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1 Introduction I: General Remarks

(a) Aim of the lecture
- review of some mathematical methods frequently used in mathematical biology
- review of some standard models
- introduction into the art of modeling

(b) Biomathematics versus Bioinformatics
Bioinformatics (better: Computational Biostatistics & Data Banks)
- structuring large data sets
- Data mining / Biostatistics
- Especially: Methods independent of the mechanisms of biological systems

Best example: BLAST, search in a data bank of genes.

Aim: Description and structure of data, prediction.

Biomathematics
- Modeling Mechanisms
- Especially: Methods depend strongly on the mechanisms of biological systems

Example: Population dynamics

Aim: Understanding mechanisms, prediction.

Connection
Model comparison, prediction, structuring observations (what is relevant/irrelevant), ex-
tracting relevant questions..

(c) The Two Ways of Biomathematics

Qualitative theory
The basic mechanisms are modeled in a/the most simple way; parameter fitting and
analysis of data are not very important.

We expect qualitative results. The models can be rigorously analyzed. These qualitative
results (like prediction of oscillations, bistability or alike) can then compared with exper-
imental observations. This approach does not aim to predict quantitatively experimental
results.

Quantitative theory
The biological system under observation is modeled very detailed. Parameter are fitted.
Analysis of the system is less important, simulations of certain trajectories are of higher
interest.

We expect quantitative prediction of the experimental data. Here, an interaction between
mathematician and biologist is absolutely necessary!
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Quantitative versus Qualitative Methods

Quantitative Qualitative

Analysis less important / not possible possible and central
Simulation important less important

Aim quantitative prediction of results qualitative behavior

Advantage
quantitative prediction is possible
(“Bioengineering”)

overview over possible behavior

Disadvantage Only special case considered A lot of effects neglected

(d) Methods

We aim at the description of the dynamics of biological systems. There are three criteria
that structure modeling approaches:

(1) One has to distinguish between small and large populations (stochastic of determin-
istic approach possible / necessary).
(2) Moreover, the time may be discrete (e.g. generations or state in spring) or continuous
(chronological time, age etc.).
(3) The third important structure is given by the interaction: The entities may not or do
strongly interact. In consequence we either get linear or nonlinear models.

We obtain the following scheme:

Small Populations Large Populations

discrete time Galton-Watson Process linear difference equations
independent
individuals continuous time

Time continuous
branching processes

linear differential equations

discrete time Cellular Automata nonlinear difference equationsinteracting
individuals continuous time

Interacting Particle
Systems

nonlinear differential equations

Accordingly, the lecture consists of two parts: In the first part, we will look at the linear
theory. Here, we keep the structure of the scheme above. The second part is concerned
with nonlinear models. Rather than using the methodological approach, in this second
part we focus on different fields in biology.

(e) Literature / Books

We touch a lot of issues: Modeling, stochastic processes, dynamical systems and statistics.
Modeling:
[48] Murray, J.D., Mathematical Biology, Springer, 1989,

[19] Edelstein-Keshet, Leah, Mathematical models in biology, McGraw-Hill, 1988.

Stochastic Process:



3

[6] Bauer, Heinz, Wahrscheinlichkeitstheorie und die Grundzüge der Maßtheorie Walter
De Gruyter, 1978.

Dynamical Systems:

[40] Kuznetsov, Y.A.,Elements of applied bifurcation theory, Springer, 1995.

[2] Arrowsmith, D.K. and Place, C.M, Ordinary Differenital Euqations, Chapman and
Hall, 1982.

Statistics:

[55] Pruscha, Helmut, Angewandte Methoden der Mathematischen Statistik, B.G. Teubner
Verl., 1996.

[24] Gilks, W.R. and Richardson, S. and Spiegelhalter, D.J., Markov Chain Monte Carlo
in Practice, Chapman & Hall, 1998.
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2 Introduction II: Death Process

We consider a population of individuals who are alive at time zero. The only thing these
individuals do is dying. We will apply a variety of methods, presenting many of the
concepts and ideas of this lecture in a nutshell. Furthermore, this is one of the most
fundamental processes. Though a death process sounds quite special, “death” can be
interpreted in a quit general way: basically, it refers to an individual that leaves a certain
state and changes to another state. For example, a ligand binds to an receptor. A
susceptible that becomes infected. An infected, that recovers. You will find an unlimited
number of examples. Thus, it is of interest to be clear about this process, and to spend
some time on it.

2.1 Small Population

If we describe a small population, necessarily we have to take into account random fluc-
tuations. Hence, we use a stochastic model.

2.1.1 Survival of one Individual

Because of the copyright is this figure empty.

place here: Th. Böhle et al., Circ. Res. 91(2002), 421–426, Fig. 4 [9]

Figure 1: Histograms of the gating time of ion channels.

Individual based models (IBM) are in fashion. The reason is simply, that these models
are quite straight-forward to formulate and to communicate. However, to analyze IBM’s
is quite difficult (and often not possible at all). The starting point for individual based
models is (obviously) the behavior of one single individual .

An example are data about ion channels: Ion channels are channels in neurons, that allow
ions to tunnel through the wall of the cell. They may be open and close. The time, that
they are open depends on the voltage between the insight and the outside of the cell.
However, once the voltage is fixed, it is believed that the time they stay in a certain state
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does not depend on other influences. One obtains data about the gating behavior of one
individual ion channel (see, e.g. [9] or [41] and Fig. 1). They show the opening time of
certain ion channels that run in different modes. The details can be found in the article.
The relevant questions are: (1) develop a model that describes the times a gate is open /
closed, (2) estimate the parameters of this model.

One individual
State:
One individual may be dead or alive. It has a binary state description.

Dynamics / Change of state:
The only possible change of state is going from alive to dead (Fig. 2). How to formu-

Alive Dead
Rate µ

Figure 2: Change of state.

late this as a stochastic process? Obviously, we have to provide the probability for this
individual to be alive at age a. If the Individual is alive at age a, then

P (dead at a+ ∆a| alive at a) = µ∆a+ O(∆a)

Here, O(.) denotes the Landau-symbol,

lim
x→0

O(x)

x
= 0

In other words:
Let A be the random variable that gives the age of the individual at time of his/her death,
then

P (A ∈ [a, a+ ∆a) |A > a) = µ∆a+ O(∆a).

This is a complete characterization of the model.

Remark: Modeling Approach
We used two steps to formulate the model. It is necessary and important to be clear
about this proceeding.

First step: Characterization of the state space
Second step: Characterization of the transitions between different states, i.e. character-
ization of the dynamics.

Excursion: Probability and Random Variables
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People from calculus love to think about functions and small perturbations. Stochastics
has a completely different approach: Here, the ensemble is the basic approach. I.e., we
always think about sets and subsets, respectively about the measure of sets. Also when
dealing with a probability like P (A ≤ a), which is a function of a, it is not useful at all
to think about this as a function. This expression is the measure of a set that changes in
the age a.

Hence, if we define the behavior of one individual of age a by P (A ≤ a), we do not really
consider one individual. We consider many, many individuals, all born a time units ago.
Some of them will be alive at age a, others will be dead. P (A ≥ a) is the relative number
of persons who are still alive.

One may visualize this idea (Fig. 3). Hence,

All individuals

A>a

Figure 3: Probabilities as sizes of sets.

P (A > a) = relative area of the set A > a in the set A ∈ IR+

=
Area of A > a

Area of A ∈ IR+

Now we want to work with conditional probabilities. I.e., our reference set is not the set
of all individuals, but a subset. What does P (A ∈ [a, a+ ∆a] |A > a) mean (see Fig. 4)?
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All individuals

A>a

a a + aΑ  [  ,       ∆   ]

Figure 4: Conditional probabilities as sizes of sets.

P (A ∈ [a, a+ ∆a] |A > a) =
P (A ∈ [a, a+ ∆a] ∧ A > a)

P (A > a)

=
P (A ∈ [a, a+ ∆a])

P (A > a)

The definition of a probability in a more formal way needs a set, the measurable subsets
and a probability measure on these subsets.

Definition 2.1: (1) Let Ω be a non-empty set, A ⊂ P(Ω). A is a σ-algebra, if

• Ω ∈ A
• a ∈ A ⇒ Ω \ a ∈ A
• an ∈ A ⇒ ∪nan ∈ A.

(2) Let P a map P : A → [0, 1] with

• P ({}) = 0

• P (Ω) = 1

• P (∪nan) =
∑
n

P (an) if ai ∩ aj = {} for i 6= j.

Then P is a random measure.



8 2 INTRODUCTION II: DEATH PROCESS

(3) Let A,B ∈ A with P (B) > 0. Then,

P (A |B) =
P (A ∩B)

P (B)
.

Later on, we will use the Theorem of Bayes. Since it is quite simple to prove, we state
and prove this theorem here.

Theorem 2.2: (Bayes)
Let A,B ∈ A, P (A), P (B) > 0. Then,

P (A|B) =
P (B|A)P (A)

P (B)

Proof:

P (A|B) =
P (A ∩B)

P (B)
=
P (A ∩B)P (A)

P (A)P (B)
=
P (B|A)P (A)

P (B)
.

2

A further useful construction are random variables. The set Ω can be very general.
However, it is more easy to work with numbers. Hence, one defines a random variable.

Definition 2.3: A random variable Z is a map

Z : Ω→ IR

s.t. all sets {ω ∈ Ω |Z(ω) ≤ r} for any r ∈ IR is measurable. Hence, P (Z ≤ r) is well
defined.

Survival Probability
We derived the formula for the survival probability of one individual

P (A ∈ [a, a+ ∆a] |A > a) = µ(a)∆a+ O(∆a).

Note, that the death rate µ may depend on age a. We assume µ(a) ∈ C0(IR+). With our
definition about conditional probabilities we find P (A ∈ [a, a + ∆a] |A > a) = P (A ∈
[a, a+ ∆a])/P (A > a) and

P (A ∈ [a, a+ ∆a]) = P (A > a)µ(a)∆a+ O(∆a)

−P (A > a+ ∆a)− P (A > a)

∆a
= P (A > a)µ(a) +

O(∆a)

∆a
↓ ∆a→ 0

d

da
P (A > a) = −µ(a)P (A > a), P (A > 0) = 1.

For the last step, we needed that µ(a) is relatively smooth (continuous). Hence,

P (A > a) = e−
∫ a

0
µ(τ) dτ .
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Figure 5: Exponential distribution (µ = 1).

If µ(a) ≡ µ is constant, we find the exponential distribution (Fig. 5),

P (A > a) = e−µa.

Summary/Conclusion
What did we learn? First of all, the golden rule of modeling: We first determine the state
space, and in the second step we introduce the dynamics, i.e. how the state changes in
time.
Next, we developed a model for the change of the state of one individual. We obtain an
exponential distribution, if the rate is constant, and a more general distribution, if the
rate depends on age resp. the time, that an individual is in a certain state.

2.1.2 IBM: Level of small populations

Now we go from the individual level to the population level. We consider N individuals,
numbered by 1, 2, .., N and define the random variables

X
(t)
i =

{
1 if individual i is alive at time t
0 if individual i is dead at time t

Random variables, that are one if an individual satisfies a certain property, and zero oth-
erwise, are also called “random characteristics” [35]. It is possible to count all individuals
with a given property at a certain time with a given property by summation over these
random variables. In our case, we are able to determine the size of the (living) population.
Let the age of all individuals at time zero be zero. The population size reads

Yt =
N∑
i=1

X
(t)
i .
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We know
P (X

(t)
i = 1) = e−

∫ a
0
µ(τ) dτ

and thus Yt is distributed according to a binomial distribution,

Yt ∼ Bin(N, e−
∫ a

0
µ(τ) dτ .

Especially,

E(Yt) = N e−
∫ a

0
µ(τ) dτ , Var(Yt) = N

(
1− e−

∫ a
0
µ(τ) dτ

)
e−
∫ a

0
µ(τ) dτ .

Thus we are able to characterize the dynamics of the system in a similar way like tat of
on individual: Choose a time interval ∆a small. Assume furthermore, that we have k
individuals in the population at time t. Then, the probability that two individuals die in
this small time interval [a, a+ ∆a] is of higher order O(∆a). The probability that at least
one individual dies is

1− (1− P (death of one specific individual))k+1

= 1− (1− µ(a)∆a+ O(∆a))k+1 ≈ 1− (1− (k + 1)µ(a)∆a+ O(∆a)) + O(∆a)

= (k + 1)µ(a)∆a+ O(∆a).

Since this is up to higher order terms also the probability that exactly one individual dies,
we find

P (Ya+∆a = k |Ya = k + 1) = (k + 1)µ(a) ∆a+ O(∆a).

If we assume the special case µ(a) ≡ µ, then for 0 ≤ t1, t2

E(Yt1+t2) = E(Yt1) e−µ t2 .

A similar property also holds true for each individual,

P (A > a+ b|A > a) = e−µb.

This probability does not depend on a. This distribution is “memoryless”. It forgets the
history. Such a process, whose fate depends only on the state is called a Markov process.
We will investigate some characteristics of Markov processes later.

Again, we made two steps.
First step: State of the system defined as the number of living individuals
Second step: Dynamics of the system given by P (Yt+∆t = k |Yt = k+1) = k µ∆t+O(∆t).

2.1.3 Simulation Techniques

In the present case, strictly spoken no simulations are necessary. We are able to obtain
all information analytically. However, for more complex model it is often not possible to
derive results about the behavior of the model analytically. In this case, simulation and
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1

1 U ~ runif(0,1)

Figure 6: Density of the uniformly distributed random variable U (µ = 1).

numerical analysis is required. Furthermore, simulations may be useful to visualize the
behavior of he system and to communicate the ideas (especially to non-mathematicians).
We present here two different approaches for simulation of this stochastic process.

Every (or at least nearly every) computer language provides a pseudo random number gen-
erator. We assume, that a function is available that returns random variables distributed
uniformly between zero and one (Fig. 6).

Possibility 1: Transformation
We transform U with a function

f : [0, 1]→ IR+,

s.t. X = f(U) is exponentially distributed with parameter µ.

P(U<u)

u a

P(X<a)

1

Figure 7: Transformation of the random variable U .

We have (see Fig. 7)

P (U < u) =


0 for u < 0
u for 0 ≤ u < 1
1 for 1 < u

P (X < a) =

{
0 for u < 0

1− e−µa for 0 ≤ u
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We assume, that f is monotonously, s.t. the inverse f−1 is well defined. Then,

1− e−µa = P (X ≤ a) = P (f(U) ≤ a)

= P (U ≤ f−1(a)) = f−1(a)

where we used f−1 ∈ [0, 1] in the last line. Hence,

f(a) = − 1

µ
ln(1− a)

and, since U as well as 1− U are uniformly distributed in the interval [0, 1], we may use
the transformation

g(a) = − 1

µ
ln(a)

Algorithm:

Step 1:
Define N real numbers A1,..,AN as

Ai = − 1

µ
ln(runif(0, 1)).

Step 2:
Determine the population size at time t by

Y (t) = #{Ai > t}.

This scheme can be easily extended to death rates that depend on age, µ = µ(a).

Possibility 2: Discretization of Time
The second approach uses the characterization of the dynamics

P (Yt+∆t = k |Yt = k + 1) = k µ∆t+ O(∆t).

We choose the time steps ∆t to be small, s.t. O(∆t) can be neglected. Let

ti = i∆t, Yi ≈ Y ti i ∈ IN0

where we define the approximations Yi of Y ti recursively by

Yi+1 |Yi =

{
Yi with probability 1− Yiµ∆t

Yi − 1 else
.

(Here Yi+1 |Yi does mean the value/distribution of the random variable Yi+1 if we know
the value of the random variable Yi in the realization under consideration). This equation
does only make sense, if

1− Yiµ∆t ≥ 0 ⇒ ∆t� 1

µN
,
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i.e. we obtain a restriction for the step size.

Algorithm:

Step 1: initialize
Y0 := N ; i := 0; t := 0
Step 2: loop
while (t < time horizon) {

u := runif(0, 1);
If (u < µYi∆t) then {

Yi+1 := Yi − 1;
} else {

Yi+1 := Yi;
}
i := i+ 1;
t := t+ ∆t;

}

This scheme corresponds to the explicit Euler scheme for ordinary differential equations.
It is not possible to extend this scheme in a straight forward way to death rates that
depend on age.

Comparison

The first scheme can be easily extended to situations, where the death rate depends on
age, µ = µ(a). This is not the case for the second scheme. However, the first scheme
needs more computer time than the second scheme (the variables Ai have to be sorted
somehow), such that large populations are faster to simulate with the second approach.

2.1.4 Parameter Identification

Until now, we considered an abstract model. Now we want to confront the model with
real data. One could discuss several issues, e.g. testing the appropriateness of the model.
However, we focus on the issue of parameter estimation, and sketch four methods (perhaps
the four most important approaches) to obtain parameter values.

We assume that we have information about the life span of n individuals (see histogram
in Fig. 8),

a1, .., an.

We assume that these measurements are independent. We want to determine the param-
eter/rate µ.

Momentum Method
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time

dummy
data

Figure 8: Histogram of the data.

The expected value of the life span A of our individuals reads

E(A) =
∫ ∞

0
a

(
− d

da
P (A > a)

)
da =

∫ ∞
0

a µe−µa da = −µ d

dµ

∫ ∞
0

e−µa da =
1

µ
.

Hence, µ = 1/E(A). A naive estimator will be

µ̂ =

(
n∑
i=1

ai

)−1

.

Maximum Likelihood Method
Since

P (A ∈ (a, a+ ∆a)) = µe−µa∆a+ O(∆a)

the “likelihood” to find the life span ai for the i’th individual reads Li = µe−µai . Hence,
the likelihood to find the n independent measured data a1,..,an is

L(µ) = Πn
i=1µe

−µai = µne−µ
∑n

i=1
ai

The central idea of the maximum-likelihood method is, that the data are typical. Hence,
for the true parameter, we expect the data to be where they are. Conversely, a parameter
for which the likelihood is small is not very likely to be the true parameter. The best
estimator µ̂ is the parameter that maximizes the likelihood, L(µ)|µ=µ̂ ≥ L(µ) ∀µ ∈ IR+.
Since L(.) is smooth, and µ = 0 resp. µ very large will definitely be no good choices, we
find

d

dµ
L(µ)|µ=µ̂ = 0.
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It is more easy to work with ln(L(µ)), the log-likelihood. Since the logarithm is
monotonously, µ̂ will also maximize ln(L(µ)). We find

0 =
d

dµ
ln(L(µ))

=
d

dµ
ln
(
µne−µ

∑n

i=1
ai
)

=
d

dµ

(
n ln(µ)− µ

n∑
i=1

ai

)

=
n

µ
−

n∑
i=1

ai.

Thus,

µ̂ =

(
n∑
i=1

ai

)−1

.

In this case, we obtain the same estimator like in the momentum method. In more general
situations, estimators derived by these two approaches will disagree.

The present case is relatively simple: The exponential distribution belongs to the so-called
exponential family, which is quite close to the normal distribution. A lot of concepts of the
normal distribution (“linear models” in statistics) can be generalized to the exponential
family (“generalized linear model”, see [55]) If the number of data is high, it is possible
(even for nonlinear models) to derive also confidence intervals.

χ2-Value
We start with the histogram, and fit a curve in an optimal way.

E i

B i

z z z z z z10 2 3 4 5

Figure 9: Histogram of the data.

Let z0 = 0 < z1 < z2 < ... < zl =∞ and

Bi = #{aj | zi−1 ≤ aj < zi} i = 1, ..l.
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Rule of thumb
The first and the last interval should contain at least five data points, all other intervals
at least three data points.

For a given parameter µ, we also determine the expected number of observations within
the corresponding interval,

Ei = Ei(µ) = n
(
e−µai−1 − e−µai

)
Obviously, a good choice of µ should minimize the differences between observed and
expected number of data within these intervals,

∆(µ) =
l∑

i=1

(Bi − Ei(µ))2 = minimum.

In a slightly more sophisticated approach, one takes into account the variance structure. If
the number of data n is much larger than the number of intervals l, then approximatively
the variables Bi are distributed accordingly to a Poisson distribution. The variance of a
Poisson distribution equals its expected value. Hence,

Bi − Ei√
Ei

has expectation zero and variance one; in this sense, minimizing

χ2(µ) =
l∑

i=1

(Bi − Ei(µ))2

Ei(µ)
= minimum.

is more fair to the intervals. If only a few data are expected to be in the interval (and are
observed in this interval, indeed) then the contribution of this interval to the estimation
of µ will be weak, if we use ∆(µ). Taking the variance structure into account, this interval
will be weighted with a higher weight 1/Ei, s.t. intervals with a high expected value and
intervals with low expected values have equal rights.

A further justification is the fact, that (Bi − Ei)/
√
Ei approximate normal distributions

(from this fact, the rule of thumb above is derived, though such a low number of data
points is still poor), s.t. χ2(µ) is approximately χ2

p distributed, where p = n− 1 denotes
the degree of freedom. This fact opens the opportunity to find confidence intervals and
criteria for the goodness of fit, i.e. to get an idea if the model is appropriate. One may
find more details in this direction in [55].

Bayesian Approach
The basic idea of the Bayesian statistics is different to the classical approach: we want
to estimate the parameter µ, i.e. we aim at the probability distribution π(µ|Data) of
µ|Data (the probability distribution of µ under the condition that we observe certain
data, Fig. 10).
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Dataπ(µ|        )

Figure 10: Probability distribution of µ|Data.

The point estimator of µ will be then the expectation of µ|Data,

µ̂ := E(µ|Data).

However, we do not know µ|Data, but we only know the likelihood,

L(µ|Data) = Πn
i=1µe

−µai = P (Data |µ).

In order to derive µ|Data from Data |µ, we use the theorem of Bayes,

π(µ|Data) = C−1P (Data |µ)P (µ) = C−1L(µ|Data)P (µ).

Here, C is a constant that normalize
∫
π(µ|Data) dµ to one,

C =
∫
π(µ|Data) dµ =

∫ ∞
0
L(µ|Data)P (µ) dµ.

A further, new expression appears: P (µ). This is an a-priori information about µ, the so-
called prior . Even before we perform the experiment, we are assumed to have some idea
where the parameter may be (e.g., we know that that the gating times of ion channels are
rather small, ranging in milli-seconds rather than in seconds). This knowledge can/has
to be included here. This is the draw-back of the Bayesian approach: Two persons,
who evaluate the data may use different priors, and thus derive different estimators. A
non-objective element appears in Bayes-statistics. However, once the prior is chosen, the
estimator is fixed. The resulting distribution of the parameter is then called a-posteriori-
distribution.

How does an estimator looks like for our situation? We first have to choose a prior. Like
noted before, we are free to think about some reasonable distribution for the prior. There
is a choice, that makes life simple, because we can compute the a-posteriori-distribution
analytically: the Γ-distribution. We choose distribution g(µ) of the prior to be

P (µ) ∼ Γ(α, β), i.e. g(µ) =
µα−1e−µ/β

Γ(α)βα
.

The a-posteriori distribution follows to be

π(µ|Data) = C−1L(µ|Data)P (µ) = C−1
(
µne−µ

∑n

i=1
ai
) µα−1e−µ/β

Γ(α)βα
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where C is determined by

C =
∫ ∞

0

(
µne−µ

∑n

i=1
ai
) µα−1e−µ/β

Γ(α)βα
dµ.

With ∫ ∞
0

xa−1e−b x dx = b−a
∫ ∞

0
ya−1e−y dy = Γ(a)b−a

we find

C =

(
1

Γ(α)βα

) ∫ ∞
0

µα+n−1e−µ(
∑n

i=1
ai+1/β) dµ =

Γ(α + n)(
∑n
i=1 ai + 1/β)−(α+n)

Γ(α)βα

and hence

π(µ|Data) =

(
(1/β +

∑n
i=1 ai)

α+n

Γ(α + n)

) (
µα+n−1e−µ(1/β+

∑n

i=1
ai)
)

The point estimator then reads

µ̂ = E(µ|Data) =
∫ ∞

0
µπ(µ|Data) =

(
(
∑n
i=1 ai) + 1/β

n+ α

)−1

.

Interpretation: If α = 1/β = 0, then we find the classical maximum-likelihood-estimator.
α can be interpreted as the number of a-priori observations, where 1/β is the sum of the
length of the life-spans of these a-priori-observations. The estimator uses the experimental
observations ai and the a-priori observations, and constructs with all observations the
classical estimator. This interpretation is quite typical for Bayes-estimators.
However, if n� α and 1/β not too large, the prior does not matter, in this case(

(
∑n
i=1 ai) + 1/β

n+ α

)−1

≈
(∑n

i=1 ai
n

)−1

which is the classical estimator for this experiment. Only if the number of observations
is small, the prior influences the estimator.

Summary/Conclusion
What did we learn? There are two basic concepts for estimators: the classical approach
and the Bayesian approach.
Perhaps the most important classical estimator is the maximum likelihood estimator. If
the underlying model is nonlinear, there are in general only asymptotic results (number
of data tends to infinity) available. Hence, this method works well, if enough data are
available, but may have a problem for only a small amount of data.
The Bayes-estimator works (theoretically) fine, even if only a small amount of data is
available. However, we need to specify a prior (which penalizes parameter ranges where
we assume the data not to be). If there are many data this prior information does not
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influence the result significantly. If only few data are there, this prior knowledge (or
pre-justice) will have a strong influence.
All in all, the classical and the Bayes-approach work well, if we have a lot of data, but do
have problems, if only few data are available. Note: Be cautious with statistics, if you do
not have a lot of data!!!!!

2.2 Deterministic Models

Of course, there are also deterministic models for the death process. How to justify
deterministic models? The central question of this section will be the connection between
stochastic and deterministic model, respectively how to go from the stochastic model
to the deterministic model. Related with this question is the problem, that differential
equations do have real state variables, while our biological system has discrete entities,
i.e. only assumes values in IN.

There are two major ways of reasoning: either one takes expected values, or (perhaps
more important) one considers large (homogeneous) populations. In the latter case, we
expect variations to play only a minor role. Hence we may use a differential equation
instead of a stochastic process to describe the system.

Remark: Somewhere between small and large populations are medium sized populations.
They may be better described by stochastic differential equations. However, since this
type of model needs a certain technical effort, it is not very often used in mathematical
biology. Also here, this type of model will not be discussed.

Small population: Expected Values
State: Let x(t) be the population size at time t of a deterministic model, describing a
finite population.
x(t) will not be a natural number in a deterministic model (indeed, if we have continuous
time, there is no possibility to define a model in a sensitive way that only assumes discrete
states; implicitly, one has to introduce somewhere an element of discrete time). How to
interprete x(t)?
We consider a finite population, hence there will be some (perhaps little) stochasticity in
the model. It makes no sense to look at a certain realization and try to match x(t) with
this certain realization. We should look at a typical trajectory, i.e. at the mean value,

x(t) = E(Yt).

The mean value, however,does not have to be / is in general not a natural number. Hence,
in this interpretation we do not have a problem with the seemingly contradiction between
real numbers for x(t) and natural numbers for Yt.

Dynamics: Since we know E(Yt), we find at once the equation governing the dynamics

d

dt
µ(t) = −µx(t), x(0) = N.
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This interpretation seems very straight forward, but this is not the case: We average
about all trajectories of the stochastic model. There are cases (especially for spatial
structured models), where we average out some interesting properties. Especially, if uses
corresponding methods for nonlinear models. E.g., how to keep spatial correlations in
such an average process is not clear at once. We will discuss approaches later on, that try
to get on with this problem (rapid stirring limit, moment equations).

Large Population: Population Densities
The second approach makes no (direct) use of expectations. The idea here is to use the
fact, that we consider large (homogeneous) populations. I.e., we let the initial population
size Y0 go to infinity. In this case, we expect the random fluctuations (relatively to the
mean value) to be small. Of course, we have to normalize the population size; otherwise
the population size just tends to infinity. Let

u(t) = lim
Y0→∞

Yt
Y0

.

More general, one may consider sone reference magnitude, define z(t) =
Yt/reference magnitude, and let this magnitude go to infinity, where - at the same time -
also Yt tends to infinity. A standard example is the area individuals are living. Then,

z(t) = lim
area→∞

population in a certain area(t)

area

i.e., z(t) is the population density (number of individuals per square meter etc.).

Which equation does u(t) satisfy? Define

UY0(t) =
Yt
Y0

.

We may argue, that u(t) is described by e−µt. Therefore, we consider

v(t) =

√
Y0

e−µt (1− e−µt)
(UY0 − e−µt) =

(
e−µt

(
1− e−µt

)
Y0

)−1/2
(Yt − E(Yt)).

Hence,
E(v(t)) = 0.

Recall, that Yt =
∑Y0
i=1 X

(t)
i is the sum of Bernoulli-random variables, that are i.i.d.

(independently and identically distributed). Then,

Var(v(t)) =
(
e−µt

(
1− e−µt

)
Y0

)
Var(Yt − E(Yt))

=
(
e−µt

(
1− e−µt

)
Y0

)
Var (Yt)

=
(
e−µt

(
1− e−µt

)
Y0

)
Var

 Y0∑
i=1

X
(t)
i
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=
(
e−µt

(
1− e−µt

)
Y0

) Y0∑
i=1

Var(X
(t)
i )


=

(
e−µt

(
1− e−µt

)
Y0

) (
Y0Var(X

(t)
1 )
)

=
(
e−µt

(
1− e−µt

)
Y0

) (
Y0e

−µt
(
1− e−µt

))
= 1

Since Yt is the sum of i.i.d. Bernoulli-variables, we find by the central limit theorem, that
asymptotically √

Y0

e−µt (1− e−µt)
(UY0(t)− e−µt) ∼a N(0, 1).

Hence, the difference between e−µt and UY0(t) becomes small, if (see Fig. 11)
• 1− e−µt ≈ 0, i.e. t ≈ 0
• e−µt ≈ 0, i.e. t ≈ ∞
• Yt ≈ ∞.

Population
Size

0Y

0
U   (t)Y

e−     tµ

time

Deviation small, because t small

Deviation small, 
because t large

Deviation small, because Y   large0

Figure 11: Deviation of stochastic (UY0(t), blue line) and deterministic (e−µt, red line) model.

Especially, u(t) = limY0→∞ UY0(t) = e−µt with respect to the probability measure P , i.e.
we find

d

dt
u(t) = −µu(t), u(0) = 1.

The important point is, that this way of reasoning does also work out for nonlinear models.
One may find examples in [39].

Remark: An open problem are hybrid systems. Consider e.g. a diseases that breaks
out periodically, but for a certain time is almost eradicated in a population. During
the outbreak, the description you want to chose is deterministically, since there a large
number of individuals are involved (infected), and stochastic effects only play a minor role
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(Fig. 12). During the silent phase, there are a few (perhaps unobserved) infecteds that
keep the disease alive; here e.g. the possibility that the disease may die out is high. If we
use at this point a deterministic model, we run in the problem of “attofoxes”: a paper
describing the spread of rabies in a fox-population used a deterministic model; they did
not recognize, that the number of infected foxes came down to 10−9, which made some
conclusion of the model not really reliable.

Time

Po
pu

la
tio

n 
Si

ze

Stochastic Description

Deterministic
Description

Figure 12: Switching between stochastic and deterministic model.

What one really would like, is to swith from the deterministic to the stochastic description
at the appropriate time point. However, the stochastic model is formulated in terms of
individuals, while the deterministic model considers densities. These two approaches do
not match. This problem appears in some papers and models; a proper solution seems
not to be available in general.

Summary/Conclusion
Two ways are appropriate to justify deterministic models. If the particles are independent,
one may take the expected values. One then derives a well defined deterministic model.
However, if we consider a small population, one may loose in this way information, since
stochastic effects are expected to play a certain role.
The second approach works out for large, homogeneous populations. In this way, random
fluctuations and correlations only play a minor role, and one can derive for the relative
densities deterministic models. This approach also works for nonlinear models (interacting
particles), but it needs a large, homogeneous population.
Note, that the latter approach is therefore useless, if we have a highly structured popula-
tion, e.g. a spatially structured population. In this case, we have to think about possible
generalizations of the first approach to nonlinear models. We will return to this point
later.

2.3 More than one type of transition

In and out
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The examples below are all deterministic models. However, to have only one transition in
a model is rather boring. Therefore, we introduce multiple transitions. The most simple
case is the following: we have three states X, Y and Z. At time zero, all particles are
in state X. They go from state X to state Y with rate α and leave state Y with rate β.
I.e., the time they stay in state X is exponentially distributed with rate α, and the time
the particles stay in state Y is also exponentially distributed, this time with rate β (see
Fig. 13). The aim is to derive an ODE that describes the evolution of the mean values

α β
State Y State ZState X

Figure 13: Model system for two transitions.

of this system. Therefore, we first define the corresponding stochastic model.

State: Let Xt, Yt and Zt be the number of particles at time t in state X, Y and Z,
respectively.
Dynamics: We have two events, the transition from X to Y and transition von Y to Z.
Transition X → Y :

P

(
Xt+∆t = k − 1
Yt+∆t = l + 1

∣∣∣∣ Xt = k
Yt = l

)
= kα∆t+ O(∆t).

Transition Y → Z:

P

(
Yt+∆t = l − 1
Zt+∆t = m+ 1

∣∣∣∣ Xt = l
Yt = m

)
= lβ∆t+ O(∆t).

Let x(t) = E(Xt), y(t) = E(Yt), z(t) = E(Zt). We know from the considerations about

the simple death process, that

ẋ = −αx, x(0) = E(X0)) =: x0.

Furthermore,

E(Yt+∆t) = E(Yt) + P (Yt+∆t|Yt = Yt + 1)− P (Yt+∆t|Yt = Yt − 1) + O(∆t)

= E(Yt) + αE(Xt) ∆t− β E(Yt) ∆t+ O(∆t).

Thus (y(t+ ∆t)− y(t))/∆t = αx(t)− β y(t) + O(∆t)/∆t, and taking the limit yields

ẏ = −β y + αx, y(0) = E(Y0)) =: y0.

The same reasoning gives

ż = β z, z(0) = E(Z0) =: z0.
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All in all, we find

d

dt

 x(t)
y(t)
z(t)

 =

 −α 0 0
α −β 0
0 β 0


 x(t)
y(t)
z(t)

 ,
 x(0)
y(0)
z(0)

 =

 x0

y0

z0

 .
We find a linear ordinary differential equation (like expected),

X = AX , X (0) = X′.

The matrix A has two special properties:
• Multiplication with the vector (1, 1, 1) from l.h.s. yields zero, (1, 1, 1)A = 0.
• Ai,j ≥ 0 for i 6= j.

Reason enough, to look closer at such matrices.

M-Matrices and linear ODE’s
Definition 2.4: A Matrix A with Ai,j ≥ 0 for i 6= j is called M-matrix.

You may find more theorems about M-matrices in [8]. For us, especially the following
theorem is of interest. Some definitions before. Let ei be the i’th unit vector, and
e = (1, 1, · · · , 1)T the vector with all entries one.

Definition 2.5: (1) The positive cone of IRn is the set {x ∈ IRn |x ≥ 0} where the
inequality x ≥ 0 is to interprete as xi ≥ 0 for each entry xi of x.
(2) The solution-operator Stx0 of the ODE ẋ = Ax, x(0) = x0 is called semigroup with
generator A (or fundamental system for A).

Theorem 2.6: Let A ∈ IRn×n be a matrix, and St = eA t the semigroup induced by A on
IRn. The semigroup St leaves the positive cone of IRn invariant, if and only if A is an
M-matrix.
Proof: ⇒: If A is an M-matrix, then there is a λ > 0, s.t. A+λI is non-negative in each
element. Hence, e(A+λI)t is also non-negative. Since A and I commute, we find

St = e(A+λI)te−λt,

and thus St is a non-negative matrix (in the sense that all entries are non-negative).
⇐: If St is a semigroup with infinitesimal generator A, then

St = I + tA+ O(t2).

Let ei be the i’th unit vector. Since St leaves the positive cone invariant, we find etiStej ≥
0, i.e.

0 ≤ eTi Stej = eTi ej + teTi Aej + O(t2).

Thus, if i 6= j, we find

0 ≤ eTi Aej + O(t).
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and therefore 0 ≤ eTi Aej.
2

In biology, the conservation of positivity is quite important; thus, M-matrices play a
certain role. With a simple trick, it is possible to reduce the dimension of the ODE
ẋ = Ax.

Proposition 2.7: Let A be an M-matrix and y(t) defined by

ẏ = (I − yeT )Ay, y(0) = y0.

This ODE leaves the simplex S = {x ∈ IRn
+ | eTx = 1} invariant. Furthermore, if x(0) ∈

IRn
+, x(0) 6= 0 and y(0) = x(0)/eTx(0), then y(t) = x(t)/eTx(t).

One may interprete this proposition as the possibility to project solutions of ẋ = Ax
into the simplex S by the map T ; IRn

+ \ {0} → S, x 7→ x/eTx. This projection y(t) again
satisfies an autonomous ODE (see Fig. 14).

y(t)

1

1

1

x(t)

Figure 14: Projection of the linear ODE to the simplex S.

Proof: The proposition follows by a straight-forward computation. Let x(0) ∈ IRn
+ \ {0}

and consider z(t) = x(t)/eTx(t). Since A is an M-matrix, eTx(t) 6= 0, and z(t) is well
defined.

d

dt
z(t) =

d

dt

x

eTx
=

d
dt
x

eTx
− x

eTx

d
dt

eTx

eTx
=

Ax

eTx
− x

eTx

eT Ax

eTx
= Az − zeTAz.

This is the equation for y(t). Furthermore, let eTy(0) = 1. Since

d

dt
(1− eTy) = − d

dt
eTy = −eT (I − yeT )Ay = −(1− eTy)(eTAy)
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we find
1− eTy(t) = (1− eTy(0)) e−

∫ t
0

eTAy(τ) dτ = 0.

Hence also the invariance of S follows.
2

Now we may investigate the stationary points, i.e. solutions of ẏ = 0, the projected system.

Proposition 2.8: A stationary point of ẏ = (I − yeT )Ay corresponds to an eigenvector
of A.
Proof: Let u be a solution of ẏ = 0, i.e. (I − ueT )Au = 0. Hence,

Au = −(eTAu)u,

i.e. u is an eigenvector with eigenvalue −(eTAu).
2

Remark 2.9: (1) Later, we will consider the Perron-Frobenius theorem. One important
conclusion of this theorem is the fact, that there is exactly one non-negative eigenvector
(and this eigenvector corresponds to the spectral radius ρ of the matrix, which is a simple
eigenvalue and the only eigenvalue on {z ∈ IC||z| = ρ}). Hence, if Ai,j > 0 for i 6= j,
there is only one stationary point in S. It is possible to prove that this stationary point
is attracting all trajectories in S.

(2) Some of this theory can be generalized to differential equations that are homogeneous
of degree one, ẋ = f(x), f(αx) = αx.

Until now, we considered only one property of the ODE derived in the last paragraph:
the fact, that A is an M-matrix. The second important fact is, however, that eTA = 0.

Proposition 2.10: The solution of ẋ = Ax with eTA = 0 conserves the total mass,

eTx(t) = eTx(0).

The proof is straight-forward.
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General linear compartmental models
Linear compartmental models utilize this structure. The idea is to define different states, a
directed graph that denotes possible transitions between the states; each edge is equipped
with a rate. This construction describes a closed system. If the system is not closed,
there may be emigration or immigration, i.e. there may be an in- and an outflow from
the system. The total number of particles is not preserved. However, also these events
are simple to integrate into our picture: If an edge goes outside of the system, we have
a death process, where the individuals never reappear in a class of the system. An edge

(a) (b)

ε

φ

γ

δ

γ

δ

State 1 State 2

State 3

State 1 State 2

State 3

x xy

y

y

y

y

y

z z

zβ
xα xα zβ

y

Figure 15: Linear compartmental models. (a) closed system, (b) open system.

pointing insight yields to a constant inflow of newborn individuals into a certain class.
Perhaps an example is of higher use than formal definitions. Consider Fig. 15. Let x, y
and z be the densities in state 1, state 2 and state 3 respectively. Consider subfigure (a).
The equation reads

d

dt

 x(t)
y(t)
z(t)

 =

 −α γ 0
0 −(γ + δ) β
α δ −β


 x(t)
y(t)
z(t)

 ,
 x(0)
y(0)
z(0)

 =

 x0

y0

z0

 .
The equation for subfigure (b) reads

d

dt

 x(t)
y(t)
z(t)

 =

 −α γ 0
0 −(γ + δ + φ) β
α δ −β


 x(t)
y(t)
z(t)

+

 0
0
ε

 ,
 x(0)
y(0)
z(0)

 =

 x0

y0

z0

 .
One has to be careful in interpreting the term with ε. In all other cases, we had to
multiply the density in a certain state with the rate in order to obtain the incidence of
corresponding events (i.e. the number of transitions per time unit). The arrow with ε
comes in from nothing. We have to be sure, that ε is not a rate but the incidence of
particles entering state 2 from outside.

In the remaining part of our considerations about the death process and linear compart-
mental models, we want to consider three examples.
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Further reading: You find more (and more literature) about compartmental models and
the connection between matrices, ODE’s and graph theory in the review article [33].

2.4 Examples for compartmental models

2.4.1 Receptor-Ligand Binding

The aim of this section is to describe the dynamics of ligands and receptors. Obviously,
these interaction are necessary to understand, if one aims at cell-signaling systems. We
follow examples from the book [42], where you may also find more and more detailed
models in this direction.

In the basic situation we have receptors and ligands, which may react to receptor-ligand
complexes; this may then dissociate (see Fig. 16). Receptors are located on the cell
surface, while the ligands are solved in the medium. The basic assumption in the following
considerations is that ligands are present in excess, s.t. the number/density of free ligands
is not changed in an significant way by the reaction of some of them with free receptors.

Experimentally, one uses a certain cell line that express a kind of receptors. The experi-
ment consist of three steps: (1) The cells are incubated in a medium with a given density
of ligands. (2) After incubation for a relatively long time, the medium is changed and
the cells are washed, s.t. only ligands bound to receptors are present in the experimental
system. (3) It is now possible to add substances that cause a dissociation of the receptor-
ligand complex, s.t. the ligand again is in solution. Now, one can measure the density of
ligands.

State: Since we assume that there is a large reservoir of free ligands, s.t. the density of
free ligands L is not changes by the reaction of receptor and ligand to a complex, we only
have to keep track for the density of free receptors (state 1) and receptor/ligand-complexes
(state 2).

R(t) = #Free Receptors/Cell, C(t) = #Receptor-ligand-complexes/Cell.

Dynamics: We have two processes: reaction and dissociation. While the rate k2 for
dissociation will not depend on the density of free ligands L, k2 = kr, we may assume
that the rate for the production of complexes k1 is proportional to L, k1 = kf L.

Thus we obtain the ODE’s

d

dt
R(t) = −(kf L)R + krC

d

dt
C(t) = (kf L)R− krC

Since we have conservation of mass (C(t) +R(t) = constant =: RT , we find

d

dt
C(t) = (kf L)(RT − C)− krC
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Figure 16: Reaction of ligand and receptor to the complex, respectively dissociation of the
complex. (a) The reaction of receptor and ligand to the receptor-ligand complex. (b) The
compartmental model for the situation that the ligand density is constant over time.

Define KD = kf/kr. Then, the equilibrium for C reads

d

dt
C(t) = 0 ⇒ C =

kf RT L

kf L+ kr
= RT

L

L+KD

.

This formula predicts the amount of ligands bound to the receptor in equilibrium. We
can compare the prediction with the result of an experiment (see Fig. 17).
After fitting the parameter KD and RT , we find a nice agreement of experiment and
theoretical predictions. However, we are not able to estimate all parameter of the model.
Especially, we only estimate the quotient of the rates kr and kf , since we only have data
about the equilibria. We cannot expect to be able to reconstruct the whole dynamics from
the equilibria - e.g. all information about time scales are lost. Other experiments aiming
at the dynamics are necessary to obtain information about every single parameter. An
example for such an experiment is [15].

2.4.2 Positron-Emission-Tomography

In some sense, the second example is a direct generalization of the first example. In
positron-emission-tomography, a dose of radioactive marked ligands are injected into the
blood of a patient. These ligands are called “tracer”. The tracer spreads over the body
via the blood and diffuses into the tissue. There it may bind to specific receptors (f
they are expressed in the corresponding tissue type). The dynamics of the tracer will
be different for different types of tissue (which express receptors in a different number).
In this way, it is e.g. possible to distinguish between cancer and healthy tissue for some
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place here: Lauffenburger, Chapter 2, Fig. 8(b) [42]

Figure 17: Density of bound ligands C in equilibrium as a function of free ligand concentration
in the medium L.

specific cancer species. The radioactive tracer will decay. A positron is produced in such
a decay (see Fig. 18). This positron will recombine with an electron. In this reaction, two
γ-quantums are produced. They spread nearly exactly in opposite directions. Thus, it is
possible (1) quite exactly to determine decays coming from a positron (two γ quantums
have to be detect simultaneously) and (2) to determine a straight line, on which this
decay has happend. More details of this principle can be found in [46]. Hence we obtain
informations about the density of the radioactivity in the tissue, integrated over straight
lines. With the Radon transformation one can recompute the density of radioactivity at
a certain location in the tissue (the Radon transformation yields an inverse problem that
is ill posed; also here, interesting mathematics is involved, which we will not discuss here.
You may find more in [44]).

Compartmental models

For the dynamics of the tracer in a certain tissue, one may now use a linear compartmental
model. Of course, this model has to take into account the knowledge about the special
tracer under consideration. However, it turns out, that there is something like a standard
model, that is valid for a lot of tracers. Here, one has to distinguish between three
complements: tracer in the blood, tracer in the tissue that did not bind to its specific
receptor, and tracer in the tissue that did bind to an receptor (Fig. 19).

State: Let Ca(t) be the amount of tracer in the blood (at time t), C1(t) be the amount
of tracer in the tissue not bounded to a receptor, and C2(t) be the tracer bounded to an
receptor.

Dynamics: We obtain directly the model equations (the rate k1 describes the transition
blood to tissue, the rate k2 that of tissue to blood, the rate k3 binding of the tracer to a
receptor (where k3 depends on the receptor density in the corresponding tissue) and k4



2.4 Examples for compartmental models 31

Receptor−
Ligand

γ

γ

Positron
Positron−Elektron

Detector−Ring

Figure 18: Principle of positron-emission-tomography.

the dissociation of tracer and receptor)

d

dt
C1 = −k2 C1 + k1 Ca − k3 C2 + k4 C2, C1(0) = 0

d

dt
C2 = −k4 C2 + k3 C1, C2(0) = 0.

We assume that the infusion of the tracer starts ate time zero, and hence we obtain the
initial values C1(0) = C2(0) = 0. The function Ca(t) is an external function that describes
the density of tracer in the blood (depending on the infusion etc.). There are different
methods to deal with this function. We assume here the so-called invasive method, where
blood samples are taken from the patient, and these blood samples are measured, s.t. this
function is known.

This tracer aims at two different tissue types: one type, where almost no specific receptors
are present. Hence, in this region, k3 = 0 and we are left with a two-compartmental model
(blood and tracer in tissue that is not bound specifically to anything). The second tissue
type does express the tracer in an significant amount, s.t. here we do have to take the
tracer into account.

The PET-scanner measures the total radioactivity. Hence, we only have information
about Ca(t) + C1(t) + C2(t). Fortunately, the size of the blood vessels are rather small
relatively to the amount of tissue within one voxel (the smallest volume element that can
be resolved by the scanner), s.t. we are able to neglect Ca(t).

Interesting parameters
The primary goal of parameter estimation is not to obtain estimations about all of the
parameters k1,..,k4, but to distinguish between tissue where k3 is large and region where
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Figure 19: Compartmental model for the dynamics of the tracer in one voxel (smallest spatial
unit that can be resolved).

k3 ≈ 0, i.e. where the specific receptors are present and where they are not. Of course,
this parameter has to be simple and stable to estimate. Otherwise, one would directly
use k3 for these purpose.

Situation I (k3 ≈ 0):
It turned out, that a thought experiment yields quite good hints for which parameter to
address: Assume that C − a(t) is constant in time, Ca(t) ≡ Ca. We assume in situation
1, that k3 = 0, i.e. that no specific receptors are present in the tissue under consideration.
Asymprotically, the concentrations C1(t) and C2(t) will tend to an equilibrium (why?),
and hence we find asymprotically

0 = Ċ1 = −k2C1 + k1Ca.

Thus

V1 := lim
t→∞

C1

Ca
=
k1

k2

.

We will use V1 as characteristic magnitude.
Of course, for real measures, Ca is by no means constant (see Fig. 21), s.t. we have to
think about a method to estimate V1.
Situation II (k3 > 0):
We approach the problem in the same way like befor: we assume Ca(t) ≡ Ca (constant in
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place here: J.H. Meyer and M. Ichise, J. Neuroimag(2001) 11, 03-39, Fig. 3 [46]

Figure 20: Data of a PET-scan (two types of tissue).

Because of the copyright is this figure empty.

place here: J.H. Meyer and M. Ichise, J. Neuroimag(2001) 11, 03-39, Fig. 4 [46]

Figure 21: Data of a PET-scan (concentration of the tracer in the blood).

time) and investigate the equilibrium concentrations.

0 = Ċ1(t) = −(k2 + k3)C1(t) + k4C2(t) + k1Ca(t)

0 = Ċ2(t) = −k4C2(t) + k3C1(t)

We define the quotient of the densities in equilibria,

V1 = C1/Ca|Equilibrium, V2 = C2/Ca|Equilibrium.

(Remark: we define V1 a second time. However, the model for situation I is a special
case of the present model (for k3 = 0). Thus the definition of V1 in this slightly changed
situation is appropriate). Division by Ca yields

0 = −(k2 + k3)V1 + k4V2 + k1, 0 = −k4V2 + k3V1
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and therefore
V1

V2

=
k4

k3

, V1 =
k1

k2

, ⇒ V2 =
k1k4

k2k3

.
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Estimating parameters: Logan-Plot
There are a lot approaches for parameter estimation around. Perhaps the most important
(in the sense that this approach is very often used) is the Logan plot. The Logan plot is
based on the fact, that Ca(t) has a sharp peak at the very beginning of the measurement,
and then tends very soon to zero (see Fig. 21). The Logan plot is a so-called graphical
method, because the nonlinear data analysis is reduced to a linear regression (which can
be plotted) [46].

Situation I (k3 = 0):
We know from measurements Ca(t) and we know C1(t) + Ca(t); we assume that Ca(t) is
rather small after an initial time interval, s.t. we may assume that C1(t) +Ca(t) ≈ C1(t)
if t large (to be more precise: after ten or twenty minutes).
The aim is to estimate V1 = k1/k2. According to the model, we find

d

dt
C1 = k1Ca − k2C1, C1(0) = 0.

Integrating this equation w.r.t. t (not integrating the differential equation as differential
equation!) yields

C1(t) = k1

∫ t

0
Ca(τ) dτ − k2

∫ t

0
C1(τ) dτ .

and hence

C1(t) = k1

∫ t

0
Ca(τ) dτ − k2

∫ t

0
C1(τ) dτ

Dividing by k2 C1(t) yields∫ t
0 C1(τ) dτ

C1(t)
=
k1

k2

∫ t
0 Ca(τ) dτ

C1(t)
− 1

k2

= V1

∫ t
0 Ca(τ) dτ

C1(t)
− 1

k2

.

V1 can be estimated as the slope of a linear equation, where∫ t
0 C1(τ) dτ

C1(t)
,

∫ t
0 Ca(τ) dτ

C1(t)

are the dependent variables.

Situation II (k3 > 0):
In order to estimate V2, the informations about Ca(t) and the measurement in the corre-
sponding voxel (i.e. Ca(t) +C1(t) +C2(t) is not enough. In addition, we need information
about V1, i.e. we need to analyze a reference region, where we assume k3 = 0. Under
this assumption, we are able (by the approach for Situation I) to estimate V1. Hence,
three different measurements are necessary to evaluate an voxel of the interesting region
(so-called “Region Of Interest”, ROI):

(1) Measurements of the blood Ca(t).
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(2) Measurement of an reference region. We will attach a prime to the corresponding
magnitudes for the reference region, i.e. C ′1, k′1 etc.

(3) The measurements of the voxel in the ROI. We will denote these magnitude still
with C1(t), k1 etc.

Assumption: We assume, that k′3 = 0 (i.e. there are no specific receptors in the reference
region), and

V ′1 =
k′1
k′2

=
k1

k2

= V1.

This assumption is necessary in order to obtain information about V2 in the ROI. However,
this assumption is arbitrary, and there may be many reasons to doubt it. The only
justification is pragmatically: this approach with this assumption yields reasonable results.

(A) Reference Region: (Estimation of V1)
Here we use the method of Situation I.

(B) ROI: (Estimation of V1 + V2)
Now we cannot assume k3 = 0. We have to reconsider the computations done for Sce-
nario I. The state in the ROI is determined by Ca(t), C1(t) and C2(t), the measured signal
reads

S(t) = ε Ca(t) + Cq(t) + C2(t) ≈ C1(t) + C2(t)

Let

A =

(
−(k2 + k3) k4

k3 −k4

)
, e1 =

(
1
0

)
.

We find

d

dt

(
C1

C2

)
= A

(
C1

C2

)
+ Ca(t)k1e1

⇒ d

dt
A−1

(
C1

C2

)
=

(
C1

C2

)
+ Ca(t)k1 A

−1e1

With e = (1, 1)T and C(t) = Ca(t) + C1(t) it follows, that

eTA−1

(
C1(t)
C2(t)

)
=

∫ t

0
C(τ) dτ +

∫ t

0
Ca(τ) dτ k1 eTA−1e1

Division by C(t) yields

∫ t
0 C(τ) dτ

C(t)
=

eTA−1

(
C1(t)
C2(t)

)
C(t)

− k1 eTA−1e1

∫ t
0 Ca(τ) dτ

C(t)
.
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After an initial phase, we may assume that Ca(t) ≈ 0. Hence we are left with a system of
linear, autonomous ordinary differential equations. Asymptotically, the solutions of such
an system will approach an exponentially increasing (or decreasing) function,(

C1(t)
C2(t)

)
∝ eλ̂ t

(
Ĉ1

Ĉ2

)
for t→∞,

where λ̂ denotes the largest eigenvalue of the matrix A and (Ĉ1, Ĉ2)T is the corresponding
positive eigenvector (why is this eigenvector positive?). Hence, asymptotically, we find

eTA−1

(
C1(t)
C2(t)

)
C(t)

≈ const

and a linear connection∫ t
0 C(τ) dτ

C(t)
= const− k1 eTA−1e1

∫ t
0 Ca(τ) dτ

C(t)
.

The slope of this linear function reads

−k1 eTA−1e1 = −k1
1

det(A)
eT
(
−k4 −k4

−k3 −(k2 + k3)

)
e1

= k1
k3 + k4

k4 k2

=
k1

k2

+
k1 k3

k4 k2

= V1 + V2

(C) ROI: (Estimation of V2)
V2 may be estimated as the difference of the estimation of V1 + V2 (done in (B)) and the
estimation of V1 (done in (A)).

Remark: Of course, many problems are related to these considerations.

2.4.3 Treatment of Hepatitis C

Hepatitis C is a viral infection. It is quite prevalent in the population (2-15% infected
individuals). Mostly, it is asymptomatically. However, individuals infected with Hepatitis
C have a higher risk to develop liver cancer. The present treatment strategy is a high
dose of interferon-α over a long period (one year). The mechanisms of this treatment is
poorly understood. Also early time prediction about the success of this treatment are
not too well. The latter is of special interest, since this treatment causes high fever -
individuals who will be not successfully treated will be happy to stop the treatment as
soon as possible. Only if the virus is eradicated this torture pays out.
The question that can be approached by a model is two-fold: can we say something about
the mechanisms of interferon-α? Can we predict the success/failure of this treatment for
one individual early in the treatment? Can we perhaps enhance the treatment, if it fails?
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Figure 22: Data about the decline of the virus load during the treatment with interferon-α
(data of two patients; left hand side are data of the first two days, right and side the first two
weeks).

These questions are approached in a series of articles [51]. We report here especially the
ideas of the authors about the evaluation of different possible mechanisms that interferon-
α uses to fight the infection and the interpretation of some of the structures in the data
we do have from infected persons under treatment.

We find data describing the decline of virus-load under interferon-α (see Fig. 22). After
the onset of treatment, these data show three phases:

(1) Delay (1-3h)

(2) Phase 1: sharp decrease of the total virus load (≈ 2 Days)

(3) Phase 2: slow decrease of the total virus load (Months)

The authors start off with a description of the life cycle of a viron (a free viral particle
of Hepatitis C). Virons infect a target cell. These infected target cells can be detected
by the immune system and thus have a higher clearance rate. Furthermore, infected cells
release new virons, that in turn may infect more target cells (see Fig. 23).

State: The state of the system is given by the density of target cells T , the density of
free virons V and the density of infected cells I.

Dynamics: For the dynamics, we make a simplifying assumption: the population of target
cells should be quite large and stable, s.t. we may assume that T (t) = T is constant and is
only slightly influenced by infection. Basically we assume that - even if the viral infection
is quite prevalent - only a small fraction of target cells are infected. Then, the number
of newly infected cells per time unit (the incidence) is proportional to the free virons, i.e.
the incidence is βT . We furthermore assume that the infection is in (a stable) equilibrium
before the beginning of the treatment. The natural death rate of infected cells is δ. These
dying cells are translated by a certain factor into new virons, s.t. we have p I new virons
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Figure 23: Basic model of viral infection.

per time unit. The clearance rate for free virons reads c. We obtain the model euqations,

İ = βT V − δI
V̇ = pI − c V.

Now possible treatment effects are included. There are two ideas:
(1) The production rate for new virons are reduced. We replace p by (1− ε)p, ε ∈ [0, 1].
(2) The infection rate is reduced. We replace β by (1− η)p, η ∈ [0, 1].

İ = (1− η) βT V − δI
V̇ = (1− ε) pI − c V.

We have to inspect the effects of η and ε on the dynamics, in order to obtain an idea
which effect is more likely to meet the data.

Time scales and treatment effect:
We need to know some time scales. From experiments it is known that

δ ≈ 0.1 day−1 ⇔ Mean time ≈ 10 Days

c ≈ 0.6 day−1 ⇔ Mean time ≈ 4 h

For the first phase after treatment, we can consider the effect of partially blocking new
infection of target cells (η > 0) or partially blocking de novo production of virons. The
first effect would lead to an decline infected T-cells with a time scale of the magnitude of
the mean life span of an infected cell, i.e. with 1/δ ≈ 10 Days. We expect a rather slow
and long-lasting decline in the initial phase, if η > 0. The second effect, ε > 0, leads to a
smaller production rate of virons. Thus the clearance of virons that runs on a time scale
of hours reduces fast the load with free viruses in the initial phase, that should range in
a time scale of hours to days. Hence, from the data it seems much more plausible that
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interferon-α primarily blocks the de novo production of virons than blocks the infection
pathway.

Analysis of the model
However, where do these two phases come from? We have a two-dimensional, linear
differential equation that is to analyze. From the considerations above, we choose η = 0.
Thus we need the eigenvalues of the corresponding matrix

A =

(
a11 a12

a21 a22

)
=

(
−δ βT

(1− ε) p −c

)
.

Formulas for the eigenvalues of a two times two matrix:
Let

A =

(
a11 a12

a21 a22

)
.

The characteristic polynomial for the eigenvalues λ reads

λ2 − (a11 + a22)λ+ a11a22 − a21a12 = 0

Hence, using the definition for trace and determinant, we find

λ± =
1

2

(
tr(A)±

√
tr(A)2 − 4 det(A)

)
A further useful formula follows from

tr(A)2 − 4 det(A) = (a11 + a22)2 − 4 a11a22 + 4 a21a12 = (a11 − a22)2 + 4 a21a12

i.e.

λ± =
1

2

(
a11 + a22 ±

√
(a11 − a22)2 + 4a21a12

)
.

Thus,

λ±(ε) =
1

2

(
−(δ + c)±

√
(δ − c)2 + 4(1− εp)βT

)
Case 1, no treatment:
In this case, we assume the system to be in a locally stable, non-trivial equilibrium, i.e.
in an equilibrium with I, V > 0. Hence, either λ+(0) = 0 or λ−(0) = 0. Since we assume
local stability, we conclude λ±(0) ≤ 0. Thus,

λ+(0) = 0 > λ−(0).

The condition λ+(0) = 0 can be solved for T . We obtain a line of stationary points, that
attract all other initial values (see Fig. 24). This model is degenerated, because we do
not include the dynamics of T . If we explicitly model the influence of the infection on
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I

V
Line of stationary points

Figure 24: Dynamics for ε = 0.

the population of target cells, we find a unique, (locally) attracting fixed point. We will
return to this complete model later in this lecture.

Case 2, treatment:
We now choose 0 < ε � 1, i.e. we switch on the proposed treatment effect. In this case,
we find from the explicit formula for λ±(ε) that

0 > λ+(ε)� λ−(ε).

We deal with a stiff system, respectively with a system that exhibits two time scales (see
Fig. 25). We start at the stationary point on the line with stationary points for ε = 0.
The eigenvectors will slightly change, if we set ε to a value larger than zero. Along the
fast manifold (the eigendirection for λ−(ε)) we will approach the new slow manifold (the
eigendirectionof λ+(ε), that did correspond to a line of stationary points before) and then
go along this line slowly into the unique stationary point, where I = V = 0, i.e. where
the infection is gone. This picture explains very nicely the two phases we have seen in
the data. However, it does not explain the delay, that appears between the first does of
interferon-α and start of the decline of the virus load.

One may even learn something about failures of the treatment: if we do not find the fast
decline of phase I, then the reduction of the production rate of virons by infected cells is
not effective enough. One should enhance this process. If the decline in the second phase
is not present or very slow, this may be a hint that the death rate for infected cells c is
not large enough. One should therefore enhance this death rate. It is possible to modify
treatment in these directions. In this way, this simple mathematical model may help to
tailor the treatment against Hepatitis C for a given patient.

2.5 Summary/Conclusion

• In biology, most entities that are to describe are discrete (molecules, cells, individuals).
We started with the description of one individual, that only has one possible behavior: it
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I

V

Slow Manifold

Fast Manifold

Phase II

Phase I

Figure 25: Dynamics for ε > 0.

may die, or - more general - it may change its present state. Here we met the first time
the basic structure of dynamical models: a model is given by the states that the entities can
assume, and by the characterization of the transition between these states (the dynamics).

• The investigation of one individual yields a stochastic model about the duration that a
particle spends in the given state. If the rate does not depend on the time that the particle
already belongst to this state (i.e. the transition rate is constant), we find the exponential
distribution for this time (“exponentially distributed waiting times”).

• Next we considered a small population of particles. Here, we have to be clear about the
fact that we consider only independent individuals - there is no competition for resources
or alike. In general, models about independent individuals yield linear equations. The
distribution of individuals that are a certain time in a given state after a certain time can
be described by a Binomial distribution, where the parameter p of this distribution is given
by the survival probability of one individual.

• Now we aimed at a justification for deterministic models. A deterministic model, in the
present case, assumes the form of an ordinary differential equation. This yields numbers in
IR, while the population consists of discrete entities. This seemingly contradiction can be
solved with two different approaches: either one describes the expectation of the size of the
population. For this argumentation, it is necessary to focus on independent individuals.
The second approach considers large population. Relatively to the size of the population
the random fluctuations tend to zero. However, one has to normalize the population size
(one has to consider fractions or densities). This approach still works out with nonlinear
models.

• Linear compartmental models are the straight forward generalization of models with
only two states (dead of alive) and one transition to models with n states and an arbitrary
number of transitions between these states. These models can be graphically represented
by directed graphs, and translated into stochastic or deterministic model equations. It
must be clear, that the state is described only by numbers/densities of particles in the
corresponding state, which does not include the time, that a particle already did spend in
this state. Hence, we only can use constant rates (exponentially distributed waiting times).
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This may not be appropriate in some cases.

2.6 Exercise

Exercise 2.1:
The population density of independently acting individuals (bacteria, animals etc.) that
do have unlimited resources can be described by a linear equation,

ẋ = b x

where b denoted the net-reproduction rate.
Develop a model for a population of independently acting individuals (and unlimited
resources) that consists of n phenotypes (behavioral types); every phenotype has its own
reproduction rate. During reproduction, however, offspring may mutate to one of the
other phenotypes.
Can you draw some conclusions from your model?

Exercise 2.2:
Consider an experiment that only has one of two results {0, 1} (e.g. dead or alive). The
experiment is repeated N times, s.t. we have results x1,..,xN , xi ∈ {0, 1}. Assume the
corresponding random variables Xi to be i.i.d. (independent and identically distributed)
(what does this mean for the experiment?)
(a) Compute the maximum-likelihood-estimator
(b) Compute the Bayes-estimator, if we assume the prior for p = P (Xi = 1) to be the
uniform distribution between zero and one.

Exercise 2.3:
Let f : IRn → IRn and f(αx) = αf(x). Compute the projection of ẋ = f(x) to the
simplex S = {x ∈ IRn

+ | eTx = 1}. Assume f ∈ C1. Are there fixed points of the
projected system? If there are fixed points of the projected system, which solutions are
projected to these fixed points?

Exercise 2.4:
(Programming exercise) Consider a population of individuals, all of them born at time
t = 0. Assume that these individuals do have a death rate that depends on a, µ =
µ(a) Extend the simulation method 1 (transformation of a uniformly distributed random
variable) to this case.
Choose µ(a) = 0.01 exp(0.001 a). Simulate a population with 10, 100 and 1000 particles
and the given death rate. Draw one realization of these simulation together with the
expected value.
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Part One:
Independent Entities - The Linear Case

We now start with a systematic description of modeling methods for a population of
entities that act independently of each other. In this part (not in Part II, where we
look at non-linear models) we emphasize the methodological aspects. I.e., we consider
systematically the different models mentioned in the upper part of the table at page 2.
We first concentrate on discrete time, going from small to large populations, and then we
will focus on continuous time, again moving from small to large populations.

Many of the tools we develop here are the foundation for a profound understanding of the
models in Part II. There are two connections between nonlinear and linear models:
(1) First of all, even for stochastic models, there is often enough a possibility to “linearize”
a model locally. I.e., if some magnitude becomes small (e.g. the time interval under
consideration), then the nonlinear model will not behave very differently compared with
an appropriate chosen linear model. However, the long term behavior of nonlinear models
often show a completely new behavior. Nevertheless, much of this new behavior can be
understood if one uses the linear methods in a clever way.
(2) A second connection, that proves to be useful in certain situations, is the fact that -
by blowing up the state space - one can embed nonlinear dynamics into a linear structure.
Perhaps this may sound magic, the principle how to construct this embedding is quite
straight forward. We will consider an example at the end of Part I.

3 Discrete Time

Of course, biological systems evolve in chronological time, i.e. discrete time seems on the
first glance to by an artificial simplification. However, two situations that are quite typical
to occur suggest in a natural way the description of the evolution by a model with discrete
time: the model may be periodically forced, or one is not interested in chronological time
but in generations.

Perhaps the best and simplest example for a periodically forced system is an ecosystem
in Europe. The conditions of this ecosystem will be changed by the seasons, i.e. the
parameters undergo an annual periodicity. In order to reduce the dimension, one may not
inspect the ecosystem all over the year (indeed, in some months there will be almost no
activity), but only at one certain day in the year. E.g., the state in every 10’th October
is measured. These measurement points form a discrete time series, that one desires to
describe by a mathematical model, that - of course - will be then also discrete. This
procedure is known in mathematics as the introduction of a Poincaré map (see [40]).

In the second case, that frequently appears, one concentrates on generations rather than
on chronological time. Obviously, in population genetics this point of view is appropri-
ate. But it turns out, that also in many other fields this approach if fruitful: e.g., in
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epidemiology one may introduce the “generation of infecteds”, which does mean that one
starts with one primary infected person in a population. The individuals infected by the
primary infected person form the second generation of infecteds and so on. Using these
ideas, the central theorem for epidemic models (that also we will derive in Part II) can be
understood in a quite natural manner, much better than using a model in chronological
time.

3.1 Small Population Size: The Galton-Watson-Process

3.1.1 Example: QPCR

PCR (Polymerase Chain Reaction) is meanwhile a standard technique of molecular biol-
ogy that multiplies a small amount of DNA (or RNA), such that it can be detected. The
fingerprinting-technique, well known from crime novels, relays on PCR. QPCR (Quan-
titative Polymerase Chain Reaction) is a sophisticated version of PCR. One is not only
interested in the sequence/fingerprint of the DNA fragment, but also in the mass of these
fragments in a probe [52]. A typical application of this technique is the estimation of the
virus load of a patient, like we used in the example in section 2.4.3.

DNA
DNA−copy

Splitting

attaching of primer

growing of the copyrestart QPCR

DNA
DNA

DNA

primer

DNA−copy

splitting by heat

Figure 26: Sketch of the (Q)PCR-cycle .

The basic mechanism of the (Q)PCR is the following (see Fig. 26): start with a (small)
amount of single (not double) DNA-strings (single strings can be produced from double
strings simply by heating). This amount of DNA-mass is incubated in a mixture of primers
and nukleoides. In the first step, a primer - a very short pice of DNA, 6-8 nucleotides
long, is attached to the string. This is necessary for the second step, where nucleotides
subsequentially attach to the end of the primer, and in this way produce a double string
from the single string. After finishing this doubling procedure, using heat, the double
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string is split again. This cycle can be repeated over and over again, in principle always
doubling the amount of DNA, until the mass of DNA is sufficient for other experimental
techniques (e.g. finger-printing).

The heating-splitting-cycle yields a natural structure of “generations”, i.e. discrete time.
For PCR, the detailed structure of the process is not really important. This is different
in QPCR. Here, after typically ten to twenty cycles, there is enough material s.t. the
density of DNA-strings can be measured. The measurements in two subsequential cycles
can be used to recompute the amount of DNA in the beginning. The basic problem in
this computation if a consequence of a non-deterministic component of this process: the
primer only attaches with a certain probability to a DNA-string. However, if the primer
does not attach to a certain string, this string will not be copied in the corresponding
cycle. Hence, the “population” of DNA-stings will not be doubled in each cycle but
reproduce according to a stochastic law. If this law is known and analyzed, it will be
possible to derive an estimator for the initial mass of DNA-strings. We have to model
this process more in detail.

Model for QPCR:
State: Let Zn be the number of single DNA-strings in generation n.
Dynamics: Every single string replicates independently on each other string with prob-
ability

P ( doubling a single string) = pd.

Remark: (1) The independence of the replication behavior basically assumes, that there
is at each point of time enough primers and nucleotides present in the system. I.e., the
DNA-stings do not have to compete for resources.
(2) The probability pd is also called “amplification factor”. Typically, the amplification
factor ranges between 0.6 and 0.8 for the PCR.

Question:
How to estimate Z0, given Zn and Zn+1 for n large (typically 10 ≤ n ≤ 20)?

3.1.2 Galton-Watson-Process

The Galton-Watson process (GW-process) is the mathematical framework that describes
the process above. The books [35, 3, 25] give introductions into this subject.

Definition
We consider - in a slightly more abstract framework - a population of reproducing in-
dividuals. We use the successful approach to start off with one individual and then to
construct the population where we assume as most important ingredients independency
of individuals.

One Individual:
Let X be a random variable with values in IN that describes the number of children of
one individual, i.e. the probability for i children is given by P (X = i). Let pi defined by

P (X = i) = pi.
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Z             X
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Figure 27: The population in generation n+ 1 is the sum over the children of generation n.

The Population:
Let Zn be the size of the population in generation n, i.e. an IN-valued random variable.
Let furthermore X1,..,XZn be i.i.d. random variables, distributed like X (the number of
offspring of one individual). Then,

Zn+1 =
Zn∑
i=1

Xi

i.e. the population in generation n+1 consists of the offspring of generation n (see Fig. 27).
This process is called branching process, and more specifically (a general branching process
may also live in continuous time) a Galton-Watson process.
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Expectations of Functions of Random Variables
Let Y be a random variable that assumes values only in IN, g : IN→ IR a function. Then,

E(g(Y )) :=
∑
i∈IN

g(i)P (Y = i).

Of course, E(g(Y )) may not exists, even if E(Y ) exists and g(Y ) is well defined. We find
the well known formula

Var(Y ) = E(Y 2)− (E(Y ))2.

Generating function of an IN-valued random variable

The generating function of the random variable Y is defined as a power sequence

f : [0, 1]→ [0, 1], f(s) 7→
∞∑
i=0

siP (X = i).

Formally, we may write
f(s) = E(sY ).

Since 0 ≤ P (X = i) ≤ 1, the power series converges for all s ∈ [0, 1] and thus also all
derivatives in [0, 1). Furthermore,

f(1) =
∞∑
i=0

P (X = i) = 1, E(Y ) =
∞∑
i=1

i 1i−1 P (X = i) = f ′(1)

and

P (Y = i) =
1

i!

di

dsi
f(s)|s=0.

All informations about Y are coded in f .

In the example above (the QPCR), we have either one “child” with probability 1−pd (the
string that did not replicate), or two children with probability pd (if the string replicates).
Hence,

P (X = 0) = 0

P (X = 1) = 1− pd
P (X = 2) = pd

P (X = 3) = 0

. . .

In this case we find
f(s) = (1− pd) s+ pd s

2.

Analysis
The interesting questions are:



3.1 Small Population Size: The Galton-Watson-Process 49

• E(Zn)
• Var(Zn)
• The probability that the population goes extinct, P (limn→∞ Zn = 0).

In the following, let fn(s) be the generating function of Zn. If we know fn(s), we know
P (Zn = i), i.e. we are able to derive all these informations.

In order to prepare for our central theorem, we prove a rather technical lemma.

Lemma 3.1: Let Y , X1, X2,... random variables with values in IN, and let Xi be i.i.d.
Let furthermore

S =
Y∑
i=1

Xi,

and h1(.) the generating function of Xi, h2(.) the generating function of Y and h3(.) the
generating function of S. Then,

(1) h3(s) = h2 ◦ h1(s)
(2) E(S) = E(X1)E(Y )
(3) Var(S) = Var(X1)E(Y ) + E(X1)2 Var(Y ).

Note, that the formula for the expectation of S is symmetric in Xi and Y , but not the
formula for the variance.

Proof:
ad 1)

h3(s) = E(sS) = E(E(sS|Y ))

=
∞∑
i=0

P (Y = i)E(sS|Y = i)

=
∞∑
i=0

P (Y = i)E
(
s
∑i

j=1
Xj
)

=
∞∑
i=0

P (Y = i)E
(
Πi
j=1 s

Xj
)

Xi independent
=

∞∑
i=0

P (Y = i)Πi
j=1 E

(
sXj

)
=

∞∑
i=0

P (Y = i)E
(
sX1

)i
=

∞∑
i=0

P (Y = i)(h1(s))i

= h2(h1(s)) = h2 ◦ h1(s)

ad 2)

E(S) =
d h3(s)

ds

∣∣∣∣
s=1

=
d h2(h1(s))

ds

∣∣∣∣
s=1

= h′2(h1(s))h′1(s)|s=1

h1(1)=1
= h′2(1)h′1(1) = E(Y )E(X).
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ad 3) Exercise 3.2
2

Theorem 3.2: fn+1(s) = f ◦ fn(s)

Proof: The lemma above with Zn+1 =
∑Zn
i=1 Xi and Xi are i.i.d. with generating function

f(.).
2

Theorem 3.3: Let r = E(X), σ = Var(X), Z0 = z0 ∈ IN. Then,

E(Zn) = z0 r
n

Var(Zn) =

{
z0σr

n−1 rn−1
r−1

for r 6= 1

z0σn for r = 1

Proof:
Expected value: Since E(Zn+1) = f ′n+1(1) = f ′(1)f ′n(1) = rE(Zn), the proof for the
expected value follows with induction.
Variance: Exercise 3.3

2

Theorem 3.4: Assume f(0) > 0, i.e. P (X = 0) > 0. If E(X) = f ′(1) > 1, then there
is exactly one root p of f(s) = s for 0 < s < 1. If E(X) = f ′(1) ≤ 1, define p := 1. The
probability for extinction reads

P ( lim
n→∞

Zn = 0) = p.

Proof: Step 1 (Uniqueness of the root of f(s) = s for s ∈ [0, 1], if f ′(1) < 1:
Since f(s) =

∑∞
i=0 s

iP (X = i), we obtain

p 1

1

s

f’(1)>1

f(0)

1

1

s

f’(1)<1

f(0)

f(s)

f(s)

Figure 28: Function f(.) for the two cases: f ′(1) > 1 and f ′(1) < 1.

f(0) > 0, f(1) = 1,
f ′(s) ≥ 0, f ′′(s) ≥ 0.
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Hence, the function g(.) is monotonously increasing and concave. Therefore, the root
p ∈ [0, 1] of f(s) = s is unique (see Fig. 28).

Step 2 (Probability for extinction):
Let qn = P (Zn = 0). Then,

qn = fn(0) = f ◦ fn−1(0) = f(qn−1)

and q0 = P (Z0) = 0. This is a discrete, deterministic iterative system for qn. We aim at
the limit point for n→∞ (if it exists). Since f(.) is non-decreasing in [0, 1] and f(s) > s
in [0, p) and f([0, p]) ⊂ [0, p], we find (per induction)

qn = f(qn−1) ≥ qn−1, q0 = 0 < p, qn = f(qn−1) < p.

I.e., qn is a non-decreasing sequence that is bounded by p. Thus this sequence converges.
Since f is continuous,

f( lim
n→∞

qn) = lim
n→∞

f(qn) = lim
n→∞

qn

and thus the limit point is a fixed point of f . We conclude

lim
n→∞

qn = p.

2

Interpretation:

We will find this law in several versions during the lecture. The basic structure is the
following dichotomy:
Case 1: Extinction. If the expected number of children is below one, the population will
die out with probability one. In average, a member of the population will not be replaced
by at least one child, s.t. eventually the population is bound to decrease. However, there
may be a large number of individuals present until finally the population dies out (if our
population consists of infected individuals, this information may be of value)
Case 2: Persistence. Even if the population may persist, there is still a positive prob-
ability to get extinct (if f(0) > 0, i.e. if an individual is allowed to die without any
offspring). If the population does not die out, it will tend to infinity with probability
one (see Jagers [35]). By the way, the information is only available within a stochastic
model. A deterministic model, that addresses the expected value for the population size
is not able to give information about realizations that die out. This may be an important
difference between the stochastic and the deterministic approach.

The magnitude E(X), i.e. the average number of children, often is called reproduction
number, or basic reproduction number R0. In many (at least mathematically important)
examples, we find that

P (Extinction) = 1/R0, if R0 > 1.
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Figure 29: Simulations of the QPCR using the Galton-Watson process. The histograms are
the results of 10000 runs. The simulations have been performed for different parameter values
(p = 0.95, 0.9, 0.85 and 0.8; n = 10; z0 = 1 Left hand side: mass after ten cycles. Right hand
side:estimated number of strings z0.
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3.1.3 Back To QPCR

Because of the copyright is this figure empty.

place here: M.K.Hansen at al., J. Neurosc. 18(1998) 2247–2253, Fig. 1 [29]

Figure 30: Data of a QPCR. See text for further explanation.

Using the analysis of the Galton-Watson process, we are able to derive estimators for the
QPCR. We know that

E(Zn) = rnz0, E(Zn+1) = rn+1z0.

Hence,
r = E(Zn+1)/E(Zn)

and we define the estimator
r̂ = Z̃n+1/Z̃n

(where Z̃i denotes the measurement of the mass after the i’th cycle). Knowing r and n,
we find

z0 = E(Zn)/rn.

This yields in a straight forward way the estimator

ẑ0 = Z̃n/r̂
n =

Z̃n
n+1

Z̃n−1
n

.

Of course, this estimator is a naive estimator. The performance of this estimator has
to be analyzed (e.g. variance), confidence intervals have to be determined etc. It may
also be possible to improve it, e.g. by taking into account not only Zn and Zn+1 but also
Zn, .., Zn+i with i > 1.

A simple way to approach such problems are computer simulations. It is possible to
simulate the process, generating artificial measurements Z̃n and Z̃n+1 and then to compare
the estimated number z0 with number z0 that has been chosen for simulations (see Fig. 29).
We observe, especially for pd high, shoulders in the distributions. These shoulders are the
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result of early events: the effect of a failure to double in the first generation will spread
and cause these shoulders (which, of course, may be also found back in the estimates).

A picture of data are shown in Fig. 30. Here, the amount of mRNA is determined by
RT-PCR (a special kind of QPCR that uses reverse transcription). Wild type and mutant
rats are treated with IL-1β, a substance, that is an important messenger for the immune
system. Left part of the picture shows the data from liver cells, while the right part of the
picture shows data for brain cells (open triangles: wild type, closed triangles: mutant).
The logarithm of the density is plotted over PCR-cycles. According to our theory, the
data should approximately be located on a line. From these data one can interfere the
amplification factor and then estimate the original amount of mRNA in the substrate. l

3.1.4 Exercise

Exercise 3.1:
Consider the following (sub)model for the fate of one individual / the probability distri-
bution of offspring:
State: Number of children.
Dynamics: In every step the individual decides if he/she dies or gets another child. I.e.,

P (i+ 1 children in step i+ 1|i children in step i) = q

and

P (dead in step i+ 1|alive in step i) = 1− q.

(a) Compute the distribution of children of one individual.
(b) Compute the probability for extinction.
(c) If the probability for extinction is one, how large is the expected value of the total
population

over all generations
∑
n Zn?

Exercise 3.2:
Show part (c) of Lemma 3.1. I.e., let Y , X1, X2,... random variables with values in IN,
and let Xi be i.i.d. Let furthermore

S =
Y∑
i=1

Xi,

and h1(.) the generating function of Xi, h2(.) the generating function of Y and h3(.) the
generating function of S. Show that

Var(S) = Var(X1)E(Y ) + E(X1)2 Var(Y ).

Exercise 3.3:
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Show the part about the variance in Theorem 3.3. I.e., let Zn be the population size
of a Galton-Watson process, X be the random variable that counts the offspring of one
individual. Let furthermore r = E(X), σ = Var(X), Z0 = z0. Show that

Var(Zn) =

{
z0σr

n−1 rn−1
r−1

for r 6= 1

z0σn for r = 1

Exercise 3.4:
Consider a population that consists of two types of individuals (where each individual
acts independently of each other).
(a) Formulate a Galton-Watson process for these two types.
(b) Find a recursive equation for the expected number of individuals (structured by type).
(c) Find a necessary and sufficient condition, s.t. the expected number of individuals will
tend to infinity respectively tends to zero.

3.2 Large Population, Discrete State

If we consider large population, we again derive deterministic models. Since we consider
independent individuals, these models assume the form of linear difference equations. Like
in part about the death process, we have two possibilities to justify a deterministic model.
Consider the Galton-Watson Process. We may either consider expectations, or investigate
the importance of random fluctuations for large population sizes.
(1) E(Zn+1) = R0 E(Zn).

(2)
√

Var(Zn)/E(Zn) → 0 for Z0 → ∞ (i.e. relative size of fluctuations tends to zero if

the populationsize tends to ∞).

3.2.1 Example 1: Fibonacci numbers

Consider animals (rabbits?) that become exactly three years old. In the second and third
year, one animal produces exactly one child.

First formulation:

• State: xn = Number of newborn animals in year n.
• Dynamics: xn = xn−1 + xn−2.

Assume x0 = 0, x1 = 1. We obtain the sequence

0, 1, 1, 2, 3, 5, 8 · · · .

Second formulation:

• State in year n:

y
(n)
1 = No. of animals of age one, y

(n)
2 = No. of animals of age two, yn =

(
y

(n)
1

y
(n)
2

)
.
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• Dynamics: y
(n)
2 = y

(n−1)
1 , y

(n)
1 = y

(n−1)
1 + y

(n−1)
2

i.e.

yn =

(
1 1
1 0

)
yn−1 = Ayn−1.

Thus we find yn = Any0. Questions: How to deal with these models? How does the
dynamics look like - is a classification possible? How does the asymptotic behavior looks
like?

3.2.2 Linear, discrete dynamical systems

Generic Case / real Jordan normal form

Consider

yn+1 = Ayn, yn ∈ IRm.

This system can be simplified and reduced using invariant eigenspaces; later we will see,
that this approach may be not appropriate in all case - properties like positivity of the
solution may become invisible. Generically, there are m different eigenvalues

λ1, .., λm.

Of course, there also cases where two eigenvalues coincide. However, a generic pertur-
bation of the matrix will split these eigenvalues. Hence, these cases are not important
here (they may be important because they separate regions with different behavior, but
in itself they are less interesting, since we will never find them).

Let λ1 = r1e
iφ1 , λ2 = r1e

−iφ1 , .., λ2k+1 = rke
−iφk ∈ IC \ IR and λ2k+2, .., λm ∈ IR and

Ã =



A1

· · · 0
Ak

λ2k+2

0 · · ·
λm


.

where

Ai = ri

(
cos(φi) sin(φi)
− sin(φi) cos(φi)

)
.

Then, there is a linear transformation T s.t.

A = T−1ÃT,

i.e. the diagram
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RI m RI m

RI m RI m

T −1

A
~

T

A

commutes. Thus we may restrict ourself to the analysis on one-dimensional systems and
2× 2-systems with complex eigenvalues.

Case 1: λ ∈ IR.
We iterate with a real number. I.e., the system is one-dimensional. We may distinguish
four generic cases:

1. λ > 1 (yn tends to ± infinity monotonously)

2. 1 > λ > 0 (yn tends to zero monotonously)

3. 0 > λ > −1 (yn tends to zero in an alternating way)

4. −1 > λ (|yn| tends to infinity while yn alternate)

Like before, the cases |λ| = 1 or λ = 0 are not this important since they are not generic
cases. The corresponding behavior can be found in Fig. 31.
Case 2: =(λ) 6= 0.
In this case, we find a two-dimensional system (the Gaussian plane). Since λ = |λ|eiθ, the
trajectory will spiral; if |λ| < 1 it spirals into the origin, if |λ| > 1 to infinity (see Fig. 31).

Remark 3.5: Of course, a simple criterion for |λ| < 1 is of interest. We find, that for a
2× 2-matrix

|λ±| < 1 ⇔ 2 > 1 + det(A) > |tr(A)|.

Proof: We distinguish two cases, tr(A)2 − 4 det(A) ≥ 0 and tr(A)2 − 4 det(A) < 0.
Case 1: (tr(A)2 − 4 det(A) ≥ 0)
Let f(λ) = λ2 − tr(A)λ + det(A). Due to the condition tr(A)2 − 4 det(A) ≥ 0 we find
λ± ∈ IR. Hence, in order to satisfy |λ±| < 1 we need (see Fig. 32 (a)).

f(−1) > 0, f ′(−1) < 0,
f(1) > 0, f ′(1) > 0.

Hence,

f(−1) = (−1)2 − tr(A)(−1) + det(A) > 0

f( 1) = ( 1)2 − tr(A)( 1) + det(A) > 0

which is equivalent with 1 + det(A) > max{tr(A),−tr(A)} = |tr(A)|.
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0

0

0

λ = |λ| e i θλ = |λ| e i θ

1>λ>0

0

−1>λ

0>λ>−1

|λ| < 1|λ| < 1

λ > 1

Figure 31: The behavior of a linear iterative equation for certain ranges of eigenvalues.

Similarly,

f ′(−1) = 2 (−1)− tr(A) > 0

f ′( 1) = 2 ( 1)− tr(A) < 0

which is equivalent with 2 > max{tr(A),−tr(A)} = |tr(A)| (see Fig. 32 (b)). Since
tr(A)2 − 4 det(A) = 0 for det(A) = 1, tr(A) = 2, we find

|λ±| < 1, tr(A)2−4 det(A) ≥ 0 ⇔ 2 > 1+det(A) > |tr(A)|, tr(A)2−4 det(A) ≥ 0.

Case 2: (tr(A)2 − 4 det(A) < 0)
In this case, λ± ∈ IC\IR, i.e. (the determinant of a matrix is the product of its eigenvalues)

|λ±|2 = λ±λ± = λ+λ− = det(A)

Hence, |λ±| < 1 and tr(A)2 − 4 det(A) > 0 is equivalent with det(A) < 1 and tr(A)2 −
4 det(A) > 0.
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f(   )λ

−1 1 λ

(a)

+/−|λ     |<1

(b)
tr  = 4 det

1+det = tr
1+det = − tr

1

−2 2 tr

det
2

Figure 32: (a) The characteristic polynomial f(.) in case 1. (b) The allowed region for case 1.

Combining these two cases yields (see again Fig. 32 (b)),

|λ±| < 1 ⇔ 2 > 1 + det(A) > |tr(A)|.

2
Remark 3.6: The region

∆ = {(tr(A), det(A)) |σ(A) ⊂ {|z| < 1}}

has the shape of a triangle. The part of the boundary of ∆ with det(A) = 1, tr(A) ∈
(−2, 2) corresponds to complex eigenvalues (|λ±| = 1, λ± 6∈ IR), while the two other lines
of the boundaries correspond to real eigenvalues (either +1 or −1). On the first glance,
this seems to be strange: the boundary of {|z| < 1} consists of the two real points ±1 that
separate two connected lines of values with non-vanishing imaginary part. The structure
of the two sets, {|z| < 1} and ∆, seems not to fit.
The solution is the fact that two eigenvalues leave the unit circle simultaneously, if the
point (tr(), det) cross the boundary ∆ with det = 1 and −1 < tr() < 1. Hence, the two
disconnected non-real parts of the boundary of the unit circle can be identified.

Positive Matrices
Positive matrices play an important role in mathematical biology (we observed this several
times before). We state a few important theorems about positive matrices.

Main questions:
• Under which conditions can/cannot a system, governed by

yn+1 = Ayn, ((A))i,j ≥ 0

be split into two independent subsystems?
• What can be concluded about the asymptotic behavior?
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1

2

3

4

5

Figure 33: Transition graph of a reducible system.

Splitting of a system:

Consider five states, with transitions shown in Fig. 33. These transitions form a directed
graph.

Definition 3.7: A (directed) graph G = (V,E) consists of a set of vertices V and
(directed) edges E.

In our example, we find V = {1, .., 5}, E = {1→ 2, 2→ 3, 3→ 1, 4→ 5, 5→ 4}.
Definition 3.8: An incidence matrix of the directed graph with vertices V = {v1, .., vn}
and directed edges E is a matrix A ∈ {0, 1}n×n, s.t.

((A))i,j =

{
1 if vi → vj ∈ E
0 else

In our example, we find

A =


0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0


Obviously, this system can be split into two independent subsystems. In order to get a
grip on this phenomenon, we introduce the concept of irreducibility.

Definition 3.9: Let A be a non-negative matrix, and Â ∈ {0, 1}n×n defined by

((Â))i,j =

{
1 if ((A))i,j > 0
0 if ((A))i,j = 0

.

Â is an incidence matrix of a directed graph G = (V,E), V = {v1, .., vn}. If this directed
graph is connected (i.e. for all vi, vj ∈ V there is a directed path vi = vl1 → vl2 → vl3 →
· · · → vlm−1 → vlm = vj, where vlk → vlk+1

∈ E for k = 1, ..,m − 1), then A is called
irreducible.
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Remark 3.10: The graph in Fig. 34 is not connected, though it is not possible to cut it
into two independent subsystems. There is no possibility to come into node one, though
node one is connected with nodes two and three. It nevertheless makes sense to reduce
the graph to G̃ = (Ṽ , Ẽ) with Ṽ = {2, 3} and Ẽ = {2→ 3, 3→ 2}: if we are once in state
1 or 2, we will never leave G̃; moreover, G̃ is connected. We find here an example for the
concept of a trap: a subgraph G̃ = (Ṽ , Ẽ) that is connected, and where no edge points
“outwards”, i.e. if vi → vj ∈ E, vi ∈ Ṽ ⇒ vj ∈ Ṽ . Obviously, an irreducible transition
matrix corresponds to a graph that exhibits exactly one trivial trap: the graph itself.

1

2
3

Figure 34: This directed graph is not connected.

Proposition 3.11: If A ∈ IRn×n is irreducible, then

(1) there is for every pair (i, j) ∈ {1, .., n}2 a number m ∈ IN, s.t. ((Am))i,j > 0
(2) (I + A)n−1 is strictly positive.

Proof: (Exercise!)

Theorem 3.12: (Perron) If A ∈ IRn×n is strictly positive, then the spectral radius ρ(A) is
a simple eigenvalue. The corresponding eigenvector is strictly positive. The absolute value
of all other eigenvalues are strictly smaller than ρ(A); they do not have a non-negative
eigenvector.

Theorem 3.13: (Frobenius) If A ∈ IRn×n is non-negative and irreducible, then the
spectral radius is a simple eigenvalue with a non-negative eigenvector.

Remark 3.14: In the case of the Theorem of Frobenius, there may be more eigenvalues
with |λ| = ρ(A).

We do not want to prove booth of these theorems; one may find the proofs (and more) in
the book of Gantmacher [22]. Let us sketch the idea for the theorem of Perron (we follow
Gantmacher [22], who in turn follows a proof due to Wieland).

Proposition 3.15: If A ∈ IRn×n is strictly positive, then the spectral radius ρ(A) is a
simple eigenvalue. The corresponding eigenvector is strictly positive.

Proof: (Perron’s Theorem)

Step 1: Find a candidate for the largest eigenvalue.

Define N := {Ax |x ∈ IRn
+ \ {0}} and

r : N → IR+, x 7→ r(x) = min
1≤i≤n

(Ax)i
(x)i

.
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Since A is strictly positive, also N consist of vectors that are strictly positive. Hence, r(.)
is continuous on N . Furthermore, with

α = min{((A))i,j | 1 ≤ i, j ≤ n },

we find (Ax)i ≥ α(x)i for x ∈ IRn
+ and i = 1, .., n, i.e. r(.) is bounded from below. Since

r(.) is homogeneous of degree zero (r(ζx) = r(x) for ζ > 0), we find

sup
x∈N

r(x) = sup
x∈N∩{xT x=1}

r(x).

Since r(.) is continuous on N and N ∩ {xTx = 1} is compact, r(.) assumes its maximum
on this set.

Step 2: The maximum of r(.) is an eigenvalue with a positive eigenvector.
Since r(x) ≥ α > 0, the maximum of r(.) is strictly positive. Let x0 ∈ N , s.t. r0 :=
r(x0) = maxx∈N r(x). Assume Ax0 6= r0x0. Then,

r0 ≤
(Ax0)i
(x0)i

⇒ (Ax0)i ≥ r0 (x0)i for i = 1, .., n

i.e. Ax0− r0x0 ≥ 0, and Ax0− r0x0 6= 0. Hence (A is strictly positive), we find A(Ax0)−
r0(Ax0) > 0. Hence, there is ε > 0 s.t. A(Ax0) − (r0 + ε)(Ax0) > 0, i.e. maxx∈N r(x) ≥
r0 + ε, which is a contradiction to the definition of r0. Thus,

Ax0 = r0x0, (x0)i > 0 for i = 1, .., n.

Step 3: r0 is the spectral radius
For y ∈ ICn define as y+ the vector with enries that are the absolute values of y. Assume
Ay = λy. Then,

Ay+ ≥ (Ay)+ = |λ|y+ ⇒ A(Ay+) ≥ |λ|(Ay+).

Since Ay+ ∈ N , we find |λ| ≤ r0. If |λ| = r0, then Ay+ is already an eigenvector of A
(since Ay+ ∈ N).

Step 4: The spectral radius is a simple eigenvalue.
Step 4(a): There is no linear independent second eigenvector.
Assume that apart of x0 ∈ N a second (linearly independent) vector x1 is eigenvector for
r0. Then, also x2 = ζ1x0 + ζ2x1 are eigenvalues. We may choose ζ1, ζ2 s.t. x2 ∈ IRn

+, and
exactly one entry becomes zero, i.e. there is an i0 ∈ {1, .., n} with (x2)i0 = 0. Thus,

0 < (Ax2)i0 = r0(x2)i0 = 0.

This is an contradiction.

Step 4(b): ρ(A) is a simple root of the characteristic polynomial.
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Introduce the adjoint matrix B(λ) for λI − A. I.e.,

(λI − A)−1 = p(λ)−1B(λ)

for λ 6∈ σ(A) (p(λ) denotes the characteristic polynomial). We will investigate the struc-
ture of B(λ) in the following steps.
• B(λ) is either non-negative or non-positive.
For λ > r0 we may compute (λI − A)−1 by the Neumann series and find

(λI − A)−1 =
1

λ

∞∑
i=0

(A/λ)i > 0.

Hence, (λI − A)−1 is strictly positive. Furthermore, p(λ) has no real root larger than
ρ(A). Hence, p(λ) > 0 for λ > ρ(A) and n even, resp. p(λ) < 0 for λ > ρ(A) and n odd.
Since the entries of B(λ) are polynomials in λ, B(λ) depends on λ in a smooth manner,
and thus

B(ρ(A)) = lim
λ→ρ(A)+

B(λ) = lim
λ→ρ(A)+

p(λ)(λI − A)−1.

The expression on the r.h.s. is either strictly positive or strictly negative for λ > ρ(A),
hwncw the entries of B(r0) are either non-negative or non-positive. It is not possible that
B(r0) has a positive and a negative entry at the same time.
• B(λ) cannot vanish.
Let T : IRn → IRn be a linear transformation, i.e. T−1 exists. The characteristic polyno-
mial will not be changed by a linear transformation of IRn. Furthermore,

TB(λ)T−1 = T p(λ)(λI − A)−1T−1 = p(λ)(λI − T−1AT )−1

i.e. if B(λ) = 0, then also the adjoint matrix of T−1AT vanishes for any transformation
T . Thus, we only have to show that the adjoint of J(λI −A) =: J(λ), the Jacobi normal
form of λI − A, does not vanish. Let

J(λ) = Block-Diagonal(J1(λ), J2(λ), .., Jk(λ))

where the Ji are the Jordan-blocks of A. Since we know (step 4(a)) that we only have
one eigenvector for ρ(A), there is only one Jordan-block for λ− ρ(A); without restriction
this block is J1(λ). Thus,

det(Ji(ρ(A)) 6= 0 for i > 1.

Now we show that at least one entry or the adjoint of J(ρ(A)) is non-zero. Consider the
Jordan-Block J1(λ) for λ(ρ(A)). Since the diagonal elements are λ − ρ(A), they vanish
for λ = ρ(A). Hence, J1(ρ(A)) is zero but the upper secondary diagonal: in the upper
secondary diagonal all entries are one.

J1 =



0 1 0 · · · 0 0
0 0 1 · · · 0 0

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

 .
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Let the dimension of J1 be l, and consider adjl,1(J1(ρ(A))), i.e. the determinant of J1, if
we skip the first column and the last row.

adjl,1(J1(ρ(A))) = (−1)l+1 det(I) = (−1)l+1.

Hence, the entry (l, 1) of adjoint of J(ρ(A)) is non-zero and thus also B(ρ(A)) 6= 0.
• p′(ρ(A)) 6= 0.
We find for λ 6∈ σ(A) that

(λI − A)−1 =
1

p(λ)
B(λ)

⇒ p(λ)I = B(λ)(λI − A)

⇒ p′(λ)I = B′(λ)(λI − A) +B(λ)

Since the last equation is the equality of polynomials, this equation also holds if λ = ρ(A).
Plugging in ρ(A) for λ and multiplying with x0 yields

p′(ρ(A))x0 = B′(ρ(A))(ρ(A)I − A)x0 +B(ρ(A))x0 = B(ρ(A))x0 6= 0

where B(ρ(A))x0 does not vanish (since B(ρ(A)) 6= 0 and B(λ) is either non-negative or
non-positive, and since x0 is strictly positive). Thus, p′(ρ(A)) 6= 0.

Step 5: There is no other non-negative eigenvector of A but x0.
Assume that there is x3 ∈ IRn

+ \ {0}, and

Ax3 = λx3.

Since x3 is non-negative, we find 0 < λ. Since r0 = ρ(A) is simple (step 4), we obtain
0 < λ < r0. Let û be the left-eigenvector of A for the eigenvalue ρ(A), i.e.

ûTA = ρ(A)ûT .

Since A and AT do have the same properties (strictly positive), also û is strictly positive.
Thus, < û, x3 >> 0, and

ρ(A) < û, x3 >=< AT û, x3 >=< û,Ax3 >= λ < û, x3 > .

Therefore λ = ρ(A), which contradicts our conclusion that λ < ρ(A).
2

In order to use these results for the Matrix-Iteration, we prove the following lemma.

Lemma 3.16: Let A ∈ IRm×m. Then, there is C > 0 s.t. ‖Akx‖ ≤ Cρ(A)k km.

Proof: It is sufficient to show this inequality for a Jordan-Block. Let

J =



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0

...
...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 .
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By induction it is easy to show that

Jn =



an1λ
n an2λ

n−1 an3λ
n−3 · · · anm−1λ

n−m+2 anmλ
n−m+1

0 an1λ
n an2λ

n−1 · · · anm−2λ
n−m+3 anm−1λ

n−m+2

...
...

0 0 0 · · · an1λ
n an2λ

n−1

0 0 0 · · · 0 an1λ
n

 .

The coefficients ani are real numbers that satisfy

an1 = 1, a0
i = 0 for i > 1, ani = an−1

i + an−1
i−1 .

We show by induction that that ani ≤ Cni−1:
Case i = 1: an1 = 1 ≤ Cni−1 for C > 1.
Step i→ i+ 1:

an+1
i = ani + ani−1 = an−1

i + an−1
i−1 + ani−1 = · · · = a0

i +
n∑
l=0

ali−1

Since a0
i = 0 and ali−1 ≤ Cli−2 ≤ Cni−2 we find

an+1
i ≤

n∑
l=0

Cni−2 = Cni−2(n+ 1) ≤ C(n+ 1)i−1.

Thus, all entries of Jn are smaller than Cλnnm, and therefore

|J |n ≤ C̃λn nm

2
Proposition 3.17: Consider a strictly positive matrix A with spectral radius ρ(A),
and the corresponding right eigenvector x̂ and left eigenvector û. We assume without
restriction that ûT x̂ = 1. Let furthermore

σ(A) \ {ρ(A)} ⊂ {|z| ≤ r < ρ(A)− ε}.

Then, asymptotically, we find

Anx =< û, x > x̂ ρ(A)n + gn

where the residuals gn can be estimated by

|gn| ≤ C(ρ(A)− ε)n,

i.e. they grow slower than ρ(A)n.

Proof: Define the spectral projector

Pi0 = x̂ ûT = x̂ < û, . > .
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we find easily that Π2
0 = Π0, Π0A = AΠ0 and AnΠ0 = ρ(A)nΠ0. Let Π1 = I − Π0 be the

complementary projector. Define A1 = Π0AΠ0, A2 = Π1AΠ1. Since for any λ ∈ σ(A)
with eigenvector x ∈ ICn, we find (like above) that

ρ(A) < û, x >=< AT û, x >=< û,Ax >= λ < û, x > .

From λ 6= ρ(A) we conclude that < û, x >= 0. Hence, Π1x = x and A2x = λx. Then,

σ(A) \ {ρ(A)} ⊂ σ(A2).

On the other hand, if λ ∈ σ(A2), then there is x ∈ ICn s.t. A2x = λx, i.e.

Π1AΠ1x = λx ⇒ Π2
1AΠ1x = Π1AΠ1x = λΠ1x ⇒ AΠ2

1x = AΠ1x = λΠ1x.

Hence, either Π1x = 0, or Π1x is eigenvector of A for eigenvalue λ. Since the eigenvalue
of ρ(A) is simple with an eigenvector that is mapped to zero by Π1, we find

(σ(A) \ {ρ(A)}) ∪ {0} = σ(A2).

Especially, ρ(A2) ≤ r < ρ(A)− ε.
Furthermore, (since Π0 Π1 = 0)

An = (A (Π0 + I − Π0))n = (AΠ0 + AΠ1)n = (AΠ2
0 + AΠ2

1)n = (Π0AΠ0 + Π1AΠ1)n

= (Π0AΠ0)n + (Π1AΠ1)n = An1 + An2 .

Hence,
Anx = An1x+ An2x = ρ(A)n < û, x > x̂ + gn

where |gn| ≤ C nm rn, s.t. |gn| ≤ C̃(ρ(A)− ε)n.
2

Back to Fibonacci
If we want to know the asymptotic behavior of the Fibonacci-numbers, we have to compute
the leading eigenvalue and the corresponding eigenvector for the matrix

A =

(
1 1
1 0

)
.

We find

λ± =
1

2
(tr(A)±

√
tr(A)2 − 4 det(A)) =

1

2
(1±

√
1 + 4) =

1±
√

5

2
.

Hence the spectral radius is

ρ(A) =
1 +
√

5

2
,

the “golden ratio”. The corresponding eigenvector is

x0 =

(
(1 +

√
5)/2

1

)
.

We find asymptotically (
y

(n)
1

y
(n)
2

)
∼
(

1 +
√

5

2

)n (
(1 +

√
5)/2

1

)
.
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3.2.3 Example 2: Leslie Matrices - Age Structured Population

While the Fibonacci-numbers are a toy model, discrete age structured population model
are used in “real-world-applications”. The basic model has been introduced by Leslie [43],
and the corresponding matrices are thus also called “Leslie-Matrices”. This technique is
not only able to describe natural age. If one keeps track of the time a particle belongs
to a state, we assign an artificial clock/age to this particle. At the time of the entry this
clock is set to zero. Matrices, resemble the Leslie matrix describe the evolution of this
age of the particle. An example could be for an infected person to introduce the time
since infection. Infectivity as well as recovery rates do depend on this time (and are, in
general, not really exponentially distributed).

Leslie-Model

a

t

}

}

h

h

offspring

getting   older

Figure 35: Time discretization for the Leslie-model.

Consider an age-structured population. Discretize age and time,

ti = i h ai = i h, i = 1, ..,m.

State: Let x
(n)
i be the number of individuals at time t = nh with age in [(i− 1)h, i h).

Dynamics: There are two processes to consider: becoming older/death and birth
• becoming older/death
If there is no death at all, we find immediately (see Fig. 35)

x
(n)
i = x

(n−1)
i−1 ,

i.e. age and chronological time pass with the same velocity. If we introduce death, not
everyone is able to survive. Hence, there are parameters pi ∈ [0, 1] that can be interpreted
as survival probabilities, and

x
(n)
i = pi−1x

(n−1)
i−1 .
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• birth
We know from x(n)

. the vector x
(n+1)
i for i > 0. The element x

(n+1)
0 is governed by birth

(see Fig. 35). Let Fi be the expected number of children for a person in the age interval
[(i− 1)h, i h) during one time step. Then,

x
(n+1)
0 =

m∑
i=0

Fix
(n)
i .

All in all we find
xn+1 = Ax(n)

with

A =



F1 F2 F3 · · · Fm−2 Fm−1 Fm
p1 0 0 0 0 0
0 p2 0 0 0 0
0 0 p3 0 0 0
...

...
. . .

...
...

...
0 0 0 pm−2 0 0
0 0 0 · · · 0 pm−1 0


Analysis
Consider the graph of the incidence matrix corresponding to a Leslie matrix with pi, Fi > 0
(Fig. 36). Obviously, the graph is connected. Thus, the corresponding Leslie matrix is
irreducible.
If Fi0 = .. = Fm = 0, i.e. the older age classes are not fertile any more, the corresponding
graph becomes reducible. These age classes do not influence the population dynamics and
hence can be (from this point of view) skipped.

1 2 3 m.....

Figure 36: Graph of a Leslie matrix.

Corollary 3.18: If |λ| 6= ρ(A) for λ ∈ σ(A) \ {ρ(A)}, there is x̂ ∈ IRm
+ (the eigenvector

corresponding to ρ(A)) s.t.
Any/‖Any‖ → x̂.

I.e., with any initial condition we approach an unique stationary age distribution.

This is not the necessarily the case, if there are more eigenvalues with an absolute value
of ρ(A).

Definition 3.19: If we find eiφρ(A) ∈ σ(A) for φ 6∈ {0, π} we are in the “lattice case”.
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Lattice Case
What happens in the lattice case?

1 2 3

(a) (b)

CI

Figure 37: (a) Transition graph of the salmon-example. (b) Spectrum of the Leslie matrix.

Example: Consider salmon [16]. It is natural to divide the population of salmon in three
age classes: newborn, one year old and two year fish. Only the last class reproduces (and
then dies).

A =

 0 0 F3

p1 0 0
0 p2 0

 .
The transition graph is shown in Fig. 37 (a). The spectrum of A is

σ(A) = {(p1 p2 F3)1/3e2πi/3 j | j = 0, 1, 2}

i.e. we find a kind of resonance (Fig. 37 (b)). A population can be split into three
independent subpulations that live with a shifted phase. There are interesting phenomena.
For example, a rare mutant with a period of four years may invade the primary population;
however, by a shift in the phase of the resident the invader may be out-competed again.
This phenomenon is called “the resident strikes back” [49].

Interestingly enough, populations in lattice case can be observed in many examples (for
example a certain species of Bamboo (17 years), grasshoppers (7 or 17 years),..). Further-
more, the populations live synchronized, i.e. of all the possible phases only one is realized;
there is e.g. the large outbreak of grasshoppers every 17 years. It is intriguing that all
these periods are prime numbers. It is by no means clear, why this is the case. The main
hypothesis is the idea that predators have to be synchronized with the prey if they want
to survive. If the period of the prey is not prime, the period of the predator may be any
number that divides the period of the prey. With a prime number as period, the predator
is forced to hit exactly this prime number (or multiples of this prime number). This is
much more difficult, and this advantage possibly leads to the strategy of these lattice-case
populations to live in one synchronized homogeneous population and to choose a prime
period.
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3.2.4 Summary/Conclusion

We focused on matrix iterations. Especially the asymptotic behavior is interesting (will
the solution tend to zero? Or grow to infinity? Does the – normalized – state converge?)

Generic Case: If we do not have additional structure like positivity (see below), then
the only thing that can be done is to reduce the matrix using eigenspaces. Generically all
eigenvalues are simple. In this case, one classifies the dynamics of a scalar iteration resp.
the dynamics of a two-dimensional system (where the corresponding matrix has non.real
eigenvalues, i.e. is a rotational matrix.

Non-Negative Matrices: In this case, we aim to exploit the positivity. Again, the quesion
of reduction to more simple systems (keeping the positivity) appears. This leads to the
connection to graph theory, and the question if/if not the corresponding graph of possible
transitions is connected.

We find different degrees of connectivity:

• Matrices that are strictly positive correspond to graphes where every node is directly
connected to evry node. This is the strongest connectivity one can think of.

• If the graph corresponding to a matrix is connected, it is possible to go with a finite
number of steps from one node to another node. Still, this situation leads to conclusions
about the asymptotic dynamics that are non-trivial.

• The weakest case is given if the graph is not connected. However, in this situation it
is possible to define subsystems that are connected. In this sense, the classification of
matrices is complete and it is only necessary to understand the dynamics for irreducible
and strictly positive matrices.

Results about long term behavior:

These results are due to the detailed analysis of the spectrum of non-negative matrices,
the Perron-Frobenius Theory.

• For a generic strictly positive Matrix we find that a trajectory with any generic initial
condition will either tend to infinity of to zero. If we normalize the iterated vectors to
one, then we find that these normalized vectors (“densities”, “distributions”) tend to a
unique positive vector that is given by the eigenvector of the matrix.

• If we only have a non-negative matrix, we may have more than one eigenvalue with an
absolute value the equals the spectral radius. Also here, we find exponential grow/decrease.
However, there may be oscillations/different phases in the solutions.

• In general, it is possible to find subsystems that behave according to one of the two
previous cases.

It is interesting and intriguing to find such a strong connection between dynamical systems,
linear algebra and graph theory. It is by no means obvious that e.g. the spectrum of a
matrix tells us something about the structure of the corresponding graph. More can be
found in the review article [33].
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3.2.5 Exercise

Exercise 3.5:
Let A ∈ IRn×n be a non-negative and irreducible matrix. Show that
(1) ∀(i, j) ∈ INn × INn ∃m = m(i, j) ∈ IN : ((An))i,j > 0.
(2) (I + A)n−1 > 0.

Exercise 3.6:
Consider the incidence matrix

A =


1 0 0 1
0 1 0 1
0 1 1 1
1 0 1 1

 .

Draw the directed graph coded by this matrix. Is this matrix irreducible?

Exercise 3.7:
Let A be the incidence matrix of a directed graph G = (V,E). A loop of length l is defined
as a path v1 → v2 → v3 · · · → vl−1 → v1, where every step is an edge, vi → vi+1 ∈ E. Let
loop(l) be the number of these loops. Show that

loop(l) = tr(Al).

Exercise 3.8:
Consider a directed graph G = (V,E) with incidence matrix A. A trap is defined as a
subgraph G̃ = (Ṽ , Ẽ) with Ṽ ⊂ V and

Ẽ = {vi → vj | vi, vj ∈ Ṽ , vi → vj ∈ E}

such that G̃ is connected and there are no edges pointing outward of G̃, i.e. vi ∈ Ṽ ,
vi → vj ∈ E, then vj ∈ Ṽ .
Show that the number of positive left-eigenvectors of A is at least the number of traps of
the system.

Exercise 3.9:
Model the fate of a fish population with different stages like egg, larvae etc.

3.3 Markov Chains

We want to put the stochastic models in a more general framework. The Galton-Watson
process can be seen as a special case of a Markov Chain. Also the deterministic models
are in a certain sense included in this framework.
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3.3.1 Socio-Biology: Dunging behavior of pigs

If pigs are allowed to move freely in the stable (unfortunately not really the typical fate
of a pig), pigs are quite clean animals. They have a common latrine, the dunging area. In
order to be able to build stables that are well suited for pigs, Wechsler and Bachmann [61]
investigate the eliminative behavior of pigs. First different behavioral elements are defined.
Then, the animals are observed and a sequence of these behavioral pattern is measured.
These data are then evaluated. One may find more information about the statistical
aspects (planning and evaluation of such experiments) of behavioral biology in [45].

Setup of the scene:
• The behavioral pattern are (in quotation marks: verbal quotations from [61]):
(1) Outside: The pig is outside of the dunging area.
(2) Sniff: “a pig withdraws the outer part of the snout at least twice”.
(3) Posture: “a pig turns its hind quarters at least 900 around the spot it has sniffed at
or makes a few steps by which the hind quarters are placed within a maximal distance of
30 cm from the spot it has sniffed at.”
(4) Defaecate.
(5) Urinate.

In the article, the state “outside” is not explicitely introduced. Instead there are actions
“enters the dunging area“ and “leaves the dunging area”, which is of course equivalent to
transition from state 1 to any of the states 2,..,5, respectively the transition from one of
the states 2,..,5 into state 1.

• Measure protocol:
An animal is observed while it is in the dunging area. The sequence of different behavioral
pattern is protocoled. Thus, there is no information about the time duration of each
pattern available, but only the sequence of these pattern. A trivial conclusion is, that in
this sequence a state appears never twice in a row.

Evaluation of the data:
A first common approach is to draw a histogram of the frequency of these pattern. It is
then possible, to compare different animals, say. However, this approach is completely
static. It neglects all correlations between states, and thus may be criticized.

A slightly more sophisticated approach is to construct the first order dynamics in the
following way.
State: The state is either of the states 1,..,5.
Dynamics: We define a matrix A, where the entries pi,j = ((A))i,j denote transition
probabilities to change from state i into state j.

We here assume implicitly two things:
• The transition probability only depends on the state, where I am, and the state I’m
going to. There is no further dependency on the history. Of course, this assumption is
very often (also in the present case) not true. However, a model is never “true” but always
neglect phenomena. In this sense, the present model is sensible, since the effects of the
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Previous state
outside sniff posture defaecate urinate

outside 0 0.4505495 0 0.25 0.1
next sniff 0.8301887 0 0.05263158 0.725 0.85
state posture 0 0.2087912 0 0 0

defaecate 0.1320755 0.2197802 0.631579 0 0.05
urinate 0.03773585 0.1208791 0.3157895 0.025 0

Table 1: Transition probabilities for the model about the eliminative behavior of a pig.
.

history long ago should not influence the behavior of the pig as much as the close history.
And the last state is possibly the most important part of the history that the pig takes
into account in his/her decisions.
• The transition probabilities are constant in time. Also this may not be given (perhaps
the behavior of a pig is different in the morning and in the evening).

In principle, both restrictions can be removed: one may take more states than the very last
state into account in prediction the next states. This approach leads to semi-Markovian
processes. Or, one may introduce transition probabilities that depend on time. In this
case, we go into the field of non-stationary Markov chains.

The authors count the transitions of i→ j. From this, we obtain naive estimators for the
transition probabilities

((Â))i,j = p̂i,j
#transitions j → i

#transitions j → any state
.

The corresponding probabilities are shown in Table 1. All in all, we have data about 52
visits of the dunging area. Using these probabilities, we draw a transition graph between
the different states Fig. 38. We find the a picture of the behavior of a pig within a dunging
ares. However, we also find the weakness of Markov models (where the state space is very
small): the main path is outside → sniff → outside. It is to expect that mostly a real pig
will go through states 4 or 5 before it leaves the dunging area. However, it will sniff after
entering and before leaving the dunging area. The Markov process cannot decide if the
pig sniffs because it wants to go to states 4 or 5, or if it sniffs because it is coming from
the states 4 or 5. Hence, a Markov-chain-pig will (unrealistically) quite often leave the
dunging area without using it.

3.3.2 Basic definitions

In this chapter, we briefly browse trough some basic definitions and facts about Markov
chains. There are many books concerned with Markov chains, e.g. in [11] a nice presen-
tation of the basic theory can be found.
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outside

sniff

posture

urinate

defaecate

0.3<p
0.09<p<0.3
0<p<0.09

Figure 38: Transition graph for the pig-example.

Definition 3.20: Let I = {a, b, ..} be a set (finite or infinite) and Xn a sequence of
I-valued random variables. If i1, .., in ∈ I and for all n ∈ IN, n ≥ 1 we find

P (Xn = in |X1 = i1, .., Xn−1 = in−1) = P (Xn = in |Xn−1 = in−1)

then the sequence of random variables is called a Markov chain.

Remark 3.21:
• The matrix A given by

((A))i,j = pi,j := P (X2 = i |X1 = j)

is called transition matrix. The transition matrix contains all informations that describe
the dynamics of the Markov process. If πn gives the probability density in time step n,
i.e.

πn = (P (Xn = a), P (Xn = b), P (Xn = c), . . .)T

then we find

P (Xn+1 = i) =
∑
c∈I

P (Xn+1 = i |Xn = c)P (Xn = c) = eTi Aπn.

Hence
πn+1 = Aπn.
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This is a deterministic, linear iterative system describing the dynamics of a probabil-
ity distribution. Since A is non-negative, the Perron-Frobenius Theorems from the last
section can be applied.

• The important property is the Markov-property: the next state only depends on this
state but not on the history - one calls a Markov process “memoryless”. This structure
allows to prove a lot of statements that are in general not valid for a process that re-
members the total history. However, it is possible to generalize the Markov process and
to allow the process to recall - say - the last N states. Also the property that A is not
changed during the iterations may be released; we then obtain non-stationary Markov
chains. E.g. simulated annealing is based on non-stationary Markov-processes.

• One may interprete the vector πn in two ways (these are two general concepts): either
we consider one individual, and ask for the probability to find one individual at time step
n in a given state. Or, one does not consider only one individual but an ensemble of
individuals. In this case, we ask for the relative part of the population that is in a certain
state. The latter interpretation does not need (at population level) any probabilistic
interpretation. In this sense, the Markov process is a framework for the stochastic as well
as for the deterministic models of this section.

• Though a lot of models can be seen as Markov models, it is not always wise to take
this point of view. For example, a Galton-Watson process is a Markov chain. It is in
principle possible to derive the transition matrix and prove all theorems from the section
about Galton-Watson processes in this formalism. However, the specific property that
the state of the Galton-Watson process consists of a finite number of individuals is hidden
in the transition matrix. Markov chains offer an abstract framework for a wide class of
processes. From an abstract framework we cannot expect too many tools for a specific
model/problem. Thus it is sometimes better to stick with a specific formulation of the
problem that allows to use the specific structure instead using the general formulation as
a Markovian process.

Definition 3.22:
(a) Let p

(n)
i,j = (Anei)j the probability to be after n steps in state j if we started in state i.

Then, a state j (represented by ej) is called recurrent, if

∞∑
n=0

p
(n)
j,j =∞

and transient else.
(b) A state j is called periodic with period s, if s is the greatest common divisor of

{n | p(n)
j,j > 0}.

(c) A state is called absorbing, if

Aej = ej.
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In this case, only transitions into this state are possible. The state itself is invariant
under A.
(d) A state i is called essential, if ∀j ∈ I, . n ∈ IN, p

(n)
j,i > 0 ∃m > 0 : p

(n)
i,j > 0.

(e) A Markov chain is called irreducible, if the transition Matrix is irreducible.

Remark 3.23:
(a) If a state is recurrent, the expected number of returns to this state are infinite. If the
expected number of returns is finite, the point is transient (eventually the particle leaves
this state and will never return).
(b) If the Markov chain is finite and irreducible, then all states are recurrent.
(c) If there is an absorbing sate, then the Markov chain is not recurrent.
(d) The essential states are a generalization of absorbing states. They form a trap, and
a states once in this trap can never leave this trap.
(e) If the Markov chain is irreducible, and one state is periodic of period s, then all states
are periodic with this period.
Proof: (of (e)) Let state j be periodic. Consider state k. Since the Markov chain is
irreducible, there are m and r, s.t.

p
(m)
j,k > 0, p

(r)
j,k > 0.

Since 0 < p
(m)
j,k p

(r)
k,j ≤ p

(m+r)
j,j , s divides m+ r. Furthermore,

p
(m+r+i s)
k,k ≥ p

(r)
k,jp

i s)
j,j p

(m)
j,k > 0

and s divides m + r + i s for i ∈ IN. Hence, the period of k is smaller or equal s, the
period of j. By symmetry, we find immediately that also the period of j must be smaller
than the period of k. Hence, the period of j and k are equal.

2
Theorem 3.24: For a finite Markov chain, there is a non-negative, stationary distribu-
tion π̂ (also called invariant random measure),

π̂ = Aπ̂.

Proof: (Exercise 3.10).

Remark 3.25: For a reducible Markov chain, there may be more than one invariant
measure. Furthermore, if the Markov chain is not finite, there may be no invariant
measure (consider Aei = ei+1).

Theorem 3.26: For a finite, irreducible Markov chain, there is a unique non-negative,
stationary distribution π̂. Furthermore, Anπ0 → π̂ for →∞.

Proof: This is a direct conclusion of the Theorem of Perron.
2
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Total number of infecteds Number of families (empirical) Number of families (predicted)

1 F1 = 112 112
2 F2 = 35 32.3
3 F3 = 17 18.5
4 F4 = 11 12.0
5 F5 = 6 6.2

Table 2: Data for the final size distribution (taken from [7]). Fi denotes the number of
families with i infecteds at the end of the epidemic. The third column shows the predicted
values by a model.

3.3.3 A model for common cold in households

In this section we develop technics for dealing with a non-linear birth-death process.
We already know linear birth-death processes, where each individual acts independent of
each other. For many systems in biology, this hypothesis is not completely appropriate:
a growing population eventually reaches the limits of the carrying capacity of the ecosys-
tem (individuals start to compete for resources), an infection cannot grow exponentially
(eventually all susceptibles are infected). If the correlations between individuals are strong
then a linear model is no longer appropriate and the dependence between the individuals
must be taken into account.

As an example we consider the common cold in households (see [4, 7]). Consider a family
of N persons with N = 5, say. Assume that one member catches the cold somewhere.
At least in principle, the disease will spread. In [30] data have been collected from 181
families (see Tab. 2): All infected family members have been counted. Our aim is to
describe/predict this distribution. Since our “population” is quite small, a linear birth-
death process (“birth” means infection and “death” means recovery) won’t do it. We
have to look into the mechanisms of the spread more in detail.

State of a household: At each point of time, we find a certain number of susceptibles,
infecteds and recovereds (this model is a close relative of the model for the virus dynamics
we considered in section 2.4.3; we will come back to this point later in the part about
nonlinear models). We may characterize the state by (i, r), where i and r denote the
number of infectives and recovereds respectively (see Fig.39). The number of susceptibles
is N − i− r.
Dynamics: Next we specify the rates, at which the system changes the state. Like in
the classical SIR-model, we assume that the recovery rate is a constant α. At a transition
from state (i, r) to state (i− 1, r + 1), one of i infected persons recovers. Hence, the rate
is iα. The rate to get infected for one susceptible individual will be proportional to the
number of infecteds. Accordingly, the rate for the transition from (i, r) to (i+ 1, r) reads
β i(N − i− r).
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Figure 39: Possible states and transitions for a family of size N = 5. We start with one infected
person, i.e. in state (1, 0).

Model equations: Let pi,r(t) be the probability to find the system in state (i, r) at time
t. We are able to obtain a Master equation for pi,r(t) (if an index exceeds N or is below
0, formally the corresponding probability has to be taken to zero):

d
dt
pi,r(t) = −(i α + β i(N − i− r))pi,r(t)

+(i+ 1)αpi+1,r−1(t) + (i− 1)(N − i− r)βpi−1,r(t)
(1)

with i = 0, · · · , N and r = 0, · · · , N − i. We start with one infected and N − 1 susceptible
persons, i.e.

p1,0(0) = 1, pi,r(0) = 0 for (i, r) 6= (1, 0).

Embedded time-discrete Markov process and final size distribution
The data in Tab.2 show the total number of infected during the epidemic which we call
final size of the epidemic. A good test of our model is to reproduce these data. We need
the probabilities that the system is at state (i, r) under the condition that the epidemic
has come to an end, i.e. limt→∞ pi,r(t). If the time tends to infinity, no infecteds are
present any more and the total mass of the probability pi,r is contained in the states
(0, r), r = 1, .., 5 (this means pi,r = 0 if i 6= 0). One way to obtain the distribution for
t → ∞ is to implement the system of ordinary differential equations (1) and to solve it
numerically for a long, long time interval. At the end of this interval we can check that
almost all mass is concentrated in states with i = 0.

Faster, and more elegant, is not to use the differential equations directly. Instead of using
time, we count the events. One event is either “infection” or “recovery” of an individual.
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An event is a transition form one state (i, r) to a different state (i′, r′). We can use the
number of events as a new “time”-variable. Then we obtain a time-discrete dynamical
system. This system is called the embedded time-discrete Markov process or the embedded
Markov chain. After a finite number of iterations we will end up with a probability
distribution that has no mass at all in states with infected individuals (why?).

In order to develop this embedded time-discrete Markov model, we need the transition
probabilities from one state (i, r) into another (i′, r′) (this time really probabilities, not
rates!). Assume that we are in state (i, r), which event will take place first? Recovery or
infection?

A

B

C

ξ

ζ

Figure 40: We go from state A to state B with rate ξ, and to state C with rate ζ. In which
state we will end up?

We formulate this problem in a slightly more abstract way (see Fig. 40): Assume we are in
state A, going to state B with rate ξ and to state C with rate ζ. What is the probability
P (A→ B) to end up in state B and not into state C? Let pA(t), pB(t) and pC(t) be the
probability for state A, B, and C at time t. Then,

d
dt
pA(t) = −(ξ + ζ)pA(t), d

dt
pB(t) = ξ pA(t), d

dt
pC(t) = ζ pC(t),

pA(0) = 1, pA(0) = 0, pA(0) = 0.

The solutions of these linear equations are simple enough to find:

pA(t) = e−(ξ+ζ)t, pB(t) =
ξ

ξ + ζ

(
1− e−(ξ+ζ)t

)
, pC(t) =

ζ

ξ + ζ

(
1− e−(ξ+ζ)t

)
.

Hence,

lim
t→∞

pB(t) = P (A→ B) =
ξ

ξ + ζ
, lim

t→∞
pC(t) = P (A→ C) =

ζ

ξ + ζ
.

The transition probability from one state to another is the rate of this transition to occur
divided by the sum of all rates of all possible transitions leaving the first state.
With this rule in mind we come back to our problem and define a discrete Markov chain:
Let P(i,r),(i′,r′) = P ((i, r)→ (i′, r′)) be the transition probability from state (i, r) to state
(i′, r′). Like in our example with states A, B and C, also here we have two possibilities
to leave a state: recovery and infection. Let R0 = β/α. Then,

P(i,r),(i+1,r) =
β i(N − i− r)

β i(N − i− r) + iα
=

(β/α) i(N − i− r)
(β/α) i(N − i− r) + i

=
R0 (N − i− r)

R0 (N − i− r) + 1
(2)



80 3 DISCRETE TIME

for i = 1, ..., N and r = 0, ..., N − i− 1.

P(i,r),(i−1,r+1) =
α i

β i(N − i− r) + iα
=

i

(β/α) i(N − i− r) + i

=
1

R0 (N − i− r) + 1
(3)

for i = 1, ..., N and r = 0, ..., N − i. If we are in one of the states (0, r) then we will not
leave them. These states are the absorbing states. Hence,

P(0,r),(0,r) = 1 for r = 0..N

and P(i,r),(i′,r′) = 0 for all index combinations not mentioned so far. There is only one
parameter R0 in these equations, though our original model includes two parameters (α
and β). The reduction of the number of parameters is possible since we disclaim the time
course of the disease. The finial size is all the information we need.
Finally we use the transition probabilities P(i,r),(i′,r′) to find the probabilities qi,r(n) to be
in state (i, r) after n events:

qi,r(n) =
∑
(k,l)

P(k,l),(i,r)qk,l(n− 1), (4)

for i, r = 1, ..., N . In (4) we sum over all possible states (k, l). The system of equations
(4) forms a discrete model for our household.

From nonlinear to linear models
It is possible to embed nonlinear models in linear models. We already did this in the
last paragraph, without mentioning it explicitely. This fact is closely related to the two
different interpretation of a Markov chain (see remark 3.21).

We may either assume as state space the set ∆ = {(i, r) | 0 ≤ i, r, i + r ≤ N}. In this
case, we look at a single realization of the Markov process, and follow the fate of one
family. The transition probabilities depend in a nonlinear way on the state of the system,
i.e. we do have a nonlinear model (a model describing interacting individuals).
We may change our point of view, and consider an ensemble of families that undergo
an attack of common cold. The state space becomes the set of probability distributions
over ∆,

P : ∆→ IR+.

The dynamics is an iteration by the linear operator P(.,.),(.,.), i.e.

Pn+1(i, r) =
∑

(i′,r′)∈∆

P(i,r),(i′,r′)Pm(i′, r′)

Though, of course, we still have a model about interacting particles, the nonlinear van-
ishes, if we blow up the state space and consider functions over ∆ instead of ∆ itself.
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This principle can be also applied e.g. to ordinary differential equations. Consider

ẋ = f(x) x ∈ IRn.

This (nonlinear) differential equation exhibits solutions x(t;x0), where x(0;x0) = x0. In
order to derive a linear model, we consider functions over IRn instead of IRn itself. The
idea is to interprete a time-dependent function u(t, x) over IRn as the description of the
transport of mass along solutions of the ordinary differential equations ẋ = f(x). Thus,
u(t, x) is constant along trajectories, i.e. u(t, x(t;x0)) = constant. Taking the derivative
with respect to t yields

ut + (∇u)T ẋ(t, x0) = 0 ⇒ ut = −f(x)T∇u.

This is a linear equation in u. The trajectories can be derived from u as level sets,

x(.;x0) = {x | ∃t ≥ 0 : u(t, x) = u(0, x0)}

(if u(0, .) assumes the value u(0, x0) only for x = x0). This is the characteristics-method
for the solution of partial differential equations of first order in backward-direction (going
from characteristics to the partial differential equation).

Application to data
We now apply our theory to data that are given in Tab. 2. We have to come up with
an estimate for R0. One possibility would be to do a least-square fit: vary R0 until the
error between data and theoretical prediction is minimal. Using statistical tools, one may
refine this approach, taking an appropriate variance structure into account. However, we
use a shortcut: Let us consider the probability to find exactly one infected person during
the epidemic within our family. Since there is exactly one path from state (1, 0) to state
(0, 1), the probability for this absorbing state is already given after one iteration, i.e. by
the element P(1,0),(0,1). Since P(1,0),(0,1) = 1/(R0 (n− 1) + 1), we find

R0 =
1

(n− 1)

(
1

Prob. for one infected
− 1

)
.

Furthermore, we have a simple estimate for the probability to find exactly one infected
person during the epidemic: let Fi be the number of families with i infected persons, then
this probability is approximately F1/F with F =

∑n
i=1 Fi. Hence, R0 may be estimated

by R̂0,

R̂0 :=
1

(n− 1)

(
F

F1

− 1
)
.

For our data we obtain R̂0 = 0.154, the numerical value we used in our program in order
to calculate the final size distribution.
We find that data and theoretical prediction agree surprisingly well (see Fig. 41 and
Tab. 2). In order to judge the agreement in more detail one has to use statistical methods
(see e.g. [1, 7]), and this is out of our present scope.
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Figure 41: Comparison of data (opern circle) and model (cross).

Project: Paths of an epidemic
In section 3.3.3 we have considered a model for the final size of an epidemic of common cold
in a household. The data collected by Haesman and Reid in [30] are even more detailed.
Let the primary infected person of a family be “the first generation”, the persons infected
by him/her are called “the second generation” and so on (do not confuse these generations
by the usual ones, i.e. grandmother, mother, child, etc.) We have data about the number
of infected in each generation (to obtain the data, i.e. to decide who is in the first, second...
generation is quite a difficult task, see [7, 30]). The data are shown in Tab. 3. Find a
model describing these data, and fit the model parameter (somehow).

Summary/Conclusion
• The central characteristics of a Markov chain is the Markov property: the transition
probabilities for time step n do not depend on the history, but only on the state in time
step n. These probabilities are assumed to be constant in time. This structure is compatible
with the basic rule of modeling: first define the state space, then the dynamics within this
state space. This fact is the deeper reason that almost all models do have the Markov
property (provided that the state space is chosen in an appropriate way).

• The dynamics of Markov chains are strongly connected with the structure of the corre-
sponding transition graph. Here we find ideas about connectivity/irreducibility, essential
states and traps or periodicity and periodic cycles. If the Markov chain is finite, an
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1. Gen. 2. Gen. 3. Gen. 4. Gen. 5. Gen. Number of families

1 413
1 1 131
1 1 1 36
1 2 24
1 1 1 1 14
1 1 2 8
1 2 1 11
1 3 3
1 1 1 1 1 4
1 1 1 2 2
1 1 2 1 2
1 1 3 2
1 2 1 1 3
1 2 2 1
1 3 1 0
1 4 0

Table 3: Data for the number of infecteds, structured by “generation” (taken from [7])

individual moves along the transition graph, and will end up in a subgraph that is con-
nected (and forms a trap/consists of essential states). Especially, the Markov chain can
be reduces to these subgraphs/sub-Markov-chains. Irreducibility superimposes another im-
portant structure (in addition to the Markov property).

• Though the underlying system may describe interacting particles/nonlinear structures,
the Markov chain itself is linear. The description level is not directly that of the states
of the system, but the set of random measures over these states. This blowing-up of the
state space allows to imbed a nonlinear process in a linear one.

• The Markov chain is a quite general framework to describe time-discrete stochastic
processes. One may obtain very fast some general properties of a process (e.g. convergence
to a unique probability measure in case a strictly positive Markov chain). However, since
this framework is quite general, in some cases it hides the special structure of a process.
In these cases, another level of description may be more appropriate.

3.3.4 Exercise

Exercise 3.10:
(a) Show that a finite Markov chain (i.e. a chain with a finite number of states) has at
least one essential state.
(b) Show that there is at least one invariant measure of the Markov chain.
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Number of families
Final infecteds overcrowded crowded uncrowded

1 112 155 156
2 35 41 55
3 17 24 19
4 11 15 10
5 6 6 2

Table 4: Data for the final size distribution, structured by degree of “crowededness” of
the families. (taken from [7])

Exercise 3.11:
Heasmen and Reid [30] divide all households (with five members) into three classes: over-
crowded, crowded and uncrowded. The data are given in the table 4.
(a) Estimate R0 in all cases.
(b) Implement a computer program that yields the theoretical and empirical final size
distribution.
(c) Is R0 different for the three types of households? Can you explain the results?

Exercise 3.12:
In contrast to the Reed-Frost model, where the infection probability is increased by the
number of infecteds, the Greenwood model assumes a constant infectivity, i.e. the inci-
dence of infection is βs if i > 0 without direct dependency on i.
(a) Find estimators for the parameters (use the data of the table above).
(b) Implement a computer program that yields the theoretical and empirical final size
distribution. Which model is better: The Greenwood or the Reed-Frost model?

Exercise 3.13:
Consider an infectious disease, where a recovered person is susceptible again. Formulate
a model. How is the transition matrix changed, if you only consider realizations, where
the disease does not die out?
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4 Continuous Time

In this section, we investigate continuous time. We will define the time continuous ana-
logue to Galton-Watson processes. We briefly have a look at linear systems of ordinary
differential equation. However, the emphasize of this chapter will be time-continuous sys-
tems with continuous state space: age-structured and spatially structured models. While
the approach how to model age structure is quite clear, the “best” model of spatial struc-
ture is still a matter for discussions. Thus, we will consider and discuss several attempts
to model movement in space.

4.1 Small Population Size: The Birth-Death Process

Like in the Galton-Watson process, we investigate a small population, where we count
the number of individuals (at a certain time).

State: The state of the population is given by by the number of individuals (at time t).
Define

Zt = # of individuals at time t.

Dynamics: Since we still investigate independent acting entities, the dynamics is defined
by the behavior of only one individual. The birth rate for one individual is β (meaning
that the time between two births is exponentially distributed with rate β), and the death
rate is µ (the life span is exponentially distributed with rate µ).

Master equation and Generating Function

0 1 2 3
µ

2µ

β 2β 3β

3µ 4µ

Figure 42: Structure of the master equations.

Define the probability to find the population at time t in state i,

pi(t) = P (Zt = i).

The master equation is the differential equation that describes the time evolution of the
pi(t). We derive these master equations as a translation of the compartmental model in
Fig. 42 into a system of differential equations,

d

dt
p0 = µp1

d

dt
pi = −i(β + µ)pi + (i− 1)βpi−1 + (i+ 1)µpi+1, i ≥ 1.
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These equations are not straight-forward to solve. A standard trick is to introduce gen-
erating functions (similar to those used in the analysis of the Galton-Watson-Process).

f : [0, 1]× IR+ → IR+, (s, t) 7→ f(s, t) =
∞∑
i=0

sipi(t).

It is possible to derive a closed partial differential equation for f(s, t). If we re able to
solve this PDE, then we know pi(t) (at least implicitly), since they are coded in f(., t) via

pi(t) =
1

i!

di

dsi
f(s, t)|s=0.

Proposition 4.1: The generating function for the birth-death process with death rate µ
and birth rate β is given by

f(s, t) =
µ(s− 1)− (βs− µ)e(β−µ)t

β(s− 1)− (βs− µ)e(β−µ)t
.

Proof: We find for the time derivative of f

∂

∂t
f(s, t) =

∞∑
i=0

siṗi(t)

= µp1 +
∞∑
i=1

si [−i(β + µ)pi + (i− 1)βpi−1 + (i+ 1)µpi+1]

= µs0p1 − (β + µ)
∞∑
i=1

isipi + β
∞∑
i=1

(i− 1)sipi−1 + µ
∞∑
i=1

(i+ 1)sipi+1

= −(β + µ)
∞∑
i=1

isipi + β
∞∑
i=0

isi+1pi + µ
∞∑
i=1

isi−1pi

= −(β + µ)s
∂

∂s

∞∑
i=1

sipi + βs2 ∂

∂s

∞∑
i=0

isipi + µ
∂

∂s

∞∑
i=1

isi−1pi

= (βx2 − (β + µ)x+ µ)
∂

∂s
f(s, t)

= (s− 1)(βs− µ)
∂

∂s
f(s, t).

Let us assume that we start with one individual, i.e. p1(0) = 1 and pi(0) = 0 for i 6= 1.
In this case, we find the initial value problem

∂

∂t
f(s, t) = (s− 1)(βs− µ)

∂

∂s
f(s, t)

f(s, t) = s.

The solution of this problem can be approached by the method of characteristic curves.
We look for curves X(s, t), s.t. X(s, 0) = s and f(s, t) does not change along these curves
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f(s,t)

S(s,0) = s

S(s,t)

f(S(s,t),t=Const

s

t

Figure 43: Method of characteristic lines.

(see Fig. 43; we discussed that method already when we considered a method to embed
a nonlinear ODE into a linear PDE),

f(S(s, t), t) = constant ⇒ ft(S(s, t), t) + St(s, t) fs = 0.

Comparison with the PDE yields immediately that

Ṡ(s, t) = −(S − 1)(βS − µ), S(s, 0) = s,

where dot does mean derivation with respect to t. This ODE can be explicitely solved,
using the method of separation of variables,

−t = −
∫ t

0
dτ =

∫ S(s,t)

s

ds′

(s′ − 1)(βs′ − µ)

=
∫ S(s,t)

s

(β − µ)−1

s′ − 1
ds′ −

∫ S(s,t)

s

(β(β − µ)−1

βs′ − µ
ds′

=
1

β − µ
log

(
S(s, t)− 1

s− 1

)
− 1

β − µ
log

(
βS(s, t)− µ
βs− µ

)

=
1

β − µ
log

(
S(s, t)− 1

βS(s, t)− µ
βs− µ
s− 1

)

Hence we find

e−(β−µ)t =
S(s, t)− 1

βS(s, t)− µ
βs− µ
s− 1

⇒ (S(s, t)− 1) =
s− 1

βs− µ
e−(β−µ)t (βS(s, t)− µ)

⇒ S(s, t)

(
1− β s− 1

βs− µ
e−(β−µ)t

)
= 1− µ s− 1

βs− µ
e−(β−µ)t
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⇒ S(s, t) =
(βs− µ)− µ(s− 1)e−(β−µ)t

(βs− µ)− β(s− 1)e−(β−µ)t

From S(s, t) we are able to derive the value of f(S(s, t), t) by

f(S(s, t), t) = f(S(s, 0), 0) = f(s, 0) = s = S−1(s, t).

We solve the equation for S(s, t) for s and obtain

f(S, t) = f(S(s, t), t) = s =
µ(S − 1)− (βS − µ)e−(β−µ)t

β(S − 1)− (βS − µ)e−(β−µ)t

or (renaming S by s),

f(s, t) =
µ(s− 1)− (βs− µ)e−(β−µ)t

β(s− 1)− (βs− µ)e−(β−µ)t
.

2

Probability of extinction
The possibility for a population to die out is one of the most important differences between
stochastic and deterministic model. Like in the Galton-Watson process, also now, we are
interested in the probability of extinction.

Proposition 4.2: The probability for extinction reads

q =

{
µ/β if β > µ

1 if β < µ
.

Proof: We find

q = lim
t→∞

P (Zt = 0) = lim
t→∞

f(0, t) = lim
t→∞

−µ+ µe−(β−µ)t

−β + µe−(β−µ)t
.

The assertion is an immediate consequence of this formula.
2

We did some similar computations in the context of the Galton-Watson process before.
This fact raises the question, if there is a relationship between the birth-death process
and the Galton-Watson process. Here, we focus on time while the Galton-Watson process
focus on generations. We now derive for the time-continuous birth-death process the
embedded Galton-Watson process (see Fig. 44). We use generations instead of time.

In order to find the corresponding Galton-Watson process, we determine the number of
children that one individual produces during his/her live span.

Proposition 4.3: Let X be the number of children of one individual. Then, X is geo-
metrically distributed, X ∼ Geom(µ/(β + µ)), i.e.

P (i children) =

(
β

µ+ β

)i (
µ

µ+ β

)
.
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Figure 44: Connection between the birth-death and the Galton-Watson process.
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Figure 45: Number of children (in the time-continuous (a) and the discrete version (b)).

Proof: Consider an individual born at time t = 0 and

qi(t) = P (i children at timet, mother alive) ri(t) = P (i children at timet, mother dead).

We are able to derive the master equations (see Fig. 45). We now could define a generating
function and solve this problem with the same approach like that of Proposition 4.1.
However, we are not really interested in the timing but only in the final numbers of
children. Thus, instead of time we may use transition probabilities. Here, we find the
embedded discrete process for the number of children. From each state where the mother
is alive, there are two transitions possible (either to die or to get another child), we obtain
directly the transition probabilities

P (i children, mother alive→ i+ 1 children, mother alive) =
β

β + µ
,

P (i children, mother alive→ i children, mother dead) =
µ

β + µ
.

If we denote with qi,n ( pi,n ) the probability to be after step n in the state with i children
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and mother alive (respectively dead), then we find for i > 0

qi,n =
β

β + µ
qi−1,n−1, pi,n =

β

β + µ
qi,n−1

and q0,n = 1 for n = 0 and zero else. From that, we find immediately the assertion.
2

Remark 4.4: The probability for extinction of a branching process with death rate µ
and birth rate σ coincides with that of a Galton-Watson process, where the number of
children of one individual is given by X ∼ Geom(µ/(β+µ)). From exercise 3.1 we already
know, that the probability for extinction in the case of geometrically distributed offspring
with parameter r reads

q =

{
(1− r)/r if r > 1

1 else

Using r = µ/(/β + µ) we find directly q = β/µ if r > 1⇔ β > µ.

Remark 4.5: The Galton-Watson process is insofar more general, as that it is often
possible to derive the distribution of children also for age-dependent death rates. How-
ever, going form the birth-death process to the Galton-Watson process we through away
information which may be often interesting.

4.2 Linear Deterministic Dynamics

We already discussed the connection between positive solutions and the corresponding
r.h.s. of differential equations in Section 2.3.
At this point, we only briefly mention that one may split a real, linear dynamical system
with simple eigenvalues into at most two-dimensional invariant subsystems (in the spirit
of the generic case in section 3.2.2). One may classify the behavior into different types
(according to the eigenvalues)

(I) stable node

(II) unstable node

(III) stable spiral

(IV) unstable spiral

(V) saddle.

It is easily possible to find the corresponding behavior according to the eigenvalues (see
Fig. 46). E.g., a saddle has two eigenvalues with different sign, or a stable spiral imaginary
eigenvalues with negative real part. Fig. 46 figure parallels Fig. 31. You may find more
in [2].
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tr(A)  = 4 det(A)2

tr(A)

det(A)

(I)

(III)

(II)
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(V)

Figure 46: Dynamics for linear, planar systems.

4.3 Age Structure

In this section, we consider age structure and in the next section spatial structure. With
respect to the finite-dimensional state space we considered until now, the infinite dimen-
sional state space adds a new quality. Especially concerning the spectrum and argumen-
tation about asymptotic behavior by investigation of the spectrum of linear operators
are not this straight forward any more. Mostly one may derive results about the point
spectrum. However, other parts of the spectrum, e.g. the essential spectrum, are not this
simple to control and - in principle - may lead to incorrect conclusions if only the point
spectrum is considered.

Luckily, in our cases the point spectrum determines the behavior of the system, indeed;
other parts of the spectrum are either empty or bounded away from the region in IC that
governs the dynamics. Since in this lecture we aim on modeling methods rather than on
the analysis of models, we will only use the (relatively simple) point spectrum. One has
to be aware that these arguments are thus only heuristic. Often enough, we even do not
specify the space that our operators are acting on (terrible! and this in a math’s lecture!).

The Model
Since becoming older is a purely deterministic effect, a stochastic model does not add too
much. Thus, we consider here only a deterministic model (the stochastic version can be
easily formulated using the ideas of the previous sections). We start off by the ideas /
the structure developed for the Leslie model (section 3.2.3). Then, we use the continuum
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limit in order to find the appropriate time-continuous model.

(Discrete) State: xni is the number of persons at time tn and age class ai, where

ai = h i, tn = hn

and h denotes the discretization size.

(Discrete) Dynamics:

xn+1
0 =

∑
i

bix
n
i

xn+1
i = pix

n
i−1 for i > 0

Here, bi denotes the expected number of births in the age interval (i h, (i + 1)h]. Thus,
the coefficients bi depend on h. It is reasonable to assume that bi are derived from a rate

bi = bi(h) = β(i h)h+ O(h2), β(a) ∈ C0
+.

C0
+ denotes the set of continuous non-negative functions. A reasonable further assumption

on β(a) is that β(a) is not identically zero but vanishes for a > a, i.e. there is a maximal
fertile age a.
Similarly, also the survival probabilities pi are assumed to be related to a continuous death
rate via

pi = 1− µ(i h)h+ O(h2), µ(a) ∈ C0
+.

In this case, we want to assume not only that the death rate is non-negative, but also
that it is equally bounded away form zero,

µ(a) ≥ µ > 0.

Now we consider these equations, if h tends to zero. We assume that xni approximate a
smooth function

xni = u(ih, nh) + O(h).

If this is the case, we find

u(0, t) =
∑

bi(x
n
i + O(h)) =

∑
h(β(ih)u(ih, t) + O(h))

h→0→
∫ ∞

0
β(a)u(a, t) da.

Furthermore,

u(a+ h, t+ h) = (1− hµ(a) + O(h2))u(a, t)

⇒ u(a+ h, t+ h)− u(a+ h, t) + u(a+ h, t)− u(t, a)

h
= (µ(a) + O(h))u(a, t)

↓ h→ 0
∂

∂t
u(a, t) +

∂

∂a
u(a, t) = −µ(a)u(a, t).
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The age-structured model:
All in all, we derived at the model

∂

∂t
u(a, t) +

∂

∂a
u(a, t) = −µ(a)u(a, t)

u(0, t) =
∫ ∞

0
β(a)u(a, t) da

u(a, 0) = u0(a)

where u(a, t) denotes the population density at time t, u0(a) is the initial condition, and
µ(a) (β(a)) the death (birth) rate. We assume

(H1) µ ∈ C0
+, µ(a) > µ > 0

(H2) β ∈ C0
+, β(a) = 0 for a > a, b(.) 6≡ 0.

Analysis
Like in the discrete models with a finite number of states, also in this case we expect
asymptotically exponential growth. Like discussed before, one has to be more carefully
in models with a continuous state space. It is not clear at all, that the point spectrum
governs the system. However, if we consider the solution in Cn, The assumptions (H1)
and (H2) imply that (1) the essential spectrum is part of {z ∈ IC‖<(z) < −µ}, i.e. does
not play a role for stability / instability of the trivial solution. Furthermore, (2), we find
that the semigroup (the solution operator) eventually becomes compact (the reason is,
that u(0, t) is given by an integration. Hence, we gain smoothness. Since furthermore
b(a) has compact support, after a time interval a, we gained one degree of differentiability.
Since smooth function spaces are embedded in non-smooth spaces in a compact way, the
semigroup eventually becomes compact). Again, this tells us that essentially only the
point spectrum plays a role in the dynamics (find the proofs for these two statements
in [60]).

Proposition 4.6: Consider the operator L : D(L) ⊂ C1 → C0,

Lu = −∂au(a)− µ(a)u(a)

with D(L) = C1
bd,

C1
bd = {φ ∈ C1 |φ(0) =

∫ ∞
0

b(a)φ(a) da}.

The age-structured model can be written as ut = Lu. The point spectrum of L is

σp(L) = {λ ∈ IC | g(λ) = 1}

where
g(λ) =

∫ ∞
0

b(a) e−
∫ a

0
µ(τ) +λ dτ da

and the corresponding eigenfunctions read

vλ(a) = e−
∫ a

0
µ(τ) +λ dτ
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Proof: We us use the ansatz
Lvλ = λ vλ(a).

Then,

v̇λ(a) = −(µ(a) + λ)vλ(a)

vλ(0) =
∫ ∞

0
b(a) vλ(a) da

Hence vλ(a) = e−
∫ a

0
µ(τ) dτ−λa and

vλ(0) =
∫ ∞

0
b(a) vλ(0) e−

∫ a
0
µ(τ) +λ dτ da.

Since v(a) is an eigenfunction, vλ(a) 6≡ 0 and thus vλ(0) 6= 0. Hence, we find an eigen-
function for λ if and only if g(λ) = 1.

2
Remark 4.7: (1) Since g(λ) is strictly decreasing, then there is a unique real solutionλ̂
of

g(λ) = 1.

(2) Let λ ∈ IC, g(λ) = 1, then we find <(λ) < λ̂. In order to show this inequality, consider
λ ∈ IC, =(λ) 6= 0 and

1 = g(λ) = |g(λ)|

=
∣∣∣∣∫ ∞

0
b(a) e−

∫ a
0
µ(τ) +λ dτ da

∣∣∣∣
≤

∫ ∞
0

b(a)
∣∣∣∣e− ∫ a0 µ(τ) +λ dτ

∣∣∣∣ da
<

∫ ∞
0

b(a) e−
∫ a

0
µ(τ) +<(λ) dτ da

= g(<(λ)).

Since g(.) is strictly decreasing, we find that λ̂ > <(λ).

Proposition 4.8: Let u(a, 0) > 0 and define

R0 = g(1).

Under the assumptions above (H1, H2), we find: If R0 > 1, then ‖u(a, t)‖ → ∞. If
R0 < 1, then ‖u(a, t)‖ → 0.

Idea of the proof: (we will not strictly prove this proposition, since we only consider
point spectrum). From our last remark, we find that

σ(L) ⊂ {z ∈ C | <(z) ≤ λ̂}

We know that g(λ̂) = 1. Thus, if R0 = g(0) < 1, then λ̂ < 0 and the (point) spectrum of
L is contained in the left half plane of C. All solutions will die out. Otherwise, if g(0) > 1,
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then λ̂ > 1. Since the initial condition is strictly positive, the solution will finally tend to
infinity.

2
Remark 4.9: It is possible to interprete R0.

R0 =
∫ ∞

0
b(a)︸︷︷︸

birth rate

e−
∫ a

0
µ(τ) dτ︸ ︷︷ ︸

Probability to be
alive at age a

da,

i.e. R0 is the average number of children of an individual. Only if one individual has in
average more than one child, the population will tend to infinity. If the average number
of children is below one, then the population will die out (be careful with the meaning of
“the number of children”. In a certain sense, this model only considers females. Thus,
one should more precisely state “the number of female children”).

Remark 4.10: Asymptotically, the shape of the population tends to vλ̂(a), i.e. against
the function

e−
∫ a

0
µ(τ) dτ−λ̂a.

If λ̂ > 0, i.e. if the population is growing, then the population shape is monotonously
decreasing. Since the death rate is (more or less) increasing and very small in young age
classes (at least in developed countries), we find for λ̂ < 0 that the shape is a unimodal
function: it first increases until it reaches a maximum. Then the function decreases again.
We find this prediction in data about different countries, indeed (see Fig 47).

Because of the copyright is this figure empty.

place here: http://www.prb.org/Content/NavigationMenu
/PRB/Educators/Human Population/Change/Three-Patterns-of-Population-
Change1.htm

Figure 47: Shape of populations with different net growth rates (λ̂): Republic of Congo, USA
and Germany.
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4.4 Spatial Structure

While it is clear how to model age structure, it is not this clear how to model spatial struc-
ture. Different modes of movement may be considered. We present here especially two
approaches: the parabolic approach (heat equation) and the hyperbolic model (correlated
random walk).
Beware! Do not confuse this section with mathematics! All arguments are
only heuristic, no argument is hard! It is possible to find a setting s.t. the arguments
become strict. However, in order to avoid technicalities, we do not work in a formal context
but present with hand-waving arguments the idea of the different modeling approaches.

4.4.1 Diffusion Equation

In order to obtain a deeper insight into the properties of the parabolic model for diffusion,
we derive the heat equation in two ways: first, by a scaling argument of the discrete
random walk. Second, by considerations about the change of densities and the relation
to the flux (conservation law). Find more in [48, chapter 9].

Discrete Random Walk
Perhaps the most simple model for spatial movement is the discrete random walk. We
consider one particle moving in one dimension.

State: Let xi = i∆x, i ∈ ZZ be the location of the particle (at time tn = n∆t; the choice
of the state space already is a hint that we aim to scale this model and let ∆x, ∆t tend
to zero).

Dynamics: If the particle is in state xi at time step tn, it will jump either to xi−1 or to
xi+1 (with equal probabilities, see Fig. 48).

Analysis: Define
p(m,n) = P (state xm in time step tn).

We find at once that p(m,n) = 0 for |m| > n. Let |m| ≤ n. In order to reach state
xm we have to go (all in all) a steps to the left and b steps to the right, s.t. a − b = m.
Furthermore, we have to do that in n time steps, a+ b = n. Thus,

a+ b = n
a− b = m

⇔ a = (n+m)/2
b = (n−m)/2

Obviously, m + n has to be even in order to allow for an integer-solution. This becomes
clear in Fig. 48 (b). Since we force a change of the state in every time step, in the even
time steps only states with an even number can be visited, and in the odd time steps only
odd x-states.
One certain, fixed combination of a steps to the right and b steps to the left (something
like “+ + - - + - + - + + - -+ - + - +...”) has probability (1/2)n (one step to the left
and one step to the right, booth have probability 1/2). Hence, to find the probability to
be in state xm at time tn, we have to count the number of possible combinations of “step
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4310 2 5−2−3−4 −1

p=1/2 p=1/2
(a)

(b)

4310 2 5−2−3−4 −1

n=0

4310 2 5−2−3−4 −1

n=1

430 2 5−2−3−4 −1

n=2

Figure 48: (a) Discrete random walk. (b) Possible states for the initial condition and the first
two time steps.

to the right” and “step to the left”, s.t. at the end we have (all in all) exactly a steps to
the left among n steps altogether; i.e., we find here the binomial coefficients. Thus,

p(m,n) =
(

1

2

)n ( n
a

)
=
(

1

2

)n n!

a!(n− a)!

Remark 4.11: (1) The probabilities sum up to one: let χm+n even(m) be one if m + n
even and zero else. Then,

∞∑
m=−∞

p(m,n) =
n∑

m=−n

(
1

2

)n n!

a!(n− a)!
χm+n even(m)

=
n∑

m=−n

(
1

2

)n n!

((n+m)/2)!((n−m)/2)!
χm+n even(m)

=
n∑
k=0

(
1

2

)k (
1− 1

2

)n−k n!

k!(n− k)!
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= (0.5 + 0.5)n = 1.

(2) Using the Stirling’s formula

n! ∼
√

2πnnne−n

it is possible to show that (|m|, n� 1)

p(m,n) ∼
√

2

πn
e−

m2

2n .

I.e., p(m,n) approaches the normal distribution for m, n large.

Scaling to the Heat Equation
The last remark in the previous section suggests a connection between the random walk
and the heat equation (the scaled random walk as well as the the heat equation doe have
the Gaussian distribution as solution). In order to make this connection more explicite,
we scale the discrete random walk.
The master equations read

p(m,n) =
1

2
p(m− 1, n− 1) +

1

2
p(m+ 1, n− 1).

We now scale the master equation, using

∆x→ 0, ∆t→ 0,
∆x2

2∆t
= D.

We assume that the scaled probabilities p(m, , n) approach a continuous (and even twice
differentiable!) function u(x, t),

u(x, t) = p(x/∆x, t/∆t)

Then,

u(x, t) =
1

2
(u(x−∆x, t−∆t) + u(x−∆x, t−∆t))

⇒ u(x, t)− u(x, t−∆t)

∆t
=

∆x2

2∆t

u(x−∆x, t−∆t)− 2u(x, t−∆t) + u(x−∆x, t−∆t)

∆x2

↓ (∆t,∆x→0, ∆x2/(2∆t)=D)

ut = Duxx

If the mass is at time zero concentrated in the origin, u(x, 0) = δ0(x), then we find the
well-known singularity solution for the heat equation,

u(x, t) =
1

2
√
πDt

e−x
2/(4Dt).
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Remark 4.12: (1) We find, that with a (small, but) positive probability our particle
is even after an arbitrary small time far away from the origin. We may interpreted this
fact in the way that “the model allows for arbitrary high velocities”. A particle is allowed
(perhaps with a small probability) to travel very fast, also faster than the light. This
conclusion shows, that the model is not realistic. However, this very fact can be found in
most of the linear models in statistics: e.g. the size of adult, male African elephants can
be well described by a normal distribution. However, a normal distribution predicts (with
a very small probability) the existence of elephants with negative size. Even the basic
rule that every elephant has positive size is not respected by linear statistical models.
Only the fact that the probability is very, very small and can be neglected justifies the
success of these models. Also in our case, often enough the diffusion model just works
fine, because the discussed effects do not disturb the overall performance. Only in some
cases we are forced to think about something else. However, we should be clear about the
problems related to the parabolic mode of movement.

(2) It is an important fact that will come up over and over again, that we required a
certain (the parabolic) scaling. If ∆x tend to zero, ∆t = O(∆x2) tends faster to zero.
Thus, the velocity ∆x/∆t = D/(2∆x) may tend to infinity. This is one part of the truth
concerning the effect, that the model allows for arbitrary high velocities. We find this
scaling as an invariance also in the heat equation: this equation is invariant if we rescale
time and space by t̂ = ε2t, x̂ = εx. Again, the scaling of time requires a second order, the
scaling of space the first order in ε.
The second important observation is the Markov property of the stochastic process. The
particle does not know where it has come from, when it decides where to go (left or right).
By chance, there are some particles that keep for a longer time the direction, resp. do
not change the direction this often (with smaller probability if the number of changes
of direction becomes less). Since we scale time and space in the parabolic way, these
particles have the opportunity to travel a long way. The escaping particles are described
by the tail of the Gaussian distribution respectively the singularity solution of the heat
equation.

Ω

j

Figure 49: The region Ω and the flow j.

Conservation Law, Flux and the Heat Equation
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A second approach is not concerned directly with a stochastic process, but connects the
change of a density u(x, t) with a flux j(x, t). This connection yields the first law of Fick.
In a second step, one chooses a connection between flux and density in a reasonable way
(Fick’s second law). The combination of the two laws will again yield the heat equation.
This approach is in a certain sense more flexible, since it also allows for different definitions
for the flux (the second law may be changed), with different outcomes for the models that
are developed to describe diffusion.

Fick’s first law / Conservation law:
Consider an arbitrarily chosen, compact region Ω with smooth boundary ∂Ω. Let further-
more u(x, t) denote the density of particles within this region. If we assume that no mass
is created nor annihilated (no sinks or sources), the change of mass can only happen via
a flux through the surface of Ω. The flux j(x, t) is defined to point outward (see Fig 49).
We then find

d

dt

∫
Ω
u(x, t) dx = −

∫
∂Ω
j(x, t) d~σ.

Since everything is assumed to be smooth, the Theorem of Gauss (divergence theorem)
yields ∫

Ω
∂tu(x, t) dx = −

∫
Ω
∇j(x, t) dx.

Since we have chosen Ω as an arbitrary region, this equation holds true for every smooth
region. Hence, the integrands from the r.h.s. and the l.h.s. coincide,

∂tu(x, t) = −∇j(x, t).

This is the first law of Fick; the statement of this fundamental law is the generic connection
between time derivative of density and flux caused by the assumption of conservation of
mass.

u’<0,   j>0
u’>0,  j<0

x

u(x,t)

Figure 50: Choice of the flux according to Fick’s second law.

Second law of Fick/ Choice of the flux:
In a second step we connect j(x, t) to u(x, t). In a certain sense, u(x, t) corresponds to
the zeroth moment of the velocity and j(x, t) to the first moment. We now express the
first moment by the zeroth moment. This idea is similar to the moment-closure methods
we will consider later in the non-linear part of the lecture.



4.4 Spatial Structure 101

The idea how to choose j as a function of u is the observation, that (pure) diffusion flattens
the density: e.g., if we consider the evolution of a temperature profile and assume an initial
condition where at some points the temperature is high while it is low at other points, we
find that the hills are decreased and the valleys are increased until the temperature slowly
approaches the constant solution. Or, the concentration of a drop of milk poured into a
cup of coffee will slowly diffuse over the whole cup until the milk is uniformly distributed
(without steering; however, perhaps your coffee is cold at the time the equilibrium is
reached). All in all, local maxima will be decreased and, during this process, valleys are
filled s.t. we find in the end a constant solution. Thus (see Fig. 50), the flux should be
positive if the gradient is negative and vice versa. The most simple way to model this
structure reads

j(x, t) = −D∇u(x, t),

the flux is proportional to the negative gradient. Using this definition/model assumption,
we find

∂tu(x, t) = D∆u(x, t),

i.e. again the heat equation.

Example: Spread of Muskrats
In order to validate the model in biological context, we consider the spread of muskrats
over Europe (see [19, 56]). The muskrats escaped 1905 from a farm in Germany. In the
following years they spread over a larger and larger region. Data about the habitat of the
muskrats are shown in Fig. 51. The aim is to model this situation following the lines of
thinking we developed above.

Because of the copyright is this figure empty.

place here: Edelstein-Keshet, p 439, Fig. 10.1 [19]

Figure 51: Spread of muskrats over Europe. Lefthand side: regions where the muskrats have
been present at a given time. Right hand side: square root of the area over time.

State: The state of the muskrats population is the density of muskrats at time t and
location x, u(x, t).
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Dynamics: The dynamics consists of two parts: diffusion and growth of the population.
• Diffusion only.
Diffusion is modeled by the heat equation,

ut = D∆u, u(0, x) = u0(x).

Since the muskrats spread from one point, we assume for the initial conditions a point
mass, located in x = 0,

u0(x) = u0δ0(x).

• Growth only.
Since we consider the spread of the population, we do not assume that the muskrats
compete for resources with other muskrats (there may be competition with other species,
but not within the species). Hence, we find a linear model for growth (a justification for
this assumption will be found later, if we consider the “diffusion-competition-equation”,
the Fisher equation). Hence, we find for growth only

ut = αu

where α > 0 is the growth rate.
• Complete model.
In order to find the complete model, we have to add the r.h.s. of the equations describing
the booth processes. This procedure is a general concept: if several processes are to be
combined in a differential equation, one has to add the r.h.s. of the models,

ut = D∆u+ αu, u(0, x) = u0(x).

Remark 4.13: This general “recipe” is quite non-trivial to understand. One argument
can be found in exercise 4.7. Another argument (better: another approach to the same
argument) is the reduction to the corresponding stochastic processes: We consider the
discrete random walk, and combine this random walk with a birth process. The state
at a time tn consists of the number of particles Nn

i in xi, i ∈ ZZ. In each time step,
we subsequentially realize the two processes: birth and movement. Fist, we let every
particle decide if it wants to reproduce or not. Reproduction of one particle happens with
probability α∆t = α(tn+1 − tn). This process leads to a new state N̂n

i for the number of
particles in location xi after reproduction. We find (up to higher order terms)

N̂n
i = Nn

i + Bin(Nn
i , α∆t).

After reproduction, we perform with all (the old particles and the newborn particles) a
random walk, where every particle moves independently of each other particle. We then
find for every single location (we only consider a single location in order to avoid the
correlation between cells xi and xi±1 that are caused by the fact that the particles in the
location xi will either go to the left or to the right)

P (Nn+1
i = k | N̂n−1

. ) = Bin(N̂n
i+1, 1/2) + Bin(N̂n

i−1, 1/2).
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Hence, for the expected value, we find

E(Nn+1
i ) =

1

2

(
E(N̂n+1

i−1 ) + E(N̂n+1
i+1 )

)
=

1

2

(
(1 + α∆t)E(Nn+1

i−1 ) + ((1 + α∆t)E(Nn+1
i+1 )

)
.

If we perform the parabolic scaling, assuming that u(i∆x, n∆t) = E(Nn
i ) approaches a

smooth function, we obtain in the limit our desired equation

ut = D∆u+ αu, u(0, x) = u0(x).

The deeper reason for the additivity is that the particles move and reproduce indepen-
dently. There is no correlation between the two processes (reproduction and diffusion).

Proposition 4.14: The solution of ut = D∆u+ αu, u(0, x) = u0(x) reads

u(x, t) =
u0

2
√
πDt

e−
|x|2
4Dt

+αt.

Proof: One may plug the function into the PDE, or observe that

v(x, t) = e−αtu(x, t)

satisfies the heat equation (with a delta peak as initial condition, i.e. is the singularity
solution of the heat equation).

2
Remark 4.15: By now, we do know the density (according to our model). The data show
the area, where the muskrats are present. We relate u(x, t) to the area, where muskrats
are observable, by the assumption that a minimal density u is necessary to find animals
(recall that u(x, t) > 0 for all x ∈ IR2, provided that t > 0; thus, {x |u(x, t) > 0} will not
do it).

Proposition 4.16: Let A(t) = {x |u(x, t) ≥ u}. We find asymptotically, for large time√
|A(t)| ∼ 2

√
παDt for t→∞.

Proof: We find

u ≤ u(x, t)

⇔ u ≤ u0

2
√
πDt

e−
|x|2
4Dt

+αt

⇔ 2
√
πDtu

u0

≤ e−
|x|2
4Dt

+αt

⇔ 2
√
πDtu

u0

≤ e−
|x|2
4Dt

+αt

|x|2 ≤ 4αDt2(1− log(2u
√
πDt/u0)/(αt)︸ ︷︷ ︸

(.)→0 for t→∞

)

⇒ |x|2 ≤ 4αDt2 for t→∞.
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Thus, we find asymptotically that

|A(t)| ≡ |{x | |x|2 ≤ 4αDt2}| = 4 παDt2.

2
Hence,

√
|A(t)| should approximately be a linear function of t. Indeed, the data in Fig. 51

show a good agreement with our prediction. This is a hint, that the parabolic model for
diffusion is not too bad.

4.4.2 Excursion: Porous Media Equation

The main drawback of the heat equation is the possible very fast spread of some particles.
Though often enough this equation is an appropriate model for the spatial spread of
entities (bacteria, cells, animals or information), sometimes this effect is too unrealistic to
be acceptable. At least it is useful to think about different models that do not show this
approach and their relation to the parabolic partial differential equation. We may also
learn in this way more about the interpretation and the way how to handle the parabolic
equation. Furthermore, sometimes we find new effects in non-parabolic models for spatial
movement.

The model we want to consider now somehow does not fit in the overall structure of these
considerations: it is not a linear model, but takes into account some interactions. The
basic idea is the following: The overall velocity a population growing with rate α and
diffusing according to the heat equation with diffusion constant D reads

√
αD (see the

muskrat example above). Hence, if we reduce the diffusion constant D, we reduce the net
velocity of a population. Furthermore, the spread of the population is basically driven by
these few particles that move very rapidly (the tail of the Gaussian distribution). Note
that the density in the tails is rather low. Hence, if we assume that the diffusion constant
is a function on the population density, D = D(u), and choose D(u) to be very small if
u becomes small, then the very fast spread of densities according to parabolic equations
can be stopped.

Model and interpretation
In order to translate this idea in a model, we use the formulation of transport phenomena
with the Fick’s laws. We find always the first law of Fick,

∂tu(x, t) = −∇j(x, t)

i.e. the change in the density is related to a flux. This is a general principle for a population
where we do not have sinks and sources but only transport. The formulation of a special
transport model is done by relating the flux to the density (and, perhaps, also to the flux
itself),

j = F (u, j).

E.g. for the heat equation we assume

F = −D∇u.
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The age structured model (without death and birth, since at this point of time we do not
want to have sinks or sources) can be derived via

F = u.

In the present case, we assume

F = −D∇u, D = D(u),

i.e. the model is similar to the heat equation but the diffusion constant depends on u. It
is furthermore assumed that D(u)→ 0 for u→ 0. Hence,

ut = ∇(D(u)∇u).

The typical function D(u) is shown in Fig. 52, it is a function that is zero for D = 0,
strictly increasing and global bounded.

D(u)

u

(a) (b)

Figure 52: (a) The diffusion coefficient for the porous media equation. (b) Water in porous
media.

The origin of this equation, the so-called porous media equation is the description of the
spread of water in a media with numerous very small caverns. The water fills one cavern
after the other, and only if the pressure/the local density is high enough, it will move
forward (D(.) > 0), otherwise it just stays (D = 0). Though one may argue whether this
equation is a good model for porous media, it had considerable impact. In mathematical
biology, this model sometimes is used to describe the spread of insects [48].

Remark 4.17: The form ut = ∇(D(u)∇u) conserves the total mass; assume u ∈ L1,
then (under appropriate assumptions)

∂t

∫
u(t, x) dx =

∫
∇(D(u(t, x))∇u(t, x)) dx = 0.

An equation of the form vt = D(v)∆v leads to

∂t

∫
v(t, x) dx =

∫
D(v(t, x))∆v(t, x) dx

=
∫
∇(D(v(t, x))∇v(t, x)) dx−

∫
(∇D(v(t, x))(∇v(t, x)) dx

= −
∫

(∇D(v(t, x))(∇v(t, x)) dx = −
∫
D′(v(t, x)) |∇v(t, x)|2 dx.
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Since in general D′(v) > 0, the last term does not vanish, i.e. we introduce by a description
that does not use the formulation via the conservation law an artificial source/sink term
of the form D′(v(t, x))|∇v(t, x)|2.

Explicite solution of a special example
Perhaps the most simple function to chose for D(u) reads

D(u) = D0

(
u

u0

)n
.

This function is not bounded, but tends to infinity if u goes to infinity; however, since we
expect the effect to be triggered by the behavior of D(u) for u small, this choice yields a
reasonable model equation to study the behavior of the porous media equation. The nice
point about this special choice of the nonlinearity is that an explicite solution is available.
We find, that

ut(x, t) = (D(u)ux)x

with u(x, 0) = Qδ0(x) has the solution

u(x, t) =


u0

λ(t)

[
1−

(
x

r0λ(t)

)2
]1/m

for |x| ≤ r0λ(t)

0 else

with

λ(t) =
(
t

t0

)1/2m

r0 =
QΓ(1/m+ 3/2)√
πn0Γ(1/m+ 1)

t0 =
r2

0m

2D0(m+ 2)

and r0 is determined by

Q =
∫ ∞
−∞

u(x, t) dx = r0

∫ r0λ(t)

−r0λ(t)

u0

r0λ(t)

1−
(

x

r0λ(t)

)2
1/m

dx = r0

∫ 1

−1
u0

[
1− x2

]1/m
dx

It is easy to verify that this function sattisfies the partial differential equation for |x| 6=
r0λ(t). At point x = ±r0λ(t), the function is not differentiable. However, also D(u)
becomes zero at this point, s.t. formally the equation is also sattisfied at this point. In
general, it is necessary to reconsider the definition of solution; we derive definitions of
weak solutions [13].

The most important observation is that the solution defined above has a finite support.
This behaviour is typically for solutions of the porous media equation [13]. Thus, it seems
that this type of equation is a possible solution for the problem of finite propagation
speed. However, this is only partially true. Indeed, the support of u(x, t) will disperse
with a finite maximal velocity. Particles of the corresonding stochastic process, though,
may have locally within the support of u(x, t) an arbitrary high velocity.
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4.4.3 Correlated Random Walk in one dimension

Because of the copyright is this figure empty.

place here: M. Gulch et al., J. Bacteriol. 177(1995) 5473–5479, Fig. 4 [28]

Figure 53: Tracking of the path of E. Coli. Right side: Actual path of a bacterium. The points
where the bacteria tumble are marked in black, the paths where they go (more or less) straight
are denoted by open circles. Left hand side: Change of direction (angle) over time. The three
images (a)-(c) correspond to different ambient temperatures.

Certain microorganisms, e.g. E. Coli show the following behavior: they either move at
an approximative straight line with approximative constant velocity, or they stop, and
“tumble”. During this process they chose a new direction, where again they start to move
straight (Fig. 53). This procedure has a physiological foundation. These microorganisms
move by flagellants, small “hairs” on the cell membrane - the smallest natural motors
known by now (see Fig. 54 or [59]). If they move straight, all of these flagellants are
directed backward. During tumbling the flagellants stick out and in this way the bacterium
performs a random rotation.

This behavior is well captured by the correlated random walk. We starts off with the
description of a stochastic process in one dimension that incorporates a constant velocity
for each particle. This stochastic process yields to coupled hyperbolic partial differential
equations. These equations show truly finite propagation velocity for single particles and
- as a consequences - also for the spread of mass/information.

Model
We consider a particle in one dimension. This particle moves with constant velocity γ
either to the right or to the left. The time that this particle moves in one direction is
exponentially distributed with rate µ.

State: u+(x, t) and u−(x, t), denote the probability density to find this particle at location
x and moving to the right (u+(x, t)) or to the left (u−(x, t)).

Dynamics: We have two processes: to move straight and to change the direction.
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Tumble Move Straight

Figure 54: Modes of movement of E. Coli.

Movement: We now neglect that the particles change direction but assume that they go
on for ever with velocity γ. From

u+(x, 0) = u+(x+ γt, t), u−(x, 0) = u−(x− γt, t)

we conclude (taking the derivative with respect to time) that

(∂t + γ∂x)u
+(x, t) = 0, (∂t − γ∂x)u−(x, t) = 0.

These equations correspond to the fact, that ∂t± γ∂x is the infinitesimal generator of the
right (left) shift with velocity γ [62].
Change of direction: If we neglect the spatial structure and consider the direction as a
property with two possible states (“+” and “-”), where our particle changes from one
state to the other with exponentially distributed waiting times of average 1/µ, we obtain
immediately

∂tu
+(., t) = −µu+(., t) + µu−(., t), ∂tu

−(., t) = µu+(., t)− µu−(., t).

Total process: Like usual, we obtain the total process if we add the r.h.s. of the differential
equations describing the single processes. Hence we find

(∂t + γ∂x)u
+(x, t) = −µu+(x, t) + µu−(x, t)

(∂t − γ∂x)u−(x, t) = µu+(x, t)− µu−(x, t).

The boundary conditions have to be chosen in an appropriate way to meet the situation
one aims at (see Exercise 4.10).

Of course, u±(x, t) may also be interpreted as the population density of a large number
of particles that do not interact and behave according to the rules above (we discussed
these two possibilities of interpretation - as the probability of a single individual or the
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density of a population – which is, in a way, that same due to the idea of an ensemble –
before).

Remark 4.18: In contrast to the memoryless Brownian motion, we here explicitly include
memory: a particle that is going to the right hand side now, is likely to do that also in the
next moment. Therefore we obtain a hyperbolic system of equations (time and space scale
with the same exponent), while the heat equation is memoryless (space scales with second
order while time scales with first order). Hence, the correlated random walk belongs to
the same class like the wave equations [36] or the age structured model [60]. The most
obvious difference of the two types of equations is the smoothing behavior: if we start with
a Heaviside function for the density at time zero, the heat equation will smooth out the
step in the population density at once - after an arbitrarily small time step, the solution
becomes arbitrarily often differentiable. The hyperbolic equation tends to preserve a jump
- in the correlated random walk, the magnitude of the jump will become smaller in time
but will never vanish. The solutions do not gain smoothness during the evolution.
This difference of the smoothing behavior is strongly connected with the finite propagation
speed: while parabolic equations are this smoothing that they do not allow for a compact
support of a solution, the hyperbolic equations allow for a jumps in the density, also jumps
to zero s.t. solutions with finite support exist (in this case we have - like in the case of
the porous media equation - to define a slightly modified definition of solution).

Parabolic Limit
In order to better understand the correlated random walk, we derive the connection to
the heat equation - the parabolic limit. The heat equation can be derived via the Fick’s
laws, i.e. via the connection between density and flux. Thus, it is useful to rewrite the
correlated random walk in these terms.

Lemma 4.19: Define the total density u(x, t) and the flux j(x, t) via

u(x, t) = u+(x, t) + v+(x, t), j(x, t) = γ(u+(x, t)− u−(x, t)).

If we assume that u+(x, t) and u−(x, t) are sufficiently smooth, we find

ut(x, t) = −jx(x, t)

j(t, x) = − 1

2µ
jt(t, x)− γ2

2µ
ux

Proof: The proof is a direct computation (add resp. subtract the two equations for u+

and u−).
2

Remark 4.20: (1) The first equation, ut = −jx, only tells us, that the flux is well
defined (i.e., j is a flux, indeed).
(2) The interesting term is the time derivative of j in the equation for j (the equation
that replaced the second law of Fick). The hyperbolicity of the correlated random walk
expresses itself by the appearence of the time derivative.
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(3) We can now (at least formally) take the parabolic limit: let

γ, µ→∞, s.t.
γ2

2µ
= constant =: D,

we find

ut(x, t) = −jx(x, t)
j(t, x) = −Dux

Though this limit is only a formal one, an approximation theorem can be [47, 32].

We find that the particles have to move faster and faster, and - at the same time - to turn
around more and more often in order to derive the (memoryless) Brownian motion.
(4) We now know how to interprete the diffusion equation in the view of the correlated
random walk. Conversely, also the correlated random walk may be interpreted in terms of
the diffusion equation. Consider the inhomogeneous linear ordinary differential equation

αẏ + y = f(t),

If f(t) = f is constant, then y(t)→ f , i.e. y(t) adapts to the input signal f(.). The time
scale of this adaptation process is given by 1/α. I.e., if α is small, the adaptation is very
fast, while for 1/α large y(t) needs a lot of time until it slowly approaches the asymptotic
value f(.).

time

αy(t),    small

y(t),    largeα

f(t)

Figure 55: Behavior of the equation αẏ + y = f(t).

If f(t) is a periodic signal (see Fig. 55), α determines again the behavior of the equation.
If α is small, y(t) will follow closely to the signal; if α is large, the differential equation
will average the signal, and y(t) becomes almost constant over time. In other words, if
we keep α constant but look at different signals f(t) with different period, we understand
that this equation has the behavior of a low pass filter.
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In this sense, we may interprete the equation for the flux

1

2µ
jt(t, x) + j(t, x) = −Dux

as a kind of delay equation. The term jt/(2µ) prevents the flux to adapt instantaneously
to the gradient of the density (what is required by the second law of Fick, which leads
to the heat equation). The time scale of this adaptation process is given by 1/(2µ). If
µ becomes large, the adaptation becomes faster and faster s.t. the second law of Fick is
almost fulfilled and the correlated random walk approaches the heat equation. Only if µ
is rather small, the character of booth equations differ.

Cattaneo System
From the structure density/flow, it is straight forward to define a system of equations that
describe a generalization of the correlated random walk in higher dimensions x ∈ IRn,

ut(x, t) = −∇xj(x, t)

j(t, x) = −D∇xu.

This system is called Cattaneo-system after the Italian physicist Cattaneo who introduced
this model in the year 1948. This system is of interest and the properties of this system
are investigated (see e.g. [31]). However, it is unknown if there is a stochastic process
in IRn s.t. the probability density of a particle obeys this system of equations. Several
attempts are made, and some articles are published; however, it seems that in all of these
attempts problems arises that do not allow a strict derivation of the Cattaneo system
from a stochastic process. Hence, different generalization of the correlated random walk
to the n-dimensional situation are of interest.

4.4.4 Correlated Random Walk in higher dimensions

Of course, it is possible to extend the correlated random walk to higher dimensions. We
will sketch here the basic idea how to formulate this model.

Model
Let us first consider one particle, and only then characterize probability densities.

State of one particle: A particle is characterized by its location and velocity. Let x ∈ IRn

denote the state, and v ∈ V ⊂ IRn the velocity. Note, that we explicitly assume a that
the velocity is element of a subset V of IRn. In this way, we are able to exclude large
velocities (V may be compact) and also small velocities (if a particle is allowed to stay for
a certain while at one and the same location, this sometimes implies technical difficulties,
especially if one aims at scaling arguments).

Dynamics: Like before, we have two processes, movement and choosing a new direction.
Movement: If there is no change in the velocity, the location of a particle after ∆t is

x(t+ ∆t) = x(t) + ∆tv.
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Time to move in one direction: The waiting times in between two changes of direction
are distributed exponentially with parameter µ.
Choose a new direction/velocity: Assume that we do have the velocity v now and want
to choose a new one (i.e., we tumble). In general (without further restrictions) we only
can assume that there is a probability density over the set of velocities V that describes
the probability density to choose v′ ∈ V (this probability density depends in general on
v). Hence, there is a function K(v′, v)

K : V × V → IR+,
∫
V
K(v′, v) dv′ = 1.

Now we desire to derive an equation for the probability density of one particle at time t
in the state (x, v) (resp. the population density of a lot of particles evolving according to
the rules above).
State: Let u(x, v, t) be the density to find a/the particle at location x with velocity v.
Dynamics: Again, let us first consider movement and change of direction separately.
Movement: Since we move straight with velocity v, we find

u(x+ ∆tv, v, t+ ∆t) = u(x, v, t)

and hence (taking the derivative with respect to ∆t)

∂tu(x, v, t) +∇(v u(x, v, t)) = 0.

Change of velocity: The rate of change of velocity is µ, the new direction is given by the
kernel K(., v). Hence, neglecting space, we find

∂tu(., v, t) = −µu(., v, t) +
∫
V
K(v, v′)u(., v′, t) dv′.

Full process: The complete process is given by

∂tu(x, v, t) +∇(v u(x, v, t)) = −µu(., v, t) +
∫
V
K(v, v′)u(., v′, t) dv′.

This equation is related to the Boltzmann equation [10]. The difference is, that Boltzmann
equation describes colliding gas particles, i.e. has a quadratic term at the r.h.s.

Flux and asymptotic velocity
We do not want to go into the detail and aim at an analysis of the model (even on
the heuristic level we work on). In order to give a brief feeling for the behavior of this
equation, we only want to mention three facts.

Remark 4.21: If we only aim at spatial information, we find with the definitions

n(t, x) =
∫
V
u(x, v, t) dv, j(t, x) =

∫
V
v u(x, v, t) dv
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that
∂tn(t, x) = −∇j(t, x)

i.e. j(t, x) is the flux for the (spatial) density n(t, x). We again meet the first law of Fick.

Remark 4.22: Now we forget the space but only consider the distribution of velocities.
Let

ν(t, v) =
∫

IRn
u(x, v, t) dx.

We find

∂tν(t, v) +
∫

IRn
∇vu dx︸ ︷︷ ︸
=0

= −µν(t, v) + µ
∫
V
K(v, v′)ν(t, v′) dv′.

Hence, stationary distributions satisfy ∂tν(t, v) = 0, i.e.

ν(v) = µ
∫
V
K(v, v′)ν(v′) dv′,

i.e. are eigenvectors for the eigenvalue one of the operator

A : V → V, ν 7→
∫
V
K(v, v′)ν(v′) dv′.

We are confronted with an integral operator (where we even did not define properly the
space this operator acts on, though we want to draw conclusions about the spectrum
of A!). For simplicity, we assume that V consists of a m discrete points, s.t. ν can be
represented as a positive vector in IRm

+ with l1-norm one (this has been the case in our
one-dimensional model, where V = {−γ, γ}). In this case, A is a non-negative matrix.
If we assume furthermore that A is strictly positive, i.e. there is a positive probability to
jump from any allowed velocity in V to any other velocity in V , we are able to apply the
Perron-Frobenius theorem (in the setting of integral operators, we need some assumptions
to derive the same results like compactness etc., but it is possible to extend this theory
to quite a large classes op operators. See the theorem of Krein-Rutmann).
In this (relatively simple) setting, we have to prove that here is a positive eigenvector for
eigenvalue one. Since

∫
V K(v, v′) dv′ = 1 we find

eTA = et,

i.e. e is a left-eigenvector for eigenvalue one. Since the matrix A is strictly positive,
we conclude ρ(A) = 1 and thus there is a unique positive right-eigenvector ν for the
eigenvalue one. Furthermore, since the absolute value of all other eigenvalues are strictly
smaller than one, we find

<(λ− 1) < 0 ∀λ ∈ σ(A) \ {1}.

Hence, the matrix A− I has one eigenvalue zero and the remaining part of the spectrum
has negative real part. Thus, the solution of the (ordinary(!)) differential equation

d

dt
ν(t) = µ(A− I)ν(t)
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tends for positive initial values to ν.
Conclusion: We find asymptotically a well defined velocity distribution in our system.

Remark 4.23: With appropriate scaling methods (the parabolic scaling), also in this
case we are able to derive a parabolic partial differential equation for

n(x, t) =
∫
V
u(x, v, t) dv

(see [21, 32]). We find in general the form

∂tn =
n∑

i,j=1

∂xi(ai,j∂xjn(x, t)) +
n∑
i=1

bi∂xinxi .

Remark 4.24: (1) We find again, that this form is “the right way” to write the
differential equation: we consider here pure transport, i.e. no skins and no sources. Thus,∫
n(x, t) dx ≡ const.. In the present form, this is trivially given. In general, an equation

of the form ∂tn =
∑n
i,j=1 ai,jn(x, t)xixj +

∑n
i=1 bi∂xinxi will not do it.

(2) The term
∑n
i=1 bi∂xinxi corresponds to a drift term. How can we make his fact clear?

There are two ways: either, we may write down the equation in terms of the flux,

∂tn(x, t) = −∇xj(x, t)

∂tj(x, t) = A∇xn(x, t) + bn(x, t)

where the matrix A denotes ((ai,j)) and b is the vector (b1, .., bn)T . Hence, the flux
incorporates a term bn(x, t), i.e. direct transport of mass in the direction b.
The second possibility to investigate this term is the use of a moving coordinate system.
Let

v(x, t) = n(x− b t, t).

Then,

∂tv(x, t) = ∂tn(x− b t, t)− b∇xn(x− b t, t) = ∇xA∇xn(x, t) = ∇xA∇xv(x, t).

I.e. v(x, t) does not incorporate the drift term but evolves only due to diffusive processes.
Then, n(x, t) = v(x + bt, t) shows that the density of n(x, t) is moved with constant
velocity b. Another way to introduce drift (via the stochastic random walk) can be found
in exercise 4.6.

In the next section, we will present two examples for models incorporating drift terms.

Examples: Advection and Chemotaxis
Advection of an additive
In 1986, at the river Rhine an accident with a herbicide did take place. This herbicide
(altogether two tons) has been measured at three control points along the river (or, better,
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Figure 56: Data of three control stations along the river Rhine, presenting the advec-
tion/diffusion of a pollutant (in the third point - Lobith - at booth sides of the river measurements
have been performed). Units of the x-axis are days, the units of the y-axis is concentration [µg/l].

we do have data from these three control points). Diffusion and advection with the river
superimpose. A one-dimensional model of the form

ut = Duxxx+ bux

is appropriate for the transport/diffusion of the chemical substance. We find rather good
agreement between the model and the data (see Fig. 56).

Chemotaxis - the Keller-Segel-Model

Many microorganisms or also certain cell lines in higher organisms (e.g. monocytes) per-
form chemotaxis. I.e., the cells follow a gradient of some chemical signal substance. Let
u(x, t) be the density of the cells itself, and a(x, t) be the chemical signal. We then find
not only the diffusion equation ut = D∆u, but also a drift term. The velocity of this drift
is proportional to the gradient of the signal. This proportionality constant is denoted by
χ,

ut(x, t) = D∆u(x, t) +∇(χu(x, t)∇a(x, t)).

Some microorganisms (Dictostelium discoideum) produce a chemical signal in order to
initiate an agglomeration of the cells. Interesting patterns and waves can be observed
during this process. From several reasons, this behavior draw much attention from the
modeling community: it seems that this is one of the simplest and experimentally best
studied examples of cell-cell communication; furthermore, these cells form something like
a primitive animal (the slime mold) after aggregation. It is in some sense possible to
study the first attempts to form an organisms from single cells, and in this way, to get
some idea, how complex organisms may have developed. In order to model that, we add
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the dynamics of the signal: it is produced by the cell line and will degrade. We find

ut(x, t) = D∆u(x, t) +∇(χ(a)u(x, t)∇a(x, t))

at(x, t) = Da∆u(x, t) + βu(x, t)− µa(x, t).

This is the Keller-Segel model (1971) [38, 48]. Of course, many versions are investigated by
now, introducing nonlinearities at all possible (and impossible) terms. Luckhaus and Jäger
showed 1992 that this equation exhibits a blow-up in finite time for appropriate initial
conditions [34], i.e. this structure is sufficient to explain the aggregation for Dyctostelium.

4.5 Exercise

Exercise 4.1:
Consider a linear, time-continuous birth-death process. Assume that we start with i
individuals. Solve the master equations for this case. How large is the probability of
extinction?

Exercise 4.2:
(a) Consider a population of bacteria reproducing in a (living) host with rate β (indepen-
dent of the population size of the bacteria) and do not die. How large is the population
size after time a, if the host is infected at time zero with one bacterium? Which distribu-
tion does the population follow?
(b) Now add to the model above the mortality of the host. The death rate of the host is
(in dependence of the bacteria load)

µ(i bacteria) = µ0 + iµ1.

Which states do we have to consider? Derive the master equations and the PDE for the
generating function. Find the expected load of bacteria at time a after infection under
the condition that the individual is alive. Find the average mortality rate after time a of
infection.
(c) (Modeling) Derive a deterministic model for the host population structured by age
since infection. What can be said about this population (equilibrium age distribution,
average virus load of a randomly chosen infected individual etc).

Exercise 4.3:
Consider a polymer that consists of simple molecules. These simple molecules (monomers)
are small linear chains that are able to bind at booth ends to other molecules of the same
type. Furthermore, the end points of a polymer may also bind together and then the
polymer forms a ring. Assume (for simplicity) that only monomers are able to bind to
other monomers or polymers (that are no rings). Assume furthermore, that monomers are
present in a constant density (and thus the rate for prolonging a polymers by one monomer
is constant). Also, assume that the rate to form a ring is constant and independent of
the length of the polymers. Find the length distribution and density of rings (structured
by length) if the reaction is stopped after time t.
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Exercise 4.4:
A model for a population, structured by size, reads

ut + (g(x)u)x = −µ(x)u, g(0)u(t, 0) =
∫ ∞

0
b(x)u(t, x) dx.

Here, x denotes the size, u(t, x) the population density structured by size, and g(x) the
growth rate from an individual of size x. Assume that it is sufficient to consider the point
spectrum in order to determine if the population will grow or decrease. Find a criterion
simular to R0 that determines if the population tends to infinity or to zero.

Exercise 4.5:
Consider an age structured population of fish. Assume that this population is harvested
with a certain rate. Assume that one harvested fish yields a certain gain (money per fish),
and that the costs for the harvesting effort is proportional to the harvesting rate. Assume
(for a given harvesting rate) the population to be in equilibrium. Determine the overall
gain (gain for the fish minus effort for the harvest). Maximize the gain.

Exercise 4.6:
Consider a one-dimensional model for bacteria that are sensitive for the gradient of a
chemical additive: They will move towards the positive gradient of this additive. Find
a model (starting from the master equations, and then taking the limit until we reach a
PDE).

Exercise 4.7:
Consider the following model for a growing and diffusing population. Let u(x, t) = S1(t)u0

the solution at time t of

ut(x, t) = αu(x, t), u(x, 0) = u0.

Let furthermore u(x, t) = S2(t)u0 the solution at time t of

ut(x, t) = D∆u(x, t), u(x, 0) = u0.

Now assume that the population switches every ∆t between growing and diffusion, i.e.

u(n∆t, x) = Πn
i=1 (S1(∆t)S2(∆t))u0.

Let ∆t tend to zero while n tend to ∞, s.t. t = n∆t is constant. Show that in the limit
(do we really need the limit?) we obtain u(x, t) = Stu0, where St is the solution operator
of the equation of

ut = D∆u+ αu, u(x, 0) = u0(x).

Exercise 4.8:
Consider the conservation equation ∂tu(x, t) = −∂xj(x, t) with the flow

j =
1

2
u2.
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This equation is called Burger’s equation (and is e.g. used to model traffic flow on a
highway). Let furthermore

φ(x;α, β) =


α for t < 0

α + (β − α)x for t ∈ [0, 1]
β for t > 1

(a) Find characteristic curves, i.e. curves x(t) s.t. u(x(t), t) ≡ C = constant. (Note:
these curves will depend on C).
(b) Under which condition on α, β does the Burger’s equation exhibit a global, classical
(C1(IR)) solution for the initial condition u(x, 0) = φ(x;α, β)? What does happen, if
there is no classical solution?

Exercise 4.9:
Consider a population that reproduce with rate α and stays in a region (one-dimensional,
say) where outside this region the circumstances are hostile (e.g. the animals are only able
to survive within forest but not outside). The Spruce Budworm may be an example. We
obtain the first-order approximation for the dynamics

ut = Duxx + αu, u(0, t) = u(L, t) = 0

where [0, L] denotes the (one-dimensional) habitat of the population. Find a criterion
that ensures that the population persists (does not die out).

Exercise 4.10:
(a) Consider the correlated random walk in a finite interval [0, L]. Find boundary condi-
tions that are appropriate for the situation considered in Exercise 2.
(b) Develop a complete model for the situation of Exercise 2 and find conditions s.t. a
positive stationary solution exists.

Exercise 4.11:
Consider the coupled equations

ut = D1uxx + au+ bv, u(0, t) = u(L, t) = 0

vt = D2vxx + cu+ dv, v(0, t) = v(L, t) = 0.

Find situations, where diffusion destabilizes the system. I.e., for D1 = D2 = 0 all eigen-
values do have negative real part, while it is possible to chose D1, D2 > 0 s.t. there emerge
eigenfunctions which have eigenvalues with a positive real part.
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Part Two:

Interacting Entities - The Nonlinear Case

5 Logistic Equation

The logistic equation describes one homogeneous population competing for a resource.
This situation is the prototype to study interaction and nonlinear models. Many ideas
we develop here will carry over to other situations. Thus we will spend quite a while to
investigate this (on the first glance relatively simple) system.

5.1 Experimental Setup

One key experiment has been performed in the thirties of the last century. At this
time, people have been interested to study laboratory-setups for population dynamics and
to check quantitatively (not only qualitatively) the prediction of mathematical models.
Unfortunately, this line of research almost died out; in these days, we find a reemerging
of these approaches (we will discuss below an example by Cushing [12]). The biological
model organisms investigated in the first half of the last century have especially related
to bacteria, phyto- and zooplancton. These systems are small, relatively easy to handle
(if you are a trained biologist) and show in relatively short time interesting behavior.

Because of the copyright is this figure empty.

place here: Gausse, The struggle for existence, p.69, Fig. 69 [23]

Figure 57: Population dynamics of yeast in a sugar solution.

Gausse [23] has been especially interested in yeast. The experiment we are interested
in the population dynamics of only one yeast species Saccharomyces cervesia in a sugar
solution (see Fig. 57). The experiment starts with a low amount of yeast, which shows in
the initial phase an almost exponential growth. Later, the amount of sugar will decrease
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and the yeast has to compete for resources (the sugar). Another component of this
competition may be the poisoning by alcohol.

5.2 Deterministic Logistic Equation: Continuous Time

The first, and perhaps most simple approach is a time-continuous deterministic equation.
Of course, this deterministic equation is only an approximation of the expected value of
the underlying (nonlinear) birth-death process, the yeast performs. We will consider this
birth-death process later.

The Model

Since this model is well known (and rather simple), we will keep the description rather
short.

State: Density of yeast at time t, x(t).

Dynamics: We do have two processes, birth and death. Due to competition, the birthrate
is a decreasing and the death rate is an increasing function of the population size. The
simplest assumption is a linear dependence.

Birth: Birth rate β(x) = β0 − β1x

Death: Death rate µ(x) = µ0 + µ1x

Hence, we find the model

ẋ = β(x)x− µ(x)x = (β0 − µ0)x− (β1 + µ1)x2 = rx(1− x/K)

with

r = β0 − µ0, K =
β0 − µ0

β1 + µ1

.

This equation is called the logistic equation (or the time-continuous logistic equation).

Of course, this model is very simple, and it is easy to criticize this approach: E.g., if we
start with a population size x(0) > β0/β1, the birth rate β(x(0)) becomes negative (this is
rubbish! the birth rate may become zero, but never negative!). Or, the resources (sugar,
alcohol) are not explicitly incorporated. On the other hand, one may view β(x) and µ(x)
as linearized net birth- and death rates of a more complex model (linearization taken at
x = 0). Thus, the model is valid only if the population size x does not become too large;
otherwise the second order terms cannot be neglected. In this sense, we do have some
justification for the model. Also, we will test it against the data.

We expect some qualitative insight by the analysis of this model; if the model is also able
to be used in a quantitative way can by only decided by the comparison with real world
data.

Analysis
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One can find an explicit solution for the ordinary differential equation,

x(t) =
K x(0)

K−x(0)
ert

1 + x(0)
K−x(0)

ert
.

From the equation ẋ = rx(1− x/K), we find at once the stationary points,

ẋ = 0 ⇔ x ∈ {0, K}.

We want to consider this structure more in detail. Therefore, we use the definition of K,

K =
r

β1 + µ1

=
r

r1

with r1 = β1+µ1. In this setting, we find the stationary points to be x0 = 0 and x1 = r/r1.
The stationary point x1 is only positive if r > 0, i.e. β0 > µ0: without competition, the
birth rate has to be larger than the death rate in order to ensure the existence of an
equilibrium with a positive population density.

We now consider the stability of the stationary points. Since we are in an one-dimensional
setting, this “stability analysis” can be done in a graphical way. First we need some idea
about stability.

Definition 5.1: A stationary point x of an ordinary differential equation ẋ = f(x) is
called locally stable, if there is a neighborhood U(x) s.t. for all trajectories x(t) with
x(0) ∈ U(x), we find

lim
t→∞

x(t) = x.

If this is not the case, the point is called unstable.

Often enough, this definition is formulated in a slightly different way due to the following
reason: consider a line of stationary points. According to our definition, every point is
an unstable stationary point, because any small perturbation is never decreased to zero
again. However, on the other hand, the perturbation will not increase. Thus, one may
say that also these stationary points are locally stable.

Remark 5.2: If we consider ẋ = f(x), and x ∈ IR, then x(t) is increasing for f(x) > 0
and decreasing for f(x) < 0; if f(x) = 0, we have an equilibrium. From this, we find that
f ′(x) < 0 implies that x is locally stable, while the consequence of f ′(x) > 0 is instability
of the stationary point (see Fig. 58). In general, this criterion can be extended: if we
consider an ODE ẋ = f(x), x ∈ Rn, f(x) = 0, then this stationary point is locally stable,
if the spectrum of the Jacobian of f at x is completely contained in the negative half
plane of the complex plane [2].

Proposition 5.3: We find for r < 0 that x0 = 0 is locally stable while x1 = r/r1 is
unstable, and the reversed stability structure for r > 0.

The proposition is an immediate consequence of the remark about one dimensional ordi-
nary differential equations. This situation we have is called transcritical bifurcation (see
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Figure 58: Stability of stationary points of ẋ = f(x).

e.g. [27]). Two stationary points cross and exchange their stability (see Fig. 59). This
bifurcation is quite typical for population dynamics: if the conditions are too poor, the
population dies out; if the resources crosses a certain threshold, the population becomes
endemic. Secondary bifurcations may then lead to periodic behavior or alike. We will
find several examples for transcritical solutions later.

r

Stat. Points

Figure 59: Branching diagram for the logistic equation.

Real World Data
Consider again the data from Fig. 57. It is easily possible to estimate the parameters
r and K in a handwaving way: r can be estimated from the initial phase. There, the
growth is approximately exponential. Hence, a semilogarithmic representation leads to
a linear function with r as slope. The parameter K is just the asymptotic value. Using
these methods, one derives the continuous function shown in Fig. 57. The logistic equation
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seems to fit the data very well. Though is is a very simple model (perhaps the most simple
model for interacting entities), it meets in this case the reality not only in a qualitative
but in a quantitative way.

5.3 Deterministic Logistic Equation: Discrete Time

Like before, we will only briefly touch the time-discrete deterministic logistic equation.
Much more can be found in the book of Devaney [14]. The discrete logistic equation is
often introduced as discretization of the time-continuous logistic equation. This approach
is not appropriate - if some of the effects discussed below appear in the time-discretization
of an ordinary differential equation, this is a sign that the discretization parameter is
chosen too large. Like discussed before, a better approach is an external clock like the
seasons.

State: The state xn denotes the population size at time step n.

Dynamics: The dynamics is given by

xn+1 = r xn(1− xn/K).

Remark 5.4: (1) Rescaling (yn = xn/K) yields a one-parameter family of maps,

yn+1 = ryn(1− yn) =: Fr(yn).

This is the so-called quadratic family.

(2) The stationary points of this map are given by fixed points of Fr, y = Fr(y). Hence,

y0 = 0, y = 1− 1/r.

In the discrete case, local stability can be defined in a similar way like in the continuous
case:

Definition 5.5: A stationary point x of an iterative equation xn+1 = f(xn) is called
locally stable, if there is a neighborhood U(x) s.t. we find for all trajectories xn with
x0 ∈ U(x),

lim
n→∞

xn = x.

Remark 5.6: (1) The stability of the discrete and the continuous case are linked. If we
consider the time-one map of a time-continuous system (an ordinary differential equation)
we find a discrete map. If we look at a linear system,

ẋ = Ax

the time-one map is

F (x) = eAx.
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Assume that the eigenvalues of A are contained in the negative half-plane of IC (and thus
the stationary point x = 0 is locally stable). Then,

σ(eA) ⊂ {eλ |λ ∈ σ(A) ⊂ IC−} ⊂ {|z| < 1}.

Thus, we find a similar criterion for stability in the discrete case:

If the spectrum of the linearization of a discrete iterative function is contained in the unit
circle, the stationary point is locally stable (in a certain sense, this is another version of
the Banach Fixed Point Theorem).

(3) We find easily, that y = 0 is stable for r < 0. For r ∈ (0, 2), the fixed point y2 = 1−1/r
is locally stable. What does happen for r = 2? An (the) eigenvalue crosses “-1” if r crosses
r = 2. We find, that for Fr ◦ Fr(y) three fixed points appear at r = 2 (by a pitchfork
bifurcation). Hence, Fr exhibits a period-two orbit for r > 2. If an eigenvalue crosses
“-1”, under generic conditions we have a period doubling bifurcations, i.e. a periodic orbit
of period two appears.

(4) This period doubling is a whole cascade – periodic orbits of period 2, 4, 16, 32... appear
subsequentially. These bifurcation points cumulate and then we find chaotic behavior of
this dynamical system (Fig. 60).

Figure 60: Period doubling cascade for the discrete logistic equation.
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It is under debate, if this chaotic behavior appears in ecological systems or not. The basic
problem comes from the fact that in most ecological systems, there is a strong stochastic
perturbation (weather, temperature etc.) that makes it almost impossible to decide if
irregular structure in data are due to stochastic perturbations or due to chaotic dynamics.
In a sequence of papers, Constantino, Cushing [12] and coworkers tried to approach this
problem. They did not consider a system that can be modeled by a function that maps
the unit interval in itself, but they looked at an experiment that demands (at least) a three
dimensional iterative equation: they considered certain strains of flour beatles Tribolium.
These beatles lay eggs; from these eggs larvae hedge that eventually become adults. The
system is non-trivial in the sense, that these beatles perform cannibalism. This behavior
helps the species to survive if the food supply is short. However, cannibalism introduces
a negative feedback (that is necessary to find nontrivial behavior). Cushing develops
a three-dimensional discrete model. As the bifurcation parameter, the mortality of the
adults is used. In the experiment, it is non-trivial to change this bifurcation parameter
(i.e. to change the mortality of the adults). This has been implemented in the way,
that the experimenters computed the expected number of animals that should have died
in a certain time period (given a certain mortality rate), and then corrected the actual
number of dead animals in removing or adding the difference (if too many animals died,
then additional adults have been introduced in the system; if too many animals survived,
the according number of animals have been removed from the system). This influence
on the experiment has been subject of a quite controversy discussion. The measurements
have not been taken from a free-running population, but from an influenced population.
It is perhaps a kind of subjective opinion, if one believes that the resulting time series can
be taken as that of a “real” population with given mortality or only that of an artificially
system that does not give hints on real-world-population dynamics.

However, the result is quite striking (see Fig. 61). The time series of the biological system
seems to meet quite well the predictions of the model equations. These experiments seem
to hint, that the predictions of mathematical models do meet important features of reality,
s.t. one expects also chaotic dynamics to contribute in certain ecological systems to the
irregularity and unpredictability of ecological time series.

5.4 Branching Process

We now present a stochastic version of the logistic birth-death process. The stochasticity
does not come from a stochastic perturbation (due to whether, ambient temperature
etc., like assumed for ecological models), but due to an intrinsic variation of the number
of children of one individual. We only consider the time-dependent case; it is straight
forward to work out the parallel the arguments in the time-discrete case.

5.4.1 The Model

The idea of the logistic model is the competition for resources. Hence, the birth rate is
decreased, and the death rate increased by the population size. For simplicity, we only
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place here: Cushing, Nature 375(1955), 227–230, Fig. 2 [12]

Figure 61: Predictions and data in the flour-beetle experiments.

look at the decrease in the birth rate and assume that the death rate is independent of
the population size.

State: Let Xt =number of individuals at time t.

Dynamics: We have two processes, birth and death.

• Birth rate: b(Xt) = β(1−Xt/N), N ∈ IN, i.e.

P (Xt+∆t = Xt + 1) = β(1−Xt/N)Xt∆t+ O(∆t).

• Death rate: µ(Xt) = µ, i.e.

P (Xt+∆t = Xt + 1) = µXt∆t+ O(∆t).

The population size cannot exceed the maximal population size N , since for Xt = N we
find b(Xt) = 0. From this fact it is possible to conclude that the population dies out with
probability one (see exercise 5.3). E.g. all species at the earth certainly do have a finite
carrying capacity, i.e. the population on earth is bounded. Thus it has to die out. This
is not what we observe. This seemingly contradiction is one of the interesting issues that
has to be clarified.

5.4.2 Analysis I: Large population size

In order to analyze this process, one may scale it in certain (different) ways. We let always
N → ∞ (s.t. the nonlinearity becomes weaker and weaker). At the same time, one may
rescale time resp. bound he time in a certain way. The scaling of the time is crucial for
the result.

If N →∞, we may scale the process such that we derive an ODE. Let Zt = Xt/N , then

P (Zt+∆t = Zt + 1/N) = β(1− Zt)ZtN∆t+ O(∆t)

P (Zt+∆t = Zt + 1/N) = µZtN∆ t+ O(∆t)
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If we rescale time t = τ/N , we find for N →∞, that Zt → z(t), where

ż = −µz + β(1− z) z,

i.e. the scaled process approaches the logistic equation. The proof can be found in the
paper by Kurtz [39].

5.4.3 Analysis II: Linearization

The second scaling let N → ∞, but - at the same time - bounds the time. In this way,
one derives a similar structure like the linearization at stationary points for nonlinear
ordinary differential equations: Though the equation is nonlinear, under certain condi-
tions (all eigenvalues of the linearization have non-vanishing real part), the dynamics of
the linearized equations is locally homeomorph to the dynamics of the nonlinear system
(Theorem of Hartman-Grobman [27]). We are able to prove a similar theorem for the
stochastic system. The basic idea of the present section follow Ball and Donnelly [5];
however, we strongly simplify the proof and derive a weaker result.

Construction of the linear and the logistic birth-death process (coupling of the processes):

Let (Ω,F, P ) be a random space. Consider tow stochastic processes, defined simultane-
ously on this random space:

(1) Linear Birth-Death Process:
Let Yt(ω), ω ∈ Ω, denote the population size of a realization of the linear birth-death
process with birth rate β (independent of the population size) and death rate µ.

(2) Logistic Birth-Death Process:
We construct the population size Xt of the logistic birth-death process in the following
way: apart from living individuals we define a population of ghosts with population size
Zt. Xt and Zt are random variables that are defined on the same random space (Ω,F, P ),
and thus we are able to relate single realizations (Xt(ω), Zt(ω)) to Yt(ω) s.t.

Yt(ω) = Zt(ω) + Yt(ω).

Birth:
• Every individual (Ghost or living individual) of the logistic process do have the constant
birth rate β (independent of the population size).
• A newborn becomes with probability Xt/N a ghost.
• Children of a ghost are again ghosts.
Death:
All individuals (“normal individuals” or ghosts) die with the same death rate µ.

In a certain sense, the logistic process describes the linear birth-death process, where the
individuals get one more attribute: they are either “normal individuals” or “ghosts”. If
we add the “normals” and the ghosts, we obtain the linear process. If we only consider
the “normals”, we obtain the logistic process. Booth processes agree until Zt(ω) 6= 0. We
are now ready to prove the “linearization” result.
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Approximation Result:

Theorem 5.7: Let X0 = 1.
(a) If β0/µ0 < 1, then

Zt = 0 a.s. for N →∞, t ∈ IR+.

(b) If β0/µ0 > 1, then for all T ∈ IR+, we find

Zt = 0 a.s. for N →∞, t ∈ [0, T ].

Proof: Step 1: Estimation of the number of birth events
Let I = IR+ in case (a) and I = [0, T ] in case (b). For ω ∈ Ω, define

N̂(ω) = sup
t∈I

Yt(ω), B̂(ω) = total number of birth events in I of the linear process.

We find N̂(ω) ≤ B̂(ω) + 1. If we are in case (b), we may estimate the number of birth
events by a pure birth process (µ = 0) with birth rate β. The generating function of the
population size in such a case is given by (see Proposition 4.1)

f(s, t) =
−βseβt

β(s− 1)− (βs)eβt
.

i.e. p̃i = P (i Individuals at time T )→ 0 for i→∞. Thus,

|{ω ∈ Ω | B̂(ω) is not finite}| ≤ lim
i→∞

pi = 0.

If we are in case (a), we know from Proposition 4.2 that the population dies out with
probability one. Hence, there is for every realization a stopping time T (ω), for that
YT (ω)(ω) = 0. The argument above shows that again the number of births up to time
T (ω) are bounded a.s., and thus again

|{ω ∈ Ω | B̂(ω) is not finite} = 0.

Therefore, B(ω) is finite a.s.
Step 2: Xt and Yt agree for N →∞.
The probability to create a ghost in an birth event at time t is

P (Create ghost at time t) = Xt/N ≤ N̂(ω)/N.

The probability to nit create a ghost in a birth event taking place at time t reads

P (no creation of a ghost at time t) ≥ 1− N̂(ω)/N.

The probability to create no ghost at all in B̂(ω) birth events is thus

P (no ghost at all) ≥ (1− N̂(ω)/N)B̂(ω) → 1 for N →∞.
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Thus,

lim
N→∞

|{ω ∈ Ω |Zt(ω) = 0 for t ∈ I}| = 0.

2
Remark 5.8: Ball and Donnelly are able to prove in the case β0/µ0 > 1 that

Zt = 0 a.s for t ≤ C log(N)

where C has to be chosen in an appropriate way.

This is a first, partial answer to the problem that the population dies out for N <∞ a.s.:
If β/µ > 1, the population is able to spread (without competition), while for β/µ < 1, the
population will die out anyway even if N → ∞. However, in order to get an better idea
of the two different cases (β/µ larger resp. smaller one) without taking the limit N →∞,
we consider in the next section ideas about the time to extinction.

5.4.4 Analysis III: Quasi-Steady State

For the deterministic logistic equation, it has been possible to derive a nontrivial equi-
librium (i.e. an equilibrium where the population is not extinct) if β/µ > 1. This is not
the case for the logistic birth-death process, since we know that the population dies out
for sure (exercise 5.3). However, if β � µ, we will (e.g. in a simulation) never find that
the population dies out. In order to solve this seemingly contradiction, one considers the
logistic process Xt under the condition that the process does not die out X̂t = Xt|Xt > 0.
In the following we present some results due to Ingemar Nasell [50].

Definition 5.9: The quasi-steady state of the logistic process is the asymptotical distri-
bution of the random variable X̂t = Xt|Xt > 0, i.e. the asymptotic distribution of the
logistic process under the condition that it does not die out.

Proposition 5.10: Let βi = i β(1− i/N), µi = iµ and

A =



0 µ1 0 · · · 0
0 −(µ1 + β1) µ2 · · · 0
0 β1 −(µ2 + β2) · · · 0
0 0 β2 · · · 0

· · · · · · · · ·
0 0 0 · · · −µN


=


0 µ1 0 · · · 0
0
... Â
0



The distribution of the quasi-stationary state

q̂∗ = (q̂∗1, .., q̂
∗
N)T

is given by the nonlinear eigenvalue problem

Âq̂∗ = −µ1q̂
∗
1 q̂
∗.
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Proof: First, we introduce some notations. Let

qi(t) = P (Xt = i), q̂i(t) = P (X̂t = i)

q(t) = (q0(t), .., qN(t))T , q̃(t) = (q1(t), .., qN(t))T

q̂(t) = (q̂1(t), .., q̂N(t))T ,

Then,
q̇ = Aq.

Since X̂t = Xt|Xt > 0, we find for i = 1, .., N

P (X̂t = i) =
P (Xt = i and Xt > 0)

P (Xt > 0)
=

P (Xt = i)

1− P (Xt = 0)

i.e.

q̂(t) =
q̃(t)

1− q0(t)
.

and

d

dt
q̂(t) =

1

1− q0(t)

d

dt
q̃(t) +

1

(1− q0(t))2
q̃(t)

d

dt
q0(t)

=
1

1− q0(t)
Âq̃(t) +

1

(1− q0(t))2
q̃(t)(µ1q1(t))

= Âq̂(t) + µ1q̂1(t)q̂(t) = (Â+ µ1q̂1(t))q̂(t)

The quasi-steady state satisfies q̂′(t) = 0, i.e.

(Â+ µ1q̂
∗
1)q̂∗(t) = 0

2
Remark 5.11: This nonlinear eigenvalue problem cannot be solved explicitly. However,
there are several approximations possible (see [50]). The shape of the quasi-steady state
will look completely different for β/µ < 1 and β/µ � 1 (Fig. 62): If β/µ < 1, the
distribution is monotonously decreasing with q̂1 is maximal: the trajectories “want” to
die out, i.e. jump to population size zero, but are not allowed to. Thus, they are centered
at small population sizes. If β/µ� 1, then the distribution looks approximately normal
with the mean given by the population size where birth and death balances,

iµ = iβ(1− i/N) ⇔ i = N(1− µ/β).

Here, the population is naturally in its equilibrium, far away from zero population size.
However, natural fluctuations (the normal distribution does have tails that reach to zero
population size) will bring a trajectory from time to time (very seldom) close to extinction.
In this case, the realizations of the original process Xt(ω) die out; thus these realizations
eventually have to die out, though they are naturally centered around N(1 − µ/β), far
away from zero.
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Figure 62: Sketch of the quasi-stationary distribution in the cases β/µ < 1 and β/µ� 1.

Another idea to characterize the two situations β/µ smaller resp. larger one is to consider
the expected time to extinction. The time to extinction, however, depends on the initial
population size. It is not clear how to choose this. The quasi-stationary state should
represent the equilibrium distribution of the logistic process under th condition that it is
not extinct jet. Thus it may be a good idea to define “the” time of extinction as the time
of extinction if we start in the quasi-steady state. We find a relatively simple expression
for expectation of the time to extinction.

Proposition 5.12: Consider the logistic process starting in the quasi-stationary distri-
bution q̂∗. The expectation for the time to extinction is given by

E(time to extinction if q(0) = (0, q̂∗)T ) = 1/(µ1q̂
∗
1).

Proof: We solve (with the nomenclature of the proof of the last theorem)

q̇ = Aq, q(0) = (0, q̂∗)T .

Thus,

d

dt
q0 = µ1q̃1(t)

d

dt
q̃ = Âq̃(t)

Since q̃(0) = q̂∗ is an eigenvector of Â, we find at once q̃(t) = e−µ1q̂∗1 tq̂∗. Thus

q0(t) =
∫ t

0
µ1(e−µ1q̂∗1 tq̂∗1) dt = 1− e−µ1q̂∗1 t.

The expectation for the time to extinction now reads (where we used partial integration
in the first step).

E(time to extinction) =
∫ ∞

0
t

(
− d

dt
P (alive at time t)

)
dt

=
∫ ∞

0
(1− q0(t)) dt =

∫ ∞
0

e−µ1q̂∗1 t dt = 1/(µ1q̂
∗
1).



132 5 LOGISTIC EQUATION

2

Application to ecological systems
The considerations above, concerning the time to extinction and to separate the cases
β/µ larger or smaller one (if N is finite) are not of merely academic interest. At least in
principle, these considerations can be used e.g. to get an idea how large to choose a nature
reserve for a certain species. The aim would be to chose this reserve in such a way that
the specie survives with a high probability a given time, e.g. 50 years. Unfortunately, a
high effort is needed to set up a realistic model and to estimate the parameters of this
model s.t. quantitative predictions are possible.

A case, where this has been done is the investigation about a planed reservoir for a certain
butterfly (Maculinea arion [54, 26]). This butterfly has a funny live cycle: the eggs are
placed in thyme. The larvae hedge and have to hibernate. They do this in a tricky way:
the larvae “tell” a certain species of ants (myrmica sabuleti) that they are larvae of these
ants. Consequently, the ants move the butterfly-larvae into their nests. There, the larvae
hibernate (the butterfly hatch in the nests of the ants in the next spring, and then have
to hurry out before the ants become aware that tasty butterflies are in their nests). The
complete model takes into consideration the density of butterfly, thyme plants and ant
nests etc., and - in this way - is able to predict the survival of the butterfly population.
One result (dependence of the area size) is shown in Fig. 63. We find, that at least an
area with a size of 4 ha is desirable.

Because of the copyright is this figure empty.

place here: E.M. Griebeler et al. Verh. Ges. Ökol. 29 (1995), p.201–206, Fig. 4 [26]

Figure 63: Probability of extinction (after 50 years) for the butterfly population over the
protected area. Different ant nest-densities are assumed (cross: 150, circle: 200, closed diamond:
250, open diamond: 300 nests per ha.)



5.5 Spatially Structured Logistic Equation 133

5.5 Spatially Structured Logistic Equation

The branching process has been concerned with a randomly mixing populations, i.e. ever
entity interacts directly with any other entity. Of course, this setting is in general not
realistic. Mostly, we find entities that interact locally, e.g. in a spatial setting. However,
in the case that individuals move rather fast in comparison with the interaction, then
one may neglect this structure (this is a typical time scale argument). Only if movement
is slow or at a time scale comparable with the interaction, it is necessary to take into
account booth aspects. We concentrate now on spatial structure, which is for sure the
most important structure that should be considered. While the branching process is one
extreme (spatial structure can be completely neglected), the contact process is the other
extreme: the entities do not move at all, and only interact with the nearest neighbors.
Since there are only very few strict results, we will investigate approximation techniques:
the moment closure procedure and – more briefly – the rapid stirring limit. The latter
yields the Fisher equation; since this equation plays a certain role in mathematical biology,
we will investigate the Fisher (or KPP) equation more in detail.

5.5.1 Contact Process: Model

The contact process describes particles on a lattice (or a more general spatial structure).
Briefly, particles die with a certain rate and give birth to other particles with a certain rate.
The mother places these newborns at neighboring sites; if the site is already occupied,
the newborn dies. Here we find the character of interaction/competition: the resource
are (empty) sites. Now, let us introduce this stochastic process more precisely.

We first define the spatial structure (the grid Γ with the neighborhood of a site); then,
we define the state of the system, and last, we define the dynamics (death and birth).

Definition 5.13: Let Γ = ZZd or Γ = ZZd/ZZdm be a d-dimensional lattice or torus. Define
for x = 0 ∈ Γ the neighborhood U(0); usual choices are U(0) = {x ∈ Γ | ‖x‖∞ ≤ 1}
(Moore neighborhood) or U(0) = {x ∈ Γ | ‖x‖1 ≤ 1} (von Neumann neighborhood). Let
x+ U(0) be the neighborhood of x ∈ Γ.

A cell may be empty (‘0”) or occupied (“1”). The states of all sites yields the state of the
system.

Definition 5.14: Let E = {0, 1} be the set of possible states of a site. The map

ϕ : Γ→ E

yields the state of the system.

Now we introduce the dynamics; i.e., we define a random function ϕ
(ω)
t (x) that yields the

state of the site x at time t in a certain realization ω.
Definition 5.15: Let (Ω,F, P ) be a random space, and

ϕ : Ω× IR+ × Γ→ E, ϕ(ω, t, x) = ϕ
(ω)
t (x)
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a random variable that evolves according to

P (ϕ
(.)
t+∆t(x) = 0 |ϕ(.)

t (x) = 1) = µ∆t+ O(∆t)

and

P (ϕ
(.)
t+∆t(x) = 1 |ϕ(.)

t (x) = 0) =
β

K
#{y ∈ U(x) |ϕ(.)

t (x) = 1}∆t+ O(∆t)

where K = |U(0)| − 1.

Here, K is introduced in order to compare different definitions of U(0) in a fair way: The
birth rate with that a site is occupied (given by the case that all neighboring sites of x are
occupied) is always β, no matter how the shape of a neighborhood is chosen - Moore, von
Neumann or different. Fig. 64 shows the time course of a realization of the 2-dimensional
contact process. One finds that the number of occupied sites follow qualitatively a function
similar to the solution of the deterministic logistic ordinary differential equation.

Remark 5.16: (1) If |Γ| is not finite, it is non-trivial to prove that our definition yields a
stochastic process, indeed. The problem is the fact, that in an infinite grid it is not clear
that two events (change of a state) do not happen at the same time with probability one.
The strategy to prove that the definition yields something that is reasonable is based on
the observation (that has also to be proven) that in a small time interval ∆t a cell is only
influenced by the state of a finite number of cells close by. Thus, we find a certain form of
localization of the process; for a finite number of cells, we find again that two events are
separated by a positive time interval with probability one, and we are able to construct
the stochastic process in the usual way (see [17]).

(2) If |Γ| <∞, we find again that the process has to die out (the proof for the branching
process can be reformulated for the contact process). However, also this case is of interest,
since we will never find this extinction if the birth rate is high enough; we investigate this
case in the moment closure approximation.

(3) Even for this simple process, there are only few hard results. There are some processes
(e.g. voter model), where more is known - these processes can be related to peculation
theory and the discrete random walk (see [17]). However, the contact process itself is of
fundamental importance for many processes in biology, and therefore of special interest.

(4) The interesting questions are (like before) the probability of invasion (we place on an
empty grid one particle and ask weather this particle may spread), and the persistence of a
population (i.e. the existence of an invariant measure in the case that Γ is infinite resp. the
time to extinction if Γ is finite). Unfortunately, there are no theorems that answer these
questions completely; only partial answers are available. However, since even these partial
answers require quite deep arguments, we will only consider approximation techniques that
give in a heuristic way some hints about the behavior of the contact process.

5.5.2 Contact Process: Moment Closure Equations

Since there are (almost) no hard results, there is a large interest in approximation tech-
niques. We find in simulations that the number of occupied sites follows an (almost)
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Figure 64: Time course of a 2-dimensional contact process (µ = 0.5, β = 2.0). All sub-pictures
show the state of the system at certain times, the last picture shows the number of occupied
sites over time.

deterministic curve. Can we find an ordinary differential equation, describing (at least
some features) of this curve? Early, the mean field approximation has been developed. In
a certain sense, the mean field destroys all correlation; after every step (change of state),
the particles are randomly re-distributed over Γ. Thus, the population is well mixed,
and local correlations are destroyed. However, it is possible to derive an approximative
ordinary differential equation for the number/the density of particles.

Mid of the 90’s, one understood, that this technique can be generalized, and - in this way
- it is possible to take spatial correlations into account (up to a certain degree). There are
two approaches: the Japanese [63] and the European [37] approach. We present here (of
course?) the European approach. The Japanese approach is concentrated on conditional
probabilities (related to certain configurations), while the European approach focus on
counting configurations. I.e., we count the number of, say, triplets (three neighboring
cells) in the configuration “(0,1,1)”, and try to develop an ordinary differential equation
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for the expected value of the number of these configurations. In order to present the
results without technicalities, we concentrate on the one dimensional case. The higher
dimensional cases can be also approached in the same way; only some subtilities come in
in addition.

This section is divided in four parts: (1) we derive equations for the expected values of
the number of certain configurations; (2) we derive the mean field approximation; (3) we
derive the pair approximation; (4) based on the pair approximation, we show numerically
a threshold criterion that is different from that implied by the mean field approximation.

Counting Configurations
In order to do so, we need some definitions (basically, we follow [37]).

Definition 5.17: Let Gv,v′ be the incidence matrix for the Graph implied by (Γ, U(0)),
i.e.

G(v, v′) =

{
1 for v′ ∈ U(v) \ {v}
0 else

Then, define for one realization ω ∈ Ω and A,B,C ∈ E = {0, 1}

[A](t, ω) =
∑
v∈Γ

χ
ϕ

(ω)
t (v),A

[A,B](t, ω) =
∑

v1,v2∈Γ

χ
ϕ

(ω)
t (v1),A

χ
ϕ

(ω)
t (v2),B

G(v1, v2)

[A,B,C](t, ω) =
∑

v1,v2,v3∈Γ

v1 6=v2 6=v3 6=v1

χ
ϕ

(ω)
t (v1),A

χ
ϕ

(ω)
t (v2),B

χ
ϕ

(ω)
t (v3),C

G(v1, v2)G(v2, v3)

and the expectations

|[A]|(t) = E([A](t, .))

|[A,B]|(t) = E([A,B](t, .))

|[A,B,C]|(t) = E([A,B,C](t, .))

Let furthermore (A,B,C) denote a corresponding configuration in the state of the system
(in contrast to [A,B,C] or |[A,B,C]| that count the number of configurations).

Remark 5.18: (1) Note that due to symmetry, [A,B](t, ω) = [B,A](t, ω) and
[A,B,C](t, ω) = [C,B,A](t, ω). Furthermore, G(v, v) = 0, i.e. a node of Γ is not its
own neighbor. We will use this, when we sum G(., .) over Γ (see below).

(2) The number of configurations with symmetry is twice the number of configurations
without symmetry, because we do not take into account the sequence/orientation of cells
in the definition above. Consider the simple example in Fig. 65. We find for singletons

[0] = |{v1, v2}| = 2, [1] = |{v3, v4}| = 2.
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Figure 65: Example for counting of configurations.

and for pairs ( (vi, vj) denotes here the ordered pair of the nodes vi and vj)

[00] = |{(v1, v2), (v2, v1)}| = 2, [01] = |{(v1, v3), (v2, v3)}| = 2, [11] = |{(v3, v4), (v4, v3)}| = 2.

While the number of (0, 1)-pairs is exact, due to the symmetry we find that the pair
(v1, v2) (which is the only pair with (0, 0)) is counted twice. The same is the case for
the number of (1, 1)-pairs. Also in triplets, we find in general that [1, 0, 1] are twice the
number of triplets of this type that are actually there, while triplets without symmetry
(like (1, 1, 0)) are counted with the correct number.

(3) It is now possible to write down at once differential equations for |[A]|, |[A,B]| etc.
However, we will derive these equations for the one-dimensional case in a more formal
way, and only then interprete these equations s.t. we see how it is possible to derive the
equations directly.

For the following considerations, we assume that Γ is a one-dimensional torus, i.e. the
state is a finite sequence of zeros and one’s, and, moreover, the last site is a neighbor of
the first site. Let K = 2 = |U(0)| − 1. We first prove some statements about the relation
between the number of certain configurations.

Proposition 5.19: If d = 1, we find for any state that

[0] = ([0, 0] + [0, 1])/2 = [0, 0, 0]/2 + [0, 0, 1] + [1, 0, 1]/2,

[1] = ([0, 1] + [1, 1])/2 = [0, 1, 0]/2 + [0, 1, 1] + [1, 1, 1]/2,

[0, 0] = [0, 0, 0] + [1, 0, 0],

[0, 1] = [0, 0, 1] + [1, 0, 1],

[1, 1] = [0, 1, 1] + [1, 1, 1].

Note, that we suppressed the argument (t, ω) for [.], since these relations are purely
algebraic and hold for any configuration. They are not related to the construction of the
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stochastic process. We will suppress this argument also within the proof (i.e. write ϕ(v)

instead of ϕ
(ω)
t (v)).

Proof:
Step 1: Sum over G.
First, for any v1 ∈ Γ we find ∑

v2∈Γ

G(v1, v2) = K = 2

since this sum counts the numbers of neighbors of v1. Furthermore, if v3 ∈ U(v1) \ {v1},
we have ∑

v2∈Γ

v2 6=v3

G(v1, v2) = K − 1 = 1

since we again count the size of neighbors of v1, but exclude one specific neighbor (i.e.
v3).

Step 2: From pairs to singletons.
Let A ∈ E, then

[0, A] + [1, A] =
∑

v1,v2∈Γ

(
χϕ(v1),0 + χϕ(v1),1

)
χϕ(v2),A G(v1, v2)

=
∑
v1∈Γ

χϕ(v2),A

∑
v2∈Γ

G(v1, v2) =
∑
v1∈Γ

χϕ(v2),A K

= 2 [A].

Step 3: From triplets to pairs.
For every pair [A,B], A,B ∈ E, we obtain

[0, A,B] + [1, A,B] =
∑

v1,v2,v3∈Γ

v1 6=v2 6=v3 6=v1

(
χϕt(v1),0 + χϕt(v1),1

)
χϕ(v2),A χϕ(v3),B G(v1, v2)G(v2, v3)

=
∑

v1,v2,v3∈Γ

v1 6=v2 6=v3 6=v1

χϕ(v2),A χϕ(v3),B G(v1, v2)G(v2, v3)

=
∑

v2,v3∈Γ

v1 6=v2 6=v3 6=v1

χϕ(v2),A χϕ(v3),B G(v2, v3)
∑

v1∈Γ\{v3}
G(v1, v2)

=
∑

v2,v3∈Γ

v2 6=v3

χϕ(v2),A χϕ(v3),B G(v2, v3)(K − 1)

= [A,B].

Step 4: From triplets to singletons.

1

2
[0, A, 0] + [0, A, 1] +

1

2
[1, A, 1] =

1

2
({[0, A, 0] + [1, A, 0]}) +

1

2
({[0, A, 1] + [1, A, 1]})

=
1

2
([A, 0] + 2[A, 1]) = [A].
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2
Proposition 5.20: We find for the expected values of the number of pairs and singletons
in a certain configuration

d
dt
|[0]|=−|[0, 0, 1]| β

K
−1

2
|[1, 0, 1]|2β

K
+1

2
|[0, 1, 0]|µ +|[0, 1, 1]|µ +1

2
|[1, 1, 1]|µ

d
dt
|[1]|= |[0, 0, 1]| β

K
+1

2
|[1, 0, 1]|2β

K
−1

2
|[0, 1, 0]|µ −|[0, 1, 1]|µ −1

2
|[1, 1, 1]|µ

d
dt

1
2
|[0, 0]|=−|[0, 0, 1]| β

K
+0 +2 1

2
|[0, 1, 0]|µ +|[0, 1, 1]|µ +0

d
dt
|[0, 1]|= 0 −2 1

2
|[1, 0, 1]|2β

K
−2 1

2
|[0, 1, 0]|µ +0 +21

2
|[1, 1, 1]|µ

d
dt

1
2
|[1, 1]|= |[0, 0, 1]| β

K
+2 1

2
|[1, 0, 1]|2β

K
+0 −|[0, 1, 1]|µ −21

2
|[1, 1, 1]|µ

Proof: In order to derive these ordinary differential equations, we have to derive the
probability for any event in a time interval ∆t to occur (up to higher order). An event
implies that the state of exactly one site is changed, either from “1” to “0” or vice
versa. However, it is not enough to consider the site itself, but we have to keep track
of configurations, i.e. we have to consider the whole neighborhood and to investigate the
effect of this event (defined by the change of state in a certain neighborhood) on the vector

([0], [1], [0, 0]/2, [0, 1], [1, 1]/2)T .

Accordingly, we find five possible events: Death switches a “1” to “0”; this can happen
in three neighborhoods,

(0, 1, 0)→ (0, 0, 0), (0, 1, 1)→ (0, 0, 1), (1, 1, 1)→ (1, 0, 1).

Birth toggles a “0” to “1”; here, only two neighborhoods are possible

(0, 0, 1)→ (0, 1, 1), (1, 0, 1)→ (1, 1, 1),

since we need at least one “1” in the neighborhood and thus (0, 0, 0) → (0, 1, 0) is not
possible. We discuss the birth event (0, 0, 1) → (0, 1, 1) in detail. The considerations of
the other events parallel the arguments used here.

Probability for (0, 0, 0)→ (0, 1, 0):

P ((0, 0, 1)→ (0, 1, 1)) = [0, 0, 1]β/K∆t+ O(∆t).

The probability for this event to occur in a (small) time interval ∆t is the number of
the configurations (0, 0, 1) multiplied by the birth rate β, divided by the number of sites
neighboring the central site in the triplet (1/K is the probability that the child of the
particle in the triplet (0, 0, 1) is placed in the central site of this configuration) and mul-
tiplied by the length of the time interval. All following probabilities are derived in this
way; one only has to take into account for birth the number of particles surrounding the
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central (empty) site, and also the symmetry ([A,B,A] has to be divided by two in order
to obtain the actual number of triplets in the configuration (A,B,A)).

Effect of (0, 0, 0)→ (0, 1, 0):

([0], [1], [0, 0]/2, [0, 1], [1, 1]/2)T 7→ ([0]− 1, [1] + 1, [0, 0]/2− 1, [0, 1], [1, 1]/2 + 1)T

i.e. one “0” vanishes and becomes a “1” (([0], [1]) 7→ ([0]− 1, [1] + 1)). If we compare the
configurations (0, 0, 1) and (0, 1, 1), we find that (0, 0, 1) consists of one pair (0, 0) and
one pair (0, 1), while (0, 1, 1) consists of one pair (0, 1) and one pair (1, 1). Thus, one pair
(0, 0) is destroyed and one pair (1, 1) created; the number of (0, 1)-pairs is not changed,

([0, 0]/2, [0, 1], [1, 1]/2)T 7→ ([0, 0]/2− 1, [0, 1], [1, 1]/2 + 1)T

Again, the considerations are the same for all other events. We find

Birth (a) Birth (b) Death (a) Death (b) Death (c)event
(0,0,1)→(0,1,1) (1,0,1)→(1,1,1) (0,1,0)→(0,0,0) (0,1,1)→(0,0,1) (1,1,1)→(1,0,1)

Probabilities
(up to
higher or-
der terms)

[0, 0, 1] βK∆t 1
2 [1, 0, 1]2β

K ∆t 1
2 [0, 1, 0]µ∆t [0, 1, 1]µ∆t 1

2 [1, 1, 1]µ∆t

Effect on
[0] -1 -1 +1 +1 +1
[1] +1 +1 -1 -1 -1

1
2 [0, 0] -1 0 +2 +1 0
[0, 1] 0 -2 -2 0 +2
1
2 [1, 1] +1 +2 0 -1 -2

From that table, we are able to derive at once the ordinary differential equations.
2

Proposition 5.21: We find for the expectations of the number of pairs and singletons
in a certain configuration

d

dt
|[0]| = −(β/K)|[01]|+ µ|[1]|

d

dt
|[1]| = +(β/K)|[01]| − µ|[1]|

d

dt

(
1

2
|[0, 0]|

)
= −(β/K)|[0, 0, 1]|+ µ|[0, 1]|

d

dt
|[0, 1]| = (β/K) {|[0, 0, 1]| − |[1, 0, 1]| − |[0, 1]|} − µ|[0, 1]|+ 2µ

(
1

2
|[1, 1]|

)
d

dt

(
1

2
|[1, 1]|

)
= (β/K) {|[1, 0, 1]|+ |[0, 1]|} − 2µ

(
1

2
|[1, 1]|

)
.
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Proof: We apply the rules from Proposition 5.19 to the differential equation of the last
proposition and find e.g. for the first equation

d

dt
|[0]| = −(|[0, 0, 1]|+|[1, 0, 1]|) β

K
+(

1

2
|[0, 1, 0]|+|[0, 1, 1]|+1

2
|[1, 1, 1]|)µ = −|[0, 1]| β

K
+µ|[1]|.

The other differential equations follow in a similar way.
2

Birth (from outside) |[(0,0),1]|  β/  K

Death, |[0,1]| µ

Birth (from inside)
|[0,1]| β/ K

|[1,(0,1)]|  β/  KBirth (from outside)

|[0]| |[1]|

µDeath, |[1]|

Birth (from outside) |[(0),1]| β/K

Death,       |[1,1]|/22µ

|[0,1]||[0,0]|/2 |[1,1]|/2

Figure 66: Dynamics of singletons and pairs as compartmental model.

Remark 5.22: The derivation of the ordinary differential equation has been quite tedious;
moreover, obviously there is no unique representation of this differential equation, but
one can derive also other forms (using the relations from proposition 5.19). However,
one may interprete the form derived in the proposition above quite easily (and, following
this interpretation, derive the corresponding differential equations also for more complex
cases). We interprete the singletons and pairs as compartments. All we have to do is to
specify the rates for transitions between these compartments (see Fig. 66). Consider the
equation for [[0]]. There are two terms. The mortality term µ[1] is easily to interprete:
a particle dies, and a “1” becomes a “0”, with rate µ. The other term is concerned
with birth. We consider a configuration “(0)”. Birth can only take place, if a particle
outside of this configuration places its offspring in this site. Hence, we find the event
“birth from outside the configuration (0)”, which takes place at the rate [01]β/K, since
the configurations (01) describe exactly the configuration in which on individual (1) is
able to place offspring in an empty site (0).
The same argumentation can be used for pairs: death is always simple to introduce, since
no particle from outside of the configuration takes part in this event. Only in birth,
one has to be aware that a particle outside of the configuration may place a child in an
empty side of the configuration under consideration. These ideas yield immediately the
transition graph in Fig. 66); the straight forward translation of this transition graph into
differential equations yield the desired result.
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Remark 5.23: (1) These equations for the expected values of singletons and doubles are
exact. However, these equations do not help too much, since they are not closed (in the
equation for singletons, the pair appear, and in the equations for pairs, also triplets show
up). In order to derive differential equations we can work with, we have artificially to
close these equations, i.e. (for the first order approximation that only takes into account
the singletons) to express the number of pairs in terms of the singletons, and for the
second order approximation (using singletons and pairs) to rewrite triples in terms of
pairs and singletons. In this way we obtain the mean field approximation (first order)
and the pair approximation (second order). Of course, it is possible to take into account
larger and larger configurations, and derive equations for triplets, configurations with
four, five,.. neighbors. If one approaches the size of the whole grid, one obtains a linear
set of ordinary differential equations governing exactly the behavior of the system. This is
nothing else but to derive the Perron-operator for this stochastic system (as we did in the
example for the common cold Section 3.3.3), the state space is blown up until we derive
a linear model. However, these equation do not help too much since they are quite high
dimensional and do not provide insight. Thus the way how to deal with this structure
is to close the moment equation at one point artificially, and - in this way - to obtain
approximative equations.

(2) This foregoing is similar to the laws of Fick: The first law of Fick, that relates the
zeroth moment (the density of mass) to the first moment of the velocity (the flux), is
exact. However, in order to close the equation, the first moment (the flux) has to be
related again to the zero moment (the density). This is the second law of Fick. Here, a
certain ambiguity comes in; this law may be chosen in several ways.

First order dynamics: mean field equation

It is only possible to derive the equation for the moment closure in an heuristic way. The
basic idea is to break the correlations on the corresponding level of the equation. Hence,
in the mean field equation, no correlation at all is assumed to be there. There are different
ways/models to derive the approximative equation [37]. We present here the most simple
model.

We aim to know |[0, 1]|, but we only know |[1]| (and thus also |[0]|). If we assume, that
Γ is large, and that there is no correlation between “0” and “1” (the last assumption
is definitely wrong), we find that a cell has the probability |[1]|/|Γ| to be in state “1”.
Assume that a site has state “0”. This site has K neighbors, each of them with probability
|[1]|/|Γ| in state “1”. Hence, the average number of pairs (0, 1) formed by one site with
state “0” is K|[1]|/|Γ|, i.e. the expected number of pairs in the state (0, 1) is

|[0, 1]| ≈ K |[0]| |[1]|
|Γ|

.

Using this idea – and |[0]| = |Γ| − |[1]|– we find the following mean field approximation.
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Definition 5.24: Let

d

dt
|[0]|(1)(t) = −β|[0]|(1)

|[1]|(1)(t)

|Γ|
+ µ|[1]|(1)(t)

d

dt
|[1]|(1)(t) = β|[0]|(1)

|[1]|(1)(t)

|Γ|
− µ|[1]|(1)(t)

This equation is called the mean field equation for the contact process.

Remark 5.25: (1) We attach a one to |[.]| in order to emphasize that this equation is
(at least in some sense) the first order approximative equation for |[.]|.
(2) In the derivation, we assume a binomial distribution for the number of “1”-neighbors
of a “0”-site. Indeed, it is a multinomial distribution, since we have information about
the total number of “0” and “1”. For large grids, however, this does not play a role.
(3) These equations yield

d

dt
(|[0]|(1)(t) + |[1]|(1)(t)) = 0,

i.e. the ordinary differential equations respects the conservation law |[0]| + |[1]| = |Γ|.
Hence, we may write

d

dt
|[1]|(1)(t) =

β

|Γ|
(|Γ| − |[1]|(1))|[1]|(1)(t)− µ|[1]|(1)(t),

i.e. we find in this case (again) the logistic equation. We already know the behavior of
this equation. Especially, we find that the population may spread, if

β > µ.

Unfortunately, especially for small dimensions (d = 1, 2), this threshold condition is much
too optimistic. The simulations show, that the population is likely to go extinct for β
much larger than µ (by the way: if Γ is finite, we know that the population goes extinct
anyway. For Γ and β large enough, though, we expect the population to persist for a
long time. And this long-time-persistence can be observed only for β much larger than
µ). Partially, the correlations that lead to this threshold can be captured by the pair
approximation.

Second order dynamics: pair approximation
With the same ideas in mind, we close the equation for the second moments, the pairs.
In this case, we wish to derive the number of triplets of a certain configuration, if we
only know the number of pairs (and thus, also the number of singletons). The idea is the
same like in the mean filed approximation: Since we only know the pairs (i.e. correlations
between neighbors), we only take these correlations into account and break all other
correlations. One may think of this process as follows: We count the number of particles
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(i.e. the number of “1”) and pairs. Then, we “clear” all states and randomly redistribute
the particles over the sites again. This step is repeated, until the number of pairs is
exactly that from before. In this way, we keep the correlations over two sites (pairs) but
completely destroy correlations over three sites (triplets). Thus, we are able to compute
the number of triplets from the number of pairs. We assume that Γ is large. Then, the
number of configurations (0, 0, 1) can be written as the number of pairs (0, 0) times the
probability to find a “1” next to a “0”, i.e. times the number of pairs [0, 1] divided by the
number of zeros, [0]. Hence,

[0, 0, 1] ≈ ([0, 0]/2)
[0, 1]

[0]
.

We need the actual number of pairs of type (0, 0); thus we divide [0, 0] by two. We also
could ask for the number of pairs (1, 0) multiplied by the probability to find a “0” next to
a “0”: this computation also yields [0, 1] [0, 0]/[0]. The procedure is symmetrically. Also
the number of triplets of type (1, 0, 1) can be found in this way,

[1, 0, 1]/2 ≈ [0, 1]2

[0]
.

Please note, that due to the symmetry [1, 0, 1] is twice the number of triplets of this type;
thus, we have to divide [1, 0, 1] by two. If we close the equations with these terms, we
find the pair approximation.
Definition 5.26: The (classical) pair approximation of the contact process is defined as

d

dt
|[0]|(2) = − β

K
|[01]|(2) + µ|[1]|(2)

d

dt
|[1]|(2) = +

β

K
|[01]|(2) − µ|[1]|(2)

d

dt

(
1

2
|[0, 0]|(2)

)
= − β

K

|[0, 1]|(2)|[0, 0]|(2)

|[0]|(2)

+ µ|[0, 1]|(2)

d

dt
|[0, 1]|(2) =

β

K

{
|[0, 0]|(2)|[0, 1]|(2)

|[0]|(2)

−
(|[0, 1]|(2))

2

|[0]|(2)

− |[0, 1]|(2)

}

−µ|[0, 1]|(2) + 2µ
(

1

2
|[1, 1]|(2)

)
d

dt

(
1

2
|[1, 1]|(2)

)
=

β

K

{
(|[0, 1]|(2))

2

|[0]|(2)

+ |[0, 1]|(2)

}
− 2µ

(
1

2
|[1, 1]|(2)

)
.

Remark 5.27: The nice aspect of this pair approximation (that is “the” pair approx-
imation that can be found in literature) is the fact that the full system one starts with
(Proposition 5.21) can be interpreted in terms of a compartmental system. The draw-
back is the fact, that only two of the three conservation laws is valid in the approximative
equations; we find

d

dt
([0] + [1]) = 0,

d

dt

(
1

2
[0, 0] + [0, 1] +

1

2
[1, 1]

)
= 0
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but we do not find that in general the expressions

d

dt
([0]− ([0, 0] + [0, 1])/2) ,

d

dt
([1]− ([1, 1] + [0, 1])/2) ,

vanish. However, these two conditions reduce the five equations to three differential
equations. We now propose an alternative pair approximation, starting directly from
Proposition 5.21. The connection between pairs and triplets is the same like above, i.e.

[0, 0, 1] ≈ ([0, 0]/2)
[0, 1]

[0]
, [1, 0, 1]/2 ≈ [0, 1]2

[0]
, · · ·

Definition 5.28: The alternative pair approximation of the contact process is defined as

d

dt
|[0]|(2) = −

|[0, 0]|(2)/2 |[0, 1]|(2)

|[0]|(2)

β

K
− 1

2

(|[0, 1]|(2))
2

|[0]|(2)

2β

K
+

1

2

(|[0, 1]|(2))
2

|[1]|(2)

µ

+
|[0, 1]|(2)|[1, 1]|(2)/2

|[1]|(2)

µ+
1

2

(|[1, 1]|(2)/2)2

|[1]|(2)

µ

d

dt
|[1]|(2) =

|[0, 0]|(2)/2|[0, 1]|(2)

|[0]|(2)

β

K
+

1

2

(|[0, 1]|(2))
2

|[0]|(2)

2β

K

−1

2

(|[0, 1]|(2))
2

|[1]|(2)

µ− 1

2

(|[1, 1]|(2)/2)2

|[1]|(2)

µ

d

dt
|[0, 0]|(2) = −

|[0, 0]|(2)/2|[0, 1]|(2)

|[0]|(2)

β

K
+ 2

1

2

(|[0, 1]|(2))
2

|[1]|(2)

µ+
|[0, 1]|(2)|[1, 1]|(2)/2

|[1]|(2)

µ

d

dt
|[0, 1]|(2) = −2

1

2

(|[0, 1]|(2))
2

|[0]|(2)

2β

K
− 2

1

2

(|[0, 1]|(2))
2

|[1]|(2)

µ+ 2
1

2

(|[1, 1]|(2))
2

|[1]|(2)

µ

d

dt
|[1, 1]|(2) =

|[0, 0]|(2)/2 |[0, 1]|(2)

|[0]|(2)

β

K
+ 2

1

2

(|[0, 1]|(2))
2

|[0]|(2)

2β

K

−
|[0, 1]|(2)|[1, 1]|(2)/2

|[1]|(2)

µ− 2
1

2

(|[1, 1]|(2))
2

|[1]|(2)

µ

Remark 5.29: (1) We find

d

dt

(
|[0]|(2) + |[1]|(2)

)
= 0,

d

dt

(
1

2
|[0, 0]|(2) + |[0, 1]|(2) +

1

2
|[1, 1]|(2)

)
= 0,

d

dt

(
|[0]|(2) − (|[0, 0]|(2) + |[0, 1]|(2))/2

)
= 0

and from these equations it is possible to conclude that also

d

dt

(
|[1]|(2) − (|[1, 1]|(2) + |[0, 1]|(2))/2

)
= 0.
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Hence, we have three invariant expressions. Using these expressions, we may reduce the
five differential equations to two equations. We find

|[0]|(2) = (|[0, 0]|(2) + |[0, 1]|(2))/2,

|[1]|(2) = |Γ| − (|[0, 0]|(2) + |[0, 1]|(2))/2,

|[1, 1]|(2) = 2 |Γ| − |[0, 0]|(2) − 2|[0, 1]|(2),

and the dynamics of (|[0, 0]|(2)/2, |[0, 1]|(2)) is governed by

d

dt

(
1

2
|[0, 0]|(2)

)
= −

(|[0, 0]|(2)/2)|[0, 1]|(2)

|[0, 0]|(2)/2 + |[0, 1]|(2)/2

β

K
+ 2

(|[0, 1]|(2))
2

|Γ| − (|[0, 0]|(2) + |[0, 1]|(2))/2
µ

+
|[0, 1]|(2)(|Γ| − |[0, 0]|(2)/2− |[0, 1]|(2))

|Γ| − (|[0, 0]|(2) + |[0, 1]|(2))/2
µ

d

dt

(
1

2
|[0, 0]|(2)

)
= −4

(|[0, 1]|(2))
2

|[0, 0]|(2)/2 + |[0, 1]|(2)/2

β

K
−

(|[0, 1]|(2))
2

|Γ| − (|[0, 0]|(2) + |[0, 1]|(2))/2
2µ

+2
(|Γ| − |[0, 0]|(2)/2− |[0, 1]|(2))

2

|Γ| − (|[0, 0]|(2) + |[0, 1]|(2))/2
µ.

(2) The mean field is the deterministic counterpart of a stochastic process that mixes all
particles are randomly distributed in space after each event. The classical pair approxima-
tion does not have such an interpretation. The alternative pair approximation, however,
does have again an interpretation of this type: here, after each event, the particles are
randomly redistributed in such a way that the number of pairs of the three types (00),
(0, 1) and (1, 1) are conserved.

(3) In Fig. 67 the dynamics of realizations of the contact process together with mean
field and the two pair approximations are shown (the offset in time is chosen in such a
way, that all four processes cross at the same time (In case of the stochastic process, for
the first time) the point of 50 occupied sites. We find, that the pair approximations seem
to agree better with the stationary distributions of occupied sites of the contact process
than the mean field approximation; furthermore, the alternative pair approximation seems
quite well describe the dynamics, if more than 20 sites are occupied; below this number,
the growth of the alternative pair approximation is much too slow. The (classical) pair
approximation does not meet the timing at all. Under this aspect, the alternative pair
approximation seems to be superior to the classical approximation.

Threshold condition, revised
We now investigate the stationary solutions of the alternative pair approximation. We
expect a new threshold condition, that is closer to the (numerically) observed threshold
conditions. It is tedious but straight forward to compute the stationary points of the dif-
ferent approximations. The result is shown in Fig. 68. We find that the critical threshold
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Figure 67: Dynamics of a realization of the contact process, together with the mean field
approximation and the two pair approximations (β = 2, µ = 0.5, |Γ| = 100). The curves are
shifted in time s.t. all curves cross the value 50 at the same time.

for beta that is necessary for the process to survive is not met by the mean field. The
two pair approximations are closer to this value, but also do not meet the threshold ex-
actly - the classical pair approximation underestimates and the alternative overestimates
the critical value for β. Please note the jump in the curve for the stationary solution of
the alternative pair approximation; instead of a transcritical bifurcation, we find here a
saddle-node bifurcation.

5.5.3 Contact Process: Rapid Stirring Limit

A second approximation to the contact process introduces movement of the particles.
Under appropriate (the parabolic) scaling, it is possible to obtain a partial differential
equation, the Fisher equation.

Definition 5.30: Let ε > 0. The contact process with rapid stirring is defined as the
contact process with birth rate β/ε and death rate µ/ε with an additional process that
exchange two states: Let for x ∈ U(y)

P (ϕt+∆t(x) = i, ϕt+∆t(y) = j |ϕt(x) = j, ϕt(y) = i) = ∆t/ε2 + O(∆t).
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Figure 68: Stationary solutions of the three approximations (mean field: black, solid, classical
pair approximation: blue, solid, alternative pair approximation: blue,dashed) and simulated
stationary distribution of the contact process (N = 100, µ = 0.5) with standard deviation (blue
bars with whiskers).

For the scaled density u(εt, εx) = P (ϕt(x) = 1), we are able to derive the Fisher equation.

Theorem 5.31: Let u(εt, εx) = P (ϕt(x) = 1) and v(t, y) = limε→0 u(t, y). Then, under
suitable conditions for ϕ0(x), we find

vt = ∆v + βv(1− v)− µv.

The proof is quite non-trivial. It can be found in [18]. However, this theorem is the
stochastic justification for the large interest in the Fisher equation.

Remark 5.32: (1) The rapid stirring limit is basically a combination of the heat equation
(consequence of the parabolic scaling) and the mean field approximation (consequence of
the rapid stirring, that breaks all short range correlations - exactly, what we need to get
the mean field).

(2) The pair approximation aims at local correlations (the pairs) but completely neglects
long range correlation (the long range spatial structure). Thus, we find a ordinary dif-
ferential equation for the pair approximation. The rapid stirring limit does the opposite
thing: here, we destroy all local correlations by the stirring, but keep the long range
correlations. Hence, we obtain a partial differential equation.
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5.5.4 Fisher Equation

The Fisher equation [20] has been introduces simultaneously by Fisher and Kolmogoroff,
Petrovsky and Piscunoff. Thus, this equation is often also called the KPP equation.
Originally, Fisher has been interested in the spread of a gene in an environment. However,
we have seen that the much broader background can be found in the contact process
together with the rapid stirring limit. A rescalation of the PDE in Theorem 5.31 yields
the common form of Fisher’s equation,

ut = ∆u+ u(1− u).

x

u(x,t)

1

Figure 69: Spread of a small, local perturbation.

The most interesting question is the long-term behavior of this equation. Numerical
simulations give a hint that a local, small perturbation of the trivial solution u = 0 will
grow and then spread over the whole region. Consider the partial differential equation in
one dimension. We expect that the population will spread asymptotically with a constant
speed (Fig. 69). We show that such traveling fronts do exist.

Theorem 5.33: For the Fisher’s equation, there is for each c ≥ 2 a unique positive
solution of the form u(x, t) = ϕ(x− c t) with

lim
x→−∞

u(x, t) = 1, lim
x→−∞

u′(x, t) = 0

and
lim

x→+∞
u(x, t) = 0, lim

x→+∞
u′(x, t) = 0

For c < 2, there is no solution of this form.
Proof: Step 1: Write the equation of the traveling font as an ODE
Let η(ξ) = ϕ′(ξ). Using the ansatz u(x, t) = ϕ(x− ct), we find

−cϕ′(x− ct) = ϕ′′(x− ct) + ϕ(x− ct)(1− ϕ(x− ct))

and thus

ϕ′(ξ) = η(ξ)

η′(ξ) = −cη(ξ)− ϕ(ξ)(1− ϕ(ξ)).
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We look for a solution with

ϕ(ξ) ≥ 0, lim
ξ→∞

(ϕ(ξ), η(ξ)) = (0, 0) and lim
ξ→−∞

(ϕ(ξ), η(ξ)) = (1, 0).

Step 2: Stationary points and local dynamics
We find immediately the stationary points (ϕ, η) = (0, 0) and (ϕ, η) = (1, 0). The asymp-
totic behavior of ((ϕ(ξ), η(ξ) for ξ → ±∞) corresponds to these stationary points. This
fact enables us to identify running fronts with heteroclinic orbits (orbits connecting dif-
ferent stationary points). The local stability/dynamics of these stationary points is given
by the eigenvalues of the linearization.
• Stationary point (ϕ, η) = (1, 0):
The Jacobian reads

J =

(
0 1
1 −c

)

with eigenvalues λ± = (−c±
√
c2 + 4)/2; i.e., λ+ > 0 > λ−. This point is always a saddle.

• Stationary point (ϕ, η) = (0, 0):
Here, the Jacobian reads

J =

(
0 1
−1 −c

)

with eigenvalues λ± = (−c±
√
c2 − 4)/2; we find imaginary eigenvalues for c < 2. Thus,

the solution will spiral around zero for c < 2 and does not allow for a positive ϕ-component
with limξ→∞(ϕ(ξ), η(ξ)) = (0, 0). Hence, we need c ≥ 2 (this is already one claim of the
theorem). For c > 2, this stationary point becomes a stable node.

Step 3: Phase Plane Analysis
We now show that the heteroclinic orbit exists, indeed. We construct an invariant region;
every trajectory within this region will tend to the stationary point (0, 0), especially one
unstable manifold of (1, 0).
Let ε > 0, small, and

Ωε = {(ϕ, η) | 0 ≤ ϕ ≤ 1− ε, 0 > η > −ϕ}.

We show that Ωε is invariant. Therefore, we do have to show that the flow points inward
on the boundary of Ωε except on (0, 0) ∈ ∂Ωε, since (0, 0) is a stationary point. On ∂Ωε,
we find for η = 0 that η′ = −ϕ(1 − ϕ) < 0 (if 0 < ϕ ≤ 1 − ε); for ϕ = 1 − ε, we have
ϕ′ = η < 0. The only part of the boundary that is more complicated is the line η = −ϕ.
The outer normal vector on this line is (−1,−1)T and thus the scalar product of normal
vector with vector field reads

<

(
−1
−1

)
,

(
η

−cη − ϕ(1− ϕ)

)
> = <

(
−1
−1

)
,

(
−ϕ

cϕ− ϕ(1− ϕ)

)
>

= −ϕ (c− (2− ϕ)) < 0

for c ≤ 2 since 0 < ϕ < 1. Since in int(Ωε) we have ϕ′ < 0, all trajectories have to move to
the stationary point (0, 0). The proof is completed by the fact that one unstable manifold



5.6 Exercises 151

n = (−1,−1)T

Ω

ϕ

η

1

ε

Figure 70: The invariant region Ω.

of (1, 0) points inward to Ωε, if ε→ 0.
2

Remark 5.34: It is possible to show, that all bounded, positive perturbation of the
trivial solution approach the front with c = 0. In this sense, this front is stable. All
other fronts are only stable within certain function spaces (the asymptotic decline of the
perturbation has to be appropriate).

5.6 Exercises

Exercise 5.1:

The Ricker model has been developed especially for insect populations. The state xn
denotes the population size in autumn (year n). The population will reproduce almost
linearly during the year (we find then a population of αxn) and only compete for resources
at the end of the year. The result of this competition is modeled by an exponential
decrease,

xn+1 = αxne
−βxn =: g(xn;α, β).

(a) Find a transformation yn = f(xn;α, β) s.t. the dynamics of the transformed variable
yn does only depend on one parameter r, yn+1 = g̃(yn; r). Find the stationary points, i.e.
solutions of the fixed point equation y = g̃(y).

(b) Compute the spectrum (i.e. in the present case the derivative) of the linearization
near the stationary points. Where does the stability of the stationary solutions changes?
What happens?

Exercise 5.2:

Consider a time-discrete stochastic version of the logistic equation: Let Xn denote the
number of individuals in time step n. The number of children of one individual is assumed
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to be distributed according to

No. of children |Xn = k ∼ Geom(q(k))

with q(k) = q0e
−αk/N . Let Ci(k) be i.i.d. random variables distributed according to this

geometric distribution, and

Xn+1 =
Xn∑
i=1

Ci(Xn)

be the population size in the time step n+ 1.
(a) Define a “linearized” stochastic process for N →∞.
(b) Prove an approximation theorem.

Exercise 5.3:
Consider the time-continuous stochastic logistic process,

P (Xt+∆t = Xt+1) = β Xt (1−Xt/N)∆t+o(∆t), P (Xt+∆t = Xt−1) = µXt∆t+o(∆t).

Show that the population eventually goes extinct with probability one:
(a) Prove that there is ε > 0 s.t.

P (Xt+∆t = 0|Xt = k) ≥ ε

for k ≤ N .
(b) Define pn = P (Xn∆t = 0). Find a recursive equation for a lower bound of pn using
part (a).
(c) Show that limn→∞ pn = 1.

Exercise 5.4:
Consider a finite, one-dimensional lattice, closed to a torus (i.e. ZZ/ZZn). The states in
each cell are allowed to be an element of a finite set E. The neighborhood of a cell consists
of the two next neighbors. Let A ∈ E. Express the number of sites in state A by the
number of all pairs of any kind,

[A] = F ([A,X], X ∈ E).

Exercise 5.5:
Consider a finite, one-dimensional lattice, closed to a torus (i.e. Tn = ZZ/ZZn). The states
in each cell are allowed to be an element of the set E = {0, 1}. The neighborhood of the
site 0 is only the cell itself and the next cell to the right,

U(0) = {0, 1}

and, like usual, U(x) = x + U(0) in ZZ/ZZn. Please show, that (though the neighborhood
is not symmetric and hence the incidence matrix is not symmetric) still

[0, 1] = [1, 0]
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and that [0, 0] is the true number of pairs with (ϕ(x), ϕ(x + 1)) = (0, 0) (recall that for
the symmetric neighborhood, [0, 0] is just twice the number of these pairs!).

Exercise 5.6:
Consider the contact process on the lattice defined in the last exercise (with non-symmetric
neighborhood). Find the mean field approximation.

Exercise 5.7:
Consider the logistic equation with delay,

d

dt
u(t) = ru(t)(1− u(t− τ)).

i.e. the feedback depends on the population size τ time units ago rather than on the
population size at time t.
(a) u = 1 is a stationary solution of this equation. Linearize the equation using the ansatz
u(t) = 1 + n(t), and eliminating all nonlinear terms.
(b) Compute a formula for the eigenvalues of the resulting linear equation, i.e. use the
ansatz

n(t) = n0e
λt

and derive an equation for λ.
(c) Show that there is a delay τ > 0, s.t. we find λ with <(λ) = 0.
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6 Population Dynamics and Ecology

Population dynamics is “the” classical field of biomathematics. Many results are common
knowledge by now; the effort needed to understand the structures is not visible any more.
Population dynamics (where one associates first of all fox and rabbits) is a prototype to
study the interaction of individuals. The ideas developed here can then be translated to
quite different fields, from molecular dynamics and immunology to the description of the
spread of a disease among humans. Also in (statistical) physics, interacting particles is a
well investigated field, and quite a number of tools have been developed there. However, in
physical systems there are often symmetries and conservation laws (mass, energy, impulse
etc.) which help to understand the behavior. This is in general not the case in biological
application. Hence, often enough the tools developed in physics cannot be taken over in
a trivial way but have to be adapted.

6.1 Competitive Exclusion

The logistic equation describes competition within one species. We are now interested
in the case of two species which compete, i.e. we are interested in competition between
species. The basic question here will be if two species that compete for resources may
persist, or if one species will crush the other.

Modeling competition between species
State: x(t) population density of species one, y(t) population density of species two.

Dynamics: We consider the ordinary differential equations

ẋ =

logistic part︷ ︸︸ ︷
β1y − µ1(1 + ζ1x +

interaction︷︸︸︷
ζ2y)

ẏ = β2y − µ2(1 + ζ4y︸ ︷︷ ︸
logistic part

+ ζ3x)︸ ︷︷ ︸
interaction

We rescale the system. Choose

u1 =
ζ1

β1 − µ1

x, u2 =
ζ4

β2 − µ2

y, τ = (β1 − µ1)t

and define

ρ =
β2 − µ2

β1 − µ1

, a12 =
ζ2

β1 − µ1

(β2 − µ2), a21 =
ζ3

β2 − µ2

(β1 − µ1),

then

u̇1 = u1(1− u1 − a12u2)

u̇2 = ρu2(1− u2 − a21u1).
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Analytic Tools
The system above is a planar system (i.e. a system in the plane). Much is known about
such systems (though a lot more is not known). We need two theorems that are concerned
with the asymptotic behavior: the negative criterion of Bendixon-Dulac and the theorem
of Poincaré-Bendixon. While we sketch the proof of the first theorem, we only state the
second theorem.

Theorem 6.1: (Poincaré-Bendixon) Consider a trajectory x(t) ∈ IR2 of the ordinary
differential equation ẋ = f(x), f smooth. If x(t) is bounded, then asymptotically x(t)
tends to one of the three objects:
• a stationary point
• a periodic orbit
• a homoclinic orbit or heteroclinic cycle.

A homoclinic orbit is an orbit that tends for t→ ±∞ to the same stationary point, while
a heteroclinic orbit tends to different stationary points. A heteroclinic cycle is a closed
chain of heteroclinic orbits. I.e., a homoclinic orbit resp. chain of heteroclinic orbits may
be interpreted as a generalization of a periodic orbit: we allow for stationary points on
this periodic orbit. This theorem can be found e.. in the book of Guggenheimer and
Holmes [27].

Theorem 6.2: (Negative Criterion of Bendixon-Dulac) Consider ẋ = f(x), x ∈ IR2. If
there is a scalar function g(x) ∈ C1(IR2, IR), that never vanishes, g(x) 6= 0, and if

div(g(x)f(x)) < 0 ∀x ∈ Ω

then there is no periodic orbit completely contained in Ω.

Proof: Rescaling of time yields the equivalent ordinary differential equation

ẏ = g(y)f(y).

If ẋ = f(x) has a period orbit Γ, than also ẏ = g(y)f(y) (we only rescaled time, i.e. the
only thing that changes is the velocity of a trajectory; the trajectory as a set of points is
not changed).

Assume that there is a periodic orbit Γ ⊂ Ω. Γ bounds a smaller region Ω̂ ⊂ Ω. Let
the outer normal of Ω̂ be n. Since the vector field f(x) is tangential to an trajectory
(nothing else is the meaning of the ODE ẋ = f(x)) and ∂Ω̂ is a trajectory, we find that
n(x) ⊥ f(x) for x ∈ ∂Ω̂. Thus, with the divergence theorem we find

0 =
∮
∂Ω̂
g(y)f(y)n(y) dσ =

∫
Ω̂

div(g(y)f(y)) dσ < 0.

This is a contradiction, and therefore no periodic orbit is completely contained in Ω.
2

Remark 6.3: With the same argument, we are able to rule out homoclinic orbits and
heteroclinic cycles. Basically, the first theorem tells us that only stationary points or
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periodic behavior is the asymptotics of a bounded, planar trajectory; the second theorem
shows us how to rule out periodic behavior, s.t. only a stationary point can be the limiting
object of a trajectory.

Analysis of the Model
There are no periodic orbits: Scale the system with 1/(u1u2), and then compute the
divergence:(

1

u1u2

u1(1− u1 − a12u2)
)
u1

+
(

1

u1u2

ρu2(1− u2 − a21u1)
)
u2

= − 1

u1

− ρ

u2

< 0.

Stationary points: The stationary points are

{(0, 0), (1, 0), (0, 1),
(

1− a12

1− a12a21

,
1− a21

1− a12a21

)
}.

Thus, there may be a stationary point, where booth species persist (if the parameter
values are chosen in such a way that booth components are positive). The next question
will be, under which condition this point is (locally) stable. In order to investigate this
phenomenon, we use a (rather heuristic) method and consider the isoclines.

Definition 6.4: An isocline are points in the phase plane for which either u̇1 = 0 (the
u1-isocline) or u̇2 = 0 (the u2-isocline).

The intersections of an u1-and an u2-isocline are stationary points. In our case, the
isoclines are the lines (u1-isoclines:) u1 = 0, 1−u1− a12u2 = 0 and (u2-isoclines:) u2 = 0,
1− u2 − a21u1 = 0 . Thus, the u1 and u2-axis and two straight lines are the isoclines.

We distinguish four cases (see Fig. 71):
(a) 1 < 1/a12, 1 < 1/a21

The isoclines bound regions, where a quadrant into that the vector field points does not
change. Thus, we can read out the direction, where the trajectory tends to. Since we
know, that in the long run any trajectory tends to a stationary point, we are able to
decide to which stationary point the trajectory will run.

We find that in case (a) two isoclines intersect in the interior of the positive quadrant. We
have a stationary point, where persistence of booth species is possible. The vector field
shows us, that this stationary state is (locally) stable. Thus, case (a) gives us a situation,
where booth species persist.

(b) 1 > 1/a12, 1 < 1/a21

Here, we only have the stationary states on the boundary of the positive cone, i.e. per-
sistence is not possible. If we consider the vector field, we find that we finally enter the
region between the two isoclines. Here the flow is directed towards the u1-axis. Thus,
species two will vanish and finally we only find species one.

(c) 1 < 1/a12, 1 > 1/a21
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Figure 71: Isoclines for the four cases

By symmetry, we find that this is the same case like before, only that u1 and u2 interchange
their role.

(d) 1 > 1/a12, 1 > 1/a21

Like in case (a), we do have a stationary state, where booth species may persist. However,
the vector field shows us, that this stationary state is unstable. It is a saddle. It does
play a role in intersecting the phase plane: the stable manifold of this point is connected
to the point (0, 0). Every trajectory that starts to the left of this unstable manifold will
tend to the stationary point where only species two is present, while every trajectory that
starts to the right tends to the stationary point where we find species one only. Hence,
only one species persists, but which one depends on the initial state (bistable behavior).

All in all we find, that only in case (a) persistence of the species is possible. However,
case (a) implies a12, a21 < 1, i.e. the interaction of the two species is rather weak. Thus,
we have the found the rule of Competitive Extinction.
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Bio-Theorem: (Competitive Extinction) If the competition of two species is strong
enough, only one species survives. It may depend on the initial conditions which of the
species goes extinct.

Experimental Investigation

Of course, this conclusion attracted experimental investigators. One of them is (again)
Gausse, who looked at cultures with different microorganisms (Parametricum caudatum
and Parametricum aurelia). We find nice agreement with the prediction (Fig. 72). How-
ever, not all of the experiments of Gausse clearly show the principle of competitive exclu-
sion. One possible explanation is that this principle only shows up in the long run. For
intermediate time scales, the populations may persist.

Because of the copyright is this figure empty.

place here: Gausse, The struggle for existence, p.102, Fig. 22 [23]

Figure 72: Population dynamics of yeast in a sugar solution.

6.2 Predator-Prey Systems

Predator-prey models are perhaps “the” example of biomathematics. If someone does
know something about biomaths, then it is the oscillatory behavior of predator-prey
systems. Also here, we have a brief look at these models.

Lotka-Volterra-Model

The most simple model takes into account only two trophic levels: the prey and the
predator with density N(t) (prey) resp. P (t) (predator). The prey is assumed to be not
limited by bounded resources; i.e., we expect in absence of the predator an exponential
growth of the prey, Ṅ = aN . The predator acts like a mortality rate that is proportional
to the density of predator. Thus we find

Ṅ = aN − bP N.
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In absence of prey, the predator will starve to death. This is modeled by a linear death
process, Ṗ = −dP . However, if there is prey, the consumed prey is converted into
offspring, i.e. we have a birth term of the form cNP ,

Ṗ = cNP − dP.

This model has been proposed by Volterra (1926) for predator-prey systems. Somewhat
earlier, 1920/1925, Lotka proposed the very same equation in order to describe a hypo-
thetical reaction kinetics that may lead to oscillations. Therefore, the model is called the
Lotka-Volterra model.

We first rescale this model. Define N = aN/c, P = av/b, t = τ/c and the lumped
parameter α = d/a. Then,

u̇ = u(1− v)

v̇ = v(u− α).

Now we find an invariant functional (a special case of a Ljapunov-function). Define

L(u, v) = u− α ln(u) + v − ln(v).

Then,

d

dt
L(u(t), v(t)) = Luu̇+ Lvv̇

= [1− α/u][u(1− v)] + [1− 1/v][v(u− α)]

= 0.

Thus, the function L(u, v) is constant on trajectories. From the shape of L(u, v), we find
that the trajectories are nested periodic orbits. This model predicts a periodic behavior.
The unattractive property is the lack of stability: if we change the state slightly, it will
jump to another periodic orbit and never return to the original periodic orbit. Further-
more, if we perturb the model itself slightly (e.g. introduce a logistic term for the growth
of the prey, see exercise 6.2) the oscillations vanish. These considerations gave rise to a
variety of proposals how to change the Lotka-Vorlterra-model.

Generalizations of the Lotka-Volterra-Model
Obviously, the points that are quite unrealistically are the dynamics of prey only and the
predation term.

• Incorporating limited resources for the prey:
Replace linear growth by logistic growth,

aN → aN(1−N/K).

• Handling time for predator:
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After a predator did capture a prey, the animal needs time to handle this animal. The
predator will not immediately try to capture another prey. Thus, even if the density of
prey becomes very large, the predated animals per time unit will tend to a saturation
(given a constant predator density),

bNP → bP
Nn

N0 +Nn
.

• In consequence, also the incidence of offspring tends to a saturation, even if the prey
available tends to infinity,

cNP → cP
Nn

N0 +Nn
.

All in all we find

Ṅ = aN(1−N/K)− bP Nn

N0 +Nn

Ṗ = cP
Nn

N0 +Nn
− dP.

Indeed, for appropriate chosen parameter values, we find for this model a single, locally
stable periodic orbit.

The Hudson Bay Data
The perhaps most prominent data that show this oscillatory behavior are the data of the
Hudson Bay Company. This company sold pelts of animals that have been hunted by
trappers in the Hudson Bay. The idea is, that the number of sold pelts give a hint about
the abundance of the corresponding species. Expecially lynx and hare form a predator-
prey system. The data show indeed a slow oscillation of roughly twelve years (Fig. 73.
This seems to support the prediction of the model. However, if we look more in detail,
we find that the lynx go up before the hare increase their density. This does mean, that
the hare play the role of predators while the lynx are the prey! One possible explanation
would be a (for lynx) deadly disease that is carried by the hares. Then, in a certain sense,
hare are deadly for lynx, indeed. Another possible explanation is the presence of at least
one more predator: the trappers. They kill lynx and hare. In this way, may perturb the
dynamics strong enough to produce the observed pattern.

6.3 Chemostat

The importance of the chemostat is the application in industry: if certain metabolites
are to be produced by microorganisms, often enough the set-up for the production is
chosen in form of a chemostat. This device (Fig. 74) is a tank (often assumed to be
stirred such that we do not spatial effects, like growth of microorganisms at the wall of
the chemostat, i.e. a biofilm etc.). There is a continuous inflow of nutrient and substrate,
and also continuous outflow. Within the outflow, there are metabolites, microorganisms,
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place here: Murry, Mathematical Biology [48]

Figure 73: Data of the Hudson Bay Company.

substrate and (of course) nutrient. The aim of the investigations is the prediction of the
long-term dynamics (will we tend to a stationary state? Are there oscillations possible?)
in order to control the system into a regime where the harvest of metabolites is optimal.
The set-up can be very complicated, with a multitude of species, nutrient and metabolites,
connected and interacting in a quite complicated way. In general, it soon becomes hard
to investigate the dynamics. However, we will only consider the most simple case. One
may find more in the book of Hale Smith [57]

Outflow

Stirring

Inflow

Figure 74: Schematic figure of a chemostat.

Model:

We consider a chemostat with only one species of microorganisms. Thus we model the
density of the microorganisms x and the density of nutrient S.

The nutrient is introduced into the system with constant rate D (determined by the
velocity of the inflow) and constant density S0. The outflow occurs again with rate D
(inflow is the same like outflow in order to keep the total volume constant). It is consumed
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by a rate f(x) that depends on the density of microorganisms x. We will discuss the
properties of this function below. Thus,

Ṡ = DS0 −DS − xf(S).

The microorganisms transform consumed nutrient into offspring with an efficacy given by
some proportionality constant α. With the outflow, also microorganisms are lost. Thus,
we have a death term Dx, and we find

ẋ = −Dx+ αxf(S).

We assume that f(0) = 0, f ′(S) > 0 and limS→∞ f(S) = f∞ < ∞, reflecting that
substrate is consumed by microorganisms. If there is substrate in excess, the consumption
rate per microorganism tends to a saturation.

.
Analysis:

Stationary states:
The first (and simplest) step in the analysis is to determine the stationary points. One
stationary point is (x, S) = (0, S0). Here, the microorganism is not present. Now let us
find stationary points (x∗, S∗) s.t. x∗ > 0. From ẋ = 0 we conclude

f(S∗) = D/α.

A solution of this equation exists (and is then unique) if and only if

D/α < f∞.

The interpretation of this finding is simple: If the wash-out rate D is too high resp. the
efficiency of transforming food into offspring (given by α) is too low, then the microor-
ganism is not able to persist. Else it may persist. From Ṡ = 0 we find immediately the
component x∗ as

x∗ = (S0 − S∗)D/f(S∗) = α(S0 − S∗).
Here, the second condition for existence of the nontrivial state comes in: We need S0 > S∗,
i.e. f(S0) > f(S∗) = D/α which leads to

αf(S0)−D > 0.

This condition does mean, that (for a very small population of microorganisms) the net
growth rate αf(S0) − D has to be positive. This condition implies the first one, since
f∞ > f(S0) > D/α.

Result 1:
There is always a trivial equilibrium (x, S) = (0, S0). There is a nontrivial equilibrium
(x, S) = (x∗, S∗), if and only if

αf(S0)−D > 0.
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In this case, this equilibrium is unique.

Local stability:

The local stability can be found by the linearization,

J |x∗,S∗ =

(
−D − x∗f ′(S∗) −f(S∗)
αx∗f ′(S∗) −D + αf(S∗)

)
=

(
−D − x∗f ′(S∗) −D/α
αx∗f ′(S∗) 0

)

where we used the conditions for stationary the stationary state to remove f(S∗) from
the Jacobian. Thus,

det(J |x∗,S∗) = −D − x∗f ′(S∗) < 0, tr(J |x∗,S∗) = −D/α αx∗f ′(S∗) < 0

i.e. the stationary state (x∗, S∗) is always locally stable if existent. If we consider the
other stationary state (0, S0), we find for the linearization

J |0,S0 =

(
−D − xf ′(S) −f(S)
αxf ′(S) −D + αf(S)

)
x=0,S=S0

=

(
−D −f(S0)

0 αf(S0)−D

)

Thus,

tr(J |0,S0) = αf(S0)− 2D, det(J |0,S0) = −D (α f(S0)−D)

Hence if αf(S0)−D < 0, we have tr(J |0,S0) < 0 and det(J |0,S0) < 0 s.t. the trivial state is
locally stable. If αf(S0)−D becomes positive, the determinant (and eventually also the
trace) changes sign, and the trivial state looses stability; at the same time the nontrivial
stationary point (for which necessarily αf(S0) − D > 0) appears and is locally stable.
Thus, we find here a transcritical bifurcation.

Result 2:

If the nontrivial equilibrium exists, it is locally stable and the trivial equilibrium looses
stability.

Exclusion of periodic orbits:

We scale the vector field by 1/x. Then,

∂S

{
1

x
[(S − S0)D − xf(S)]

}
+ ∂x

{
1

x
[−Dx+ αxf(S)]

}
= −D

x
− xf ′(S) < 0.

Thus, by the negative criterion of Bendixon-Dulac, we are able to rule out periodic orbits.
Since furthermore one can exclude that a trajectory starting in the positive quadrant
tends to infinity, all trajectories tend to stationary states.

Result 3:

If αS(S0)−D < 0, every positive trajectory tends to the equilibrium (x, S) = (0, S0). If
αS(S0) − D > 0, a trajectory with initial conditions S ≥ 0, x > 0 tends to the unique
nontrivial equilibrium (x∗, S∗) with x∗ > 0.
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6.4 Exercise

Exercise 6.1:
Consider an epidemic model, where susceptibles S become infecteds I with the incidence
βSI, infecteds recover at rate α and become immunes R. Immunity is lost again at rate γ,

d

dt
S = −βSI/N + γR

d

dt
I = βSI/N − αI

d

dt
R = αI − γR.

Show by the negative Criterion of Bendixon-Dulac (dimension?), that this system cannot
exhibit periodic orbits.

Exercise 6.2:
Change the Lotka-Volterra-Model slightly, in assuming logistic population dynamics for
the prey alone,

d

dt
N = aN(1−N)− bNP

d

dt
P = cNP − dP

(a) Compute the stationary points.
(b) Consider parameters, s.t. a stationary solution exists with predator and prey present.
Show that this stationary point is locally stable, i.e. the eigenvalues of the linearization
have negative real part.
(c) Use the negative criterion of Bendixon-Dulac to exclude periodic orbits (!).
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7 Neuronal Activity

We start off with the description of a single ganglion or neuronal cell, that is stimulated by
a given input. Experiments show basically, that a certain minimal activation is necessary
to provoke a reaction. This reaction has a form of one spike, if the input signal is short,
or periodic spiking, if there is a constant input. This behavior is model by the Hodgkin-
Huxley model, resp. by the simpler (but treatable) Fitzugh-Nagumo equation. In the
next step, we consider the most simplest network: one neuron that is recoupled, the
output signal is feed in again as input signal. If this feedback is negative, then we find
periodic spiking. We aim to understand the origin of this observation. Last, we go to
large networks. Of course, in general one is not able to state any theorem about large
networks of neurons. However, we assume a certain topology (a two-dimensional lattice
with interaction of nearest neighbors only) and consider a further abstraction: we derive
Greenberg-Hastings automata, a special case of cellular automata. Using combinatorial
methods, it is possible to prove some theorems about the behavior, especially it is possible
to derive a condition under that a the network stays activated and can never go completely
to the resting state.

7.1 Hodgkin-Huxley Model

Hodgkin and Huxley describe 1952 their famous model the dynamics of ionic current in
a ganglion. In experiments the activation pattern of a ganglion has been investigated.
The experiments are patch-clamp experiments, where one uses something like a needle
that is located within the ganglion to measure the voltage between insight and outside of
the ganglion (Fig. 75). Then, a given stimulus is applied to the cell. The outcome has
been basically, that an activation by a relatively small stimulus will not lead to a large
reaction, but the system soon will return to the resting state, while a stimulus above a
certain threshold leads to a spike, i.e. a high peak in the activation that comes eventually
to rest again. At the time of Hodgkin and Huxley, one did only partially understand this
pattern. The basic idea of these authors has been to introduce two kinds of ion channels,
for potassium and for sodium. At this time, these channels have been purely hypothetical,
and much debate took place if one should take them verbally, or if these channels are only
artefacts of their model. Only later, one could identify the channels. Meanwhile, even
the chemical structure and the genes that produce these channels are (at least partially)
identified.
The model describes the dynamics for the potential V (t) between inside of the ganglion
and outside of the ganglion, V (t) = Vinside(t)−Voutside(t) (be aware, that two versions of the
model can be found in literature: The other version is to take V (t) as Voutside(t)−Vinside(t),
s.t. the sign changes!). Furthermore, the membrane current I(t) is described (positive ion
current is directed from inside to outside). Basic physics tells us

I(t)︸︷︷︸
total current

= C
d

dt
V (t)︸ ︷︷ ︸

Current due to the ca-
pacity of the ganglion

+ Ii(t)︸ ︷︷ ︸
”real” ion flow

.
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Figure 75: Caricature of a Ganglion: Low sodium, high potassium inside, reversed situation
outside; ion flow is controlled by channels. The potential difference between outside and inside
is modeled, together with ion flows.

The total ion flow Ii consists of the flow of sodium ions, INa, potassium ions IK and all
other ions (that are less important, the leakage flow) IL.

Ii = IK + INa + IL.

These flows depend on V (t) and the state of the gates (that are again controlled by the
voltage V (t)). Thus, we have to model the dependence of the ion flows on V (t).

Potassium
The law of Ohm tells us I = V R, i.e. voltage and current are proportional. Voltage does
always mean a relative value. Thus, if all ion channels for potassium are open, we find

IK = κK(V (t)− VK),

the ion flow is proportional to the difference of the voltage with a reference voltage. If
only a proportion gK of channels are open, then

IK = κKgk(V (t)− VK).

Until now, we shifted modeling the ion flow to modeling the proportion of gates that are
open. This proportion will depend on V (t).
The submodel that Hodgkin and Huxley developed for these ion channels introduces
“gates” within the channel (see Fig. 76). On the level of one ion channel, gK is the
probability that this ion channel is open; i.e., that all doors are open. For the potassium
channels, four doors with exactly the same features are assumed; at this point, this is a
completely phenomenological approach. The assumption of “gates” cannot be justified
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Figure 76: (a) Structure of a ion channel in the Hodgkin-Huxley model. (b) Submodel for one
gate.

from, say, the stechiometric structure of ion channels. Hodgkin and Huxley used data to
validate the model; and the assumption of four doors simply works fine.
If n(t) is the probability that a door is open, we find gK(t) = n4(t) to be the probability
that the gate is open. First, the problem “model the ion flow” is reduced to the problem
“model the probability that a ion channel is open”. The latter task is reduced to “find a
model for that describes the probability for one gate to be open”. Here, a simple model
is assumed: a gate is either open or closed; we have two states (see Fig. 76. It is assumed
that we stay in the states for a time that is exponentially distributed (if V (t) ≡ Const);
thus, we have two constant rates for the transitions between the states. If n(t) is the
probability for a gate to be one, 1− n(t) is the probability to be closed. Thus,

d

dt
n(t) = αn(V )(1− n(t)) + βn(V )n(t).

The voltage V (t) influences these rates; in this way, n and gK depend on V . The functions
α(V ) and β(V ) have to be chosen. Hodgkin and Huxley used the from

αn(V ) =
1

2
α̂0
n

VK − V
1− eα1

n(VK−V )
, βn(V ) = β0

ne
−β1

n V

s.t. α(V ) increases in V while β(V ) decreases. These gates tend to be open if V is large,
and are rather closed if V is near the resting state.

Estimation of the Parameters:
The interpretation of the equation gK(t) = n4(t) as the description of single gates has
been superimposed afterwards. Like remarked before, first of all these functions have
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Because of the copyright is this figure empty.

place here: Hodgkin and Huxley, 1952, Fig. 2, 5. [63].

Figure 77: (a) Dynamics of potassium ion flow for V = 25mV above resting potential. (b)
Curve of asymptotic values n∞(V ) in dependence of V .

been purely phenomenological well fitting functions that could be handled (Hodgkin and
Huxley did their work 1952, where almost no computers have been available to do the
computations!). The way how to obtain these parameter functions has been the following:
First, fix a certain potential V . Then, determine the ion flux. For V = v0 fixed, we can
explicitly solve the differential equation, assuming n(t)|t=0 = 0,

n(t; v0) = n∞(v0)
(
1− e−t/τn(v0)

)
with

n∞(v0) =
α(v0)

α(v0) + β(v0)
, τn(v0) =

1

αn(v0) + βn(v0)
.

After the system is in equilibrium (n ≈ n∞(v0), the voltage is changed to zero again.
Then,

n(t) = n∞(v0)e−t/τn(v).

The data for one of these experiments are shown in Fig. 77 (a). Since g(t) =
n4(t;n∞(v0), τn(v0)), it is possible to fit the two constants (since we only look at V = v0

from these lines (to be more precise: one should say, that g(t) = nk(t;n∞(v0), τn(v0)),
s.t. we fit three constants n∞(v0), τn(v0) ∈ IR and k ∈ IN). These experiments are done
for several values of V . The resulting curve for n∞ is shown in Fig. 77 (b). This curve
is fitted with a smooth function (like it is done with the corresponding curve for τn(V )),
and from these curves we are able recover αn(V ), βn(V ).

Sodium

The same structure is used for sodium; only, that we have here two kinds of gates: one
that opens and one that closes with increasing voltage. As a result, a “window” for
the voltage is created, where the potassium channels are likely to be open. Outside the
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window the channels will be closed. One channel consists of three gates that open and
one gate that close with increasing V ; we find

INa = κNagNa(V − VNa) = κNam
3(t)h(t)(V − VNa)

d

dt
m = αm(V )(1−m(t)) + βm(V )m(t)

d

dt
h = αh(V )(1− h(t)) + βh(V )h(t)

where m describes the probability to be open for those gates that tend to be open for
V large, and h is the probability to be open for the gate that tends to be closed for V
large. Accordingly, the parameter functions have a inversed monotonicity: αm(V ), βh(V )
are increasing, while βm(V ) and αh(V ) are decreasing in V ,

αm(V ) = α0
m

VNa − V
eα2

m(VNa−V ) − 1
,

βm(V ) = β0
me
−β1

m(V−VNa),

αh(V ) = α0
me
−α1

m(V−VNa),

βh(V ) = β0
h

VNa − V
eβ

2
h

(VNa−V ) + 1
.

Leakage Ions
The leakage ions do not play an important role. It is assumed that no gates are there, i.e.

IL = κL(V − VL).

Hodgkin-Huxley Model
All in all we derive at the model

C
d

dt
V = κKn

4(V − VK) + κNam
3h(V − VNa) + κL(V − VL) + I0

d

dt
n = αn(V )(1− n(t)) + βn(V )n(t)

d

dt
m = αm(V )(1−m(t)) + βm(V )m(t)

d

dt
h = αh(V )(1− h(t)) + βh(V )h(t)

where the form of the parameter functions α∗ and β∗ are given above, and I0 denotes
the external stimulation. This model works quite well, and the desired behavior (the
spiking) is reproduced by this model very nicely. From this starting point, research went
in two directions: one direction tries to make the model even more realistically, taking into
account more ion species or other phenomena (like synapses etc.). The other direction is a
simplification of the model, such that it is possible to see clearly how the spike is produced.
The most important of these simplifications is without doubt the Fizhugh-Nagumo model
that we consider in the next paragraph.
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7.2 Fitzhugh-Nagumo Model

The basic ingredient of the Fitzhugh-Nagumo-Model is the observation that the nerve
pulse, described by the Hodgkin-Huxley model “lives” on different time scales. We will
formulate these time scales; then, in a rather heuristic way, we develop the basic ideas
of the singular perturbation theory - the mathematical structure that shows us how to
deal with different time scales. We then will use this theory in order to understand how
a spike is produced, and how we may obtain the different behavioral patterns of a nerve
cell, that can be observed in experiments: either complete and long-lasting activation by
a stiumulus, spiking or periodic spiking.

Simplified Model for Neuronal Activity
The key ingredients of the Hodgkin-Huxley model are Na+ and K+ ions, reflecting the
activating and deactivating subsystems of the ganglion. The time scale of m(t) is faster
than that of n(t) and h(t). I.e., the activating part of the model is much faster than the
deactivating part. Furthermore, we know that a minimal activating stimulus is necessary
to provoke a reaction. A small stimulus is neglected; a stimulus above the threshold leads
to a spike.

Let v(t) be the variable describing the activating part of the system, and w(t) the deac-
tivating part. If we artificially remove the deactivating part, we are left with a system
that - depending on the initial stimulus - either returns to the resting state (stimulus
below a critical threshold a) or tends to a complete activated state (threshold above a)
(see Fig. 78).
The simplest ordinary differential equation with this behavior reads

v̇ = −v(v − a)(v − 1).

Now we describe the deactivating dynamics w(t). It is stimulated by v(t), and we assume
a maximal possible deactivating reaction. Also here, we use the most simple model, a
linear equation. In order to take into account that the time scale of w is much slower
than that of v, we scale the r.h.s. by ε, ε� 1 and derive

ẇ = ε︸︷︷︸
slow time scale

( v︸︷︷︸
activation

− γw︸︷︷︸
w bounded

).

The effect on v is modeled by adding “−w” to the r.h.s. of the equation for v: if w becomes
positive, it will reduce the activation v. All in all, we have the Fitzugh-Nagumo-model,

v̇ = −v(v − a)(v − 1)− w
ẇ = ε(v − γw)

We may include an explicite external stimulus I(t),

v̇ = −v(v − a)(v − 1)− w + I

ẇ = ε(v − γw)
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Figure 78: Activation only. (a) activation of the sytem over time, (b) right hand side of the
corresponding ordinary differential equation v̇ = f(v). The arrows on the x-axsis show the
direction of v̇

Analytizing Time Scales: Singular Perturbation Theory

Spikes and periodic Spiking

7.3 Small Networks: Periodic spiking

7.4 Large Networks: Greenberg-Hastings Automata

Deterministic Cellular Automata, Combinatorial methods.
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8 Reaction Kinetics

8.1 Michaelis-Menton

8.2 Belouzov-Zhabotinskii

9 Immunology / Infectious diseases

9.1 Kermack-McKendrick/Standard Model for viral infection

9.2 Age-Structured Model, Vaccination (indirect effect)

10 Perhaps: System Biology / Regulatory Net-

works????
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A Solutions of the Exercises

Solution of Exercise 3.2 : We use Var(S) = E(S2)− (E(S))2. We find

d2

ds2
h3(s)

∣∣∣∣
s=1

=
∞∑
i=1

i(i− 1)P (S = i) = E(S2)− E(S)

We find Var(S) = h′′3(1) + h′3(1)− (h′3(1))2

Var(S) = (h2 ◦ h1)′′(1) + (h2 ◦ h1)′(1)− ((h2 ◦ h1)′(1))2

= (h′2 ◦ h1 h
′
1)′(1) + (h′2 ◦ h1 h

′
1)(1)− ((h′2 ◦ h1 h

′
1)′(1))2

= h′′2(1) (h′1(1))2 + h′2(1)h′′1(1) + h′2(1)h′1(1)− (h′2(1))2 (h′1(1))2

We obtain with

h′1(1) = E(X1) h′2(1) = E(Y )
h′′1(1) = Var(X1)− E(X1) + E(X1)2 h′′2(1) = Var(Y )− E(Y ) + E(Y )2

that

Var(S) = [ Var(Y )− E(Y ) + E(Y )2][E(X1)]2 + [E(Y )][ Var(X1)− E(X1) + E(X1)2]

+E(Y )E(X1)− (E(Y ))2(E(X1))2

= Var(Y )E(X1)2 + E(Y ) Var(X1)− E(Y )E(X1)2 + E(Y )2E(X1)2

−E(Y )E(X1) + E(Y )E(X1)2 + E(Y )E(X1)− E(Y )2E(X1)2

= Var(X1)E(Y ) + E(X1)2 Var(Y ).

Solution of Exercise 3.3 : We use induction and the relation

Var(Zn+1) = Var(X)E(Zn) + E(X)2 Var(Zn) = z0r
nσ + r2 Var(Zn)

For r = 1, the assertion follows immediately. If r 6= 1, then we have to work slightly more.
n = 1: Var(Z1) = σr0 + r2 Var(Z0). Since we assume Z0 = z0, we have Var(Z0) = 0 and

Var(Z1) = σr0((r − 1)/(r − 1)).

n→ n+ 1: Hence we assume Var(Zn) = z0σr
n−1(rn − 1)/(r − 1). Thus we obtain

Var(Zn+1) = σz0r
n + r2

(
z0σr

n−1 r
n − 1

r − 1

)
= σz0r

n
(

1 + r
rn − 1

r − 1

)
= σz0r

n r − 1 + rn+1 − r
r − 1

= z0σr
n r

n+1 − 1

r − 1
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Solution of Exercise 3.4 : ad (a) We formulate a two-type Galton-Watson process.
Let Zn

i be the population size for population type i, i ∈ {1, 2}, in time step/generation
n. In order to obtain the population size in the next time step, we need the information
about number and type of children of one individual. Let Xi,j be random variables that
count the number of children of type i, if the mother is of type j. Then,

Zn+1
i =

Zn1∑
k=1

Xi,1 +
Zn2∑
k=1

Xi,2.

ad (b) Let ri,j = E(Xi,j), z
n
i = E(Zn

i ). Then,(
zn+1

1

zn+1
2

)
=

(
r1,1 r1,2

r2,1 r2,2

)(
zn1
zn2

)
.

ad (c) If

A :=

(
r1,1 r1,2

r2,1 r2,2

)
and A irreducible, we find immediately that

lim
n→∞

‖
(
zn+1

1

zn+1
2

)
‖ =

{
0 for ρ(A) < 1
∞ for ρ(A) > 1

If the matrix is not irreducible, we may find two cases: Either one of booth or booth
populations gives birth only to children of the own type. We define (!) that extinction
does mean that booth population die out (one may also define extinction as the event
that at least one population type has to vanish).

Case 1: A is a diagonal matrix.
In this case, booth populations give birth only to children of the own type. Hence, in
order that the total population size tends to zero, we need

r1,1, r2,2 < 1.

If either r1,1 or r2,2 is above one, then the expected population size of the corresponding
type tends to infinity.

Case 1: Exactly one off-diagonal element of A is a zero.
Here, (without restriction) type 1 gives birth only to type 1 individuals, while type 2 gives
birth to type 1 and type two individuals. However, in order to keep the total population
alive, we need that either r1,1 or r2,2 is above one. If booth are below one, the population
will die out.

Hence, in any case we find

lim
n→∞

‖
(
zn+1

1

zn+1
2

)
‖ =

{
0 for ρ(A) < 1
∞ for ρ(A) > 1
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Figure 79: Graph of exercise 3.6.

Remark: It is possible to extend this conclusion to the stochastic process. If ρ(A) > 1,
then the probability of extinction is strictly below one, i.e. the population may survive
(and then tend to infinity but a number of realizations of zero measure). If ρ(A) < 1,
then the probability of extinction is one (see e.g. Jagers [35]).

Solution of Exercise 3.5 : ad (a) Since A is irreducible, there is a path i =: i1 → i2 →
· · · → il−1 → il = j. Thus, (Al−1)j,i > 0.
ad (b) The irreducibility implies that there is a finite path between any of two states i
and j. Let the length of this path be l,

i =: i1 → i2 → · · · → il → il+1 := j.

Since the number of states is n, the path l ≤ n− 1. Since we add the identity matrix, we
ensure that the transitions i→ i are possible. Thus, there is a path of length n− 1,

i→ i→ · · · i→ i2 → · · · → il → il+1.

Thus, (A+ I)n−1 is strictly positive.

Solution of Exercise 3.6 : The graph shown in Fig. 79 is connected, hence A is
irreducible.

Solution of Exercise 3.7 : A loop of length l has the structure

i0 → i1 → · · · → il−1 → i0 → i1 → · · ·

with ((A))ij ,ij+1
= 1. Hence

((A))i0,i1((A))i1,i2 · · · ((A))il−2,il−1
((A))il−1,i0 =

{
1 if (i0, .., il+1) is a cycle of length l
0 else
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Hence, the number of all these cycles is the summation over all possible combinations
(i0, .., il−1),

loop(l) =
∑

(i0,..,il+1)∈INl+1
n

((A))i0,i1((A))i1,i2 · · · ((A))il−2,il−1
((A))il−1,i0

=
∑

i0∈INn

((AA · · ·AA))i0,i0

=
∑

i0∈INn

((Al))i0,i0 = tr(Al).

Example: Consider the graph in Figure 80. The transition matrix reads

A =

(
0 1
1 1

)
.

There is one loop of length one, the path 2→ 2. Accordingly, tr(a) = 1.
The paths of length two are 1→ 2→ 1, 2→ 1→ 2 and 2→ 2→ 2. The trace of A2 is

tr(A2) = tr(

(
1 1
1 2

)
) = 3

Paths of length four are 2 → 1 → 2 → 2, 2 → 2 → 1 → 2, 2 → 2 → 2 → 1 and
2→ 2→ 2→ 2. The trace of A3 reads

tr(A2) = tr(

(
1 2
2 3

)
) = 4

One may also compute tr(Ak) directly. The spectrum of A reads

λ± =
1

2
(1±

√
5).

Hence,

tr(Ak) =
1

2n

[
(1 +

√
5)k + (1−

√
5)k
]

=
1

2n

k∑
n=0

(
n
k

)√
5
n

+

(
n
k

)
(−1)n

√
5
n

=
1

2n−1

bk/2c∑
n=0

(
n
2k

)
5k

Remark : Cycles that are shorter and divide l are also counted. Of course, one may
subtract them if these should be removed (informations about cycles with a length that
divides l can be obtained recursively. Furthermore, a specific cycle is counted with mul-
tiplicity due to the symmetry (phase). Hence, after subtracting all cycles with “true”
smaller period, the remaining number has to be divided by l in order to factor out sym-
metry.



A 5

1 2

Figure 80: Example for exercise 3.7.

Solution of Exercise 3.8 : Assume that {v1, .., vl} forms a trap. Then, the subset X in
IRn spanned by {ev1 , .., evl} (the unit vectors representing the states v1, .., vl is invariant
under the incidence matrix A. Furthermore, since the subgraph generated by {v1, .., vl} is
connected, the incidence matrix, projected to X is irreducible. Thus, there is a positive
eigenvector x for the projected matrix ΠXAΠX . Since the subgraph spanned by {v1, .., vl}
does not have an edge pointing outward of this subgraph (the subgraph is closed in a
certain sense), we find

Ax = ΠXAx.

and thus

Ax = ρ(ΠXAΠX)x.

Since a trap is connected, different traps correspond to orthogonal invariant subspaces of
the incidence Matrix. Hence, the number of positive eigenvectors is at least that of traps.

Solution of Exercise 3.9 : In order to model the ate of a fish, we have two possibil-
ities. Either, we want to stick to natural time. Then, we obtain a Leslie-Matrix, where
state 1,..,5 corresponds to “Egg”, state 6,.,10 corresponds to “larvae” and state 11..50
corresponds to “adult”, say.

The second possibility is to focus on the change of state. Then, we loose the information
about time, but obtain a smaller set of states. However, we still have the form of a Leslie-
Matrix. For fish that reproduce only once, we expect the model to be in the lattice-case.
I.e., if the animals do not interact, we have several independent subpopulations. However,
if these populations interact, we have exactly the salmon.example [49, 16].

Solution of Exercise 3.10 : ad (a) Assume that this is not the case. Hence, for every
state i ∈ I, there is a natural number n and a state j ∈ I with the properties:
• p(n)

j,i > 0,
• There are no sequence of states j1 := j,..,jk := i s.t. pjl+1,jl > 0, l = 1, .., k − 1.

Now construct a chain of states in the following way: start with any state i0 ∈ I. There
is a state i1 with the properties above. For state i2 there is a state i2 with the properties
above, etc. If |I| = n, then in+1 ∈ {i1, .., in}, i.e. in+1 = il for some l ∈ {1, .., n}.
This fact leads to a contradiction, since in can be reached from in+1 via the finite chain
in+1 = il, .., in.

ad (b) According to (a) there is at least one essential state. Let

E = {e | e is essential state}.
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We can define an equivalence relation on E,

e1 ∼ e2 ⇔ there is a path from e1 to e2.

Let T ∈ E/ ∼ one equivalence class of E. Then, T is a trap (definition see exercise 3.8):
obviously, T is connected. Furthermore, if there is any node v and an edge from e ∈ T to
v, then v belongs already to T . If we restrict the Markov chain to T , the Markov chain be-
comes irreducible, and thus there is an invariant measure (Theorem of Perron/Frobenius).
Extending this measure to the complete Markov chain by putting the mass of all states
apart form our essential states to zero will do it.
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Solution of Exercise 3.11 : We developed a discrete Markov-chain model for the
outbreak and transmission of a cold in a household. Here we show how to implement
the model developed so far (in MAPLE). First we define the transition matrix P . We
translate the formulas from above into a program. Let N be the family size, and the
matrix P(.,.),(.,.) will be called transition.

# Family size

N := 5;

# Transition array, P(i,j)(k,l) = transition[i,j,k,l]

transition := array(0..N,0..N,0..N,0..N);

We first initialize the matrix transition with 0 and then we use the formulas (2) and
(3).

# Initialize everything with zero

for n1 from 0 by 1 to N do

for n2 from 0 by 1 to N do

for n3 from 0 by 1 to N do

for n4 from 0 by 1 to N do

transition[n1,n2,n3,n4] := 0;

od:

od:

od:

od: # First type of transitions: infections.

for i from 1 by 1 to N-1 do

for j from 0 by 1 to N-i-1 do

transition[i,j,i+1,j] := R0*i*(N-i-j)/(R0*i*(N-i-j)+1);

od:

od:

# Second type of transitions: recovery.

for i from 1 by 1 to N do

for j from 0 by 1 to N-i do

transition[i,j,i-1,j+1] := 1/(R0*i*(N-i-j)+1);

od:

od:

# Third type of transitions: absorbing states.

for j from 0 by 1 to N do

transition[0,j,0,j] := 1;

od:

Next, we choose the parameter R0 and we define the state variable qi,j(n), i.e. the proba-
bility distribution over the states. Fort he MAPLE code we call it probs and we start in
the state (1, 0).
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R0 := 0.154;

probs := array(0..N,0..N);

for n1 from 0 by 1 to N do

for n2 from 0 by 1 to N do

probs[n1,n2] := 0;

od:

od:

probs[1,0] := 1;

The last step is to define a procedure that iterates our state from one event to the next
event.

iter := proc( probs in )

# define local state variable

local probs new, n1, n2, n3, n4;

# initialize the local state

probs new := array(0..N,0..N);

for n1 from 0 by 1 to N do

for n2 from 0 by 1 to N do

probs new[n1,n2] := 0;

od;

od:

# now, iterate once

for n1 from 0 by 1 to N do

for n2 from 0 by 1 to N do

for n3 from 0 by 1 to N do

for n4 from 0 by 1 to N do

probs new[n3,n4] := probs new[n3,n4]

+ probs in[n1,n2]*transition[n1,n2,n3,n4];

od:

od:

od:

od:

# return the new state

RETURN( probs new );

end;

Finally we have to iterate over many events until all probability mass is contained in the
absorbing states. How often do we have to iterate? This is just the length of the longest
path from state (1, 0) into the states (0, j) along the arrows of Fig. 39. The longest path
ends up in (N, 0), and all paths connecting (0, 1) with (0, N) have length 2N −1 (check!).
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# now iterate 2*N-1 times:

for k from 1 by 1 to (2*N-1) do

probs := iter(probs);

od:

# Plot the final size distribution

l := [];

for n1 from 1 by 1 to N do

l := [op(l),[n1,probs[0,n1]]];

od:

with(plots);

myplot1 := plot(l, style=point, symbol = circle):

display(myplot1);

Given the parameter R0, we are able to obtain the picture of the final size epidemics.

We add the empirical distribution to this plot.
# Data

final := [112,35,17,11,6];

total := final[1]+final[2]+final[3]+final[4]+final[5];

# empirical final size distribution

efsd := [];

for n1 from 1 by 1 to 5 do

efsd := [op(efsd),[n1,evalf(final[n1]/total)]];

od:

myplot2 := plot(efsd, style=point, symbol=cross):

display(myplot1, myplot2);

Now we estimate R0 (in the simple/heuristic way we discussed in section 3.3.3). We find

overcrowded crowded undercrowded

R0 0.154 0.139 0.138
χ2 0.44 1.0 12.0

and the final size distribution is given in Table 5. We again see a good agreement.
However, the crowdedness of the families seem not have a large influence on R0.

Solution of Exercise 3.12 : The difference between Reed-Frost (exercise 3.11) and
Greenwood is the incidence function: instead of β s i (Reed-Frost) assumes the Greenwood
model βs if i > 0 and zero else.

Thus, the trivial estimator does not change between Reed-Frost and
Greenwood. Only the computer program for the final size distribu-
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Figure 81: Comparizon of data and model.

tion has to be altered. Instead of (Reed Frost, see above, exercise 3.11
# First type of transitions: infections.

for i from 1 by 1 to N-1 do

for j from 0 by 1 to N-i-1 do

transition[i,j,i+1,j] := R0*i*(N-i-j)/(R0*i*(N-i-j)+1);

od:

od:

we write

# First type of transitions: infections.

for i from 1 by 1 to N-1 do

for j from 0 by 1 to N-i-1 do

transition[i,j,i+1,j] := R0*(N-i-j)/(R0*(N-i-j)+1);

od:

od:

We can now derive the final sie distribution (prediction shown in Tab. 5. The values for
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Number of families
Final infecteds overcrowded crowded uncrowded

Emp. R-F G Emp. R-F G Emp. R-F G

1 112 112 112 155 155 155 156 156 156
2 35 32.3 38.3 41 43.0 50.3 55 43.15 50.4
3 17 18.5 20.0 24 24.6 23.7 19 24.7 23.7
4 11 12 8.7 15 16.0 9.7 10 16.1 9.6
5 6 6.3 2.4 6 8.3 2.4 2 8.3 2.4

Table 5: Data and predictions (R-F: Reed-Frost model, G: Greenwood model) for the final
size distribution, structured by degree of “crowdedness” of the families. (taken from [7])

R0 and the χ2-values are

overcrowded crowded undercrowded

R0 0.154 0.139 0.138
χ2/Reed-Frost 0.44 1.0 12.0
χ2/Greenwood 6.5 10.2 1.4

Solution of Exercise 3.13 : We consider an SIS-model (Suscepibles become Infected

0
infecteds

1
infecteds

2
infecteds

N−1
infecteds

N
infecteds

γ

2γ Νγ

(Ν−1)β (Ν−1)β

Figure 82: SIS-model.

and then recover to be Susceptible again). Let N be the total population size.
State: The state of the population can be described by the number of infecteds i (since
the number of susceptible individuals s is given by N − i).
Dynamics: The dynamics is given by the two processes, infection and recovery (see
Fig. 82).
• Infection: The transition rate from state i to state i+ 1 is βsi = β(N − i)i.
• Revocery: We go from i to i− 1 at rate γi.

Let pi(t) = P (i infecteds at time t). Then,

ṗi(t) = −i(γ + (N − i)β)pi + (i− 1) (N − i− 1)βpi−1 + (N − (i+ 1))γpi+1

where we formally define pi−1(t) = pN+1(t) = 0. Let qi(n) be the probability for the
corresponding/embedded time discrete process, where we count the number of events.



A 12 A SOLUTIONS OF THE EXERCISES

qi(n) is the probability to be in state i after n events. Then,

qi(n+ 1) =
(i− 1) (N − i− 1)β

(i− 1) (N − i− 1)β + (N − i)γ
qi−1(n)

+
(N − (i+ 1))γ

(i+ 1) (N − (i+ 1))β + (i+ 1)γ
qi+1(n).

Like before, we let formally q−1(n) = qN+1(n) = 0. Define the vector Qn =
(q0(n), .., qN(n))T , then we find a matrix A s.t.

Qn+1 = AQn.

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

No of Infecteds

P
ro

ba
bi

lit
y

R  = 0.50

R  = 1.00

R  = 3.00

Figure 83: Quasi-stationary distributions (population size N = 100) for R0 = 0.5, R0 = 1.0
and R0 = 3.

This Markov chain necessarily eventually dies out (all rates strictly positive), independent
of the rates. However, if N is quite large, then we will never see this ion a simulation,
provided that βN � γ. Thus, we are interested in all realizations that do not die out.
Let

ri(n) = P (state i after n events | Process did not die out).

Then,

ri(n+ 1) =
(i− 1) (N − i− 1)β

(i− 1) (N − i− 1)β + (N − i)γ
ri−1(n)

+
(i+ 1)γ

(i+ 1) (N − (i+ 1))β + (i+ 1)γ
ri+1(n).
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for i > 2 (again, formally r−1(n) = rN+1(n) = 0). Only the transition probabilities for
i = 1 and i = 2 do change - we necessarily go form state i = 1 to state i = 2,

r1(n+ 1) =
2γ

2 (N − 2)β + 2γ
r2(n)

r2(n+ 1) =
3γ

3 (N − 3)β + 3γ
r3(n) + r1(n)

This Markov chain is irreducible and exhibits an invariant Measure. The shape of this
measure is interesting. If βN < µ, we find that the mass of this measure is concentrated
at i = 1 and it is strictly decreasing in time. If βN > µ (and N large), then there is
a maximum for some i � 1. This invariant measure is the so-called “quasi-stationary
steady state” (see [50]). We show in Fig. 83 the shape of the asymptotic behavior (note:
we start with the uniform distribution. Since we count events, one obtains only even or
odd states if one starts in exactly one state; the kink for R0 = 0.5 and 1.0 at state one is
nevertheless a consequence of the fact that one has necessarily to leave state one in the
next time step once one has reached this state. It does not appear in the time-continuous
version of this process).
We know approximately the distribution for R0 � 1, N large: In this case, we find an
geometric distribution. If R0 � 1, N large, one can show that the quasi-stationary distri-
bution approximates (after appropriate rescaling) a normal distribution. The transitions
between these two distributions are considered in [50]. This problem is related to the
question for the minimal population size, where an disease is able to become endemic/to
persist.

Solution of Exercise 4.1 : If we start with i individuals, the PDE for the generating
function of the process reads

∂

∂t
f(s, t) = (s− 1)(βs− µ)

∂

∂s
f(s, t), f(s, 0) = si.

Let

f0(s, t) =
µ(s− 1)− (βs− µ)e(β−µ)t

β(s− 1)− (βs− µ)e(β−µ)t
.

be the solution for i = 1. Since the PDE is linear and of first order, we find

f(s, t) = (f0(s, t))i .

Especially, the probability of extinction reads

q = lim
t→∞

(f0(s, t))i =

(
β

µ

)i

if β > µ and one else.
Another argumentation uses directly the independency of the particles: let q1 be the prob-
ability that the population dies out, if we start with one particle. Since all particles act
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independently of each other, the probability that all i subpopulations (each subpopulation
consists of the ascendents of one of the i initial individuals) die out simultaneously is the
product of the probability that one subpopulation dies out, i.e.

q = qi1.

Solution of Exercise 4.2 : ad (a) We consider a population of bacteria that only repro-
duce and never dies. Thus, from the birth-death process we obtain that the generating
function reads (note that we start with one bacterium and µ = 0)

f(s, t) =
µ(s− 1)− (βs− µ)e−(β−µ)t

β(s− 1)− (βs− µ)e−(β−µ)t

∣∣∣∣∣
µ=0

=
se−βt

1− s+ se−βt
= se−βt

1

1− s(1− e−βt)

= se−βt
∞∑
i=0

(1− e−βt)isi

Hence, if pi(t) denote the probability to have i bacteria at time t, we find

pi(t) =

{
e−βt(1− e−βt)i for i > 0

0 for i = 0
,

I.e.,

number of bacteria− 1 ∼ Geom(e−βt).

ad (b) Now we add the possibility for the host to die. We consider the states “i bacteria,
host alive” and “i bacteria, host dead”. With

p+,i(t) = P (i bacteria, host alive), p−,i(t) = P (i bacteria, host dead)

we find

d

dt
p+,i = −(µ0 + iµ1 + iβ)p+,1 + (i− 1)βp+,i−1

d

dt
p−,i = −(µ0 + iµ1)p+,1

with p+,0(t) ≡ 0, p+,1(0) = 1 and p+,i(0) = 0 for i 6= 1, p−,i(0) = 0 for all i ∈ IN. Let
p̂i(t) = e+µ0tp+,i(t), then

d

dt
p̂i = −i(µ1 + β)p̂i + (i− 1)βp̂i−1, p̂i(0) = δ1,i.

Define the generating function

g(s, t) =
∞∑
i=0

sip̂i(t).
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Then,

∂tg =
∞∑
i=0

si (−i(µ1 + β)p̂i + (i− 1)βp̂i−1)

= −(µ1 + β)s∂s
∞∑
i=0

sip̂i + βs2∂s
∞∑
i=0

sip̂i

= s(βs− (µ1 + β))∂sg

g(s, 0) = s.

We find the characteristic equation

d

dt
S(s, t) = −S(s, t)(βS(s, t)− (µ1 + β)), S(s, 0) = s.

This equation can be solved by the method of separation of variables

−t = −
∫ t

0
dτ =

∫ S

s

dS ′

S ′(βS ′ − (µ1 + β))

= − 1

µ1 + β

∫ S

s

−βS ′ + βS ′ − µ1 + β

S ′(βS ′ − (µ1 + β))
dS ′

= − 1

µ1 + β

(∫ S

s

−β
(βS ′ − (µ1 + β))

dS ′
∫ S

s

1

S ′
dS ′

)

= − 1

µ1 + β
log

(
(βs− (µ1 + β))S

(βS − (µ1 + β))s

)

Solving this equation for s (not for S) yields

s =
(µ1 + β)

βS(1− e(µ1+β)t) + (µ1 + β)e(µ1+β)t)
.

Since g(S, t) = s, we find

g(S, t) =
(µ1 + β)S

βS + (µ1 + β(1− S))e(µ1+β)t
.

Average load of bacteria We assume that an individual is alive at age a of infection. If we
do not take into account that the host is alive, then we find (by part (a) of the exercise)

E(i)(a) = 1 + eβa.

However, we know that the individual is alive. Heuristically this yields to a higher number
of hosts that have (by chance) a lower number of bacteria. We expect that

E(i)(a)|Host alive < E(i)(a).
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We find

P (Host alive at age of infection a) =
∞∑
i=1

p+,i(a) = e−µ0ag(1, a) = e−µ0a
(µ1 + β)

β + µ1e(µ1+β)a
.

Hence,

P (No of bacteria is i age of infection is a |Host alive)

=
P (No of bacteria is i age of infection is a and Host alive)

P (age of infection is a and Host alive)

=
e−µ0a 1

i!
di

dsi
g(s, a)

∣∣∣
s=0

e−µ0a (µ1+β)

β+µ1e(µ1+β)a

=
1

i!

di

dsi
(µ1 + β)s(β + µ1e

(µ1+β)a)

(βs+ (µ1 + β(1− s))e(µ1+β)a)(µ1 + β)

∣∣∣∣∣
s=0

=
1

i!

di

dsi
s

(β + µ1e
(µ1+β)a)

(µ1 + β)e(µ1+β)a − βs(e(µ1+β)a − 1)

∣∣∣∣∣
s=0

=
1

i!

di

dsi
s

µ1

µ1+β
+ β

µ1+β
e−(µ1+β)a

1− β
µ1+β

s(1− e−(µ1+β)a)

∣∣∣∣∣∣
s=0

=
1

i!

di

dsi
s

(1− β
µ1+β

(1− e−(µ1+β)a))

1− β
µ1+β

s(1− e−(µ1+β)a)

∣∣∣∣∣∣
s=0

and therefore

P (No of bacteria is i age of infection is a |Host alive)−1 ∼ Geom

(
1− β

µ1 + β
(1− e−(µ1+β)a)

)

If X ∼ Geom(q), then E(X) = (1/q)− 1. Thus, the average number of bacteria in living
hosts at time a after infection reads

1 +

 1

1− β
µ1+β

(1− e−(µ1+β)a)
− 1

 =
µ1 + β

µ1 + β − β(1− e−(µ1+β)a)
=

µ1 + β

µ1 + βe−(µ1+β)a

Note, that the number of bacteria do not tend to∞ for a→∞. This boundedness of the
load is a consequence of the increased death rate in the case of a high bacteria load.

Death Rate: Hence, the death rate µ(a) after time a of infection reads

µ(a) = µ0 + µ1
µ1 + β

µ1 + βe−(µ1+β)a

Alternatively, it is possible to derive the death rate µ(a) if one takes the derivative of
P (Host alive at age of infection a) with respect to a. We find by a straight forward com-
putation

d

da
P (Host alive at age of infection a) = −µ(a)P (Host alive at age of infection a).
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ad (c) Let u(t) be the density of healthy hosts and v(t, a) the infected hosts with age of
infection a. Assume that the infectivity does depend on the load of bacteria; this translates
into a coefficient κ(a) in the incidence function. We assume mass action law (perhaps
the true mass action law would be more suitable? I.e., a function that is homogeneous
of degree one?). Assume a constant inflow of Λ individuals per time into the population
(birth or immigration). Then,

d

dt
u = Λ− µ0u− u

∫ ∞
0

κ(a)v(t, a) da

∂

∂t
v +

∂

∂a
v = −µ(a)v

v(t, 0) = u
∫ ∞

0
κ(a)v(t, a) da

We assume(!) that the population tends to an equilibrium. Then, the “age of infection-
distribution” of infected hosts read

v(a) =
e−
∫ a

0
µ(τ) dτ∫∞

0 e−
∫ b

0
µ(τ) dτ db

we find that the average bacterium load is given by the formula above,

average number of bacteria of a living individual at age of infection a =
µ1 + β

µ1 + βe−(µ1+β)a

Thus,

Average bacterium load =

∫∞
0 e−

∫ a
0
µ(τ) dτ µ1+β

µ1+βe−(µ1+β)a da∫∞
0 e−

∫ b
0
µ(τ) dτ db

=

∫∞
0 e−µ0a d

da
e
−
∫ a

0
µ1

µ1+β

µ1+βe−(µ1+β)τ
dτ
da/µ1∫∞

0 e−
∫ b

0
µ(τ) dτ db

=
1

µ1

1 + µ0

∫∞
0 e−µ0ae

−
∫ a

0
µ1

µ1+β

µ1+βe−(µ1+β)τ
dτ
da∫∞

0 e−
∫ b

0
µ(τ) dτ db

=
1

µ1

+
µ0

µ1

∫∞
0 e−

∫ b
0
µ(τ) dτ db

This expression cannot be simplified (at least in an obvious way). One may interprete

the term
∫∞

0 e−
∫ b

0
µ(τ) dτ db using the observation

∫ ∞
0

e−
∫ b

0
µ(τ) dτ db =

∫ ∞
0

b

(
− d

db
e−
∫ b

0
µ(τ) dτ

)
db
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i.e. this integral is the average time that an individual is infectious.

Solution of Exercise 4.3 : We define the states
(1) Polymer has length i, not closed to a ring
(2) Polymer has length i, closed to a ring
with the probabilities

pi(t) = P (Polymer has length i, not closed to a ring, time is t),

qi(t) = P (Polymer has length i, closed to a ring, time is t).

The master equations read (rate of attaching one more monomer is k, rate of closing to a
ring is a),

ṗi = −(k + a)pi + kpi−1, q̇i = api.

with initial conditions p1(0) = 1 and all other points are zero. Define p̂i(t) = eatpi(t).
Then,

d

dt
p̂i = −kp̂i + kp̂i−1.

This modified master equation describes the number of children of a particle that produces
children at a constant rate (and never dies), or, more precisely: the number of events of
a Poisson process with rate k. Hence,

p̂i(t) =
1

i!
(kt)ie−kt

and

pi(t) =
1

i!
(kt)ie−(k+a)t, qi(t) =

1

i!

∫ t

0
a(kτ)ie−(k+a)τ dτ.

Remark: (1) If t→∞, then

lim
t→∞

qi(t) =
a

k + a

(
a

k + a

)i−1

.

(2) This model is for sure at most a first approximation to the growth of polymers.
However, the structure of this model is appropriate also for more realistically models. See
e.g. the description of histamine release in response to immunoglobolines, Perelson [53].

Solution of Exercise 4.4 : We look for exponentially growing solutions

u(x, t) = eλtv(x)

of the partial differential equation

ut + (g(x)u)x = −µ(x)u, g(0)u(0, t) =
∫ ∞

0
b(x)u(x, t) dx.

Thus, we find the ODE

(g(x)v)′ = −(µ(x) + λ)v, g(0)v(0) =
∫ ∞

0
b(x)v(x) dx.
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Since (µ(x) + λ)v(x) = [(µ(x) + λ)/g(x)](g(x)v(x)), we have

v(x) =
g(0)v(0)

g(x)
e−
∫ x

0

µ(y)+λ
g(y)

dy

and

g(0)v(0) =
∫ ∞

0
g(0)v(0)

b(x)

g(x)
e−
∫ x

0

µ(y)+λ
g(y)

dy dx.

We are only interested in solutions with v 6≡ 0, i.e. g(0)v(0) 6= 0. Thus,

1 =
∫ ∞

0

b(x)

g(x)
e−
∫ x

0

µ(y)+λ
g(y)

dy dx.

The r.h.s. of this equation is strictly monotonously decreasing in λ, and hence (under
non-pathologic conditions) there is a unique solution for λ. Furthermore, defining

R0 =
∫ ∞

0

b(x)

g(x)
e−
∫ x

0

µ(y)
g(y)

dy dx

we find heuristically the usual threshold theorem: if R0 > 1, the population will grow
exponentially, if R0 < 1 the population will die out.

Solution of Exercise 4.5 : First of all, the assumption is that for every harvesting rate
there is a stationary point. This can only happen, if we assume a nonlinear model. The
(perhaps) most simple nonlinear model reads

ut + ua = −(µ0 + uµ1 + ψ)u

u(0, t) =
∫ ∞

0
b(a)u(a, t) da

u =
∫ ∞

0
u(a, t) da

where µ0 denotes the baseline of the mortality, µ1 is the proportionality constant that
describes the competition within the species, u(t) is the total population size and ψ the
harvesting rate.
The (monetary) harvesting effort then reads

Effort = Aψ, Gain = B ψ u.

Note: These equations and terms for effort and gain are model assumptions. They can
be chosen in a different way - the only point is, that a reasonable interpretation has to be
possible. In the present case, we have chosen the model as simple as possible.

The condition for a stationary solution reads

1 =
∫ ∞

0
b(a)e−(µ0+µ1u+ψ)a da
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and thus
uµ1 + ψ = u

where u denotes the total population size without harvesting in the equilibrium. Thus,
we maximize

g(ψ) = B ψ u− Aψ = B ψ (u− ψ/µ1)− Aψ.
Thus, there is a unique harvesting rate that maximizes the net gain,

ψ∗ =
µ1(Au−B)

2A
.

Solution of Exercise 4.6 : We consider a random walk on ZZ. The probability to go
to the left/to the right hand side depends on the gradient of a chemical signal v(x), i.e.
P (jump to the left) = 1/2− α(m), P (jump to the right) = 1/2 + α(m) where m denotes
the spatial location. The master equation for p(m,n) (the probability to be in location
m after time step n) reads

p(m,n) =
1

2
(p(m−1, n−1)+p(m−1, n−1))+α(m−1)p(m−1, n−1)−α(m+1)p(m+1, n−1).

Now define the spatial and temporal scale, and make the dependence of α on the signal
v(x) more explicite

p(m,n) ≈ u(x/∆x, t/∆t)

α(m) ≈ −χ [v((x−∆x)/∆x)− v((x+ ∆x)/∆x)]

where u, v ∈ C2, t = n∆t, x = m/∆x. We use the parabolic scaling, i.e.

∆x2

2∆t
= D

and find

u(x, t+ ∆t) =
1

2
(u(x−∆x, t) + u(x−∆x, t))

−χ [(v(x− 2∆x)− v((x)))u(x−∆x, t)− (v(x)− v((x+ 2∆x)))u(x+ ∆x, t)] .

Thus,

u(x, t+ ∆t)− u(x, t)

∆t
=

∆x2

2∆t

(u(x−∆x, t)− 2u(x, t) + u(x−∆x, t))

∆x2

−χ4∆x2

∆t

(v(x− 2∆)− v((x)))u(x−∆x, t)− (v(x)− v((x+ 2∆)))u(x+ ∆x, t)

4∆x2

=
∆x2

2∆t

(u(x−∆x, t)− 2u(x, t) + u(x−∆x, t))

∆x2

−χ4∆x2

∆t

v(x−2∆)−v(x)
2∆x

u(x−∆x, t)− v(x)−v(x+2∆)
2∆x

u(x+ ∆x, t)

2∆x



A 21

Hence, for ∆x, ∆t→ 0 in the parabolic limit, we find

ut = Duxx − χ(vxu)x

where χ = χD/8.

Solution of Exercise 4.7 : We find for an initial condition u0(x)

(S1(t)u0)(x) = eαtu0(x)

and

(S2(t)u0)(x) =
∫ ∞
−∞

1

2
√
πDt

e|x−y|
2/(4t)u0(y) dy.

Thus,
S1(t1)S2(t2)u0 = S2(t2)S1(t1)u0

and
Πn
i=1 (S1(∆t)S2(∆t))u0 = (Πn

i=1S2(∆t)) Πn
i=1 (S1(∆t))u0

Since S1 and S2 are semigroups, we have S.(t1)S.(t2) = S.(t1 + t2) and thus

Πn
i=1 (S1(∆t)S2(∆t))u0 = S1(t)S2(t)u0.

Hence,

∂

∂t
Πn
i=1 (S1(∆t)S2(∆t))u0 =

∂

∂t
(S1(t)S2(t))u0

=

(
∂

∂t
S1(t)

)
S2(t)u0 + S1(t)

(
∂

∂t
S2(t)

)
u0

= α (S1(t)S2(t))u0 +

(
S1(t)D

∂2

∂x2
S2(t)

)
u0

= Duxx + αu.

We have to add the r.h.s. of the differential equations in order to obtain the complete
solution. Here, the proof has been simple because S1 and S2 commute. The proof is
less simple, if this is not the case: in this case, we have to show the Trotter formula [63,
chapter??]. However, the stochastic approach in remark 4.13 and the present approach
have in common that only very small time units are considered. Within these time units,
the process are independent (n the deterministic case this does mean that we can apply
the multiplication rule for the derivation, in the stochastic case this does mean that only
one of the two processes are active/yield an event).

Solution of Exercise 4.8 : From ut = −jx and j = u2/2, we conclude

ut + uux = 0.

(a) Characteristic lines.
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x 
= 

   
 tα

x = 1+   tβ

x

t

φ = α φ=β

u(x,t) = β
u(x,t) = α

0 1

x 
= 

1+
   

tβx =
    

 tα

u(x,t) = α

u(x,t) = β

x

t

φ = α φ=β0 1

(a) (b)

Figure 84: Characteristic lines of the Burger’s equation (exercise 4.8). (a) α ≤ β, (b) α > β.

Assume that u(S(t;x0), t) = Constant for a curve x = S(t;x0) with S(0, x0) = x0. Then,
ut + Ṡ(t;x0)ux = 0. Hence,

Ṡ(t;x0) = u

and the characteristic curves assume the form of straight lines,

S(t;x0) = x0 + u(S(t;x0), t)t = x0 + u(S(0;x0), 0)t = x0 + u(x0, 0)t

(b) Solution of the initial value problem
Case x < αt: then u(x, t) ≡ α (see Fig. 84).
Case x > 1 + βt: then u(x, t) ≡ β.

This observation is a first hint, that something terrible must happen if α > β: in this
case, there is a region where u(x, t) should be simultaneously α and β.

Case αt < x < 1 + βt:
In this case, the characteristic originates at the interval [0, 1], where φ(x;α, β) is linearly
increasing. Hence,

S(t;x0) = x0 + φ(x0;α, β)t = x0 + [α + (β − αx0]t

and hence

x0 = x0(S, t) =
S − αt

1 + (β − α)t
.

From this information we are able to derive u(S, t),

u(S, t) = φ(x0(S, t);α, β) = α + (β − α)
S − αt

1 + (β − α)t
.

It is simple to check that this function satisfies the PDE ut(x, t) + u(x, t)ux(x, t) = 0.

The solution exists as long as the term (x − αt)/(1 + (β − α)t) dopes not blow up. I.e.,
the solution exist globally for β ≥ α. If α > β, characteristic lines will intersect and the
definition of a classical solution is not applicable any more.

Remark: There are (at least) two ways to proceed and to continuate the solution over
the point of this singularity.
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x

t

u

Figure 85: Continuation of the solution of the Burger’s equation over the singularity (exer-
cise 4.8).

First, one may not expect a function u(x, t) as solution, but a two-dimensional manifold,
embedded in the three dimensional space (spanned by x, t and u, see Fig. 85). This
equation may be described by

F (x, t, u) = 0,

The step from the partial differential equation for u to the implicit representation by
F (., ., .) = 0 is called Jacobi-transformation. In general, assume that we consider a quasi-
linear PDE of first order,

f(x, t, u)ux + g(x, y, u)ut − h(x, y, u) = 0.

Then, the function F (x, t, u) that satisfies

f(x, t, u)Fx(x, t, u) + g(x, t, u)Ft(x, t, u) + h(x, t, u)Fu(x, t, u) = 0

has the property that the function u(x, t), implicitly and locally defined by
F (x, t, u(x, t)) = 0 obeys (if well defined) the original differential equation. We can
conclude this directly by

F (x, t, u(x, t)) = 0 ⇒ Fx + Fuux = 0, Ft + Fuut = 0

and hence we derive

f(x, t, u)(−Fuux) + g(x, t, u)(−Fuut) + h(x, t, u)Fu = 0

which implies the original PDE for u.
In case that the solution of the Burger’s equation becomes singular, we obtain a manifold
shown in Fig. 85: There is a region, where u(t, x) cannot be represented by a function on
(x, t), since the manifold has three layers at these points.
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The second possibility is to allow for a line at which the solution becomes discontinuous (it
jimps form α to β). Especially, if one remembers that this equation is used to model traffic
and traffic jam, this solution has the appealing property to reflect the sudden jump in the
density of cars at the end of a traffic jam. However, the line along that this discontinuity
develops has to be determined in a unique way. The idea/one ideas to get a criterion
where this discontinuity is located, one demands that also for the discontinuous solution
the law of mass conservation is valid (no cars dissappear or are created in a traffic jam).
These solutions lead to shock waves. Find more in the book of Smoller [58].

Solution of Exercise 4.9 : We consider the equation

ut = Duxx + αu, u|x=0 = u|x)L = 0.

Using the ansatz u(x, t) = eλtv(x), we find

v′′ =
λ− α
D

v, v(0) = v(L) = 0.

Hence,
v(x) = A sin(ωx) +B cos(ωx).

The boundary conditions imply B = 0 and

ω = ωn =
π

L
n, n ∈ IN.

Thus,
λ− α
D

= ω2
n,

i.e.
λλ1 == α−Dω2

n = α− πn

L
D.

We find the stabilizing effect of diffusion (in connection with the Dirichlet boundary
conditions): By the diffusion, mass is transported to the boundary of the region. There
it is (by the boundary conditions) destroyed. Thus, diffusion has a stabilizing effect on
the trivial solution u ≡ 0. Even if α > 0, i.e. in the case that the trivial solution is not
stable in the case without spatial structure (i.e., D = 0), we may be able to stabilize
the trivial solution in choosing D large enough (s.t. enough mass will be destroyed at the
boundary). To be more precise, we need for the persistence of the population that at least
λ1 is positive, i.e.

L > π

√
D

α
.

Solution of Exercise 4.10 : (a) Boundary conditions: outside the region, the environ-
ment is hostile. I.e., all particles die at once if they leave the region. Thus, no particles
will enter the region from outside. We find the model for the correlated random walk

∂tu
+ + γ∂xu

+ = −µu+ + µu− +
1

2
α(u+ + u−), u+|x=0 = 0.

∂tu
− − γ∂xu− = µu+ − µu− +

1

2
α(u+ + u−), u−|x=L = 0.
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(b) We aim at the critical value for L, i.e. the value where we find a stationary solution.
Hence,

d

dx

(
γu+

−γu−
)

=
1

γ

(
−(µ− α/2) µ+ α/2
−(µ+ α/2) µ− α/2

)(
u+

u−

)
, u+|x=0 = 0, u−|x=L = 0,

i.e (u+, u−)T = (1/γ)A(u+, u−)T with

A =

(
−(µ− α/2) µ+ α/2
−(µ+ α/2) µ− α/2

)
.

The eigenvalues of this matrix are (tr(A) = 0)

λ± = ±iω

with

ω =
1

2
(tr(A) +

√
tr(A)24 det(A)) =

√
2µα.

In order to obtain a general form of the solution of this ODE, we are interested in vectors
that satisfy

A

(
u+

1

u−1

)
= −ω

γ

(
u+

2

u−2

)
, A

(
u+

2

u−2

)
=
ω

γ

(
u+

1

u−1

)
,

i.e. we represent A as a rotational matrix. We find that these two vectors are the complex-
resp. real part of the complex eigenvector for the eigenvalue iω, i.e.(

u+
1

u−1

)
=

(
µ+ α/2
−(µ− α/2)

)
,

(
u+

2

u−2

)
= 2
√
αµ

(
0
1

)
.

Hence, the solution reads(
u+

u−

)
= a

(
µ+ α/2
µ− α/2

)
cos(ωx/γ) + b

(
0
1

)
sin(ωx/γ).

The boundary conditions superimpose conditions on the parameters. u+(0) = 0 implies
a = 0, and the consequence of u−(L) = 0 is

sin(
√

4µα/γ2L) = 0.

If we define (like in the parabolic limit) D = γ2/(2µ), we obtain exactly the same threshold
like in the parabolic case,

L = π
√
D/α.

There is a deeper reason behind this (non-obvious) result: The limit t → ∞ ensures a
well mixed population. I.e., the limit in t is in some sense like the limit of µ and γ (with
parabolic scaling). Thus, both results necessarily agree.
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Solution of Exercise 4.11 : The first condition is that the eigenvalues of the matrix

A0 =

(
a b
c d

)

have negative real part, i.e.

<(λ±) =
1

2
((a+ c)±<(

√
(a− c)2 − 4bc)) ≤ 0.

Thus,
tr(A0) = a+ b ≤ 0, det(A0) = ab− bc ≥ 0.

The second condition is that diffusion should destabilize the trivial solution. We may
show this in looking for at least one eigenfunction of the r.h.s. of the PDE (diffusion
included) that has an eigenvalue with real part larger than zero. Inspired by exercises 4.9
and 4.10, we use the ansatz

u(x) =

(
A
B

)
sin(kx).

The boundary conditions are satisfied for

k = (2n+ 1)π/L, n ∈ IN

and the condition that we have an eigenfunction for the r.h.s. of the PDE yields

Ak

(
A
B

)
= λ

(
A
B

)

with

Ak =

(
−D1k

2 + a b
c −D2k

2 + d

)
.

In order to find that the trivial solution is destabilized, we need <(λ) > 0, i.e.

tr(Ak) = a+ d−D1k
2 −D2k

2 = det(A0)− (D1 +D2)k2 > 0

or det(Ak) = (a−D1k
2)(d−D2k

2)− bc = det(A0)− (D1d+D2a)k2 +D1 D2k
4 < 0

Since D1, D2 and k2 are nonnegative, we always find tr(Ak) < 0. Thus, only the second
condition can be satisfied. If D1 = D2, we find that

(D1d+D2a) = D1(a+ d) = D1tr(A0) < 0.

Also in he case a, d < 0 we find

(D1d+D2a) < 0.

and hence in these two cases, again

det(A0)− (D1d+D2a)k2 +D1 D2k
4 > det(A0) > 0.
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The only chance to find eigenvalues with positive real part is D1 6= D2 and a d > 0, and
then to choose D1, D2 s.t. (D1d + D2a) � 0. Indeed, let without restriction a > 0 > d.
Choose D2 > 0. In this case, we find for k given that

limD1 →∞ det(Ak) = limD1 →∞ det(A0)− (D1d+D2a)k2 +D1 D2k
4

= limD1 →∞D1k
2(|d| −D2k

2) > 0

for k ≤
√
|d|/D2. Thus, for L appropriate chosen (s.t. there is n ∈ IN with k = (2n+1)π/L

is element of the instable modes) we find that diffusion (where booth components must
have different diffusion coefficients) leads to a destabilization of the trivial solution. If
D1 = D2, we always find a stabilization of the trivial solution by diffusion.

Solution of Exercise 5.1 : (a) Consider yn = βxn. Then,

yn+1 = βxn+1 = βαxne
−βxn = αyne

−yn .

(b) Stationary points: y = 0 or αey = 1, i.e.

y ∈ {0, ln(α)}.

Stability: The stability is given by the magnitude of the derivative at the stationary points.
Let g̃(y) = αye−y. Then, g̃′(y) = αe−y − αye−y and

g̃′(0) = α, g̃′(ln(α)) = 1− ln(α).

Trivial stationary state y = 0:
The trivial stationary state is locally stable for α < 1. It becomes then unstable. At
the same time, a (locally) stable non-trivial stationary point (y = ln(α)) appears in the
positive axis.
Non-trivial stationary state y = ln(α):
If 0 < α < 1, we find

1− ln(α) > 1,

i.e. this stationary point is unstable. If α < e2 we have

α < e2 ⇒ ln(α) < 2 ⇒ 1− ln(α) > −1.

Thus, at α = e2 a period doubling bifurcation happens (strictly spoken, we have to prove
that this bifurcation is not degenerated).

Solution of Exercise 5.2 : (a) If we let formally N → ∞, then we find the Galton-
Watson process with Geom(q0) as the distribution of children. Denote with Yn the pop-
ulation size in step n of this linear process.

(b) The parameter q(k) can be written as

q(k) = q0e
−αk/N .
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We show that for a finite time interval n ∈ [0, T ], T ∈ IN, booth processes agree if N →∞.
Step 1: We reformulate the process that generates the number of the offspring.
Let Ĉ = Geom(q(k)), Ĉ = Geom(q0). The random variables C, Ĉ can be defined on the
same random space via the following process:
(1) Choose u = U(ω) a realization of a random variable distributed according to the
uniform distribution between [0, 1].
(2) Define c = C(ω) as the number c ∈ IN, s.t.

c−1∑
i=0

P (C = i) ≤ u <
c−1∑
i=0

P (C = i).

Similarly, ĉ = Ĉ(ω) is defined as

ĉ−1∑
i=0

P (Ĉ = i) ≤ u <
ĉ−1∑
i=0

P (C = i).

(3) Define the random variable ∆ (the distribution of ∆ depends on k) by

∆(ω) = Ĉ(ω)− C(ω).

The random variable ∆ is non-negative (since q0 ≥ q(k)) and assumes the values in IN.
According to the construction above, we find

C = Ĉ + ∆.

Step 2: Finite number of births, finite population size.
Let BT be the number of newborns for the linear process, i.e.

BT =
T∑
n=0

Yt

and let NT denote the maximal population size up to this point,

NT = max
n∈{0,..,T}

Yn.

We show that BT , NT is finite a.s. First of all, we have NT ≤ BT + 1 (if we start
with one individual), i.e. we only have to consider BT . Since we only consider a finite
number of steps, we may construct a Galton-Watson process with population size Ỹn, s.t.
Ỹn(ω) ≥ Bn(ω). All we have to do is to define for this process the number of children
to follow the random variable C̃ = 1 + C. In this case, the parent o a child “survives”
necessarily. Since the population size of a Galton-Watson process is finite after a finite
number of steps with probability one, also BT is finite with probability one.
Step 3: The lionear and nonlinear process agree for N →∞.
We show that ∆ = 0 a.s. for n ≤ T and N →∞. We find for k bounded, that

P (∆ 6= 0)→ 0 N →∞
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since q(k) → q0 for N → ∞. For one realization ω ∈ Ω, we determine only a number of
B(ω) realizations of ∆, ∆1, ..,∆BT . Since k ≤ NT , we find

lim
N→∞

∆i(ω) = 0.

Thus, if B(ω) <∞ (which is ta.s true), we find that

lim
N→∞

B(ω)∑
i=0

∆i(ω) = 0 ⇒ lim
N→∞

Yi(ω) = Xi(ω),

the linear and te nonlinear process agree on the finite time interval.

If q0 is small enough, s.t. E(Ĉ) < 1, then the linear process dies out a.s. In his case, the
number of all births B(ω) is finite just because this fact, without restriction of the time.
Then, the ressult follows immediately without restrictions on T .

Solution of Exercise 5.3 : (a) We have a priori that 0 ≤ Xt ≤ N . Thus

P (Xt+∆t = 0|Xt = k) ≥ P (no births due to kindividuals in [t, t+ ∆t] and k individuals die)

=
[
P (no births due to one individual in [t, t+ ∆t])

P (one individual dies in [t, t+ ∆t])
]k

=
[
(1− β∆t+ O(∆t))(µ∆t+ O(∆t))

]k
= ε̃(∆t)k

If ∆t is sufficiently small, we find 1 > ε̃(∆t) > 0, s.t.

P (Xt+∆t = 0|Xt = k) ≥ ε̃(∆t)k ≥ ε̃(∆t)N =: ε.

(b) Let
pl =: P (Population extinct at time t = l∆t).

Then,

pl ≥ P (Xl∆ = 0 |X(l−1)∆ > 0) P (X(l−1)∆ > 0) + P (Xl∆ = 0 |X(l−1)∆ = 0) P (X(l−1)∆ = 0)

= P (Pop. goes extinct in [(l − 1)∆t, l∆t])P (Pop. not extinct at t = (l − 1)∆t)

+P (Pop. extinct at t = (l − 1)∆t)

≥ ε(1− pl−1) + pl−1 = ε+ (1− ε)pl−1.

Now define the recursion
p̃l = ε+ (1− ε)p̃l−1).

and p̃0 = p0 = 1. Since
(pl − p̃l) ≥ (1− ε)(pl−1 − p̃l−1)
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we find from p0 − p̃0 ≥ 0 per induction that pl − p̃l ≥ 0, i.e.

pl ≥ p̃l.

(c) In the last step, we show that p̃l → 1 for l→∞. Since the function f(x) = ε+(1−ε)x
maps the interval [0, 1] into itself,

f([0, 1]) ⊂ [0, 1]

and f ′(x) < 1 (i.e. f(x) is a contraction), the iteration tends to a fixed point. The only
fixed point of f(x) is x = 1. Thus,

p̃l → 1 for l→∞

and since p̃l ≤ pl ≤ 1, we also have

pl → 1 for l→∞

Solution of Exercise 5.4 : With the notation introduced in definition 5.17, we find∑
z′∈Γ

G(z, z′) = K

for all z ∈ Γ (the number of neighbors is independent of the site). In the case of Γ = ZZ
and the nearest neighbors neighborhood, we find K = 2. This is almost the only thing
needed: ∑

x∈E
[X,A] =

∑
x∈E

∑
z,z′∈Γ

χφ(z),xχφ(z′),AG(z, z′)

=
∑
z,z′∈Γ

(∑
x∈E

χφ(z),x

)
χφ(z′),AG(z, z′)

=
∑
z∈Γ

χφ(z′),A

∑
z′∈Γ

G(z, z′) = K
∑
z∈Γ

χφ(z′),A = K[A].

Thus,
[A] =

∑
x∈E

[X,A]/K.

Solution of Exercise 5.5 : (a) In this case, the incidence matrix G becomes non-
symmetric,

G(i, j) =

{
1 for j = i+ 1
0 else

Thus, it is not obvious that [0, 1] = [1, 0]. Let

N+ = {i | φ(i) = 0, φ(i+ 1) = 1} = [0, 1], N− = {i | φ(i) = 1, φ(i+ 1) = 0} = [1, 0]
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(where we always work modulo n, if we are on a torus of size n). We show that N+ = N−.

Case 1: N+ = 0.
In this case, the state of all cells is either identical one or identical zero, and thus N+ =
N− = 0.
Case 2: N+ > 0.
Thus, there is l0, l1 ∈ Tn, s.t. φ(l0) = 0, φ(l1) = 1. Hence, every pair [0, 1] starts a block
of cells with state 1. I.e., if i0 ∈ N+, then φ(i0) = 0, φ(i0 + 1) = 1. There is a finite
k = k(i0) s.t.

φ(i0) = 0, φ(i0 + 1) = φ(i0 + 2) = · · ·φ(i0 + k) = 1, φ(i0 + k + 1) = 0.

Thus, i0 + k ∈ N−. In this way, we are able to define a one-to-one map Φ : N+ → N−,
i 7→ k(i). Hence, |N+| = |N−.

(b) This part of the exercise only recalls the definition of [0, 0],

[0, 0] =
∑

z, z′ ∈ Γχφ(z),0χφ(z′),0G(z, z′) =
∑

i ∈ Γχφ(i),0χφ(i+1),0.

Solution of Exercise 5.6 : In order to derive the mean field, we first consider possible
events. An event consist of the change of the state of one cell. Since we are only interested
in the mean field, and every cell is only influenced by its left neighbor, all we have to
consider are pairs: the cell that changes its state and its left neighbor.

Event Rate Effect on ([0],[1])
[0, 0] → [0, 1] 0 (-1,1)
[1, 0] → [1, 1] β (-1,1)
[0, 1] → [0, 0] µ (1,-1)
[1, 1] → [1, 0] µ (1,-1)

Furthermore, we find
K =

∑
i

G(i, j) = 1

and hence, with the result of exercise 5.4,

[0] = [0, 0] + [0, 1], [1] = [1, 0] + [1, 1].

Hence,

d

dt
|[0]| = µ (|[0, 1]|+ |[1, 1]|)− β|[1, 0]|

= µ|[1]| − β|[1, 0]|.

In order to obtain the mean field equation, we close this equation by the approximation

|[1, 0]| ≈ |[0]| |[1]|
|Γ|

,
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i.e.
d

dt
|[0]| ≈ − β

|Γ|
|[0]| |[1]|+ µ|[1]|

We find |[1]| by
|[1]| = |Γ| − |[0]|.

Thus, the mean field does not changed by the somewhat strange choice of the neighbor-
hood.
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