

Available online at www.sciencedirect.com

MOLECULAR PHYLOGENETICS AND EVOLUTION

Molecular Phylogenetics and Evolution xxx (2007) xxx-xxx

www.elsevier.com/locate/ympev

A molecular phylogenetic analysis of the Scarabaeinae (dung beetles)

Michael T. Monaghan *, Daegan J.G. Inward, Toby Hunt, Alfried P. Vogler

Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK

Received 1 March 2007; revised 6 June 2007; accepted 12 June 2007

Abstract

The dung beetles (Scarabaeinae) include ca. 5000 species and exhibit a diverse array of morphologies and behaviors. This variation presumably reflects the adaptation to a diversity of food types and the different strategies used to avoid competition for vertebrate dung, which is the primary breeding environment for most species. The current classification gives great weight to the major behavioral types, separating the ball rollers and the tunnelers, but existing phylogenetic studies have been based on limited taxonomic or biogeographic sampling and have been contradictory. Here, we present a molecular phylogenetic analysis of 214 species of Scarabaeinae, representing all 12 traditionally recognized tribes and six biogeographical regions, using partial gene sequences from one nuclear (28S) and two mitochondrial (cox1, rrnL) genes. Length variation in 28S (588-621 bp) and rrnL (514-523 bp) was subjected to a thorough evaluation of alternative alignments, gap-coding methods, and tree searches using model-based (Bayesian and likelihood), maximum parsimony, and direct optimization analyses. The small-bodied, non-dung-feeding Sarophorus + Coptorhina were basal in all reconstructions. These were closely related to rolling *Odontoloma* + *Dicranocara*, suggesting an early acquisition of rolling behavior. Smaller tribes and most genera were monophyletic, while Canthonini and Dichotomiini each consisted of multiple paraphyletic lineages at hierarchical levels equivalent to the smaller tribes. Plasticity of rolling and tunneling was evidenced by a lack of monophyly (S-H test, p > 0.05) and several reversals within clades. The majority of previously unrecognized clades were geographical, including the well-supported Neotropical Phanaeini + Eucraniini, and a large Australian clade of rollers as well as tunneling *Coptodactyla* and *Demarziella*. Only three lineages, Gymnopleurini, Copris + Microcopris and Onthophagus, were widespread and therefore appear to be dispersive at a global scale. A reconstruction of biogeographical characters recovered 38-48 transitions between regions and an African origin for most lineages. Dispersal-vicariance analysis supported an African origin with links to all other regions and little back-migration. Our results provide a new synthesis of global-scale dung beetle evolution, demonstrating the great plasticity of behavioral and morphological traits and the importance of biogeographic distributions as the basis for a new classification.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Bayesian; Biogeography; Dispersal-vicariance; Evolution; Feeding behavior; Gap-coding; Length-variation; Likelihood; Nesting behavior; Scarabaeidae

1. Introduction

Dung beetles in the Scarabaeinae include ca. 5000 species and show a great diversity of morphology and nesting behaviors. This diversity is thought to arise primarily from their adaptation to feeding on a wide variety of vertebrate dung types and to breeding in a competitive environment.

A number of theories have been advanced to explain the evolutionary history of complex behaviors and bizarre morphologies and these often are related to the evolution of different nesting strategies (Cambefort, 1991a), sexual selection (Emlen et al., 2005), historical biogeography (Cambefort, 1991b; Davis et al., 2002), and inter-species competition for an ephemeral resource (Emlen, 1997; Hanski and Cambefort, 1991). Evolutionary studies of Scarabaeinae have been greatly influenced by the classification of Balthasar (1963) with the recognition of two groups, Scarabaeinae and Coprinae (or Scarabaeini and Coprini

^{*} Corresponding author. Address: Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK. Fax: +44 (0) 20 7942 5229.

E-mail address: m.monaghan@nhm.ac.uk (M.T. Monaghan).

^{1055-7903/\$ -} see front matter @ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2007.06.009

of earlier authors, e.g. Janssens, 1949), separated based on their rolling and tunneling nesting behavior, respectively. Whereas tunnelers bury dung directly beneath the dung pat, many rollers display a spectacular behavior of forming dung balls and rolling them to distant sites for burial. Each of these two main groups were subdivided into six tribes to reflect their great morphological and biogeographical diversity, whereby two widespread tribes, the rolling Canthonini and tunneling Dichotomiini, were thought to be ancient lineages that pre-date the break up of Gondwanaland (Cambefort, 1991b; Davis et al., 2002). The biogeographically more localized tribes were considered to be derived from these widespread 'old' lineages to form the 'intermediate' and 'modern' tribes (Cambefort, 1991b).

Although plausible, this hypothesis of dung beetle evolution has not stood up to tests from phylogenetic analysis. Using genitalic characters, Zunino (1983) generally confirmed the Scarabaeinae-Coprinae dichotomy but found the 'intermediate' Onitini and Phanaeini (tunnelers) near the 'intermediate' Eucraniini (rollers), thus rendering the rolling tribes paraphyletic. Montreuil (1998) examined 27 genera of tunnelers in the 'modern' Coprini and 'old' Dichotomiini, and found both tribes to be paraphyletic, clearly refuting the existing evolutionary scenario. This was confirmed in a wider representation of tribes by Philips et al. (2004) who found neither of the 'old' tribes Dichotomiini and Canthonini monophyletic, while rolling and tunneling lineages were intermixed throughout the tree. Finally, phylogenetic analyses based on mitochondrial (Villalba et al., 2002) and nuclear (Ocampo and Hawks, 2006) gene sequences, examining local faunas in the Iberian Peninsula and southern South America, respectively, also broadly contradicted the Balthasar (1963) classification. The main findings in these studies for deep level phylogenetics were the demonstration of the affinity of Onthophagini, Oniticellini, and Onitini (Villalba et al., 2002) and the grouping of Dichotomiini, Phaenaeini, and Eucraniini (Ocampo and Hawks, 2006). Taken together, these recent studies have demonstrated clear insufficiencies in the older classification, with important implications for our understanding of the evolution of Scarabaeinae and biogeographical scenarios (Davis et al., 2002). Nonetheless, recent studies have been restricted taxonomically and geographically, with widely differing conclusions on phylogenetic relationships, and hence no new synthesis of evolutionary patterns in Scarabaeinae has emerged.

Here, we address basal relationships in Scarabaeinae using partial gene sequences from one nuclear and two mitochondrial genes. We focused on the geographic relationships between the major hypothesized areas of dung beetle evolution in the southern continents and islands, and we obtained broad taxonomic coverage with particular emphasis on the two 'old' groups of Canthonini and Dichotomiini. This analysis shows the importance of wide taxonomic sampling, in particular from the presumed ancient areas of their diversification in the southern hemisphere, in order to understand the biogeographical diversification and the evolution of nesting strategies of Scarabaeinae. The results are broadly consistent with an 'out-of-Africa' scenario of early lineages, followed by diversification and repeated switching between rolling and tunneling behavior in other southern continental areas.

2. Materials and methods

2.1. Taxon sampling, DNA extraction, and DNA sequencing

Taxa were collected from Neotropical, Palearctic, Afrotropical, Malagasy, Oriental, and Australasian regions (Appendix A). Fourteen species of Aphodiinae including three species of *Aphodius*, the presumed sister taxon of Scarabaeinae (Browne and Scholtz, 1999), were used as outgroups in the analysis. Most beetles were caught in dung or carrion traps or were taken from museum collections. Details of collecting methods are given in Inward (2003). DNA was extracted using phenol/chloroform methods (Vogler et al., 1993), Qiagen DNeasy columns, or Promega WizardSV extraction plates. Tissue typically was extracted from flight muscle or leg muscle tissue. For some small individuals (body length <5 mm), the whole specimen was used for extraction.

One nuclear and two mitochondrial gene regions were chosen in an attempt to resolve relationships at tribal and generic levels. Approximately 600 bp of nuclear 28S rRNA was amplified using newly designed 28SFF (5' TTACACA CTCCTTAGCGGAT) and 28SDD (5' GGGACCCGTC TTGAAACAC), or 28SKa (5' ACACGGACCAAGGA GTCTAGCATG) and 28SKb (5' CGTCCTGCTGTCT TAAGTTACC). The 3' region of cytochrome oxidase I (cox1) was amplified using primers Pat and Jerry (Simon et al., 1994) and ca. 520 bp of the 3' end of 16S ribosomal RNA (rrnL) was amplified using primers 16Sar (Simon et al., 1994) paired with either 16SB2 (CTCCGGTTTG AACTCAGATCA) or 16Sb2 (TTTAATCCAACATCGA GG). Forward and reverse strands were sequenced using the same primers and a BigDye v.3.1 (ABI) sequencing reaction. Chromatograms were assembled and edited using Sequencher (Genecodes Corp., Ann Arbor, MI, USA). All sequences used in the present study have been submitted to GenBank (Appendix A).

2.2. Multiple alignment and direct optimization

A major factor of uncertainty about the tree topology was due to length variation in *rrnL* (514–523 bp) and 28S rRNA (588–621 bp). This problem was addressed using two approaches. We used dynamic homology searches implemented in POY (Direct Optimization; Wheeler, 1996) and a two-step protocol of building fixed alignments based on a range of gap penalties in ClustalW (Higgins et al., 1996) followed by tree searches. This two-step protocol was used to determine preferred matrices for both model-based and parsimony-based analyses.

ClustalW multiple alignments were performed under a range of gap opening penalties to assess the congruence of markers and the effect of alignment on topology. A starting alignment for each gene was made using complete *rrnL* and 28S sequences for the full taxon set (n = 225)under the ClustalW (align.genome.jp) IUB weight matrix default parameters of gap opening and extension penalties of 15 and 6.66, respectively. The resulting alignments (matrix size rrnL = 544 bp, 28S = 650 bp) were used to establish a 'length-invariable' matrix, by removing lengthvariable regions (rrnL = 154 bp, 28S = 174 bp). The length-invariable cox1 alignment was added to produce a combined matrix of 1668 bp. Parsimony searches using TNT (Goloboff et al., 2004) with 10 ratchet iterations, 10 cycles of tree drifting, and 3 rounds of tree fusing for each of 200 random addition sequences returned three shortest trees of 13,266 steps. This tree was then used to evaluate different alignments of the length-variable regions of rrnL and 28S by assessing the Incongruence Length Difference (ILD). We calculated the percent incongruence as the proportional increase in tree length when aligned characters of rrnL and 28S were added to the length-invariable characters and gaps were treated as a 5th base. We calculated this incongruence across a range of parameter space, using six different gap opening penalties of 1, 5, 10, 15, 20, and 25 for each gene region.

The process was repeated using 'simple coding' (Simmons and Ochoterena, 2000) implemented in the GapCoder method (Young and Healy, 2003). This approach recodes multiple-residue gaps as the unit of character change, rather than coding each nucleotide position as an individual character, to avoid the greater weight that may be afforded to indels with growing length. Under this procedure the original gap positions are coded as 'missing' and gaps with different beginning and/or endpoints in the aligned matrix are coded as separate characters whose presence/absence is scored and added as binary characters to the nucleotide matrix (Simmons and Ochoterena, 2000). Each of the six matrices was re-coded in this manner and congruence with the length-invariable matrix was assessed as above.

Direct optimization was performed using POY v. 3.0.11 (Wheeler et al., 2002) on the combined matrix of all three genes. The length-invariable cox1 data were included in the tree searches as prealigned. Fragments of rrnL and 28S gene regions were divided into conserved and variable regions based on the starting alignment to reduce the computational effort. Only a single Aphodius was used as an outgroup to avoid the use of partially incomplete sequences in the remaining outgroup species in the POY searches (not shown). All tree searches were performed in parallel on a 14-node dual-processor (2.8 GHz P4, 2 GB RAM) cluster at Imperial College London. The search strategy was based on that of Giannini and Simmons (2003) and consisted of 25 iterations of random addition sequences, each followed by tree bisection reconnection (TBR) branch swapping, with nucleotide transformations minimized with a cost ratio of indels, transversions, and transitions of 1:1:1. All distinct trees from this initial step were then submitted to the more rigorous tree fusing (Goloboff, 1999), with up to 10,000 fusings allowed and up to 1000 tree fusing trees kept and exchange of subtrees of minimal size during fusing.

2.3. Phylogenetic analysis

Model-based phylogenetic analyses were performed on the alignments with lowest incongruence as determined with parsimony (described above). We conducted a maximum likelihood analysis on the matrix chosen with standard coding (gaps as a fifth state), using PhyML (Guindon and Gascuel, 2003) under a $GTR + I + \Gamma$ model with all parameters estimated from the data. Models of character variation could be improved if applied separately to functionally different data partitions that are presumably affected by different dynamics of sequence evolution. This was implemented in a Bayesian analysis on the preferred alignments from each of the two different codings (standard and 'simple'). We used parallel MrBayes v. 3.1 (Altekar et al., 2004; Ronquist and Huelsenbeck, 2003) running on 5 Macintosh nodes under POOCH (Dauger Research, California, USA). Partitioned Bayesian analyses (Brandley et al., 2005) were performed by separating the combined matrix into seven partitions: one for each codon position of *cox1*, and a length-invariable and a length-variable partition for each of rrnL and 28S. An added partition of simple-coded (binary) gap characters from GapCoder was added to each of rrnL and 28S for a 9-partition analysis. Searches were conducted using a $GTR + I + \Gamma$ model on all partitions, except for the two binary partitions which were examined using a F81 model with variable coding bias (see Ronquist and Huelsenbeck, 2003). Several initial analyses on partitioned and un-partitioned (i.e. all data in a single partition) data sets were used to explore the effects of partitioning, running relatively short (ca. 2,000,000 generations) MCMC searches. Parameter values and the success of cold chain swapping were evaluated from these initial runs to determine the appropriate settings.

Once the preferred scheme for partitioning had been established, in-depth analyses were conducted for 6,000,000 generations, using random starting trees and 2 runs of 4 heated and 1 cold Markov chains (heating of 0.05). Chains were sampled every 100 generations and a burn-in of 5,000,000 generations was selected based on the average standard deviation of split frequencies as well as by plotting $-\ln L$ against generation time. Because of the relatively high average standard deviation of split frequencies (*ca.* 0.14 for the 7-partition model), model parameters and trees were selected using the higher likelihood of the two runs. We calculated a Bayes factor as the ratio of the harmonic means of $-\ln L$ (calculated with the *sump* command in MrBayes, e.g.) to compare whether different

models gave significantly better fit to the data following Brandley et al. (2005).

Branch lengths were estimated on the Bayesian topology under maximum likelihood using a GTR + I + Γ model in PAUP^{*} v 4.0b10 (Swofford, 2002). To generate clock-constrained branch lengths, relative ages of nodes were estimated using penalized likelihood and non-parametric rate smoothing as implemented in r8s v 1.7 (Sanderson, 2003). The outgroup was pruned from this tree and the ingroup node set to 100, an arbitrary number used in the absence of absolute node ages.

Maximum parsimony searches were conducted on the two preferred alignments (standard gaps and simple coding) using TNT with 10 ratchet iterations, 10 cycles of tree drifting, and 3 rounds of tree fusing for each of 200 random addition sequences. Bremer support was calculated for a subset of nodes on the resulting trees by constraining single nodes for non-monophyly and repeating TNT searches as above.

2.4. Biogeographical analysis

Biogeographical patterns were investigated by the study of character transformations on phylogenetic trees in MacClade v. 4.06 (Maddison and Maddison, 1992). Six biogeographical regions were defined as character states: Africa, Madagascar, the Neotropics, Australasia (including New Zealand and New Caledonia), Eurasia (Spain, Turkey), and the Oriental region (Nepal, Indonesia, Malaysia, Hong Kong). The evolutionary history of Scarabaeinae has traditionally been viewed as the result of a mixture of dispersal and vicariance patterns (Davis et al., 2002), thus we also investigated the character distribution with dispersal-vicariance analysis using DIVA (Ronquist, 1997). This method optimizes scenarios of biogeographical history on the phylogenetic trees, from inferring the build-up of physical barriers (vicariance) and establishment of (temporary) connections between areas of endemism (dispersal). The implementation of the method is constrained by the number of taxa in a single analysis. We therefore reduced the number of taxa in our analyses by using only a single representative for those monophyletic groups confined to the same geographic area based on our reconstruction. The DIVA procedure is conservative in assigning multiple areas (dispersal links) to nodes, where sister taxa emanate from these nodes with tip level taxa distributed in several areas. The output therefore is a list of several areas possibly linked at higher node levels, creating ambiguity in the assignment of areas at nodes. We reduced this ambiguity by limiting the areas assigned to each node where a simple sequence of nodal assignments could be established upward toward the tips of the tree with a subset of two states assigned to the nodes (i.e. assumes a specific sequence of dispersal events). This greatly reduced the number of possible states at most nodes.

3. Results

Lowest incongruence between length-variable and invariable gene regions was recovered using gap open penalties of 20 for both rrnL and 28S when gaps were treated as a fifth state (standard coding, Table 1). When gaps were coded as binary characters (simple coding), lowest incongruence was found for open penalties of 20 and 25 for rrnL and 28S, respectively (Table 1). Trees obtained from the length-invariable region alone were much shorter than those that included length-variable regions (Table 2), as expected when removing a large proportion (ca. 320 characters, 15% of the total) of the available sites. The CI of the length-variable and invariable regions was similar (0.10 vs. 0.11), indicating that invariable regions largely support the same phylogenetic signal as nucleotide changes (i.e., the alignment is a good reflection of homology) although there were topological differences that affected the number of Canthonini clades as well as some of the deeper-level relationships (Table 2).

The tree resulting from the 7-partition Bayesian analysis (standard gap matrix) provided a better fit to the data than either the single-partition (2ln Bayes factor = 7368.92) or 9-partition (coded gap matrix, 6114.94) searches. The latter was favored over the single-partition model (2ln Bayes factor = 627.38). A clear feature of these analyses was the difference in the gamma shape parameter for 3rd codon positions of cox1 (Fig. 1a). The variation in the proportion of variable sites (Fig. 1b) and in rate matrices (data not shown) also suggested that multiple partitions were appropriate to characterize the data. Values for unpartitioned Bayesian as well as the maximum likelihood analyses were intermediate between both types, demonstrating the inferior model fit (Fig. 1).

Trees from model-based, parsimony, and direct optimization analyses were assessed in the light of the existing taxonomy, recent phylogenetic work, and biogeographical distributions. The 7-partition Bayesian tree exhibited the highest degree of taxonomic and geographical monophyly for the nodes we assessed, showing 8 of the 12 established tribes to be monophyletic, including the African Gymnopleurini, Onitini, Scarabaeini, and Sisyphini, the Neotropical Eurysternini, Eucraniini, Phanaeini, and the Old World Oniticellini (Table 2). Based on criteria of taxonomic and geographical monophyly as well as the superior model fit to the data described above, this topology is presented as the most favorable reconstruction (Fig. 2).

The likelihood of this topology was significantly higher than one for which tribal monophyly was constrained (Table 3). The Coprini and Onthophagini were separated into 3 and 4 independent lineages, respectively. These were closely related in Onthophagini but widely dispersed in the trees for Coprini (Fig. 2). Finally, the 'old' tribes Canthonini and Dichotomiini were highly polyphyletic, separating into 11 and 9 clades, respectively. Most of these consisted of small monophyletic groups of a genus or several genera (Table 2, see also Appendix B).

M.T. Monaghan et al. | Molecular Phylogenetics and Evolution xxx (2007) xxx-xxx

Matrix size and parsimony tree-length for each of 6 different gap-opening costs used to align length-variable regions of rrnI and 288

5

Gap treatment	Gap cost	Length-variabl	e	Total		Length difference	Incongruence (%)
		Characters	Steps	Characters	Steps		
Fifth state							
rrnL							
	1	215	3839	1903	17,509	404	2.307
	5	176	3719	1864	17,384	399	2.295
	10	162	3582	1850	17,262	414	2.398
	15	155	3641	1843	17,321	414	2.390
	20	150	3538	1838	17,188	384	2.234*
	25	150	3532	1838	17,195	397	2.309
28S							
	1	190	1190	1878	14,743	287	1.947
	5	180	1193	1868	14,765	306	2.072
	10	179	1190	1867	14,748	292	1.980
	15	178	1189	1866	14,748	293	1.987
	20	180	1236	1868	14,779	277	1.874*
	25	182	1240	1870	14,785	279	1.887
Characters							
rrnL							
	1	414	4043	414	17,775	466	2.622
	5	318	3670	318	17,364	428	2.465
	10	246	3573	246	17,265	426	2.467
	15	230	3589	230	17,268	413	2.392
	20	197	3552	197	17,220	402	2.334*
	25	195	3543	195	17,217	408	2.370
28S					ŕ		
	1	305	1260	305	14,976	450	3.005
	5	273	1229	273	14,910	415	2.783
	10	254	1182	254	14,785	337	2.279
	15	243	1178	243	14,790	346	2.339
	20	239	1242	239	14,856	348	2.342
	25	240	1235	240	14,787	286	1.934*

The length-invariable matrix had 1668 characters and 13,226 steps. * = matrices with lowest incongruence with the length-invariable tree that were combined for phylogenetic analysis. Phylogenetic analyses used fifth-state matrices for parsimony, 7-partition Bayesian and maximum likelihood searches. Character matrices were used for alternative parsimony searches and for the 9-partition Bayesian analysis.

The basal node of the Scarabaeinae ingroup was occupied by a small lineage ascribed to Dichotomiini (Sarophorus + Coptorhina) and this was a well supported sister to all other Scarabaeinae (posterior probability 0.94). The clade of Odontoloma + Dicranocara (Canthonini) also was near the base as were the dichotomines Macroderes and Gromphas. All remaining taxa were divided into two large clades of roughly equal size. The first was comprised of a large, well-supported group of Onthophagini + Oniticellini + Onitini + Sisyphini + Epirinus (Clade E), along with several other groups from the polyphyletic tribes (Fig. 2). The second major clade of Scarabaeinae was comprised of several smaller lineages, including a clade of Neotropical canthonine genera (Clade I), dichotomines, coprines, and the monophyletic groups Eucraniini + Phanaeini (Clade A), Eurysternini, Gymnopleurini + Catharsius + Metacatharsius (Clade G), and Scarabaeini (Fig. 2). This second major clade also included a large group of Australian lineages (including New Zealand and New Caledonian monophyletic lineages, Clade H), and a group of Neotropical, African and Malagasy groups.

Table 1

The 9-partition (simple-coded matrix) tree revealed a similar topology except that the African tribe Oniticellini

was made paraphyletic by the inclusion of four species of Onthophagini and increased numbers of canthonine and dichotomine lineages (Table 2). The maximum likelihood tree ($-\ln L = 73,679.71$) showed deep-level features similar to the Bayesian trees but with a different extent of monophyletic groups and genera. The large Australian and Neotropical clades were paraphyletic and the number of separate lineages for Canthonini, Coprini, and Dichotomiini increased to 20, 4, and 11, respectively (Table 2). Oniticellini was made paraphyletic by the inclusion of two species (*Digitonthophagus gazella, Onthophagus semiareus*) ascribed to the Onthophagini (Fig. 3).

Under maximum parsimony, 7 established tribes were monophyletic (Fig. 3, Table 2), whether based on lengthinvariable regions or the full data set (standard or simple coding). Oniticellini was paraphyletic with respect to the same two species as recovered by the maximum likelihood analysis. At deeper levels in the tree, relationships between lineages differed from the model-based analyses, although regular features included the basal position of several African lineages of primitive tunnelers and rollers (*Sarophorus*, *Coptodactyla*, *Odontoloma*, *Dicranocara*), the close association of tribes Onthophagini, Onitini, and (less clearly) Oniticellini,

6

M.T. Monaghan et al. | Molecular Phylogenetics and Evolution xxx (2007) xxx-xxx

Table 2

Tree score and topology summary for seven phylogenetic analyses conducted

	Model-based			Parsimony			
	Bayes-7	Bayes-9	ML	Length-invar	Gap-coding	g	POY
					Standard	Simple	
Tree score	-71,039.82	-74,096.89	-73,679.71	13,266	18,699	18,741	29,878
Tribal clades							
Gymnopleurini	М	М	М	М	М	Μ	Μ
Onitini	М	М	М	М	Μ	М	М
Scarabaeini	М	М	М	М	Μ	М	М
Sisyphini	M ^a	M^{a}	M ^a	М	М	М	М
Eurysternini	М	М	М	М	Μ	М	М
Eucraniini	М	М	М	М	М	М	М
Phanaeini	М	М	М	М	Μ	М	М
Oniticellini	М	$\mathbf{P}^{\mathbf{b}}$	P ^c	P ^c	$\mathbf{P}^{\mathbf{c}}$	\mathbf{P}^{c}	Р
Helictopleurus	М	Р	Р	Р	Р	Р	Р
Canthonini clades	11	17	20	14	10	16	23
Deltochilum	Μ	М	Р	Р	Μ	Μ	Μ
Epirinus	М	М	М	М	М	Μ	Р
Monoplistes	М	Р	М	Р	М	Р	Р
Temnoplectron	Μ	М	М	Р	Μ	Μ	Р
Coprini clades	3	3	4	3	3	4	4
Coptodactyla	Μ	М	Р	М	Μ	Р	Μ
Catharsius + Metacatharsius	М	М	М	М	М	Μ	Р
Coptodactyla + Amphistomus	Μ	М	Р	М	Μ	Р	Р
Dichotomiini clades	9	10	11	12	12	12	11
Canthidium	Р	Р	Р	Р	Μ	Р	Р
Demarziella	Μ	М	Р	М	Μ	Μ	Р
Dichotomius	М	Р	М	Р	М	Μ	Μ
Canthidium + Dichotomius	Μ	Р	Р	Р	Р	Р	Р
Onthophagini clades	4	4	4	3	4	4	4
Digiton thop hagus gazella + Phalops ardea	Μ	М	М	М	М	М	Μ
Deeper relationships							
A Eucraniini + Phanaeini	М	М	М	Р	Μ	Р	М
B Onthophagini + Oniticellini	Р	М	Р	Р	Μ	М	Р
C Clade B + Onitini	М	Р	Р	М	M ^d	Р	М
D Clade C + Sisyphini	М	М	Р	Р	M^d	Р	Р
E Clade D + <i>Epirinus</i>	М	М	Р	Р	Р	Р	Р
F Copris + Panelus + Heliocopris	М	Р	Р	Р	Р	Р	Р
G Gymnopleurini + Catharsius + Metacatharsius	Μ	Μ	Μ	Р	Р	Р	Р
Biogeographical clades							
H Australian clade $(n = 29)$	М	M ^e	Р	Р	Р	Р	Р
Australian clade $(n = 17)$	М	М	М	Р	М	Μ	Р
New Caledonia	М	М	М	Р	М	Μ	Μ
I Neotropical Canthonini $(n = 14)$	Μ	Μ	Р	Р	М	М	Р

Scores are expressed as ln likelihood for model-based searches and as tree length for parsimony searches. Tribes (Balthasar, 1963) as well as selected deep relationships and biogeographical nodes were scored for monophyly, where M, monophyletic and P, paraphyletic. The number of lineages is reported for the most polyphyletic clades.

^a Excludes *Neosisyphus ruber* for which only 16S data were available.

^b Includes Digitonthophagus diabolicus, Onthophagus semiareus, Proagoderus bicallossus and P. schwaneri.

^c Includes *Digitonthophagus gazellae*, *Onthophagus semiareus*.

^d Includes *Macroderes*.

e Includes Neosisyphus ruber.

and the sister relationship of Phanaeini and Eucraniini. The length-variable parsimony trees (standard or simple coding) recovered one Australian clade of 17 canthonine species as well as monophyletic groups from New Caledonia and New Zealand, but not the lineage of 29 species recovered in the Bayesian analysis (Fig. 3). The length-invariable tree recovered only one node of the deeper relationships and none of the biogeographical nodes (Table 2). Reconstructions based on the alignment-generating tree search implemented in POY recovered the same 7 monophyletic tribes as in the parsimony searches, although the number of lineages ascribed to Canthonini increased to 23 and fewer genera were monophyletic (Table 2). Sarophorus + Coptorhina and Odontoloma + Dicranocara were basal lineages along with Neotropical Deltochilum. There were five major clades recovered in the POY analysis rather

Fig. 1. Gamma shape distribution (upper) and proportion of invariable sites (lower) estimated from Bayesian and maximum likelihood analysis of the standard gap (fifth state) matrix (1-partition, 7-partition) and the Bayesian analysis of the simple-coded (9-partition) matrix. The proportion of invariable sites is reported separately for conserved (a) and length-variable (b) regions of *rrnl* and 28S and for each codon position of *cox1*. Single-partition Bayesian (B) and maximum likelihood (ML) model parameters are presented on the right of each panel. Estimates for the Bayesian analysis (mean +1 SD) were based on values calculated for 1,000,000 generations after a burnin of 5,000,000 generations. Likelihood parameters were generated using PhyML (see Section 2).

than the two major clades in other reconstructions. The largest was a monophyletic group of Onthophagini + Oniticellini + Onitini, only the latter of which was monophyletic within the clade. Sister to this was a second clade of Eucraniini + Phanaeini, Gymnopleurini, and several members of the polyphyletic tribes. A third, smaller clade consisted of Sisyphini, Eurysternini, *Epirinus* and *Catharsius*, while a fourth contained the Scarabaeini, *Copris* + *Microcopris*, *Uroxys* and several Neotropical Dichotomiini, and Malagasy Canthonini. A fifth clade contained Malagasy *Aleiantus*, *Apotolamprus*, *Phacosomoides*, and *Sphaerocanthon* (ascribed to Canthonini) as well as many members of the Australian group described above.

Two notable groups were recovered consistently with specific data treatments. The group of Gymnopleurini and *Catharsius* + *Metacatharsius* (Clade G) was monophyletic in all model-based searches but was not recovered in any parsimony searches. Onthophagini + Oniticellini (Clade B) was monophyletic in all analyses that considered gaps as characters, whether with standard or simple coding. This was the case regardless of whether tree searches were modelbased (9-partition Bayesian) or parsimony-based.

3.1. Biogeography and evolutionary ecology

Between 38 (7-partition Bayesian topology) and 48 (POY) character transformations were inferred when the six biogeographical regions were optimized as character states under parsimony (Table 4). These involved multiple changes for all biogeographical regions, but the majority (29-35 transitions) affected Africa. In the 7-partition Bayesian reconstruction (Fig. 2), African taxa constituted the inferred ancestral state when mapped on trees, as the basal clades of Coptorhina + Sarophorus (Dichotomiini) and Dicranocara + Odontoloma (Canthonini) are associated with a southern African distribution. Changes on deep nodes were exclusively forward changes, with reversals and a generally high rate of change between biogeographical regions observed in only two widespread groups: the Onthophagini and Coprini. Notable were a number of major clades confined to single biogeographical regions. First was the large Australian clade that included one subclade each from New Zealand and New Caledonia described above (Clade H, Fig. 2). Second was a clade of 7 genera attributed to Canthonini from South America (Clade I). Additional clades included the Neotropical Phanaeini + Eucraniini (Clade A) + Dichotomius + Canthidium (both ascribed to Dichotomiini), and a largely African clade composed of four tribes plus Epirinus (Clade E, Fig. 2). In contrast, the widespread genera Copris + Microcopris and Onthophagus were tiplevel groups lacking geographic structure.

For DIVA analysis, only a single representative was retained from clades with uniform biogeographical distribution, for a total of 101 terminals. Mapped on a clockconstrained topology, dispersal-vicariance analysis showed that, originating from an African source area, links of Africa with all other biogeographical regions were inferred, several of them multiple times, and account for 13 of the 16 links between two areas (Fig. 4). The remaining connections were between the Neotropics and Madagascar in two cases, and the Neotropics and Australia. In addition, of three cases where the sequence of links between three areas could not be resolved, two involved Africa. A final 'global' link between all areas was inferred at the base of the Onthophagini, apparently marking a phase of wide dispersal of this group and leading to the geographically confined subclades in this tribe. While an absolute time scale for vicariance-dispersal scenarios was lacking, it was apparent from the relative dating on the clock-constrained tree that the connections between Africa and other areas were scattered throughout the time period, except for the Africa-Palearctic connections which were limited to the more recent portions of the phylogeny (Fig. 4).

The emerging picture of Scarabaeinae phylogeny suggests that the complex rolling behavior is highly homoplastic. Although there remain uncertainties in the tree, rolling lineages in the major continents are independent based on the topology of the 7-partition tree (S-H test, Table 3). In the African fauna, the rollers apparently consist of multiple independent lineages that have acquired this trait. This

Fig. 2. Phylogenetic relationships among 214 Scarabaeinae and 11 Aphodiinae species based on the Bayesian 7-partition analysis. Nodes (A–I) are labelled as in Table 3 and posterior probability values are presented below branches leading to the node. Tribal classification of Balthasar (1963) is indicated by the 2-letter code preceding each binomial where CA, Canthonini; CO, Coprini; DI, Dichotomiini; EC, Eucraniini; ER, Eurysternini; GY, Gymnopleurini; OC, Oniticellini; OP, Onthophagini; OT, Onitini; PH, Phanaeini; SC, Scarabaeini; and SI, Sisyphini.

8

Fig. 2 (continued)

Table 3

Change in tree likelihood when the Bayesian topology (Fig. 3) was constrained for monophyly of tribes (see text) and nesting behaviors (tunneling, rolling)

$-\ln L$	Difference -ln L	р
75661.57712	_	_
75973.33826	311.76114	0.00
75771.14088	109.56376	0.02
	-ln L 75661.57712 75973.33826 75771.14088	-ln L Difference -ln L 75661.57712 75973.33826 311.76114 75771.14088 109.56376

Significance was assessed using the Shimodaira-Hasegawa test using RELL bootstrap.

indicates a high rate of change in this syndrome despite its complexity, involving behavioral as well as morphological changes to hind legs, front legs, and overall body shape. The great evolutionary changeability is also reflected in the diversity of behaviors for dislocating food. For example, the Eurysternini and some Oniticellini (*Oniticellus* and *Tragiscus*) have been categorized as 'dwellers' because they nest in the droppings rather than translocate dung. The Eucraniini have been classified as 'carriers' and move dung by lifting it with their forelegs.

4. Discussion

The large body of work directed toward the study of species diversity, behavior, and biogeography in dung beetles has focused primarily on evolutionary scenarios of their origins and lineage diversification (Cambefort, 1991b; Davis et al., 2002). Here, we provide a thorough phylogenetic analysis of the group based on comprehensive sampling of species from areas with the greatest apparent phylogenetic diversity, mostly in the southern hemisphere where the diversity of those clades thought to be basal is concentrated. The aim was to provide a basis for explicit tests of some of the largely intuitive scenarios put forth to date. We conducted a rigorous exploration of data treatments, namely the influence of gap coding, alignment, and data-partitioning on the resulting topology. While the results from various strategies for alignment and tree search procedures cannot be compared directly because of the different optimality criteria (direct optimization, model-based, parsimony), it is of heuristic value to explore the effects of various properties of the data and their implications for alignment and tree searches.

The *rrnL* and 28S rRNA markers were affected by length variability and the resulting uncertainty of alignment. We used dynamic homology searches and static alignments, the latter were then subjected to two different coding schemes followed by model-based and parsimony tree searches. This provided an assessment of the sensitivity of the phylogenetic conclusions, and a test of the signal contained in length-variable sequences. Alignments generated from a range of search parameters showed a shallow optimum but no great effect on character conflict from slight changes in parameter values. Trees obtained under a simple coding scheme were slightly longer compared to the standard coding, indicating that multi-nucleotide indels could not be coded more parsimoniously with this procedure and thus that the greater weight assigned to longer indels in standard (fifth state) gap treatment was not likely to confound the tree topology. For model-based searches, likelihood scores were greatly improved after data partitioning, as has been observed in other recent studies (Brandley et al., 2005; Marshall et al., 2006). The example of 3rd versus non-3rd codon position characters demonstrated that the application of a single model uniformly to all characters resulted in intermediate rate estimates to very different categories of characters (Fig. 1), leading to incorrect estimates for characters in either category. Although the designation of partitions was intuitive using functional criteria (gene marker, codon position, lengthvariable and conserved regions), their validity was evident from the greatly improved model fit. The inclusion of two additional partitions for the simple-coded gap characters did not improve the likelihood estimates (9-partition Bayesian analysis). While this could be expected because the data matrix had more characters (Table 4), whether the decreased likelihood resulted from more characters or from inclusion of gaps (treated as missing data in the 7-partition analysis) is unknown. The increased level of polyphyly in the tree suggests the gap characters had an effect.

The multitude of approaches used here leaves us with the question of which trees obtained are the most defensible, although the various analyses did produce largely similar tree topologies. The main criterion used here for assessing tree topologies was a comparison with the existing classification and biogeography (Table 2). Despite its inadequacies, the tribal classification can serve as a useful scheme of grouping, as it is based on morphological similarities that seemingly represent evolutionary relationships at some hierarchical level. Seven tribal groups were found to be monophyletic under all procedures, demonstrating their stability to alignment strategy and method of tree search. An eighth was monophyletic in the preferred (7partition) Bayesian tree. In contrast, the four tribes Coprini, Onthophagini, Canthonini, and Dichotomiini were never recovered, with the latter two groups breaking up into a large number of independent and often distantly related clades. Nonetheless, the break-up of these tribes does not negate the possible information content from recovery of subclades. Accordingly, the fact that the 7-partition Bayesian analysis recovered only 10 and 9 clades of Canthonini and Dichotomiini, compared to 23 and 11 subclades using POY, indicates that the Bayesian tree constitutes the preferred topology. Similar reasoning applies to the use of biogeographical patterns in determining the quality of tree topologies, where the number of inferred changes between regions varied between 38 (7-partition Bayesian) and 48 (POY).

4.1. Implications for dung beetle evolution and classification

Early classifications of Scarabaeinae were based on the assumption that the evolution of dung beetles involved a

10

Fig. 3. Maximum parsimony phylogram resulting from the analysis using a simple-coding matrix from GapCoder (see Section 2). Nodes are labelled as in Table 3 and nodes in parentheses indicate paraphyly in comparison to the Bayesian topology (Fig. 2). Bremer support values are presented above branches only for those nodes for which support was calculated.

12

M.T. Monaghan et al. | Molecular Phylogenetics and Evolution xxx (2007) xxx-xxx

	Model-based			Parsimony				
	Bayes-7	Bayes-9	ML	Lgth-invar	Gap-coding		POY	
					Standard	Simple		
Biogeographical steps	38	41	43	44	43	45	48	
Number of lineages								
African	29	32	33	33	34	35	31	
Neotropical	8	10	16	16	13	12	10	
Malagasy	5	5	6	7	7	7	6	
Australian	9	8	12	11	10	12	16	
Oriental	12	13	13	12	13	13	15	
Palearctic	8	9	8	10	10	10	10	

 Table 4

 Number of transitions between biogeographical regions optimized under parsimony for each tree topology

single origin of the complex rolling behavior and associated morphological modifications. The non-monophyly of rolling groups has now been shown repeatedly (Ocampo and Hawks, 2006; Philips et al., 2004; Villalba et al., 2002; Zunino, 1983), while it is also clear that the classification of "rollers" includes a diversity of dung translocation behaviors, from ball rolling in the strict sense to dragging and carrying dung with the hind- or forelegs (Ocampo and Hawks, 2006; Philips et al., 2004). Although there is now broad agreement among recent studies that the deep sepa-

Fig. 4. Dispersal-vicariance analysis results for the 7-partition Bayesian topology (Fig. 2) with clock-constrained maximum likelihood branch lengths. The areas assigned to each node (Afr, African; Aus, Australian; Mal, Malagasy; Neo, Neotropical; Ori, Oriental; and Pal, Palearctic) were limited to those where a simple sequence of nodal assignments could be established upward toward the tips of the tree with a subset of two states assigned to the nodes (see Section 2).

ration of rolling and tunneling lineages is no longer tenable, here we used explicit tests of the strength of support (Table 4) and provide evidence based on extensive taxonomic and geographical sampling. Given the deep separation of most clades and their highly localized distribution in different continental areas, the difficulties faced by phylogenetic analyses of local assemblages (Villalba et al., 2002; Ocampo and Hawks, 2006) become clear. Insufficient sampling of major lineages is likely to produce phylogenetic uncertainty and a failure to place the unsampled lineages.

Using the present reconstruction, we can draw a number of broad conclusions about the validity of the existing classification and the role of biogeography, despite the data exploration exercise revealing some topological uncertainty. These provide a new synthesis of dung beetle evolution that does not focus on the highly plastic nesting and dung translocation behaviors. The twelve tribal groupings of the existing taxonomy obviously relate to very different hierarchical levels. Several of the smaller tribes were confirmed here as monophyletic terminal groups, just as most genera also were demonstrably monophyletic. In contrast, the 'old' tribes of rolling Canthonini and tunneling Dichotomiini each consisted of multiple lineages at hierarchical levels equivalent to the smaller tribes. Their original grouping, based on morphology, was probably due to plesiomorphies and convergence of characters associated with rolling and tunneling behavior. Small-bodied primitive lineages of rollers and tunnelers also occupy the basal nodes of the tree including Coptorhina, a fungus-feeder whose position is supported by morphological studies (Philips et al., 2004; Zunino, 1983). Its phylogenetic position lends support to the suggestion that the Scarabaeinae arose from mycetophagous ancestors (Scholtz and Chown, 1995). The other basal member recovered consistently was Sarophorus, thought to be a detritus feeder (old dung and carrion remains, see http://www.zin.ru/Animalia/Coleoptera/eng/ sarophor.htm). Frolov (2004) also considered Sarophorus and Coptorhina to be sister taxa.

The position of *Odontoloma* + *Dicranocara*, recovered close to the basal clade *Sarophorus* + *Coptorhina* in all reconstructions, suggests a very early acquisition of rolling behavior in the Scarabaeinae. Like *Sarophorus* and *Coptorhina*, these genera currently have a very limited distribution in Southern Africa, but this basal plasticity observed in nesting behavior is likely to have been fundamental in generating the diversity observed in the group, with numerous subsequent functional switches apparent throughout the phylogeny.

The importance of this considerable plasticity in such a significant trait is evidenced by a number of critical reversals within clades. One such case is the recovery of *Copto-dactyla* and *Demarziella* within the Australian clade of small rollers. These two genera were considered to be the sole Australian representatives of the Coprini and Dichotomiini tribes, respectively (Matthews, 1974), not least because both are functionally tunnelers. Indeed, the only

other native Australian tunnelers are species of *Onthophagus*, making the Australian dung beetle assemblages distinctly 'tunneler-poor'. The recovery of *Coptodactyla* and *Demarziella* within a clade of rollers suggests that taxa from a rolling clade have taken advantage of an empty niche. *Coptodactyla* are among the largest tunnelers in the Australian fauna, with a mean body length of 13.5 mm, while the species of *Demarziella* are much smaller (4 mm; Cambefort, 1991b). Presumably, they are exploiting different niches, and do in fact appear to represent independent origins of tunneling in this geographical clade (Fig. 2).

The Neotropical Eurysternini are usually considered to be rollers, but they have never been observed to form balls for feeding. The female forms dung balls for reproduction, but produces them within the dung pat at the soil interface and these are not rolled away. Since the beetles remain within the main dung resource for both feeding and breeding purposes, they are regarded here as dwellers. Thus the 'dwellers' in Africa (Oniticellus and Tragiscus within the Oniticellini) and the Neotropics (the Eurysternini) appear to have independent origins. Feeding and breeding within the dung is an apparently 'primitive' behavior similar to the Aphodiinae outgroup; however, these examples reveal that shifts in breeding biology can occur in any direction, and that behaviors other than rolling can be highly derived. With such extensive and regular switching of methods of resource translocation, convergent morphology is probably widespread within the Scarabaeinae, and the problems with which morphological data have been faced can be more fully appreciated.

Entirely new clades that have not been recognized previously were defined by geography. The first was the Australian clade (H) that included nearly all species from this continent as well as two lineages from New Zealand and New Caledonia. There also was a Neotropical group of rollers (clade I) and the predominantly African and Oriental clade of Gymnopleurini + *Catharsius* + *Metacatharsius*. Finally there was a major, primarily African Clade E, comprising the "O-3" group (Clade C) plus Sisyphini and *Epirinus*. Another well supported geographical group, the Neotropical Phanaeini + Eucraniini, was detected previously (Ocampo and Hawks, 2006). The result was that only three lineages, Gymnopleurini, *Copris* + *Microcopris* and *Onthophagus*, were widespread and therefore dispersive at a global scale.

We suggest that future work in the systematics and taxonomy of the group should broadly consider the plasticity of traits evidenced here and the strong possibility of morphological convergence between distantly related lineages. One such example was the previous grouping of Eucraniini and Scarabaeini using morphological characters (Philips et al., 2004) that was not supported here. Another example is the morphological and behavioral similarity of the African genus *Pachysoma* (Scarabaeini) to the Neotropical eucraniines. The latter were recovered within a tunneling lineage of Phanaeini and two dichotomine genera, whereas *Pachysoma* was within a rolling lineage. The morphological

convergence may be the result of environmental pressures – both live in very similar arid habitats. A number of genera appeared to be polyphyletic and probably require taxonomic revision, including *Onitis*, *Onthophagus*, *Canthon/ Scybalocanthon*, and *Sisyphus/Neosisyphus* (excluding *N. ruber* that was here affected by missing data).

Perhaps the most remarkable finding was the ancestral nature of the African fauna. Members of the great majority of clades were derived from African clades based on reconstruction of character transformations. These gave rise to the lineages on all other continents, with little apparent back-migration according to dispersal-vicariance analysis. This finding was unexpected under the proposed scenario of Gondwanan vicariant separation of major types (Cambefort, 1991b; Davis et al., 2002). The clock-constrained tree provided here is now open to an absolute calibration to further test these scenarios.

Acknowledgments

A large number of people contributed specimens to the study and we thank Dirk Ahrens, Roger Booth, Arthur Chung, D. Cook, Richard Davies, Freddy Gathorne-Hardy, Kelly Inward, Frank-Thorsten Krell, Jason Mate, Geoff Monteith, Liz Powell, and Clarke H. Scholtz. We are grateful to Renita Danabalan, Miranda Elliott, Claire Griffin, Andrea Hall, Julia Llewellyn-Hughes, Cesc Murria-i-Farnos, Anna Papadapoulou, Liz Powell, and Ruth Wild for laboratory analysis and DNA sequencing, and to Johannes Bergsten and Peter Foster for a helpful discussion of the analysis. Conrad Gillett and two anonymous referees provided thoughtful comments that helped improve the manuscript. This work was funded by a NERC studentship to DJGI and BBSRC grant BBS/B/04358 for the study of lineages from Madagascar.

Appendix A

Scarabaeinae ingroup and Aphodiinae outgroup species sequenced for the study

Tribe	Name	Origin	BMNH	rrnL	cox1	28S
CA	Aleiantus spl	Madagascar	669891	EF656655	EF656746	EF656697
CA	Aleiantus sp2	Madagascar	669960	EF656663	EF656754	EF656705
CA	Aleiantus sp3	Madagascar	669910	EF656660	EF656751	EF656702
CA	Amphistomus complanatus	Australia	667354	AY131436	AY131808	_
CA	Anachalcos convexus	South Africa	679729	AY131437	AY131809	AY131628
CA	Anachalcos suturalis	Ivory Coast	679730	AY131438	AY131810	AY131629
CA	Anonthobium tibiale	New Caledonia	679731	AY131439	AY131811	AY131630
CA	Apotolamprus spl	Madagascar	673991	EF656677	EF656768	EF656719
CA	Aptenocanthon sp1	Australia	667362	AY131440	AY131812	AY131631
CA	Arachnodes splendidus	Madagascar	673992	EF656678	EF656769	EF656720
CA	Arachnodes sp1	Madagascar	669969	EF656664	EF656755	EF656706
CA	Arachnodes sp2	Madagascar	669997	EF656665	EF656756	EF656707
CA	Boletoscapter cornutus	Australia	667363	AY131441	AY131813	AY131632
CA	Canthon indigaceus	Costa Rica	679733	AY131443	AY131814	AY131634
CA	Canthon lamprimus	Belize	668671	EF656648	EF656739	EF656690
CA	Canthon luteicollis	Ecuador	679734	AY131444	AY131815	AY131635
CA	Canthon sp1	Ecuador	670496	EF656668	EF656759	EF656710
CA	Canthon viridis	Costa Rica	679736	AY131446	AY131817	AY131637
CA	Canthonosoma casteinaui	Australia	667364	AY131447	AY131818	AY131638
CA	Cephalodesmius armiger	Australia	679737	AY131448	_	_
CA	Cephalodesmius quadridens	Australia	667365	AY131449	AY131819	AY131639
CA	Circellium bacchus	South Africa	679738	AY131450	AY131820	AY131640
CA	Coproecus hemihaericus	Australia	679739	AY131451	AY131821	AY131641
CA	Deltochilum barbipes	Ecuador	679741	_	AY131823	AY131643
CA	Deltochilum carinatum	Ecuador	679742	AY131453	AY131824	AY131644
CA	Deltochilum gibbosum sublaeve	Belize	679743	AY131454	AY131825	AY131645
CA	Deltochilum pseudoparile	Belize	679744	AY131455	AY131826	AY131646
CA	Dicranocara deschodti	Namibia	673982	EF656672	EF656763	EF656714
CA	Diorygopyx simpliciclunis	Australia	679745	AY131456	AY131827	AY131647
CA	Epirinus aeneus	South Africa	679747	AY131458	AY131829	AY131649
CA	Epirinus hilaris	South Africa	679748	AY131459	AY131830	AY131650
CA	Epirinus spl	South Africa	679746	AY131457	AY131828	AY131648
CA	<i>Epirinus</i> sp2	South Africa	679749	AY131460	AY131831	AY131651
CA	Eudinopus dytiscoides	Argentina	679750	AY131461	AY131832	AY131652
CA	Hansreia affinis	French Guiana	679751	AY131462	AY131833	AY131653
CA	Ignambia fasciculata	New Caledonia	679752	AY131463	AY131834	AY131654
CA	Lepanus glaber	Australia	667379	EF656646	_	EF656688
CA	Lepanus nitidus	Australia	679753	AY131464	AY131835	AY131655
CA	Lepanus ustulatus	Australia	679754	_	_	AY131656

Appendix A (continued)

Tribe	Name	Origin	BMNH	rrnL	cox1	28S
CA	Megathoposoma candezei	Belize	679755	AY131465	AY131836	AY131657
CA	Monoplistes curvipes	Australia	667380	AY131467	_	AY131659
CA	Monoplistes sp1	Australia	667381	AY131466	AY131837	AY131658
CA	Odontoloma pusillum	South Africa	679757	AY131469	AY131839	AY131661
CA	Odontoloma spl	South Africa	679756	AY131468	AY131838	AY131660
CA	Onthobium cooki	New Caledonia	679759	AY131471	AY131841	AY131663
CA	Onthobium sp1	New Caledonia	679758	AY131470	AY131840	AY131662
CA	Panelus spl	Indonesia	679760	AV131472	AV131842	AV131664
	Paronthobium simplex	New Caledonia	679761	AV131472	AV131843	AV131665
	Phaeosoma nunetatum	Indonesia	670762	AV121475	AV121944	AV121666
	Phacosomoides alsoufieffi	Madagascar	673083	EE656673	EE656764	EE656715
	Pseudianambia sp1	Australia	670763	AV121475	AV121845	AV121667
CA	Pagudignambia sp1	Australia	670764	A 1 131473	A 1 131043	A 1 131007
CA	Pacudonthohium fugaticallaidag	Australia New Caladania	670765	A 1 131470	A 1 131040	A 1 1 3 1 0 0 8
CA	Pseudoninoolum fracticolloides	New Caledonia	079703	A I 1514//	A I 15104/	A 1 151009
CA	Pseudoninobium sp1	New Caledonia	0/9/00	AY131478	A 1 151848	AY1310/0
CA	Saphobius setosus	New Zealand	6/9/6/	AY1314/9	_	AY1316/1
CA	Saphobius squamulosus	New Zealand	6/9/68	AY131480	-	AY1316/2
CA	Scybalocanthon pygidialis	French Guiana	6/9/69	AY131481	AY131849	AY1316/3
CA	Scybalophagus spl	Argentina	679770	AY131482	AY131850	AY131674
CA	Sphaerocanthon clypeatus	Madagascar	673987	EF656676	EF656767	EF656718
CA	Temnoplectron finnigani	Australia	667373	AY131483	AY131851	AY131675
CA	Temnoplectron politulum	Australia	667377	AY131484	-	AY131676
CO	Catharsius calaharicus	South Africa	679771	AY131485	AY131852	AY131677
CO	Catharsius molossus	Indonesia	679772	AY131486	AY131853	AY131678
CO	Catharsius philus	South Africa	679773	AY131487	AY131854	AY131679
CO	Catharsius sesostris	South Africa	679774	AY131488	AY131855	AY131680
CO	Copris aeneus	South Africa	679775	AY131489	AY131856	AY131681
CO	Copris agnus	Indonesia	679776	AY131490	AY131857	AY131682
CO	Copris amyntor	South Africa	679777	AY131491	AY131858	AY131683
CO	Copris lugubris	Costa Rica	679779	AY131493	AY131860	AY131684
CO	Copris sinicus	Hong Kong	679781	AY131495	AY131862	AY131686
CO	Coptodactyla glabricollis	Australia	667366	AY131496	AY131863	AY131687
CO	Coptodactyla storeyi	Australia	679782	AY131497	_	_
CO	Metacatharsius opacus	South Africa	679783	AY131498	AY131864	AY131688
CO	M. troglodytes exiguus	South Africa	679784	AY131499	AY131865	AY131689
CO	Microcopris sp 1	Indonesia	679780	AY131494	AY131861	AY131685
DI	Ateuchus chrysonyge	Belize	679788	AY131502	AY131866	AY131692
DI	Ateuchus ecuadorense	Ecuador	669100	EF656650	EF656741	EF656692
DI	Bdelvronsis spl	Belize	669447	EF656654	EF656745	EF656696
DI	Canthidium suanacaste	Costa Rica	679791	AY131505	AY131867	AY131694
DI	Canthidium haroldi	Belize	679792	AY131506	AY131868	AY131695
DI	Canthidium rufinum	Ecuador	679793	AY131507	AV131869	AV131696
DI	Canthidium thalassinum	Ecuador	679794	AV131508	AV131870	AV131697
ומ	Contorbing spl	South Africa	679795	AV131500	AV131871	AV131698
ומ	Domarziella imitatrix	Australia	667371	EE656645	A11510/1	EE656687
ומ	Demarziella interrunta	Australia	670706	AV131511	—	AV131700
וס	Demarziella minifica	Australia	670707	AV121512	- AV121972	AV121701
וס	DemarZielia mirijica Diakotomius boraus	Foundor	670700	A 1 131312 A V121514	AT151072 AV121974	A 1 131701
	Dichotomius voreus	Ecuador	(70200	A 1 151514	A 1 131074	A 1131703
	Dicholomius parcepunctatus	Ecuador	079800	A 1 151515	A 1 1510/5	A 1 151/04
	Dichotomius sp2	Ecuador	6/9/98	AY 131515	AY1518/5	AY131702
	Dichotomius yucatanus	Costa Rica	679801	AY131510	AY1518/0	AY131705
DI	Grompnas aeruginosa	Ecuador	679802	AY13151/	AY1318//	AY131/06
DI	Heliocopris andersoni	South Africa	6/9803	AY131518	AY1318/8	AY131/0/
DI	Heliocopris hamadryas	South Africa	679804	AY131519	AY131879	AY131708
DI	Macroderes spl	South Africa	679805	AY131520	AY131880	AY131709
DI	Ontherus diabolicus	Ecuador	679806	AY131521	AY131881	AY131710
DI	Pedaria spl	South Africa	679807	AY131522	AY131882	AY131711
DI	Sarophorus costatus	South Africa	679808	AY131523	AY131883	AY131712
DI	Sarophorus tuberculatus	South Africa	679809	AY131524	AY131884	AY131713
DI	Trichillum sp1	Costa Rica	679810	AY131525	_	AY131714
DI	Uroxys micros	Belize	679813	AY131528	AY131886	AY131717
DI	Uroxys pygmaeus	Ecuador	670512	EF656670	EF656761	EF656712
DI	Uroxys spl	Costa Rica	669339	EF656652	EF656743	EF656694
EC	Anomiopsoides biloba	Argentina	679815	AY131530	AY131887	AY131719
					(continue	ed on next page)

M.T. Monaghan et al. | Molecular Phylogenetics and Evolution xxx (2007) xxx-xxx

Appendix A (continued)

Tribe	Name	Origin	BMNH	rrnL	cox1	28S
EC	Anomiopsoides heteroclyta	Argentina	679816	AY131531	AY131888	AY131720
EC	Ennearabdus lobocephalus	Argentina	679817	AY131532	AY131889	AY131721
EC	Eucranium arachnoides	Argentina	679818	AY131533	AY131890	AY131722
EC	Glyphoderus sterquilinus	Argentina	679819	AY131534	AY131891	AY131723
ER	Eurvsternus angustulus	Belize	679820	AY131535	AY131892	AY131724
ER	Eurvsternus caribaeus	Belize	679821	AY131536	AY131893	AY131725
ER	Eurvsternus hamaticollis	Ecuador	670436	EF656666	EF656757	EF656708
ER	Eurvsternus inflexus	Ecuador	679823	AY131538	AY131895	AY131726
ER	Eurysternus plebeius	Ecuador	679824	AY131539	AY131896	AY131727
ER	Eurysternus spl	Ecuador	669090	EF656649	EF656740	EF656691
ER	Eurysternus velutinus	Belize	679825	AY131540	AY131897	AY131728
GY	Allogymnopleurus thalassinus	South Africa	679826	AY131541	AY131898	AY131729
GY	Garretta nitens	South Africa	679827	AY131542	AY131899	AY131730
GY	Gymnopleurus spl	Turkey	676998	EF656682	EF656773	EF656724
GY	Gymnopleurus virens	South Africa	679828	AY131543	AY131900	AY131731
GY	Paragymnopleurus maurus	Indonesia	679830	AY131545	AY131902	AY131733
GY	Paragymnopleurus spl	Malaysia	679829	AY131544	AY131901	AY131732
GY	Paragymnopleurus striatus	Indonesia	679831	AY131546	AY131903	AY131734
0C	Cytochirus ambiguus	South Africa	679832	AY131547	AY131904	AY131735
0C	Drepanocerus bechynei	South Africa	679833	AY131548	AY131905	AY131736
00	Drepanocerus kirbvi	South Africa	679834	AY131549	AY131906	AY131737
00	Evoniticellus intermedius	South Africa	679835	AY131550	_	AY131738
00	Helictopleurus auadripunctatus	Madagascar	669892	EF656656	EF656747	EF656698
00	Helictopleurus rudicollis	Madagascar	673985	EF656675	EF656766	EF656717
00	Helictopleurus spl	Madagascar	669899	EF656657	EF656748	EF656699
00	Helictopleurus sp?	Madagascar	669916	EF656661	EF656752	EF656703
00	Helictopleurus steineri	Madagascar	673984	EF656674	EF656765	EF656716
00	Liatongus militarus	South Africa	679837	AV131552	AV131908	AV131739
00	Oniticellus earearus	South Africa	679838	AV131553	AV131909	AV131740
00	Oniticellus fubrus	Spain	679839	AV131554	AV131910	AV131741
00	Tiniocellus inines	South Africa	679841	AV131556	AV131912	AV131743
00	Tiniocellus sarawacus	Indonesia	679840	AV131555	AV131911	AV131743
00	Tiniocellus suluvacus	Nepal	676000	EE656683	EE656774	EE656725
	Tragiscus dimidiatus	South Africa	679842	ΔV131557	ΔV131913	ΔV131744
OP	Caccobius himodulus	Indonesia	670843	AV131558	AV131014	AV131745
OP	Caecobius vignitulus	South Africa	670844	AV121550	AV121015	AV121746
OP	Caccobius negrituius Caccobius schreberi	Spain	679845	AV131560	AV131915	ΔV131747
OP	Clantocaccobius converifrons	South Africa	679846	AV131561	AV131017	AV131748
OP	Digitanthanhagus diabalicus	Indonesia	679847	AV131562	A1151917	ΔV131740
OP	Digitonthophagus gazalla	South Africa	679848	AV131563	AV131018	AV131750
OP	Euonthonhagus carbonarius	South Africa	670840	AV131564	AV131010	AV131751
OP	Hydonthophagus carbonarius	South Africa	679850	AV131565	AV131020	AV131752
OP	Miliahus aniaalis	South Africa	670851	AV121566	AV121021	AV121752
OP	Mulchus upiculis Onthonhagus babirussoidas	Indonesia	670853	AV131568	AV131022	AV131753
OP	Onthophagus batasi	Paliza	668548	EE656647	EE656728	EE656680
OP	Onthophagus bidentatus	Ecuador	670854	AV131560	AV131023	AV131755
OP	Onthophagus oanolla	Australia	670855	AV121570	A1151925	AV121756
OP	Onthophagus capella Onthophagus championi	Costa Dica	660224	EE656651	- EE656742	EE656602
OP	Onthophagus chumpioni	Equador	670455	EF656667	EF656758	EF656700
OP	Onthophagus clypedius	Austrolio	667204	AV121572	E1.030738	AV121759
OP	Onthophagus consentaneus	Paliza	670858	AT 151575 AV121574	- AV121024	A 1 151/58 A V121750
OP	Onthophagus Crimits panamensis	South Africa	670850	AT 151574	A 1 151924	AV121760
OP	Onthophagus fimetarius	Australia	670860	AT 151575 AV121576	A1151925	A 1 151/00 A V121761
OP	Onthophagus Jurcuiteeps	Australia	667208	AT 151570	- AV121026	AV121762
OP	Onthophagus glabratus	Faundar	670502	A I 1515//	A 1 151920 EE456760	A I 151/02 EE454711
OP	Onthophagus lawingtus	Australia	670302	LF030009	EF030700	EF030/11
OP	Onthophagus mile	Australia	670064	AV121501	_	A I 131/04
OP	Onthophagus mularanci	Australia	0/9804	A I 151581 AV121592	- AV121027	A I 151/03
OP	Onthophagus mulgraver	Australia	670065	AV121502	A 113192/	A I 131/00
OP	Onthophagus observier	Australia	670066	A I 151585 AV121594	- AV121020	AT 151/0/
OP	Onthophagus aug drimestyl store	Australia	670067	A I 131384	A I 131928	A I 151/08
OP	Onthophagus quaaripustulatus	Australia	0/980/	A I 131383	- AV121020	A 1 131/09
OP	Onthophagus rorarius	Australia	0/9808	A I 151580	A I 131929	A I 151//U
OP	Onthophagus rubicunaulus	Australia	00/380	A 1 15138/	A 1 151930	A 1 131//1
OP	Oninopnagus semiareus	waaysia	0/98/0	A 1 131389	A 1 131932	AT131//3

Please cite this article in press as: Monaghan, M.T. et al., A molecular phylogenetic analysis of the Scarabaeinae (dung beetles), Mol. Phylogenet. Evol. (2007), doi:10.1016/j.ympev.2007.06.009

16

Appendix A (continued)

OP Outspectages shulls Spain 679871 AV131930 AV131930 AV131973 OP Outspeckages sp2 Turkey 676985 EF556679 EF55673 EF55673 OP Outspeckages sp4 Turkey 676985 EF55663 EF565671 EF55672 OP Outspeckages sp4 Turkey 676988 EF556631 EF56572 EF556573 EF556573 EF556573 EF556573 EF556573 EF556573 EF556573 EF556573 EF556574 EF556573 EF556573 EF556573 EF556573 EF556573 EF555673 EF555673 EF55572 OP Outspeckages sp5 Costa Kira G79873 AV131923 AV131974 AV131975 AV131975 AV131975 AV131975 AV131974	Tribe	Name	Origin	BMNH	rrnL	cox1	28S
OP Outhophague sp1 South Africa 679869 AV13158 AV13158 AV13172 OP Outhophague sp2 Turkey 670953 EF55661 EF656772 EF65672 OP Outhophague sp3 Turkey 670984 EF55664 EF656775 EF65672 OP Outhophague sp4 Turkey 670984 EF65664 EF656775 EF65672 OP Outhophague sp5 Noral A 679872 AV13193 AV13193 AV131973 OP Outhophague subs South Africa 679873 AV13193 AV13193 AV13193 AV131973 OP Procegoderus obtandosaus South Africa 679874 AV11393 AV13193 AV13193 AV13193 AV13193 AV131973 OT Bobae bioan Spain 679874 AV13193 AV13194 AV	OP	Onthophagus similis	Spain	679871	AY131590	AY131933	AY131774
OP Onthophagus sp2 Turkey 676985 EF56679 EF56679 EF56671 EF565721 OP Onthophagus sp4 Turkey 670988 EF56661 EF56771 EF656723 OP Onthophagus sp5 Nepal 670088 EF55663 EF56574 EF656653 OP Onthophagus sp5 Nepal 670873 AY13193 AY13193 AY131976 OP Prologoardera brachasus South Africa 679873 AY13193 AY131976 AY131976 OP Progaderas brachasus South Africa 679875 AY131994 AY131978 AY131978 Off Babus binan Spain 679875 AY131996 AY131994 AY131978 Off Robus binan Spain 679873 AY131996 AY131940 AY13178 Off Robus binan Spain 679873 AY131996 AY131940 AY131780 Off Robus binan South Africa 679873 AY131940 AY131780 Off Robus binan	OP	Onthophagus sp1	South Africa	679869	AY131588	AY131931	AY131772
OP Onthophagus sp3 Turkey 676903 EF656712 EF65672 EF65672 OP Onthophagus sp4 Turkey 676988 EF656630 EF656771 EF65672 OP Onthophagus sp5 Nepal 677008 EF65673 EF656774 EF65675 OP Onthophagus sche Indonesia 679873 AY131591 AY13175 OP Protogoderts Schumer1 Indonesia 679875 AY131593 AY13177 OP Protogoderts Schumer1 Indonesia 679876 AY131593 AY13177 OT Bubas bubalis Spain 679877 AY131595 AY131793 AY131793 OT Bubas bubalis Spain 679877 AY131595 AY131593 AY131794 AY13178 OT Cheironitis buposternus South Africa 679877 AY131593 AY131794 AY131780 OT Ontits caffer South Africa 679882 AY131601 AY131786 OT Ontits fuglis South Africa 679884	OP	Onthophagus sp2	Turkey	676985	EF656679	EF656770	EF656721
OP Onthophagus sp4 Turky 676088 EF65671 EF65672 EF65672 OP Onthophagus sp6 Costa Rica 669344 EF656744 EF65674 OP Onthophagus supher Indonesia 673872 AY13193 AY131935 AY13175 OP Pracagoderus biculosus South Africa 673875 AY131593 AY131935 AY13177 OP Pracagoderus biculosus Spain 673875 AY131595 AY131975 AY131970 Ontis backs Spain 673877 AY131595 AY131970 AY131970 AY131970 AY131970 AY131770 Oftits alexis South Africa 673877 AY131590 AY131940 AY13178 OT Chritoriuts alexis South Africa 673878 AY131590 AY131941 AY13178 OT Ontits clefats South Africa 673883 AY131601 AY131940 AY13178 OT Ontits falexits South Africa 673883 AY131601 AY131944 AY13178	OP	Onthophagus sp3	Turkey	676993	EF656681	EF656772	EF656723
OP Outhophages sp5 Nepal 67708 EF65673 EF65673 EF65673 OP Outhophages srdpes Indonesia 679872 AY131591 AY131935 AY13175 OP Patabage ardse South Africa 679873 AY131592 AY131935 AY13177 OP Proagederts schwarer Indonesia 679874 AY131593 AY131775 OP Bukes bison Spain 679876 AY131595 AY131797 OT Bukes bison Spain 679877 AY131596 AY131793 AY131797 OT Bukes bison Spain 679877 AY131596 AY131798 AY131790 OT Chits caffer South Africa 679877 AY131596 AY131940 AY131780 OT Onits caffer South Africa 679880 AY131602 - AY131780 OT Onits fulgidar South Africa 679882 AY131601 AY131780 AY131780 OT Onits fulgidar South Africa 679884	OP	Onthophagus sp4	Turkey	676988	EF656680	EF656771	EF656722
OP Outhophiques sp6 Costa Rica 669344 Elfe56744 Elfe56744 Elfe56744 OP Outhophiques ruleves Indonesia 679872 AY131951 AY131757 OP Pracegoderus bicellosus South Africa 679875 AY131593 AY131956 AY131777 OP Pracegoderus bicellosus South Africa 679877 AY131595 AY131979 AY131979 OT Bubas bubas Spain 679877 AY131595 AY131970 AY131970 AY131970 AY131970 AY131971 AY131970 AY131971 AY131971 AY131971 AY131971 AY131971 AY131971 AY131972 AY131787 OT Heteronitis castchaui South Africa 679878 AY131970 AY131940 AY131783 OT Outits falcatus South Africa 679887 AY131601 AY131941 AY131783 OT Outits falcatus South Africa 679883 AY131601 AY131945 AY131783 OT Outits falcatus South Africa 679888<	OP	Onthophagus sp5	Nepal	677008	EF656684	EF656775	EF656726
OP Onthopkage values Indonesia 679872 AY13152 AY13192 AY13193 OP Prongoderus skoluosus South Africa 679873 AY13153 AY13193 AY13193 <td>OP</td> <td>Onthophagus sp6</td> <td>Costa Rica</td> <td>669344</td> <td>EF656653</td> <td>EF656744</td> <td>EF656695</td>	OP	Onthophagus sp6	Costa Rica	669344	EF656653	EF656744	EF656695
OP Phalogs andra South Africa 679873 AY13193 AY13193 AY13193 OP Prongoderus bicallosaus South Africa 679875 AY13193 AY13193 AY13173 OP Bibas bion Spain 679875 AY13193 AY13179 OT Bibas bion Spain 679877 AY13193 AY13193 OT Heteronitis catterbaui South Africa 679878 AY13199 AY13193 OT Heteronitis catterbaui South Africa 679870 AY13198 AY131942 AY13193 OT Ontits catterbaui South Africa 679870 AY13193 AY131942 AY13178 OT Ontits fulgitatus Hong Kong 679883 AY131601 AY131943 AY13178 OT Ontits fulgitatus Hong Kong 679883 AY131601 AY131783 AY131783 PH Caprophaneous bancifer French Guiana 679883 AY131604 AY131794 AY131794 PH Caprophaneous compiclitatum Ecuador </td <td>OP</td> <td>Onthophagus vulpes</td> <td>Indonesia</td> <td>679872</td> <td>AY131591</td> <td>AY131934</td> <td>AY131775</td>	OP	Onthophagus vulpes	Indonesia	679872	AY131591	AY131934	AY131775
OP Prongoderus bicallossus South Africa 679874 AY131593 AY13193 AY13193 OP Prongoderus schwareri Indonesia 679875 AY131593 AY13193 AY131778 OT Bubas bubas Spain 679876 AY131596 AY131930 AY131780 OT Cheironitis koplostermus South Africa 679879 AY131990 AY131940 AY131780 OT Ortis decis South Africa 679870 AY131990 AY131940 AY131780 OT Ortis caffer South Africa 679880 AY131601 AY131934 AY131780 OT Ortis fagiabas South Africa 679883 AY131601 AY131934 AY131780 OT Caprophaneous lancifer French Guiana 679883 AY131601 AY131944 AY131780 PH Caprophaneous bahama Brazil 679884 AY131603 AY131944 AY131780 PH Caprophaneous bahama Brazil 679884 AY131604 AY131944 AY131790	OP	Phalops ardea	South Africa	679873	AY131592	AY131935	AY131776
OP Processeries schwareri Indonesia 679875 AV13193 AV131977 AV131977 OT Bubas bison Spain 679876 AV131936 AV131939 AV131978 OT Bubas bison Spain 679877 AV131996 AV131939 AV131978 OT Intercontits castehand South Africa 679879 AV131988 AV131941 AV131787 OT Ontits ofexits South Africa 679880 AV131998 AV131941 AV131787 OT Ontits ofexits South Africa 679883 AV131601 AV131944 AV131787 OT Ontits ifactus Hong Kong 679883 AV131602 - AV13178 OT Ontits ifactus Bouth Africa 679883 AV131602 - AV13178 OT Controphanaeus baliana 679884 AV131602 - AV13178 PH Controphanaeus baliana 679884 AV131603 AV131791 - AV13178 PH Conorphanaeus cambeorit	OP	Proagoderus bicallossus	South Africa	679874	AY131593	AY131936	AY131777
OT Buhas bison Spain 679876 AV131955 AV131938 AV131779 OT Cheironitis hoplostermas South Africa 679877 AV131596 AV131940 AV131781 OT Cheironitis hoplostermas South Africa 679878 AV131596 AV131940 AV131781 OT Ontits defer South Africa 679870 AV131599 AV131942 AV131783 OT Ontits falcatus Hong Kong 679882 AV131601 AV131943 AV131785 OT Ontits falcatus Hong Kong 679882 AV131602 - AV131786 OT Ontits falcatus Hong Kong 679883 AV131603 AV131786 AV131786 PH Carophonease loneifer Freace 679886 AV131603 AV131794 AV13178 PH Dendropatemon bahamm Ecuador 679887 AV131604 AV131794 AV131797 PH Dendropatemon bahamm Ecuador 679880 AV131604 AV131944 AV131797	OP	Proagoderus schwaneri	Indonesia	679875	AY131594	AY131937	AY131778
OT Bubas babalas Spain 679877 AY13199 AY131990 AY131980 OT Cheronitis hopistermas South Africa 679879 AY131994 AY13192 OT Onitis active South Africa 679879 AY131994 AY131780 OT Onitis dexis South Africa 679880 AY131994 AY131780 OT Onitis fulgithe South Africa 679882 AY131601 AY131943 AY131780 OT Onitis fulgithe South Africa 679885 AY131601 AY131943 AY131780 OT Christ fulgithe South Africa 679885 AY131604 AY131945 AY131780 OT Chrophanneus bakinam Ecuador 679884 AY131605 AY131944 AY131780 PH Chedropacenno bakinam Ecuador 679887 AY131600 AY131944 AY131790 PH Diabroctis minus Brazil 679881 AY131600 AY13194 AY131790 PH Diabroctis minus Brazil <	OT	Bubas bison	Spain	679876	AY131595	AY131938	AY131779
OT Cheironitis hoplostermas South Africa 679879 AY13159 AY131940 AY131781 OT <i>Heteronitis cateronitis</i> South Africa 679879 AY131598 AY131942 AY131783 OT Ontits caffer South Africa 679880 AY131990 AY131943 AY131783 OT Ontits infigurate Hong Kong 679882 AY131601 AY131943 AY131783 OT Ontits infigurate Hong Kong 679885 AY131602	OT	Bubas bubalus	Spain	679877	AY131596	AY131939	AY131780
OT Heteronitis castelnaii South Africa 679879 AY131598 AY131941 AY131723 OT Onitis alexis South Africa 679880 AY131593 AY131942 AY131733 OT Onitis falcatus Hong Kong 679882 AY131602 - AY131783 OT Onitis fulgidus South Africa 679883 AY131602 - AY131783 PH Corrophanecus lancifer French Guiana 679886 AY131603 AY131946 AY131789 PH Corrophanecus sp1 Ecuador 679884 AY131603 AY131944 AY131797 PH Deadropeemon babianum Ecuador 679888 AY131603 AY131944 AY131792 PH Diabroctis minas Brazil 679880 AY131600 AY131949 - PH Phaneaes cambeforti Ecuador 679890 AY131600 AY131949 - PH Phaneaes cambeforti Ecuador 679890 AY131610 AY131925 AY131979 SC	OT	Cheironitis hoplosternus	South Africa	679878	AY131597	AY131940	AY131781
OT Onitis caffer South Africa 679880 AY131942 AY131942 AY131942 OT Onitis caffer South Africa 670826 EF656671 EF656763 OT Onitis fulgidus South Africa 670882 AY131060 AY131943 AY131786 OT Onitis fulgidus South Africa 679883 AY131604 AY131943 AY131787 PH Corrophameeus lancifer French Guiana 679885 AY131604 AY131944 AY131787 PH Carcophameeus sp1 Ecuador 679887 AY131606 AY131944 AY131797 PH Dendropaeunon bahinum Ecuador 679889 AY131606 AY131949 - PH Dendropaeunon bahinum Ecuador 679889 AY131608 AY131949 - PH Dendropaeunon bahinum Ecuador 679890 AY131606 AY131949 - PH Phameaeus denon Costa Rica 679891 AY131616 AY131925 AY131792 SC Drepanop	OT	Heteronitis castelnaui	South Africa	679879	AY131598	AY131941	AY131782
OT Onitis factaris Hong Kong 670526 EF656712 EF656762 EF656762 OT Onitis falcatus Hong Kong 679883 AY131602 - AY131785 OT Onitis falcatus South Africa 679885 AY131602 - AY131785 PH Coprophameaus lancifer French Guiana 679885 AY131603 AY131946 AY131785 PH Coprophameaus sp1 Ecuador 679884 AY131603 AY131944 AY131797 PH Dedropareon bahimum Ecuador 679888 AY131603 AY131944 AY131797 PH Diabrocits minas Brazil 679889 AY131609 AY131948 AY131793 PH Phamaeus sallei Belizz 679890 AY131609 AY131949 - PH Phamaeus sallei Belizz 679891 AY13160 AY131951 AY131793 SC Derpanopadus costatus Namibia 679893 AY13161 AY131952 AY131795 SC Deca	OT	Onitis alexis	South Africa	679880	AY131599	AY131942	AY131783
OT Omits fugitatus Hong Kong 679882 AY131601 AY131943 AY131786 OT Omitis fugitatus South Africa 679885 AY131604 - - AY131786 PH Coprophanacus lancifer French Guiana 679886 AY131603 AY131944 AY131787 PH Coprophanacus sp1 Ecuador 679886 AY131603 AY131944 AY131787 PH Dendropaeron bahiaman Ecuador 679888 AY131606 AY131944 AY131797 PH Dendropaeron bahiaman Ecuador 679889 AY131608 AY131944 AY131947 PH Dianacus combeforit Ecuador 679890 AY131608 AY131940 - PH Phanaeus combeforit Ecuador 679893 AY131610 AY131950 - SC Depamopdus costatus Namibia 679893 AY13161 AY131953 AY131953 SC Pachysomet Benoralis South Africa 679896 AY131614 AY131953 AY131798	OT	Onitis caffer	South Africa	670526	EF656671	EF656762	EF656713
OT Omits fugidats South Africa 679883 AY131602 - AY13178 PH Coprophanaeus lancifer French Guiana 679886 AY131603 AY131944 AY131788 PH Coprophanaeus sp1 Ecuador 679886 AY131603 AY131944 AY131789 PH Dendropaenon bakianum Ecuador 679887 AY131606 AY131947 AY131789 PH Dendropaenon bakianum Ecuador 679898 AY131606 AY131948 AY131792 PH Dhanceus combeforit Ecuador 679890 AY131600 AY131948 AY131792 PH Phanaeus demon Costa Rica 679891 AY131610 AY131951 AY131792 SC Drepanopadus costatus Namibia 679893 AY131613 AY131953 AY131795 SC Pachytomerus femoralis South Africa 679896 AY131613 AY131954 AY131795 SC Pachytomerus generus South Africa 679897 AY131614 AY131954 AY131797 <td>OT</td> <td>Onitis falcatus</td> <td>Hong Kong</td> <td>679882</td> <td>AY131601</td> <td>AY131943</td> <td>AY131785</td>	OT	Onitis falcatus	Hong Kong	679882	AY131601	AY131943	AY131785
PH Coprophanaeus lancifer French Guiana 679885 AY131604 AY131945 AY131788 PH C. telamon corrythus Belize 679886 AY131605 AY131944 AY131787 PH Dendrogaemon bahianum Ecuador 679887 AY131603 AY131944 AY131797 PH Diabrocts minuas Brazil 679888 AY131606 AY131944 AY131792 PH Duabrocts minuas Brazil 679889 AY131608 AY131948 AY131792 PH Phanaeus cambeforti Ecuador 679890 AY131610 AY131950 - PH Phanaeus sallei Belize 679893 AY131612 AY131925 AY131793 SC Drepanopodus costatus Namibia 679893 AY131612 AY131953 AY131793 SC Rachyomenus femoralis South Africa 679895 AY131613 AY131953 AY131795 SC Pachyomenus femoralis South Africa 679895 AY131614 AY131956 AY131797 <tr< td=""><td>OT</td><td>Onitis fulgidus</td><td>South Africa</td><td>679883</td><td>AY131602</td><td>-</td><td>AY131786</td></tr<>	OT	Onitis fulgidus	South Africa	679883	AY131602	-	AY131786
PH C. telanon corythas Belize 679886 AY131605 AY131946 AY131789 PH Coprophaneous sp1 Ecuador 679884 AY131603 AY131947 AY131790 PH Diabroctis minuas Brazil 679887 AY131606 AY131947 AY131791 PH Diabroctis minuas Brazil 679888 AY131608 AY131949 - AY131949 - AY131949 - P PH Phanaceus demon Costa Rica 679891 AY131610 AY131951 AY131950 - PH Phanaceus demon Costa Rica 679892 AY131611 AY131951 AY131795 SC Drepanopedus costatus Naumibia 679893 AY131612 AY131953 AY131785 SC Pachylomerus femoralis South Africa 679896 AY131615 AY131954 AY131795 SC Scarabaeus sp1 South Africa 679897 AY131616 AY131955 AY131795 SC Scarabaeus sp1 South Africa	PH	Coprophanaeus lancifer	French Guiana	679885	AY131604	AY131945	AY131788
PH Coprophanaeus spl Ecuador 679884 AY131603 AY131944 AY131787 PH Dendropemon bahinum Ecuador 679887 AY131606 AY131947 AY131979 PH Diabroctis minus Brazil 679888 AY131606 AY131948 AY131792 PH Dhanaeus cambeforti Ecuador 679889 AY131609 AY131948 AY131792 PH Phanaeus demon Costa Rica 679892 AY131610 AY131950 - PH Phonaeus callei Belize 679892 AY131611 AY131952 AY131793 SC Drepanopodus costatus Namibia 679893 AY131613 AY131952 AY131793 SC Machyoment genoralis South Africa 679895 AY131614 AY131953 AY131797 SC Pachyoment genoralis South Africa 679896 AY131616 AY131955 AY131797 SC Scarabaeus gelenus South Africa 679897 AY131616 AY131955 AY131797	PH	C. telamon corythus	Belize	679886	AY131605	AY131946	AY131789
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PH	Coprophanaeus sp1	Ecuador	679884	AY131603	AY131944	AY131787
PH Diabrocits minus Brazil 679888 AY131607 - AY131792 PH Oxystermon conspicillatum Ecuador 679890 AY131609 AY131949 - PH Phanaeus cambeforti Ecuador 679890 AY131610 AY131930 - PH Phanaeus sallei Belize 679892 AY131611 AY131951 AY131793 SC Drepanopodus costatus Namibia 679893 AY131612 AY131952 AY131793 SC Kheper nigroaeneus South Africa 679895 AY131615 AY131955 AY131797 SC Pachysomerus femoralis South Africa 679896 AY131615 AY131955 AY131797 SC Scarabaeus galenus South Africa 679898 AY131618 AY131957 AY131797 SC Scarabaeus spl South Africa 679898 AY131618 AY131996 AY131807 SC Scarabaeus spl South Africa 679900 AY131610 AY131807 AY131807 <td< td=""><td>PH</td><td>Dendropaemon bahianum</td><td>Ecuador</td><td>679887</td><td>AY131606</td><td>AY131947</td><td>AY131790</td></td<>	PH	Dendropaemon bahianum	Ecuador	679887	AY131606	AY131947	AY131790
PH Oxysterion conspicillatum Ecuador 679889 AY131608 AY131948 AY131793 PH Phanaeus demon Costa Rica 679890 AY131610 AY131950 - PH Phanaeus sallei Belize 679893 AY131611 AY131951 AY131793 SC Drepanopodus costatus Namibia 679893 AY131612 AY131952 AY131793 SC Kheper nigroaeneus South Africa 679895 AY131613 AY131953 AY131795 SC Pachylomerus femoralis South Africa 679896 AY131615 AY131955 AY131797 SC Scarabaeus galenus South Africa 679896 AY131616 AY131957 AY131797 SC Scarabaeus spal South Africa 679899 AY131618 AY131906 AY131800 SC Scarabaeus spal South Africa 679900 AY131618 AY131906 AY131800 SC Scalages hippius South Africa 679901 AY131621 AY131802 AY131802	PH	Diabroctis mimas	Brazil	679888	AY131607	-	AY131791
PH Phanaeus cambeforti Ecuador 679890 AY131609 AY131949 - PH Phanaeus sallei Belize 679891 AY131610 AY131950 - PH Phanaeus sallei Belize 679892 AY131611 AY131951 AY131793 SC Drepanopodus costatus Namibia 679893 AY131612 AY131952 AY131795 SC Pachylomerus femoralis South Africa 679895 AY131614 AY131953 AY131795 SC Pachylomerus femoralis South Africa 679896 AY131614 AY131955 AY131796 SC Scarabaeus spl South Africa 679897 AY131616 AY131956 AY131800 SC Sceliages britoni South Africa 679899 AY131618 AY131959 AY131800 SC Sceliages britoni South Africa 679900 AY131612 AY131960 AY131800 SI Neosisyphus confrater South Africa 679900 AY13162 AY131801 AY131802	PH	Oxysternon conspicillatum	Ecuador	679889	AY131608	AY131948	AY131792
PHPhanaeus adleiCosta Rica679891AY131610AY131950-PHPhanaeus salleiBelize679892AY131611AY131951AY131793SCDrepanopodus costatusNamibia679893AY131612AY131952AY131793SCKheper nigroaeneusSouth Africa679894AY131613AY131953AY131795SCPachylomerus femoralisSouth Africa679896AY131615AY131956AY131795SCScarabaeus galenusSouth Africa679897AY131615AY131956AY131797SCSceliages britoniSouth Africa679897AY131618AY131957AY131799SCSceliages britoniSouth Africa679899AY131618AY131959AY131800SCSceliages britoniSouth Africa679900AY131610AY131959AY131800SINeosisyphus fortuitusSouth Africa679900AY131621AY131960AY131803SINeosisyphus fortuitusSouth Africa679902AY131621AY131962AY131803SINeosisyphus minehilisSouth Africa679905AY131624AY131963AY131805SISisyphus criatusSouth Africa679907AY13162AY131964AY131807SISisyphus gazamusSouth Africa679906AY13162AY131964AY131807SISisyphus graduausSouth Africa679906AY13162AY131966-SISisyphus graduausSouth Africa	PH	Phanaeus cambeforti	Ecuador	679890	AY131609	AY131949	_
PH Phanacus sallei Belize 679892 AY131611 AY131951 AY131793 SC Drepanopodus costatus Namibia 679893 AY131612 AY131952 AY131795 SC Pachylomerus femoralis South Africa 679894 AY131613 AY131953 AY131795 SC Pachylomerus femoralis South Africa 679895 AY131614 AY131955 AY131795 SC Pachylomerus femoralis South Africa 679897 AY131616 AY131957 AY131795 SC Scarabaeus galenus South Africa 679897 AY131616 AY131957 AY131795 SC Sceliages britoni South Africa 679890 AY131618 AY131958 AY131801 SC Sceliages britoni South Africa 679900 AY131619 AY131950 AY131801 SI Neosisyphus confrater South Africa 679901 AY131621 AY131960 AY131801 SI Neosisyphus fortuitus South Africa 679903 AY131621 AY131963	PH	Phanaeus demon	Costa Rica	679891	AY131610	AY131950	—
SCDrepanopodus costatusNamibia679893AY131612AY131952AY131795SCPachylomerus femoralisSouth Africa679894AY131613AY131953AY131795SCPachylomerus femoralisSouth Africa679896AY131614AY131954AY131795SCPachylomerus femoralisSouth Africa679896AY131615AY131955AY131797SCScarabaeus galenusSouth Africa679897AY131616AY131957AY131797SCScarabaeus splSouth Africa679899AY131617AY131957AY131799SCSceliages brittoniSouth Africa679900AY131618AY131959AY131801SCSceliages hippiasSouth Africa679900AY131620AY131960AY131800SINeosisyphus confraterSouth Africa679902AY131621AY131961AY131803SINeosisyphus fortuitusSouth Africa679904AY131621AY131961AY131803SINeosisyphus inrabilisSouth Africa679905AY131621AY131963AY131805SISisyphus criatusSouth Africa679907AY131625AY131964AY131805SISisyphus gazanusSouth Africa679907AY131626AY131965AY131805SISisyphus gazanusSouth Africa679907AY131626AY131965AY131805SISisyphus gazanusSouth Africa679907AY131626AY131965AY131806SISi	PH	Phanaeus sallei	Belize	679892	AY131611	AY131951	AY131793
SCKheper nigroaeneusSouth Africa679894AY131613AY131953AY131795SCPachysoma splSouth Africa679895AY131614AY131954AY131795SCPachysoma splSouth Africa679896AY131615AY131955AY131797SCScarabaeus galenusSouth Africa679897AY131616AY131956AY131798SCScarabaeus splSouth Africa679898AY131617AY131957AY131799SCSceliages brittoniSouth Africa679898AY131618AY131957AY131801SCSceliages brittoniSouth Africa679900AY131619AY131959AY131801SCSceliages brittoniSouth Africa679900AY131612AY131960AY131801SINeosisyphus fortuitusSouth Africa679901AY131621AY131964AY131803SINeosisyphus fortuitusSouth Africa679904AY131622AY131964AY131804SISisyphus ratesSouth Africa679906AY131624AY131963AY131805SISisyphus gazanusSouth Africa679907AY131626AY131806-Afrodustictus spNamibia703538EF656686EF656778EF656728Afrodustictus sp1Madagascar669904EF656685EF656778EF656729Afrodustictus sp2Madagascar669904EF656658EF656779EF65673Afrodustictus sp1USA792207-EF656781EF65673	SC	Drepanopodus costatus	Namibia	679893	AY131612	AY131952	AY131794
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SC	Kheper nigroaeneus	South Africa	679894	AY131613	AY131953	AY131795
SC Pachysoma spl South Africa 679896 AY131615 AY131955 AY131797 SC Scarabaeus galenus South Africa 679897 AY131616 AY131956 AY131798 SC Scarabaeus spl South Africa 679898 AY131617 AY131957 AY131800 SC Sceliages brittoni South Africa 679890 AY131618 AY131959 AY131800 SC Sceliages hiptias South Africa 679900 AY131619 AY131959 AY131801 SI Neosisyphus confrater South Africa 679901 AY131621 AY131960 AY131803 SI Neosisyphus confrater South Africa 679903 AY131622 AY131804 SI Neosisyphus ruber South Africa 679904 AY131623 - - SI Sisyphus serintus South Africa 679905 AY131623 AY131805 AY131805 SI Sisyphus gazamus South Africa 679906 AY131625 AY131966 - SI Sisyphus seminuhum South Africa 679907 AY131626 AY131966 <td>SC</td> <td>Pachylomerus femoralis</td> <td>South Africa</td> <td>679895</td> <td>AY131614</td> <td>AY131954</td> <td>AY131796</td>	SC	Pachylomerus femoralis	South Africa	679895	AY131614	AY131954	AY131796
SCScarabaeus galenusSouth Africa679897AY131616AY131956AY131798SCScarabaeus splSouth Africa679898AY131617AY131957AY131799SCSceliages brittoniSouth Africa679899AY131618AY131958AY131801SCSceliages hippiasSouth Africa679900AY131619AY131959AY131801SINeosisyphus confraterSouth Africa679901AY131621AY131960AY131803SINeosisyphus mirabilisSouth Africa679903AY131622AY131962AY131803SINeosisyphus ruberSouth Africa679904AY131623SISixyphus riatusSouth Africa679905AY131624AY131963AY131805SISixyphus gazanusSouth Africa679906AY131625AY131964AY131805SISixyphus gazanusSouth Africa679907AY131625AY131966-SISixyphus seminulumSouth Africa679908AY131627AY131966-Afrodiastictus spNamibia703538EF656686EF656778EF656729Airapus herriettaeAustralia69900-EF656659EF65673EF65670Aphoditus sp1Madagascar669906EF656658EF65673EF65673Aphoditus sp2Madagascar669906EF656658EF65673EF65673Ataenius sciurusUSA703547-EF656782EF65673Ataenius striga	SC	Pachysoma spl	South Africa	679896	AY131615	AY131955	AY131797
SCScarabaeus sp1South Africa679898AY131617AY131957AY131799SCSceliages hippiasSouth Africa679809AY131618AY131958AY131800SINeosisyphus confraterSouth Africa679900AY131619AY131960AY131801SINeosisyphus fortuitusSouth Africa679902AY131621AY131960AY131803SINeosisyphus fortuitusSouth Africa679903AY131621AY131962AY131803SINeosisyphus ruberSouth Africa679904AY131623SISisyphus criatusSouth Africa679907AY131624AY131963AY131805SISisyphus gazanusSouth Africa679907AY131624AY131963AY131805SISisyphus gazanusSouth Africa679907AY131626AY131964AY131805SISisyphus gazanusSouth Africa679907AY131627AY131966-Afrodiastictus spNamibia703538EF656686EF656778EF656729Afrodiastictus sp1Madagascar669919EF656658EF656750EF656704Aphodius sp1Madagascar669904EF656658EF656738EF656730Ataenius monteithiEcuador792207-EF656782EF656733Ataenius sciurusUSA703547-EF656782EF656733Ataenius sciurusUSA703547-EF656784EF656733Ataenius sciurusUSA70356	SC	Scarabaeus galenus	South Africa	679897	AY131616	AY131956	AY131798
SCSouth Africa679899AY131618AY131958AY131801SCSceliages briptiasSouth Africa679900AY131619AY131959AY131801SINeosisyphus confraterSouth Africa679901AY131620AY131960AY131803SINeosisyphus fortuitusSouth Africa679902AY131621AY131962AY131803SINeosisyphus rirabilisSouth Africa679903AY131623SISisyphus riterSouth Africa679905AY131624AY131964AY131805SISisyphus criatusSouth Africa679906AY131625AY131964AY131805SISisyphus gazanusSouth Africa679907AY131626AY131965AY131807SISisyphus seminulumSouth Africa679907AY131627AY131966-SISisyphus seminulumSouth Africa679907AY131627AY131966-SISisyphus seminulumSouth Africa679907AY131626AY131965AY131807SISisyphus seminulumSouth Africa679907AY131627AY131966-Afrodiastictus spNamibia703538EF656686EF656778EF656729Afrodiastictus sp1Madagascar669904EF656658EF656750EF656700Aphodius sp2Madagascar669904EF656658EF656779EF656733Ataenius sciurusUSA792207-EF656781EF656731Ataenius striga	SC	Scarabaeus spl	South Africa	679898	AY131617	AY131957	AY131799
SCSceliages hippiasSouth Africa6/9900AY131619AY131939AY131801SINeosisyphus confraterSouth Africa679901AY131620AY131960AY131801SINeosisyphus fortuitusSouth Africa679902AY131621AY131961AY131801SINeosisyphus mirabilisSouth Africa679903AY131622AY131961AY131804SINeosisyphus ruberSouth Africa679904AY131623SISisyphus riatusSouth Africa679906AY131624AY131963AY131805SISisyphus faciculatusSouth Africa679907AY131625AY131964AY131807SISisyphus gazanusSouth Africa679907AY131627AY131966-SISisyphus seminulumSouth Africa679908AY131627AY131966-SISisyphus seminulumSouth Africa679908AY131627AY131966-Afrodiastictus spNamibia703538EF65686EF656778EF656729Afrodiastictus spNamibia703538EF656686EF656750EF656701Aphodius sp1Madagascar669904EF656658EF656739EF656730Ataenius solurusUSA792207-EF656784EF656733Ataenius strigatusUSA792208-EF656784EF656734Ataenius strigatusUSA792208-EF656781EF656734Atuenius scalculisUSA79220	SC	Sceliages brittoni	South Africa	679899	AY131618	AY131958	AY131800
SINeosisyphus confraterSouth Africa679901AY151620AY151960AY151822SINeosisyphus fortuitusSouth Africa679902AY131621AY131961AY131802SINeosisyphus mirabilisSouth Africa679903AY131622AY131962AY131804SINeosisyphus ruberSouth Africa679904AY131623SISisyphus criatusSouth Africa679906AY131624AY131963AY131805SISisyphus gazanusSouth Africa679907AY131626AY131964AY131807SISisyphus seminulumSouth Africa679907AY131626AY131966-SISisyphus seminulumSouth Africa679907AY131627AY131966-SISisyphus seminulumSouth Africa679907AY131627AY131966-SISisyphus seminulumSouth Africa679908AY131627AY131966-Afrodiastictus spNamibia703538EF656686EF656778EF656729Airapus henriettaeAustralia694800-EF656659EF656750EF656701Aphodius sp1Madagascar669906EF656659EF656750EF656701Aphodius sp3Madagascar669904EF656658EF656730EF656730Ataenius sciurusUSA792207-EF656782EF656730Ataenius sciurusUSA792206-EF656784EF656730Ataenius strigatusUSA79	SC	Sceliages hippias	South Africa	679900	AY131619	AY131959	AY131801
SINeosisyphus fortuitusSouth Africa679902AY131621AY131961AY131804SINeosisyphus mirabilisSouth Africa679903AY131621AY131962AY131804SINeosisyphus ruberSouth Africa679904AY131623SISisyphus criatusSouth Africa679905AY131624AY131963AY131805SISisyphus gazanusSouth Africa679906AY131625AY131964AY131805SISisyphus gazanusSouth Africa679907AY131626AY131966-SISisyphus gazanusSouth Africa679908AY131627AY131966-SISisyphus seminulumSouth Africa679908AY131627AY131966-Afrodiastictus spNamibia703538EF656686EF656778EF656729Airapus henriettaeAustralia694800-EF656777EF656728Aphodius sp1Madagascar669906EF656659EF656750EF656700Aphodius sp2Madagascar669904EF656658EF656779EF656730Ataenius sociurusUSA792207-EF656779EF656732Ataenius sciurusUSA792206-EF656782EF656733Ataenius sp1USA792206-EF656782EF656733Ataenius strigatusUSA792208-EF656784EF656732Ataenius strigatusUSA792206-EF656780EF656736Autaenius	SI	Neosisyphus confrater	South Africa	679901	AY131620	AY131960	AY131802
SINeosisyphus mirabilisSouth Africa6/9903AY131622AY131962AY131804SINeosisyphus ruberSouth Africa679904AY131623SISisyphus criatusSouth Africa679905AY131624AY131963AY131805SISisyphus faciculatusSouth Africa679906AY131625AY131964AY131805SISisyphus gazanusSouth Africa679907AY131626AY131965AY131807SISisyphus seminulumSouth Africa679908AY131627AY131966-Afrodiastictus spNamibia703538EF656686EF656778EF656728Afrodius sp1Madagascar669919EF656662EF656753EF656704Aphodius sp2Madagascar669904EF656658EF656738EF656704Ataenius sociurusUSA703547-EF656782EF656734Ataenius sp1USA792206-EF656782EF656734Ataenius sp1USA792208-EF656782EF656734Ataenius strigatusUSA792208-EF656781EF656732Ataenius strigatusUSA703561-EF656780EF656736Australiammoecius occidentalisAustralia703561-EF656786EF656736Platymonus calicollisUSA792209-EF656786EF656736Pleurophorus casesusSpain79220-EF656786EF656736Pleurophorus casesusSpai	SI	Neosisyphus fortuitus	South Africa	679902	AY131621	AY131961	AY131803
SINeosisyphus ruberSouth Africa6/9904AY131623SISisyphus criatusSouth Africa679905AY131624AY131963AY131805SISisyphus faciculatusSouth Africa679906AY131625AY131964AY131805SISisyphus gazanusSouth Africa679907AY131626AY131965AY131807SISisyphus seminulumSouth Africa679908AY131627AY131966-Afrodiastictus spNamibia703538EF656686EF656778EF656729Airapus henriettaeAustralia694800-EF656672EF656704Aphodius sp1Madagascar669919EF656662EF656750EF656704Aphodius sp3Madagascar669906EF656659EF656749EF656704Ataenius monteithiEcuador792207-EF656783EF656734Ataenius sciurusUSA703547-EF656782EF656733Ataenius sp1USA792206-EF656782EF656733Ataenius strigatusUSA792208-EF656784EF656732Ataenius strigatusUSA703537-EF656781EF656732Ataenius sciedutusUSA703561-EF656786EF656735Ataenius strigatusUSA703561-EF656786EF656736Platymomus calicollisUSA792209-EF656785EF656736Pleurophorus casesusSpain792209-	SI	Neosisyphus mirabilis	South Africa	679903	AY131622	AY131962	AY131804
SISisyphus criatusSouth Africa679905AT131624AT131963AT131805SISisyphus faciculatusSouth Africa679906AY131625AY131964AY131806SISisyphus gazanusSouth Africa679907AY131626AY131965AY131807SISisyphus seminulumSouth Africa679908AY131627AY131966-Afrodiastictus spNamibia703538EF656686EF656778EF656729Airapus henriettaeAustralia694800-EF656753EF656704Aphodius sp1Madagascar669919EF656662EF656750EF656704Aphodius sp3Madagascar669906EF656658EF656750EF656700Ataenius monteithiEcuador792207-EF656783EF656730Ataenius sciurusUSA703547-EF656782EF656732Ataenius strigatusUSA79208-EF656781EF656732Ataenius strigatusUSA79208-EF656781EF656732Australiamoecius occidentalisAustralia703639-EF656781EF656732Platymomus calicollisUSA792209-EF656786EF656736Platymomus calicollisUSA792209-EF656786EF656736Pleurophorus casesusSpain792209-EF656786EF656736Pleurophorus casesusSpain792209-EF656786EF656736Pleurophorus casesusSpain792209	SI	Neosisyphus ruber	South Africa	6/9904	AY131623	-	-
SISkypnus jaciculatusSouth Africa67906AY131625AY131964AY131606SISisyphus gazanusSouth Africa679907AY131626AY131965AY131807SISisyphus seminulumSouth Africa679908AY131627AY131966-Afrodiastictus spNamibia703538EF656686EF656778EF656729Airapus henriettaeAustralia694800-EF656753EF656704Aphodius sp1Madagascar669919EF656652EF656750EF656701Aphodius sp2Madagascar669906EF656658EF656749EF656700Ataenius monteithiEcuador792207-EF656779EF656733Ataenius sciurusUSA703547-EF656782EF656733Ataenius strigatusUSA792206-EF656784EF656735Australia703639-EF656781EF656732Australia703561-EF656780EF656731Australia703561-EF656785EF656736Platymomus calcollisUSA792209-EF656785EF656736Platymomus casesusSpain792207-EF656785EF656736Flotopsammodius porcicollisEG8F656731F656732EF656735Flotopsammodius caelatusUSA703561-EF656786EF656736Flotopsamsodius porcicollisEG8F656736EF656736EF656736Flotopsamsodius porcicollisEngland	51	Sisyphus criaius	South Africa	679905	AY131024	AY 131903	AY131803
SIStyphus gazanusSouth Africa679907AY 131626AY 131965AY 131967SISisyphus seminulumSouth Africa679908AY 131627AY 131966-Afrodiastictus spNamibia703538EF656686EF656778EF656729Airapus henriettaeAustralia694800-EF656753EF656704Aphodius sp1Madagascar669919EF656659EF656750EF656701Aphodius sp2Madagascar669904EF656658EF656733EF656704Ataenius monteithiEcuador792207-EF656783EF656733Ataenius sciurusUSA703547-EF656782EF656733Ataenius strigatusUSA792206-EF656782EF656735Australiammoecius occidentalisAustralia703639-EF656781EF656732Leiopsammodius caelatusUSA792209-EF656780EF656731Platymomus calicollisUSA792209-EF656785EF656731Platymomus calcollisUSA792209-EF656785EF656736Platymomus calcollisUSA792209-EF656785EF656736Platymomus calcollisUSA792209-EF656785EF656736Pleurophorus casesusSpain792210-EF656786EF656737Psammodius porcicollisEngland679909EF656685EF656776EF656737	51	Sisyphus faciculatus	South Africa	679906	AY131625	AY131964	AY131806
SIStypnus seminuumSouth Africa679908A F131027A F131960-Afrodiastictus spNamibia703538EF656686EF656778EF656729Airapus henriettaeAustralia694800-EF656777EF656728Aphodius sp1Madagascar669919EF656662EF656753EF656701Aphodius sp2Madagascar669906EF656659EF656750EF656700Aphodius sp3Madagascar669904EF656658EF656749EF656701Ataenius monteithiEcuador792207-EF656779EF656733Ataenius sciurusUSA703547-EF656782EF656733Ataenius sp1USA792206-EF656782EF656733Ataenius strigatusUSA792208-EF656784EF656732Australiammoeius occidentalisAustralia703561-EF656780EF656731Platymomus calicollisUSA792209-EF656785EF656737Platymomus casesusSpain792200-EF656786EF656737Psammodius porcicollisEngland679909EF656685EF656776EF656737	51	Sisyphus gazanus	South Africa	6/990/	AY131626	AY131965	AY13180/
Ajrodiasticitus spNamiola703538EF 650086EF 650778EF 656729Airapus henriettaeAustralia694800-EF 656777EF 656728Aphodius sp1Madagascar669919EF 656662EF 656753EF 656704Aphodius sp2Madagascar669906EF 656659EF 656750EF 656700Aphodius sp3Madagascar669904EF 656658EF 656749EF 656700Ataenius monteithiEcuador792207-EF 656733EF 656730Ataenius sciurusUSA703547-EF 656782EF 656733Ataenius sp1USA792206-EF 656782EF 656733Ataenius strigatusUSA792208-EF 656784EF 656732Australiammoeius occidentalisAustralia703541-EF 656781EF 656731Platymomus calicollisUSA792209-EF 656785EF 656737Pleurophorus casesusSpain792210-EF 656786EF 656737Psammodius porcicollisEngland679909EF 656685EF 656776EF 656727	51	Sisyphus seminulum	South Africa	0/9908	AY15102/	AY 151900	- EE(5(720
Altapias herrietaeAustralia694800-EF636777EF636778Aphodius sp1Madagascar669919EF656662EF656753EF656704Aphodius sp2Madagascar669906EF656659EF656750EF65670Aphodius sp3Madagascar669904EF656658EF656749EF656700Ataenius monteithiEcuador792207-EF656783EF656730Ataenius sciurusUSA703547-EF656782EF656733Ataenius sp1USA792206-EF656784EF656735Ataenius strigatusUSA792208-EF656784EF656732Australiammoecius occidentalisAustralia703541-EF656781EF656731Platymomus calicollisUSA792209-EF656785EF656737Pleurophorus casesusSpain792210-EF656786EF656737Psammodius porcicollisEngland679909EF656685EF656776EF656727		Ajrodiasticius sp	Namidia	/05558	EF030080	EF030778	EF030/29
Aphodulas sp1Madagascal 609919 EF 050002EF 050735EF 050704Aphodius sp2Madagascar 669906 EF 056659EF 056750EF 056701Aphodius sp3Madagascar 669904 EF 056658EF 056749EF 056700Ataenius monteithiEcuador 792207 -EF 056733EF 056734Ataenius sciurusUSA 703547 -EF 056782EF 056733Ataenius sp1USA 792206 -EF 056784EF 056735Ataenius strigatusUSA 792208 -EF 056784EF 056735Australiammoecius occidentalisAustralia 703547 -EF 056784EF 056735Australiammoecius occidentalisUSA 792208 -EF 056784EF 056735Australiammoecius occidentalisUSA 703561 -EF 056780EF 056731Platymomus calicollisUSA 792209 -EF 056785EF 056737Pleurophorus casesusSpain 792210 -EF 056786EF 056737Psammodius porcicollisEngland 679909 EF 056685EF 056776EF 056727		Airapus nenriettae	Australia	660010	- EE454442	EF030///	EF030/20
Aphodula sp2Madagascal 609900 EF 050039EF 050750EF 050701Aphodius sp3Madagascar 669904 EF 656658EF 656749EF 656700Ataenius monteithiEcuador 792207 -EF 656783EF 656734Ataenius sciurusUSA 703547 -EF 656782EF 656730Ataenius sp1USA 792206 -EF 656782EF 656735Ataenius strigatusUSA 792208 -EF 656784EF 656735Australammoeius occidentalisAustralia 703639 -EF 656781EF 656732Leiopsammodius caelatusUSA 792209 -EF 656780EF 656731Platymomus calicollisUSA 792209 -EF 656785EF 656736Pleurophorus casesusSpain 792210 -EF 656786EF 656736Psammodius porcicollisEngland 679909 EF 656685EF 656776EF 656727		Aphodius sp1	Madagascar	660006	EF030002	EF030/33	EF030/04
Apholatas sp5Madagascal609904EF 050038EF 050749EF 05070Ataenius monteithiEcuador792207-EF 656783EF 656734Ataenius sciurusUSA703547-EF 656779EF 656730Ataenius sp1USA792206-EF 656782EF 656735Ataenius strigatusUSA792208-EF 656784EF 656735Australammoeius occidentalisAustralia703639-EF 656781EF 656732Leiopsammodius caelatusUSA792209-EF 656780EF 656731Platymomus calicollisUSA792209-EF 656785EF 656736Pleurophorus casesusSpain792210-EF 656786EF 656736Psammodius porcicollisEngland679909EF 656685EF 656776EF 656727		Aphodius sp2	Madagascar	660004	EF050059	EF050750	EF656700
Ataenius monietiniEcuador192207-EF050785EF050754Ataenius sciurusUSA703547-EF656779EF656730Ataenius sp1USA792206-EF656782EF656733Ataenius strigatusUSA792208-EF656784EF656735Australammoeius occidentalisAustralia703639-EF656781EF656732Leiopsammodius caelatusUSA703561-EF656780EF656731Platymomus calicollisUSA792209-EF656785EF656736Pleurophorus casesusSpain792210-EF656786EF656736Psammodius porcicollisEngland679909EF656685EF656776EF656727		Apnoalus sp3	Fauadar	702207	EF030038	EF030/49	EF030700
Ataenius sturiusOSA703547-EF050779EF050730Ataenius sp1USA792206-EF656782EF656733Ataenius strigatusUSA792208-EF656784EF656735Australammoecius occidentalisAustralia703639-EF656781EF656732Leiopsammodius caelatusUSA703561-EF656780EF656731Platymomus calicollisUSA792209-EF656785EF656736Pleurophorus casesusSpain792210-EF656786EF656736Psammodius porcicollisEngland679909EF656685EF656776EF656727		Ataonius seineus	LISA	703547	_	EF656770	EF656720
Ataenius sp1OSA192200-EF050782EF050782Ataenius strigatusUSA792208-EF656784EF656735Australammoecius occidentalisAustralia703639-EF656781EF656732Leiopsammodius caelatusUSA703561-EF656780EF656731Platymomus calicollisUSA792209-EF656785EF656736Pleurophorus casesusSpain792210-EF656786EF656737Psammodius porcicollisEngland679909EF656685EF656776EF656727		Ataonius solutus	USA	703347	_	EF656792	EF656722
Auennus striguusUSA192200-EF 050734EF 050735Australammoecius occidentalisAustralia703639-EF 656781EF 656732Leiopsammodius caelatusUSA703561-EF 656780EF 656731Platymomus calicollisUSA792209-EF 656785EF 656736Pleurophorus casesusSpain792210-EF 656786EF 656737Psammodius porcicollisEngland679909EF 656685EF 656776EF 656727		Ataonius strigatus	USA	792200	_	EF656794	EF656725
AustralianAustralia705059-EF 050781EF 050781Leiopsammodius caelatusUSA703561-EF 656780EF 656731Platymomus calicollisUSA792209-EF 656785EF 656736Pleurophorus casesusSpain792210-EF 656786EF 656737Psammodius porcicollisEngland679909EF 656685EF 656776EF 656727		Australammoacius accidentalia	Australia	703620	—	EF656791	EF656722
Platymonus calicollisUSA705301-EF050780EF050781Pleurophorus casesusSpain792209-EF656785EF656736Psammodius porcicollisEngland679909EF656685EF656776EF656727		Leionsammodius caelatus	Ausu alla	703039	_	EF656780	EF656721
Pleurophorus casesusSpain792210–EF656786EF656737Psammodius porcicollisEngland679909EF656685EF656776EF656727		Platymomus calicollis	USA	703301	_	EF656785	EF656726
Psammodius porcicollis England 679909 EF656685 EF656776 EF656727		Planophorus casesus	Snain	792209	_	EF656786	EF656727
		Psammodius porcicollis	England	679909	 EF656685	EF656776	EF656727

Tribe membership is based on Balthasar (1963) where CA = Canthonini, CO = Coprini, DI = Dichotomiini, EC = Eucraniini, ER = Eurysternini, GY = Gymnopleurini, OC = Oniticellini, OP = Onthophagini, OT = Onitini, PH = Phanaeini, SC = Scarabaeini, and SI = Sisyphini. BMNH (British Museum - Natural History) frozen collection database catalogue number and NCBI/GenBank accession numbers are provided for each individual. - = sequence data not available.

17

18

M.T. Monaghan et al. | Molecular Phylogenetics and Evolution xxx (2007) xxx-xxx

Appendix B

Tree score and topology summary for each of the seven phylogenetic analyses conducted

	Model-based			Parsimony			
	Bayes-7	Bayes-9	ML	Lgth-invar	Gap-coding	Gap-coding	
					Standard	Simple	
Clade	-71,039.82	-74,096.89	-73,679.71	13,266	18,699	18,741	29,878
Canthonini							
Aleiantus	М	М	М	М	М	М	М
Anachalcos	М	М	М	М	М	М	М
Arachnodes	Р	Р	Р	Р	Р	Р	Р
Canthon	Р	Р	Р	Р	Р	Р	Р
Cephalodesmius	М	М	Р	М	М	М	Р
Deltochilum	М	М	Р	Р	М	М	М
Epirinus	М	М	М	М	М	М	Р
Lepanus	М	М	Р	Р	Р	М	Р
Monoplistes	М	Р	М	Р	М	Р	Р
Odontoloma	М	М	М	М	М	М	М
Onthobium	М	М	М	М	М	М	М
Pseudignambia	М	М	М	М	М	М	М
Pseudonthobium	Р	Р	Р	Р	Р	Р	Р
Saphobius	М	М	М	М	М	М	М
Sphaerocanthon	М	М	М	М	М	М	М
Temnoplectron	М	Μ	Μ	Р	М	М	Р
Coprini							
Catharsius	М	Μ	Μ	М	Μ	Μ	М
Copris + Microcopris	М	Μ	Μ	М	Μ	Μ	М
Coptodactyla	М	Μ	Р	М	Μ	Р	М
Metacatharsius	Μ	Μ	Μ	Μ	Μ	М	Р
Dichotomiini							
Ateuchus	М	Μ	Μ	М	Μ	Μ	Μ
Canthidium	Р	Р	Р	Р	Μ	Р	Р
Demarziella	М	Μ	Р	М	Μ	Μ	Р
Dichotomius	М	Р	Μ	Р	Μ	Μ	М
Heliocopris	М	Μ	Μ	М	Μ	Μ	М
Sarophorus	М	Μ	Μ	М	Μ	Μ	М
Uroxys	Μ	Μ	Μ	Μ	Μ	М	М
Oniticellini							
Helictopleurus	М	Р	Р	Р	Р	Р	Р
Tiniocellus	Р	Р	Р	Р	Р	Р	Р
Onthophagini							
Caccobius	Р	Р	Р	М	Р	Р	Р
Digitonthophagus	Р	Р	Р	Р	Р	Р	Р
Onthophagus	Р	Р	Р	Р	Р	Р	Р
Proagoderus	М	Μ	М	М	М	М	М
Onitini							
Bubas	М	М	М	М	Μ	Μ	М
Onitis	Р	Р	Р	Р	Р	Р	Р
No. monophyletic genera	26	23	20	21	25	23	18

Scores are expressed as ln likelihood for model-based searches and as tree length for parsimony searches. Genera within the larger tribes (Balthasar, 1963) and were scored for monophyly, where M, monophyletic and P, paraphyletic.

References

Brandley, M.C., Schmitz, A., Reeder, T.W., 2005. Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst. Biol. 54, 373–390.
Browne, J., Scholtz, C.H., 1999. A phylogeny of the families of

Scarabaeoidea (Coleoptera). Syst. Entomol. 24, 51-84.

- Altekar, G., Dwarkadas, S., Huelsenbeck, J.P., Ronquist, F., 2004. Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20, 407–415.
- Balthasar, V., 1963. Monographie der Scarabaeidae und Aphodiidae der Palaearktischen und Orientalischen Region (Coleoptera, Lamellicornia)Verlag Tschechosl. Akad.. Wissenschaft, Prague.
- Cambefort, Y., 1991a. From Saprophagy to Coprophagy. In: Hanski, I., Cambefort, Y. (Eds.), Dung Beetle Ecology. Princeton University Press, Princeton, NJ, USA, pp. 22–35.

- Cambefort, Y., 1991b. Biogeography and evolution. In: Hanski, I., Cambefort, Y. (Eds.), Dung Beetle Ecology. Princeton University Press, Princeton, NJ, USA, pp. 51–67.
- Davis, A.L.V., Scholtz, C.H., Philips, T.K., 2002. Historical biogeography of Scarabaeine dung beetles. J. Biogeogr. 29, 1217–1256.
- Emlen, D.J., 1997. Alternative reproductive tactics and male-dimorphism in the horned beetle *Onthophagus acuminatus* (Coleoptera, Scarabaeidae). Behav. Ecol. Sociobiol. 41, 335–341.
- Emlen, D.J., Marangelo, J., Ball, B., Cunningham, C.W., 2005. Diversity in the weapons of sexual selection, Horn evolution in the beetle genus *Onthophagus* (Coleoptera, Scarabaeidae). Evolution 59, 1060–1084.
- Frolov, A.V., 2004. New and little known species of the Afrotropical dung beetle genus *Sarophorus* (Coleoptera, Scarabaeidae) and a phylogenetic analysis of the genus. J. Afrotrop. Zool. 1, 95–100.
- Giannini, N.P., Simmons, N.B., 2003. A phylogeny of megachiropteran bats (Mammalia, Chiroptera, Pteropodidae) based on direct optimization analysis of one nuclear and four mitochondrial genes. Cladistics 19, 496–511.
- Goloboff, P.A., 1999. Analyzing large data sets in reasonable times, Solutions for composite optima. Cladistics 15, 415–428.
- Goloboff, P., Farris, S., Nixon, K., 2004. TNT (Tree Analysis using New Technology). Cladistics 20, 84.
- Guindon, S., Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704.
- Hanski, I., Cambefort, Y., 1991. Competiton in Dung Beetles. In: Hanski, I., Cambefort, Y. (Eds.), Dung Beetle Ecology. Princeton University Press, Princeton, NJ, USA, pp. 305–329.
- Higgins, D.G., Thompson, J.D., Gibson, T.J., 1996. Using CLUSTAL for multiple sequence alignment. Methods Enzymol. 266, 383–401.
- Inward, D.G., 2003. The evolution of dung beetle assemblages. Ph.D. thesis, Imperial College, London.
- Janssens, A., 1949. Contibution à l'étude des Coleoptères Lamellicornes. XII. Table synoptique et essai de classification pratique de Coleoptères Scarabaeidae. Bull. Inst. Roy. Sci. Nat. Belg. 25, 1–30.
- Maddison, W.P., Maddison, D.R., 1992. MacClade version 3.04. Sinauer Associates, Sunderland, Massachusetts.
- Marshall, D.C., Simon, C., Buckley, T.R., 2006. Accurate branch length estimation in partitioned Bayesian analyses requires accommodation of among-partition rate variation and attention to branch length priors. Syst. Biol. 55, 993–1003.
- Matthews, E.G., 1974. A revision of the Scarabaeine dung beetles of Australia. II. Tribe Scarabaeini. Aust. J. Zool. Suppl. Ser. 24, 1–211.
- Montreuil, O., 1998. Phylogenetic analysis and paraphyly of Coprini and Dichotomiini (Coleoptera, Scarabaeidae): biogeographic scenario. Ann. Soc. Entomol. Fr. 34, 135–148.

- Ocampo, F.C., Hawks, D.C., 2006. Molecular phylogenetics and evolution of the food relocation behavior of the dung beetle tribe Eucraniini (Coleoptera, Scarabaeidae, Scarabaeinae). Invertebr. Syst. 20, 557–570.
- Philips, T.K., Pretorius, E., Scholtz, C.H., 2004. A phylogenetic analysis of dung beetles (Scarabaeinae, Scarabaeidae), unrolling an evolutionary history. Invertebr. Syst. 18, 53–88.
- Ronquist, F., 1997. Dispersal-vicariance analysis, a new approach to the quantification of historical biogeography. Syst. Biol. 46, 195–203.
- Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3, Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
- Sanderson, M.J., 2003. r8s, inferring absolute rates of molecular evolution, divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302.
- Scholtz, C.H., Chown, S.L., 1995. The evolution of habitat use and diet in the Scarabaeoidea, a phylogenetic approach. In: Pakaluk, J., Slipinski, S.A. (Eds.), Biology, Phylogeny and Classification of the Coleoptera, Papers celebrating the 80th birthday of Roy A. Crowson. Muzeum I Instytut Zoologii PAN, Warszawa, pp. 355–374.
- Simmons, M.P., Ochoterena, H., 2000. Gaps as characters in sequencebased phylogenetic analyses. Syst. Biol. 49, 369–381.
- Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook, P., 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Amer. 87, 651–701.
- Swofford, D.L., 2002. PAUP*, Phylogenetic Analysis using Parsimony. Version 4.0b. Sinauer Associates, Sunderland, MA.
- Villalba, S., Lobo, J.M., Martin-Piera, F., Zardoya, R., 2002. Phylogenetic relationships of Iberian dung beetles (Coleoptera, Scarabaeinae), insights on the evolution of nesting behavior. J. Mol. Evol. 55, 116–126.
- Vogler, A.P., DeSalle, R., Assmann, T., Knisley, C.B., Schultz, T.D., 1993. Molecular population genetics of the endangered tiger beetle, *Cicindela dorsalis* (Coleoptera, Cicindelidae). Ann. Entomol. Soc. Amer. 86, 142–152.
- Wheeler, W.C., 1996. Optimization alignment, the end of multiple sequence alignment in phylogenetics? Cladistics 12, 1–9.
- Wheeler, W.C., Gladstein, D.S., Laet, J.D., 2002. POY. Version 3.0. Available from: <ftp.amnh.org/pub/molecular/poy>.
- Young, N.D., Healy, J., 2003. GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics 4, 6.
- Zunino, M., 1983. Essai préliminaire sur l'évolution des armatures genitales des Scarabaeinae, par rapport a' la taxonomie du groupe et à l'évolution du comportement de nidification (Col. Scarabaeidae). Bull. Soc. Entomol. France 88, 531–542.