Abstract We surveyed the watersheds covering more than 80% of the surface area of Nicaragua, and review the history of deliberate introductions and unintentional invasion of tilapias, Oreochromis spp., into the freshwater of Nicaragua. The species have become widely established, with a range of negative consequences for the rich natural fish fauna of this Central American country Tilapias compete directly with native cichlids in a number of ways, and have also supplanted native species as food fish in local markets. We suggest that introduced tilapias may have been responsible for the outbreak of blindness in native cichlids. We make recommendations on the management of these exotic species and on further introductions. Keywords Tilapia Æ Invasive species Æ Nicaragua Æ Fisheries Æ Aquaculture Æ Cichlids Introduction Nicaragua is noted as an especially poor country with dependency upon foreign influence in its development. Diverse and often contradictory development models for improving nutrition, food security and incomes have been implemented in Nicaragua during recent decades, repeatedly focussing on tilapia production, Oreochromis spp. (Cichlidae), over native freshwater species, 1 and often based on erroneous claims regarding tilapia impacts on native aquatic fauna (Hughes 2002; van den Berghe et al. 2003). Stocking of Nicaraguan natural waters with tilapia, Oreochromis mossambicus, (Peters, 1852) was initiated in 1959 with a direct release into Lake Moyua' (Riedel 1965), in spite of warnings J. K. McCrary (&) Faculty of Science, Technology and Environment, University of Central America, Apdo. 69, Managua, Nicaragua e-mail: jmccrary2@yahoo.com B. R. Murphy Æ J. K. McCrary Conservation Management Institute, College of Natural Resources, Virginia Tech, Blacksburg VA 24061, USA J. R. Stauffer Jr. School of Forest Resources, The Pennsylvania State University, University Park, PA 16802, USA S. S. Hendrix Biology Department, Gettysburg College, Gettysburg, PA 17325, USA 1 ADPESCA (2003) Anuario Pesquero Acuý cola de Nicaragua 2002. Centro de Investigaciones Pesqueras.Y Acuý colas, Managua, Nicaragua, 92 pp; MEDEPESCA (1996) Programa para el Desarrollo de Tecnologý´a Pesquera y Acuý cola. Managua, Nicaragua, 90 pp; Olivares I (1992) Analizan efectos de ``tilapias'' africanas. p. 6 in La Prensa, 23 August, Managua, Nicaragua. Environ Biol Fish DOI 10.1007/s10641-006-9080-x 123 ORIGINAL PAPER Tilapia (Teleostei: Cichlidae) status in Nicaraguan natural

waters

Jeffrey K. McCrary Æ Brian R. Murphy Æ Jay R. Stauffer Jr. Æ Sherman S. Hendrix Received: 10 February 2005 / Accepted: 20 March 2006

_ Springer Science+Business Media B.V. 2006 concerning the potential impacts on the native fish fauna in Nicaragua (Myers 1955), and based on a flawed claim that the lake only contained one fish species (Riedel 1965; J. McCrary unpublished data). Its introduction corresponded to the disappearance of water lily, Nymphaea sp. (Nymphaeaceae), although other explanations were initally given for the disappearance (Riedel 1965). Intentional tilapia releases into natural waters continued in the 1960s (for instance, Lake Asososca Leo'n; per Villa 1982) and were approved by the Nicaraguan government again in the 1980s. The Sandinista government approved a stocking program of tilapia, Oreochromis aureus, (Steindachner, 1864) and the characid pacu Colossoma sp. (Bayardo Eslaquit, personal communication) in Las Canoas reservoir, from which the tilapias colonized the Lake Nicaragua-LakeManagua-San JuanRiver system. Within a few years, three species of tilapia, O. aureus, O. mossambicus, and O. niloticus, were employed in aquaculture operations in the Lake Nicaragua watershed without mechanisms to prevent their escape into the natural water system. Instead of increasing biomass and fishery resources, this introduction actually reduced the stocks of native cichlid species (McKaye et al. 1995). A tilapia cultivation project was installed in Lake Apoyo in the 1980s, using hand-sexed male O. aureus in floating cages. Escapes were noted during the ensuing years, but the last documented sighting of a tilapia escapee from this project occurred in 1992 (Waid et al. 1999). However, another floating cage project, this time using androgen-induced 'all-male' O. niloticus, was installed in Lake Apoyo during the mid-1990s; both male and female feral O. niloticus were later captured from Lake Apoyo (McCrary et al. 2001). The escape of thousands of individuals from this project coincided with disappearance of extensive beds of the macroalgae Chara sp., a preferred food source for O. niloticus, and an outbreak of blindness among native cichlids (McCrary et al. 2001). Negative environmental consequences of tilapia introductions in natural waters, including suppression or extinction of endemic fish species, have been increasingly recognized in Nicaragua and in other tropical countries (Canonico et al. 2005). Whereas tilapia cage culture, direct introductions, and other aquaculture methods with a significant risk of release of tilapias into natural waters is generally prohibited in warm waters in the developed world2, cage aquaculture of tilapia is expanding in Lake Nicaragua3. In retrospect, the species introductions in Lake Nicaragua, Lake Moyua' and in Lake Apoyo all constitute decisions founded upon inadequate information regarding the respective ecosystems and the invasive character of tilapia. To examine the status of tilapia in natural waters in Nicaragua, we conducted a series of ecological and market surveys, which are reported below. Methods Site descriptions and sampling techniques Nicaragua is divided into 21 freshwater drainages,

plus 12 closed freshwater lake systems (Fig. 1). The Atlantic versant contains long rivers, many associated with swampy, seasonally flooded marshes near the coast, and includes the Nicaraguan Great Lakes as part of the San Juan River watershed. Apart from the Estero Real, rivers in the Pacific versant are short, with marked temporality in flow rates. Volcanoes whose craters contain standing water constitute another set of freshwater ecosystems that are ecological ''islands'' occupied by several endemic fishes (Waid et al. 1999; Stauffer and McKaye 2002). We sampled several rivers and lakes by gill netting and seining (Table 1; Fig. 1). We sampled Lake Moyua', a natural lake located in a depression at 420 m above mean sea level (MASL), a total of five collections on the north side of the lake, 1November 2001 and 10 November 2002, and we interviewed fishermen and identified their catch on 20 September 2003. We sampled Lake Apana's, a hydroelectric reservoir at 660 MASL in that empties via spillways into both the Matagalpa River watershed and a tributary of Lake Managua in the 2 Florida Department of Agriculture and Consumer Services. 2000. Rule 5L-3 Aquaculture Best Management Practices, Tallahassee, FL, 77 pp. 3 NICANOR S.A. 2000. Documento de Impacto Ambiental Proyecto ''Cultivo de Tilapia en Jaulas Flotantes en la Isla de Ometepe'', Altagracia, Rivas, Nicaragua, 130 pp. Environ Biol Fish

123

San Juan River watershed, near Asturias on the southeastern corner of the lake, on 15-16 January 2004. We sampled the Bocay/Coco River watershed by seining at 5 points between Ayapal on the Bocay River and Wiwilý on the Coco River 6-8 February 2001 and 20-23 April 2004. The Estero Real watershed, containing more than 15 shrimpand tilapia-producing aquaculture enterprises, was sampled at 3 points on 31 December 2001 and 1January 2002. We sampled the Wawa-Siksikwa's River watershed and the Bambana-Prinzapolka River watershed, in northeastern Nicaragua, at four points each, at elevations not exceeding 100 MASL, during 25-30 April 2002; five points in small rivers in the Pacific versant along the Chiquito River-Cosiguina watershed at 90-100 MASL on 1 June 2002; the Escondido River at El Recreo by gill netting, 6 January 2004; several tributary streams in the Escondido River watershed, in central Nicaragua at 250 to 300 melevation, during 1-4 May 2002. We snorkeled 1 km of the Buen Suceso River, on Ometepe Island, inward from the mouth on 19 December 2001. We evaluated the abundance of submerged vegetation, Chara sp. (Characeae) and incidence of blindness among fishes in two isolated volcanic crater lakes with hard, alkaline water (Waid et al. 1999), Lake Xiloa´ and Lake Apoyo, monthly from January 2001 through October 2003. We inspected Lake Apoyo for tilapia breeding activity by observation of bowers, examined the eyes of several blind specimens of the native cichlid fish A. c.f. citrinellus (Gu" nther, 1864) for determination of the cause of a sustained outbreak of

```
Table 1 Natural water ecosystems of Nicaragua containing tilapias (Oreochromis spp.)
Watershed Tilapia species present % Surface area of Nicaragua
Riverine systems
Estero Reala O. niloticus 2.80
Coco/Bocay Riversa O. niloticus 15.16
Lacustrine/riverine systems
Great Lakes/San Juan Riverb O. spp. 22.50
Lake Apana´s/Matagalpa Rivera,g Hybrid? 14.01
Lake Moyua´ (Matagalpa River)a,e O. mossambicus 0.02
Crater lakes
Lake Asososca Leoʻnc,d O. mossambicus 0.00
Lake Apoyoa,d,f O. aureus 0.03
O. niloticus
aThis study
ьМсКауе et al. (1995)
cVilla (1982)
dWaid et al.
           (1999)
eRiedel (1965)
fMcCrary et al. (2001)
gRene´ Cassells (personal communication)
Fig. 1 Map of watersheds of Nicaragua. 1: Estero Real; 2:
Chiquito River/Cosiguina; 3: Great Lakes/San Juan River;
4: Indio River; 5: Escondido River; 6: Matagalpa River; 7:
Bambana/Prinzapolka Rivers; 8:Kukalaya River; 9: Wawa/
Siskiskwa' s Rivers; 10 Coco River
Environ Biol Fish
123
blindness. We filmed tilapia activity above
breeding bowers on four occasions in 2002 and
2003. Tilapias captured in this study were logged
according to date and location captured, preserved
in 10% formaldehyde and submitted to the
collection of cichlids at the University of Central
America in Managua.
Fish market and producer assessments
We reviewed the municipal fish markets in
Masaya and Granada and interviewed several
riverside fishermen/vendors along the San Juan
River from San Carlos to El Castillo, on 24-30
May 2002. We estimated fish biomass by subsampling
and interviewed the vendors at seven
sales stands in Masaya and at eight stands in
Granada. This represented approximately 50-
75% of the vendors in each market. We interviewed
a fishermen's cooperative in San Carlos,
on the southern edge of Lake Nicaragua, on 30
May 2002, and in Miraflores and Puerto Momotombo
on Lake Managua, 24-27 March 2001. We
conducted interviews at the fish market and with
two fishermen and two exporters in Bluefields on
24 May 2004.
Results
We found tilapias inhabiting watersheds that
cover 54.5% of the surface area of Nicaragua
(Table 1). We found tilapias in abundance in the
Coco/Bocay, Matagalpa, Estero Real, and Buen
Suceso River watersheds, and in Lake Moyua'
and as minor species in Lake Asososca Leo'n and
Lake Apoyo. They now appear in the commercial
catches in the brackish Pearl Lagoon in the lower
Matagalpa River watershed, at least 350 km
downstream from Lake Apana's, where they were
apparently introduced. No tilapias were encountered
in the watersheds listed in Table 2, which
constitute 28.5% of the surface area of Nicaragua.
We filmed tilapias in pairs over bowers in Lake
Apoyo on four occasions, at depths of 2-6 m over
sandy bottom. Tilapias near bowers acted
```

aggressively toward A. c.f. citrinellus (which compete for this habitat as foraging area) in two of the four observations, as earlier reported by McCrary et al. (2001). Bowers measured 40 cm maximum depth and 1-1.2 m in diameter. Bowers were reported in every month of the monitoring period. We monitored the status of subaquatic vegetation in Lake Apoyo, which previously consisted of extensive Chara beds, which had disappeared after release of O. niloticus (Linnaeus, 1758) in the lake in the 1990s (McCrary et al. 2001). We found on four occasions small patches of Chara (approximately 4 cm diameter) inside the nest sites of A. c.f. citrinellus and Parachromis managuensis (Gu" nther, 1869), in 2004. Chara sprouts rapidly disappeared, however, after the nest sites were abandoned, suggesting strongly that the native cichlids deterred tilapias from consuming the Chara while on nest. Several small metacercarial cysts of trematodes were found in the soft connective tissue at the posterior of the eyeballs in the blind fishes examined from Lake Apoyo. Whereas several blind fishes were found during all 22 excursions in Lake Apoyo, only two blind fishes were seen in the 22 dives in Lake Xiloa? during this period. Fresh fish sales at the two markets surveyed included the cichlids A. c.f. citrinellus, Astatheros longimanus (Gu"nther, 1869), P. managuensis, Parachromis dovii (Gu" nther, 1864), and Oreochromis Table 2 Reviewed watersheds of Nicaragua in which tilapias have not been encountered Watersheds % Of surface area of Nicaragua in watershed Riverine systems Indio Riverb 1.69 Escondido Rivera 8.85 Kukalaya Rivera 2.97 Bambana/Prinzapolka Riversa 8.57 Wawa/Siksikwa´s Riversa 4.08 Chiquito River/Cosiquina watershed systema 2.24 Crater lakes Lake Tiscapac < 0.01 Lake Asososca Managuaa,c < 0.01 Lake Xiloa' a,c < 0.01 Lake Masayaa,c 0.02 Lake Apoyequec < 0.01 Lake Monte Gala'nc < 0.01 aThis study bFabio Buitrago (personal communication) cWaid et al. (1999) Environ Biol Fish 123 spp. (tilapia); the eleotrid Gobiomorus dormitor (Lace 'pe 'de, 1800); the elopid Megalops atlanticus (Valenciennes, 1847) (tarpon); and the pimelodid catfish Rhamdia guatemalensis (Gu"nther, 1864). Tilapias constituted 31% of the freshfishbiomass in the Masaya fishmarket and 42% of the Granadamarket (Fig. 2). Tilapias were the second-largest cichlid in the Masaya market and the largest cichlid in the Granada market (Fig. 3). Whereas the Masaya market, largely serving local consumers, was dominated by the cichlids A. c.f. citrinellus, P. managuensis

and tilapias in approximately equal

```
proportions, tilapias andM. atlanticus dominatedthe
Granada market. Three tilapia vendors in Granada
reported sales of cleaned and gutted tilapia to
wholesalers for resale in Guatemala, Salvador and
Honduras, which was not reported in Masaya. All
eight vendors interviewed in Granada reported that
sizes of A. c.f. citrinellus for sale have dropped in the
past years, reducing the marketability of the fish. The
San Carlos fishing cooperative handled only frozen
tilapia and M. atlanticus, for international sale.Local
fishermen on the San Juan River sold native cichlids,
but not tilapias.
Discussion
Tilapias have continued their southward progress
of colonization of Lake Nicaraqua to the southern
shore, where few tilapias were captured in the
early 1990s (McKaye et al. 1995). Although many
watersheds in the Atlantic versant appear to be
free of tilapias, three of the largest, the Coco
River, the Matagalpa River and the San Juan
River, all now contain tilapias. Time will tell if
50
A. citrinellus
A. longimanus
P. managuensis
Tilapias
G. dormitor
T. atlanticus
R. guatemalensis
% of total biomass
Masaya
Granada
Fig. 2 Proportions of
fresh fish biomass,
Masaya and Granada fish
markets
1000
2000
3000
4000
A. citrinellus
A. longimanus
P. managuensis
P. dovii
Tilapias
G. dormitor
T. atlanticus
R. guatemalensis
weight, g
Masava
Granada
Fig. 3 Weights of fresh
fishes, Masaya and
Granada Markets
Environ Biol Fish
tilapias migrate from one watershed to the next
along the Atlantic versant via brackish lagoons
and intra-coastal canals, which interconnect many
of the rivers seasonally. Another important ecosystem
is the volcanic crater lake system in which
there continue to exist lakes without tilapia.
Helminth parasites introduced with their cichlid
```

hosts into aquatic ecosystems have the potential to switch hosts and infect endemic species, and dramatically affect a native fish population

following a species introduction (Jime'nez-Garcý'a et al. 2001). This is illustrated by extensive mortality in populations of the local sturgeon, Acipenser nudiventris (Lovetsky, 1828), following introduction of the Caspian sturgeon, Acipenser stellatus (Pallas, 1711) into the Aral Sea (Combes 1996). The helminthic parasites of fishes should be included in an overall biodiversity assessment in Nicaraqua before more severe disruptions in their communities occur (Brooks and Hoberg 2000). We suggest here that the outbreak of blindness among native cichlids in Lake Apoyo (see McCrary et al. 2001) is caused by trematode infection. The trematode issue in Lake Apoyo currently is under further investigation. We show here that Chara beds, once abundant from 3 to 18 m depth (Barlow 1976), have disappeared from Lake Apoyo. The Chara beds, preferred breeding habitat for some of the native fishes, have been essentially eliminated from the lake for more than 5 years, much longer than the expected lifetime of these fishes. Tilapia may be edging out molluscivores from the lake, thereby promoting populational instabilities and propagation of trematode infections (Stauffer et al. 1997). Chara furthermore serves as important refugia for juvenile cichlids and serves important functions in substrate stability and water quality and its loss creates a risk of endemic cichlid species extinction. The ecosystem effects caused here by the tilapias coincide with theories of introductions (Fryer 1991) and in some cases were, in fact, predicted decades earlier (see Myers 1955; Riedel 1965). Davies (1976) mentioned the presence of the cichlids P. managuensis, P. dovii, Parachromis friedrichsthalii (Heckel, 1840), A. c.f. citrinellus and Hypsophrys nicaraguensis (Agassiz, 1859) in local fish markets, of which two species were not found in our fish market surveys. Tilapias compete for breeding and/or feeding resources directly with H. nicaraguensis, P. dovii and some forms of A. c.f. citrinellus (McKaye et al. 1995). Both P. managuensis and P. friedrichsthalii and some forms of A. c.f. citrinellus likely breed upon macroalgal mats, which are reduced or eliminated by feral tilapias (see McCrary et al. 2001), which could explain the absence of P. friedrichsthalii and the reported smaller sizes of A. c.f. citrinellus from our present market survey. Elasmobranchs Carcharhinus leucas (Valenciennes, 1841) and Pristis perotteti (Linnaeus, 1758), now practically nonexistent in Lake Nicaragua, were once the principal commercial fishery products of the lake, and both species were sold in the local markets (Davies 1976). Gar, Lepisosteus tropicus (Gill, 1864), continues to be sold dried and salted in the local markets, most notably during the dry season (December-April). We did not encounter any sales of dried Atherinella sardina (Meek, 1907) from the Great Lakes, once common in Nicaraguan markets (Villa 1982). Tilapias have clearly succeeded in the Nicaraguan Great Lakes ecosystem, and their presence has corresponded to a reduction in the number of

species and in the market share of native species. The perceptions of vendors coincide with the earlier demonstration that native cichlid biomass correlates negatively with presence of tilapias in Lake Nicaragua (McKaye et al. 1995), although the link between tilapia introduction and the size reduction in mojarras is not proven. The dangers that tilapia may present in natural waters in Nicaraqua are especially difficult to evaluate because native species inventories are not adequate in virtually any watershed. Without more detailed information on the niches of feral tilapias and native fishes in Nicaragua, the potential impact of tilapia introductions cannot be estimated conservatively, as recommended by Stauffer (1984).

Principle II of the Principles of Conservation of Wild Living Resources (Mangel et al. 1996) states: 'The goal of conservation should be to secure present and future options by maintaining biological diversity at genetic, species, population, and ecosystem levels; as a general rule neither the resource nor other components of the ecosystem Environ Biol Fish

123

should be perturbed beyond natural boundaries of variation''. In Nicaragua and in many other developing countries, tilapia aquaculture is not consistent with this principle, given that tilapia are known to colonize tropical lacustrine and estuarine ecosystems with great ease, to cause marked changes in vegetation structure where they colonize, to accompany important changes in ecosystem structure and to depress local fish populations (Canonico et al. 2005). The presence of the A. c.f. citrinellus species flock with dozens of endemic species in waters potentially or already colonized by tilapia (McKaye et al. 2002) underscores the importance of adherence to this principle. The principle of avoidance of introductions as an extension of the precautionary approach is not new to biologists and aquaculturists. Prevention of practices that may lead to introductions is the most effective measure in almost any scenario of human activity (McNeely 2001) and has been specifically recommended for the aquaculture industry (FAO 1995a, b; ICES 1995; Bartley and Minchin 1996). Yet in poor, governmentally weak countries such as Nicaragua, avoidance of externalities is not well-developed, leaving the country open to risk-taking activities without accountability when environmental damage occurs (Jenkins 2001). Aquaculture activities are actively advocated by firstworld academics, businesses, and foreign government donors in Nicaragua (Engle et al. 2002), although biological invasions are generally an overlooked consequence of international trade (Low 2001) in spite of documented and potential impacts on biodiversity of releases of exotic species into natural freshwaters in the tropics (e.g., Hargreaves and Alston 1991). Among the dangers of tilapia introductions is the difficulty of eliminating them, once they are

established. Most management techniques to control undesired fish populations are not effective for control of tilapia (Stauffer et al. 1988), although a management program to increase the abundance of potential predators of large tilapias such as alligators, Crocodrilus acutus (Cuvier, 1807), gars and elasmobranchs, all vastly reduced in Lake Nicaragua from just a few decades earlier, has been recommended (McKaye et al. 1995). There is potential for reducing the tilapia populations in Lake Apoyo by targeted netting given its lack of vegetation, limited tilapia habitats, and relatively small size. The sizes of tilapias encountered in the Masaya and Granada markets far exceed the sizes sought by the aquaculture industry, suggesting resource under-exploitation in Lake Nicaragua and its tributaries. Increased fishing pressure on tilapia would likely eliminate the larger fishes, which might aid in maintaining niche availability for native species without harming the marketability of the caught tilapia. We agree with Riedel (1965), who stated many years ago regarding tilapia introductions in Nicaragua: ''A successful eradication programme, if so desired, appears extremely difficult, if applicable at all, when the financial requirements for such an action are taken into account." We recommend an immediate moratorium on activities that carry risks of tilapia introductions as per international guidelines, via the following steps: (1) totally closed systems should always be used when cultivating tilapia, and only in watersheds where tilapia have already penetrated; (2) tilapia aquaculture should be banned from watersheds and lakes in which tilapia have not become established; (3) augmentation of fishing pressure on tilapias in Lake Nicaragua to reduce the average fish size and thereby free niche space for other fishes; (4) limitation of use of tilapia in Nicaragua to those varieties proven to be already introduced into its natural waters, thereby limiting the genetic diversity of its feral stocks. Acknowledgements We thank Lorenzo Lo' pez, Kenneth McKaye, Eric van den Berghe, Ad Konings, Willem Heinz and Kelly Fisher who provided essential strategic support for this study. This study was supported by a Fulbright Fellowship to Jeffrey McCrary, and by the College of Natural Resources at Virginia Tech, DANIDA, Fundacioʻn Alistar, and FUNDECI/Gaia. References Barlow GW (1976) The Midas cichlid in Nicaragua. In: Thorson TB (ed) Investigations of the Ichthyofauna of Nicaraguan Lakes. University of Nebraska, Lincoln, pp 333-358 Bartley DM, Minchin D (1996) Precautionary approach to the introduction and transfer of aquatic species. In: Precautionary approach to fisheries. FAO Fisheries Technical Paper 350/2, Rome, pp 159-189 Environ Biol Fish 123 Brooks DR, Hoberg EP (2000) Triage for the biosphere: the need and rationale for taxonomic inventories and

phylogenetic studies of parasites. Compend Parasitol

Canonico GC, Atherington A, McCrary JK, Thieme ML (2005) The effects of introduced tilapias on native biodiversity. Aquat Conserv 15:463-483 Combes C (1996) Parasites, biodiversity and ecosystem

```
stability. Biodivers Conserv 5:953-962
Davies WD (1976) Lake Nicaragua fishery resources. In:
Thorson TB (ed) Investigations of the Ichthyofauna
of Nicaraguan Lakes. University of Nebraska, Lincoln,
NE, pp 261-266
Engle CR, Neira I, Fu' nez NO, Monestime D (2002)
Development of Central American markets for tilapia
produced in the region. In: McElwee K, Lewis K,
Nidiffer M, Buitrago P (eds) Nineteenth Annual Technical Report. Pond Dynamics/Aquaculture
CRSP, Oregon State University, Corvallis, OR, pp
135-140
FAO (1995a) Code of conduct for responsible fisheries.
Food and Agriculture Organization of the United
Nations, Rome, Italy, 46 pp
FAO (1995b) Precautionary approach to fisheries. Pt.1:
Guidelines on the precautionary approach to capture
fisheries and species introductions. FAO Fisheries
Technical Paper No. 350/1, Rome, Italy, 59 pp
Fryer G (1991) Biological invasions in the tropics:
Hypotheses versus reality. In: Ramakrishnan PS (ed).
Ecology of biological invasion in the tropics. International
Scientific Publications, New Delhi, India,
pp 87-101
Hargreaves JA, Alston DE (eds) (1991) Status and potential
of aquaculture in the Caribbean. The World
Aquaculture Society, Baton Rouge, LA, 274 pp
Hughes DG (2002) Tilapia: the biological solution. Nicar
Acad J 3:115-128
ICES (1995) ICES code of practice on the introductions
and transfers of marine organisms. International
Council for the Exploration of the Sea, Copenhagen,
Denmark, 5 pp
Jenkins PT (2001) Who should pay? Economic dimensions
of preventing harmful invasions through international
trade and travel. In: McNeely JA (ed) The great reshuffling:
human dimensions of invasive alien species.
IUCN - The World Conservation Union, Gland,
Switzerland, pp 79-85
Jime'nez-Garcý'a MI, Vidal-Martý'nez VM, Lo' pez-Jime'nez S (2001) Monogeneans in introduced and native cichlids
in Me' xico: evidence for transfer. J Parasitol 87:907-
909
Low T (2001) From ecology to politics: the human side of
alien invasions. In: McNeely JA (ed) The great reshuffling:
human dimensions of invasive alien species.
IUCN, Gland, Switzerland, pp 35-42
Mangel M, Talbot LM, Meffe GK, Tundi Agardy A,
Alverson JB, Barlow J et al (1996) Principles for the
conservation of wild living resources. Ecol Appl
6:338-362
McCrary JK, van den Berghe EP, McKaye KR, Lo´ pez
Pe'rez LJ (2001) Tilapia cultivation: a threat to native
fish species in Nicaragua. Encuentro 58:9-19
McKaye KR, Ryan JD, Stauffer JR Jr, Lo' pez Pe'rez LJ,
Vega GI, van den Berghe EP (1995) African tilapia in
Nicaragua: ecosystem in transition. BioScience
45:406-411
McKaye KR, Stauffer JR Jr, van den Berghe EP, Vivas R,
Lopez LJ, McCrary JK, Waid R, Konings A, Lee W-J,
Kocher TD (2002) Behavioral, morphological and
genetic evidence of divergence of the Midas Cichlid
species complex in two Nicaraguan crater lakes. Cuad
Invest 12:19-47
McNeely JA (ed) (2001) The great reshuffling: human
dimensions of invasive alien species. IUCN- TheWorld
Conservation Union, Gland, Switzerland, 242 pp
Myers GS (1955) Notes on the fresh water fish fauna of
Middle Central America with special references to
pond culture of tilapia. FAO Fish Pap 2:5-8
Riedel D (1965) Some remarks on the fecundity of tilapia
(T. mossambica Peters) and its introduction into
Middle Central America (Nicaragua) together with a
first contribution towards the limnology of Nicaragua.
Hidrobiologia 25:357-388
Stauffer JR Jr (1984) Colonization theory relative to
```

introduced populations. In: Courtenay WR Jr, Stauffer JR Jr (eds) Distribution, biology, and management of exotic fishes. The Johns Hopkins University Press, Baltimore, Maryland, USA, pp 8-21 Stauffer JR Jr, Boltz SE, Boltz JM (1988) Thermal tolerance of the blue tilapia, Oreochromis aureus, in the Susquehanna River. N Am J Fish Manage 8:329-332 Stauffer JR Jr, Arnegard ME, Cetron M, Sullivan JJ, Chitsulo LA, Turner GF, Chiotha S, McKaye KR (1997) Controlling vectors and hosts of parasitic diseases using fishes: a case history of schistosomiasis in Lake Malawi. BioScience 47:41-49 Stauffer JR Jr, McKaye KR (2002) Descriptions of three new species of cichlid fishes (Teleostei: Cichlidae) from Lake Xiloa', Nicaragua. Cuad Invest 12:1-18 van den Berghe EP, McCrary JK, McKaye KR, Ryan J, Stauffer JR Jr, Konings A, Volin J, Murphy B, Lopez L, Montenegro S (2003) Response to ''Tilapia: the biological solution''. Nicar Acad J 5:45-55 Villa J (1982) Peces Nicaraguenses de Agua Dulce. Banco de Ame´ rica, Serie Geografý´a y Naturaleza 3, Managua, Nicaragua, 253 pp Waid RM, Raesly RL, McKaye KR, McCrary JK (1999) Zoogeografý a ý ctica de lagunas crate ricas de Nicaragua. Encuentro 51:65-80 Environ Biol Fish

123