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Background. The great diversity of the ‘‘Phytophaga’’ (weevils, longhorn beetles and leaf beetles) has been attributed to their
co-radiation with the angiosperms based on matching age estimates for both groups, but phylogenetic information and
molecular clock calibrations remain insufficient for this conclusion. Methodology. A phylogenetic analysis of the leaf beetles
(Chrysomelidae) was conducted based on three partial ribosomal gene markers (mitochondrial rrnL, nuclear small and large
subunit rRNA) including over 3000 bp for 167 taxa representing most major chrysomelid lineages and outgroups. Molecular
clock calibrations and confidence intervals were based on paleontological data from the oldest (K-T boundary) leaf beetle
fossil, ancient feeding traces ascribed to hispoid Cassidinae, and the vicariant split of Nearctic and Palearctic members of the
Timarchini. Principal Findings. The origin of the Chrysomelidae was dated to 73–79 Mya (confidence interval 63–86 Mya),
and most subfamilies were post-Cretaceous, consistent with the ages of all confirmed body fossils. Two major monocot feeding
chrysomelid lineages formed widely separated clades, demonstrating independent colonization of this ancient (early
Cretaceous) angiosperm lineage. Conclusions. Previous calibrations proposing a much older origin of Chrysomelidae were not
supported. Therefore, chrysomelid beetles likely radiated long after the origin of their host lineages and their diversification
was driven by repeated radiaton on a pre-existing diverse resource, rather than ancient host associations.
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INTRODUCTION
The Coleoptera (beetles) represent one of the most diversified

lineages on Earth, with about 350,000 species described and total

numbers probably an order of magnitude higher [1,2]. Among

beetles, the ‘‘Phytophaga’’ constitutes the largest radiation, repre-

senting roughly 40% of all known species [3]. This megadiverse

lineage includes Curculionoidea (weevils) and Chrysomeloidea.

The latter combines the Cerambycidae (longhorn beetles), usually

with wood-boring larvae, and the Chrysomelidae sensu lato (leaf-

beetles; including the seed beetles, Bruchidae), which mainly feed

on green plant parts [4].

A widely accepted explanation for the great species diversity in

beetles and other phytophagous insects is their co-diversification

with the rapidly radiating land plants in the Tertiary [5–8]. In the

Phytophaga, the phylogeny of beetle herbivores is thought to

mirror that of major lineages of angiosperms, i.e. ancestral host

associations in the Chrysomelidae reflect the available host plant

lineages at that time (contemporaneous lineage diversification

[3,7,9–12]). According to these studies, the most basal lineages of

the Chrysomelidae appear associated with the primitive cycads

(Aulacoscelidinae) and conifers (Palophaginae, Orsodacninae),

followed by a large diversification of lineages on dicotyledoneous

angiosperms (Chrysomelinae, Galerucinae, Cryptocephalinae) and

monocots (some bruchids, Criocerinae, Donaciinae, Cassidinae

and Hispinae). The association with monocots is thought to be

primary, as the result of conservative host associations since the

origin of the host in the Cretaceous [9,12]. Ancient associations

have also been proposed within the dicots, e.g. the co-radiation of

the genus Blepharida (Alticinae) with the incense tree family

Burseraceae dated to .100 Mya [13]. These scenarios would

place the origin of all major lineages of chrysomelids well into the

mid-Cretaceous. Recent phylogenetic studies of Chrysomelidae

based on combined analyses of morphological data and 18S rRNA

(SSU) sequences generally seem to confirm these conclusions,

dating the origin of the Chrysomelidae to approximately 150–

175 Mya [3,11,14].

However, the early-Cretaceous origin of Chrysomelidae is

problematic because confirmed first body fossil records of all major

subfamilies are known only from the Eocene (33.9–55.8 Mya),

leaving a large gap between presumed origin and earliest

appearance. Only a single fossil of a primitive chrysomelid of

unclear subfamilial association has been dated to 72 Mya [15,16].

Further, feeding damage to fossil leaves ascribed to hispine beetles

(subfamily Cassidinae) has been dated to the earliest Cenozoic

(65 Mya) and Eocene (52 Mya) [9], pre-dating Eocene body fossils

of this group by some 20 My [9]. Even with this greater lineage

age, a serious discrepancy remains between the fossil record and

the much older molecular calibrations. As pointed out by Grimaldi

and Engel [16], whilst the co-diversification hypothesis ‘‘makes

great sense […] it will be very interesting to see if it is supported by

future discoveries of fossils and by rigorous phylogenetic work’’.
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Here, we analyze basal relationships in Chrysomelidae in-

dependently of the morphological evidence that has been a major

contribution in previous phylogenetic studies [3,9–11]. We greatly

expand taxon sampling for existing 18S rRNA (SSU) data and add

two further (partial) ribosomal genes, mitochondrial 16S rRNA

(rrnL) and nuclear 28S rRNA (LSU). The new tree is dated using

fossils and a recent biogeographical estimate based on the Eocene

split of Nearctic and Palearctic lineages of Timarchini [17]. These

calibrations result in a younger age of major lineages than assumed

by previous authors, and contradict the notion of an ancestral

lineage association of angiosperms and phytophagous Chrysome-

lidae.

RESULTS
Simultaneous analysis of the three length variable markers was

performed using direct optimization under parsimony (Figure 1)

and maximum likelihood (ML) analysis on an alignment from

BLAST (Figure 2). Direct optimization under equal weighting of

indels and nucleotide changes produced a shortest tree of 10,105

steps (CI = 0.332, RI = 0.607). BLAST-based alignments resulted

in more condensed aligned data matrices (3304 versus 4579 sites in

the implied alignment from direct optimization), but the

differences mostly affected autapomorphic changes rather than

parsimony informative and ungapped sites (Table 1). Analyses on

the combined data produced very similar trees. The Chrysome-

lidae s. str. was monophyletic (node A), with Orsodacnidae as its

sister group (W; parsimony only). Chrysomelidae appeared

subdivided in three major clades, including the ‘sagrines’ (node

B), ‘eumolpines’ (node G) and ‘chrysomelines’ (node P). The

‘sagrines’ included Bruchinae (C) and the two monocot feeding

subfamilies Donaciinae (D) and Criocerinae (E), and presumably

including the monocot feeding Sagrinae [3,11,18] not sampled

here. The ML tree also placed the Synetinae sister to Bruchinae

(C’ in Figure 2). The ‘chrysomeline’ clade (P) included the

Chrysomelinae (paraphyletic [R, S] with Timarchini [Q] at the

base; their monophyly not rejected by a SH test) plus the

reciprocally monophyletic (T) Galerucinae (U) and Alticinae (V)

(Galerucinae s.l.) nested within it.

The ‘eumolpines’ included several subfamilies which have not

been linked in the past. Spilopyrinae (H) was sister to Eumolpinae

(I) which itself was paraphyletic with respect to Synetinae

(parsimony) (Figure 1). Also nested within this group were (i) the

paraphyletic Cryptocephalinae s.l. (K), with Chlamisinae (L) and

Clytrinae (M) nested within; and (ii) the monocot feeding

Cassidinae+Hispinae (N), the latter paraphyletic with respect to

a monophyletic (parsimony) or polyphyletic (ML) Cassidinae (O;

and O’ in Figure 2). The placement of monocot feeding

Cassidinae+Hispinae ( = Cassidinae s.l.) within Eumolpinae was

strongly supported in all analyses. A SH-test strongly rejected their

proposed monophyly with the monocot feeding clade of the

sagrine group [3,9, but see 11].

The ML tree was constrained to a molecular clock and branch

lengths were optimized using the penalized likelihood method [19]

under an optimal smoothing parameter of 3.6. The tree was scaled

for absolute ages by enforcing the oldest leaf beetle fossil ages to

the relevant nodes as minimum ages, and by setting the split of

Nearctic and Palearctic lineages of Timarchini to 48 Mya [17]

(Figure 2). This places the origin of the Chrysomelidae s. str. at

79.2 Mya (paleontological dating; confidence interval 74.4–

86.1 Mya) or 73.8 Mya (biogeographical dating; 63.7–85.6), and

the separation of most subfamilies to a narrow time window

between 73 and 55 Mya at the boundary of the Cretaceous and

the Paleogene (Figure 2, Table 2 and Table S1). These estimates

are concordant with the current fossil record for the Chrysome-

lidae (Figure 3). Older dates for the origin of Chrysomelidae were

obtained with the use of (i) the calibration point for Blepharida

dated based on the separation of Ethiopian and Neotropical

subclades with the split of western Gondwana [13], and (ii) the

hispine feeding traces on ginger leaves from North America [9].

The former was mapped on the current tree by setting the node

separating the representative of Blepharida from its closest relative

to 112 Mya (a conservative estimate, as the closest relative of

Blepharida in our study was more distant than the genus Diamphida

used in the original work). This resulted in a date for the origin of

Chrysomelidae of 216 Mya (168.6–228.0). Similarly, calibrated

with the younger of the two fossil feeding traces, the age of

Chrysomelidae increased to 89.0 Mya (confidence interval 78.4–

100.9), whereas the older traces pushed back their age to

111.3 Mya (97.9–126.1; Table 2). This calibration would set the

Nearctic-Palearctic split of Timarchini to 72.4 Mya (59.8–87.5;

Table 2), which is well before the continental separation and seems

implausible.

However, the placement of the hispine traces was problematic

due to uncertainty about where precisely to fix them along the

long branch leading to cassidines. Standard procedures for fossil

calibrations [20] use the basal node of the crown group for the

calibration (i.e., the fossil age is placed at the immediate ancestor

to the extant lineage). In the case of the older feeding tracks, they

can be set to 65 Mya at the base of the crown group resulting in

the old age for the Chrysomelidae (black ‘1’ in Figure 3), but if the

dates of the feeding traces are moved back towards the base of the

long branch leading to hispine/cassidine, i.e. the earliest point

these fossils could mark on the tree (black ‘2’ in Figure 3), this

would place the origin of Chrysomelidae to 77.4 Mya (73.7–83.5),

in agreement with all other estimates (Table 2). Equally, if the

younger feeding traces are moved back to the base of this branch,

the age estimate for Chrysomelidae is reduced to 62.0 Mya (59.0–

66.8).

DISCUSSION
This study provided a first comprehensive phylogenetic analysis of

Chrysomelidae based on molecular data alone. We used two

different approaches to alignment (direct optimization and

homology-extension alignment) and tree building (parsimony

and ML), to illustrate the effect of very different data treatments.

Both procedures resulted in similar trees (Figures 1 and 2; Table 1).

Other types of analysis based on a range of alignment procedures

and search algorithms also confirmed these results (Gómez-Zurita

et al., submitted). These analyses also determined that any of the

three markers separately performed worse than the simultaneous

analysis when assessed based on the recovery of well established

groups of subfamilies (Gómez-Zurita et al., submitted). This

suggests that the amount of data is critical for conclusions about

basal relationships in Chrysomelidae. Previous analyses based on

the single SSU gene were likely insufficient and greatly affected by

morphological data used in simultaneous analysis [3,11,14]. The

results obtained here now provide the basis for a new classification

of Chrysomelidae, to include three main groups preliminarily

named as ‘sagrines’, ‘chrysomelines’ and ‘eumolpines’. Whereas

the former two clades largely correspond to natural groupings

recognized previously, the ‘eumolpines’ were surprising. The

analyses suggest the paraphyly of Eumolpinae with respect to the

subfamilies Cryptocephalinae, Chlamisinae and Clytrinae (the

Cryptocephalinae s.l., frequently referred to as ‘Camptosoma’),

and most notably the Cassidinae/Hispinae. This was particularly

unexpected because it separates the latter from the other monocot

feeding lineage (Donaciinae+Criocerinae+Sagrinae), but this result

was strongly supported in the SH test.
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Our analysis places the origin of extant leaf beetle subfamilies to

the end of the Cretaceous and the late Paleocene (73 to 55 Mya)

(Table 2 and Table S1; Figure 2). Hence the basal chrysomelid

diversification would be substantially younger than the radiation of

their hosts, arguing against the widely accepted hypothesis of co-

diversification of deep angiosperm lineages and their beetle

herbivores. A much earlier date for the origin of Chrysomelidae

has been proposed in previous studies [3,9], but the evidence for

such early radiation is weak. First, descriptions of fossil

chrysomelids [21] from the Jurassic (146–200 Mya) and Triassic

(200–250 Mya; i.e. nearly as old as the oldest fossils of Coleoptera

at about 265 Mya [16,22]) suffer from poor fossil preservation,

Figure 1. Most parsimonious tree for the Chrysomelidae based on rrnL, SSU and LSU ribosomal markers from direct optimization [44] under equal
weighting (10,105 steps). Numbers above branches represent parsimony bootstrap support values above 50% using a matrix excluding all gapped
positions and maximum likelihood boostrap support above 50%. Clades mentioned in the text are highlighted.
doi:10.1371/journal.pone.0000360.g001
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Figure 2. Maximum likelihood tree constrained for a molecular clock. This tree topology was obtained implementing a GTR+G+I evolutionary model
in PHYML. The nodes used to calibrate the tree based on a sagrine-like fossil (72 Mya) and the vicariance of Timarchini (48 Mya) are marked with an
asterisk. The average node age from both calibrations differs only slightly (5.4 My at the Chrysomelidae nodes) and hence the mean of both values
was used for the figure. A gray bar represents the combined confidence interval from character resampling based on these two calibration points for
several key nodes. Nodes for taxonomic groups of interest are labelled using the same key as in Figure 1.
doi:10.1371/journal.pone.0000360.g002
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insufficient diagnostic characters for reliable grouping with

Chrysomelidae, or uncertain fossil ages [4,21,23]. They are now

considered to be untenable [16]. Further, chrysomelid fossils are

essentially absent in the Cretaceous and most appear in the

Eocene (34–56 Mya), representing most major subfamilies [21,24].

The oldest clearly identifiable record is Donacia wightoni from the

Canadian Paleocene (56–66 Mya) [21]. Slightly older are the

recently discovered Canadian Mesozoic fossils dated to 72 Mya

which have been identified as sagrine-like primitive chrysomelids

[15]. They probably represent an early lineage which pre-dates the

diversification of major extant sufamilies.

The dating of feeding damage characteristic of rolled-leaf

hispines to a maximum of 65 Mya [9], interpreted as corroborat-

ing the great antiquity of Chrysomelidae, as we show here it is still

Table 1. Summary of tree statistics and major phylogenetic findings in the simultaneous analyses of ribosomal data of
Chrysomelidae using parsimony (Direct Optimization, DO) and maximum likelihood (ML) tree reconstructions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DO BLAST (ML)

Tree statistics

Aligned sites 4579 3304

Variable sitesa 2648 (484) 1357 (409)

Informative sitesa 1279 (331) 921 (266)

parsimony tree length 10105 [10467]b

likelihood score [45699.7872]c 35041.1587

CI 0.332 [0.158]b

RI 0.607 [0.484]b

Phylogenetic conclusionsd

Chrysomelidae M (sister to Orsodacnidae) M (sister to Cerambycidae)

‘sagrines’ (Don+Cri+Bru) M M (incl. Syn)

‘chrysomelines’+‘eumolpines’ M M

‘eumolpines’ (Spi+Eum+Cry+Cas) M (incl. Syn) M

Cassidinae s.l./s.str.e M/M M/Po

‘chrysomelines’ (Tim+Chr+Gal) M M

Tim+Chr Pa Pa

monocot feeding Chrysomelidae Po Po

aExcluding gapped sites in brackets.
bOptimized under parsimony in PAUP*, for comparative purposes only.
cOptimized with PAUP* implementing the GTR+I+G model, for comparative purposes only.
dM: monophyletic; Pa: paraphyletic; Po: polyphyletic.
eThe Cassidinae s.l. includes hispines (paraphyletic in our analyses) and cassidines.
Subfamily abbreviations: Don-Donaciinae, Cri-Criocerinae, Bru-Bruchinae, Syn-Synetinae, Spi-Spilopyrinae, Eum-Eumolpinae, Cry-Cryptocephalinae, Cas-Cassidinae, Tim-
Timarchinae, Chr-Chrysomelinae, Gal-Galerucinae.
doi:10.1371/journal.pone.0000360.t001..
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Table 2. Dated events in the evolution of the Chrysomelidae using various calibration points for dating the phylogram in Figure 2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Biogeography
(48 Mya)

‘‘sagrine’’ fossil
(72 Mya)

feeding traces
(52 Mya)

feeding traces
(65 Mya, low)

feeding traces (65 Mya,
high)

Lineage Node
Age
(Mya)

94%
confidence
interval

Age
(Mya)

94%
confidence
interval

Age
(Mya)

94%
confidence
interval

Age
(Mya)

94%
confidence
interval

Age
(Mya)

94%
confidence
interval

Chrysomelidae A 73.2 63.1–84.8 79.2 74.4–86.1 89.0 78.4–100.9 77.5 73.7–83.5 111.3 97.9–126.1

‘sagrine’ clade B 66.5 56.8–75.9 72.0 - 80.9 70.7–92.5 70.4 63.5–77.5 101.2 88.4–115.7

‘chrysomeline’+‘eumolpine’
clades

F 71.5 61.8–82.4 77.3 74.3–89.6 86.9 76.2–98.7 75.6 72.5–80.5 108.6 95.3–123.4

‘eumolpine’ clade G 67.3 57.0–79.1 72.7 72.6–84.3 81.7 71.7–92.5 71.1 68.4–75.7 102.2 89.6–115.7

Cassidinae s.l. N 42.8 35.4–51.7 46.3 40.5–53.0 52.0 - 45.3 40.7–51.1 65.0 -

oldest Cassidinae s.str. O+O’ 35.6 30.5–47.8 42.5 36.4–50.0 47.7 42.1–52.0 41.5 36.5–46.4 59.6 52.6–65.0

‘chrysomeline’ clade P 68.5 58.8–78.0 74.2 67.8–80.6 83.4 73.1–96.6 72.6 67.3–79.5 104.3 91.4–120.7

North Atlantic vicariance
Timarcha

Q 48.0 - 51.5 45.2–60.3 57.9 47.8–70.0 50.4 44.3–60.0 72.4 59.8–87.5

The age corresponds to the most recent common ancestor of the corresponding crown group. For the 65 Myo feeding traces the entire dating interval is given. For
additional dated nodes and intervals see Table S1.
doi:10.1371/journal.pone.0000360.t002..
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in agreement with the younger age if it is assumed that the feeding

traces were produced by a stem group of hispines. It is also

conceivable that these feeding tracks were produced by groups

other than hispine Cassidinae [16], perhaps due to convergent

feeding patterns in other extant or extinct leaf feeding insect

lineages [25]. But even if confirmed, they do not refute our

calibration while being consistent with the dating of hispine body

fossils to the middle Eocene [21]. These dates are, however, of

importance for interpreting evolutionary history, e.g. in hispine

Cephaloleia leaf rollers that were recently used to link speciation rate

to paleoclimatic history in the Tertiary [12]. This study calibrated

the basal Cephaloleia node with the feeding traces of 66.2 Mya

(implying they were produced by an ancestor of extant Cephaloleia),

but this date could equally have been ascribed to a stem lineage of

Cephaloleia or other hispines basal to the Cephaloleia node, shifting

the origin of this genus towards the present. Only the Blepharida

calibration point [13] remains strongly inconsistent with the

current estimate, but this date depends on a strict vicariance

scenario for the separation of Afrotropical and Neotropical

lineages in the genus despite evidence for long-distance dispersal

between these insect faunas [e.g., 26] and hence a possible later

origin of independent lineages on either continent. Most flea

beetles, including Blepharida, are flighted and dispersive, in contrast

to the flightless, sedentary Timarcha whose Nearctic-Palearctic

separation is more likely to reflect ancient vicariance.

Unquestionable angiosperms in the fossil record of a magnoliid

are from ca. 130 Mya [27], and the recent discovery of fossilized

‘‘flowers’’ of Archaefructus from China would possibly push back the

origin of angiosperms even further. These fossils were found in the

lower part of the Yixian formation dated to between 125 and

145 Mya [28,29]. These authors’ conservative estimate suggested

a minimum age of 124.6 my [29], but possibly as ancient as the

oldest deposits in the formation in which they were found, placing

the origin of angiosperms to the Jurassic-Cretaceous boundary

(142 Mya) [28]. Molecular calibrations and improved dating

methods have converged on estimates between 140–180 Mya,

predating by 10–50 My the dates inferred from the fossil record

[e.g., 30]. The origin of monocot angiosperms has now been dated

reliably to the Early Cretaceous based on molecular clock [31,32]

and fossil [33] evidence. Hence, by the time the Cassidinae/

Hispinae originated, their host plants would have already been an

ancient lineage that had widely diversified.

In addition, our rejection of the purported sister relationship of

Cassidinae with the remaining monocot feeders of the ‘sagrine’

clade contradicts the proposed history of a single origin of

monocot feeding in chrysomelids [9]. Instead, the evolution of host

associations involved multiple colonizations of monocots, rather

than the repeated secondary change to dicots from a primitively

monocot feeding lineage (semi-aquatic monocots for the Donacii-

nae) postulated by [9]. Our study therefore adds to the growing

number of cases showing a time lag between host radiation and the

eventual colonization by insect herbivores [34,35]. While the host

plants represented an almost infinite diversity of suitable niches for

chrysomelids, their clade diversification was not in parallel, but

instead involved the expansion into an existing, much older

resource that likely promoted specialization and speciation [36].

Hence the assertions of concurrent clade evolution of leaf beetles

with their monocot and eudicot host lineages [3,9] may have to be

revised, and where their phylogenies are congruent this should be

interpreted as the result of adaptive radiation rather than ancestral

co-cladogenesis [e.g., 37]. Our findings do not argue against co-

evolution as a potential driving force for speciation in particular

subclades, but are clearly not compatible with the proposed co-

evolution scenario since the time of the ancestor of the

Chrysomelidae. It remains to be seen to what extent the

conclusions about the ancient associations of basal Chrysome-
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Figure 3. Dating the origin of Chrysomelidae under various absolute age calibrations. (a) Linearized tree with branch lengths proportional to
substitution rate used to estimate the age of the Chrysomelidae. The uncertainty of fossil placements along the branches leading to a dated crown
group is represented by the intervals (1, 2) (white: sagrine-like fossil; black: hispine-like feeding traces); the biogeographical event (‘‘B’’ in gray circle)
represents a maximum age for the vicariant split. Black triangles along branches represent the approximate placement of fossils known for each leaf
beetle subfamily (all Eocenic or younger; Quaternary fossils excluded). (b) Inferred ages and 94% confidence intervals for the Chrysomelidae. The
origin of Chrysomelidae is defined by the first separation of basal lineages within the Chrysomelidae (minimum age; gray square) and the node
separating Chrysomelidae from other Chrysomeloidea (maximum age; black square). These node ages (y-axis) were estimated with each of the three
calibration points from dated fossils and biogeography. The precise age of the calibration points (x-axis) is affected by uncertainty regarding their
placement along the branch defining the crown group, bracketed by the interval (1, 2), and therefore a range of dates on the y-axis (origin of
Chrysomelidae) is given for the upper and lower bounds of the calibrations. These calibration points each have a confidence interval from character
resampling shown by error bars. The tree in (a) was scaled to match the minimum possible root age according to the analysis in (b), i.e. the lower
boundary of the confidence interval using the biogeographical calibration.
doi:10.1371/journal.pone.0000360.g003

Beetle Evolution and Plants

PLoS ONE | www.plosone.org 6 April 2007 | Issue 4 | e360



loidea and Curculionoidea with their cicad and conifer feeding

hosts [3] will be affected by the revised clock calibrations proposed

here.

MATERIAL AND METHODS

Taxon Sampling and DNA Sequencing
We sampled all currently recognized subfamilies of Chrysome-

lidae, except for Sagrinae and Lamprosomatinae (Table S2). The

former consistently has been found as sister to Bruchinae [11,18],

whereas Lamprosomatinae is likely associated to a lineage of

Chlamisinae, Clytrinae and Cryptocephalinae [38]. We also

sampled the families Orsodacnidae (including both subfamilies

Orsodacninae and Aulacoscelidinae) and Megalopodidae, consid-

ered to be primitive Chrysomeloidea. The related Cerambycidae

were represented by members of nine subfamilies [39], including

all major groups. Trees were rooted using Vesperus sanzi

(Vesperidae), a plesiomorphic group near or within Cerambycidae

[40].

Total DNA was extracted from whole specimens or abdominal

tissue in large specimens using the DNeasy Tissue kit (QIAGEN).

Primer combinations, PCR conditions and PCR product purifi-

cation were as in [41] for SSU and [42] for the other markers.

PCR products were sequenced in both directions using the ABI

(Applied Biosystems) technology. The sequences were deposited in

GenBank under the accession numbers in Table S2.

Phylogenetic Analyses
Homology assignment for the ribosomal data was carried out

using (i) a ‘progressive’ alignment procedure as implemented in

BlastAlign [43] for maximum likelihood (ML) searches using

PHYML 2.4 [44], and (ii) a parsimony based sequence alignment

applying the concept of dynamic homology [45,46] in POY 3.0.11

[45,47]. The latter involved tree searches in three consecutive

stages of increasing computational intensity [48], conducted under

equal costs for character changes and indels. Although the method

estimates a tree directly from nucleotide variation and length

differences, an ‘implied alignment’ can be obtained post-hoc for

further searches and diagnostics [45], including ML analyses and

bootstrap resampling.

PHYML likelihood searches were run under the evolutionary

models and estimated parameters as obtained from ModelTest

3.06 [49] and starting from a tree obtained using the modified

neighbor-joining algorithm BIONJ [50]. Node robustness was

assessed using non-parametric bootstrapping and 100 pseudor-

eplicates. Tree searches were performed on a parallel processing

system using 16 dual-processors (2.8GHz P4, 2GB RAM).

Molecular Clock Calibration
Penalized likelihood [19] was implemented in the r8s v.1.71

software on the ML tree topology. The optimal value for the

smoothing parameter which accounts for the roughness (rate

change between branches) of the tree was obtained by cross-

validation using 20 steps of successive increases of 0.2. Absolute

ages were established based on the two oldest known leaf beetle

fossils, namely a sagrine-like beetle in 72 Myo amber from Canada

[15,16] and 65 Myo feeding traces attributed to a hispine beetle

[9]. These fossils are considered to provide minimum ages for the

dated clades [20], because of uncertainty about the placement of

the dated fossil within the crown group [35,51]. However, these

‘minimum ages’ could also be placed along the branch leading up

to the crown group if the fossil predates its earliest branching

events, pushing their position back on the tree to the stem group

age. The length of the branch leading to the crown group, and the

resulting time interval to which a fossil can be placed, is in part

dependent on sampling density of basal groups, as the addition of

basal branches can push back the relevant crown group node (but

never make it younger). So we calculated all ‘minimum age’

calibrations by placing the fossil data at the base and the tip of the

focal branches, providing minimum and maximum ages, re-

spectively, for the nodes in the phylogram. In addition, a bio-

geographic calibration was used applying a well-established

vicariant split of western Palearctic Timarcha and Nearctic

Americanotimarcha [52] with the Eocene (34–49 Mya; [53]) opening

of the North Atlantic. This node was dated to approximately

48 Mya in a previous work [17]. Following [54], we estimated the

94% confidence intervals for clade ages given the stochastic error

of rate variation along branches. This was done by bootstrapping

the original data matrix 100 times with seqboot in PHYLIP v. 3.65

[55], optimizing branch lengths on the tree topology using

PHYML, and linearizing the trees with r8s.

SUPPORTING INFORMATION

Table S1 Dated events in the evolution of the Chrysomelidae

using various calibration points for dating the phylogram in

Figure 2. The age corresponds to the most recent common

ancestor of the corresponding crown group. For the 65 Myo

feeding traces the entire dating interval is given.

Found at: doi:10.1371/journal.pone.0000360.s001 (0.05 MB

DOC)

Table S2 Taxon sampling, voucher and nucleotide database

accession numbers. In all, we obtained sequences for 167

Chrysomeloidea including 147 representatives of Chrysomelidae

from 146 species in 134 genera, plus 16 genera and species of

Cerambycidae, two of Orsodacnidae, one each of Megalopodidae

and Vesperidae.

Found at: doi:10.1371/journal.pone.0000360.s002 (0.24 MB

DOC)
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