

(Hallock et al., 1988; Droxler et al., 1991; Glaser and

Droxler, 1991, 1993). Accumulation rates on the

slopes during the Holocene are of the same order of

magnitude as the rates off the Great Bahamas Bank

(Glaser and Droxler, 1991).
3. Methodology

During a NSF-funded 1992 cruise CH9204 aboard

the R/V Cape Hatteras, an extensive seismic grid of

digital, high-resolution single channel seismic (SCS)

and analog 3.5 kHz echogram data, in addition to 21

piston cores, 9 successful dredge hauls, and 2

successful box cores, was collected in Pedro Channel

(see dredge locations in Fig. 3). Navigation for the

SCS data consists of GPS fixes roughly every 30

shots. GPS fixes were also available for the 3.5 kHz

data and at each piston core, box core, and dredge

haul site. Approximately 170 km2 of Hydrosweep

data was acquired over ODP Site 1000, as well as over

600 km2 of additional Hydrosweep data within Pedro

Channel to the north of Site 1000 at the end of 1994

aboard the R/V Maurice Ewing. All available dredged
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samples were cut into 2.5-cm-thick slabs for exami-

nation. Several of these slabs were then thin-sectioned

to facilitate microfacies examination. Dr. Edward

Robinson (University of the West Indies, Kingston,

Jamaica) provided larger benthic foraminifer-based

age control for several of the dredged samples (written

communication). Well-lithified samples of white

limestone from dredge sites CH9204-18, 57, and 61

contain larger foraminifer indicative of early Miocene

(Aquitanian) age. Dredge hauls CH9204-18, 43, 57,

and 61 appear to have shallow-water affinities that

have undergone subsequent fracturing, infilling, and

diagenesis with deep-water characteristics. Planktonic

infilling of cracks in some of the dredged material

(sites CH9204-18 and 43) are of Pliocene or younger

age. Dr. Stanley Frost (Union Oil Company) identified

shallow-water Scleractinian corals in samples from

dredge haul CH9204-43 (Stylophora cf. imperatoris)
and CH9204-57 (Porites tronitatis and Montastrea

costata). Detailed description of the results and their

interpretation can be found in Cunningham (1998).

ODP Leg 165 took place from December 1995

through February 1996 and cored sedimentary

sequences of late Oligocene to middle Miocene age

in present-day channels (Pedro Channel) of the NNR

and north and south of the NNR (Site 998 in the

Yucatan Basin and Site 999 in the Colombian Basin,

respectively). The age models at Sites 999 and 1000

have been developed using nannoplankton and

planktic foraminifers biostratigraphy (Sigurdson et

al., 1997; Chaisson and D’Hondt, 2000; Kameo and

Bralower, 2000) and are based on the revised

geomagnetic polarity time scale of Cande and Kent

(1995). Sediment mass accumulation rates (MARs; g/

cm2 kyr), rather than sedimentation rates (cm/kyr),

were calculated for both the carbonate and non-
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carbonate fractions in order to quantify the variations

of the two main parameters controlling sedimentation.

Mass accumulation rates are calculated by multiplying

the calculated sedimentation rate (cm/kyr) by the

measured dry bulk density (g/cm3). Values from ash

layers and turbidites were removed from the data set,

in order to monitor bbackgroundQ changes.
Over 350 samples were analyzed for bulk stable-

isotope composition at both ODP Sites 999 and 1000.

Bulk samples were analyzed with the intention of

maintaining consistency throughout the investigated

intervals, as some intervals are too lithified to be

separated. Samples were dried at 60 8C, then,

according to their degree of lithification, either broken

and crushed or drilled to obtain sufficient material for

analysis. Then they were reacted using orthophos-

phoric acid at 90 8C and analyzed online using a

PRISM mass spectrometer at ETH Zurich. Results are

reported using the standard d notation in per mil (x)

relative to the PDB standard. Reproducibility of

replicate analyses was generally better than 0.1x.

Due to different sampling intervals, the resolution of

the stable isotope record is at an average of ~50 kyr

(up to ~35 kyr) at Site 1000, and at an average of

~140 kyr (ranging between 80 kyr and 250 kyr) at Site

999.
4. Evolution of the Northern Nicaragua Rise

4.1. Seismic data

The speculative pre-Miocene sedimentary evolu-

tion was initiated by a marine inundation believed to

have begun in the Paleocene to early Eocene. Clastic

sedimentation dominated Pedro Channel until the

middle Eocene when neritic carbonates were estab-

lished on the banks. Based upon the interpretation of a

high-resolution seismic grid and additional multi-

channel seismic lines from the University of Texas

Institute of Geophysics and Institut Francais du

Petrole, it was concluded that a large carbonate

platform, referred here to as a megabank, occupied a

large portion of the NNR, in particular its crest during

the Oligocene–early Miocene, including the shelves

of Honduras and Nicaragua and the island of Jamaica

(see Figs. 2 and 3). The current isolated carbonate

platforms on the NNR such as Pedro and Rosalind
Banks were interpreted to represent the remnant parts

of a partially foundered megabank (Droxler et al.,

1992). Moreover, the northern part of Pedro Channel,

the Spur, is composed of a middle Eocene to middle

Oligocene, and at least locally early Miocene rem-

nants of a shallow-water carbonate bank. Water depths

associated with the depositional environments

recorded in this bank would have been close to sea

level while the carbonate bank was active, compared

to the 700–1200 m water depths it currently occupies.

The plateau in the central part of Walton Basin is also

interpreted as a drowned shallow carbonate platform

and, as the Spur, is a clear drowned part of a

megabank that extended across the entire crest of

the NNR.

Seismic lines depict a major drowning unconform-

ity, which separates the megabank from the overlying

periplatform sediments in the northern part of Pedro

Channel and in the central part of Walton Basin (Figs.

4 and 5). With the exception of the Spur in the

northern part of Pedro Channel, periplatform sed-

imentation dominated the southern and central parts of

Pedro Channel during the Neogene as recorded in

ODP Site 1000.

In association with the present-day isolated carbo-

nate banks, such as Pedro and Rosalind Banks that

have remained areas of neritic carbonate since the late

Eocene, drowned banks and reefs observed in Pedro

Channel and Walton Basin formed an east–west

barrier along the NNR, where continuous shallow-

water environments prevailed from the late Eocene to

early Miocene. Some of the carbonate banks and

barriers subsided and drowned as late as the late early

Miocene (Cunningham, 1998). The presence of these

neritic banks during the early Miocene would have

served as a barrier to northward water transport and

would have also enhanced westward tropical flow

between the Caribbean and the eastern Pacific (Fig.

3). Coccolith assemblages at Sites 998 and 999, north

(Yucatan Basin) and south (Colombian Basin) of the

NNR, respectively, show minimal connection in the

surface circulation between those two basins during

nannozones CN3 and CN4 (16.2–13.57 Ma) (Kameo

and Sato, 2000). This observation supports the idea of

a barrier impeding any significant surface flow over

the NNR as late as during the early middle Miocene.

Cunningham (1998) places the initiation of tectonic

activity and mini-basin formation in the Pedro
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unconformable middle Miocene and younger periplatform sediments.
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Channel area at 16–11 Ma (ages of Raffi and Flores,

1995). This activity may also be related to the change

from a relatively long period of quiescence on the

NNR to the uplift of Jamaica in the late middle

Miocene (Leroy et al., 1996). The demise of carbonate
Fig. 5. Seismic lines from Walton Basin (see Fig. 3 for location) showing

unconformable middle Miocene and younger periplatform sediments.
neritic banks in the northern part of Pedro Channel

and the central part of Walton Basin has led to the

observed modern configuration of shallow carbonate

banks segmented by north–south oriented channels

(Cunningham, 1998; Droxler et al., 1998). The
the seismic character of the drowned megabank and the overlying,
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merging of coccolith assemblages between Sites 998

and 999 (Kameo and Sato, 2000) was first initiated

during nannozone CN5 (13.57–10.71 Ma) and was

fully completed during nannozones CN6 and CN7

(10.71–9.36 Ma) and supports the estimated timing of

a seaway opening along the NNR.

4.2. Dredge samples

Although the top of the drowned megabank was

never cored, the top of the foundered megabank or its

lateral, deeper-water equivalent crops out on the

seafloor in several locations within Pedro Channel

(Cunningham, 1998). During the research cruise
Miogypsina 
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CH9204, nine successful dredge hauls were collected

in Pedro Channel (see Fig. 3 for location). Petro-

graphic analyses of dredged samples have revealed

the presence of shallow-water organisms (see Fig. 6)

such as corals, green algae, and larger benthic

foraminifers, mixed with pelagic organisms. Shal-

low-water components have been redeposited in

deeper water either as single components or as part

of larger, lithified clasts (Cunningham, 1998). This is

especially evident in samples from site CH9204-57

where there are clasts consisting exclusively of

layered shallow-water sands that are incorporated into

a mix of shallow-water and pelagic material. The

shallow benthic biota, as discussed below, gives an
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early Miocene minimum age for the shallow-water

limestones (20–22 Ma; Cole, 1967; Bryan and

Huddleston, 1991; Robinson, 1994). Well-lithified

samples of white limestone from dredge sites

CH9204-18, 57, and 61 contain larger foraminifer

indicative of early Miocene (Aquitanian) age. Dredge

hauls CH9204-18, 43, 57, and 61 appear to have

shallow-water affinities that have undergone subse-

quent fracturing, infilling, and diagenesis with deep-

water characteristics. Planktonic infilling of cracks in

some of the dredged material (sites CH9204-18 and

43) is of Pliocene or younger age. Larger benthic

foraminifers at site CH9204-18 include Lepidocyclina

(Lepidocyclina) giraudi and Miogypsina sp. (Fig. 6),

indicating an early Miocene, Aquitanian age for the

sample. Shallow-water Scleractinian corals were

identified in samples from dredge haul CH9204-43

(S. cf. imperatoris) and CH9204-57 (P. tronitatis and

M. costata).

The available data set does allow to discriminate

whether this deeper environment represents the fore-

reef (10–30 m water depth) or deeper slope environ-

ments (see discussion in Cunningham, 1998). The

depositional environment interpretation based on the

analysis of dredged samples would thus indicate that

periplatform sedimentation has dominated Pedro

Channel from the early Miocene to recent. Southeast

Pedro Channel (see Fig. 3) appears to be a faulted

half-graben that was tectonically active from 25 to 21

Ma and from 16 to 8 Ma. The Spur (see Fig. 3) is

interpreted as a drowned carbonate bank, which

partially drowned in the late Oligocene around 27

Ma and gave up in the late early Miocene after 20 Ma,

resulting in no further neritic coral growth. The

speculative pre-Miocene sedimentary evolution

reflects a marine inundation believed to have begun

in the Paleocene to early Eocene. Clastic sedimenta-

tion dominated Pedro Channel until the middle

Eocene when neritic carbonates were established on

the banks.
5. ODP sites

Data from two ODP sites will be discussed, from

the shallower Site 1000, currently at 927.2 m water

depth, to the deeper Site 999, currently at 2838.9 m

water depth (see Fig. 1).
5.1. Site 1000

Site 1000 was drilled in Pedro Channel, the largest

(150 km wide) channel crossing the NNR, which is

flanked by Pedro Bank to the east and Rosalind bank

to the west (Figs. 1 and 3). The section drilled at Site

1000 comprises a continuous, fairly homogeneous

lower Miocene–recent 696-m-thick section, which

consists dominantly of periplatform sediments and

sedimentary rocks, interbedded with volcanic ash

layers and intervals of redeposited pelagic and neritic

carbonates from the adjacent shallow carbonate banks

(Sigurdson et al., 1997).

The interval investigated at Site 1000 ranges from

370 to 696 m (the bottom of the recovered section),

spanning from the early Miocene (the oldest rocks

recovered at this site) through the base of the late

Miocene (Fig. 7). This interval comprises different

lithological units (Units IC, ID, IIA, and IIB; see Fig.

7) determined ship-board on the basis of sedimento-

logic criteria, magnetic susceptibility, color reflec-

tance, and carbonate content (Sigurdson et al., 1997).

Periplatform pelagic carbonates form the background

sediment, and are interspersed with volcanic ash

layers and bank-derived calcareous turbidite layers.

Volcanic ash layers are most abundant in the lower

part of the cored section (early Miocene to early

middle Miocene). A similar peak in volcanism was

also recognized at Sites 998 and 999 (Sigurdson et al.,

1997; Carey and Sigurdson, 2000). The occurrence

and distribution of volcanic ash layers document a

major episode of volcanism in the western and central

Caribbean beginning in the earliest Miocene (20–22

Ma) and extending through the middle Miocene, with

ashes accumulation rates ranging up to 2 m/myr

(Sigurdson et al., 1997).

The calcareous turbidites show distinctive changes

in distribution downcore (Fig. 8). On the basis of

turbidite abundance, three intervals can be defined.

Two intervals characterized by a high frequency of

turbidites are identified. The first interval occurs from

696 to 585 m and coincides with lithological Unit IIB,

whereas the second interval occurs within Unit IC,

between 405 and 300 m. A third interval, between 585

to 405 m, spanning the middle Miocene, is turbidite-

free, with the exception of one single bed (Fig. 8).

Most of the turbidites contain redeposited pelagic

components, and only the lowermost turbidite beds
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contain material derived from the shallow-water

portion of the adjacent banks, such as benthic

foraminifers. These turbidites that contain platform-

derived material suggest that the adjacent banks were

still active during the Burdigalian, in agreement with

information obtained from dredged samples.

At Site 1000, MARs for both the carbonate and

non-carbonate fraction show marked variations

throughout the investigated section (Fig. 7). Carbo-

nate MARs are generally high (3–10 times the non-

carbonate fraction) and show the highest values in the

Langhian. Non-carbonate MARs show a systematic

increase from the base of the cored interval through-

out the Serravallian, with peaks in the Burdigalian,

Langhian, and Serravallian.

5.2. Site 999

Site 999 is located on the Kogi Rise, approximately

1000 m above the turbidite-laden floor of the
Colombian Basin (Fig. 1). A 1066.4-m-thick contin-

uous and apparently complete upper Maastrichtian–

Pleistocene section was recovered, and consists

dominantly of pelagic sediments and sedimentary

rocks with variable amounts of clays and volcanic

ash. The investigated interval at Site 999 ranges from

580 to 250 m, spanning from the Oligocene/Miocene

boundary through the base of the late Miocene (Fig. 9).

This interval comprises different lithological units

(Units IIA and IIB, and Unit III; see Fig. 9) determined

by ship-board observations on the basis of sedimento-

logic criteria, magnetic susceptibility, color reflec-

tance, and carbonate content (Sigurdson et al., 1997).

Volcanic ash layers are particularly abundant in the

lower Miocene to lower middle Miocene portion of the

section. The volcanic ash sedimentation rate at this site

is higher by about one order of magnitude with respect

to Sites 999 and 1000, suggesting that the Colombian

basin was closer to the principal fall out of the Miocene

volcanic source.
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MARs of the carbonate fraction at Site 999

increase abruptly in the middle Burdigalian, and this

high accumulation rate persists through the Langhian

(Fig. 9). The MARs of the non-carbonate fraction also

show an increase during the same time interval,

although less marked. The abruptness of this change

may be an artifact of the age model, but not the

relative changes in values.
6. Significance of variations in turbidite abundance

and MARs

The high-carbonate MARs at Site 1000 (see Fig. 7)

generally indicate the proximity to a periplatform

environment, where pelagic settling is mixed with

other fine sediments derived from the surrounding

banks. Turbidites are particularly abundant during the

Burdigalian and again in the Tortonian. Most of the

turbidite beds we examined in thin section are

composed of reworked and sorted planktic foramini-

fers, but some larger benthic foraminifers occur in the

lowermost part of the cored interval. The highest values

in carbonate MARs are observed during the Langhian,

out of phase with turbidite occurrence. This could be
interpreted to reflect increased pelagic input at this time

and would also be consistent with an increase in

primary productivity. This is particularly evident at Site

999, where most of the sediment is derived from

pelagic settlings, and high carbonate MARs strongly

suggest a regional increase in primary productivity.

Non-carbonate MARs at Site 1000 show a systematic

increase from the base of the cored interval throughout

the Serravallian, with peaks in the Burdigalian,

Langhian, and Serravallian. At Site 999, MARs for

the carbonate and non-carbonate fraction covary from

the middle Burdigalian through the Langhian, but this

trend is reversed at the Langhian/Serravalian boundary.

This change suggests that the two parameters reflect a

response to independent forcing factors.
7. Stable isotope data

7.1. Site 1000

The oxygen-isotope record from bulk sediment at

Site 1000 (Fig. 10) shows marked variations, ranging

from �2.7x to �0.3x, with a systematic trend

towards heavier values upsection, and shows the

detailed character of middle Miocene events. Three

major first-order features are present: 1) an interval

with high variability but without a marked trend

during the Burdigalian (lithological Unit IIB); 2) a

phase of progressive shift towards higher values, from

2.3x to �0.9x, peaking at �0.3, which records the

mid Miocene d18O increase (lithological Unit IIA);

and 3) relatively constant values during the Serrava-

lian (lithological Units ID and IC), with values

ranging from �1.7x to �0.6x.

The carbon-isotope record (Fig. 10) shows marked

variations, from 0.5x to 2.2x, with one major

positive excursion. The d13C shift towards higher

values occurs stepwise, initiating during the Burdiga-

lian, with a gradual increase from 0.9x to 1.5x, then

rapidly increasing to 2.2x at the end of the

Burdigalian (lithological Unit IIB), remaining high

during the Langhian (lithological Unit IIA). The d13C
values start returning gradually to lower values

throughout the Serravallian (lithological Unit ID),

reaching 0.7x, returning to higher values up to 1.6x,

and the excursion terminates with an abrupt decrease

from 1.6x to 0.6x at the end of the Serravallian.
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7.2. Site 999

The oxygen-isotope record shows marked varia-

tions, ranging from �2.6x to �0.3x (Fig. 11).

Oxygen-isotope values show: 1) an interval of

intermediate variability, with an overall trend towards

lighter values during the Chattian and Aquitanian

(lithological Unit IVand part of Unit III); 2) a phase of

relatively constant values throughout the Burdigalian

and Langhian (middle and upper part of Unit III); and

3) an increase at the boundary between lithological

Units III and II, from �1.3x to �0.5x.

The carbon-isotope record shows marked varia-

tions, from 0.5x to 2.4x, and also includes the

presence of two positive excursions (Fig. 11). The

first positive excursion occurs at the top of lithological

Unit IV, near the Oligocene–Miocene boundary. The

second and major positive excursion in d13C occurs

within lithologic Unit III and is a gradual, stepwise

increase, occurring over several tens of meters. The
shift initiated in the late Burdigalian, from 0.9x to

1.8x, returning to 1.3x and then rapidly increasing

to 2.4x during the Langhian. The carbon values

remain high for an interval of approximately 40 m,

and then start returning gradually to lower values

throughout the Serravallian (lithological Unit II). The

excursion terminates with a return to ~1x at the end

of the Serravallian.

7.3. Chemostratigraphic significance of isotope

records

When comparing the data set generated at Sites

999 and 1000 with other existing records (e.g., Miller

et al., 1998; Zachos et al., 2001), a major difference to

consider is that data generated in this study reflect

bulk rock analysis, rather than measurements on

specific species of foraminifers, as commonly used

in Cenozoic paleoceanographic studies. Bulk rock

analysis is, however, commonly used in many pre-
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Fig. 11. Carbon- and oxygen-isotope data from Site 999, plotted against depth. The grey bars refer to the lihological units as illustrated in Fig. 9.

Values are in per mil (x). The crosses indicate the actual measurements; the black line indicates the same data smoothed with a five- point

running average. Note that this removes periods shorter than ~300 kyr. Due to the lower sampling resolution with respect to Site 1000, only

oxygen-isotope events Mi2, Mi4, and Mi6 (as defined by Wright et al., 1992; Miller et al., 1996, 1998) can be recognized. Note the two major

carbon isotope excursions: the first is the Oligocene–Miocene boundary (Zachos et al., 1997) and the second is the Monterey Carbon Isotope

Excursion (Vincent and Berger, 1985), and the presence of carbon isotope events CM1, CM2, CM3, CM4, and CM7 (as defined by Woodruff

and Savin, 1989).
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Cenozoic pelagic settings, when lithologies are

usually too lithified to allow separation of foraminifer

species. Even though bulk analyses reflect a mixing of

carbonates from different sources, it has been shown

that under certain circumstances, the isotopic compo-

sition derived from bulk analyses resembles closely

the record derived from single foraminifer analyses

(Shackleton et al., 1993).

The isotopic composition of bulk samples analyzed

in this study reflects primarily the composition of

calcareous nannoplankton and planktic foraminifers,

with minor contributions from benthic foraminifers.

This implies that isotope values will reflect primarily

surface conditions and will be characterized by higher

isotope values with respect to deep sea benthic

foraminifer records (Miller et al., 1998; Zachos et

al., 2001).
A second aspect to consider is regarding the

possibility of post-depositional diagenetic alteration

that can modify the original marine values, espe-

cially the oxygen isotopes. Frank et al. (1999) have

shown that with increasing CaCO3 content and

burial depth, bulk rock values show progressively

lower d18O values. Using CaCO3 content as a

proxy to evaluate the extent of diagenetic modifi-

cation, Mutti (2000) has shown that the d18O values

above 570 mbsf at Site 999, and above 590 mbsf at

Site 1000, can be assumed to reflect primary values

and can therefore be used for paleoceanographic

purposes.

At Site 1000 (see Fig. 10), the inflections in the

d18O reveal the presence of the Miocene oxygen-

isotope events Mi2, Mi3, Mi4, and Mi5 (as defined by

Miller et al., 1996, 1998; Wright et al., 1992) and
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shows the detailed structure of the middle Miocene

d18O increase; this, totaling 1.4x, occurs within

several (three to four) quasi-cyclic steps. Due to the

lower sampling resolution used at Site 999 (see Fig.

11), only oxygen-isotope events Mi2, Mi4, and Mi6

are visible (as defined by Miller et al., 1998).

The marked variability of carbon isotopes reveals

at Site 1000 (see Fig. 10) the presence of high d13C
values between ~17 and 13.5 Ma, well known as the

Monterey Carbon Isotope Excursion (Vincent and

Berger, 1985). Furthermore, it is possible to recognize

the detailed structure within this event, expressed by

carbon isotope events CM1, CM2, CM3, CM4, CM5,

and CM7 (as defined by Woodruff and Savin, 1989).

The Monterey Carbon Isotope Excursion is also

clearly visible at Site 999 (see Fig. 11), as well as
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facilitate comparison among the two sites and with the deep-sea record com

and 1000 clearly indicates the middle Miocene d18O increase from ~15.5 t

sea benthic foraminifer records (see Zachos et al., 2001).
carbon isotope events CM1, CM2, CM3, CM4, and

CM7. Furthermore, at Site 999, the d13C increase near

the Oligocene–Miocene boundary is visible (Zachos

et al., 1997, 2001).

The chemostratigraphic events in the oxygen and

carbon-isotopes records recognized in the Site 999

and 1000 records can be well traced between the two

sites (Figs. 12 and 13). The correlation between the

two sites further confirms that the stable isotope

events recognized are representative of primary

marine values. Variations in stable isotopes from both

Sites 999 and 1000 indicate regional changes in

climate and circulation during the late Oligocene–

middle Miocene and are linked to major changes in

climate associated with the transition from relative

global warmth to the Neogene bice-houseQ world.
0 1 2 3

δ18O

Zachos et al, 2001

Site 1000
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ainst time (rather than against as depth, as done for Figs. 7–9) to

piled by Zachos et al. (2001). Note how the d18O record at Sites 999

o 13 Ma, although the values are 3–4x higher with respect to deep-
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8. Paleoenvironmental significance of isotope data

8.1. Oxygen isotopes

A number of features emerge from a comparison of

the d18O record from Sites 999 and 1000 with

globally recognized Miocene oxygen-isotope events

(as defined by Wright et al., 1992; Miller et al., 1996,

1998; Zachos et al., 2001). The inflections in the d18O

record at Sites 999 and 1000 indicate clearly the

middle Miocene d18O increase from ~15.5 to 13 Ma

(Fig. 12), although the values are 3–4x higher with

respect to deep-sea benthic foraminifer records (see

Zachos et al., 2001). The middle Miocene d18O

increase has been interpreted to primarily record the
10

15

20

25

0.5

O
lig

oc
en

e
M

io
ce

ne

La
te

ea
rly

m
id

dl
e

la
te

C
ha

tti
an

A
qu

ita
ni

an
B

ur
di

ga
lia

n
La

ng
h.

S
er

ra
va

lli
an

T
or

t.

1

A
ge

 (
M

a)

Fig. 13. The carbon-isotope record from Sites 999 and 1000, plotted agains

comparison among the two sites and with the deep-sea record compiled

drowning events.
intensification of continental glaciation in Antarctica

(Savin et al., 1975; Savin and Woodruff, 1990;

Shackleton and Kennett, 1975). In this interpretation,

cooling of high southern latitude surface waters

increased the production of deep and intermediate

waters and enhanced vertical stratification throughout

the world ocean. A different interpretation suggests

that large ice sheets may have existed prior to the

middle Miocene and that the middle Miocene d18O
increase was entirely due to deepwater cooling,

unaccompanied by Antarctic ice growth (Matthews

and Poore, 1980; Prentice and Matthews, 1988). The

relative proportions of d18O increase attributable to

Antarctic ice storage or to bottom water cooling

remain uncertain.
1.5 2 2.5

δ13C

Zachos et al, 2001

Site 1000
Site 999

final megabank drowning 

onset megabank drowning

t time (rather than against as depth, as done for Figs. 7–9) to facilitate

by Zachos et al. (2001). The grey bars indicate the timing of the
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For the purpose of this paper, it is important to

notice that the drowning episodes, starting in the late

Oligocene and culminating in the Burdigalian, clearly

predate the most significant middle Miocene d18O

increase. The Site 1000 record (Fig. 10) indicates how

Burdigalian drowning episode predates isotope event

Mi2.

8.2. Carbon isotopes

A comparison of the d13C record from Sites 999

and 1000 with globally recognized carbon-isotope

trends and events (Fig. 13) indicates the presence of

two major maxima in mean ocean d13C: the first (Site
999 only) near the Oliogocene–Miocene boundary,

around 24 Ma (Zachos et al., 1997, 2001), and the

second (both Sites 999 and 1000) during the late early

to middle Miocene, from 17 to 13.5 Ma (Monterey

Carbon Isotope Excursion; Vincent and Berger, 1985).

Miocene paleoceanographic changes were accom-

panied by major variations in mean ocean d13C,
involving redistribution between carbon reservoirs

(Miller and Fairbanks, 1985; Vincent and Berger,

1985). The Monterey d13C maximum has been

attributed to the storage of large volumes of organic

carbon in the Monterey Formation of California,

circum-North Pacific, and the southeastern shelf of

the United States, and is postulated as a major

contributor to global cooling through drawdown of

atmospheric CO2 and a series of positive feedback

mechanisms (Vincent and Berger, 1985). The Mio-

cene was a time of unusually high accumulation of

organic matter around the Pacific (e.g., Monterey

Formation, California; Ingle, 1981; Vincent and

Berger, 1985), Atlantic (Florida shelf; Compton et

al., 1990), and Mediterranean (Tellaro Formation,

Sicily; Mutti et al., 1999). Woodruff and Savin

(1989) suggested that the seven d13C maxima (CM

events) found within the Monterey Carbon Isotopic

Excursion correspond to episodes of accumulation of

especially large amounts of organic matter around

the world.

The drowning episodes, starting in the late

Oligocene and culminating in the Burdigalian around

20 Ma, predate the onset of the two main carbon

maxima, each by approximately 1–2 myr. This

relationship between drowning and onset of positive

excursions in d13C is similar to those of Mutti et al.
(1997), who have been recognized in the central

Mediterranean.
9. Discussion of drowning mechanisms

9.1. Timing of drowning events and subsidence pulses

Droxler et al. (1998) originally suggested that the

foundering of the NNR megabank was possibly

related to a reorganization of the spreading within

the Cayman Trough. However, the integration of

regional seismics with dredge data has revealed

pulsed subsidence changes (Cunningham, 1998) with

two major phases: one at 21–25 Ma and the second at

16–8 Ma (see Fig. 14). Because the major drowning

phases are not coincident in time with these events, an

environmental mechanism must have been acting on

the longer term to reduce the growth potential of the

NNR carbonate platforms. Schlager (1999) has

demonstrated that the growth potential of carbonate

platforms follows a scaling trend, providing a solution

to the drowning paradox (Schlager, 1981, 1999;

Hallock and Schlager, 1986). The long-term (millions

of years) drowning of carbonate platforms requires

that the reduction of growth with increasing time is

largely caused by environmental factors. Several

processes could have resulted in long-term local

environmental changes: increased volcanic activity;

changes in circulation that would result in increased

local productivity of the surface waters; and changes

in sealevel and temperature of the surface waters.

9.2. Increased volcanic activity

Major volcanic eruptions such as those docu-

mented in the Caribbean during the Miocene are

expected to have a strong negative effect on carbonate

growth rates. Volcanic events would have increased

water turbidity, thus reducing light penetration to the

surface ocean. Calculated accumulation rates of ash

layers indicate a peak (up to 2 m/myr) during the early

Miocene (Sigurdson et al., 1997). This would have

likely resulted in increased water turbidity at that time.

Non-carbonate MARs, however, do not show signifi-

cant variability coincident in time with the drowning

episodes (Fig. 14). We suggest that frequent and

intense volcanic eruptions may have provided an
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overall higher turbidity with respect to bnormalQ
values, but they alone cannot be responsible for the

drowning of the banks.

9.3. Changes in temperature of the surface waters

Temperature changes and sealevel changes are

linked to glacioeustacy. Times of inflections in the

d18O defining the oxygen-isotope events discussed

above correspond to sea-level falls (Miller et al.,

1996, 1998). Given the uncertainty in the relative

contribution of cooling versus ice storage, the

amplitudes of the sea-level falls remain debated

(e.g., John et al., 2004). The relative timing of

drowning with respect to the oxygen-isotope events

would exclude the role of temperature changes in the

drowning. Furthermore, because the sites are located

in the tropical ocean, variations in sea-surface

temperature related to oxygen-isotope events are

expected to be minor and are therefore unlikely to

be responsible for platform drowning. The Burdiga-

lian drowning episode occurs immediately before

isotope event Mi2 (see Site 1000 record; Fig. 10),

which corresponds to a sea-level fall related to ice

growth, thus suggesting that drowning corresponds

to a time of higher sea level.

9.4. Changes in nutrient supply to surface waters

The two main drowning events in the NNR occur

at the onset of increases in MAR of pelagic carbonate,

which is a direct reflection of increases in productivity

in the surface waters (Fig. 14). These MAR increases

predate by approximately 1 myr the onset of positive

excursions in d13C, both in the late Oligocene and in

the late early Miocene, at the onset of the Monterey

Carbon isotope excursion.

Studies on Caribbean corals are consistent with

regional changes in productivity. About half of the

Caribbean hermatypic corals became extinct during

the latest Oligocene and the early Miocene (Frost,

1977; Budd, 1990; Edinger and Risk, 1994). Of

these, the majority were geographically restricted to

the Indo-Pacific, the remainder became globally

extinct (Frost, 1977). Paleontological studies

(Edinger and Risk, 1994) on land sections suggest

evidence of a major ecological crisis at the Oligo-

Miocene boundary, with survival of those coral
tolerant of both turbidity and high nutrients. Exten-

sive phosphorite deposits, typically associated with

enhanced upwelling, were formed throughout the

Caribbean during the early Miocene (Edinger and

Risk, 1994).

The timing of drowning seems to coincide with

regional changes in productivity and upwelling, as

suggested by MAR at Sites 999 and 1000, coral

extinction patterns, and concurrent regional occur-

rence of phoshorites. Hallock and Elrod (1988)

suggested that nutrient increases due to topographic

upwelling have major effects on today’s sedimenta-

tion. This scenario could be used to explain the

drowning of the megabank during the late Oligocene

and the Burdigalian by nutrification.

9.5. Possible causes for changes in nutrient supply

What could provide a mechanism to increase

nutrient supply and upwelling to the Caribbean in

the late Oligocene–early Miocene and an explan-

ation for the relationships observed? The equatorial

Pacific is today one of the zones characterized by

the highest productivity and was also during the

Miocene. Paleolatitude reconstructions of the Car-

ibbean for the early to middle Miocene suggest that

the NNR was then located at a latitude similar to

the present (Acton et al., 2000). The paleogeo-

graphic setting, however, had important differences.

The connection between the east Pacific and the

Caribbean across the open Central American Sea-

way in the late Oligocene and early Miocene is a

likely explanation for the high trophic conditions.

Because of this paleogeographic configuration, the

megabank was exposed to abnormally high nutrient

levels associated with Miocene equatorial produc-

tivity. Wilson et al. (1988) have proposed the

bDeath-in-the-TropicsQ hypothesis, showing that

Cretaceous guyots drowned sequentially over a

wide range of time while they were being trans-

ported northward by motion of the Pacific plate

(through a narrow paleolatitudinal zone ~0–108S).
The paleogeographic setting of the NNR during the

late Oligocene and early Miocene was overall

consistent to high nutrient supplies. However, the

specific mechanisms that intensified nutrient supply

in correspondence to the drowning phases remain

unclear.
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9.6. Drowning of the megabank and initiation of the

Caribbean Current

The foundering of the megabank led to the opening

of a major intra-Caribbean gateway (Droxler et al.,

1998). Since its formation, Pedro Channel has been a

major pathway for the Caribbean Current and, there-

fore, for the surface and thermohaline return flow of

the modern thermohaline circulation. The merging of

coccolith assemblages between Sites 998 and 999

(Kameo and Sato, 2000) was first initiated during

nannozone CN5 (13.57–10.71 Ma) and was fully

completed during nannozones CN6 and CN7 (10.71–

9.36 Ma) and supports the estimated timing of a

seaway opening along the NNR. The foundering of

the NNR megabank is consistent with an overall

strengthening of the Western Boundary Current

(Caribbean Current, Loop/Florida Current, and Gulf

Stream) in middle Miocene times, as recorded by

middle Miocene erosional events on the central West

Florida shelf (Mullins and Neumann, 1979; Mullins et

al., 1987), the Straits of Florida (Gomberg, 1974;

Mullins and Neumann, 1979), and the Blake Plateau

(Popenoe, 1985).
10. Conclusions

(1) The modern system of banks, seaways, and

basins on top of the NNR has evolved from a

continuous, shallow-water carbonate megabank that

extended from the Honduras/Nicaraguan mainland to

Jamaica. Available information suggests that this

megabank broke apart and partially drowned in the

late middle Oligocene around 27 Ma. Individual

banks foundered until the late early Miocene after

20 Ma, resulting in no further neritic coral growth.

(2) Stratigraphic units identified in deep-water

carbonates sampled at ODP Sites 999 and 1000 help

to constrain the environmental setting leading to the

drowning of the banks. Changes in lithology and mass

accumulation rates of both the carbonate and non-

carbonate fractions parallel stable-isotope shifts indi-

cative of regional changes in climate and circulation

during the late Oligocene–middle Miocene.

(3) Carbonate accumulation at Site 999 suggests

increased regional productivity during the early

Miocene. Terrigenous accumulation at both Sites
999 and 1000 indicates a general increase from the

Burdigalian through the Serravallian. The temporal

association among episodes of platform growth,

followed by increased productivity as identified by

higher carbonate MARs and positive excursion in

carbon isotopes, all suggest that nutrification changes

have led to the drowning of the NNR bmegabankQ.
(4) The paleogeographic configuration, with an

open connection between the east Pacific and the

Caribbean across the open Central American, provides

a likely setting for exposing the megabank to

abnormally high nutrient levels associated with

Miocene equatorial productivity. However, the spe-

cific mechanisms that have intensified nutrient supply

and caused nutrification in correspondence to the

drowning episodes remain unclear.
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