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Preface 

Computers and the World Wide Web are rapidly and dramatically changing the face of biological 
research. These days, the term "paradigm shift" is used to describe everything from new business 
trends to new flavors of cola, but biological science is in the midst of a paradigm shift in the classical 
sense. Theoretical and computational biology have existed for decades on the "fringe" of biological 
science. But within just a few short years, the flood of new biological data produced by genomics 
efforts and, by necessity, the application of computers to the analysis of this genomic data, has begun to 
affect every aspect of the biological sciences. Research that used to start in the laboratory now starts at 
the computer, as scientists search databases for information that might suggest new hypotheses.  

In the last two decades, both personal computers and supercomputers have become accessible to 
scientists across all disciplines. Personal computers have developed from expensive novelties with little 
real computing power into machines that are as powerful as the supercomputers of 10 years ago. Just as 
they've replaced the author's typewriter and the accountant's ledger, computers have taken their place in 
controlling and collecting data from lab equipment. They have the potential to completely replace 
laboratory notebooks and files as a means of storing data. The power of computer databases allows 
much easier access to stored data than nonelectronic forms of recording. Beyond their usefulness for 
the storage, analysis, and visualization of data, however, computers are powerful devices for 
understanding any system that can be described in a mathematical way, giving rise to the disciplines of 
computational biology and, more recently, bioinformatics.  

Bioinformatics is the application of information technology to the management of biological data. It's a 
rapidly evolving scientific discipline. In the last two decades, storage of biological data in public 
databases has become increasingly common, and these databases have grown exponentially. The 
biological literature is growing exponentially as well. It's impossible for even the most zealous 
researcher to stay on top of necessary information in the field without the aid of computer-based tools, 
and the Web has made it possible for users at any location to interact with programs and databases at 
any other site—provided they know how to build the right tools.  

Bioinformatics is first and foremost a biological science. It's often less about developing perfectly 
elegant algorithms than it is about answering practical questions. Bioinformaticians (or 
bioinformaticists, if you prefer) are the tool-builders, and it's critical that they understand biological 
problems as well as computational solutions in order to produce useful tools. Bioinformatics algorithms 
need to encompass complex scientific assumptions that can complicate programming and data 
modeling in unique ways.  

Research in bioinformatics and computational biology can encompass anything from the abstraction of 
the properties of a biological system into a mathematical or physical model, to the implementation of 
new algorithms for data analysis, to the development of databases and web tools to access them. To 
engage in computational research, a biologist must be comfortable using software tools that run on a 
variety of operating systems. This book introduces and explains many of the most popular tools used in 
bioinformatics research. We've included lots of additional information and background material to help 
you understand how the tools are best used and why they are important. We hope that it will help you 
through the first steps of using computers productively in your research.  

Audience for This Book 
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Most biological science students and researchers are starting to use computers as more than word-
processing or data-collection and plotting devices. Many don't have backgrounds in computer science 
or computational theory, and to them, the fields of computational biology and bioinformatics may seem 
hopelessly large and complex. This book, motivated by our interactions with our students and 
colleagues, is by no means a comprehensive bible on all aspects of bioinformatics. It is, however, a 
thoughtful introduction to some of the most important topics in bioinformatics. We introduce standard 
computational techniques for finding information in biological sequence, genome, and molecular 
structure databases; we talk about how to identify genes and detect characteristic patterns that identify 
gene families; and we discuss the modeling of phylogenetic relationships, molecular structures, and 
biochemical properties. We also discuss ways you can use your computer as a tool to organize data, to 
think systematically about data-analysis processes, and to begin thinking about automation of data 
handling.  

Bioinformatics is a fairly advanced topic, so even an introductory book like this one assumes certain 
levels of background knowledge. To get the most out of this book you should have some coursework or 
experience in molecular biology, chemistry, and mathematics. An undergraduate course or two in 
computer programming would also be helpful.  

Structure of This Book 

We've arranged the material in this book to allow you to read it from start to finish or to skip around, 
digesting later sections before previous ones. It's divided into four parts:  

Part I 

Chapter 1 defines bioinformatics as a discipline, delves into a bit of history, and provides a brief tour of 
what the book covers and why.  

Chapter 2 introduces the core concepts of bioinformatics and molecular biology and the technologies 
and research initiatives that have made increasing amounts of biological data available. It also covers 
the ever-growing list of basic computer procedures every biologist should know.  

Part II 

Chapter 3 introduces Unix, then moves on to the basics of installing Linux on a PC and getting 
software up and running.  

Chapter 4 covers the ins and outs of moving around a Unix filesystem, including file hierarchies, 
naming schemes, commonly used directory commands, and working in a multiuser environment.  

Chapter 5 explains many Unix commands users will encounter on a daily basis, including commands 
for viewing, editing, and extracting information from files; regular expressions; shell scripts; and 
communicating with other computers.  

Part III 
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Chapter 6 is about the art of finding biological information on the Web. The chapter covers search 
engines and searching, where to find scientific articles and software, how to use the online information 
sources, and the public biological databases.  

Chapter 7 begins with a review of molecular evolution and then moves on to cover the basics of 
pairwise sequence-analysis techniques such as predicting gene location, global and local alignment, and 
local alignment-based searching against databases using BLAST and FASTA. The chapter concludes 
with coverage of multifunctional tools for sequence analysis.  

Chapter 8 moves on to study groups of related genes or proteins. It covers strategies for multiple 
sequence alignment with tools such as ClustalW and Jalview, then discusses tools for phylogenetic 
analysis, and constructing profiles and motifs.  

Chapter 9 covers 3D analysis of proteins and the tools used to compute their structural properties. The 
chapter begins with a review of protein chemistry and quickly moves to a discussion of web-based 
protein structure tools; structure classification, alignment, and analysis; solvent accessibility and 
solvent interactions; and computing physicochemical properties of proteins. The chapter concludes 
with structure optimization and a tour through protein resource databases.  

Chapter 10 covers the tools that determine the structures of proteins from their sequences. The chapter 
discusses feature detection in protein sequences, secondary structure prediction, predicting 3D 
structure. It concludes with an example project in protein modeling.  

Chapter 11 puts it all together. Up to now we've covered tools and techniques for analyzing single 
sequences or structures, and for comparing multiple sequences of single-gene length. This chapter 
discusses some of the datatypes and tools that are becoming available for studying the integrated 
function of all the genes in a genome, including sequencing an entire genome, accessing genome 
information on the Web, annotating and analyzing whole genome sequences, and emerging 
technologies and proteomics.  

Part IV 

Chapter 12 shows you how a programming language such as Perl can help you sift through mountains 
of data to extract just the information you require. It won't teach you to program in Perl, but the chapter 
gives you a brief introduction to the language and includes examples to start you on your way toward 
learning to program.  

Chapter 13 is an introduction to database concepts. It covers the types of databases used in biological 
research, the database software that builds them, database languages (in particular, the SQL language), 
and developing web-based software that interacts with databases.  

Chapter 14 covers the computational tools and techniques that allow you to make sense of your results. 
The first part of the chapter introduces programs that are used to visualize data arising from 
bioinformatics research. They range from general-purpose plotting and statistical packages for 
numerical data, such as Grace and gnuplot, to programs such as TEXshade that are dedicated to 
presenting sequence and structural information in an interpretable form. The second part of the chapter 
presents tools for data mining—the process of finding, interpreting, and evaluating patterns in large sets 
of data—in the context of applications in bioinformatics.  
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Our Approach to Bioinformatics 

We confess, we're structural biologists (biophysicists, actually). We have a hard time thinking about 
genes without thinking about their protein products. DNA sequences, to us, aren't just sequences. To a 
structural biologist, genes (with a few exceptions) imply 3D structures, molecular shapes and 
conformational changes, active sites, chemical reactions, and detailed intermolecular interactions. Our 
focus in this book is on using sequence information as structural biologists and biochemists tend to use 
it—to understand the chemical basis of biological function. We've probably neglected some 
applications of sequence analysis that are dear to the hearts of molecular biologists and geneticists, so 
feel free send us your comments.  

URLs Referenced in This Book 

For more information on the URLs we reference in this book and for additional material about 
bioinformatics, see the web page for this book, which is listed in Section P.6.  

Conventions Used in This Book 

The following conventions are used in this book: 

Italic  

Used for commands, filenames, directory names, variables, URLs, and for the first use of a term  

Constant width  

Used in code examples and to show the output of commands 

Constant width italic  

Used in "Usage" phrases to denote variables. 

 

This icon designates a note, which is an important aside to the nearby text.  

 

 
This icon designates a warning relating to the nearby text. 

 

Comments and Questions 

Please address comments and questions concerning this book to the publisher:  

O'Reilly & Associates, Inc.  
101 Morris Street  
Sebastopol, CA 95472  
(800) 998-9938 (in the United States or Canada)  
(707) 829-0515 (international or local)  
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(707) 829-0104 (fax)  

We have a web page for this book, where we list errata, examples, or any additional information. You 
can access this page at:  

http://www.oreilly.com/catalog/bioskills/  

To comment or ask technical questions about this book, send email to: 

bookquestions@oreilly.com  

For more information about our books, conferences, software, Resource Centers, and the O'Reilly 
Network, see our web site at:  

http://www.oreilly.com  
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Chapter 1. Biology in the Computer Age  

From the interaction of species and populations, to the function of tissues and cells within an individual 
organism, biology is defined as the study of living things. In the course of that study, biologists collect 
and interpret data. Now, at the beginning of the 21st century, we use sophisticated laboratory 
technology that allows us to collect data faster than we can interpret it. We have vast volumes of DNA 
sequence data at our fingertips. But how do we figure out which parts of that DNA control the various 
chemical processes of life? We know the function and structure of some proteins, but how do we 
determine the function of new proteins? And how do we predict what a protein will look like, based on 
knowledge of its sequence? We understand the relatively simple code that translates DNA into protein. 
But how do we find meaningful new words in the code and add them to the DNA-protein dictionary?  

Bioinformatics is the science of using information to understand biology; it's the tool we can use to help 
us answer these questions and many others like them. Unfortunately, with all the hype about mapping 
the human genome, bioinformatics has achieved buzzword status; the term is being used in a number of 
ways, depending on who is using it. Strictly speaking, bioinformatics is a subset of the larger field of 
computational biology , the application of quantitative analytical techniques in modeling biological 
systems. In this book, we stray from bioinformatics into computational biology and back again. The 
distinctions between the two aren't important for our purpose here, which is to cover a range of tools 
and techniques we believe are critical for molecular biologists who want to understand and apply the 
basic computational tools that are available today.  

The field of bioinformatics relies heavily on work by experts in statistical methods and pattern 
recognition. Researchers come to bioinformatics from many fields, including mathematics, computer 
science, and linguistics. Unfortunately, biology is a science of the specific as well as the general. 
Bioinformatics is full of pitfalls for those who look for patterns and make predictions without a 
complete understanding of where biological data comes from and what it means. By providing 
algorithms, databases, user interfaces, and statistical tools, bioinformatics makes it possible to do 
exciting things such as compare DNA sequences and generate results that are potentially significant. 
"Potentially significant" is perhaps the most important phrase. These new tools also give you the 
opportunity to overinterpret data and assign meaning where none really exists. We can't overstate the 
importance of understanding the limitations of these tools. But once you gain that understanding and 
become an intelligent consumer of bioinformatics methods, the speed at which your research 
progresses can be truly amazing.  

1.1 How Is Computing Changing Biology? 

An organism's hereditary and functional information is stored as DNA, RNA, and proteins, all of which 
are linear chains composed of smaller molecules. These macromolecules are assembled from a fixed 
alphabet of well-understood chemicals: DNA is made up of four deoxyribonucleotides (adenine, 
thymine, cytosine, and guanine), RNA is made up from the four ribonucleotides (adenine, uracil, 
cytosine, and guanine), and proteins are made from the 20 amino acids. Because these macromolecules 
are linear chains of defined components, they can be represented as sequences of symbols. These 
sequences can then be compared to find similarities that suggest the mo lecules are related by form or 
function.  

Sequence comparison is possibly the most useful computational tool to emerge for molecular 
biologists. The World Wide Web has made it possible for a single public database of genome sequence 
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data to provide services through a uniform interface to a worldwide community of users. With a 
commonly used computer program called fsBLAST, a molecular biologist can compare an 
uncharacterized DNA sequence to the entire publicly held collection of DNA sequences. In the next 
section, we present an example of how sequence comparison using the BLAST program can help you 
gain insight into a real disease.  

1.1.1 The Eye of the Fly 

Fruit flies (Drosophila melanogaster ) are a popular model system for the study of development of 
animals from embryo to adult. Fruit flies have a gene called eyeless, which, if it's "knocked out" (i.e., 
eliminated from the genome using molecular biology methods), results in fruit flies with no eyes. It's 
obvious that the eyeless gene plays a role in eye development.  

Researchers have identified a human gene responsible for a condition called aniridia. In humans who 
are missing this gene (or in whom the gene has mutated just enough for its protein product to stop 
functioning properly), the eyes develop without irises.  

If the gene for aniridia is inserted into an eyeless drosophila "knock out," it causes the production of 
normal drosophila eyes. It's an interesting coincidence. Could there be some similarity in how eyeless 
and aniridia function, even though flies and humans are vastly different organisms? Possibly. To gain 
insight into how eyeless and aniridia work together, we can compare their sequences. Always bear in 
mind, however, that genes have complex effects on one another. Careful experimentation is required to 
get a more definitive answer.  

As little as 15 years ago, looking for similarities between eyeless and aniridia DNA sequences would 
have been like looking for a needle in a haystack. Most scientists compared the respective gene 
sequences by hand-aligning them one under the other in a word processor and looking for matches 
character by character. This was time-consuming, not to mention hard on the eyes.  

In the late 1980s, fast computer programs for comparing sequences changed molecular biology forever. 
Pairwise comparison of biological sequences is the foundation of most widely used bioinformatics 
techniques. Many tools that are widely available to the biology community—including everything from 
multiple alignment, phylogenetic analysis, motif id entification, and homology-modeling software, to 
web-based database search services—rely on pairwise sequence-comparison algorithms as a core 
element of their function.  

These days, a biologist can find dozens of sequence matches in seconds using sequence-alignment 
programs such as BLAST and FASTA. These programs are so commonly used that the first encounter 
you have with bioinformatics tools and biological databases will probably be through the National 
Center for Biotechnology Information's (NCBI) BLAST web interface. Figure 1-1 shows a standard 
form for submitting data to NCBI for a BLAST search.  

Figure 1-1. Form for submitting a BLAST search against nucleotide databases at NCBI  
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1.1.2 Labels in Gene Sequences 

Before you rush off to compare the sequences of eyeless and aniridia with BLAST, let us tell you a 
little bit about how sequence alignment works.  

It's important to remember that biological sequence (DNA or protein) has a chemical function, but 
when it's reduced to a single-letter code, it also functions as a unique label, almost like a bar code. 
From the information technology point of view, sequence information is priceless. The sequence label 
can be applied to a gene, its product, its function, its role in cellular metabolism, and so on. The user 
searching for information related to a particular gene can then use rapid pairwise sequence comparison 
to access any information that's been linked to that sequence label.  

The most important thing about these sequence labels, though, is that they don't just uniquely identify a 
particular gene; they also contain biologically meaningful patterns that allow users to compare different 
labels, connect information, and make inferences. So not only can the labels connect all the information 
about one gene, they can help users connect information about genes that are slightly or even 
dramatically different in sequence.  

If simple labels were all that was needed to make sense of biological data, you could just slap a unique 
number (e.g., a GenBank ID) onto every DNA sequence and be done with it. But biological sequences 
are related by evolution, so a partial pattern match between two sequence labels is a significant find. 
BLAST differs from simple keyword searching in its ability to detect partial matches along the entire 
length of a protein sequence.  
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1.1.3 Comparing eyeless and aniridia with BLAST 

When the two sequences are compared using BLAST, you'll find that eyeless is a partial match for 
aniridia. The text that follows is the raw data that's returned from this BLAST search:  

pir||A41644 homeotic protein aniridia - human 
       Length = 447 
 
  Score = 256 bits (647), Expect = 5e-67 
  Identities = 128/146 (87%), Positives = 134/146 (91%), Gaps = 1/146 (0%) 
 
 Query: 24 IERLPSLEDMAHKGHSGVNQLGGVFVGGRPLPDSTRQKIVELAHSGARPCDISRILQVSN 83 
           I R P+  M + HSGVNQLGGVFV GRPLPDSTRQKIVELAHSGARPCDISRILQVSN 
 Sbjct: 17 IPRPPARASMQNS-HSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSN 75 
 
 Query: 84 GCVSKILGRYYETGSIRPRAIGGSKPRVATAEVVSKISQYKRECPSIFAWEIRDRLLQEN 143 
           GCVSKILGRYYETGSIRPRAIGGSKPRVAT EVVSKI+QYKRECPSIFAWEIRDRLL E 
 Sbjct: 76 GCVSKILGRYYETGSIRPRAIGGSKPRVATPEVVSKIAQYKRECPSIFAWEIRDRLLSEG 135 
 
 Query: 144 VCTNDNIPSVSSINRVLRNLAAQKEQ 169 
            VCTNDNIPSVSSINRVLRNLA++K+Q 
 Sbjct: 136 VCTNDNIPSVSSINRVLRNLASEKQQ 161 
 
 
  Score = 142 bits (354), Expect = 1e-32 
  Identities = 68/80 (85%), Positives = 74/80 (92%) 
 
 Query: 398 TEDDQARLILKRKLQRNRTSFTNDQIDSLEKEFERTHYPDVFARERLAGKIGLPEARIQV 457 
            +++ Q RL LKRKLQRNRTSFT +QI++LEKEFERTHYPDVFARERLA KI LPEARIQV 
 Sbjct: 222 SDEAQMRLQLKRKLQRNRTSFTQEQIEALEKEFERTHYPDVFARERLAAKIDLPEARIQV 281 
 
 Query: 458 WFSNRRAKWRREEKLRNQRR 477 
            WFSNRRAKWRREEKLRNQRR 
 Sbjct: 282 WFSNRRAKWRREEKLRNQRR 301 

The output shows local alignments of two high-scoring matching regions in the protein sequences of 
the eyeless and aniridia genes. In each set of three lines, the query sequence (the eyeless sequence that 
was submitted to the BLAST server) is on the top line, and the aniridia  sequence is on the bottom line. 
The middle line shows where the two sequences match. If there is a letter on the middle line, the 
sequences match exactly at that position. If there is a plus sign on the middle line, the two sequences 
are different at that position, but there is some chemical similarity between the amino acids (e.g., D and 
E, aspartic and glutamic acid). If there is nothing on the middle line, the two sequences don't match at 
that position.  

In this example, you can see that, if you submit the whole eyeless gene sequence and look (as standard 
keyword searches do) for an exact match, you won't find anything. The local sequence regions make up 
only part of the complete proteins: the region from 24-169 in eyeless matches the region from 17-161 
in the human aniridia gene, and the region from 398-477 in eyeless matches the region from 222-301 in 
aniridia. The rest of the sequence doesn't match! Even the two regions shown, which match closely, 
don't match 100%, as they would have to, in order to be found in a keyword search.  

However, this partial match is significant. It tells us that the human aniridia gene, which we don't know 
much about, is substantially related in sequence to the fruit fly's eyeless gene. And we do know a lot 
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about the eyeless gene, from its structure and function (it's a DNA binding protein that promotes the 
activity of other genes) to its effects on the phenotype—the form of the grown fruit fly.  

BLAST finds local regions that match even in pairs of sequences that aren't exactly the same overall. It 
extends matches beyond a single-character difference in the sequence, and it keeps trying to extend 
them in all directions until the overall score of the sequence match gets too small. As a result, BLAST 
can detect patterns that are imperfectly replicated from sequence to sequence, and hence distant 
relationships that are inexact but still biologically meaningful.  

Depending on the quality of the match between two labels, you can transfer the information attached to 
one label to the other. A high-quality sequence match between two full-length sequences may suggest 
the hypothesis that their functions are similar, although it's important to remember that the 
identification is only tentative until it's been experimentally verified. In the case of the eyeless and 
aniridia genes, scientists hope that studying the role of the eyeless gene in Drosophila eye development 
will help us understand how aniridia works in human eye development.  

1.2 Isn't Bioinformatics Just About Building Databases? 

Much of what we currently think of as part of bioinformatics—sequence comparison, sequence 
database searching, sequence analysis—is more complicated than just designing and populating 
databases. Bioinformaticians (or computational biologists) go beyond just capturing, managing, and 
presenting data, drawing inspiration from a wide variety of quantitative fields, including statistics, 
physics, computer science, and engineering. Figure 1-2 shows how quantitative science intersects with 
biology at every level, from analysis of sequence data and protein structure, to metabolic modeling, to 
quantitative analysis of populations and ecology.  

Figure 1-2. How technology intersects with biology 

 

Bioinformatics is first and foremost a component of the biological sciences. The main goal of 
bioinformatics isn't developing the most elegant algorithms or the most arcane analyses; the goal is 
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finding out how living things work. Like the molecular biology methods that greatly expanded what 
biologists were capable of studying, bioinformatics is a tool and not an end in itself. Bioinformaticians 
are the tool-builders, and it's critical that they understand biological problems as well as computational 
solutions in order to produce useful tools.  

Research in bioinformatics and computational biology can encompass anything from abstraction of the 
properties of a biological system into a mathematical or physical model, to implementation of new 
algorithms for data analysis, to the development of databases and web tools to access them.  

1.2.1 The First Information Age in Biology 

Biology as a science of the specific means that biologists need to remember a lot of details as well as 
general principles. Biologists have been dealing with problems of information management since the 
17th century.  

The roots of the concept of evolution lie in the work of early biologists who catalogued and compared 
species of living things. The cataloguing of species was the preoccupation of biologists for nearly three 
centuries, beginning with animals and plants and continuing with microscopic life upon the invention 
of the compound microscope. New forms of life and fossils of previously unknown, extinct life forms 
are still being discovered even today.  

All this cataloguing of plants and animals resulted in what seemed a vast amount of information at the 
time. In the mid-16th century, Otto Brunfels published the first major modern work describing plant 
species, the Herbarium vitae eicones. As Europeans traveled more widely around the world, the 
number of catalogued species increased, and botanical gardens and herbaria were established. The 
number of catalogued plant types was 500 at the time of Theophrastus, a student of Aristotle. By 1623, 
Casper Bauhin had observed 6,000 types of plants. Not long after John Ray introduced the concept of 
distinct species of animals and plants, and developed guidelines based on anatomical features for 
distinguishing conclusively between species. In the 1730s, Carolus Linnaeus catalogued 18,000 plant 
species and over 4,000 species of animals, and established the basis for the modern taxonomic naming 
system of kingdoms, classes, genera, and species. By the end of the 18th century, Baron Cuvier had 
listed over 50,000 species of plants.  

It was no coincidence that a concurrent preoccupation of biologists, at this time of exploration and 
cataloguing, was classification of species into an orderly taxonomy. A botany text might encompass 
several volumes of data, in the form of painstaking illustrations and descriptions of each species 
encountered. Biologists were faced with the problem of how to organize, access, and sensibly add to 
this information. It was apparent to the casual observer that some living things were more closely 
related than others. A rat and a mouse were clearly more similar to each other than a mouse and a dog. 
But how would a biologist know that a rat was like a mouse (but that rat was not just another name for 
mouse) without carrying around his several volumes of drawings? A nomenclature that uniquely 
identified each living thing and summed up its presumed relationship with other living things, all in a 
few words, needed to be invented.  

The solution was relatively simple, but at the time, a great innovation. Species were to be named with a 
series of one-word names of increasing specificity. First a very general division was specified: animal 
or plant? This was the kingdom to which the organism belonged. Then, with increasing specificity, 
came the names for class, genera, and species. This schematic way of classifying species, as illustrated 
in Figure 1-3, is now known as the "Tree of Life."  
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Figure 1-3. The "Tree of Life" represents the nomenclature system that classifies species 

 

A modern taxonomy of the earth's millions of species is too complicated for even the most zealous 
biologist to memorize, and fortunately computers now provide a way to maintain and access the 
taxonomy of species. The University of Arizona's Tree of Life project and NCBI's Taxonomy database 
are two examples of online taxonomy projects.  

Taxonomy was the first informatics problem in biology. Now, biologists have reached a similar point 
of information overload by collecting and cataloguing information about individual genes. The problem 
of organizing this information and sharing knowledge with the scientif ic community at the gene level 
isn't being tackled by developing a nomenclature. It's being attacked directly with computers and 
databases from the start.  

The evolution of computers over the last half-century has fortuitously paralleled the developments in 
the physical sciences that allow us to see biological systems in increasingly fine detail. Figure 1-4 
illustrates the astonishing rate at which biological knowledge has expanded in the last 20 years.  

Figure 1-4. The growth of GenBank and the Protein Data Bank has been astronomical 
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Simply finding the right needles in the haystack of information that is now available can be a research 
problem in itself. Even in the late 1980s, finding a match in a sequence database was worth a five-page 
publication. Now this procedure is routine, but there are many other questions that follow on our ability 
to search sequence and structure databases. These questions are the impetus for the field of 
bioinformatics.  

1.3 What Does Informatics Mean to Biologists? 

The science of informatics is concerned with the representation, organization, manipulation, 
distribution, maintenance, and use of information, particularly in digital form. There is more than one 
interpretation of what bioinformatics—the intersection of informatics and biology—actually means, 
and it's quite possible to go out and apply for a job doing bioinformatics and find that the expectations 
of the job are entirely different than you thought.  

The functional aspect of bioinformatics is the representation, storage, and distribution of data. 
Intelligent design of data formats and databases, creation of tools to query those databases, and 
development of user interfaces that bring together different tools to allow the user to ask complex 
questions about the data are all aspects of the development of bioinformatics infrastructure.  

Developing analytical tools to discover knowledge in data is the second, and more scientific, aspect of 
bioinformatics. There are many levels at which we use biological information, whether we are 
comparing sequences to develop a hypothesis about the function of a newly discovered gene, breaking 
down known 3D protein structures into bits to find patterns that can help predict how the protein folds, 
or modeling how proteins and metabolites in a cell work together to make the cell function. The 
ultimate goal of analytical bioinformaticians is to develop predictive methods that allow scientists to 
model the function and phenotype of an organism based only on its genome sequence. This is a grand 
goal, and one that will be approached only in small steps, by many scientists working together.  

1.4 What Challenges Does Biology Offer Computer Scientists? 

The goal of biology, in the era of the genome projects, is to develop a quantitative understanding of 
how living things are built from the genome that encodes them.  
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Cracking the genome code is complex. At the very simplest level, we still have difficulty identifying 
unknown genes by computer analysis of genomic sequence. We still have not managed to predict or 
model how a chain of amino acids folds into the specific structure of a functional protein.  

Beyond the single-molecule level, the challenges are immense. The sheer amount of data in GenBank 
is now growing at an exponential rate, and as datatypes beyond DNA, RNA, and protein sequence 
begin to undergo the same kind of explosion, simply managing, accessing, and presenting this data to 
users in an intelligible form is a critical task. Human-computer interaction specialists need to work 
closely with academic and clinical researchers in the biological sciences to manage such staggering 
amounts of data.  

Biological data is very complex and interlinked. A spot on a DNA array, for instance, is connected not 
only to immediate information about its intensity, but to layers of information about genomic location, 
DNA sequence, structure, function, and more. Creating information systems that allow biologists to 
seamlessly follow these links without getting lost in a sea of information is also a huge opportunity for 
computer scientists.  

Finally, each gene in the genome isn't an independent entity. Multiple genes interact to form 
biochemical pathways, which in turn feed into other pathways. Biochemistry is influenced by the 
external environment, by interaction with pathogens, and by other stimuli. Putting genomic and 
biochemical data together into quantitative and predictive models of biochemistry and physiology will 
be the work of a generation of computational biologists. Computer scientists, mathematicians, and 
statisticians will be a vital part of this effort.  

1.5 What Skills Should a Bioinformatician Have? 

There's a wide range of topics that are useful if you're interested in pursuing bioinformatics, and it's not 
possible to learn them all. However, in our conversations with scientists working at companies such as 
Celera Genomics and Eli Lilly, we've picked up on the following "core requirements" for 
bioinformaticians:  

• You should have a fairly deep background in some aspect of molecular biology. It can be 
biochemistry, molecular biology, molecular biophysics, or even molecular modeling, but 
without a core of knowledge of molecular biology you will, as one person told us, "run into 
brick walls too often."  

• You must absolutely understand the central dogma of molecular biology. Understanding how 
and why DNA sequence is transcribed into RNA and translated into protein is vital. (In Chapter 
2, we define the central dogma, as well as review the processes of transcription and translation.)  

• You should have substantial experience with at least one or two major molecular biology 
software packages, either for sequence analysis or molecular modeling. The experience of 
learning one of these packages makes it much easier to learn to use other software quickly.  

• You should be comfortable working in a command-line computing environment. Working in 
Linux or Unix will provide this experience.  

• You should have experience with programming in a computer language such as C/C++, as well 
as in a scripting language such as Perl or Python.  

There are a variety of other advanced skill sets that can add value to this background: molecular 
evolution and systematics; physical chemistry—kinetics, thermodynamics and statistical mechanics; 
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statistics and probabilistic methods; database design and implementation; algorithm development; 
molecular biology laboratory methods; and others.  

1.6 Why Should Biologists Use Computers? 

Computers are powerful devices for understanding any system that can be described in a mathematical 
way. As our understanding of biological processes has grown and deepened, it isn't surprising, then, 
that the disciplines of computational biology and, more recently, bioinformatics, have evolved from the 
intersection of classical biology, mathematics, and computer science.  

1.6.1 A New Approach to Data Collection 

Biochemistry is often an anecdotal science. If you notice a disease or trait of interest, the imperative to 
understand it may drive the progress of research in that direction. Based on their interest in a particular 
biochemical process, biochemists have determined the sequence or structure or analyzed the expression 
characteristics of a single gene product at a time. Often this leads to a detailed understanding of one 
biochemical pathway or even one protein. How a pathway or protein interacts with other biological 
components can easily remain a mystery, due to lack of hands to do the work, or even because the need 
to do a particular experiment isn't communicated to other scientists effectively.  

The Internet has changed how scientists share data and made it possible for one central warehouse of 
information to serve an entire research community. But more importantly, experimental technologies 
are rapidly advancing to the point at which it's possible to imagine systematically collecting all the data 
of a particular type in a central "factory" and then distributing it to researchers to be interpreted.  

In the 1990s, the biology community embarked on an unprecedented project: sequencing all the DNA 
in the human genome. Even though a first draft of the human genome sequence has been completed, 
automated sequencers are still running around the clock, determining the entire sequences of genomes 
from various life forms that are commonly used for biological research. And we're still fine-tuning the 
data we've gathered about the human genome over the last 10 years. Immense strings of data, in which 
the locations of only a relatively few important genes are known, have been and still are being 
generated. Using image-processing techniques, maps of entire genomes can now be generated much 
more quickly than they could with chemical mapping techniques, but even with this technology, 
complete and detailed mapping of the genomic data that is now being produced may take years.  

Recently, the techniques of x-ray crystallography have been refined to a degree that allows a complete 
set of crystallographic reflections for a protein to be obtained in minutes instead of hours or days. 
Automated analysis software allows structure determination to be completed in days or weeks, rather 
than in months. It has suddenly become possible to conceive of the same type of high-throughput 
approach to structure determination that the Human Genome Project takes to sequence determination. 
While crystallization of proteins is still the limiting step, it's likely that the number of protein structures 
available for study will increase by an order of magnitude within the next 5 to 10 years.  

Parallel computing is a concept that has been around for a long time. Break a problem down into 
computationally tractable components, and instead of solving them one at a time, employ multiple 
processors to solve each subproblem simultaneously. The parallel approach is now making its way into 
experimental molecular biology with technologies such as the DNA microarray. Microarray technology 
allows researchers to conduct thousands of gene expression experiments simultaneously on a tiny chip. 
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Miniaturized parallel experiments absolutely require computer support for data collection and analysis. 
They also require the electronic publication of data, because information in large datasets that may be 
tangential to the purpose of the data collector can be extremely interesting to someone else. Finding 
information by searching such databases can save scientists literally years of work at the lab bench.  

The output of all these high-throughput experimental efforts can be shared only because of the 
development of the World Wide Web and the advances in communication and information transfer that 
the Web has made possible.  

The increasing automation of experimental molecular biology and the application of information 
technology in the biological sciences have lead to a fundamental change in the way biological research 
is done. In addition to anecdotal research—locating and studying in detail a single gene at a time—we 
are now cataloguing all the data that is available, making complete maps to which we can later return 
and mark the points of interest. This is happening in the domains of sequence and structure, and has 
begun to be the approach to other types of data as well. The trend is toward storage of raw biological 
data of all types in public databases, with open access by the research community. Instead of doing 
preliminary research in the lab, scientists are going to the databases first to save time and resources.  

1.7 How Can I Configure a PC to Do Bioinformatics Research? 

Up to now you've probably gotten by using word-processing software and other canned programs that 
run under user-friendly operating systems such as Windows or MacOs. In order to make the most of 
bioinformatics, you need to learn Unix, the classic operating system of powerful computers known as 
servers and workstations. Most scientific software is developed on Unix machines, and serious 
researchers will want access to programs that can be run only under Unix. Unix comes in a number of 
flavors, the two most popular being BSD and SunOs. Recently, however, a third choice has entered the 
marketplace: Linux. Linux is an open source Unix operating system. In Chapter 3, Chapter 4, and 
Chapter 5, we discuss how to set up a workstation for bioinformatics running under Linux. We cover 
the operating system and how it works: how files are organized, how programs are run, how processes 
are managed, and most importantly, what to type at the command prompt to get the computer to do 
what you want.  

1.7.1 Why Use Unix or Linux? 

Setting up your computer with a Linux operating system allows you to take advantage of cutting-edge 
scientific -research tools developed for Unix systems. As it has grown popular in the mass market, 
Linux has retained the power of Unix systems for developing, compiling, and running programs, 
networking, and managing jobs started by multiple users, while also providing the standard trimmings 
of a desktop PC, including word processors, graphics programs, and even visual programming tools. 
This book operates on the assumption that you're willing to learn how to work on a Unix system and 
that you'll be working on a machine that has Linux or another flavor of Unix installed. For many of the 
specific bioinformatics tools we discuss, Unix is the most practical choice.  

On the other hand, Unix isn't necessarily the most practical choice for office productivity in a 
predominantly Mac or PC environment. The selection of available word processing and desktop 
publishing software and peripheral devices for Linux is improving as the popularity of the operating 
system increases. However, it can't (yet) go head-to-head with the consumer operating systems in these 
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areas. Linux is no more difficult to maintain than a normal PC operating system, once you know how, 
but the skills needed and the problems you'll encounter will be new at first.  

 

As of this writing, my desktop computer has been reliably up and running Linux 
for nearly five months, with the exception of a few days time out for a hardware 
failure. No software crashes, no little bombs or unhappy faces, no missing *.dll 
files or mysterious error messages. Installation of Linux took about two days and 
some help from tech support the first time I did it, and about one hour the second 
time (on a laptop, no less). Realistically, the main problem I have encountered 
being the only Linux user in a Mac/PC environment is opening email attachments 
from Mac users.—CJG  

 

Fortunately, some of the companies selling packaged Linux distributions have substantially automated 
the installation procedure, and also offer 90 days of phone and web technical support for your 
installation. Companies such as Red Hat and SuSE and organizations such as Debian provide Linux 
distributions for PCs, while Yellow Dog (and others) provide Linux distributions for Macintosh 
computers.  

There are a couple of ways to phase Linux in gradually. Of course, if you have more than one computer 
workstation, you can experiment with converting one of your machines to Linux while leaving your 
familiar operating system on the rest. The other choice is to do a dual boot installation . In a dual boot 
installation, you create two sections (called partitions) on your hard drive, and install Linux in one of 
them, with your old operating system in the other. Then, when you turn on your computer, you have a 
choice of whether to start up Linux or your other operating system. You can leave all your old files and 
programs where they are and start with new work in your Linux partition. Newer versions of Linux, 
such as Yellow Dog Linux for the PowerPC, allow users to emulate a MacOS environment within 
Linux and access software and files for both platforms simultaneously.  

1.8 What Information and Software Are Available? 

In Chapter 6, we cover information literacy. Only a few years ago, biologists had to know how to do 
literature searches using printed indexes that led them to references in the appropriate technical 
journals. Modern biologists search web-based databases for the same information and have access to 
dozens of other information types as well. Knowing how to navigate these resources is a vital skill for 
every biologist, computational or not.  

We then introduce the basic tools you'll need to locate databases, computer programs, and other 
resources on the Web, to transfer these resources to your computer, and to make them work once you 
get them there. In Chapter 7 through Chapter 11 we turn to particular types of scientific questions and 
the tools you will need to answer them. In some cases, there are computer programs that are becoming 
the standard for solving a particular type of problem (e.g., BLAST and FASTA for amino acid and 
nucleic acid sequence alignment). In other areas, where the method for solving a problem is still an 
open research question, there may be a number of competing tools, or there may be no tool that 
completely solves the problem.  

1.8.1 Why Do I Need to Install a Program from the Web? 
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Handling large volumes of complex data requires a systematic and automated approach. If you're 
searching a database for matches to one query, a web form will do the trick. But what if you want to 
search for matches to 10,000 queries, and then sort through the information you get back to find 
relationships in the results? You certainly don't want to type 10,000 queries into a web form, and you 
probably don't want your results to come back formatted to look nice on a web page. Shared public web 
servers are often slow, and using them to process large batches of data is impractical. Chapter 12 
contains examples of how to use Perl as a driver to make your favorite program process large volumes 
of data using your own computer.  

1.9 Can I Learn a Programming Language Without Classes? 

Anyone who has experience with designing and carrying out an experiment to answer a question has 
the basic skills needed to program a computer. A laboratory experiment begins with a question, which 
evolves into a testable hypothesis, that is, a statement that can be tested for truth based on the results of 
an experiment or experiments. The processes developed to test the hypotheses are analogous to 
computer programs. The essence of an experiment is: if you take system X, and do something to it, 
what happens? The experiment that is done must be designed to have results that can be clearly 
interpreted. Computer programs must also be carefully designed so that the values that are passed from 
one part of a program to the next can be clearly interpreted. The human programmer must set up 
unambiguous instructions to the computer and must think through, in advance, what different types of 
results mean and what the computer should do with them. A large part of practical computer 
programming is the ability to think critically, to design a process to answer a question, and to 
understand what is required to answer the question unambiguously.  

Even if you have these skills, learning a computer language isn't a trivial undertaking, but it has been 
made a lot easier in recent years by the development of the Perl language. Perl, referred to by its creator 
as "the duct tape of the Internet, and of everything else," began its evolution as a scripting language 
optimized for data processing. It continues to evolve into a full-featured programming language, and 
it's practical to use Perl to develop prototypes for virtually any kind of computer program. Perl is a very 
flexible language; you can learn just enough to write a simple script to solve a one-off problem, and 
after you've done that once or twice, you have a core of knowledge to build on. The key to learning 
Perl is to use it and to use it right away. Just as no amount of reading the textbook can make you speak 
Spanish fluently, no amount of reading O'Reilly's Learning Perl is going to be as helpful as getting out 
there and trying to "speak" it. In Chapter 12, we provide example Perl code for parsing common 
biological datatypes, driving and processing output from programs written in other languages, and even 
a couple of Perl implementations that solve common computational biology problems. We hope these 
examples inspire you to try a little programming of your own.  

1.10 How Can I Use Web Information? 

Chapter 6 also introduces the public databases where biological data is archived to be shared by 
researchers worldwide.  

While you can quickly find a single protein structure file or DNA sequence file by filling in a web form 
and searching a public database, it's likely that eventually you will want to work with more than one 
piece of data. You may even be collecting and archiving your own data; you may want to make a new 
type of data available to a broader research community. To do these things efficiently, you need to 
store data on your own computer. If you want to process your stored data using a computer program, 
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you need to structure your data. Understanding the difference between structured and unstructured data 
and designing a data format that suits your data storage and access needs is the key to making your data 
useful and accessible.  

There are many ways to organize data. While most biological data is still stored in flat file databases, 
this type of database becomes inefficient when the quantity of data being stored becomes extremely 
large. Chapter 13 covers the basic database concepts you need to talk to database experts and to build 
your own databases. We discuss the differences between flat file and relational databases, introduce the 
best public -domain tools for managing databases, and show you how to use them to store and access 
your data.  

1.11 How Do I Understand Sequence Alignment Data? 

It's hard to make sense of your data, or make a point, without visualization tools. The extraction of 
cross sections or subsets of complex multivariate data sets is often required to make sense of biological 
data. Storing your data in structured databases, which are discussed in Chapter 13, creates the 
infrastructure for analysis of complex data.  

Once you've stored data in an accessible, flexible format, the next step is to extract what is important to 
you and visualize it. Whether you need to make a histogram of your data or display a molecular 
structure in three dimensions and watch it move in real time, there are visualization tools that can do 
what you want. Chapter 14 covers data-analysis and data-visualization tools, from generic plotting 
packages to domain-specific programs for marking up biological sequence alignments, displaying 
molecular structures, creating phylogenetic trees, and a host of other purposes.  

1.12 How Do I Write a Program to Align Two Biological Sequences? 

An important component of any kind of computational science is knowing when you need to write a 
program yourself and when you can use code someone else has written. The efficient programmer is a 
lazy programmer; she never wastes effort writing a program if someone else has already made a 
perfectly good program available. If you are looking to do something fairly routine, such as aligning 
two protein sequences, you can be sure that someone else has already written the program you need and 
that by searching you can probably even find some source code to look at. Similarly, many 
mathematical and statistical problems can be solved using standard code that is freely available in code 
libraries. Perl programmers make code that simplifies standard operations available in modules; there 
are many freely available modules that manage web-related processes, and there are projects underway 
to create standard modules for handling biological-sequence data.  

1.13 How Do I Predict Protein Structure from Sequence? 

There are some questions we can't answer for you, and that's one of them; in fact, it's one of the biggest 
open research questions in computational biology. What we can and do give you are the tools to find 
information about such problems and others who are working on them, and even, with the proper 
inspiration, to develop approaches to answering them yourself. Bioinformatics, like any other science, 
doesn't always provide quick and easy answers to problems.  

1.14 What Questions Can Bioinformatics Answer? 
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The questions that drive (and fund) bioinformatics research are the same questions humans have been 
working away at in applied biology for the last few hundred years. How can we cure disease? How can 
we prevent infection? How can we produce enough food to feed all of humanity? Companies in the 
business of developing drugs, agricultural chemicals, hybrid plants, plastics and other petroleum 
derivatives, and biological approaches to environmental remediation, among others, are developing 
bioinformatics divisions and looking to bioinformatics to provide new targets and to help replace scarce 
natural resources.  

The existence of genome projects implies our intention to use the data they generate. The implicit goals 
of modern molecular biology are, simply stated, to read the entire genomes of living things, to identify 
every gene, to match each gene with the protein it encodes, and to determine the structure and function 
of each protein. Detailed knowledge of gene sequence, protein structure and function, and gene 
expression patterns is expected to give us the ability to understand how life works at the highest 
possible resolution. Implicit in this is the ability to manipulate living things with precision and 
accuracy.  
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Chapter 2. Computational Approaches to Biological 
Questions 

There is a standard range of techniques that are taught in bioinformatics courses. Currently, most of the 
important techniques are based on one key principle: that sequence and structural homology (or 
similarity) between molecules can be used to infer structural and functional similarity. In this chapter, 
we'll give you an overview of the standard computer techniques available to biologists; later in the 
book, we'll discuss how specific software packages implement these techniques and how you should 
use them.  

2.1 Molecular Biology's Central Dogma 

Before we go any further, it's essential that you understand some basics of cell and molecular biology. 
If you're already familiar with DNA and protein structure, genes, and the processes of transcription and 
translation, feel free to skip ahead to the next section.  

The central dogma of molecular biology states that: 

DNA acts as a template to replicate itself, DNA is also transcribed into RNA, and RNA is translated 
into protein.  

As you can see, the central dogma sums up the function of the genome in terms of information. Genetic 
information is conserved and passed on to progeny through the process of replication. Genetic 
information is also used by the individual organism through the processes of transcription and 
translation. There are many layers of function, at the structural, biochemical, and cellular levels, built 
on top of genomic information. But in the end, all of life's functions come back to the information 
content of the genome.  

Put another way, genomic DNA contains the master plan for a living thing. Without DNA, organisms 
wouldn't be able to replicate themselves. The raw "one-dimensional" sequence of DNA, however, 
doesn't actually do anything biochemically; it's only information, a blueprint if you will, that's read by 
the cell's protein synthesizing machinery. DNA sequences are the punch cards; cells are the computers.  

DNA is a linear polymer made up of individual chemical units called nucleotides or bases. The four 
nucleotides that make up the DNA sequences of living things (on Earth, at least) are adenine, guanine, 
cytosine, and thymine—designated A, G, C, and T, respectively. The order of the nucleotides in the 
linear DNA sequence contains the instructions that build an organism. Those instructions are read in 
processes called replication, transcription, and translation.  

2.1.1 Replication of DNA 

The unusual structure of DNA molecules gives DNA special properties. These properties allow the 
information stored in DNA to be preserved and passed from one cell to another, and thus from parents 
to their offspring. Two molecules of DNA form a double-helical structure, twining around each other in 
a regular pattern along their full length—which can be millions of nucleotides. The halves of the 
double helix are held together by bonds between the nucleotides on each strand. The nucleotides also 
bond in particular ways: A can pair only with T, and G can pair only with C. Each of these pairs is 
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referred to as a base pair, and the length of a DNA sequence is often described in base pairs (or bp), 
kilobases (1,000 bp), megabases (1 million bp), etc.  

Each strand in the DNA double helix is a chemical "mirror image" of the other. If there is an A on one 
strand, there will always be a T opposite it on the other. If there is a C on one strand, its partner will 
always be a G.  

When a cell divides to form two new daughter cells, DNA is replicated  by untwisting the two strands 
of the double helix and using each strand as a template to build its chemical mirror image, or 
complementary strand. This process is illustrated in Figure 2-1.  

Figure 2-1. Schematic replication of one strand of the DNA helix 

 

2.1.2 Genomes and Genes 

The entire DNA sequence that codes for a living thing is called its genome. The genome doesn't 
function as one long sequence, however. It's divided into individual genes. A gene is a small, defined 
section of the entire genomic sequence, and each gene has a specific, unique purpose.  

There are three classes of genes. Protein-coding genes are templates for generating molecules called 
proteins. Each protein encoded by the genome is a chemical machine with a distinct purpose in the 
organism. RNA-specifying genes are also templates for chemical machines, but the building blocks of 
RNA machines are different from those that make up proteins. Finally, untranscribed genes are regions 
of genomic DNA that have some functional purpose but don't achieve that purpose by being transcribed 
or translated to create another molecule.  

2.1.3 Transcription of DNA 

DNA can act not only as a template for making copies of itself but also as a blueprint for a molecule 
called ribonucleic acid (RNA). The process by which DNA is transcribed into RNA is called 
transcription and is illustrated inFigure 2-2. RNA is structurally similar to DNA. It's a polymeric 
molecule made up of individual chemical units, but the chemical backbone that holds these units 
together is slightly different from the backbone of DNA, allowing RNA to exist in a single-stranded 
form as well as in a double helix. These single-stranded molecules still form base pairs between 
different parts of the chain, causing RNA to fold into 3D structures. The individual chemical units of 
RNA are designated A, C, G, and U (uracil, which takes the place of thymine).  
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Figure 2-2. Schematic of DNA being transcribed into RNA 

 

The genome provides a template for the synthesis of a variety of RNA molecules: the three main types 
of RNA are messenger RNA, transfer RNA, and ribosomal RNA. Messenger RNA (mRNA) molecules 
are RNA transcripts of genes. They carry information from the genome to the ribosome, the cell's 
protein synthesis apparatus. Transfer RNA (tRNA) molecules are untranslated RNA molecules that 
transport amino acids, the building blocks of proteins, to the ribosome. Finally, ribosomal RNA 
(rRNA) molecules are the untranslated RNA components of ribosomes, which are complexes of protein 
and RNA. rRNAs are involved in anchoring the mRNA molecule and catalyzing some steps in the 
translation process. Some viruses also use RNA instead of DNA as their genetic material.  

2.1.4 Translation of mRNA 

Translation of mRNA into protein is the final major step in putting the information in the genome to 
work in the cell.  

Like DNA, proteins are linear polymers built from an alphabet of chemically variable units. The 
protein alphabet is a set of small molecules called amino acids.  

Unlike DNA, the chemical sequence of a protein has physicochemical "content" as well as information 
content. Each of the 20 amino acids commonly found in proteins has a different chemical nature, 
determined by its side chain—a chemical group that varies from amino acid to amino acid. The 
chemical sequence of the protein is called its primary structure, but the way the sequence folds up to 
form a compact molecule is as important to the function of the protein as is its primary structure. The 
secondary and tertiary structure elements that make up the protein's final fold can bring distant parts of 
the chemical sequence of the protein together to form functional sites.  

As shown in Figure 2-3, the genetic code is the code that translates DNA into protein. It takes three 
bases of DNA (called a codon) to code for each amino acid in a protein sequence. Simple 
combinatorics tells us that there are 64 ways to choose 3 nucleotides from a set of 4, so there are 64 
possible codons and only 20 amino acids. Some codons are redundant; others have the special function 
of telling the cell's translation machinery to stop translating an mRNA molecule. Figure 2-4 shows how 
RNA is translated into protein.  

Figure 2-3. The genetic code 
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Figure 2-4. Synthesis of protein with standard base pairing 

 

2.1.5 Molecular Evolution 

Errors in replication and transcription of DNA are relatively common. If these errors occur in the 
reproductive cells of an organism, they can be passed to its progeny. Alterations in the sequence of 
DNA are known as mutations. Mutations can have harmful results —results that make the progeny less 
likely to survive to adulthood. They can also have beneficial results, or they can be neutral. If a 
mutation doesn't kill the organism before it reproduces, the mutation can become fixed in the 
population over many generations. The slow accumulation of such changes is responsible for the 
process known as evolution. Access to DNA sequences gives us access to a more precise understanding 
of evolution. Our understanding of the molecular mechanism of evolution as a gradual process of 
accumulating DNA sequence mutatio ns is the justification for developing hypotheses based on DNA 
and protein sequence comparison.  
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2.2 What Biologists Model 

Now that we've completed our ultra-short course in cell biology, let's look at how to apply it to 
problems in molecular biology. One of the most important exercises in biology and bioinformatics is 
modeling. A model is an abstract way of describing a complicated system. Turning something as 
complex (and confusing) as a chromosome, or the cycle of cell division, into a simplified 
representation that captures all the features you are trying to study can be extremely difficult. A model 
helps us see the larger picture. One feature of a good model is that it makes systems that are otherwise 
difficult to study easier to analyze using quantitative approaches. Bioinformatics tools rely on our 
ability to extract relevant parameters from a biological system (be it a single molecule or something as 
complicated as a cell), describe them quantitatively, and then develop computational methods that use 
those parameters to compute the properties of a system or predict its behavior.  

To help you understand what a model is and what kind of analysis a good model makes possible, let's 
look at three examples on which bioinformatics methods are based.  

2.2.1 Accessing 3D Molecules Through a 1D Representation 

In reality, DNA and proteins are complicated 3D molecules, composed of thousands or even millions 
of atoms bonded together. However, DNA and proteins are both polymers, chains of repeating 
chemical units (monomers) with a common backbone holding them together. Each chemical unit in the 
polymer has two subsets of atoms: a subset of atoms that doesn't vary from monomer to monomer and 
that makes up the backbone of the polymer, and a subset of atoms that does vary from monomer to 
monomer.  

In DNA, four nucleic acid monomers (A, T, C, and G) are commonly used to build the polymer chain. 
In proteins, 20 amino acid monomers are used. In a DNA chain, the four nucleic acids can occur in any 
order, and the order they occur in determines what the DNA does. In a protein, amino acids can occur 
in any order, and their order determines the protein's fold and function.  

Not too long after the chemical natures of DNA and proteins were understood, researchers recognized 
that it was convenient to represent them by strings of single letters. Instead of representing each nucleic 
acid in a DNA sequence as a detailed chemical entity, they could be represented simply as A, T, C, and 
G. Thus, a short piece of DNA that contains thousands of individual atoms can be represented by a 
sequence of few hundred letters. Figure 2-5 illustrates the simplified way to represent a polymer chain.  

Figure 2-5. Simplifying the representation of a polymer chain 



 31 

 

Not only does this abstraction save storage space and provide a convenient form for sharing sequence 
information, it represents the nature of a molecule uniquely and correctly and ignores levels of detail 
(such as atomic structure of DNA and many proteins) that are experimentally inaccessible. Many 
computational biology methods exploit this 1D abstraction of 3D biological macromolecules.  

The abstraction of nucleic acid and protein sequences into 1D strings has been one of the most fruitful 
modeling strategies in computational molecular biology, and analysis of character strings is a long-
standing area of research in computer science. [1] One of the elementary questions you can ask about 
strings is, "Do they match?" There are well-established algorithms in computer science for finding 
exact and inexact matches in pairs of strings. These algorithms are applied to find pairwise matches 
between biological sequences and to search sequence databases using a sequence query.  

[1] A string is simply an unbroken sequence o f characters. A character is a single letter chosen from a set of defined letters, whether that be binary code (strings of 
zeros and ones) or the more complicated alphabetic and numerical alphabet that can be typed on a computer keyboard.  

In addition to matching individual sequences, string-based methods from computer science have been 
successfully applied to a number of other problems in molecular biology. For example, algorithms for 
reconstructing a string from a set of shorter substrings can assemble DNA sequences from overlapping 
sequence fragments. Techniques for recognizing repeated patterns in single sequences or conserved 
patterns across multiple sequences allow researchers to identify signatures associated with biological 
structures or functions. Finally, multiple sequence-alignment techniques allow the simultaneous 
comparison of several molecules that can infer evolutionary relationships between sequences.  

This simplifying abstraction of DNA and protein sequence seems to ignore a lot of biology. The 
cellular context in which biomolecules exist is completely ignored, as are their interactions with other 
molecules and their molecular structure. And yet it has been shown over and over that matches between 
biological sequences —for example, in the detection of similarity in eye-development genes in humans 
and flies, as we discussed in Chapter 1—can be biologically meaningful.  
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2.2.2 Abstractions for Modeling Protein Structure 

There is more to biology than sequences. Proteins and nucleic acids also have complex 3D structures 
that provide clues to their functions in the living organism. Molecular structures are usually represented 
as collections of atoms, each of which has a defined position in 3D space. Structure analysis can be 
performed on static structures, or movements and interactions in the molecules can be studied with 
molecular simulation methods.  

Standard molecular simulation approaches model proteins as a collection of point masses (atoms) 
connected by bonds. The bond between two atoms has a standard length, derived from experimental 
chemistry, and an associated applied force that constrains the bond at that length. The angle between 
three adjacent atoms has a standard value and an applied force that constrains the bond angle around 
that value. The same is true of the dihedral angle described by four adjacent atoms. In a molecular 
dynamics simulation, energy is added to the molecular system by simulated "heating." Following 
standard Newtonian laws, the atoms in the molecule move. The energy added to the system provides an 
opposing force that moves atoms in the molecule out of their standard conformations. The actions and 
reactions of hundreds of atoms in a molecular system can be simulated using this abstraction.  

However, the computational demands of molecular simulations are huge, and there is some uncertainty 
both in the force field -- the collection of standard forces that model the molecule—and in the modeling 
of nonbonded interactions -- interactions between nonadjacent atoms. So it has not proven possible to 
predict protein structure using the all-atom modeling approach.  

Some researchers have recently had moderate success in predicting protein topology for simple 
proteins using an intermediate level of abstraction—more than linear sequence, but less than an all-
atom model. In this case, the protein is treated as a series of beads (representing the individual amino 
acids) on a string (representing the backbone). Beads may have different characters to represent the 
differences in the amino acid sidechains. They may be positively or negatively charged, polar or 
nonpolar, small or large. There are rules governing which beads will attract each other. Like charges 
repel; unlike charges attract. Polar groups cluster with other polar groups, and nonpolar with nonpolar. 
There are also rules governing the string; mainly that it can't pass through itself in the course of the 
simulation. The folding simulation itself is conducted through sequential or simultaneous perturbation 
of the position of each bead.  

2.2.3 Mathematical Modeling of Biochemical Systems 

Using theoretical models in biology goes far beyond the single molecule level. For years, ecologists 
have been using mathematical models to help them understand the dynamics of changes in 
interdependent populations. What effect does a decrease in the population of a predator species have on 
the population of its prey? What effect do changes in the environment have on population? The 
answers to those questions are theoretically predictable, given an appropriate mathematical model and a 
knowledge of the sizes of populations and their standard rates of change due to various factors.  

In molecular biology, a similar approach, called metabolic control analysis, is applied to biochemical 
reactions that involve many molecules and chemical species. While cells contain hundreds or thousands 
of interacting proteins, small molecules, and ions, it's possible to create a model that describes and 
predicts a small corner of that complicated metabolism. For instance, if you are interested in the 
biological processes that maintain different concentrations of hydrogen ions on either side of the 
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mitochondrial inner membrane in eukaryotic cells, it's probably not necessary for your model to include 
the distant group of metabolic pathways that are closely involved in biosynthesis of the heme structure.  

Metabolic models describe a biochemical process in terms of the concentrations of chemical species 
involved in a pathway, and the reactions and fluxes that affect those concentrations. Reactions and 
fluxes can be described by differential equations; they are essentially rates of change in concentration. 
What makes metabolic simulation interesting is the possibility of modeling dozens of reactions 
simultaneously to see what effect they have on the concentration of particular chemical species. Using 
a properly constructed metabolic model, you can test different assumptions about cellular conditions 
and fine-tune the model to simulate experimental observations. That, in turn, can suggest testable 
hypotheses to drive further research.  

2.3 Why Biologists Model 

We've mentioned more than once that theoretical modeling provides testable hypotheses, not definitive 
answers. It sometimes isn't so easy to maintain this distinction, especially with pairwise sequence 
comparison, which seems to provide such ready answers. Even identification of genes based on 
sequence similarity ultimately needs to be validated experimentally. It's not sufficient to say that an 
unknown DNA sequence is similar to the sequence of a gene that has been subject to detailed 
characterization, so therefore it must have an identical function. The two sequences could be distantly 
related but have evolved to have different functions. However, it's altogether reasonable to use 
sequence similarity as the starting point for verification; if sequence homology suggests that an 
unknown gene is similar to citrate synthases, your first experimental approach might be to test the 
unknown gene product for citrate synthase activity.  

One of the main benefits of using computational tools in biology is that it becomes easier to preselect 
targets for experimentation in molecular biology and biochemistry. Using everything from sequence 
profiling methods to geometric and physicochemical analysis of protein structures, researchers can 
focus narrowly on the parts of a sequence or structure that appear to have some functional significance. 
Only a decade ago, this focusing might have been done using "shotgun" approaches to site-directed 
mutagenesis, in which random single-residue mutants of a protein were created and characterized in 
order to select possible targets. Functional genomics and metabolic reconstruction efforts are beginning 
to provide biochemists with a framework for narrowing their research focuses as well.  

For the researcher focused on developing bioinformatics methods, the discovery of general rules and 
properties in data is by far the most interesting category of problems that can be addressed using a 
computer. It's also a diverse category and one we can't give you many rules for. Researchers have 
found interesting and useful properties in everything from sequence patterns to the separation of atoms 
in molecular structures and have applied these findings to produce such tools as genefinders, secondary 
structure prediction tools, profile methods, and homology modeling tools.  

Bioinformatics researchers are still tackling problems that currently have reasonably successful 
solutions, from basecalling to sequence alignment to genome comparison to protein structure modeling, 
attempting to improve the accuracy and range of these procedures. Information-technology experts are 
currently developing database structures and query tools for everything from gene-expression data to 
intermolecular interactions. Like any other field of research, there are many niches of inquiry available, 
and the only way to find them is to delve into the current literature.  
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2.4 Computational Methods Covered in This Book 

Molecular biology research is a fast-growing area. The amount and type of data that can be gathered is 
exploding, and the trend of storing this data in public databases is spilling over from genome sequence 
to all sorts of other biological datatypes. The information landscape for biologists is changing so 
rapidly that anything we say in this book is likely to be somewhat behind the times before it even hits 
the shelves.  

Yet, since the inception of the Human Genome Project, a core set of computational approaches has 
emerged for dealing with the types of data that are currently shared in public databases—DNA, protein 
sequence, and protein structure. Although databases containing results from new high-throughput 
molecular biology methods have not yet grown to the extent the sequence databases have, standard 
methods for analyzing these data have begun to emerge.  

While not exhaustive, the following list gives you an overview of the computational methods we 
address in this book:  

Using public databases and data formats  

The first key skill for biologists is to learn to use online search tools to find information. 
Literature searching is no longer a matter of looking up references in a printed index. You can 
find links to most of the scientific publications you need online. There are central databases that 
collect reference information so you can search dozens of journals at once. You can even set up 
"agents" that notify you when new articles are published in an area of interest. Searching the 
public molecular-biology databases requires the same skills as searching for literature 
references: you need to know how to construct a query statement that will pluck the particular 
needle you're looking for out of the database haystack. Tools for searching biochemical 
literature and sequence databases are introduced in Chapter 6.  

Sequence alignment and sequence searching  

As mentioned in Chapter 1, being able to compare pairs of DNA or protein sequences and 
extract partial matches has made it possible to use a biological sequence as a database query. 
Sequence-based searching is another key skill for biologists; a little exploration of the 
biological databases at the beginning of a project often saves a lot of valuable time in the lab. 
Identifying homologous sequences provides a basis for phylogenetic analysis and sequence-
pattern recognition. Seq uence-based searching can be done online through web forms, so it 
requires no special computing skills, but to judge the quality of your search results you need to 
understand how the underlying sequence-alignment method works and go beyond simple 
sequence alignment to other types of analysis. Tools for pairwise sequence alignment and 
sequence-based database searching are introduced in Chapter 7.  

Gene prediction  

Gene prediction is only one of a cluster of methods for attempting to detect meaningful signals 
in uncharacterized DNA sequences. Until recently, most sequences deposited in GenBank were 
already characterized at the time of deposition. That is, someone had already gone in and, using 
molecular biology, genetic, or biochemical methods, figured out what the gene did. However, 
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now that the genome projects are in full swing, there's a lot of DNA sequence out there that isn't 
characterized.  

Software for prediction of open reading frames, genes, exon splice sites, promoter binding sites, 
repeat sequences, and tRNA genes helps molecular biologists make sense out of this unmapped 
DNA. Tools for gene prediction are introduced in Chapter 7.  

Multiple sequence alignment  

Multiple sequence-alignment methods assemble pairwise sequence alignments for many related 
sequences into a picture of sequence homology among all members of a gene family. Multiple 
sequence alignments aid in visual identification of sites in a DNA or protein sequence that may 
be functionally important. Such sites are usually conserved; that is, the same amino acid is 
present at that site in each one of a group of related sequences. Multiple sequence alignments 
can also be quantitatively analyzed to extract information about a gene family. Multiple 
sequence alignments are an integral step in phylogenetic analysis of a family of related 
sequences, and they also provide the basis for identifying sequence patterns that characterize 
particular protein families. Tools for creating and editing multiple sequence alignments are 
introduced in Chapter 8.  

Phylogenetic analysis  

Phylogenetic analysis attempts to describe the evolutionary relatedness of a group of sequences. 
A traditional phylogenetic tree or cladogram groups species into a diagram that represents their 
relative evolutionary divergence. Branchings of the tree that occur furthest from the root 
separate individual species; branchings that occur close to the root group species into kingdoms, 
phyla, classes, families, genera, and so on.  

The information in a molecular sequence alignment can be used to compute a phylogenetic tree 
for a particular family of gene sequences. The branchings in phylogenetic trees represent 
evolutionary distance based on sequence similarity scores or on information-theoretic modeling 
of the number of mutational steps required to change one sequence into the other. Phylogenetic 
analyses of protein sequence families talks not about the evolution of the entire organism but 
about evolutionary change in specific coding regions, although our ability to create broader 
evolutionary models based on molecular information will expand as the genome projects 
provide more data to work with. Tools for phylogenetic analysis are introduced in Chapter 8.  

Extraction of patterns and profiles from sequence data  

A motif is a sequence of amino acids that defines a substructure in a protein that can be 
connected to function or to structural stability. In a group of evolutionarily related gene 
sequences, motifs appear as conserved sites. Sites in a gene sequence tend to be conserved—to 
remain the same in all or most representatives of a sequence family—when there is selection 
pressure against copies of the gene that have mutations at that site. Nonessential parts of the 
gene sequence will diverge from each other in the course of evolution, so the conserved motif 
regions show up as a signal in a sea of mutational noise. Sequence profiles are statistical 
descriptions of these motif signals; profiles can help identify distantly related proteins by 
picking out a motif signal even in a sequence that has diverged radically from other members of 
the same family. Tools for profile analysis and motif discovery are introduced in Chapter 8.  
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Protein sequence analysis  

The amino-acid content of a protein sequence can be used as the basis for many analyses, from 
computing the isoelectric point and molecular weight of the protein and the characteristic 
peptide mass fingerprints that will form when it's digested with a particular protease, to 
predicting secondary structure features and post-translational modification sites. Tools for 
feature prediction are introduced in Chapter 9, and tools for proteomics analysis are introduced 
in Chapter 11.  

Protein structure prediction  

It's a lot harder to determine the structure of a protein experimentally than it is to obtain DNA 
sequence data. One very active area of bioinformatics and computational biology research is the 
development of methods for predicting protein structure from protein sequence. Methods such 
as secondary structure prediction and threading can help determine how a protein might fold, 
classifying it with other proteins that have similar topology, but they don't provide a detailed 
structural model. The most effective and practical method for protein structure prediction is 
homology modeling—using a known structure as a template to model a structure with a similar 
sequence. In the absence of homology, there is no way to predict a complete 3D structure for a 
protein. Tools for protein structure prediction are introduced in Chapter 9.  

Protein structure property analysis  

Protein structures have many measurable properties that are of interest to crystallographers and 
structural biologists. Protein structure validation tools are used by crystallographers to measure 
how well a structure model conforms to structural rules extracted from existing structures or 
chemical model compounds. These tools may also analyze the "fitness" of every amino acid in a 
structure model for its environment, flagging such oddities as buried charges with no 
countercharge or large patches of hydrophobic amino acids found on a protein surface. These 
tools are useful for evaluating both experimental and theoretical structure models.  

Another class of tools can calculate internal geometry and physicochemical properties of 
proteins. These tools usually are applied to help develop models of the protein's catalytic 
mechanism or other chemical features. Some of the most interesting properties of protein 
structures are the locations of deeply concave surface clefts and internal cavities, both of which 
may point to the location of a cofactor binding site or active site. Other tools compute 
hydrogen-bonding patterns or analyze intramolecular contacts. A particularly interesting set of 
properties are the electrostatic potential field surrounding the protein and other electrostatically 
controlled parameters such as individual amino acid pKas, protein solvation energies, and 
binding constants. Methods for protein property analysis are discussed in Chapter 10.  

Protein structure alignment and comparison  

Even when two gene sequences aren't apparently homologous, the structures of the proteins 
they encode can be similar. New tools for computing structural similarity are making it possible 
to detect distant homologies by comparing structures, even in the absence of much sequence 
similarity. These tools also are useful for comparing constructed homology models to the 
known protein structures they are based on. protein structure alignment tools are introduced in 
Chapter 10.  
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Biochemical simulation  

Biochemical simulation uses the tools of dynamical systems modeling to simulate the chemical 
reactions involved in metabolism. Simulations can extend from individual metabolic pathways 
to transmembrane transport processes and even properties of whole cells or tissues. 
Biochemical and cellular simulations traditionally have relied on the ability of the scientist to 
describe a system mathematically, developing a system of differential equations that represent 
the different reactions and fluxes occurring in the system. However, new software tools can 
build the mathematical framework of a simulation automatically from a description provided 
interactively by the user, making mathematical modeling accessible to any biologist who knows 
enough about a system to describe it according to the conventions of dynamical systems 
modeling. Dynamical systems modeling tools are discussed in Chapter 11.  

Whole genome analysis  

As more and more genomes are sequenced completely, the analysis of raw genome data has 
become a more important task. There are a number of perspectives from which one can look at 
genome data: for example, it can be treated as a long linear sequence, but it's often more useful 
to integrate DNA sequence information with existing genetic and physical map data. This 
allows you to navigate a very large genome and find what you want. The National Center for 
Biotechnology Information (NCBI) and other organizations are making a concerted effort to 
provide useful web interfaces to genome data, so that users can start from a high-level map and 
navigate to the location of a specific gene sequence.  

Genome navigation is far from the only issue in genomic sequence analysis, however. 
Annotation frameworks, which integrate genome sequence with results of gene finding analysis 
and sequence homology information, are becoming more common, and the challenge of making 
and analyzing complete pairwise comparisons between genomes is beginning to be addressed. 
Genome analysis tools are discussed in Chapter 11.  

Primer design  

Many molecular biology protocols require the design of oligonucleotide primers. Proper primer 
design is critical for the success of polymerase chain reaction (PCR), oligo hybridization, DNA 
sequencing, and microarray experiments. Primers must hybridize with the target DNA to 
provide a clear answer to the question being asked, but, they must also have appropriate 
physicochemical properties; they must not self-hybridize or dimerize; and they should not have 
multiple targets within the sequence under investigation. There are several web -based services 
that allow users to submit a DNA sequence and automatically detect appropriate primers, or to 
compute the properties of a desired primer DNA sequence. Primer design tools are discussed in 
Chapter 11.  

DNA microarray analysis  

DNA microarray analysis is a relatively new molecular biology method that expands on classic 
probe hybridization methods to provide access to thousands of genes at once. Microarray 
experiments are amenable to computational analysis because of the uniform, standardized 
nature of their results—a grid of equally sized spots, each identifiable with a particular DNA 
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sequence. Computational tools are required to analyze larger microarrays because the resulting 
images are so visually complex that comparison by hand is no longer feasible.  

The main tasks in microarray analysis as it's currently done are an image analysis step, in which 
individual spots on the array image are identified and signal intensity is quantitated, and a 
clustering step, in which spots with similar signal intensities are identified. Computational 
support is also required for the chip -design phase of a microarray experiment to identify 
appropriate oligonucleotide probe sequences for a particular set of genes and to maintain a 
record of the identity of each spot in a grid that may contain thousands of individual 
experiments. Array analysis tools are discussed in Chapter 11.  

Proteomics analysis  

Before they're ever crystallized and biochemically characterized, proteins are often studied 
using a combination of gel electrophoresis, partial sequencing, and mass spectroscopy. 2D gel 
electrophoresis can separate a mixture of thousands of proteins into distinct components; the 
individual spots of material can be blotted or even cut from the gel and analyzed. Simple 
computational tools can provide some information to aid in the process of analyzing protein 
mixtures. It's trivial to compute molecular weight and pI from a protein sequence; by using 
these values in combination, sets of candidate identities can be found for each spot on a gel. It's 
also possible to compute, from a protein sequence, the peptide fingerprint that is created when 
that protein is broken down into fragments by enzymes with specific protein cleavage sites. 
Mass spec analyses of protein fragments can be compared to computed peptide fingerprints to 
further limit the search. Proteomics tools are covered in Chapter 11.  

2.5 A Computational Biology Experiment  

Computer-based research projects and computational analysis of experimental data must follow the 
same principles other scientific study do. Your results must clearly answer the question you set out to 
test, and they must be reproducible by someone else using the same input data and following the same 
process.  

If you're already doing research in experimental biology, you probably have a pretty good 
understanding of the scientific method. Although your data, your method, and your results are all 
encoded in computer files rather than sitting on your laboratory bench, the process of designing a 
computational "experiment" is the same as you are used to.  

Although it's easy in these days of automation to simply submit a query to a search engine and use the 
results without thinking too much about it, you need to understand your method and analyze your 
results thoroughly in the same way you would when applying a laboratory protocol. Sometimes that's 
easier said than done. So let's take a walk through the steps involved in defining an experiment in 
computational biology.  

2.5.1 Identifying the Problem 

A scientific experiment always begins with a question. A question can be as broad as "what is the 
catalytic mechanism of protein X?" It's not always possible to answer a complex question about how 
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something works with one experiment. The question needs to be broken down into parts, each of which 
can be formulated as a hypothesis.  

A hypothesis is a statement that is testable by experiment. In the course of solving a problem, you will 
probably formulate a number of testable statements, some of them trivial and some more complex. For 
instance, as a first approach to answering the question, "What is the catalytic mechanism of protein 
X?", you might come up with a preliminary hypothesis such as: "There are amino acids in protein X 
that are conserved in other proteins that do the same thing as protein X." You can test this hypothesis 
by using a computer program to align the sequences of as many protein X-type proteins as you can 
find, and look for amino acids that are identical among all or most of the sequences. Subsequently 
you'd move to another hypothesis such as: "Some of these conserved amino acids in the protein X 
family have something to do with the catalytic mechanism." This more complex hypothesis can then be 
broken down into a number of smaller ones, each of them testable (perhaps by a laboratory experiment, 
or perhaps by another computational procedure).  

A research project can easily become interminable if the goals are ill-defined or the question can't 
feasibly be answered. On the other hand, if you aren't careful, it's easy to keep adding questions to a 
project on the basis of new information, allowing the goal to keep creeping out of reach every time its 
completion is close. It's easy to do this with computational projects, because the cost of materials and 
resources is low once the initial expense of buying computers and software is covered. It seems no big 
loss to just keep playing around on the computer.  

We have found that this pathological condition can be avoided if, before embarking on a computational 
project, some time is spent on sketching out a specification of the project's goals and timeline. If you 
plan to write a project spec, it's easier to start from written answers to questions such as the following:  

• What is the question this project is trying to answer?  
• What is the final form you expect the results to take? Is the goal to produce a computer 

program, a data set that will be used in an ongoing project, a journal publication, etc.? What are 
the requirements for success or completion of the project?  

• What is the approximate timeline of the project?  
• What is the general outline of the project? Here, it would be appropriate to break the project 

down into constituent parts and describe what you think needs to be done to finish each part.  
• How does your project fit in with the work of others? If you're a lone wolf, you don't have to 

worry about this, but research scientists tend to run in packs. It's good to have a clear 
understanding of where your work is dependent on others. If you are writing a project spec for a 
group of people to work on, indicate who is responsible for each part of the work.  

• At what point will it be unprofitable to continue? 

Thinking through questions like these not only gives you a clearer idea of what your projects are trying 
to achieve, but also gives you an outline by which you can organize your research.  

2.5.2 Separating the Problem into Simpler Components 

In Chapter 7 through Chapter 14, we cover many of the common protocols for using bioinformatics 
tools and databases in your research. Coming up with the series of steps in those protocols wasn't 
rocket science. The key to developing your own bioinformatics computer skills is this: know what tools 
are available and know how to use them. Then you can take a modular approach to the problems you 
want to solve, breaking them down into distinct modules such as sequence searching, sequence profile 
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detection, homology modeling, model evaluation, etc., for each of which there are established 
computational methods.  

2.5.3 Evaluating Your Needs 

As you break down a problem into modular components, you should be evaluating what you have, in 
terms of available data and starting points for modeling, and what you need. Getting from point A to 
point B, and from point C to point D, won't help you if there's absolutely no way to get from point B to 
point C. For instance, if you can't find any homologous sequences for an unknown DNA sequence, it's 
unlikely you'll get beyond that point to do any further modeling. And even if you do find a group of 
sequences with a distinctive profile, you shouldn't base your research plans on developing a structural 
model if there are no homologous structures in the Protein Data Bank (PDB). It's just common sense, 
but be sure that there's a likely way to get to the result you want before putting time and effort into a 
project.  

2.5.4 Selecting the Appropriate Data Set 

In a laboratory setting, materials are the physical objects or substances you use to perform an 
experiment. It's necessary for you to record certain data about your materials: when they were made, 
who prepared them, possibly how they were prepared, etc.  

The same sort of documentation is necessary in computational biology, but the difference is that you 
will be experimenting on data, not on a tangible object or substance. The source data you work with 
should be distinguished from the derived data that constitutes the results of your experiment. You will 
probably get your source data from one of the many biomolecular databases. In Chapter 13, you will 
learn more about how information is stored in databases and how to extract it. You need to record 
where your source data came from and what criteria or method you use to extract your source data set 
from the source database.  

For example, if you are building a homology model of a protein, you need to account for how you 
selected the template structures on which you based your model. Did you find them using the unknown 
sequence to search the PDB? Did that approach provide sufficient template structures, or did you, 
perhaps, use sequence profile-based methods to help identify other structures that are more dis tantly 
related to your unknown? Each step you take should be documented.  

Criteria for selecting a source data set in computational biology can be quite complex and nontrivial. 
For instance, statistical studies of sequence information or of structural data from proteins are often 
based on a nonredundant subset of available protein data. This means that data for individual proteins 
is excluded from the set if the proteins are too similar in sequence to other proteins that are being 
included. Inclusion of two structure datafiles that describe the same protein crystallized under slightly 
different conditions, for example, can bias the results of a computational study. Each step of such a 
selection process needs to be documented, either within your own records, or by reference to a 
published source.  

It's important to remember that all digital sequence and structure data is derived data. By the time it 
reaches you, it has been through at least one or two processing steps, each of which can introduce 
errors. DNA sequences have been processed by basecalling software and assembled into maps, 
analyzed for errors, and possibly annotated according to structure and function, all by tools developed 
by other scientists as human and error-prone as yourself. Protein structure coordinates are really just a 
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very good guess at where atoms fit into observed electron density data, and electron density maps in 
turn have been extrapolated from patterns of x-ray reflections. This isn't to say that you should not use 
or trust biologic al data, but you should remember that there is some amount of uncertainty associated 
with each unambiguous-looking character in a sequence or atomic coordinate in a structure. 
Crystallographers provide parameters, such as R-factors and b-values, which quantify the uncertainty 
of coordinates in macromolecular structures to some extent, but in the case of sequences, no such 
estimates are routinely provided within the datafile.  

2.5.5 Identifying the Criteria for Success 

Critical evaluation of results is key to establishing the usefulness of computer modeling in biology. In 
the context of presenting various tools you can use, we've discussed methods for evaluating your 
results, from using BLAST E-values to pick the significant matches out of a long list of results to 
evaluating the geometry of a protein structural model. Before you start computing molecular properties 
or developing a computational model, take inventory of what you know, and look for further 
information. Then try to see the ways in which that information can validate your results. This is part of 
breaking down your problem into steps.  

Computational methods almost always produce results. It's not like spectroscopy, where if there's 
nothing significant in the cuvette, you don't get a signal. If you do a BLAST search, you almost always 
get some hits back. You need to know how to distinguish meaningful results from garbage so you don't 
end up comparing apples to oranges (or superoxide dismutases to alcohol dehydrogenases). If you 
calculate physicochemical properties of a protein molecule or develop a biochemical pathway 
simulation, you get a file full of numbers. The best possible way to evaluate your results is to have 
some experimental results to compare them to.  

Before you apply a computational method, decide how to evaluate your results and what criteria they 
need to meet for you to consider the approach successful.  

2.5.6 Performing and Documenting a Computational Experiment 

When managing results for a computational project, you should make a distinction between primary 
results and results of subsequent analyses. You should include a separate section in your results 
directory for any analysis steps you may perform on the data (for instance, the results of statistical tests 
or curve fitting). This section should include any observations you may have made about the data or the 
data collection. Keep separate the results, which are the data you get from executing the experiment, 
and the analysis, which is the insight you bring to the data you have collected.  

One tendency that is common to users of computational biology software is to keep data and notes 
about positive results while neglecting to document negative results. Even if you've done a web-based 
BLAST search against a database and found nothing, that is information. And if you've written or 
downloaded a program that is supposed to do something, but it doesn't work, that information is 
valuable too—to the next guy who comes in to continue your project and wastes time trying to figure 
out what works and what doesn't.  

2.5.6.1 Documentation issues in computational biology 

Many researchers, even those who do all their work on the computer, maintain paper laboratory 
notebooks, which are still the standard recording device for scientific research. Laboratory notebooks 
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provide a tangible physical record of research activities, and maintenance of lab records in this format 
is still a condition of many research grants.  

However, laboratory notebooks can be an inconvenient source of information for you or for others who 
are trying to duplicate or reconstruct your work. Lab notebooks are organized linearly, with entries 
sorted only by date. They aren't indexed (unless you have a lot more free time than most researchers 
do). They can't be searched for information about particular subjects, except by the unsatisfactory 
strategy of sitting down and skimming the whole book beginning to end.  

Computer filesystems provide an intuitive basis for clear and precise organization of research records. 
Information about each part of a project can be stored logically, within the file hierarchy, instead of 
sequentially. Instead of (or in addition to) a paper notebook on your bookshelf, you will have electronic 
record embedded within your data. If your files are named systematically and simple conventions are 
used in structuring your electronic record, Unix tools such as the grep command will allow you to 
search your documentation for occurrences of a particular word or date and to find the needed 
information much more quickly than you would reading through a paper notebook.  

2.5.6.2 Electronic notebooks 

While you can get by with homegrown strategies for building an electronic record of your work, you 
may want to try one of the commercial products that are available. Or, if you're looking for a freeware 
implementation of the electronic notebook concept, you can obtain a copy of the software being 
developed by the DOE2000 Electronic Notebook project. The eNote package lets you input text, 
upload images and datafiles, and create sketches and annotations. It's a Perl CGI program and will run 
on any platform with a web server and a Perl interpreter installed. When installed, it's accessible from a 
web URL on your machine, and you can update your notebook through a web form. The DOE project 
is designed to fulfill federal agency requirements for laboratory notebooks, as scientific research 
continues to move into the computer age.  

The eNote package is extremely simple to install. It requires that you have a working web server 
installed on your machine. If you do, you can download the eNote archive and unpack it in its own 
directory, for example /usr/local/enote. The three files enote.pl, enotelib.pl,  and sketchpad.pl are the 
eNote programs. You need to move enote.pl to the /home/httpd/cgi-bin directory (or wherever your 
executable CGI directory is; this one is the default on Red Hat Linux systems) and rename it enote.cgi. 
If you want to restrict access to the notebook, create a special subdirectory just for the eNote programs, 
and remember that the directory will show up in the URL path to access the CGI script. The 
sketchpad.pl file should also be moved to this directory, but it doesn't have to be renamed. Move the 
directories gifs and new-gifs to a web-accessible location. You can create a directory such as 
/home/httpd/enote for this purpose. Leave the file enotelib.pl and the directory sketchpad where you 
unpacked them.  

Finally, you need to edit the first line in both enote.cgi and sketchpad.pl to point to the location of the 
Perl executable on your machine. Edit the enote.cgi script to reflect the paths where you installed the 
eNote script and its support files. You also need to choose a directory in which you want eNote to write 
entries. For instance, you may want to create a /home/enote/notebook directory and store eNote write 
files there. If so, be sure that directory is readable and writable by other users so the web server (which 
is usually identified as user nobody) can write there.  
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The eNote script also contains parameters that specify whether users of the notebook system can add, 
delete, and modify entries. If you plan to use eNote seriously, these are important parameters to 
consider. Would you allow users to tear unwanted pages out of a laboratory notebook or write over 
them so the original entry was unreadable? eNote allows you to maintain control over what users can 
do with their data.  

The eNote interface is a straightforward web form, which also links to a Java sketchpad applet. If you 
want only specific users with logins on your machine to be able to access the eNote CGI script, you can 
set up a .htaccess file in the eNote subdirectory of your CGI directory. A .htaccess file is a file readable 
by your web server that contains commands to restrict access to a particular directory and/or where it 
can be accessed from. For more information on creating a .htaccess file, consult the documentation for 
the web server you are using—most likely Apache on most Linux systems.  

If you do begin to use an electronic notebook for storing your laboratory notes, remember that you 
must save backups of your notebook frequently in case of system failures.  
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Chapter 3. Setting Up Your Workstation 

In this chapter, we discuss how to set up a workstation running the Linux operating system. Linux is a 
free, open source version of Unix that makes it possible to turn an ordinary PC into a powerful 
workstation. By configuring your system with Linux and other open source software, you can have 
access to a lot of powerful computational biology and bioinformatics tools at a low cost.  

In writing this chapter, we encountered a bit of a paradox—in order to get around in Unix you need to 
have your computer set up, but in order to set up your computer you need to know a few things about 
Unix. If you don't have much experience with Unix, we strongly suggest that you look through Chapter 
4 and Chapter 5 before you set up a Linux workstation of your own. If you're already familiar with the 
ins and outs of Unix, feel free to skip ahead to Chapter 6. 

3.1 Working on a Unix System 

You are probably accustomed to working with personal computers; you may be familiar with windows 
interfaces, word processors, and even some data-analysis packages. But if you want to use computers 
as a serious component in your research, you need to work on computer systems that run under Unix or 
related multiuser operating systems.  

3.1.1 What Does an Operating System Do? 

Computer hardware without an operating system is like a dead animal. It isn't going to react, it isn't 
going to function; it's just going to sit there and look at you with glassy eyes until it rots (or rusts). The 
operating system breathes life into the inert body of your computer. It handles the low level processes 
that make hardware work together and provides an environment in which you can run and develop 
programs. The most important function of the operating system is that it allows you convenient access 
to your files and programs.  

3.1.2 Why Use Unix? 

So if the operating system is something you're not supposed to notice, why worry about which one 
you're using? Why use Unix?  

Unix is a powerful operating system for multiuser computer systems. It has been in existence for over 
25 years, and during that time has been used primarily in industry and academia, where networked 
systems and multiuser high-performance computer systems are required. Unix is optimized for tasks 
that are only fairly recent additions to personal-computer operating systems, or which are still not even 
available in some PC operating systems: networking with other computers, initiating multiple 
asynchronous tasks, retaining unique information about the work environments of multiple users, and 
protecting the information stored by individual users from other users of the system. Unix is the 
operating system of the World Wide Web; the software that powers the Web was invented in Unix, and 
many if not most web servers run on Unix servers.  

Because Unix has been used extensively in universities, where much software for scientific data 
analysis is developed, you will find a lot of good-quality, interesting scientific software written for 
Unix systems. Computational biology and bioinformatics researchers are especially likely to have 
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developed software for Unix, since until the mid-1990s, the only workstations able to visualize protein 
structure data in realtime were Silicon Graphics and Sun Unix workstations.  

Unix is rich in commands and possibilities. Every distribution of Unix comes with a powerful set of 
built-in programs. Everything from networking software to word-processing software to electronic mail 
and news readers is already a part of Unix. Many other programs can be downloaded and installed on 
Unix systems for free.  

It might seem that there's far too much to learn to make working on a Unix system practical. It's 
possible, however, to learn a subset of Unix and to become a productive Unix user without knowing or 
using every program and feature.  

3.1.3 Different Flavors of Unix 

Unix isn't a monolithic entity. Many different Unix operating systems are out there, some proprietary 
and some freely distributed. Most of the commands we present in this book work in the same way on 
any system you are likely to encounter.  

3.1.3.1 Linux 

Linux (LIH-nucks) is an open source version of Unix, named for its original developer, Linus Torvalds 
of the University of Helsinki in Finland. Originally undertaken as a one-man project to create a free 
Unix for personal computers, Linux has grown from a hobbyist project into a product that, for the first 
time, gives the average personal-computer user access to a Unix system.  

In this book, we focus on Linux for three reasons. First, with the availability of Linux, Unix is cheap 
(or free, if you have the patience to download and install it). Second, under Linux, inexpensive PCs 
regarded as "obsolete" by Windows users become startlingly flexible and useful workstations. The 
Linux operating system can be configured to use a much smaller amount of system resources than the 
personal computer operating systems, which means computers that have been outgrown by the ever-
expanding system requirements of PC programs and operating systems can be given a new lease on life 
by being reconfigured to run Linux. Third, Linux is an excellent platform for developing software, so 
there's a rich library of tools available for computational biology and for research in general.  

You may think that if you install Linux on your computer, you'll be pretty much on your own. It's a 
freeware operating system, after all. Won't you have to understand just about everything about Linux to 
get it configured correctly on your system? While this might have been true a few years ago, it's not 
any more. Hardware companies are starting to ship personal computers with Linux preinstalled as an 
alternative to the Microsoft operating systems. There are a number of companies that sell distributions 
of Linux at reasonable prices. Probably the best known of these is the Red Hat distribution. We should 
mention that we (the authors) run Red Hat Linux. Most of our experience—and the examples in this 
book—are based on that distribution. If you purchase Linux from one of these companies, you get CDs 
that contain not only Linux but many other compatible free software tools. You'll also have access to 
technical support for your installation.  

3.1.3.1.1 Will Linux run on your computer?  

Linux started out as a Unix-like operating system for PCs, but various Linux development projects now 
support nearly every available system architecture, including PCs of all types, Macintosh computers 
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old and new, Silicon Graphics, Sun, Hewlett-Packard, and other high-end workstations and high-
performance multiprocessor machines. So even if you're starting with a motley mix of old and new 
hardware, you can use Linux to create a multiworkstation network of compatible computers. See 
Section 3.2 for more information on installing and running Linux.  

3.1.3.2 Other common flavors 

There are many varieties (or "flavors") of Unix out there. The other common free implementation is the 
Berkeley Software Distribution (BSD) originally developed at the University of California-Berkeley. 
For the PC, there are a handful of commercial Unix implementations, such as The Santa Cruz 
Operation (SCO) Unix. Several workstation makers sell their own platform-specific Unix 
implementations with their computers, often with their own peculiarities and quirks. Most common 
among these are Solaris (Sun Microsystems), IRIX (Silicon Graphics), Digital Unix (Compaq 
Corporation), HP-UX (Hewlett Packard), and AIX (IBM). This list isn't exhaustive, but it's probably 
representative of what you will find in most laboratories and computing centers.  

3.1.4 Graphical Interfaces for Unix 

Although Unix is a text-based operating system, you no longer have to experience it as a black screen 
full of glowing green or amber letters. Most Unix systems use a variant of the X Window System. The 
X Window System formats the screen environment and allows you to have multiple windows and 
applications open simultaneously. X windows are customizable so that you can use menu bars and 
other widgets much like PC operating systems. Individual Unix shells on the host machine as well as 
on networked machines are opened as windows, allowing you to exploit Unix's multitasking 
capabilities and to have many shells active simultaneously. In addition to Unix shells and tools, there 
are many applications that take advantage of the X system and use X windows as part of their graphical 
user interfaces, allowing these applications to be run while still giving access to the Unix command 
line.  

The GNOME and KDE desktop environments, which are included in most major Linux distributions, 
make your Linux system look even more like a personal computer. Toolbars, visual file managers, and 
a configurable desktop replicate the feeling of a Windows or Mac work environment, except that you 
can also open a shell window and run Unix programs.  

3.2 Setting Up a Linux Workstation 

If you are already using an existing Unix/Linux system, feel free to skip this section and go directly to 
the next.  

If you are used to working with Macintosh or PC operating systems, the simplest way to set up a Linux 
workstation or server is to go out and buy a PC that comes with Linux preinstalled. VA Linux, for 
example, offers a variety of Intel Pentium-based workstations and servers preconfigured with your 
choice of several of the most popular Linux distributions.  

If you're looking for a complete, self-contained bioinformatics system, Iobion Systems 
(http://www.iobion.com) is developing Iobion, a ground-breaking bioinformatics network server 
appliance developed using open source technologies. Iobion is an Intel-based hardware system that 
comes preinstalled with Linux, Apache web server, a PostgreSQL relational database, the R statistical 
language, and a comprehensive suite of bioinformatics tools and databases. The system serves these 
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scientific applications to web clients on a local intranet or over the Internet. The applications include 
tools for microarray data analysis complete with a microarray database, sequence analysis and 
annotation tools, local copies of the public sequence databases, a peer-to-peer networking tool for 
sharing biological data, and advanced biological lab tools. Iobion promotes and adheres to open 
standards in bioinformatics.  

If you already have a PC, your next choice is to buy a prepackaged version of Linux, such as those 
offered by Red Hat, Debian, or SuSE. These prepackaged distributions have several advantages: they 
have an easy-to-use graphical interface for installing Linux, all the software they include is packed into 
package manager (for Red Hat, it's the Red Hat Package Manager or RPM) archives or similar easily 
extracted formats, and they often contain a large number of "extras" that are easier to install from the 
distribution disk using a package manager than they are if you install them by hand.  

That said, let's assume you've gone out and bought something like the current version of Red Hat. 
You'll be asked if you want to do a workstation installation, a server installation, or a custom 
installation. What do these choices mean?  

Your Linux machine can easily be set up to do some things you may not be used to doing with a PC or 
Macintosh. You can set up a web server on your machine, and if you dig a little deeper into the 
manuals, you can find out how to give each user of your machine a place to create his own web page. 
You can set up an anonymous FTP server so that guests can FTP in to pick up copies of files you 
choose to make public. You can set up an NFS server to allow directories you choose to be mounted on 
other machines. These are just some options that set a server apart from a workstation.  

If you are inexperienced in Unix administratio n, you probably want to set up your first Linux machine 
as a workstation. With a workstation setup, you can access the Internet, but your machine can't provide 
any services to outside users (and you aren't responsible for maintaining these services). If you're 
feeling more adventurous, you can do a custom installation. This allows you to pick and choose the 
system components you want, rather than taking everything the installer thinks you may want.  

3.2.1 Installing Linux 

We can't possibly tell you everything you need to know to install and run Linux. That's beyond the 
scope of this book. There are many excellent books on the market that cover all possible angles of 
installing and running Linux, and you can find a good selection in this book's Bibliography. In this 
section, we simply offer some advice on the more important aspects of installation.  

3.2.1.1 System requirements 

Linux runs on a range of PC hardware combinations, but not all possible combinations. There are 
certain minimum requirements. For optimum performance, your PC should have an 80486 processor or 
better. Most Linux users have systems that use Intel chips. If your system doesn't, you should be aware 
that while Linux does support a few non-Intel processors, there is less documentation to help you 
resolve potential problems on those systems.  

For optimum performance your system should have at least 16 MB of RAM. If you're planning to run 
X, you should seriously consider installing more memory—perhaps 64 MB. X runs well on 16 MB, but 
it runs more quickly and allows you to open more windows if additional memory is available.  
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If you plan to use your Linux system as a workstation, you should have at least 600 MB of free disk 
space. If you want to use it as a server, you should allow 1.6 GB of free space. You can never have too 
much disk space, so if you are setting up a new system, we recommend buying the largest hard drive 
possible. You'll never regret it.  

In most cases the installation utility that comes with your distribution can determine your system 
configuration automatically, but if it fails to do so, you must be prepared to supply the needed 
information. Table 3-1 lists the configuration information you need to start your installation.  

Table 3-1. Configuration Information Needed to Install Linux  
Device Information Needed 

Hard drive(s)  

• The number, size, and type of each hard drive 

• Which hard drive is first, second, and so on 

• Which adapter type (IDE or SCSI) is used by each drive  

• For each IDE drive, if the BIOS is set in LBS mode 

RAM  
• The amount of installed RAM 

CD-ROM drive(s)  

• Which adapter type (IDE, SCSI, other) is used by each drive 

• For each drive using a non-IDE, non-SCSI adapter, the make and model of the drive  

SCSI adapter (if any)  • The make and model of the card 

Network adapter (if any)  
• The make and model of the card 

Mouse 

• The type (serial, PS/2, or bus) 

• The protocol (Microsoft, Logitech, MouseMan, etc.)  

• The number of buttons 

• For a serial mouse, the serial port to which it's connected 

Video adapter  

• The make and model of the card 

• The amount of video RAM 

To obtain information, you may need to examine your system's BIOS settings or open the case and 
look at the installed hardware. Consult your system documentation or your system administrator to 
learn how to do so.  

Here are three of the more popular Linux distributions:  

• Red Hat (http://www.redhat.com/support/hardware/)  
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• boot: Debian (http://www.debian.org/doc/FAQ/ch-compat.html)  
• SuSE (http://www.suse.com)  

All have well-organized web sites with information about the hardware their distributions support. 
Once you've collected the information in Table 3-1, take a few minutes to check the appropriate web 
site to see if your particular PC hardware configuration is supported.  

3.2.1.2 Partitioning your disk 

Linux runs most efficiently on a partitioned hard drive. Partitioning is the process of dividing your disk 
up into several independent sections. Each partition on a hard drive is a separate filesystem. Files in 
one filesystem are to some extent protected from what goes on in other filesystems. If you download a 
bunch of huge image files, you can fill up only the partition in which your home directories live; you 
can't make the machine unusable by filling up all the available space for essential system functions. 
And if one partition gets corrupted, you can sometimes fix the problem without reformatting the entire 
drive and losing data stored in the other partitions.  

When you start a Red Hat Linux installation, you need the Linux boot disk in your floppy drive and the 
Linux CD-ROM in your CD drive. When you turn the computer on, you almost immediately encounter 
an installation screen that offers several installation mode options. At the bottom of the screen, there is 
a boot: prompt. Generally, you should just hit the Enter key; however, if you're using a new model of 
computer, especially a laptop, you may want to enter text, then press the Enter key for a text-mode 
installation, in case your video card isn't supported by the current Linux release.  

Click through the next few screens, selecting the appropriate language and keyboard. You'll come to a 
point at which you're offered the option of selecting a GNOME workstation, a KDE workstation, a 
server, or a custom installation. At this point, you can just choose one of the single user workstation 
options, and you're essentially done. However, we suggest doing a custom installation to allow you 
greater control over what is installed on your computer and where it's installed.  

If you have a single machine that's not going to be interacting with other machines on the network, you 
can probably get away with putting the entire Linux installation into one big filesystem, if that's what 
you want. But if you're setting up a machine that will, for instance, share software in its /usr/local 
directory with all the other machines in your lab, you'll want to do some creative partitioning.  

On any given hard disk, you can have four partitions. Partitions can be of two types: primary and 
extended. Within an extended partition, you can have as many subpartitions as you like. Red Hat and 
other commercial Linux distributions have simple graphical interfaces that allow you to format your 
hard disk. More advanced users can use the fdisk program to achieve precise partitioning. Refer to one 
of the "Learning Linux" books we recommend in the Bibliography for an in-depth discussion of 
partitioning and how to use the fdisk program.  

3.2.1.3 Selecting major package groupings 

After you've set up partitions on your disk, chosen mount points for your partitions, and completed a 
few other configuration steps, you need to pick the packages to install.  

First, go through the Package Group Selection list. You'll definitely need printer support; the X 
Window System; either the GNOME or KDE desktop (we like KDE); mail, web, and news tools, 
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graphics manipulation tools; multimedia support; utilities; and networked workstation support. If you'll 
be installing software (and you will), you need a number of items in the development package group 
(C, FORTRAN, and other compilers come in handy, as do some development libraries). You may also 
want to install the Emacs text editor and the authoring/publishing tools. Depending on where you use 
your system from, you may need dial-up workstation support.  

The rest of the package groups add server functionality to your machine. If you want your machine to 
function as a web server, add the web server package group. If you want to make some of the 
directories on your machine available for NFS mounting, choose the NFS server group. If you plan to 
create your own databases, you may want to set up your machine as a PostgreSQL server. Generally, if 
you have no idea what it is or how you'd use it, you probably don't need to install it at this point.  

If you're concerned about running out of space on your machine, you can now sift through the contents 
of each package grouping and get rid of software you won't be using. For example, the "Mail, Web and 
News" package grouping contains many different types of software for reading email and newsgroups. 
Don't install it all, just pick your favorite package, and get rid of the rest. (In case you're wondering 
what to choose, here's a hint: it's very easy to configure the Netscape browser to do all the mail and 
news reading you'll need.) If you're installing a Red Hat system, check under "Applications/Editors" 
and make sure you have the vim editor selected; in "Applications/Engineering," select gnuplot; and in 
"Applications/Publishing," select enscript. Don't worry if you don't install something at the beginning 
and find you need to install it later, it's pretty easy to do.  

3.2.1.4 Other useful packages to add 

Once you've done a basic Linux installation on your machine, you can add new packages easily using 
the kpackage command (if you're using the KDE desktop environment) or gnorpm (if you are using 
GNOME).  

In order to compile some of the software we'll be discussing in the next few chapters, and to expand the 
functionality of your Linux workstation, you may want to install some of the following tools. The first 
set of tools are from the Red Hat Linux Power Tools CD:  

R  

A powerful system for statistical computation and graphics. It's based on S and consists of a 
high-level language and a runtime environment.  

OpenGL /Mesa  

A development kit for creating graphical user interfaces that enhances performance of some 
molecular visualization software.  

LessTif  

A widget set for application development. You might not use it directly, but it's used when you 
compile some of the software discussed later in this book. Install at least the main package and 
the client package.  

Xbase  
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Another widget set.  

MySQL  

A database server for smaller data sets. It's useful if you're just starting to build your own 
databases.  

octave  

A MatLab-like high-level language for numerical computations.  

xv  

A multipurpose image-editing and conversion tool.  

xemacs  

A powerful X Windows-based editor with special extensions for editing source code.  

plugger  

A generic Netscape plug-in that supports many formats.  

You can download from the Web and install the following tools: 

JDK /JRE (http://java.sun.com)  

A Java Development Kit and Java Runtime Environment are needed if you want to use Java-
based tools such as the Jalview sequence editor we discuss in Chapter 4. They are freely 
available for Linux from IBM, Sun, and Blackdown (http://blackdown.org). Blackdown also 
offers a Java plug-in for Netscape, which is required to run some of the applications we discuss.  

NCBI Toolkit ( ftp://ncbi.nlm.nih.gov/toolbox/ncbi_tools/README.htm)  

A software library for developers of biology applications. It's required in order to compile some 
software originating at NCBI.  

StarOffice (http://www.staroffice.com)  

A comprehensive office productivity package freely available from Sun Microsystems. It 
replaces most or all functionality of Microsoft Office and other familiar office-productivity 
packages.  

3.3 How to Get Software Working 

You've gone out and done the research and found a bioinformatics software package you want to install 
on your own computer. Now what do you do?  
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When you look for Unix software on the Web, you will find that it's distributed in a number of different 
formats. Each type of software distribution requires a different type of handling. Some are very simple 
to install, almost like installing software on a Mac or PC. On the other hand, some software is 
distributed in a rudimentary form that requires your active intervention to get it running. In order to get 
this software working, you may have to compile it by hand or even modify the directions that are sent 
to the compiler so that the program will work on your system. Compiling is the process of converting 
software from its human-readable form, source code, to a machine-readable executable form. A 
compiler is the program that performs this conversion.  

Software that's difficult to install isn't necessarily bad software. It may be high-quality software from a 
research group that doesn't have the resources to produce an easy-to-use installation kit. While this is 
becoming less common, it's still common enough that you will need to know some things about 
compiling software.  

3.3.1 Unix tar Archives 

Software is often distributed as a tar archive, which is short for "tape archive." We discuss tar and 
other file-compression options in more detail in Chapter 5. Not coincidentally, these archives are one of 
the most common ways to distribute Unix software on the Internet. tar allows you to download one file 
that contains the complete image of the developer's working software installation and unpack it right 
back into the correct subdirectories. If tar is used with the p option, file permissions can even be 
preserved. This ensures that, if the developer has done a competent job of packing all the required files 
in the tar archive, you can compile the software relatively easily.  

tar archives are often compressed further using either the Unix compress command (indicated by a 
.tar.Z extension) or with gzip (indicated by a .tar.gz or .tgz extension).  

3.3.2 Binary Distributions 

Software can be distributed either as uncompiled source code or binaries. If you have a choice, and if 
you don't know any reason to do otherwise, choose the binary distribution. It will probably save you a 
lot of headaches.  

Binary software distributions are precompiled and (at least in theory) ready to run on your machine. 
When you download software that is distributed in binary form, you will have a number of options to 
choose from. For example, the following listing is the contents of the public FTP site for the BLAST 
sequence alignment software. There are several archives available, each for a different operating 
system; if you're going to run the software on a Linux workstation, download the file blast.linux.tar.Z.  

README.bls               52 Kb    Wed Jan 26 18:45:00 2000   
blast.alphaOSF1.tar.Z    12756 Kb Wed Jan 26 18:40:00 2000     Unix Tape Archive  
blast.hpux11.tar.Z       11964 Kb Wed Jan 26 18:43:00 2000     Unix Tape Archive  
blast.linux.tar.Z        9334 Kb  Wed Jan 26 18:41:00 2000     Unix Tape Archive  
blast.sgi.tar.Z          14746 Kb Wed Jan 26 18:44:00 2000     Unix Tape Archive  
blast.solaris.tar.Z      12724 Kb Wed Jan 26 18:37:00 2000     Unix Tape Archive  
blast.solarisintel.tar.Z 10679 Kb Wed Jan 26 18:43:00 2000     Unix Tape Archive  
blastz.exe               3399 Kb  Wed Jan 26 18:44:00 2000     Binary Executable 

Here are the basic binary installation steps:  
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1. Download the correct binaries. Be sure to use binary mode when you download. Download and 
read the instructions (usually a README or INSTALL file).  

2. Follow the instructions.  
3. Make a new directory and move the archive into it, if necessary. 
4. uncompress (*.Z ) or gunzip (*.gz) to uncompress the file.  
5. Use tar tf to examine the contents of the archive and tar xvf to extract it.  
6. Run configuration and installation scripts, if present.  
7. Link binary into a directory in your default path using ln -s, if necessary.  

3.3.3 RPM Archives 

RPM archives are a new kind of Unix software distribution that has recently become popular. These 
archives can be unpacked using the command rpm. The Red Hat Package Manager program is included 
in Red Hat Linux distributions and is automatically installed on your machine when you install Linux. 
It can also be downloaded freely from http://www.rpm.org and used on any Linux or other Unix 
system. rpm creates a software database on your machine and simplifies installations and updates, and 
even allows you to create RPM archives. RPM archives come in either source or binary form, but aside 
from the question of selecting the right binary, the installation is equally simple either way.  

(As we introduce commands, we' ll show you the format of the command line for each command—for 
example, "Usage: man name" -- and describe the effects of some options we find most useful.)  

Usage: rpm --[options] *.rpm  

Here are the important rpm options: 

rebuild  

Builds a package from a source RPM  

install  

Installs a new package from a binary RPM  

upgrade  

Upgrades existing software  

uninstall (or erase)  

Removes an installed package 

query   

Checks to see if a package is installed 

verify  
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Checks information about installed files in a pac kage 

3.3.3.1 GnoRPM 

Recent versions of Linux that include the GNOME user interface also include an interactive installation 
tool called GnoRPM. It can be accessed from the System folder in the main GNOME menu. To install 
software from a CD-ROM with GnoRPM, simply insert and mount the CD-ROM, click the Install 
button in GnoRPM, and GnoRPM provides a selectable list of every package on the CD-ROM you 
haven't already installed. You can also uninstall and update packages with GnoRPM, ensuring that the 
entire package is cleanly removed from your system. GnoRPM informs you if there are package 
dependencies that require you to download code libraries or other software before completing the 
installation.  

3.3.4 Source Distributions 

Sometimes the correct binary isn't available for your system, there's no RPM archive, and you have no 
choice but to install from source code.  

Source distributions can be easy or hard to install. The easy ones come with a configuration script, an 
install script, and a Makefile for your operating system that holds the instructions to the compiler.  

An example of an easy-to-install package is the LessTif source code distribution. LessTif is an open 
source version of the OSF/Motif window manager software. Motif was developed for high-end 
workstations and costs a few thousand dollars a year to license; LessTif supports many Motif 
applications (such as the multiple sequence alignment package ClustalX and the useful 2D plotting 
package Grace, for example) for free. When the LessTif distribution is unpacked, it looks like:  

AUTHORS        KNOWN_BUGS      acconfig.h    configure    ltmain.sh 
BUG-REPORTING  Makefile        acinclude.m4  configure.in make.out 
COPYING        Makefile.am     aclocal.m4    doc          missing 
COPYING.LIB    Makefile.in     clients       etc          mkinstalldirs 
CREDITS        NEWS            config.cache  include      scripts 
CURRENT_NOTES  NOTES           config.guess  install-sh   test 
CVSMake        README          config.log    lib          test_build 
ChangeLog      RELEASE-POLICY  config.status libtool  
INSTALL        TODO            config.sub    ltconfig 

Configuration and installation of LessTif on a Linux workstation is a practically foolproof process. As 
the superuser, move the source tar archive to the /usr/local/src directory. Uncompress and extract the 
archive. Inside the directory that is created (lesstif or lesstif.0-89, for example), enter ./configure. The 
configuration script will take a while to run; when it's done, enter make. Compilation will take several 
minutes; at the end, edit the file /etc/ld.so.conf. Add the line /usr/lesstif/lib, save the file, and then run 
ldconfig -v to make the shared LessTif libraries available on your machine.  

Complex software such as LessTif is assembled from many different source code modules. The 
Makefile tells the compiler how to put them together into one large executable. Other programs are 
simple: they have only one source code file and no Makefile, and they are compiled with a one-line 
directive to the compiler. You should be able to tell which compiler to use by the extension on the 
program filename. C programs are often labeled *.c, FORTRAN programs *.f, etc. To compile a C 
program, enter gcc program.c -o program; for a FORTRAN program, the command is g77 program.f -
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o program. The manpages for the compilers, or the program's documentation (if there is any) should 
give you the form and possible arguments of the compiler command.  

Compilers convert human-readable source code into machine-readable binaries. Each programming 
language has its own compilers and compiler instructions. Some compilers are free, others are 
commercial. The compilers you will encounter on Linux systems are gcc, the GNU Project C and C++ 
compiler, and g77, the GNU Project FORTRAN compiler.[1] In computational biology and 
bioinformatics, you are likely to encounter programs written in C, C++, FORTRAN, Perl, and Java. 
Use of other languages is relatively rare. Compilers or interpreters for all these languages are available 
in open source distributions.  

[1] The GNU project is a collaborative project of the Free Software Foundation to develop a completely open source Unix-like operating system. Linux systems are, 
formally, GNU/Linux systems as they can be distributed under the terms of the GNU Public License (GPL), the license developed by the GNU project. 

Difficult-to-install programs come in many forms. One of the main problems you may encounter will 
be source code with dependencies on code libraries that aren't already installed on your machine. Be 
sure to check the documentation or the README file that comes with the software to determine 
whether additional code or libraries are required for the program to run properly.  

An example of an undeniably useful program that is somewhat difficult to install is ClustalX, the X 
windows interface to the multiple sequence alignment program ClustalW. In order to install ClustalX 
successfully on a Linux workstation, you first need to install the NCBI Toolkit and its included Vibrant 
libraries. In order to create the Vibrant libraries, you need to install the LessTif libraries and to have 
XFree86 development libraries installed on your computer.  

Here are the bas ic steps for installing any package from source code:  

1. Download the source code distribution. Use binary mode; compressed text files are encoded.  
2. Download and read the instructions (usually a README or INSTALL file; sometimes you have 

to find it after you extract the archive).  
3. Make a new directory and move the archive into it, if necessary. 
4. uncompress (*.Z ) or gunzip (*.gz) the file.  
5. Extract the archive using tar xvf or as instructed.  
6. Follow the instructions (did we say that already?). 
7. Run the configuration script, if present. 
8. Run make if a Makefile is present.  
9. If a Makefile isn't present and all you see are *.f or *.c files, use gcc or g77 to compile them, as 

discussed earlier.  
10. Run the installation script, if present.  
11. Link the newly created binary executable into one of the binary-containing directories in your 

path using ln -s (this is usually part of the previous step, but if there is no installation script, you 
may need to create the link by hand).  

3.3.5 Perl Scripts 

The Perl language is used to develop web applications and is frequently used by computational 
biologists. Perl programs (called scripts) have the extension *.pl (or *.cgi if they are web applications). 
Perl is an interpreted language; in other words, Perl programs don't have to be compiled in order to run. 
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Instead, each command in a Perl script is sent to a program called the Perl interpreter, which executes 
the commands.[2]  

[2] There is now a Perl compiler, which can optionally be used to create binary executables from Perl scripts. This can speed up execution. 

To run Perl programs, you need to have the Perl interpreter installed on your machine. Most Linux 
distributions contain and automatically install Perl. The most recent version of Perl can always be 
obtained from http://www.perl.com, along with plenty of helpful information about how to use Perl in 
your own work. We discuss some of the basic elements of Perl in Chapter 12.  

3.3.6 Putting It in Your Path 

When you give a command, the default path or lookup path is where the system expects to find the 
program (which is also known as the executable). To make life easier, you can link the binary 
executable created when you compile a program to a directory like /usr/local/bin, rather than typing the 
full pathname to the program every time you run it. If you're linking across filesystems, use the 
command ln -s (which we cover in Chapter 4) to link the command to a directory of executable files. 
Sometimes this results in the error "too many levels of symbolic links" when you try to run the 
program. In that case, you have to access the executable directly or use mv or cp to move the actual 
executable file into the default path. If you do this, be sure to also move any support files the program 
needs, or create a link to them in the directory in which the program is being run.  

Some software distributions automatically install their executables in an appropriate location. The 
command that usually does this is make install. Be sure to run this command after the program is 
compiled. For more information on symbolic linking, refer to one of the Unix references listed in the 
Bibliography, or consult your system administrator.  

3.3.7 Sharing Software Among Multiple Users 

Before you start installing software on a Unix system, one of the first things to do is to find out where 
shared software and data are stored on your machines. It's customary to install local applications in 
/usr/local, with executable files in /usr/local/bin. If /usr/local is set up as a separate partition on the 
system, it then becomes possible to upgrade the operating system without overwriting local software 
installations.  

Maintaining a set of shared software is a good idea for any research group. Installation of a single 
standard version of a program or software package by the system administrator ensures that every 
group member will be using software that works in exactly the same way. This makes troubleshooting 
much easier and keeps results consistent. If one user has a problem running a version of a program that 
is used by everyone in the group, the troubleshooting focus can fall entirely on the user's input, without 
muddying the issue by trying to figure out whether a local version of the program was compiled 
correctly.  

For the most part, it's unnecessary for each user of a program to have her own copy of that program 
residing in a personal directory. The main exception to this is if a user is actually modifying a program 
for her own use. Such modifications should not be applied to the public, standard version of the 
program until they have been thoroughly tested, and therefore the user who is modifying the program 
needs her own version of the program source and executable.  
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3.4 What Software Is Needed? 

New computational biology software is always popping up, but through a couple of decades of 
collective experience, a consensus set of tools and methods has emerged. Many scientists are familiar 
with standard commercial packages for sequence analysis, such as GCG, and for protein structure 
analysis, such as Quanta or Insight. For beginners, these packages provide an integrated interface to a 
variety of tools.  

Commercial software packages for sequence analysis integrate a number of functions, including 
mapping and fragment assembly, database searching, gene discovery, pairwise and multiple sequence 
analysis, motif identification, and evolutionary analysis. One caveat is that these software packages can 
be prohibitively expensive. It can be difficult, especially for educational institutions and research 
groups on a limited budget, to purchase commercial software and pay the annual costs for license 
maintenance (which can be in the many thousands of dollars).  

A related cost issue is that many commercial software packages, especially those for macromolecular 
structure analysis, don't yet run on consumer PCs. These packages were originally developed for high-
end workstations when these workstations were the only computers with sufficient graphics capability 
to display protein structures. Although these days most home computers have high-powered graphics 
cards, the makers of commercial molecular modeling software have been slow to keep up.  

While commercial computational biology software packages can be excellent and easy to use, they 
often seem to lag at least a couple of years behind cutting-edge method development. The company 
that produces a commercial software package usually commits to only one method for each type of 
tool, buys it at a particular phase in its development cycle, focuses on turning it into a commercially 
viable product, and may not incorporate developments in the method into their package in a timely 
fashion, or at all.  

On the other hand, while academic software is usually on the cutting edge, it can be poorly written and 
hard to install. Documentation (beyond the published paper that describes the software) may be 
nonexistent. Graphical user interfaces in academic software packages are often rudimentary, which can 
be aggravating for the beginning user.  

With this book, we've taken the "science on a shoestring" approach. In Chapter 6, Chapter 7, Chapter 9, 
Chapter 10, and Chapter 11 we've compiled quick-reference tables of fundamental techniques and free 
software applications you can use to analyze your data. Hopefully, these will help you to know what 
you need to do, how to seek out the tools that do it, and how to put them both together in the way that 
best suits your needs. This approach keeps you independent of the vagaries of the software industry and 
in touch with the most current methods.  
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Chapter 4. Files and Directories in Unix 

Now that you've set up your workstation, let's spend some time talking about how to get around in a 
Unix system. In this chapter, we introduce basic Unix concepts, including the structure of the 
filesystem, file ownership, and commands for moving around the filesystem and creating files.[1] 
Another important focus of this chapter, however, is the approach you should take to organizing your 
research data so that it can be accessed efficiently by you and by others.  

[1] Throughout this chapter and Chapter 5, we introduce many Unix commands. Our quick and dirty approach to outlining the functions of these commands and their 
options should help you get started working fast, but it's by no means exhaustive. The Bibliography provides several excellent Unix books that will help you fill in 
the details. 

4.1 Filesystem Basics 

All computer filesystems, whether on Unix systems or desktop PCs, are basically the same. Files are 
named locations on the computer's storage device. Each filename is a pointer to a discrete object with a 
beginning and end, whether it's a program that can be executed or simply a set of data that can be read 
by a program. Directories or folders are containers in which files can be grouped. Computer 
filesystems are organized hierarchically, with a root directory that branches into subdirectories and 
subdirectories of subdirectories.  

This hierarchical system can help organize and share information, if used properly. Like the taxonomy 
of species developed by the early biologists, your file hierarchy should organize information from the 
general level to the specific. Each time the filesystem splits into subdirectories, it should be because 
there are meaningful divisions to be created within a larger class of files.  

Why should you organize your computer files in a systematic, orderly way? It seems like an obvious 
question with an obvious answer. And yet, a common problem faced by researchers and research 
groups is failure to share information effectively. Problems with information management often 
become apparent when a research group member leaves, and others are required to take over his 
project.  

Imagine you work with a colleague who keeps all his books and papers piled in random stacks all over 
his offic e. Now imagine that your colleague gets a new job and needs to depart in a hurry—leaving 
behind just about everything in his office. Your boss tells you that you can't throw away any of your 
colleague's papers without looking at them, because there might be something valuable in there. Your 
colleague has not organized or categorized any of his papers, so you have to pick up every item, look at 
it, determine if it's useful, and then decide where you want to file it. This might be a week's work, if 
you're lucky, and it's guaranteed to be a tough job.  

This kind of problem is magnified when computer files are involved. First of all, many highly useful 
files, especially binaries of programs, aren't readable as text files by users. Therefore, it's difficult to 
determine what these files do if they're not documented. Other kinds of files, such as files of numerical 
data, may not contain useful header information. Even though they can be read as text, it may be next 
to impossible to figure out their purpose.  

Second, space constraints on computer system usage are much more nebulous than the walls of an 
office. As disk space has become cheaper, it's become easier for users of a shared system simply never 
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to clean up after themselves. Many programs produce multiple output files and, if there's no space 
constraint that forces you to clean up while running them, can produce a huge mess in a short time.  

How can you avoid becoming this kind of problem for your colleagues? Awareness of the potential 
problems you can cause is the first step. You need to know what kinds of programs and files you 
should share with others and which you should keep in your own directories. You should establish 
conventions for naming datafiles and programs and stick to these conventions as you work. You should 
structure your filesystem in a sensible hierarchy. You should keep track of how much space you are 
using on your computer system and create usable archives of your data when you no longer need to 
access it frequently. You should create informative documentation for your work within the filesystem 
and within programs and datafiles.  

The nature of the filesystem hierarchy means that you already have a powerful indexing system for 
your work at your fingertips. It's possible to do computer-based research and be just as disorganized as 
that coworker who piles all his books and papers in random stacks all over his office. But why would 
you want to do that? Without much more effort, you can use your computer's filesystem to keep your 
work organized.  

4.1.1 Moving Around the Directory Hierarchy 

Like all modern operating systems, the file hierarchy on a Unix system is structured as a tree. You may 
be used to this from PC operating systems. Open one folder, and there can be files and more folders 
inside it, layered as deep as you want to go. There is a root directory, designated as /. The root directory 
branches into a finite number of files and subdirectories. On a well-organized system, each of these 
subdirectories contains files and other subdirectories pertaining to a particular topic or system function.  

Of course, there's nothing inside your computer that really looks like a tree. Files are stored on various 
media—most commonly the hard disk, which is a recordable device that lives in your computer. As its 
name implies, the hard disk is really a disk. And the tree structure that you perceive in Unix is simply a 
way of indexing what is on that disk or on other devices such as CDs, floppy disks, and Zip disks, or 
even on the disks of every machine in a group of networked computers. Unix has extensive networking 
capabilities that allow devices on networked computers to be mounted on other computers over the 
network. Using these capabilities, the filesystems of several networked computers can be indexed as if 
they were one larger, seamless filesystem.  

4.1.2 Paths to Files and Directories 

Each file on the filesystem can be uniquely identified by a combination of a filename and a path. You 
can reference any file on the system by giving its full name, which begins with a / indicating the root 
directory, continues through a list of subdirectories (the components of the path) and ends with the 
filename. The full name, or absolute path, of a file in someone's home directory might look like this:  

/home/jambeck/mustelidae/weasels.txt 

The absolute path describes the relationship of the file to the root directory, /. Each name in the path 
represents a subdirectory of the prior directory, and / characters separate the directory names.  

Every file or directory on the system can be named by its absolute path, but it can also be named by a 
relative path that describes its relationship to the current working directory. Files in the directory you 
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are in can be uniquely identified just by giving the filename they have in the current working directory. 
Files in subdirectories of your current directory can be named in relation to the subdirectory they are 
part of. From jambeck 's home directory, he can uniquely identify the file weasels.txt as 
mustelidae/weasels.txt. The absence of a preceding / means that the path is defined relative to the 
current directory rather than relative to the root directory.  

If you want to name a directory that is on the same level or above the current working directory, there 
is a shorthand for doing so. Each directory on the system contains two links, ./ and ../, which refer to 
the current directory and its parent directory (the directory it's a subdirectory of ), respectively. If user 
jambeck is working in the directory /home/jambeck /mustelidae/weasels, he can refer to the directory 
/home/jambeck /mustelidae/otters as ../otters. A subdirectory of a directory on the same level of the 
hierarchy as /home/jambeck /mustelidae would be referred to as ../../didelphiidae/opossums.  

Another shorthand naming convention, which is implemented in the popular csh and tcsh shell 
environments, is that the path of the home directory can be abbreviated as ~. The directory 
home/jambeck /mustelidae can then be referred to as ~/mustelidae.  

4.1.3 Using a Process-Based File Hierarchy 

Filesystems can be deep and narrow or broad and shallow. It's best to follow an intuitive scheme for 
organizing your files. Each level of hierarchy should be related to a step in the process you've used to 
carry out the project. A filesystem is probably too shallow if the output from numerous processing 
steps in one large project is all shoved together in one directory. However, a project directory that 
involves several analyses of just one data object might not need to be broken down into subdirectories. 
The filesystem is too deep if versions of output of a process are nested beneath each other or if analyses 
that require the same level of processing are nested in subdirectories. It's much easier to for you to 
remember and for others to understand the paths to your data if they clearly symbolize steps in the 
process you used to do the work.  

As you'll see in the upcoming example, your home directory will probably contain a number of 
directories, each containing data and documentation for a particular project. Each of these project 
directories should be organized in a way that reflects the outline of the project. Each directory should 
contain documentation that relates to the data within it.  

4.1.4 Establishing File -Naming Conventions for Your Work 

Unix allows an almost unlimited variability in file naming. Filenames can contain any character other 
than the / or the null character (the character whose binary representation is all zeros). However, it's 
important to remember that some characters, such as a space, a backslash, or an ampersand, have 
special meaning on the command line and may cause problems when naming files. Filenames can be 
up to 255 characters in length on most systems. However, it's wise to aim for uniformity rather than 
uniqueness in file naming. Most humans are much better at remembering frequently used patterns than 
they are at remembering unique 255-character strings, after all.  

A common convention in file naming is to name the file with a unique name followed by a dot (.) and 
then an extension that uniquely indicates the file type.  

As you begin working with computers in your research and structuring your data environment, you 
need to develop your own file-naming conventions, or preferably, find out what naming conventions 



 61 

already exist and use them consistently throughout your project. There's nothing so frustrating as 
looking through old data sets and finding that the same type of file has been named in several different 
ways. Have you found all the data or results that belong together? Can the file you are looking for be 
named something else entirely? In the absence of conventions, there's no way to know this except to 
open every unidentifiable file and check its format by eye. The next section provides a detailed 
example of how to set up a filesystem that won't have you tearing out your hair looking for a file you 
know you put there.  

Here are some good rules of thumb to follow for file-naming conventions:  

• Files of the same type should have the same extension.  
• Files derived from the same source data should have a common element in their unique names.  
• The unique name should contain as much information as possible about the experiment.  
• Filenames should be as short as is possible without compromising uniqueness.  

You'll probably encounter preestablished conventions for file naming in your work. For instance, if you 
begin working with protein sequence and structure datafiles, you will find that families of files with the 
same format have common extensions. You may find that others in your group have established local 
conventions for certain kinds of datafiles and results. You should attempt to follow any known 
conventions.  

4.1.5 Structuring a Project: An Example 

Let's take a look at an example of setting up a filesystem. These are real directory layouts we have used 
in our work; only the names have been changed to protect the innocent. In this case, we are using a 
single directory to hold the whole project.  

It's useful to think of the filesystem as a family tree, clustering related aspects of a project into 
branches. The top level of your project directory should contain two text files that explain the contents 
of the directories and subdirectories. The first file should contain an outline of the project, with the 
date, the names of the people involved, the question being investigated, and references to publications 
related to this project. Tradition suggests that such informational files should be given a name along the 
lines of README or 00README. For example, in the shards project, a minimal README file might 
contain the following:  

98-05-22  
Project: Shards  
Personnel: Per Jambeck, Cynthia Gibas  
Question: Are there recurrent structural words in the three-dimensional structure  
of proteins?  
Outline: Automatic construction of a dictionary of elements of local structure in  
proteins using entropy maximization-based learning.  

The second file should be an index file (named something readily recognizable like INDEX ) that 
explains the overall layout of the subdirectories. If you haven't really collected much data yet, a simple 
sketch of the directories with explanations should do. For example, the following file hierarchy:  

98-03-22 PJ  
Layout of the Shards directory 
(see README in subdirectories for further details)  
/shards  
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/shards/data  
/shards/data/sequences 
/shards/data/structures 
/shards/data/results 
/shards/data/results/enolases 
/shards/data/results/globins  
/shards/data/test_cases  
/shards/graphics  
/shards/text 
/shards/text/notebook 
/shards/text/reports 
/shards/programs 
/shards/programs/source 
/shards/programs/scripts 
/shards/programs/bin 

may also be represented in graphical form, as shown in Figure 4-1.  

Figure 4-1. Tree diagram of a hierarchy 

 

In this directory, we've made the first distinction between programs and data (programs contains the 
software we write, and data contains the information we get from databases, or files the programs 
generate). Within each subdirectory, we further distinguish between types of data (in this case, protein 
structures and protein sequences), and results (run on two sets of proteins, the enolase family and the 
globin  superfamily) gleaned from running our programs on the data, and some test cases. Programs are 
also subdivided according to types, namely whether they are the human-readable program listings 
(source code), scripts that aid in running the programs, or the binaries of the programs.  

As we mentioned earlier, when you store data in files, you should try to use a terse and consistent 
system for naming files. Excessively long filenames that describe the exact contents of a file but 
change for different file types (like all-GPCR-loops-in-SWISSPROT-on-99-7-14.text) will cause 
problems once you start using the facilities Unix provides for automatically searching for and updating 
files. In the shards project, we began with protein structures taken from the Protein Data Bank (PDB). 
We then used a homegrown Perl program called unique.pl to generate a nonredundant database, in 
which no protein's sequence had greater than 25% similarity to any other protein in the set. Thus, we 
can represent this information econo mically using the filename PDB-unique-25 for files related to this 
data set. For example, the list of the names of proteins in the set, and the file containing the proteins' 
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sequences in FASTA format (a common text-file format for storing macromolecular sequence data), 
are stored, respectively, in:  

PDB-unique-25.list  
PDB-unique-25.fasta 

Files containing derived data can be named consistently as well. For example, the file containing all 
seven-residue pieces of protein structure derived from the nonredundant set is called PDB-unique-25-
7.shard. This way, if you need to do something with all files pertaining to this nonredundant database, 
you can use the wildcard PDB-unique-25*, ignoring databases generated by different programs or those 
generated with unique.pl at different similarity thresholds.  

File naming conventions can take you only so far in organizing a project; the simple naming schemes 
we've laid out here will become more and more confusing as a project grows. For larger projects, you 
should consider using a database management system (DBMS) to manage your data. We introduce 
database concepts in Chapter 13.  

4.2 Commands for Working with Directories and Files 

Now that you have the basics of filesystems, let's dig into the specifics of working with files and 
directories in Unix. In the following sections, we cover the Unix commands for moving around the 
filesystem, finding files and directories, and manipulating files and directories.  

As we introduce commands, we'll show you the format of the command line for each command (for 
example, "Usage: man name"), and describe the effects of some options we find most useful.  

4.2.1 Moving Around the Filesystem 

When you open a window on a Linux system, you see a command prompt:  

$  

Command prompts can look different depending on the configuration of your system and your shell. 
For example, the following user is using the tcsh shell environment and has configured the command 
prompt to show the username and current working directory:  

 [cgibas@gibas ~]$  

Whatever the style of the command prompt, it means that your computer is waiting for you to tell it to 
do something. If you type an instruction at the prompt and press the Enter key, yo u have given your 
computer a command. Unix provides a set of simple navigation commands and commands for 
searching your filesystem for particular files and programs. We'll discuss the format of commands 
more thoroughly in Chapter 5. In this chapter, we'll introduce you to basic commands for getting 
around in Unix.  

4.2.1.1 You are here: pwd 

pwd stands for "print working directory," and that's exactly what it does. pwd sends the full pathname 
of the directory you are currently in, the current working directory, to standard output—it prints to the 
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screen. You can think of being "in" a directory in this way: if the directory tree is a map of the 
filesystem, the current working directory is the "you are here" pointer on the map.  

When you log in to the system, your "you are here" pointer is automatically placed in your home 
directory. Your home directory is a unique place. It contains the files you use almost every time you 
log into your system, as well as the directories that you create to store other files. What if you want to 
find out where your home directory is in relation to the rest of the system? Typing pwd at the command 
prompt in your home directory should give output something like:  

/home/jambeck 

This means that jambeck 's home directory is a subdirectory of the home directory, which in turn is a 
subdirectory of the root ( / ) directory.  

4.2.1.2 Changing directories with cd 

Usage: cd pathname   

The cd command[2] changes the current working directory. The only argument commonly used with this 
command is the pathname of a directory. If cd is used without an argument, it changes the current 
working directory to the user's home directory.  

[2] As you'll see when we cover the Unix shell and the command line in Chapter 5, Unix commands can be issued with or without arguments on the command line. 
The first word in a line is always a command. Subsequent words are arguments and can include options, which modify the command's behavior, and operands, which 
specify pathnames. Words in the command line are items separated by whitespace (spaces or tabs). 

In order for these "you are here" tools to be helpful, you need to have organized your filesystem in a 
sensible way in the first place, so that the name and location of the directory that you're in gives you 
information about what kind of material can be found there. Most of the filesystem of your machine 
will have been set up by default when you installed Linux, but the organization of your own directories, 
where you store programs and data that you use, is your responsibility.  

4.2.2 Finding Files and Directories 

Unix provides many ways to find files, from simply listing out the contents of a directory to search 
programs that look for specified filenames and the locations of executable programs.  

4.2.2.1 Listing files with ls 

Usage: ls [-options] pathname  

Now that you know where you are, how do you find out what's around you? Simply typing the Unix 
list command, ls, at the prompt gives you a listing of all the files and subdirectories in the current 
working directory. You can also give a directory name as an argument to ls. It then prints the names of 
all files in the named directory.  

If you have a directory that contains a lot of files, you can use ls combined with the wildcard character 
* (asterisk) to produce a partial listing of files. There are several ways to use the *. If you have files in a 
series (such as ch1 to ch14 ), or files with common characters (like those ending in .txt), you can use * 
to specify all of them at once. When given as the argument in a command, * takes the place of any 
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number of characters in a filename. For example, let's say you're looking for files called seq11, seq25, 
and seq34 in a directory of 400 files. Instead of scrolling through the list of files by eye, you could find 
them by typing:  

% ls seq* 

What if in that same directory you wanted to find all the text files? You know that text files usually end 
with .txt, so you can search for them by typing:  

% ls *.txt 

There are also a variety of command-line options to use with ls. The most useful of these are:  

-a  

Lists all the files in a directory, even those preceded by a dot. Filenames beginning with a dot 
(.) aren't listed by ls by default and consequently are referred to as hidden files. Hidden files 
often contain configuration instructions for programs, and it's sometimes necessary to examine 
or modify them.  

-R  

Lists subdirectories recursively. The content of the current directory is listed, and whenever a 
subdirectory is reached, its contents are also explicitly included in the listing. This command 
can create a catalog of files in your filesystem.  

-1  

Lists exactly one filename per line, a useful option. A single-column listing of all your source 
datafiles can quickly be turned into a shell script that executes an identical operation on each 
file, using just a few regular-expression tricks.  

-F  

Includes a code indicating the file type. A / following the filename indicates that the file is a 
directory, * indicates that the file is executable, and @ following the filename indicates that the 
file is a symbolic link.  

-s  

Lists the size of the file in blocks along with the filename.  

-t  

Lists files in chronological order of when they were last modified.  

-l  

Lists files in the long format.  
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- - color  

Uses color to distinguish different file types.  

4.2.2.2 Interpreting ls output 

ls gives its output in two formats, the short and the long format. The short format is the default. It 
includes only the name of each file along with information requested using the -F or -s options:  

#corr.pl#       commands.txt       hi.c           psimg.c  
#eva.pl#        corr.pl            nsmail         res.sty  
#pitch.txt#     corr.pl~           paircount.pl   res.sty~  
#wish-list.txt# correlation.pl     paircount.pl~  resume.tex 
Xrootenv.0      correlation.pl~    pj-resume.dvi  seq-scratch.txt 
a.out           detailed-prac.txt  pj-resume.log  sources.txt  

The long format of the ls command output contains a variety of useful information about file ownership 
and permissions, file sizes, and the dates and times that files were last modified:  

drwxrwxr-x    4    jambeck    weasel    2048   Mar5      18:23 ./ 
drwxr-xr-x    5    root       root      1024   Jan 20    12:13 ../  
-rw-r--r--    1    jambeck    weasel    293    Jan 28    17:39 commands.txt  
-rw-r--r--    1    jambeck    weasel    1749   Feb 21    12:43 corr.pl  
-rw-r--r--    1    jambeck    weasel    559    Feb 23    14:52 correlation.pl  
-rwxr-xr-x    1    jambeck    weasel    3042   Jan 21    17:05 eva.pl*  
drwx------    2    jambeck    weasel    1024   Feb 16    14:44 nsmail/  

This listing was generated with the command ls -alF. The first 10 characters in the line give 
information about file permissions. The first character describes the file type. You will commonly 
encounter three types of files: the ordinary file (represented by -), the directory (d ), and the symbolic 
link (l ).  

The next nine characters are actually three sets of three bits containing file permission information. The 
first three characters following the file type are the file permissions for the user. The next set are for the 
user's group, and the final set are for users outside the group. The character string rwxrwxrwx indicates 
a file is readable (r ), writable (w), and executable (x ) by any user. We talk about how to change file 
permissions and file ownership in Section 4.3.3.2.  

The next column in the long format file listing tells you how many links a file has; that is, how many 
directory listings for that file exist on the filesystem. The same file can be named in multiple 
directories. In the section Section 4.2.3, we talk about how to create links (directory listings) for new 
and existing files.  

The next two columns show the ownership of the file. The owner of the files in the preceding example 
is jambeck , a member of the group weasel.  

The next three columns show the size of the file in characters, and the date and time that the file was 
last modified. The final column shows the name of the file.  

4.2.2.3 Finding files with find 
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Usage: find pathname list -[test] criterion  

The find command is one of the most powerful, flexible, and complicated commands in the standard set 
of Unix programs. find searches a path or paths for files based on various tests. There are over 20 
different tests that can be used with find; here are a few of the most useful:  

-print  

This test is always true and sends the pathname of the current file to standard output. -print 
should be the last command specified in a line, because, as it's always true, it causes every file 
in the pathname being searched to be sent to the list if it comes before other tests in a sequence.  

-name  

This is the test most commonly applied with find and the one that is the most immediately 
useful. find -name weasel.txt -print lists to standard output the full pathnames of all files on the 
filesystem named weasel.txt. The wildcard operator * can be used within the filename criterion 
to find files that match a given substring. find -name weas* -print finds not only weasel.txt, but 
weasel.c and weasel.  

-user uname  

This test finds all files owned by the specified user.  

-group gname  

This test finds all files owned by the specified group.  

-ctime n   

This test is true if the current file has been changed n days ago. Changing a file refers to any 
change, including a change in permissions, whereas modification refers only to changes to the 
internal text of the file. -atime and -mtime tests, which check the access and modification times 
of the files, are also available.  

Performing two find tests one after another amounts to applying a logical "and" between the tests. A -o 
between tests indicates a logical "or." A slash ( / ) negates a command, which means it finds only those 
files that fail the test.  

find can be combined with other commands to selectively archive or remove particular files from a 
filesystem. Let's say you want a list of every file you have modified in your home directory and all 
subdirectories in the last week:  

% find ~ -type f -mtime -7 -print 

Changing the type to d shows only new directories; changing the -7 to +7 shows all files modified more 
than a week ago. Now let's go back to the original problem and find executable files. One way to do 
this with find is to use the following command:  
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% find / -name progname -type f -exec ls -alF '{' ';'  

This example finds every match for progname and executes ls -alF FullPathName for every match. 
Any Unix command can be used as the object of -exec. Cleanup of the /tmp directory, which is usually 
done automatically by the operating system, can be done with this command:  

find /tmp -type f -mtime +1 -exec rm -rf '{' ';'  

This deletes everything that hasn't been modified within the last day. As always, you need to refer to 
your manual pages, or manpages, for more details (for more on manpages, see Chapter 5).  

4.2.2.4 Finding an executable file with which 

Usage: which progname  

The which command searches your current path and reports the full path of the program that executes if 
you enter progname at the command prompt. This is useful if you want to know where a program is 
located, if, for instance, you want to be sure you're using the right version of the program. which  can't 
find a program in a directory that isn't in your path.  

4.2.2.5 Finding an executable file with whereis 

Usage: whereis -[options] progname  

The whereis command searches a standard set of directories for executables, manpages, and source 
files. Unlike which, whereis isn't dependent on your path, but it looks for programs only in a limited set 
of directories, so it doesn't give a definitive answer about the existence of a program.  

4.2.3 Manipulating Files and Directories 

Of course, just as with the stacks of papers on your desk, you periodically need to do some 
housekeeping on your files and directories to keep everything neat and tidy. Unix provides commands 
for moving, copying, and deleting files, as well as creating and removing directories.  

4.2.3.1 Copying files and directories with cp 

Usage: cp -[options] source destination  

The cp command makes a copy of a source file at a destination. If the destination is a directory, the 
source can be multiple files, copies of which are placed in the destination directory. Frequently used 
options are -R and -r. Both copy recursively; that is, they copy the source directory and all its 
subdirectories to the destination. The -R option prevents cp from following symbolic links; only the 
link itself is copied. The -r option allows cp to follow symbolic links and copy all files it finds. This 
can cause problems if the symbolic links happen to form a circular path through the filesystem.  

Normally, new files created by cp get their file ownership and permissions from your shell settings. 
However, the POSIX version of cp provides an -a option that attempts to maintain the original file 
attributes.  
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4.2.3.2 Moving and renaming files and directories with mv 

Usage: mv source destination  

The mv command simply moves or renames source to destination. Files and directories can both be 
either source or destination. If both source and destination are files or both are directories, the result of 
mv is essentially that the file or directory is renamed. If the destination is a directory, and the intention 
is to move already existing files or directories under that directory in the hierarchy, the directory must 
exist before the mv command is given. Otherwise the destination is created as a regular file, or the 
operation is treated as a renaming of a directory. One problem that can occur if mv isn't used carefully 
is when source represents a file list, and destination  is a preexisting single file. When this happens, 
each member of source is renamed to destination and then promptly overwritten, leaving only the last 
file of the list intact. At this point, it's time to look for your system administrator and hope there is a 
recent backup.  

4.2.3.3 Creating new links to files and directories with ln 

Usage: ln -[options] source destination  

The ln command establishes a link between files or directories at different locations in the directory 
tree. While creating a link creates the appearance of a new file in the destination location, no data is 
actually copied. Instead, what's created is a new pointer in the filesystem index that allows the source 
file to be found at more than one location "on the map."  

The most commonly used option, -s, creates a symbolic link (or symlink) to a file or directory, as in the 
following example:  

% ln -s perl5.005_03 perl  

This allows you to type in just the word perl rather than remembering the entire version nomenclature 
for the current version of Perl.  

Another commo n use of the ln command is to create a link to a newly compiled binary executable file 
in a directory in the system path, e.g., /usr/local/bin. Doing this allows you to run the program without 
addressing it by its full pathname.  

4.2.3.4 Creating and removing directories with mkdir and rmdir 

Usage: mkdir -[options] dirname  
Usage: rmdir -[options] dirname  

New directories can be created with the mkdir command, which has only two command-line options.  

mkdir -p creates a directory and any intermediate components of the path that are missing. For instance, 
if user jambeck decides to create a directory mustelidae/weasels in his home directory, but the 
intermediate directory mustelidae doesn't exist, mkdir -p creates the intermediate directory and its 
subdirectory weasels.  

mkdir -m mode creates a directory with the specified file-permission mode.  
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rmdir removes a directory if it's empty. With the -p option, rmdir removes all the empty directories in a 
given path. If user jambeck decides to remove the directory mustelidae/weasels, and directory 
mustelidae is empty except for directory weasels, rmdir -p ~/mustelidae/weasels removes both weasels 
and its parent directory mustelidae.  

4.2.3.5 Removing files with rm 

Usage: rm -[options] files   

The rm command removes files and directories. Here are its common options:  

-f  

Forces the removal of files without prompting. You still can't remove files you don't own, but 
the write permissions on files you do own are ignored. For example, rm -f a* deletes all files 
starting with the letter a, but doesn't delete any subdirectories.  

-i  

Prompts you with rm: remove filename? Files are removed only if you begin your answer with 
a y or Y.  

-r  

(recursive option) Removes all directories and subdirectories in the list of files. Symbolic links 
aren't traversed; only the symlink itself is removed.  

-v  

(verbose option) Echoes the names of all files/directories that are removed.  

While rm is a fairly simple command, there are a few instances in which it can cause serious problems 
for the careless user.  

The command rm * removes all files in a directory. Unless you have the files set as read-only or have 
the interactive flag set, you will delete everything in the directory. Of course this isn't as bad as using 
the command rm -r * or rm -rf *, the last of which overrides any read-only file modes, traverses down 
through your directories and deletes everything in your current directory or below.  

Occasionally you will find that you create odd files in your directories. For instance, you might have a 
file named -myfile where the - is part of the filename. Try deleting it, and you will get an error message 
concerning the fact that rm doesn't have a -m option. Your shell program interprets the -m as a 
command flag, not part of the filename. The solution to this problem is trivial but not always instantly 
apparent: simply provide a more complete path to the file, such as rm ./-myfile or rm /home/jambeck/-
myfile. Similar solutions are needed if you accidently create a file with a space in the name.  

4.3 Working in a Multiuser Environment 
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Unix systems are designed to allow multiple users to share system resources and software, yet at the 
same time to allow users to selectively protect their work from each other. To work with others in a 
multiuser environment, there are a number of general Unix concepts you need to understand.  

4.3.1 Users and Groups 

If you use a Unix system, you must be registered. You are identified by a login name and can log in 
only by entering the password uniquely associated with your login name. You have control over an 
area of the filesystem, which may be as large or small as system resources allow. You belong to one or 
more groups and can share files with other members of a group without needing to make the files 
accessible to other users. At any given time, only one of a your groups is active, and new files you 
create are automatically associated with the active, or primary, group. If you use group permissions to 
share files with other users, and you need to change to a particular group ID, the command newgrp 
allows you to change your primary group ID. The id command tells you what your user and primary 
group IDs are.  

Information about your account is stored the /etc/passwd file, a file that provides the system with 
information needed when you log in. Your username and user ID mapping are found here, along with 
your default groups, full name, home directory and default shell program. The shell program is 
described in Chapter 5. The encrypted version of your password used to be stored here, but on most 
systems, for security reasons, the actual password has been removed from the passwd file. Additional 
group information is found in the /etc/group file. You can view the contents of these files with an 
editor, even though they are system files you normally can't overwrite.  

4.3.2 User Directories 

When your system administrator creates a new user account, the process includes creating an entry in 
the /etc/passwd file, possibly adding you to a number of groups in /etc/group, creating a home directory 
for you somewhere on the system, and then changing the ownership of that directory so that you own it 
and any files that are put into it at the time of creation. Your entry in /etc/passwd needs to match the 
path to your home directory, and the user and group that own your home directory. There should also 
be a set of files in your home directory that set up your work environment when you log in and are 
specific to the Unix shell listed in your passwd entry. These files are discussed in more detail in 
Chapter 5.  

4.3.3 File Permissions and Statistics 

As we discussed in the section on the ls command, each file and directory has an owner and a group 
with which it's associated. Each file is created with permissions that allow or prevent you access to the 
file dependent on your user ID and group. In this section we discuss how to view and change file 
permissions and ownership.  

4.3.3.1 Viewing file attributes with stat 

Usage: stat -[options] filename  

stat lets you view the complete set of attributes of a file or directory, including permissions, 
modification times, and ownership. It may be more information than you need, but it's there if you want 
it. For example, the command stat image1.rgb returns:  
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image1.rgb:  
inode 11750927; dev 77; links 1; size 922112 
regular; mode is rw-------; uid 12430 (jambeck); gid 280 (weasel) 
projid 0  st_fstype: xfs 
change time - Sun Mar 14 14:21:50 1999 <921442910> 
access time - Sat Mar 13 18:11:21 1999 <921370281> 
modify time - Sat Mar 13 10:28:39 1999 <921342519> 

4.3.3.2 Changing file ownership and permissions with chmod 

On most Unix systems, you wouldn't want every file to be readable, writable, and executable by every 
user. The chmod  command allows you to set the file permissions, or mode, on a list of files and 
directories. The recursive option, -R, causes chmod to descend recursively through a directory tree and 
change the mode of the files and directories.  

For example, a long directory listing for a directory, a symlink, and a file looks like this:  

drwxr-xr-x  7  jambeck  weasel  2048    Feb 10 19:08  image/ 
lrwxr-xr-x  1  jambeck  weasel  10      Mar 14 13:12  image.rgb-> image1.rgb 
-rw-r--r--  1  jambeck  weasel  922112  Mar 13 10:28  image1.rgb 

The first character in each line indicates whether the entry is a file, directory, symlink, or one of a 
number of other special file types found on Unix systems. The three listed here are by far the most 
common. The remaining nine characters describe the mode of the file. The mode is divided into three 
sets of three characters. The sets correspond—in the following order—to the user, the group, and other. 
The user is the account that owns the directory entry, the group can be any group on the system, and 
other is any user that doesn't belong to the set that includes the user and the group. Within each set, the 
characters correspond to read (r ), write (w), and execute (x) permissions for that person or group.  

In the previous example, to change the mode of the file image1.rgb so that it's readable only by the user 
and modified (writable) by no one, you can issue one of the following commands:  

chmod  u-w,g-r,o-r image1.rgb 
chmod  u=r,g=-,o=- image1.rgb 
chmod  u=r,go=-    image1.rgb 

Any one of these commands results in image1.rgb 's permissions looking like:  

-r-------- 1 jambeck weasel 922112 Mar 13 10:28 image1.rgb  

The first two commands should be fairly obvious. You can add or subtract user's, group's or other's 
read, write or execute permissions by this mechanism. The mode parameters are:  

[u,g,o]  

User, group, other  

[+,-,=]  

Add, subtract, set 
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[r,w,x]  

Read, write, execute  

u, g, and o can be grouped or used singly. The same is true for r, w, and x. The operators +, -, and = 
describe the action that is to be performed.  

4.3.3.3 Changing file and directory ownership with chown and chgrp 

Usage: chown -[options] filenames item  
Usage: chgrp -[options] filenames  

The chown command lets you change the owner (or, in file-permission parlance, the user) of a file or 
directory. The operation of the chown command is dependent on the version of Unix you are running. 
For example, IRIX allows you to "give" the ownership to someone else, while this is impossible to do 
in Linux. We will cite only examples of the chgrp command, since in Linux, you can be a member of 
two groups and get this command to work for you.  

chgrp lets you change the group of a file or directory. You must be a member of the group the file is 
being changed to, so you have to be a member of more than one group and understand how to use the 
newgrp command (which is described later in this chapter). Assume for a moment that you created 
image/, a directory containing files, while you were in your default group. Later, you realize that you 
want to share these files with members of another group on the system. So, at first, the permissions 
look like this:  

drwxr-xr-x 7 jambeck weasel 2048 Feb 10 19:08 image/  

Change to the other group using the command newgrp wombat, then type:  

chgrp -R wombat image  

to make all files in the directory accessible to the wombat group. Finally, you should change the 
permissions to make the files writable by the wombat group as well. This is done with the command:  

chmod -R g+w image  

Your entry should now appear as follows: 

drwxrwxr-x 7 jambeck wombat 2048 Feb 10 19:08 image/ 

4.3.4 System Administration 

Most files that control the configuration of the Unix system on your computer are writable only by the 
system administrator. Adding and deleting users, backing up and restoring files, installing new software 
in shared directories, configuring the Unix kernel, and controlling access to various parts of the 
filesystem are tasks normally handled by one specially designated user, with the username root. When 
you're doing day-to-day tasks, you shouldn't be logged in as root, because root has privileges ordinary 
users don't, and you can inadvertently mess up your computer system if you have those privileges. Use 
the su command from your command line to assume system-administration privileges temporarily, do 
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only those tasks that need to be done by the system administrator, and then exit back to your normal 
user status.  

If you set up a Unix system for yourself, you need to become the system administrator or superuser and 
learn to do the various system-administration tasks necessary to maintain your computer in a secure 
and useful condition. Fortunately, there are several informative reference books on Unix system 
administration available (several by O'Reilly), and an increasing number of easy-to-use graphical 
system-administration tools are included in every Linux distribution.  

4.3.5 Conventions for Organizing Files 

Unix uses a simple set of designatio ns for the various types of files found on the system. Normally you 
can find what you need with info, find, or which, but sometimes it's necessary to search manually, and 
you don't want to look in /bin for a library. These designations are used at the operating-system level, 
but they are also often used in project subdirectories or software distributions to separate files:  

bin  

Executable files, or binaries  

lib  

Libraries, both runtime or shared, and those needed when compiling 

spool   

Directories used by the system when communicating with external devices and machines  

tmp  

Temporary storage 

src  

Source code for programs 

etc  

Configuration information 

man  

Manual pages, documentation 

doc  

Documentation  
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X  

X or X11R6 refers to X programs, libraries, src, etc.; directories typically have a fairly 
complete set of subdirectories  

Once you have a basic understanding of how to organize and manage your files and directories, you're 
well on your way to understanding how to work in a Unix environment. In Chapter 5 we complete our 
lightning Unix tutorial with a discussion of many of the most commonly used Unix commands. In 
order to really master the art of Unix, we strongly recommend consulting one or more of the books in 
the Bibliography.  

4.3.6 Locating Files in System Directories 

While all your own files should be created in your home directory or in other areas specifically 
designated for users to share, you need to be aware of the locations of files in other parts of the system. 
One benefit of a system environment designed for multiple users is that many users can share common 
resources while controlling access to their own files.  

To say there is a standard Unix filesystem is somewhat of an overstatement, but, like Plato's vision of 
the perfect chair, we will attempt to imagine one out in the ether. Since Linux is being developed by 
thousands of programmers on different continents and has the benefit of the development of both 
Berkeley and AT&T's SysV Unix, along with the POSIX standards, we will use the Linux filesystem as 
a template and point out major discrepancies when necessary. The current standard for the Linux 
filesystem is described at http://www.pathname.com/fhs/. Here, we present a brief skeleton of the 
complete filesystem and point out a few salient features. Most directories described in this section are 
configurable only by the system administrator; however, as a user, you may sometimes need to know 
where system files and programs can be found. Figure 4-2 illustrates the major subdirectories, which 
are further described in the following list.  

Figure 4-2. Unix subdirectories 
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/dev  

Contains all the device drivers needed to connect peripherals to the system. Drivers for SCSI, 
audio, IDE drives, PPP, mice, and most other devices are found here. In general there are no 
user-configurable options here.  

/etc   

Houses all the configuration files local to your machine. This includes items such as the system 
name, Internet address, password file (unless your machine is part of some larger cluster), 
filesystem information, and Unix initialization information.  

/home  

A common, but not standard, part of Unix. /home is usually a fairly large, separate partition that 
houses all user home directories. Having /home on a separate partition has the advantage of 
allowing it to be shared in a cluster environment, and it also makes it difficult for users to 
completely fill an important system partition and cause it to lock up.  

/lost+found   

A system directory that is a repository for files and directories that have somehow been 
misplaced by the system. Typically, users can't cd into this directory. Files usually end up in the 
lost+found because of a system crash or a disk problem. At times it's possible that your system 
administrator can recover files that appear to be lost simply by moving them from lost+found 
and renaming them. There's a separate lost+found for each partition on the system.  

/mnt  

While not found on all systems, this is the typical place to mount any partitions not described by 
the standard Unix filesystem description. Under Linux, this is where you will find a mounted 
CD-ROM or floppy drive.  

/nfs   

Often used as the top-level directory for any mount points for partitions that are mounted from 
remote machines.  

/opt  

A relatively new addition to the Unix filesystem. This is where optional, usually commercial, 
packages are installed. On many systems you will find higher-end, optimizing compilers 
installed here.  

/root  

The home directory for root, i.e., for the system administrator when she is logged in as root.  
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/sbin, /bin, and /lib  

Since the machine may need to start the boot process without the /usr partition present, any 
programs that are using it prior to mounting the /usr partition must reside on the main or root 
partition. The contents of the /sbin directory, for instance, are a subset of the /usr/sbin directory. 
Labeling directories sbin indicates that only system-level commands are present and that normal 
users probably won't need them, and therefore don't need to include these directories in their 
path. The /lib directory is a small subset of system libraries that are needed by programs in /bin 
and /sbin. Current Unix programs use shared libraries, which means that many programs can 
use functions from the same library, and so the library needs to be loaded into memory only 
once. What this means for practical purposes is that programs don't take as much memory as 
they would if each program included all the library routines, and the programs don't actually run 
if the correct library has been deleted or hasn't been mounted yet.  

/tmp and /var/tmp  

Typically configured to be readable/writable/executable by all users. Many standard programs, 
such as vi, write temporary files to one of these directories while they are running. Normally the 
system cleans out these directories automatically on a regular basis or when the machine is 
rebooted. This is a good place to write temporary files, but you can't assume that the system will 
wait for you to erase them.  

/usr  

The repository for the majority of programs, compilers, libraries, and documentation for the 
Unix filesystem. The current recommendation for most Unix systems is that the system should 
be able to mount /usr as a separate, read-only partition. In a workstation-cluster environment, 
this means that a server can export a /usr partition, and all the workstations in that cluster will 
share the programs. This makes the system administrator's job easier and provides users with a 
uniform set of machines.  

/usr/local  

The typical directory in which to install programs and documentation so that they aren't 
overwritten by the operating system. You will often find programs such as Perl and various 
others that have been downloaded from the Internet installed in this location.  

/var  

The directory used by all system programs that write output to the disk. All system logs, spools, 
and temporary data are written here. This includes logging information such as that written 
during the boot process, by the mailer, by the login program, and by all other system processes. 
Incoming and outgoing mail is stored in the /var/spool directory, as are files being sent to 
printers. Information needed for cron, batch , and at jobs is also found here.  
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Chapter 5. Working on a Unix System 

Unix has a wealth of functions, and you'll want to be aware of a particular subset of them before you 
start running programs and collecting data. In Chapter 4, we talked about how to organize and manage 
your files in Unix, as well as how to move around the filesystem. In this chapter we take you on a 
whirlwind tour through the common Unix commands you'll need to know to work efficiently. We 
discuss the Unix shell itself, issuing commands in Unix, viewing, editing, and extracting information 
from your files, shell scripts, and working in a multiuser environment.  

Once you've learned to use some of these Unix commands, you'll find that they are astonishingly 
powerful and flexible, allowing you to modify files in ways that are impossible, or at least not easy, 
with a conventional word-processing program. For example, with a single command you can find all 
the instances of a pattern in every file under your home directory. A few simple tricks can create a 
script that will process every file in your source data directory identically. Another simple script can 
update a customized local copy of a database every night while you're sleeping.  

5.1 The Unix Shell 

When you log into a Unix system or open a new window in your system's window manager interface, 
the system automatically starts a program called a shell for you. The shell program interprets the 
commands you enter and provides you with a working environment and an interface to the operating 
system. It's possible to work in Unix without the shell using graphical file manager tools, but you'll find 
that many shell commands are useful for data processing and analysis. Entire books devoted to the 
various shells are available, and the manpages for some of the common shells exceed 100 pages when 
printed. We provide you only with a brief introduction to the commonly used shells, to get you started 
with as few hurdles as possible.  

5.1.1 What Flavors of Shell Are There? 

The shell program you use affects the feel of your command-line interface. Some of the features that 
can be built into the shell program include a simple arithmetic interpreter that lets you use the 
command line as a calculator; command aliasing, which lets you refer to standard Unix commands with 
other more convenient words; filename completion, which lets you type only the number of characters 
necessary to distinguish a file from other files in the directory, rather than typing the full filename; 
command editing and command history, which let you scroll back through the commands you've 
recently issued and edit them on the command line; spelling correction; and help functions for the shell 
program.  

There are a number of common shell programs on Unix systems. You are automatically assigned a 
shell when your system administrator sets up your account. On Linux systems, the default shell 
program is the bash (Bourne Again) shell. However, you may prefer to use a shell other than bash. The 
two main classes of shell programs are shells derived from the Bourne shell, sh, and shells derived 
from the C shell csh. Bourne-type shells include sh, bash , ksh (the Korn shell), and zsh (the Z shell). C-
type shells include csh and tcsh.  

We tend to prefer C shells, for historical reasons. When we started working in Unix, the C shell was the 
best thing going, and the tcsh program has expanded the original csh into a powerful shell. tcsh 
implements most of the desirable shell features, including history, command aliasing, filename 
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completion, command-line editing, arithmetic and functions, job control, and spelling correction. tcsh 
is also one of the most user-configurable shells. Therefore, we'll discuss the behavior of Unix 
commands from a C-shell perspective, as if you were using the tcsh program, which we use on our 
machines.  

Your default shell will be listed as the last item in your entry in the /etc/passwd file. If you aren't 
certain which shell you are currently using, you can find out by typing:  

% finger your-user-name 

For user jambeck, this command shows the following information:  

Login name: jambeck           In real life: Per Jambeck  
Directory: /home/jambeck      Shell: /bin/tcsh 

This tells us that he is using tcsh as his default shell. For practical reasons, we will limit our discussions 
and most references to csh and tcsh. It must also be noted that many system processes (e.g., batch, at, 
and cron) use the Bourne shell by default, which makes it necessary to learn at least a minimal subset 
of its command language. On most systems there are commands to change your default shell as set in 
the passwd file. The chsh (change shell) command allows you to change your default login shell, if 
you're working on a Linux system.  

5.2 Issuing Commands on a Unix System 

There 's a standard format for sending an instruction to Unix. In this book, we'll refer to commands and 
to the command line. Each of Unix's many native commands has a tangible existence as an executable 
program, and to issue the command is to tell Unix to execute that program. In this section and those 
that follow, we move fairly quickly through concepts and commands. While we can give you a brief 
overview of the Unix features we find most useful, this book isn't designed to replace a comprehensive 
Unix reference book. If you're new to Unix, we strongly recommend that you review the basics of Unix 
with the help of books such as Learning the Unix Operating System, Running Linux, or Unix for the 
Impatient. We've provided a list of recommended reading in the Bibliography.  

5.2.1 The Command-Line Format 

The command line consists of the command itself, optional arguments that modify how the command 
works, and operands such as files upon which the command operates. For example, the chsh (change 
shell) command, which we just discussed briefly, has several possible options. The first is the -s option, 
which must be followed by the name of a shell program as its argument. The second is the -l option, 
which needs no argument, and which lists the shells that are available on your system. The operand for 
the chsh command is the username of the user whose shell is being changed. So, to change your default 
shell program, you might first type:  

% chsh -l 

which gives you a list of the shell programs available on the system: 

/bin/bash  
/bin/sh  
/bin/ash  
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/bin/bsh  
/bin/bash2  
/bin/tcsh  
/bin/csh  
/bin/ksh  
/bin/zsh  

Then, to actually change your shell to tcsh, you can type:  

% chsh -s /bin/tcsh yourusername 

Options can simply be single-letter codes, or they can have their own arguments. Options that take no 
arguments can be given as a group, while each option that takes an argument must be specified 
separately. Each option group and separate option must be preceded by a hyphen (-). The last option in 
a group, or separate options, can be followed by the option argument. The operands follow the final 
option in the list.  

Many Unix commands have options that, frankly, you'll never use. And we're not going to talk about 
them. But there are ways of finding out more.  

5.2.2 Unix Information Commands 

Unix has its own built-in reference manual, which is quite comprehensive and informative, and which 
will give you the correct information about the commands and options available on the particular 
system you're using.  

The man command is one of the most useful Unix commands; it allows you to view Unix manual 
pages. While some Unix systems have implemented a web browser-like interface to the Unix 
manpages, you can't always count on this option being available. The man command is available on all 
types of Unix systems.  

Usage: man name  

where name can be a Unix command, such as grep, or a system file, such as the password file 
/etc/passwd.  

If you're not sure of the command you're looking for, you can sometimes find the right information 
using man's slightly smarter cousin, apropos. The apropos command locates commands by keyword 
lookup.  

Usage: apropos name  

For instance, if you're concerned about disk usage on your system, you can enter apropos usage. The 
output of this command on our PC running Red Hat Linux is:  

du (1) - summarize disk usage  
getrlimit, getrusage, setrlimit (2) - get/set resource limits and usage 
quota (1) - display disk usage and limits 
quotacheck (8) - scan a file system for disk usages 
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apropos doesn't always produce such brief and informative output. Entering a smart combination of 
keywords is (as always with such searches) the key to getting the output you want. If you want a 
predictable listing of Unix commands, it's probably best to pick up a comprehensive Unix book.  

What should you do if you find the following text in a manpage?  

This documentation is no longer being maintained and may be inaccurate or  
incomplete. The Texinfo documentation is now the authoritative source.  

The GNU[1] set of Unix tools are adopting a documentation system, called texinfo, that is different from 
the traditional man system. If you come across this message, you should be able to read the up-to-date 
documentation on the program by typing in the command info progname. For instance, info info gives 
you a complete set of documentation on the use of info and even provides instructions for creating your 
own info documentation when you start writing your own programs.  

[1] GNU tools are distributed and maintained by the GNU Project at the Free Software Foundation. GNU stands for "GNU's Not Unix" and refers to a complete, Unix-
like operating system that's built and maintained by the GNU Project (http://www.Gnu.org ). 

5.2.3 Standard Input and Output 

By default, many Unix commands read from standard input and send their output to standard output. 
Standard input and output are file descriptors associated with your terminal. A program reading from 
standard input will simply hang out and wait for you to type something on your keyboard and press the 
Enter key. A program writing to standard output spews its output to your terminal, sometimes far faster 
than you can read it.  

Some Unix commands read a hyphen (-) surrounded by whitespace on either side as "data from 
standard input." This construct can then be used in place of a filename in the command line. Absence 
of an output filename is sufficient to cause the program to write to standard output.  

5.2.4 Redirection of Command Input and Output 

The standard input and output descriptors are useful because you can redirect both standard input and 
output, associating them with filenames, with no effects on the functioning of the program. Here are the 
most common redirection constructs used by the C shell:  

<  

This redirector preceding a filename associates that filename with standard input, i.e., the 
contents of the file are presented to the program as if they are standard input.  

>  

This redirector associates a filename with standard output, so that the filename is created on 
execution of the command, or whatever is in an existing file of that name is overwritten by the 
output of the command.  

>>  
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This redirector associates a filename with standard output. It differs from > in that the output of 
the command is appended to the end of the existing file.  

The cat command reads the contents of a file and writes them to standard output. If you want to use the 
cat command to combine the contents of three files into one new file, you can use a redirector like this:  

% cat file1 file2 file3 > file4  

This construct with cat would be useful if, for example, you'd just downloaded a bunch of individual 
sequence files from the NCBI web site and want to collect them into one large file that can be read by 
another program. (This is an example of something that seems like it should be simple, but is actually 
time-consuming and annoying to do with a standard PC word -processing program. Unix provides a 
neat solution that doesn't even require you to open any files).  

You can also use redirectors to direct the contents of a file into a program at run-time, as standard input 
(useful if you are running a program that prompts you for input from the keyboard) or to capture output 
from a program that is normally written to standard output:  

program < inputfile 
program > outputfile 

For example, let's say you've just finished an extensive BLAST search, and you want to send the results 
to your colleague. You can use the redirector < ("less than"), to scoop the file huge_blast_report out of 
your directory and mail it directly to your colleague:  

% mail colleague@university.edu < huge_blast_report 

If you want to increase the chances of your colleague opening the message, you can add a subject 
header to the mail message using the mail option -s. The command reads:  

% mail -s "surprise!" colleague@university.edu < huge_blast_report 

The reverse operation, sending the results of standard output (or text that's displayed on your screen) to 
a file, can be accomplished using > ("greater than"). Perhaps your colleague wants to write a quick 
reminder to herself to reply to your mail. She could do it using the cat command to take input from the 
keyboard and redirect it to a file, like this:  

% cat > reminder_to_self 
Ha! Send fifteen BLAST reports to colleague on Monday. 
^D 
% 

Ctrl-D (^D) signals that you have finished entering text. Your colleague now has a file called 
reminder_to_self in her current working directory.  

5.2.5 Operators 

Operators are similar to redirectors in that they are ways of directing standard input and output. 
However, they direct input and output to and from other commands rather than to filenames.  
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The most commonly used operator is the pipe (|). The pipe directs standard output of one command 
into standard input for the next command. This allows you to chain together several different filtering 
commands or programs without creating input or output files each time.  

You can use the cat command to direct the contents of a file into a program that reads information from 
standard input:  

% cat inputfile | program 

This command construct does the same thing as the example we showed earlier (program < inputfile). 
Both cause the output of the cat command to act as input for program. If you want to do a lot of runs of 
the same program using slightly different input, you can create multiple input files and then write a 
script that cat s each of those input files in turn and pipes their contents to program.  

Pipes can carry out a complete set of file-processing options without writing to disk. For instance, 
imagine that you have a datafile consisting of multiple tables concatenated together. The first table in 
the file takes up the first 67 lines, the second table takes up the next 100 lines, and the rest of the file is 
taken up by a third table.[2] You want the information that's contained in the second column of the 
middle table, which stretches from characters 30 -39 in the row. Using filters and pipes, you can 
construct the following command to crop out the data you need:  

[2] This isn't an imaginary format at all. It's pretty close to the format of the output file from a calculation that we do frequently: computing the pKa values of 
individual amino acids in a protein. 

% head -167 protein1.pka | tail -100 | cut -c30-39 > protein1.pka.data  

In this example, head sends the top 167 lines of a specified file or files (in this case protein1.pka) to 
standard output; tail takes the last 100 lines of the output of head; and cut takes the correct column of 
characters out of the results of head and tail and then stores it in protein1.pka.data.  

5.2.6 Wildcard Characters 

A useful construct Unix shells recognize is the presence of wildcard characters in filenames. The shell 
locates matches for any wildcards before passing filenames on to the program. The two most 
commonly used wildcards are the asterisk (*) and the question mark (?). * means "any sequence of zero 
or more characters, except for the / character." ? means "any single character." Thus, "every file in this 
directory" can be denoted by a lone *, which is a useful shortcut.  

The shell recognizes other wildcards as well. The construct [cset ] refers to any characters in the 
specified set. If you want to move all files beginning with letters a through m to a new directory, you 
can structure the command as mv [a -m]* ../newdir. If you want to move all files beginning with a 
number to a new directory, enter mv [0 -9]* ../newdir.  

5.2.7 Running X Commands 

On Unix systems running the X Window System, there are many commands available that initiate 
programs with functions that aren't command line-based. Once these programs, which can include 
anything from graphics viewers to complicated scientific applications, are called from the command 
line, they use the X Window System to open their own windows, which generally contain a complete, 
independent graphical user interface.  



 84 

5.3 Viewing and Editing Files 

You're probably accustomed to the idea of using a program to open a file. If your first introduction to 
computers has been sometime in the last 15 years, you're probably used to simply clicking on a file 
icon, which is automatically recognized by the right piece of software, which opens the file.  

In Unix, commands are designed to operate on files that are sensibly readable and printable as text 
whenever possible. Thus text files can be opened by a wide variety of commands that allow a great deal 
of flexibility in file manipulation. The file reading and processing commands have such functions as 
sorting data based on the value of a particular substring in each line of the file, cutting a particular 
column out of a file, pasting columns of data together side by side, checking to see what the differences 
between two files are, and searching for instances of a pattern in a file or group of files. Often, these 
simple commands are all you need to extract a desired subset of the data in a file and prepare it for 
analysis.  

Unix has many ways to view and edit the contents of files. There are viewers for text and programs that 
allow you to examine the contents of binary files, as well as full-featured editors for modifying plain-
text files.  

5.3.1 Viewing and Combining Files with cat 

Usage: cat -[options] files  

cat dumps the contents of a file onto the screen. If your file is short, or if you've successfully completed 
a speed-reading course, this utility works well. If you need to see what's on each page of a file, though, 
cat is less useful, since the contents of the file scroll by without pausing.  

Instead of viewing text, cat is most useful for combining (or concat enating) files. For instance, if you 
have a series of files of program output named meercat1.txt, meercat2.txt, and meercat3.txt, and you 
want to combine them into a single file, you can type:  

% cat meercat1.txt meercat2.txt meercat3.txt > big-meercat.txt  

This command appends the contents of meercat3.txt to the end of meercat2.txt, the contents of 
meercat2.txt to the end of meercat1.txt, and so on, combining them into one big file named big-
meercat.txt. If you've thought to number the outputs sequentially (as we have with the meercats), and 
want them in that order in the file, you can just type:  

% cat meercat*.txt > big-meercat.txt 

and it will have the same effect. Wildcard characters such as * use a strict alphabetical order: if they 
exist, files meercat10.txt and meercat11.txt come before meercat2.txt.  

cat can also append files to the end of an existing file. For example, if your program generates another 
output file you need to attach to the end of the collection, the command:  

% cat meercat10.txt >> big-meercat.txt 
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does just that. If you use > instead of >> in this situation, instead of being added at the end of the file, 
the new file meercat.txt overwrites the entire contents of big-meercat.txt.  

Incidentally, if you want a command that's the reverse of cat to print the lines of a file in backward 
order, you're in luck: the command is called tac. Sadly, the command acta, for printing a file inside out, 
hasn't yet been implemented.  

5.3.2 more: A Step in the Right Direction 

Usage: more -[options] [+linenumber] [+/pattern] filename  

more is a pager, which in Unix means a program that lets you view a file one page at a time. Suppose 
you have a file containing BLAST output named blast-first.txt. Typing:  

% more blast-first.txt  

shows you the first page of the file blast-first.txt, and steps forward one page every time you press the 
space bar. To leave more, hit the q key; to view other more commands while within more, enter h.  

more is smart about moving around files. If you know where you want to go in the file, you can specify 
the line number (using the +linenumber option). If, on the other hand, you want to start at the first 
occurrence of a certain word or pattern, use the +/pattern option. When viewing a file in more, if you 
press the / key and then type a pattern to search for, more jumps to the next occurrence of that pattern 
in the file and repeats searches for each subsequent occurrence of that pattern every time you press / 
followed by the Enter key.  

Here are some other useful options for more : 

-r  

Shows normally unprintable control characters as well as normal text  

-s  

Squeezes multiple empty lines into a single one  

You can redirect the output of a program that generates more than a screen's worth of text to more, 
allowing you to page through the output one screen at a time. Let's say you want to know who is logged 
into your Unix system. If enough users are logged in, the output scrolls off the screen. By piping who to 
mor e :  

% who | more 

you can scroll through the output line-by-line using the Return key or screen-by-screen using the space 
bar.  

more 's most significant shortcoming is that some versions can't move backward through a file. less is a 
utility that remedies this simple problem.  
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5.3.3 less: The Gold Standard 

There is a superior pager command, less. Most importantly, less rectifies more 's biggest flaw: it lets 
you page backward as well as forward in a file. less also doesn't load a file into memory all at once, 
which makes it less likely that your computer will grind to a halt if you view a huge file with it. Finally, 
it also handles binary files more gracefully, displaying readable text as characters and representing 
unreadable control characters in the form ^X. less uses the same options as more, but it also takes 
additional options. Be sure to check info less to see which ones your local version takes. And finally, 
while it hardly bears mentioning, why is it called less ? Because less is more. Sigh.  

5.3.4 Editing Files with vi and vim 

Usage: vim filename  

Because it's a text-based operating system that has historically been used for software development and 
computation, Unix did not traditionally provide the kind of full-featured, "what you see is what you 
get" text editing that exists on personal computers, although now such editors are available. In fact, 
WYSIWYG text editors are of limited utility for programmers because they often introduce invisible 
markup characters into documents.  

It's worth learning to use the plain-text editors that are provided for Unix. They have a fairly steep 
learning curve, but they are the right tools for the job if you're writing programs or looking at plain-text 
data. If you download sequence data from a web server and open and work with it in a plain-text editor, 
the file you write out should be readable by a sequence-analysis program. If you opened the same file 
and worked with it in a WYSIWYG editor, then wrote it out in the file format used by that editor, it 
would be unreadable by other programs.  

The vi editor is a standard feature of most Unix systems. It's a full-screen editor; it allows you to see as 
many lines of the file that you are editing as will fit into the terminal screen or window in which you 
run it. The cursor can be moved through the file using keyed instructions, but it can't be moved with the 
mouse. The bottom line on the screen is called the status line. Error messages from vi appear in the 
status line.  

In Section 5.6, we discuss the use of regular expressions for searching and replacement as a feature of 
the plain-text editor vi. The ability to use vi with the regular-expression language makes vi a powerful 
tool for file manipulation.  

A few nice features have been added to vi in vim (vi improved). It's worth asking your system 
administrator to install vim if it's not already on your system, if only for the multiple undo feature that it 
introduces. We can't cover all the features of vim here, but we will present a few commands that will 
get you up and running.[3]  

[3] See the Bibliography for pointers to complete references on vi. 

vim has three modes ; in each, input from the keyboard is interpreted differently:  

Command  
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This is the main mode; you are automatically in command mode when you start working. 
Keystrokes are interpreted as vim's short commands, most of which consist of one or two letters. 
You can always return to the command mode by hitting the Escape key once (or sometimes 
twice).  

Input  

This mode is reached by issuing any command that requires input.  

Status line  

This mode is for issuing longer, more complex commands. To reach status line mode, simply 
type a semicolon (;) in command mode. A semicolon appears at the left side of the status line, 
and anything you type appears in the status line. When you finish typing your command and hit 
the Enter key, the command is executed, and you return to command mode.  

Here are some of the most useful vim command-mode commands:  

h, j, k, l  

Moves the cursor around in your file character-by-character or line-by-line. It's sort of like a 
pre-joystick video game: "h" moves you to the left, "l" to the right, "j" moves you down a line, 
and "k" up a line. On most systems, the arrow keys on your keyboard will also work to move 
you around within vim.  

w, b  

Moves the cursor forward ("w") or back ("b") by one word in the text. Words are delimited by 
whitespace.  

), (  

Moves the cursor forward ")" or back "(" by one sentence in the text. Sentences are recognized 
as sequences of words terminated by an end -of-sentence character (. ? !).  

a, A, i, I, o, O  

Initiates the insertion of text. "a" and "A" insert text after the cursor and at the end of the current 
line, respectively. "i" and "I" insert text before the cursor and at the beginning of the current 
line. "o" and "O" open a blank line below or above the current line, respectively, and begin 
inserting text on the new line.  

x, X  

Deletes the text under the cursor or before the cursor, respectively. Preceded by an integer 
number, they delete that number of characters after or preceding the cursor.  

s, S  
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Substitutes for the character under the cursor or for the current line, respectively, by deleting the 
character either under the cursor or the line and initiating insertion of text in place of the deleted 
character. Preceded by an integer number, "s" replaces that number of characters with the new 
text, and "S" replaces the specified number of lines.  

Here are some of the most useful vim status line mode commands:  

:wq  

Saves changes to the file and quits the editing session. ":w" can be used by itself or with the 
name of the file to write to. ":q!" exits the session without saving changes.  

r]  

Followed by a filename, inserts the entire text of the named file.  

:g/pattern/s//replacement/g  

Searches for and replaces pattern with replacement throughout the buffer. If the trailing "g" is 
left off, only the first occurrence of the pattern in any line is replaced.  

:number  

Moves the cursor to the specified line number. 

5.3.5 The GNU Emacs Editor 

vim is a fairly flexible editor, and you can certainly learn to make it do any text-editing task that you 
need to do. However, there are other options for text editing on Unix systems. The best of these is 
probably the Emacs editor. Emacs is an editing program made available by the Free Software 
Foundation. It contains not only a text-editing facility with special modes for TEX and LaTEX 
documents, programs in various programming languages, and outlines, but also a file manager, mail 
and news readers, and access to the online documentation browser info. Whole books have been written 
on Emacs (see the Bibliography) so we won't go into it here except to recommend that, if you're 
working on a Unix system, learning to use Emacs is one of the better uses of your learning-curve time.  

5.3.6 Viewing Binary Files with strings 

Usage: strings -[options] filenames  

In addition to the text files we've discussed up to now, there are also binary files that can't be read as 
text. They are almost always the output of a program or the executable form of a program itself (as 
opposed to the source code). Binary files and program executables aren't human-readable because they 
are in machine language. Because of this language gap, we'll unflinchingly make the prediction that, 9 
times out of 10, it isn't worth the effort needed to read binaries. You'll have more luck taking another 
route, like talking to the person whose program created the file in the first place. Unfortunately, many 
programs today, such as commercial hidden Markov model software or data mining programs that 
directly write their internal representation of data structures to disk, use binary files to store proprietary 
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data structures. For that tenth time, then,  we present some tips on how to extract information from 
binaries without going crazy.  

Your first step should be to use either the less command described earlier or the strings command. If 
any portions of the file are in plain text, they will be readable in less. The strings command cuts out any 
readable text characters in the file and prints them to the screen. For example, if you have an 
undocumented binary file named badger and want to see if it contains any clues as to what it does, try 
typing:  

% strings -n 3 badger | less 

(The -n option tells strings how many readable text characters in a row constitute a string. The default 
setting for -n is four). Piping the output to less will let you page through it if it's longer than one screen. 
If the output looks like:  

ATCGTACTGATCGTCGATCGTCGATCATGCA 
CGTAGCAGTCGATCATCATCGTACTAGCTAG 
ATGCCTGAGCTATACACACTAGTCACGATGC 

you might guess that badger contains some kind of binary encoding of data including a nucleotide 
sequence or a (not good) multiple sequence alignment.  

5.3.7 od and Binary Data 

Usage: od -[options] filenames   

Sometimes, it may be necessary to do more than just identify a binary file. In these cases, the od 
program may provide a first step in understanding the file's contents. Before looking at od itself, let's 
take a quick detour through the ways in which binary information is represented in a moderately more 
human-friendly form.  

Rather than using conventional decimal (base-10) notation, binary data is usually represented using a 
base that is a power of two: either octal (base-8) or hexidecimal (base-16) digits. Octal numbers are 
usually preceded by a 0. For example, the decimal number 25 corresponds to octal 031. [4] Hexidecimal 
digits, on the other hand, are usually preceded by a 0x and use the letters A through F to represent the 
decimal numbers 10 through 15. The decimal number 25 is 0x19 in hexidecimal.  

[4] Giving rise to the old joke, "Why do p rogrammers confuse Christmas and Halloween? Because OCT 31 is DEC 25." 

If you want to delve into the heart of the binary file and see what's going on, you can use the od 
command to perform an octal dump (or hex dump) and see if your binary file is readily interpretable. 
Typing:  

% od -c badger | less 

creates an octal dump of badger you can step through a page at a time. It should look something like 
this:  

0000000  \0  \0  \0 001      \0  \0  \0 006   R   T   D   C   Y   G  \0 
0000020  \0  \0 006   R   T   D   C   Y   G  \0  \0  \0  \a  \0  \0  \0 
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0000040 001   1  \0  \0  \0 003   A   R   G  \0  \0  \0 001  \0  \0  \0 
0000060 002   C   A  \0  \0  \0 002   B   Z 270   R   ? 200  \0  \0   @ 

o d 's primary options are: 

-c  

Prints out text characters corresponding to bytes 

-x  

Produces a hex dump of the file  

-o  

Produces an octal dump (the default setting)  

-d  

Produces a dump of unsigned decimal numbers  

Unless you're a serious programmer, you're not likely to have to read binaries. However, on the off 
chance that you do, we hope these standard tools will help you start to get your questions answered.  

5.4 Transformations and Filters 

Filters are programs that take input data and transform it to produce output. They can accomplish 
tasksk —such as extracting parts of files—that word processing and spreadsheet applications can't. A 
transformation involves a simple manipulation of the data format, or selection of specified lines or 
fields from the data. In this section, we discuss some of the more commonly used filters that are part of 
Unix. These filters can read from standard input and writing to standard output, allowing you to 
combine them and produce fairly complex transformations.[5]  

[5] If you need to transform data in a way that isn't allowed by the standard Unix filters, see Chapter 12, in which we discuss the Perl scripting language. Perl is a very 
complete and sophisticated language that allows you to produce an infinite variety of specialized filters. 

5.4.1 Extracting the Beginning of a File with head 

Usage: head - number files  

Say you have a program that spits out a lengthy datafile that has several different tables of information 
concatenated together. Leaving aside the question of why anyone would write a program that creates 
such difficult output, there are commands that allow you to work with such data, and you need to know 
them. head is one such command.  

By default, head sends the top 10 lines of the specified file or files to standard output. Checking the 
head of a file this way is an easy way to see if there's something in the file without opening it using an 
editor or doing a full cat of the file.  
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With the -number flag, head becomes a tool for selecting a specified number of records from the top of 
a file. Combinations of head and tail commands can extract any set of lines from a file provided that 
you know their location in the file.  

5.4.2 Extracting the End of a File with tail 

Usage: tail [-f] -number files  

The tail command outputs the last 10 lines of a file by default, or the last num lines of the file if 
specified. With the -f option, tail gives constantly updated output of the last few lines in the file. This 
provides a way to monitor what is being added to a text output file as it's written by another program.  

5.4.3 Splitting Files with split and csplit 

Usage: split -[options] filename  
Usage: csplit -[options] file criteria  

The split command allows you to break up an existing file into smaller files of a specified size. Each 
file produced is uniquely named with a suffix (aa, ab...az, ba, etc.). The options to split are:  

-l lines  

Splits the file into subfiles of length lines  

-a length  

Uses length letters to form suffixes  

If you have a file called big-meercat.txt and you want to split it into subfiles of length 100 lines using 
single-letter suffixes and writing the files out to subfiles named meercat.*, the command form of the 
split command is:  

% split -l 100 -a 1 big-meercat.txt meercat.  

csplit also splits files into subfiles, but is somewhat more flexible than split, because it allows the use of 
criteria other than number of lines or bytes for splitting. Here are csplit 's options:  

-f prefix  

Uses the specified file prefix to form subfile names  

-n length  

Uses suffixes of a specified length to form subfile names; subfile suffixes are made up of 
numbers rather than letters  

Split criteria are formed in two ways: either a regular expression is supplied as the criterion, possibly 
modified by an offset, or a number of lines can be specified.  



 92 

A biological sequence database in FASTA format may contain many records of the form:  

 >identifying header information  
PROTEINORNUCLEICACIDSEQUENCEDATA  

The csplit command can split such a database into individual sequence files using the command:  

% csplit -f dbrecord. -n 6 fastadbfile /^>/ 

The file is split into numbered subfiles, each containing a single sequence.  

5.4.4 Separating File Components with cut 

Usage: cut -c list filenames  
or cut -f list -d delim -s file  

The cut command outputs selected parts of each line of an input file. A line in a file is simply any 
stretch of characters that ends with a specific delimiter; a delimiter is a special nontext character an 
operating system or program recognizes. Lines in files are terminated with an EOL (end-of-line) 
character; files themselves are terminated with an EOF (end-of-file) character. These characters are 
usually invisible to you when you're working with the file, but they are important in how a file is 
treated by programs that read it.  

For example, say you have a file called sequence_data that contains the following:  

ATC  TAC 
ATG  CCC 
GAT  TCC 

Here's how to use cut to output the first character of each line in the file:  

% cut -c 1 sequence_data  
A 
A 
G 

And here's how to output the first line of fields 1 and 2: 

% cut -f 1-2 sequence_data  
AAT  TAC 

Portions of each defined line can be selected by character number in the line with the -c option, or by 
field with the -f option. Fields are stretches of characters within a line that are defined by delimiters. 
The most obvious delimiter for use within the text of a file is simply the space character, but other 
characters can be used as well. Fields are different from columns, which are strictly defined by 
numbering each character in the input line.  

The list argument specifies the range of each line, whether in characters or in fields, to be selected.  

The list is in the form of single numbers or of two numbers separated by a - character. Multiple single 
columns or ranges can be selected by separating them with commas. Either the first or the last number 
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can be omitted, indicating that the cut starts at the beginning of the line or that it ends at the end of the 
line. Characters and fields in each line are numbered starting at 1.  

When the -f option is used, indicating that cut is to count fields rather than characters, a delimiter other 
than the default tab character can be specified with the -d option. The -s option causes cut to ignore 
lines that don't contain the specified delimiter. This option can be useful, for example, for ignoring 
header lines in a table.  

5.4.5 Combining Files with paste 

Usage: paste -[options] files  

The paste command allows you to combine fields from several files into one larger file. Unlike the join 
command, which does a database-style merging of two files, paste is a purely mechanical combination 
of files. Lines are combined based solely on their line number in each file: i.e., the first line of file1 is 
pasted next to the first line of file2, regardless of the content of the lines. Pasted data is separated by a 
tab character unless another delimiter is specified with the -d option. With the -s option and only one 
input filename, paste joins all the lines in the input file into one long line.  

paste can prepare datafiles to be read by data-analysis applications. If you have a group of files in the 
same format and you have used other filter commands to remove corresponding information from each 
of them, you can prepare one input file that allows you to plot the corresponding information from each 
of the files without reading them independently. In a previous example, we used piped commands to 
extract a column from a table in a complicated output file:  

% head -167 protein1.pka | tail -100 | cut -c30-39 > protein1.pka.data  

If you have eight similar output files for proteins 1-8, you can process them all in the same way and 
then paste the results that you're interested in comparing into one big datafile:  

% paste protein*.pka.data > allproteins.pka.data  

Each individual file in this example might look something like this: 

3.8  
12.0  
10.8  
4.4  
4.0  
6.3  
7.9  

Each number represents the computed pKa value of one amino acid in a protein. If you have several 
sets of results that can be meaningfully combined into a table, paste creates a simple tab-delimited table 
that looks like this:  

3.8 3.2 3.6  
12.0 12.9 12.5  
10.8 10.9 11.0  
4.4 4.2 4.5  
4.0 3.9 4.2  
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6.3 6.5 6.2  
7.9 7.5 8.0  

It's up to you, however, to understand how your data can be meaningfully combined into a table and to 
use the paste command correctly to get the result you want.  

5.4.6 Merging Datafiles with join 

Usage: join -[options] file1, file2  

join merges two files based on the contents of a specified join field, where lines from the two files 
having the same value in the join field are assumed to correspond. Files are assumed to have a tabular 
format consisting of fields and a consistent field separator, and are assumed to be sorted in increasing 
order of their join fields.  

Command-line options for join include: 

-1 fieldnum  

Uses the specified field number as the join field in file 1  

-2 fieldnum  

Uses the specified field as the join field in file 2  

-t character  

Uses the specified character as the delimiter throughout the join operation  

-e string  

Replaces empty output fields with the specified string 

-a filenum  

Produces output for each unpairable line in the specified file; can be specified for both input 
files; fields belonging to the other output file are empty  

-v filenum  

Produces output only for unpairable lines in the specified file 

-o list  

Constructs the output lines from the list of specified fields, where the format of the field list is 
filenum.fieldnum; multiple items in the list can be separated by commas or whitespace  

join is quite useful for constructing data tables from multiple files, and a sequence of join operations 
can construct a complicated file. In a simple example, there are three files:  
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mustelidae.color: 
badger black  
ermine white  
long-tailed tan  
otter brown  
stoat tan 
 
mustelidae.prey: 
ermine mouse  
badger mole  
stoat vole  
otter fish  
long-tailed mouse 
 
mustelidae.habitat: 
river otter  
snowfield ermine  
prairie long-tailed  
forest badger  
plains stoat  

First, combine mustelidae.color and mustelidae.prey. The field both have in common is the name of the 
animal, which is the first field in each file. mustelidae.prey isn't yet sorted. The form of the join 
command needed is:  

% sort mustelidae.prey | join mustelidae.color - > outfile 

which produces the following output: 

badger black mole  
ermine white mouse  
long-tailed tan mouse  
otter brown fish  
stoat tan vole 

Now combine the resulting file with mustelidae.habitat. If you want the resulting output to be in the 
form habitat animal prey color, use the command construct:  

% sort -k2 mustelidae.habitat | join -1 2 -2 1 -o 1.1,2.1,2.3,2.2 - outfile 

This operates on the standard input and the output file from the previous step to produce the output:  

forest badger mole black  
snowfield ermine mouse white  
prairie long-tailed mouse tan  
river otter fish brown  
plains stoat vole tan 

5.4.7 Sorting Files with sort 

Usage: sort -[general options] -o[outfile] -[key interpretation options] -t[char] -
k[keydef]...[filenames]  
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The sort command can sort a single file, sort a group of files and simultaneously merge them into a 
single file, or check a file for sortedness. This function has many applications in data processing. Eac h 
line in the file is treated as a single field by default, but keys can also be defined by the user on the 
command line.  

The main options for sort are: 

-c  

Tests a file for sortedness based on the user-selected options  

-m  

Merges several input files  

-u  

Displays only one instance of lines that compare as equal  

-o outfile  

Sends the output to a file instead of sending it to standard output  

-t char  

Uses the specified character to delimit fields  

Options that determine how keys are interpreted can be used as global options, but they can also be 
used as flags on a particular key. The key interpretation options for sort are:  

-b  

Ignores leading or trailing whitespace in a sort key.  

-r  

Reverses the sort order for a particular key.  

-d  

Uses "dictionary order" in making comparisons; i.e., characters other than letters, digits, and 
whitespace are ignored.  

-f  

Reclassifies lowercase letters as uppercase for the purpose of making comparisons. Normally, L 
and l would be separated from each other due to being in uppercase and lowercase character 
sets; with the -f flag, all L's end up together, whether capitalized or not.  
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5.4.7.1 Specifying sort keys 

Key definitions are arguments of the -k option. The form of a key definition is position1,position2. 
Each is a numerical value that specifies where within the line the key starts and ends. Positions can 
have the form field.character, where field specifies the field position in the input line, and character 
specifies the position of the starting character of the key within its individual field. If the key is flagged 
with one of the key interpretation options, the form of the key is field.character[flags]. If the key 
interpretation option isn't applied to the whole sort, but merely to one key, then it's appended to the key 
definition without a preceding hyphen.  

5.5 File Statistics and Comparisons 

It's frequently useful to find out if two separate files are the same and, if not, where they have 
differences. For instance, if you have compiled a program on your local machine, and test cases are 
provided, you should run your copy of the program on the test cases and compare the output to the 
canonical output provided by the makers of the program. If you want to check that the backup copy of a 
file and the current version of the file are the same, file-comparison tools are very useful. Unix 
provides tools that allow you to do this without laboriously searching through the files by hand.  

5.5.1 Comparing Files with cmp and diff 

Usage: cmp -[options] file1 file2  
Usage: diff -[options] file1 file2  

Let's say you have two lists and, while they look similar, you can't tell by eye if they are exactly the 
same list. This can happen if you get a list of gene names back from database searches performed using 
two subtly different queries and want to know if they are equivalent. In order to compare them 
rigorously (and save your eyes in the process), you can try the semicomplementary commands cmp and 
diff. In short, cmp tells you whether two files are identical, and diff prints any lines that are different.  

cmp is fairly simple-minded. Typing: 

% cmp enolase1.list enolase2.list 

produces no output if the two files are identical. Otherwise, cmp returns a message that the files differ 
and includes the character and line at which the first difference occurs.  

diff is most useful for comparing different versions of a file to find exactly where the files differ. 
Before looking at diff ' s rather obtuse output, it's worth a moment to see how to decrypt it. Without 
options, diff responds with a list of differences in the form of the changes required to make file2 from 
file1 :  

x,y d i  

Lines x through y in file1 are missing in file2 after line i (i.e., they've been deleted from file2).  

i a x,y  

Lines x through y in file2 are missing in file1 after line i (i.e., they've been added to file2).  
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i,j c x,y  

Lines i through j in file1  have been changed to lines x through y in file2.  

In practice, the output looks like this (where enolase1.txt and enolase2.txt are lists of names of putative 
enolases produc ed by two database searches performed at different times):  

% diff enolase1.list enolase2.list  
1a2 
> ENO_MESCR 
5a7 
> ENOA_MOUSE  

Here are two of the more immediately useful options diff uses:  

-b  

Ignores differences in whitespace between lines  

-B  

Ignores inserted or deleted blank lines between files  

The info pages on diff and its variants are especially helpful. If you use this utility extensively, we 
strongly recommend you give them a look.  

5.5.2 Counting Words with wc 

Usage: wc -[options] filename (s)  

wc is a simple and useful utility for counting things in text files. Given a text file, wc counts the number 
of lines, words, and bytes (characters) that it contains. The default setting for wc is to count all three 
entities, so that typing it at the command prompt returns a line that looks like:  

% wc meercat1.txt  
   27   98   559 meercat1.txt  

This output tells you that there are 27 lines, 98 words, and 559 bytes in meercat1.txt. If you pass 
multiple files to wc, it returns counts both for individual files and for all of them combined. For 
example, if you run wc on the three meercat files:  

% wc meercat1.txt meercat2.txt meercat3.txt 

(or, to save time, wc meercat*.txt, being appropriately careful using the wildcard), the output looks 
like:  

   41   130   905 meercat1.txt    
   50   124   869 meercat2.txt    
   10    19   156 meercat3.txt    
  101   273  1930 total  
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These are the options for wc : 

-c  

Counts only bytes (characters)  

-w  

Counts only words  

-l  

Counts only lines  

- -help  

Prints a usage message  

- -version  

Prints the version of wc being used  

Unix tools can often be used in combination to collect information you need. For instance, say you 
have a list of 1,000 files that need to be processed, and the output files are all saved together in the 
same directory. Instead of trying to list the contents of that directory using ls, you can use ls -1 dirname 
| wc to find how many output files have been created so far.  

5.6 The Language of Regular Expressions 

The pattern-matching language known as regular expressions allows you to search for and extract 
matches and to replace patterns of characters in files (given the right program). Regular expressions are 
used in the vi and Emacs text-editing programs. Since much of the data that biologists work with 
contains patterns, one of the first skills you need to learn is how to match patterns and extract them 
from files.  

Regular expressions also are understood by the Perl language interpreter. Knowing how to use regular 
expressions along with the basic commands of Perl gives you a powerful set of data-processing tools. 
We'll cover the basics of regular expressions here, and return to them again in Chapter 12.  

If you've ever used a wildcard character in a search, you've used a regular expression. Regular 
expressions are patterns of text to be matched. There are also special characters that can be used in 
regular expressions to stand for variable patterns, which means you can search for partial or inexact 
matches. Regular expressions can consist of any combination of explicit text and special characters.  

The special characters recognized in basic regular expressions are: 

\  
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The backslash acts as an escape character for a special character that follows it. If part of the 
pattern you are searching for is a dot, you give the regular expression chars\.txt to find the 
pattern chars.txt.  

.  

The dot matches any single character.  

*  

The behavior of the asterisk in regular expressions is different from its behavior as a shell 
wildcard. If preceded by a character, it matches zero or more occurrences of that character. If 
preceded by a character class description, it matches zero or more characters from that set. If 
preceded by a dot, it matches zero or more arbitrary characters, which is equivalent to its 
behavior in the shell.  

^  

The caret at the beginning of a regular expression matches the beginning of a line. Otherwise, it 
matches itself.  

$  

The dollar sign at the end of a regular expression matches the end of a line. Otherwise, it 
matches itself.  

[charset]  

A group of characters enclosed in square brackets matches any single character within the 
brackets. [badger] matches any of (a, b, d, e, g, r). Within the set, only -, caret, ], and [ are 
special. All other characters, including the general special characters, match themselves. A 
range of characters in the form [c1-c2 ] can also be given; e.g., [0 -9] or [A-Z].  

5.6.1 Searching for Patterns with grep 

Usage: grep -[options] 'pattern' filenames  

grep allows you to search for patterns (in the form of regular expressions) in a file or a group of files. 
GNU grep (the standard on Linux) searches for one of three kinds of patterns, depending on which of 
the following functions is selected:  

-G  

Standard grep : searches for a regular expression (this is the default)  

-E  

Extended grep : searches for an extended regular expression  
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-F  

Fast grep : rapidly searches for a fixed string (a pattern made of normal characters, as opposed 
to regular expressions)  

Note that the -E and -F options can be explicitly selected by calling egrep or fgrep on some systems. If 
no files are specified to be searched, grep  searches the standard input for the pattern, allowing the 
output of another program to be redirected to grep if you are looking for a pattern in the output.  

As a simple example, consider the following commands: 

% grep -c '>' SP-caspases-A.fasta SP-caspases-B.fasta  
% grep '>' SP-caspases-A.fasta SP-caspases-B.fasta 

These both search through a file of FASTA-formatted sequences (whose header lines, you will 
remember, begin with the > symbol). The first command returns the number of sequences in each file, 
while the second returns a list of the sequence headers. Be sure to enclose the > in quotes, though. 
Otherwise, as one of us once found out the hard way, the command is interpreted as a request for grep 
to search the standard input for no pattern and then redirect the resulting empty string to the files listed, 
overwriting whatever was already there.  

grep takes dozens of options. Here are some of the more useful ones:  

-c  

Prints only a count of matching lines, rather than printing the matching lines themselves  

-i  

Ignores uppercase/lowercase distinctions in both file and pattern  

-n  

Prints lines and line numbers for each occurrence of a pattern match  

-l  

Prints filenames containing matches to pattern, but not matching lines  

-h  

Prints matching lines but not filenames (the opposite of -l )  

-v  

Prints only those lines that don't contain a match with pattern  

-q  
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(quiet mode) Stops listing matches after the first occurrence  

In protein structure files, protein sequence information is stored as a sequence of three-letter codes, 
rather than in the more compact single-letter code format. It's sometimes necessary to extract sequence 
information from protein structure files. In real life, you can do this with a simple Perl program and 
then go on to translate the sequence into single-letter code. But you can also extract the sequence with 
two simple Unix filter commands.  

The first step is to find the SEQRES records in the PDB file. This is done using the grep command:  

% grep SEQRES pdbfile > seqres 

This gives you a file called seqres containing records that look like this:  

SEQRES 1 357 GLU VAL LEU ILE THR GLY LEU ARG THR ARG ALA VAL ASN 2MNR 106  
SEQRES 2 357 VAL PRO LEU ALA TYR PRO VAL HIS THR ALA VAL GLY THR 2MNR 107  
SEQRES 3 357 VAL GLY THR ALA PRO LEU VAL LEU ILE ASP LEU ALA THR 2MNR 108 

Not all the characters in each record belong to the amino-acid sequence. Next, you need to extract the 
sequences from the records. This can be done using the cut command:  

% cut -c20-70 seqres > seqs 

The output of this command, in the file seqs, looks like this:  

GLU VAL LEU ILE THR GLY LEU ARG THR ARG ALA VAL ASN  
VAL PRO LEU ALA TYR PRO VAL HIS THR ALA VAL GLY THR  
VAL GLY THR ALA PRO LEU VAL LEU ILE ASP LEU ALA THR 

If you don't want to create the intermediate file, you can pipe the commands together into one 
command line:  

% grep SEQRES pdbfile | cut -c20-70 | paste -s > seqs.  

Addition of the paste -s command joins the individual lines in the file into one long line.  

5.7 Unix Shell Scripts 

The various Unix shells also provide a mechanism for writing multistep scripts that let you automate 
your work. Scripts are labeled as such because they contain, verbatim, the sequence of commands you 
want to "say" to the shell, just as the script for a play contains the sequence of lines the author wants 
the actors to say.  

Shell scripts—even the simplest ones—are still applications, and they behave accordingly. Let's say 
you want to start a series of calculations that will take a while, and then go home to eat dinner. By 
default, the shell will wait until one command is finished to execute the next command, so if the second 
command acts upon the output of the first, it won't start prematurely. The important thing is that you 
don't have to be there to type the second command.  
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Here's a relatively simple example. Assume you have just downloaded the entire set of GenBank DNA 
sequence files. You want the information in the files, but you need it to be in a different format so that 
a program you've downloaded can process it. You're going to use the program gb2fasta to convert the 
files from GenBank to FASTA format. (This script assumes you've downloaded the GenBank files to 
your current working directory.) Then you want to process each file using the BLAST formatdb 
program. To make the script more flexible, you can write it so that it takes an optional file list on the 
command line to specify which files to process. The script might look like this:  

#!/usr/bin/csh 
foreach file ($*)  
echo $file  
gb2fasta $file > $file.na  
formatdb -t "$file" -i $file.na -p F  
end  

After creating the file, you need to make it executable using the chmod command. For instance, if the 
filename of the script is blastprep, give the command:  

% chmod a+x blastprep 

The first line of the script tells the operating system which shell program to use, the shell is invoked, 
and the job is run. You can invoke your command immediately in the following way:  

./blastprep gbest*.seq  

In order to run the new script without giving its full path, you need to run the rehash command before 
typing this command. rehash is a C-shell command that updates the list of all executable files in your 
path.  

In the previous example, all the GenBank EST files are automatically parsed and prepared for use with 
BLAST. The programs gb2fasta and formatdb run just as they do on the command line, but you don't 
have to wait for each command to complete. The script takes your command-line argument—in this 
case gbest*.seq, which is a list of filenames—and sequentially fills the variable $file with each value. It 
then loops through the lines between the "foreach" and "end" lines. The echo command simply sends 
the value of $file to standard output, so you can see in your terminal window how the job is 
progressing. The gb2fasta  program normally prints to standard output, so you need to redirect the 
output to a specific filename. On the other hand, formatdb processes the input files and generates new 
files using an internal naming convention, so no output file is needed in the script.  

5.8 Communicating with Other Computers 

As we'll see in Chapter 6, the ability to plug into other computers and networks across the world allows 
you to read and download an amazing amount of information, as well as share data with your 
colleagues. In fact, your work as a bioinformatician depends on having access to public databases and 
other repositories of biological data. In this section, we look at how your computer communicates with 
other machines and the tools it uses to do so.  

5.8.1 The Web 
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The easiest way to communicate with other computers is via the Web. Most distributions of Linux 
include web browser software—usually Netscape—which, if you select it from the list of installation 
options, is automatically installed for you. Setting up a web browser on a Linux system is the same as 
setting up a browser on other computers; you need to set the browser's preferences and tell it where the 
correct utilities are located to open different kinds of file attachments.  

You may want to maintain a web page on your machine, and in order to do that, you need to install web 
server software. Again, most Linux distributions allow you to install the Apache web server software as 
one of your installation options. If you choose to install the Apache web server, you can publish a 
simple web site by placing the appropriate HTML files in the /home/httpd/html directory.  

5.8.2 IP Addresses and Hostnames 

In the world of the Internet, computers recognize each other by their Internet Protocol (IP) addresses. 
Computers that are constantly connected to the Internet have permanently allocated IP addresses and 
hostnames, while computers that only connect to the Internet occasionally may have dynamically 
allocated IP addresses, or no IP address at all, depending on the protocol they use to connect.  

IP addresses consist of four numbers separated by dots (e.g., 128.174.55.33). These are interpreted as 
directions to the host (a computer that communicates with other computers) by network software. 
Computers also have hostnames, such as gibas.biotech.vt.edu. Name servers are dedicated machines 
that maintain information about the relationships among IP addresses and hostnames.  

5.8.3 telnet 

Usage: telnet full.hostname  

The telnet command opens a shell on a remote Unix machine; the workstation on which the command 
is issued becomes a terminal for that machine. To telnet to another Unix machine, you must have a 
login on that machine. Once you're logged in to the remote host, the shell works just as if you were 
working directly on the remote machine. [6]  

[6] If you are logged in as root, there are certain tasks you can't do from a remote terminal. 

A "login:" prompt should appear, followed by a "password:" prompt after your ID is entered.  

5.8.4 ftp 

Usage: ftp full.host.name.edu  

The File Transfer Protocol (ftp) is a method for transferring files from one computer to another. You 
may be familiar with Fetch, Interarchy, or other PC-based FTP clients; Unix ftp is conceptually similar 
to these programs (and many of them have analogs that run under Linux, if you like their graphical user 
interfaces). When you use ftp to connect to another host, you will find yourself in an operating 
environment that is unique to ftp. Unix commands don't always wo rk in the ftp environment, although 
the commands ls and cd have similar functions.  

Again, a "login:" prompt appears, followed by a "password:" prompt. If you are accessing an 
anonymous FTP server (a common way to distribute software), the standard username is anonymous, 
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and your email address is the password. Once in the FTP environment, the most important commands 
to know are:  

help  

Prints out the list of ftp commands. help command prints out information on a specific 
command.  

ls  

Lists the contents of the directory on the remote host.  

cd  

Changes the working directory on the remote host.  

lcd  

Changes the working directory on the local host.  

get, mget  

get copies a single file from the remote host to the local host. mget copies multiple files.  

put, mput  

put copies a single file from the local host to the remote host. mput copies multiple files.  

binary, ascii  

Changes the file-transfer mode to binary or ASCII. You should choose binary when you are 
downloading binary executables, images, and other encoded file formats.  

prompt  

Toggles the interactive mode that asks you to confirm every transfer when you transfer multiple 
files.  

5.8.5 Displaying from a Remote Terminal 

Sometimes you need to run an X program on another computer and have it display on your terminal. 
This is relatively simple to do. First, you need to set your own terminal to allow remote displays from 
other hosts. This is done using the xhost command:  

% xhost +  

A confirmation that access is allowed from other hosts is then printed to standard output.  
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Next, you need to change the display environment on the remote machine. This is done with the setenv 
command:  

% setenv DISPLAY yourmachine.yoursubnet.wherever.edu:0  

Not all X applications running on a remote server can use your terminal for display, generally because 
the remote machine and your machine don't have the same graphics capabilities. For instance, 
programs running on a remote Silicon Graphics machine can't display on your local Linux workstation, 
because Silicon Graphics uses proprietary graphics libraries that aren't currently available to Linux 
users. However, even if both machines are compatible, bandwidth limitations can make running large 
X programs over the network extremely slow.  

5.8.6 Communication and File Sharing 

One of the biggest inconveniences for Linux users in a primarily Mac/PC environment is the sharing of 
files generated by PC productivity software with other users. While it's not our purpose to teach you to 
use these packages here, we can mention a few options that will help you handle communication with 
non-Unix users.  

Fortunately, there are relatively low-cost software products available for Linux that make it possible to 
work with common file types, such as Microsoft Word and rich-text format (RTF) documents, 
PowerPoint presentations, and Excel spreadsheets. Sun's StarOffice (http://www.staroffice.com) and 
Applix's Applixware (http://www.vistasource.com) are two possibilities; at the time of this writing, 
StarOffice seemed to do the cleanest job of converting files generated by Microsoft Word and other 
commonly used programs. Adding one of these packages to your Linux system will add most of the 
basic PC functions (word processing, electronic presentations, etc.) that may be vital to your work.  

Most kinds of graphics files are easily handled and converted on Linux systems. One powerful tool for 
manipulating graphics files is called the GIMP (Gnu Image Manipulation Program, 
http://www.gimp.org). The GIMP is commonly included in Linux distributions, so be sure to select it 
as part of your installation if you will be doing anything with graphics files. The GIMP is analogous to 
Adobe Photoshop program and shares most of the same functionality.  

5.8.7 Media Compatibility 

Linux users can read and write files on Microsoft-formatted floppy disks and Zip disks. A floppy or Zip 
disk is treated as an additional filesystem on your computer. The most basic way to access this 
filesystem is to mount it using the mount command. To do this, you need to know the device ID of the 
disk you are trying to mount and establish a mount point for the new filesystem.  

Determining the device IDs of the various drives is usually straightforward. One way is to open the file 
/var/log/dmesg. This file contains the system information that is printed to standard output when the 
machine is booted. Scan through the file and find the drive information, which should look like this:  

hdc: SAMSUNG SC-140B, ATAPI CDROM drive  
hdd: IOMEGA ZIP 250 ATAPI, ATAPI FLOPPY drive  
hdc: ATAPI 40X CD-ROM drive, 128KB Cache  
Floppy drive(s): fd0 is 1.44M  
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This section of the file contains information about IDE devices. On this particular machine, the IDE 
devices include a CD-ROM drive, a Zip drive, and a floppy drive. The three-letter codes hdc, hdd, and 
fd0 are the device IDs.  

The next section of the file contains information about SCSI devices. On this particular machine, the 
main hard disk is a SCSI drive, and its ID is sda. sda1, sda2, etc., are the individual IDs of the 
partitions on the hard drive:  

Detected scsi disk sda at scsi0, channel 0, id 0, lun 0 SCSI device  
sda: hdwr sector= 512 bytes. Sectors= 35566499 [17366 MB] [17.4 GB]  
sda: sda1 sda2 sda3 sda4 < sda5 sda6 sda7 sda8 sda9 > 

5.8.8 Accessing Devices as Unix Filesystems 

Once you know the device IDs, mounting these new filesystems is simple. If you're the root user of 
your own machine, the command is:  

mount -t [filesystem type] devicefile mount point 

For example, to mount a PC-formatted floppy disk at /mnt/floppy,  the command is:  

% mount -t msdos /dev/fd0 /mnt/floppy 

You can find a listing of allowed file types in the manpages for mount.  

As a shortcut, you can modify your /etc/fstab file to contain the following lines:  

/dev/fd0         /mnt/floppy       vfat  noauto,owner  0 0  
/dev/hdd4        /mnt/zip          vfat  noauto,owner  0 0  

On this system, the Zip drive is located at /dev/hdd. All PC-formatted Zip disks use partition number 4, 
and the device file for that partition is /dev/hdd4. The noauto flag means that these disks aren't mounted 
automatically at boot time. Once these lines are added to /etc/fstab, the devices can be mounted with 
the shortened command mount devicefilename.  

Once the Zip or floppy is mounted as a partition, the files on that disk can be treated like any other file 
on the system.  

Getting some of these devices working isn't as straightforward as we'd like it to be. For further help, 
you can search the Web for the Linux how-to pages for the particular device you're using.  

5.8.9 Accessing Devices as DOS Disks 

If you install the utility package mtools and its graphical frontend mfm, you can run mfm and move files 
to Zip or floppy disks, using a graphical interface similar to that on a PC. However, if you use this 
method to access devices, you can't run Unix commands on the files stored on your media until you 
move them onto the local hard disk.  

By default, processes to access media may be run only by the root user. It's possible to configure your 
system so that other users can write to floppy and Zip drives. However, this creates a security hole in 
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your system. You have to decide for yourself whether the benefits of easy disk access outweigh any 
potential risks.  

5.9 Playing Nicely with Others in a Shared Environment 

Unix environments traditionally have been multiuser environments. While the availability of new 
flavors of Unix for personal computers might change this on your computer at home, at work you will 
probably use a shared, networked Unix system at least some of the time. And even on a personal Unix 
system, you need to be aware of problems that can arise when you create an excessive load on your 
system, and of how background processes can interfere with your ability to run interactive processes.  

Because the Unix operating system can interact with more than one user at a time, from terminals 
attached directly to the system or over a network, there can be many processes executing on your 
system. Some processes will be yours, and others will belong to users who may be working across the 
room from you or hundreds of miles away. To be a good citizen in a Unix environment, you need to 
share the system's resources. While administrators of large public systems make it nearly impossible 
for you to be a bad citizen by implementing quotas for space usage and queueing systems for process 
management, it isn't likely that all systems you use will be so tightly managed. On shared systems in 
which good faith is all that's keeping users from stepping on each other's toes, it's wise to manage your 
own processes responsibly. Otherwise someone's going to come gunning for you, and it won't be pretty.  

5.9.1 Processes and Process Management 

A Unix system carries out many different operations at the same time. Each of these operations, or 
processes, has a unique process ID that allows the user or the administrator to interact with that process 
directly.  

There are a minimum number of processes that run on a system regardless of whether you actively 
initiate them. Each shell program, whether idle or active, has a process ID attached to it. Several system 
(or root) processes, sometimes known as daemons, are constantly active on the system. These processes 
often lie in wait for you to initiate some activity they handle: for instance, printing files, sending email, 
or initiating a telnet session.  

Above and beyond this minimal system activity level are any processes you initiate by typing a 
command or running a program. The Unix kernel manages these processes, allocating whatever 
resources are available to the processes according to their needs.  

Each process uses a percentage of the processing capacity of the system's CPU or CPUs. It also uses a 
percentage of the system's memory. When the processes running on a machine require more than 100% 
of the CPU's capacity to execute, each individual process will execute more slowly. While Unix does 
an extremely good job of juggling hundreds of processes that run at the same time without having the 
machine roll over and die, eventually you will see a situation where the load on the machine increases 
to the point that the machine becomes useless. The operating system uses many techniques to prevent 
this, such as limiting the absolute number of processes that can be started and swapping idle jobs out of 
memory. Even on a single processor system, it's possible to have multiple processes running 
concurrently as long as there is enough space for both jobs to remain in memory. At the point at which 
the CPU has to constantly wait for data to get loaded from the swap space on the hard drive, you will 
see a great drop in efficiency. This can be monitored using the top command, which is described in 
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Section 5.9.1.3. Many machines are more limited by lack of memory than they are by a slow CPU, and 
it's often now more cost-effective to put money into additional RAM than to buy the latest, greatest, 
and fastest CPU.  

5.9.1.1 Checking the load average 

Usage: w  

The w command is available on most Unix systems. This command can show you which other users are 
logged into the system and what they are doing. It also shows the current load average on the system.  

The standard output of the w command looks like this:  

2:55pm up 37 days, 4:50, 4 users, load average: 1.00, 1.02, 2.00  
USER    TTY    FROM        LOGIN@    IDLE   JCPU   PCPU WHAT  
jambeck tty1              22Jan99  37days  3:55m  0.06s startx  
jambeck ttyp0  :0.0       Wed 5pm   1:34m  0.22s  0.22s -csh  
jambeck ttyp3  :0.0       21Feb99    3:47  9.05s  8.51s telnet weasel  
god     ttyp2  around      2:52pm   0.00s  0.55s  0.09s create world  

The first line of the output is the header. It shows the time of day, how long the machine has been up, 
how many users are logged in, and what the load average on the system has been for the last 1 minute, 
5 minutes, and 15 minutes. The load average represents the fractional processor use on the system. If 
you have a single processor system and a load average of 1, the system is being used at optimal 
capacity. A four-processor system with a load average of 2 is being used at only half of its capacity. If 
you log in to a system and it's already being used at or beyond its capacity, it's not polite to add other 
processes that will start running right away. The batch or at commands can set up a process to start 
when resources become available.  

The information displayed for each user is the username, the tty name, the remote host from which the 
user is logged in, the login time, the idle time, the JCPU and PCPU times, and what the user is doing.  

5.9.1.2 Listing processes with ps 

Usage: ps [options]  

ps produces a snapshot of what the processor is doing at the moment you issue the command. 
Depending on what your computer is doing at the time, typing ps at the prompt should give output 
along the lines of:  

  PID TTY    TIME CMD 
36758 ttyq10 0:02 tcsh     
43472 ttyq10 0:00 ps     
42948 ttyq10 4:24 xemacs-20     
42967 ttyq10 1:21 fermats-last-theorem-solver  

Most of ps 's options modify the types of processes on which ps reports and the way in which it reports 
them. Here are some of the more useful options:  

a  
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Lists every command running on the computer, including those of other users  

l  

Produces a long listing of processes (process memory size, user ID, etc.)  

f  

Lists processes in a "tree" form, showing related processes  

Notice that you don't need to preceed the option with a dash. There are actually a couple of dozen 
options for ps ; check info ps to see which options are supported by your local installation.  

5.9.1.3 top 

Usage: top -[options]  

The top command provides real-time monitoring of processor activity. It lists processes on the system, 
sorted by CPU usage, memory usage, or runtime. The top screen looks like this:  

4:34pm up 37 days, 6:29, 4 users, load average: 0.25, 0.07, 0.02  
42 processes: 39 sleeping, 3 running, 0 zombie, 0 stopped  
CPU states: 42.9% user, 6.4% system, 0.0% nice, 51.0% idle  
Mem:  39092K av, 38332K used,   760K free, 13568K shrd,  212K buff  
Swap: 33228K av, 20236K used, 12992K free               8008K cached 
 
  PID USER    PRI NI  SIZE  RSS SHARE STAT LIB %CPU %MEM   TIME COMMAND 
  516 jambeck  15  0  4820 3884  1544 R      0 30.4  9.9   4:23 emacs-fgyell 
  415 root      9  0 10256 9340   888 R      0 15.5 23.8 161:41 /usr/X11R6/b  
10756 cgibas    5  0   716  716   556 R      0  2.3  1.8   0:01 top-ci 

The header is similar to the output of w but more detailed. It gives a breakdown of CPU and memory 
usage in addition to uptime and load averages. The display can be changed to show a variety of fields. 
The default configuration of top is set in the user's .toprc file or in a systemwide /etc/toprc file.  

Here are the top options: 

-d  

Updates with a frequency of delay 

-q  

Refreshes without any delay, running at the highest possible priority 

-s  

Runs in secure mode, with its most potentially dangerous commands disabled  

-c  
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Prints the full command line instead of just the command you're running  

-i  

Ignores all processes except those currently running 

While top is running, certain interactive commands can be entered, unless they are disabled from the 
command line. The command i toggles the display between showing all processes and showing just the 
processes currently running. k kills a process. It prompts you for the process ID of the process to kill 
and the signal to send to it. Signal 15 is a normal kill; signal 9 is a swift and deadly kill that can't be 
ignored by the process. r changes the running priority of a process, implementing the renice command 
discussed in Section 5.9.1.5. It prompts you for the process ID and the new priority value for the job.  

5.9.1.4 Signaling processes with kill 

Usage: kill [-s signal | -p ] [ -a ] PID  

The kill command lets you terminate a process abnormally from the command line. While kill can 
actually send various types of signals to a process, in practice it's most often used in the form kill PID 
or, if that fails to kill the process, kill -9 PID.  

On most systems, kill -l lists the available types of signals that can be sent to a process. It's sometimes 
useful to know that jobs can be stopped and restarted with kill -s STOP and kill -s CONT. [7]  

[7] Discussion of the other signals can be found in any of the comprehensive Unix references listed in the Bibliography. 

A PID is usually just the numerical process ID, which you can find with the ps or top commands. It can 
also be a process name, in which case a group of similarly named processes can be addressed. Another 
useful form of PID is -n process group ID, which allows the kill command to address all the processes 
in a group simultaneously.  

5.9.1.5 Setting process priorities with nice and renice 

Usage: nice -n [val command arg]  
Usage: renice -n [incr] [-g|-p|-u] id  

Processes initiated on a Unix system run at the maximum allowed priority unless you tell them to do 
otherwise. The nice and renice commands allow the owner of a process, or the superuser, to lower the 
priority of a job.  

If limited computing resources are shared among many users and computers are used simultaneously 
for computation and interactive work, it's polite to run background jobs (jobs that run on the machine 
without any interactive interface) with a low priority. Otherwise, interactive jobs such as text editing or 
graphical-display programs run extremely slowly while background jobs hog the available resources. 
Jobs running at a low priority are slowed only if higher-priority processes are running. When the load 
on the system is low, background jobs with low priority expand to use all the available resources.  



 112 

You can initiate a command at a low priority using nice. n is the priority value. On most systems, this is 
set to 10 by default and can range from 1-19, or 0-20. The larger the number, the lower the priority of 
the job, of course.  

The renice command allows you to reset the priority of a process that's already running. incr is a value 
to be added to the current priority. Thus, if you have a background process running at normal priority 
(priority 1) and you want to lower its priority (by increasing the priority number), you can enter renice 
-n 18 to increase the priority value to 19. You can also input a negative number to put the job at high 
priority, but unless you are root, you are limited to raising its priority to 1. The renice options, -p, -g, 
and -u, cause renice to interpret id as a process ID, a process group ID, or a user number, respectively.  

5.9.2 Scheduling Recurring Activities with cron 

The cron daemon, crond, is a standard Unix process that performs recurring jobs for the system and 
individual users. System activities such as cleanup of the /tmp directory and system backups are 
typically functions controlled by the cron daemon. Normal users can also submit their own jobs to 
cron, assuming they have permission to run cron jobs. Details about cron permissions are found in the 
crontab manpage. Since the at and batch commands, which are discussed later, are also controlled by 
cron, most systems are configured to allow users to use cron by default.  

5.9.2.1 Submitting jobs to cron using crontab 

Usage: crontab -[options] file  

Submission of jobs to cron is done using the crontab command. crontab -l > file places the current 
contents of your crontab into a file so you can edit the list. crontab file sends the newly edited file back 
and initializes it for use by cron. crontab -r deletes your current crontab.  

cron processes the contents of all crontab 's and then initiates jobs as scheduled. A crontab entry as 
produced by crontab -l looks like:  

# Format of lines:  
#min  hour  daymo  month  daywk  cmd  
   50     2      *      *      *  /home/jambeck/runme  

This entry runs the program runme at 2:50 A.M. every day. An asterisk in any field means "perform 
this function every time." In this entry, all output to either STDOUT or STDERR is mailed to user 
jambeck 's email account on the machine where the cron job ran.  

5.9.2.2 Using cron to schedule a recurrent database search 

What if your group performs DNA sequencing on a daily basis, and you want to use the sequence-
alignment program BLAST to compare your sequences automatically against a nonredundant protein 
database? Consider this crontab entry:  

01 4 * * * find /data/seq/ -name "*.seq" -type f -mtime -1 -exec  
/usr/bin/csh /usr/local/bin/blastall -p blastx -d nr -i '{' ";' 

This automatically runs at 4:01 A.M. and checks for all sequences that have been modified or added to 
the database in the last 24 hours. It then runs the BLASTX program to search your copy of the 
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nonredundant protein sequence database for matches to your new sequences and mails you the results. 
This example assumes you have all the necessary environment variables set up correctly so that 
BLAST can find the necessary scoring matrixes and databases. It also uses a default parameter set, 
which may need to be modified to get useful results. Once you get it configured correctly, all you have 
to do is browse through your email while you drink your morning coffee.  

5.9.2.3 Scheduling processes with batch and at 

Usage: at -[options] time  
Usage: batch -[options]  

The batch and at commands are standard Unix functions and are commonly available on most systems. 
Jobs are submitted to queues, and the queues are processed by the cron daemon; jobs are governed by 
the same restrictions as crontab submissions. The batch command assigns priorities to jobs running on 
the system. Using batch allows a system administrator to sort jobs by priority—high to low—thereby 
allowing more important jobs to run first. Unless the system has a mechanism to kill interactive jobs 
that exceed a specified time limit, this use of the batch queue relies on users to work in a cooperative 
manner. On larger systems the function of batch is usually replaced by more complicated queuing 
systems. You need to get information from your system administrator about which batch and at queues 
are available.  

at allows you to submit a job to run at some specified time. batch sequentially runs jobs whenever the 
machine load drops below a specified level and the number of concurrent batch jobs has not been 
exceeded. Once you initiate at or batch, all command-line entries are considered part of the job until 
you terminate the submission with a Ctrl-D keystroke. Like cron, any STDOUT and STDERR 
generated by the job are mailed to you, so you at least get notified of error conditions. Here are the 
common options:  

-q queuename  

Specifies the queue. By default, at uses the "a" queue; batch uses the "b" queue.  

-l  

Causes at to list the jobs current in the specified queue.  

-d jobid  

Tells at to delete a specified job. 

-f filename  

Instructs at to run the job from a file rather than standard input.  

-m  

Instructs batch and at to send mail upon completion, even when no output is generated.  

time  
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Time can be now, teatime, 7:00 P.M., 7:00 P.M. tomorrow, etc. Check the manpage for more 
details.  

As an example, let's say that you want your boss to think you were slaving away at 3:00 A.M. Simply 
send her mail at 3:07 A.M. Even if you don't plan on being awake, it's no problem. At the at command 
prompt, just type:  

> at 3:07am  
Mail -s "big breakthrough" boss@wherever < /home/jambeck/news  
<Ctrl-d>  

5.9.3 Monitoring Space Usage and File Sizes 

As fast as available disk space on a system expands, users seem to be able to expand their files to fill it. 
Software takes up more space; output files become larger and more complex; more layers of analysis 
can be created. Since the infinitely large data-storage medium has yet to be invented, you can still run 
up against disk-space limitations. So, you need to be able to monitor how much space you are using 
and, as we'll discuss in Section 5.9.4, how to make data archives and store them on appropriate media.  

5.9.3.1 Checking disk usage with du 

Usage: du -[options] filenames   

du reports the number of disk blocks used by the specified file or files. Without a filename, it reports 
disk usage for all files in the current working directory. The -s flag causes du to report values only for 
the named file, rather than for the file and its subdirectories.  

5.9.3.2 Checking for free disk space with df 

Usage: df  

df reports free diskspace for local and networked filesystems on your computer. df is a useful way to 
find out which filesystems are mounted on your computer. If a connection to a filesystem you would 
expect to find is down, that filesystem doesn't appear in the df output. The df output looks like this:  

Filesystem            Type    blocks       use    avail %use Mounted on  
/dev/root              xfs  17506496  14113592  3392904   81 /  
/dev/xlv/xlv_raid_home xfs  62783488  39506328 23277160   63 /scratch-res1  
/dev/dsk/dks0d5s0      xfs  17259688  15000528  2259160   87 /mnt/root-6.4  
/dev/dsk/dks12d1s7     xfs  17711872  11773568  5938304   67 /ip410  
/mnt/local/jmd/balder: NFS server balder not responding  
zeus:/hamr             nfs   2205816    703280  1502536   32 /nfs/zeus/hamr  
zeus:/hamrscr          nfs   4058200   2153480  1904720   54 /nfs/zeus/hamrscr  
zeus:/lcascr1          nfs 142241472 103956480 38284992   74 /nfs/zeus/lcascr1  

The first column is the actual location of the filesystem. In this case, locations preceded with / are local, 
and those preceded with a name (e.g., /zeus:...) are physically part of another machine. The second 
column shows which protocol can mount the remote filesystem—that is, connect it to your computer. 
The next three columns show how many blocks are available on the filesystem, how many of those are 
in use, and how many are available, followed by the percent use of each device. The final column 
shows the local path to the filesystem.  
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It's useful to know these things if you are working on a system that is made up of multiple networked 
machines. From time to time connections are lost, like that to balder in the previous example. You may 
log in to a machine that can't find your home directory because an NFS connection is down. At these 
times, it's useful to be able to figure out what the problem is so you can send a concise and helpful 
email to the system administrator rather than just saying "help! My home directory is missing."  

5.9.3.3 Checking your compliance with system quotas with quota 

On some Unix systems, especially those that provide services to many users, system administrators 
implement disk space quotas for each user. The consequences of exceeding a disk space quota may be 
obvious. You might find that you're unable to write files or that you are automatically prompted to 
delete files each time you log in. Or, the consequences may be silent, but very annoying. For instance, 
if you exceed a quota, you may be able to run a text editor, only to find that it has overwritten the file 
you were editing with a file of length zero. Or your older files may simply start to be deleted as space is 
needed by other users.  

If you're paying for computer time on a shared system, it's in your interest to find out what the user 
quota for the system is, for how long you can exceed it, what will happen if you exceed it, and where 
and how you can archive your files.  

The quota command gives basic information about space usage and quota limits on systems with 
quotas. On most Unix systems, issuing the command quota -v gives space use information even when 
user disk quotas haven't been exceeded.  

5.9.4 Creating Archives of Your Data 

So, after months of your time, hundreds of megabytes of files, and several layers of subdirectories, the 
otter project is finally complete. Time to move on to the next project with a clean slate. But as 
refreshing as it may sound, you can't just type:  

% rm -rf otter/ 

Other people may need to look back at your findings or use them as a starting point for their own 
research. At the other extreme, you can't leave your files lying around or laboriously copy them a few 
at a time to another location. Not every file needs to be accessible at all times; some files are replaced, 
while others are more conveniently stored elsewhere. This section covers the tools provided by Unix 
for archiving your data so you don't have to worry about it on a day-to-day basis but can find things 
later when you need them.  

5.9.4.1 tar: Hold the feathers 

Usage: tar functions [options] [arguments] filenames  

After going through all the effort of setting up your filesystem rationally, it seems like a waste to lose 
that structure in the process of storing it away, like hastily packed dishes in an unexpected cross-
country move. Fortunately, there is a Unix command that lets you work with whole directories of files 
while retaining the directory structure. tar compacts a directory and all its component files and (if you 
ask for it) subdirectories into a single file with the name of the compacted directory and a .tar 
extension. The options for tar break down into two types: functions (of which you must choose one) 
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and options. tar is short for "tape archive," since the utility was originally designed to read and write 
archives stored on magnetic tape. Another common use of tar is to package software in a form that can 
be easily transferred over the Internet.  

To run tar, you must choose one of the following functions:  

c  

Creates a new tape archive  

r  

Appends the files to an existing archive  

u  

Adds files to the archive if they aren't present or are modified  

x  

Extracts files from an existing archive  

t  

Prints a table of contents of the archive 

The options for tar are as follows: 

f archive  

Performs the specified operation on archive, which can either be a device (such as a tape drive 
or a removable disk) or a tar file  

v  

(verbose mode) Prints the name of each file archived or extracted with a character to indicate 
the function (a for archived; x for extracted)  

w  

(whiny mode) Asks for confirmation at every step 

Note that neither functions nor options require the hyphen that usually precedes Unix command 
options.  

If you type: 

% tar cvf otter/ 
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the otter/ directory and all its subdirectories are rolled into a single file called otter.tar. It's good 
practice to use the v option, so you can see if something is going horribly wrong while the archive is 
being processed.  

If, on the other hand, you want to make an archive of the otter/ directory on the tape drive nftape, you 
can type:  

% tar cvf /dev/nftape otter/ 

A couple of warnings about tar are in order. First, before you use tar on your system, you should use 
which  to find out whether the GNU or the standard version is installed. Several of the options mean 
different things to each version; the ones listed earlier are the same in each version.  

Second, the tar file you create will be as large as all the contents of the directory and subdirectories 
beneath it. This condition has dire implications if your archived directory is large and you have limited 
disk space, or you need to transfer large amounts of tar 'd data. In these cases, you should break down 
the directory into subdirectories of a more manageable size, and tar those instead.  

If you don't have the space on your current filesystem or partition for your files and the archive you are 
creating to exist simultaneously, or you wish to download a whole archive file and unpack it just to 
retrieve a few files, you can transfer your archive over the network or even just to another partition 
using a combination of ftp and tar commands. Sending an archive this way and then extracting it at the 
destination can be less time-consuming than a cp -r if a large number of files are involved. The ftp 
program recognizes a form in which a command replaces the input filenames. The command is 
executed in a subshell on the local machine and operates on files on the local filesystem. The construct 
is:  

ftp command "| command" filename 

Inside the ftp program, here's how to send the output of the tar command, enclosed in quotes, into the 
filename specified as the target on the remote machine:  

put "|tar cvBf - *" filename 

Here's how to direct the downloaded archive through the tar command, resulting in extraction of only 
the files in the specified directory within the archive:  

get filename.tar "|tar xvf - dirname" 

Finally, here's how to list the contents of the remote archive: 

get filename.tar "|tar t - *" 

5.9.4.2 compress 

Usage: compress -[options] filenames  

Ultimately, you don't want to be left with large—if more manageable—tar files cluttering up your 
filesystem. In this situation, data-compression utilities are important, since they allow you to cheat and 
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reduce the amount of space that files take up on your hard disk. compress is the standard Unix file-
compression command. It's the opposite of uncompress, the command used in Chapter 3 to open 
compressed papers and software. compress adds a .Z to the end of the filename.  

Here are the most useful options for compress : 

-f  

Forces compression; even if there is already a compressed version of the file, the main effect is 
to not overwrite an existing compressed file  

-v  

(verbose mode) Prints percentage compression achieved by the file  

-r  

(recursive mode) If compress is applied to a directory that contains subdirectories, compresses 
their contents as well as those of the original directory  

If you have a text file named stoat.txt and the tar file of the otter/ directory from the last section, and 
you want to compress both and look at the resulting compression ratio achieved, type:  

% compress -v stoat.txt otter.tar  

This command produces two files stoat.txt.Z and otter.tar.Z. The files can be uncompressed using the 
uncompress command or gzip -d (described next). In case you were wondering, natural languages (the 
kind humans use) end up with a compression ratio around 60%, and programming languages get 
around 40%. Try compressing the sequences of some of your favorite proteins to see what sort of ratio 
you get: the values can be wildly variable, depending on whether there are repeats in the sequence.  

5.9.4.3 gzip 

Usage: gzip -[options] filenames  

As usual, in addition to the standard Unix compress, there's a faster and more efficient GNU utility: 
gzip. gzip behaves in much the same way as compress, except that it gets better compression on 
average, since it uses a superior algorithm. gzip adds the suffix .gz to a file that it compresses. It 
emulates the compress options described earlier and adds a few of its own:  

-N  

(default setting) Preserves the original name and timestamp from the file being compressed  

-q  

(quiet mode) Suppresses warnings when running  

-d  
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Returns a file that has been compressed by gzip to its uncompressed state; gzip can also 
recognize and uncompress files produced by compress  
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Chapter 6. Biological Research on the Web 

The Internet has completely changed the way scientists search for and exchange information. Data that 
once had to be communicated on paper is now digitized and distributed from centralized databases. 
Journals are now published online. And nearly every research group has a web page offering 
everything from reprints to software downloads to data to automated data-processing services. 

A simple web search for the word bioinformatics yields tens of thousands of results. The information 
you want may be number 345 in the list or it may not be found at all. Where can you go to find only the 
useful software and data, and scientific articles? You won't always get there by a simple web search. 
How can you judge which information is useful? Publication on the Web gives information an 
appearance of authority it may not merit. How can you judge if software will give the type of results 
you need and perform its function correctly? 

In this chapter we examine the art of finding information on the Web. We cover search engines and 
searching, where to find scientific articles and software, and how to use the classic online information 
sources such as PubMed. And once you've located your information, we help you figure out how to use 
it. Among the largest sources of information for biologists are the public biological databases. We 
discuss the history of the public databases, data annotation, the various forms the data can take, and 
how to get data in and out. Finally, we give you some pointers on how to judge the quality of the 
information you find out there.  

The Internet is a tremendously useful information source for biological research. In addition to 
allowing researchers to exchange software and data easily, it can be a source of the kind of practical 
advice about computer software and hard ware, experimental methods and protocols, and laboratory 
equipment that you once could get only by buying a beer for a seasoned lab worker or computer 
hacker. Use the Internet, but use it wisely. 

6.1 Using Search Engines 

AltaVista, Lycos, Google, HotBot, Northern Light, Dogpile, and dozens of other search engines exist to 
help you find your way around the billion or more pages that make up the Web. As a scientist, 
however, you're not looking for common web commodities such as places to order books on the Web 
or online news or porn sites. You're looking for perhaps a couple of needles in a large haystack.  

Knowing how to structure a query to weed out the majority of the junk that will come up in a search is 
very useful, both in web searching and in keyword-based database searching. Understanding how to 
formulate boolean queries that limit your search space is a critical research skill. 

6.1.1 Boolean Searching 

Most web surfers approach searching haphazardly at best. Enter a few keywords into the little box, and 
look at whatever results come up. But each search engine makes different default assumptions, so if 
you enter protein structure into Excite's query field, you are asking for an entirely different search than 
if you enter protein structure into Google's query field. In order to search effectively, you need to use 
boolean logic, which is an extremely simple way of stating how a group of things should be divided or 
combined into sets. 
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Search engines all use some form of boolean logic, as do the query forms for most of the public 
biological databases. Boolean queries restrict the results that are returned from a database by joining a 
series of search terms with the operators AND, OR, and NOT. The meaning of these operators is 
straightforward: joining two keywords with AND finds documents that contain only keyword1 and 
keyword2 ; using OR finds documents that contain either keyword1 or keyword2 (or both); and using 
NOT finds documents that contain keyword1 but not keyword2. 

However, search engines differ in how they interpret a space or an implied operator. Some search 
engines consider a space an OR, so when you type protein structure, you're really asking for protein or 
structure. If you search for protein structure on Excite, which defaults to OR, you come up with a lot of 
advertisements for fad diets and protein supplements before you ever get to the scientific sites you're 
interested in. On the other hand, Google defaults to AND, so you'll find only references that contain 
protein and structure, which is probably what you intended to look for in the first place. Find out how 
the search engine you're using works before you formulate your query.  

Boolean queries are read from left to right, just like text. Parentheses can structure more complex 
boolean queries. For instance, if you look for documents that contain keyword1 and one of either 
keyword2 or keyword3, but not keyword4, your query would look like this: (keyword1 AND (keyword2 
OR keyword3)) NOT keyword4. 

Many search engines allow you to use quotation marks to specify a phrase. If you want to find only 
documents in which the words protein structure appear together in sequence, searching for "protein 
structure" is one way to narrow your results. 

Let's say you want to search a literature database for references about computing electrostatic potentials 
for protein molecules, and you only want to look for references by two authors, Barry Honig and 
Andrew McCammon. You might structure a boolean query statement as follows: 

((protein AND "electrostatic potential") AND (Honig OR McCammon)) 

This statement tells the search engine you want references that contain both the word protein and the 
phrase electrostatic potential, and that you require either one or the other of the names Honig and 
McCammon. 

There are many excellent web tutorials available on boolean searching. Try a search with the phrase 
boolean searching in Google, and see what comes up. 

6.1.2 Search Engine Algorithms 

While the purpose of this book isn't to describe exhaustively how search engines work, there are 
significant differences in how search engines build their databases and rank sites. These differences 
make some search engines far more useful than others for searching science and technology web sites. 

Key features to look at in a web search engine's database building and indexing strategies are free URL 
submission, full-text indexing, automated, comprehensive web crawling, a fast "refresh rate," and a 
sensible ranking strategy for results. 

Our current favorite search engine is Google. Google is extremely comprehensive, indexing over 1 
billion URLs. Pages are ranked based on how many times they are linked from other pages. Links from 
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well-connected pages are considered more significant than links from isolated pages. The claim is that 
a Google search will bring you to the most well-traveled pages that match your search topic, and we've 
found that it works rather well. Google caches copies of web pages, so pages can be accessible even if 
the server is offline. It returns only pages that contain all the relevant query terms. Google uses a 
shorthand version of the standard boolean search formula, and it allows such specialized services as 
locating all the pages that link back to a page of interest. 

For the neophyte user, however, HotBot is probably the best search engine. HotBot is relatively 
comprehensive and regularly updated, and it offers form-based query tools that eliminate the need for 
you to formulate even simple query statements. 

6.2 Finding Scientific Articles 

Scientists have traditionally been able to trust the quality of papers in print journals because these 
journals are refereed. An editor sends each paper to a group of experts who are qualified to judge the 
quality of the research described. These reviewers comment on the manuscript, often requiring 
additions, corrections, and even further experiments before the paper is accepted for publication. Print 
journals in the sciences are, increasingly frequently, publishing their content in an electronic format in 
addition to hardcopy. Almost every major journal has a web site, most of which are accessible only to 
subscribers, although access to abstracts usually is free. Scientific articles in these web journals go 
through the same process of review as their print counterparts. 

Another trend is e-journals, which have no print counterpart. These journals are usually refereed, and it 
shouldn't be too hard to find out by whom. For instance, the Journal of Molecular Modeling, an 
electronic journal published by Springer-Verlag, has links to information about the journal's editorial 
policy prominently displayed on its home page. 

An excellent resource for searching the scientific literature in the biological sciences is the free server 
sponsored by the National Center for Biotechnology Information (NCBI) at the National Library of 
Medicine. This server makes it possible for anyone with a web browser to search the Medline database. 
There are other literature databases of comparable quality available, but most of these are not free. 
Your institution may offer access to such sources as Lexis-Nexis or Cambridge Scientific Abstracts. 

Outside of refereed resources, however, anyone can publish information on the Web. Often research 
groups make papers available as technical reports on their web sites. These technical reports may never 
be peer reviewed or published outside the research group's home organization, and your only clue to 
their quality is the reputation and expertise of the authors. This isn't to say that you shouldn't trust or 
seek out these sources. Many government organizations and academic research groups have reference 
material of near-textbook quality on their web sites. For example, the University of Washington 
Genome Center has an excellent tutorial on genome sequencing, and NCBI has a good practical tutorial 
on use of the BLAST sequence alignment program and its variants. 

6.2.1 Using PubMed Effectively 

PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi ) is one of the most valuable web resources 
available to biologists. Over 4,000 journals are indexed in PubMed, including most of the well-
regarded journals in cell and molecular biology, biochemistry, genetics, and related fields, as well as 
many clinical publications of interest to medical professionals. 
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PubMed uses a keyword-based search strategy and allows the boolean operators AND, OR, and NOT 
in query statements. Users can specify which database fields to check for each search term by 
following the search term with a field name enclosed in square brackets. 

Additionally, users can search PubMed using Medical Subject Heading (MeSH) terms. MeSH is a 
library of standardized terms that may help locate manuscripts that use alternate terms to refer to the 
same concept. The MeSH browser (http://www.nlm.nih.gov/mesh/meshhome.html) allows users to 
enter a word or word fragment and find related keywords in the MeSH library. PubMed automatically 
finds MeSH terms related to query terms and uses them to enhance queries. 

For example, we searched for "protein electrostatics" in PubMed. The terms protein and electrostatics 
are automatically joined with an AND unless otherwise specified. The resulting boolean query 
statement submitted to PubMed is actually: 

((("proteins"[MeSH Terms] OR protein[Text Word]) AND ("electrostatics"[MeSH Terms] 
 OR electrostatics[Text Word])) AND notpubref[sb]) 

The results of the search are shown in Figure 6-1. 

Figure 6-1. Results from a PubMed search 
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As you can see in Figure 6-2, PubMed also allows you to use a web interface to narrow your search. 
The Limits link immediately below the query box on the main PubMed page takes you to this web 
form. 

Figure 6-2. Narrowing a search strategy using the Limits menu in PubMed 
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The Limits form allows you to add specificity to your query. You can limit your search to particular 
fields in the PubMed database record, such as the Author Name or Substance Name field. Searches can 
also be limited by language, content (e.g., searching for review articles or clinical trials only), and date. 
For clinical research publications, the search can be limited based on the species, age, and gender of the 
research subjects. 

The Preview/Index menu allows you to build a detailed query interactively. You can select a specific 
data field (for instance, the Author Name field) and then enter a term you want to search for within the 
specified field only. Clicking the AND, OR, or NOT buttons joins the new term to your previous query 
terms using the specified boolean operator. 

For instance, you might start with a general search for "protein AND electrostatics," then go to the 
Preview/Index page (Figure 6-3) and specify that you want to search for "Gilson OR McCammon" in 
the Author Name field only. 

Figure 6-3. Building a PubMed query using the Preview/Index form 
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You can also use the options in the History form to access results from earlier searches, and to narrow a 
search by adding new terms to the query.  

If you want to collect results from multiple queries and save them into one big file, the Clipboard will 
allow you to do that. To save individual results to the Clipboard, simply click the checkbox next to the 
result you want to save, then click the Add to Clipboard button in the menu at the top of your results 
page. [1]  

[1] You'll notice that all the checkbox-clicking to select and save individual results can get time-consuming if you're working with a lot of pages of results. It would be 
easier if you could come up with a search strategy that was absolutely certain to bring up only the results you want. There's no solution for this within the NCBI tools, 
and writing your own scripts to process batches of results may not help you either. The limitation is in the ability of computer programs to parse human language. 

If you find a search strategy that works for you in PubMed, you can save that strategy in the form of a 
URL, and repeat the same search at any time in the future by visiting that URL. To save a PubMed 
URL, click the Details link on your results page, then click the URL link on the Details page. The URL 
of your search will appear in the Location field at the top of the web browser, so that you can 
bookmark it. 

The "bookmarkable" URL for a PubMed search should look something like this: 

http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=PureSearch&db=  
PubMed&details_term=%28%28%28%28%28%28%22proteins%22%5BMeSH%20Terms  
%5D%20OR%20protein%5BText%20Word%5D%29%20AND%20%28%22electrostatics  
%22%5BMeSH%20Terms%5D%20OR%20electrostatics%5BText%20Word%5D%29%29  
%20AND%20hasabstract%5Btext%5D%29%20AND%20Review%5Bptyp%5D%29%20AND  
%20English%5BLang%5D%29%20AND%20notpubref%5Bsb%5D%29 

Spending a few hours developing some detailed PubMed search strategies that work for you, and 
saving them, can save you a lot of work in the future. 

6.3 The Public Biological Databases 

The nomenclature problem in biology at the molecular level is immense. Genes are commonly known 
by unsystematic names. These may come from developmental biology studies in model systems, so that 



 127 

some genes have names like flightless, shaker, and antennapedia due to the developmental effects they 
cause in a particular animal. Other names are chosen by cellular biologists and represent the function of 
genes at a cellular level, like homeobox. Still other names are chosen by biochemists and structural 
biologists and refer to a protein that was probably isolated and studied before the gene was ever found. 
Though proteins are direct products of genes, they are not always referred to by the same names or 
codes as the genes that encode them. This kind of confusing nomenclature generally means that only a 
scientist who works with a particular gene, gene product, or the biochemical process that it's a part of 
can immediately recognize what the common name of the gene refers to. 

The biochemistry of a single organism is a more complex set of information than the taxonomy of 
living species was at the time of Linnaeus, so it isn't to be expected that a clear and comprehensive 
system of nomenclature will be arrived at easily. There are many things to be known about a given 
gene: its source organism, its chromosomal location, and the location of the activator sequences and 
identities of the regulatory proteins that turn it on and off. Genes also can be categorized by when 
during the organism's development they are turned on, and in which tissues expression occurs. They 
can be categorized by the function of their product, whether it's a structural protein, an enzyme, or a 
functional RNA. They can be categorized by the identity of the metabolic pathway that their product is 
part of, and by the substrate it modifies or the product it produces. They can be categorized by the 
structural architecture of their protein products. Clearly this is a wealth of information to be condensed 
into a reasonable nomenclature. Figure 6-4 shows a portion of the information that may be associated 
with a single gene. 

Figure 6-4. Some of the information associated with a single gene 

 

The problem for maintainers of biological databases becomes mainly one of annotation; that is, putting 
sufficient information into the database that there is no question of what the gene is, even if it does 
have a cryptic common name, and creating the proper links between that information and the gene 
sequence and serial number. Correct annotation of genomic data is an active research area in itself, as 
researchers attempt to find ways to transfer information across genomes without propagating error. 

Storage of macromolecular data in electronic databases has given rise to a way of working around the 
problem of nomenclature. The solution has been to give each new entry into the database a serial 
number and then to store it in a relational database that knows the proper linkages between that serial 
number, any number of names for the gene or gene product it represents, and all manner of other 
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information about the gene. This strategy is the one currently in use in the major biological databases. 
The questions databases resolve are essentially the same questions that arise in developing a 
nomenclature. However, by using relational databases and complex querying strategies, they (perhaps 
somewhat unfortunately) avoid the issue of finding a concise way for scientists to communicate the 
identities of genes on a nondigital level. 

6.3.1 Data Annotation and Data Formats 

The representation and distribution of biological data is still an open problem in bioinformatics. The 
nucleotide sequences of DNA and RNA and the amino acid sequences of proteins reduce neatly to 
character strings in which a single letter represents a single nucleotide or amino acid. The remaining 
challenges in representing sequence data are verification of the correctness of the data, thorough 
annotation of data, and handling of data that comes in ever-larger chunks, such as the sequences of 
chromosomes and whole genomes. 

The standard reduced representation of the 3D structure of biomolecule consists of the Cartesian 
coordinates of the atoms in the molecule. This aspect of representing the molecule is straightforward. 
On the other hand, there are a host of complex issues for structure databases that are not completely 
resolved. Annotation is still an issue for structural data, although the biology community has attempted 
to form a consensus as to what annotation of a structure is currently required. 

In the last 15 years, different researchers have developed their own styles and formats for reporting 
biological data. Biological sequence and structure databases have developed in parallel in the United 
States and in Europe. The use of proprietary software for data analysis has contributed a number of 
proprietary data formats to the mix. While there are many specialized databases, we focus here on the 
fields in which an effort is being made to maintain a comprehensive database of an entire class of data. 

6.3.2 3D Molecular Structure Data 

Though DNA sequence, protein sequence, and protein structure are in some sense just different ways of 
representing the same gene product, these datatypes currently are maintained as separate database 
projects and in unconnected data formats. This is mainly because sequence and structure determination 
methods have separate histories of development. 

The first public molecular biology database, established nearly 10 years before the public DNA 
sequence databases, was the Protein Data Bank (PDB), the central repository for x-ray crystal 
structures of protein molecules. 

While the first complete protein structure was published in the 1950s, there were not a significant 
number of protein structures available until the late 1970s. Computers had not developed to the point 
where graphical representation of protein structure coordinate data was possible, at least at useful 
speeds. However, in 1971, the PDB was established at the Brookhaven National Laboratory, to store 
protein structure data in a computer-based archive. A data format developed, which owed much of its 
style to the requirements of early computer technology. Throughout the 1970s and 1980s, the PDB 
grew. From 15 sets of coordinates in 1973, it grew to 69 entries in 1976. The number of coordinate sets 
deposited each year remained under 100 until 1988, at which time there were still fewer than 400 PDB 
entries. 
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Between 1988 and 1992, the PDB hit the turning point in its exponential growth curve. By January 
1994, there were 2,143 entries in the PDB; at the time of this writing, the PDB has nearly reached the 
14,000-entry mark. Management of the PDB has been transferred to a consortium of university and 
public -agency researchers, called the Research Collaboratory for Structural Bioinformatics, and a new 
format for recording of crystallographic data, the Macromolecular Crystallographic Information File 
(mmCIF), is being phased in to replace the antiquated PDB format. Journals that publish 
crystallographic results now require submission to the PDB as a condition of publication, which means 
that nearly all protein structure data obtained by academic researchers becomes available in the PDB in 
a fairly timely fashion. 

A common issue for data-driven studies of protein structure is the redundancy and lack of 
comprehensiveness of the PDB. There are many proteins for which numerous crystal structures have 
been submitted to the database. Selecting subsets of the PDB data with which to work is therefore an 
important step in any statistical study of protein structure. As of December 1998, only about 2,800 of 
the protein chains in the PDB were sufficiently different from each other (having less than 95% of their 
sequence in common) to be considered unique. Many statistical studies of protein structure are based 
on sets of protein chains that have no more than 25% of their sequence in common; if this criterion is 
used, there are still only around 1,000 unique protein folds represented in the PDB. As the amount of 
biological sequence data available has grown, the PDB now lags far behind the gene-sequence 
databases. 

6.3.3 DNA, RNA, and Protein Sequence Data 

Sequence databases generally specialize in one type of sequence data: DNA, RNA, or protein. There 
are major sequence data collections and deposition sites in Europe, Japan, and the United States, and 
there are independent groups that mirror all the data collected in the major public databases, often 
offering some software that adds value to the data.  

In 1970, Ray Wu sequenced the first segment of DNA; twelve bases that occurred as a single strand at 
the end of a circular DNA that was opened using an enzyme. However, DNA sequencing proved much 
more difficult than protein sequencing, because there is no chemical process that selectively cleaves the 
first nucleotide from a nucleic acid chain. When Robert Holley reported the sequencing of a 76-
nucleotide RNA molecule from yeas t, it was after seven years of labor. After Holley's sequence was 
published, other groups refined the protocols for sequencing, even successfully sequencing an 3,200-
base bacteriophage genome. Real progress with DNA sequencing came after 1975, with the chemical 
cleavage method designed by Allan Maxam and Walter Gilbert, and with Frederick Sanger's chain-
terminator procedure. 

The first DNA sequence database, established in 1979, was the Gene Sequence Database (GSDB) at 
Los Alamos National Lab. While GSDB has since been supplanted by the worldwide collaboration that 
is the modern GenBank, up-to-date gene sequence information is still available from GSDB through 
the National Center for Genome Resources. 

The European Molecular Biology Laboratory, the DNA Database of Japan, and the National Institutes 
of Health cooperate to make all publicly available sequence data available through GenBank. NCBI has 
developed a standard relational database format for sequence data, known as the ASN.1 format. While 
this format promises to make locating the right sequences of the right kind in GenBank easier, there are 
still a number of services providing access to nonredundant versions of the database. 
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The DNA sequence database grew slowly through its first decade. In 1992, GenBank contained only 
78,000 DNA sequences—a little over 100 million base pairs of DNA. In 1995, the Human Genome 
Project, and advances in sequencing technology, kicked GenBank's growth into high gear. GenBank 
currently doubles in size every 6 to 8 months, and its rate of increase is constantly growing. 

6.3.4 Genomic Data 

In addition to the Human Genome Project, there are now separate genome project databases for a large 
number of model organisms. The sequence content of the genome project databases is represented in 
GenBank, but the genome project sites also provide everything from genome maps to supplementary 
resources for researchers working on that organism. As of October 2000, NCBI's Entrez Genome 
database contained the partial or complete genomes of over 900 species. Many of these are viruses. The 
remainder include bacteria; archaea; yeast; commonly studied plant model systems such as A. thaliana, 
rice, and maize; animal model systems such as C. elegans, fruit flies, mice, rats, and puffer fish; as well 
as organelle genomes. NCBI's web-based software tools for accessing these databases are constantly 
evolving and becoming more sophisticated. 

6.3.5 Biochemical Pathway Data 

The most important biological activities don't happen by the action of single molecules, but as the 
orchestrated activities of multiple molecules. Since the early 20th century, biochemists have studied 
these functional ensembles of enzymes and their substrates. A few research groups have begun work on 
intelligently organizing and storing these pathways in databases. Two examples of pathway databases 
are WIT and KEGG. WIT, short for "What Is There?", was developed at Argonne National Labs. It's a 
database containing reconstructed metabolic pathways for organisms whose genomes have been 
entirely sequenced. The Kyoto Encyclopedia of Genes and Genomes (KEGG) stores similar data but 
links in information from sequence, structure, and genetic linkage databases. Both databases are 
queryable through web interfaces and are curated by a combination of automation and human expertise. 

In addition to these whole genome "parts catalogs," other, more specialized databases that focus on 
specific pathways (such as intercellular signaling or degradation of chemical compounds by microbes) 
have been developed. 

6.3.6 Gene Expression Data 

DNA microarrays (or gene chips) are miniaturized laboratories for the study of gene expression. Each 
chip contains a deliberately designed array of probe molecules that can bind specific pieces of DNA or 
mRNA. Labeling the DNA or RNA with fluorescent molecules allows the level of expression of any 
gene in a cellular preparation to be measured quantitatively. Microarrays also have other applications in 
molecular biology, but their use in studying gene expression has opened up a new way of measuring 
genome functions. 

Since the development of DNA microarray technology in the late 1990s, it has become apparent that 
the increase in available gene expression data will eventually parallel the growth of the sequence and 
structure databases, and that this is another datatype for which public access to raw data will be 
desirable. Raw microarray data has just begun to be made available to the public in selective databases, 
and talk of establishing a central data repository for such data is underway. However, formats for 
delivering this kind of data are still not standardized; often, it's made available in large spreadsheets or 
tab-delimited text. Two of the most comprehensive resources for microarray data are the National 
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Human Genome Research Initiative's Microarray Project site and the Stanford Genome Resources site. 
Since many of the early microarray expression experiments were performed at Stanford, their genome 
resources site has links to both raw data and, in some cases, databases that can be queried using gene 
names or functional descriptions. Recently, the European Bioinformatics Institute has been 
instrumental in developing a set of standards for deposition of microarray data in databases. Several 
databases also exist for the deposition of 2D gel electrophoresis results, including SWISS-2DPAGE 
and HSC-2DPAGE. 2D-PAGE is a technology that allows quantitative study of protein concentrations 
in the cell, for many proteins simultaneously. The combination of these two techniques is a powerful 
tool for understanding how genomes work. 

Table 6-1 summarizes sources on the Web for some of the most important databases we've discussed in 
this section. 

Table 6-1. Major Biological Data and Information Sources  
Subject Source Link 

Biomedical literature PubMed http://www.ncbi.nlm.nih.gov/entrez/query.fcgi 
Nucleic acid sequence GenBank http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide 
  SRS at EMBL /EBI http://srs.ebi.ac.uk 
Genome sequence Entrez Genome http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Genome 
  TIGR databases http://www.tigr.org/tdb/ 
Protein sequence GenBank http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein 

  SWISS-PROT at 
ExPASy http://www.expasy.ch/spro/ 

  PIR http://www-nbrf.georgetown.edu 
Protein structure Protein Data Bank http://www.rcsb.org/pdb/ 
Entrez Structure DB     
Protein and peptide mass 
spectroscopy PROWL http://prowl.rockefeller.edu 

Post-translational modifications  RESID http://www-nbrf.georgetown.edu/pirwww/search/textresid.html 
Biochemical and biophysical 
information ENZYME http://www.expasy.ch/enzyme/ 

  BIND http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Structure 
Biochemical pathways PathDB http://www.ncgr.org/software/pathdb/  
  KEGG http://www.genome.ad.jp/kegg/ 
  WIT http://wit.mcs.anl.gov/WIT2/ 

Microarray Gene Expression 
Links http://industry.ebi.ac.uk/~alan/MicroArray/ 

2D-PAGE SWISS-2DPAGE http://www.expasy.ch/ch2d/ch2d-top.html 
Web resources The EBI Biocatalog http://www.ebi.ac.uk/biocat/ 
  IUBio Archive http://iubio.bio.indiana.edu 

6.4 Searching Biological Databases 

There are dozens of biological databases on the Web, and many alternate web interfaces that provide 
access to the same sets of data. Which ones you use depends on your needs, but it's necessary for you 
to be aware of what the central data repositories are for various datatypes, and how often the more 
peripheral databases you might be using synchronize themselves with these central data sources. 
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Although data repositories for new types of biological data are multiplying, we focus here on two 
established databases: NCBI's GenBank, for DNA sequence data; and the Protein Data Bank, for 
molecular structure data. Every database has its own deposition procedures, and for the newer 
datatypes these are not yet well established or are still changing rapidly. However, both NCBI and 
RCSB have mature, automated, web -based deposition systems that are not likely to change drastically 
in the near future. 

6.4.1 GenBank 

NCBI, in cooperation with EMBL and other international organizations, provides the most complete 
collection of DNA sequence data in the world, as well as PubMed, a taxonomy database, and an 
alternate access point for protein sequence and structure data. This database, known as GenBank, may 
be accessed at http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein. 

NCBI maintains sequence data from every organism, every source, every type of DNA—from mRNA 
to cDNA clones to expressed sequence tags (ESTs) to high-throughput genome sequencing data and 
information about sequence polymorphisms. Users of the NCBI database need to be aware of the 
differences between these datatypes so that they can search the data set that's most appropriate for the 
work they're doing. The main sequence types that you'll encounter in a full GenBank search include: 

mRNA  

Messenger RNA, the product of transcription of genomic DNA. mRNA may be edited by the 
cell to remove introns (in eukaryotes) or in other ways that result in differences from the 
transcribed genomic DNA. May be "partial" or "complete"; an mRNA may not cover the 
complete coding sequence of a gene. 

cDNA  

A DNA sequence artificially generated by reverse transcription of mRNA. cDNA roughly 
represents the coding components of the genomic DNA region that produced the mRNA. May 
also be "partial" or "complete." 

Genomic DNA  

A DNA sequence from genome sequencing that contains both coding and noncoding DNA 
sequences. May contain introns, repeat regions, and other features. Genomic DNA (as opposed 
to genome survey sequence) is generally "complete"; it's a result of multiple sequencing passes 
over a single stretch of a genome, and can generally be relied upon as a fairly good 
representation of the real DNA sequence of that region. 

EST  

Short cDNA sequences prepared from mRNA extracted from a cell under particular conditions 
or in specific developmental phases (e.g., arabidopsis thaliana 2-week old shoots or valencia 
orange seeds). ESTs are used for quick identification of genes and don't cover the entire coding 
sequence of a gene. 

GSS  
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Genome survey sequence. Single-pass sequence direct from the genome projects. Covers each 
region of sequence only once and is likely to contain a relatively large proportion of sequencing 
errors. You'd include genome survey sequence in a search only if you were looking for very 
new hypothetical gene annotations in a genome project that's still in progress. 

There are two ways to search GenBank. The first is to use a text-based query to search the annotations 
associated with each DNA sequence entry in the database. The second, which we'll discuss in Chapter 
7, is to use a method called BLAST to compare a query DNA (or protein) sequence to a sequence 
database. 

Here's a sample GenBank record. Each GenBank entry contains annotation—information about the 
gene's identity, the conditions under which it was characterized, etc.—in addition to sequence. 

LOCUS        AB009351 1412 bp   mRNA   PLN       22-JUN-1999  
DEFINITION   Citrus sinensis mRNA for chalcone synthase, complete cds, clone  
             CitCHS2. 
ACCESSION    AB009351 VERSION AB009351.1 GI:5106368 
KEYWORDS     chalcone synthase.  
SOURCE       Citrus sinensis young seed cDNA to mRNA, clone:CitCHS2.  
  ORGANISM   Citrus sinensis 
             Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; 
             euphyllophytes; Spermatophyta; Magnoliophyta; eudicotyledons; core  
             eudicots; Rosidae; eurosids II; Sapindales; Rutaceae; Citrus.  
REFERENCE    1 (sites)  
  AUTHORS    Moriguchi,T., Kita,M., Tomono,Y., EndoInagaki,T. and Omura,M.  
  TITLE      One type of chalcone synthase gene expressed during embryogenesis  
             regulates the flavonoid accumulation in citrus cell cultures  
  JOURNAL    Plant Cell Physiol. 40 (6), 651-655 (1999)  
  MEDLINE    99412624  
  [...]  
FEATURES     Location/Qualifiers 
  Source     1..1412 
             /organism="Citrus sinensis" 
             /db_xref="taxon:2711" 
             /clone="CitCHS2" 
             /dev_stage="young seed" 
             /note="Valencia orange" 
  CDS        30..1205 
             /codon_start=1 
             /product="chalcone synthase" 
             /protein_id="BAA81664.1" 
             /db_xref="GI:5106369"  
             /translation="MATVQEIRNAQRADGPATVLAIGTATPAHSVNQADYPDYYFRIT  
             KSEHMTELKEKFKRMCDKSMIKKRYMYLTEEILKENPNMCAYMAPSLDARQDIVVVEV  
             PKLGKEAATKAIKEWGQPKSKITHLIFCTTSGVDMPGADYQLTKLIGLRPSVKRFMMY  
             QQGCFAGGTVLRLAKDLAENNKGARVLVVCSEITAVTFRGPADTHLDSLVGQALFGDG  
             AAAVIVGADPDTSVERPLYQLVSTSQTILPDSDGAIDGHLREVGLTFHLLKDVPGLIS  
             KNIEKSLSEAFAPLGISDWNSIFWIAHPGGPAILDQVESKLGLKGEKLKATRQVLSEY  
             GNMSSACVLFILDEMRKKSVEEAKATTGEGLDWGVLFGFGPGLTVETVVLHSVPIKA"  
  polyA_site 1412 
             /note="18 a nucleotides" 
BASE COUNT   331 a    358 c    372 g    351 t  
ORIGIN 
  1 aaacatattc attaagggtt caacttgaaa tggcaaccgt tcaagagatc agaaacgctc  
  61 agcgtgccga cggcccggcc accgtcctcg ccatcggtac ggccacgcct gcccacagtg  
  121 tcaaccaggc tgattatccc gactattact tcaggatcac aaagagcgag catatgacgg  
  [...] 
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  1261 cacagttgag ttattggttg atcgtgtgaa ggtttagttt tgtcaattga gtttaaggca  
  1321 tcgtgccttt tctcttatga cgtcaccaaa cctgggcaac gctttgtgtt tatgcataaa  
  1381 ttcttgggaa tttgagaaag tagtaaattt gt  
// 

This sample GenBank record shows the types of fields that can be found in a record from the GenBank 
Nucleotide database. Everything from the identity of the protein product (in this example, chalcone 
synthase), the sequence of the protein product, and its starting and ending point within the gene, to the 
authors who submitted the record and the journal references in which the experiment was described, 
can be found in the record, and therefore can be used to search the database.  

The GenBank search interface is nearly identical to the PubMed search interface. The Limits, 
Preview/Index, History, and Clipboard features for searching work the same way in the Protein, 
Nucleic Acid, and Genome databases as they do for PubMed, although the specific fields that can be 
searched and limits that can be set are somewhat different. 

6.4.1.1 Saving search results 

Sequences can be downloaded from NCBI in any of three file formats: the simple FASTA format, 
which is readable by many sequence analysis programs but contains little information other than 
sequence; the GenBank flat file format, which is a legacy flat file format that was used at GenBank 
earlier in its history; and the modern ASN.1 (Abstract Syntax Notation One) format. ASN.1 is a generic 
data specification, designed to promote database interoperability, that is now used for storage and 
retrieval of all datatypes—sequences, genomes, structure, and literature—at NCBI. The NCBI Toolkit, 
a code library for developing molecular biology software, relies on the ASN.1 specification. NCBI, and 
increasingly, other organizations, rely on the NCBI Toolkit for software development. Learning to use 
the NCBI Toolkit is a programming challenge well beyond the scope of this book, but there is an 
excellent tutorial on the Web, developed by Christopher Hogue and his research group at the Samuel 
Lunenfeld Research Institute. 

The casual database user or depositor doesn't have to think too much about file formats, except if 
database files are to be exported and read by another piece of software. NCBI's forms-based interfaces 
convert user-entered data into the appropriate format for deposition, and the availability of GenBank 
files in FASTA format means that most sequence analysis software can handle sequence files you 
download from NCBI without complicated conversions. 

When you save results of a GenBank search, you can choose the format in which to save them. Earlier, 
you saw what the GenBank sequence record looks like. Many of the computer programs we discuss in 
the following chapters can read GenBank format sequence files, but some can't. A particularly 
foolproof format in which to save your sequence files if you're going to process them with other 
software is the FASTA format. FASTA files have a simple format, a single comment line that begins 
with a > character, followed by single-character DNA sequence on as many lines as needed to hold the 
sequence, with no breaks. Of course, some information associated with the gene is lost when you save 
the data in FASTA format, but if the program you want to use can't read that extra data, it won't be 
useful to you anyway. 

Here's a sample of data in FASTA format: 

> gene identifier and comments here 
MATVQEIRNAQRADGPATVLAIGTATPAHSVNQADYPDYYFRITKSEHMTELKEKFKRMCDKSMIKKRYM  
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YLTEEILKENPNMCAYMAPSLDARQDIVVVEVPKLGKEAATKAIKEWGQPKSKITHLIFCTTSGVDMPGA  
DYQLTKLIGLRPSVKRFMMYQQGCFAGGTVLRLAKDLAENNKGARVLVVCSEITAVTFRGPADTHLDSLV  
GQALFGDGAAAVIVGADPDTSVERPLYQLVSTSQTILPDSDGAIDGHLREVGLTFHLLKDVPGLISKNIE  
KSLSEAFAPLGISDWNSIFWIAHPGGPAILDQVESKLGLKGEKLKATRQVLSEYGNMSSACVLFILDEMR  
KKSVEEAKATTGEGLDWGVLFGFGPGLTVETVVLHSVPIKA 

To save your files in FASTA format, simply use the pulldown menu at the top of the results page. 
When you first see it, it will say "Summary," but you can change it to FASTA, ASN.1, and other 
formats. Once you've chosen your format, you can click the Save button to save all your sequences into 
one big FASTA-format file. Figure 6-5 shows you how to change the file formats when doing a 
GenBank search. 

Figure 6-5. Changing the file format to write out your GenBank search results 

 

6.4.1.2 Saving large result sets 

So far, our discussion of information retrieval from databases has assumed that you need access to only 
a few sequences at a time. However, modern bioinformatics studies increasingly deal with large 
amounts of sequence data. For example, genefinding programs (covered in Chapter 7) are trained and 
tested on hundreds or thousands of DNA sequences; comprehensive studies of protein families can 
involve analysis of up to thousands of protein sequences as well. While it's possible to select thousands 
of checkboxes on a web page by hand, it would be better to use an automated tool that can return a 
large number of sequences based on criteria you specify. 

NCBI provides just such a tool in the form of Batch Entrez 
(http://www.ncbi.nlm.nih.gov/Entrez/batch.html ). Batch Entrez is one of the tools accessible from the 
Entrez web site. It's accessed using a web form that allows the user to select sequences by source 
organism, by an Entrez query (using the query structure described in the section on PubMed), or by a 
list of accession numbers (provided by the user in the form of a text file). The results of a Batch Entrez 
search are then packaged in a file that is downloaded to the user's computer, where the complete result 
set can be edited manually or (even better) using a script. 

At this time, not all the biological databases are so kind about providing such services, but all the 
public databases have FTP sites that allow you to download the entire database in one form or another. 
That can take up a lot of space on your hard disk, but disk space is cheaper these days than the time it 
would take you to handle a large set of results on an interactive web site. If you've got a local copy of 
the big databases that interest you, you can write (or perhaps even download) a script that processes the 
database, looking for your keyword of choice, and writes out the information you want to a file. 

6.4.2 PDB 
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Unlike NCBI, the Protein Data Bank (http://www.rcsb.org/pdb/) is responsible for only one type of 
molecular data: molecular structures of molecules and, to a growing extent, the underlying raw data 
sets from which the molecular structures were modeled. 

The PDB web site offers three options for searching the database. You can enter a four-letter PDB 
identifier directly, or search using the SearchLite or SearchFields interfaces. The SearchLite interface is 
similar to the other query tools we've discussed. You can enter a term or terms into the query box, 
joined by the operators AND, OR, and BUTNOT. 

The SearchFields interface is an innovative design-it-yourself web form system. As you see in Figure 
6-6, when you first go to SearchFields, you can scroll down to the bottom of the web form and select 
which parts of the form you need. If you're only going to be doing a FASTA search to find similar 
sequences, you don't need a search form that prompts you for keywords to use in searching the Citation 
Author field. You might want to add a field that lets you search for proteins with a particular ligand or 
prosthetic group. With the SearchFields interface, you select the form elements you want for your 
custom PDB search, and click the "New Form" button to generate the new query form. 

Figure 6-6. Customizing the PDB's SearchFields form 

 

Whether you use SearchLite or SearchFields, you'll come to the Query Result browser (Figure 6-7), 
where you can select options for refining your query, downloading your results as structure or sequence 
files, and even preparing a tabular report of your search results. These options are straightforward to 
use and well documented on the PDB web site. 

Figure 6-7. Options for using query results at the PDB 
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The Protein Data Bank makes data available in two formats: the legacy PDB flat- file format, and the 
newer mmCIF data format. We'll discuss the differences between these two file formats in more detail 
in Chapter 12. At this point, little of the available structure-analysis and protein-modeling software 
handles the mmCIF format, so you are not likely to need to download protein structure data in mmCIF 
format unless you are developing new software. [2] You can choose to download the complete set of 
results from your search as a tar archive or a zipped file in either PDB or mmCIF format, as well as in 
sequence-only FASTA format.  

[2] The PDB offers a suite of mmCIF and PDB format conversion tools, as well as code libraries for working with mmCIF files. 

Another convenient way to view protein structure data from the PDB web site is to install a browser 
plug-in such as RasMol or Chime on your computer. We discuss how to do this in Chapter 9. Once the 
plug-in is installed and properly configured, you can simply click on a link on the protein's View 
Structure page and the protein structure is automatically displayed using the plug-in, as shown in 
Figure 6-8. 

Figure 6-8. Viewing a PDB file using a browser plug-in 
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6.5 Depositing Data into the Public Databases 

In addition to downloading information from the public databases, you may also submit your own 
results. 

6.5.1 GenBank Deposition 

Deposition of sequences to GenBank has been made extremely simple by NCBI. Users depositing only 
a few sequences can use the web-based BankIt tool, which is a self-explanatory form-based interface 
accessible from the GenBank main page at NCBI. Users submitting multiple sequences or other 
complicated submissions can use NCBI's Sequin software, which is available for all major operating 
systems. Sequin is well documented on the NCBI site. NCBI has recently established two special 
submission paths: EST sequences should be submitted through dbEST, rather than to GenBank, and 
genome survey sequences through dbGSS. 

6.5.2 PDB Deposition 

Deposition of structures to the PDB are done using the AutoDep input tool (ADIT). AutoDep is a tool 
that integrates data validation software with the deposition process so that the user can receive 
feedback on data quality during the deposition process. AutoDep is tied in with the curation tools the 
PDB uses to prepare structure data for inclusion in the data bank. 

6.6 Finding Software 

Bioinformatics is a diffuse field, attracting researchers from many disciplines, and articles about new 
research developments in bioinformatics are widely distributed in the literature. If you're looking for 
cutting-edge developments, journals such as Bioinformatics, Nucleic Acids Research, Journal of 
Molecular Biology, and Protein Science often publish papers describing innovations in computational 
biology methods. 
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If you're looking for proven software for a particular application, there are a number of reliable web 
resource lists that link to computational biology software sites. Most of the major biological databases 
have software resource listings and the necessary motivation to keep their listings up-to-date. The PDB 
links to the best free software packages for macromolecular structure refinement, visualization, and 
dynamics. TIGR and NCBI provide links to many tools for protein and DNA sequence analysis. 

Many organizations and groups provide web implementations of their software. These can be a great 
time-saver, especially if you are new to the use of noncommercial software packages in research. Many 
of the bioinformatics programs that we describe in this book are also available as web servers. You can 
use the web -server versions to get you started and understand the inputs, outputs, and options for the 
program. However, web servers have their drawbacks. They typically implement only the most popular 
options in any software package: it's difficult to design a web form that allows you to select every 
option in a complicated program. They often allow you to run only one calculation at a time. This is 
fine if you're only interested in analyzing a few sequences or structures, and not so fine if you suddenly 
find yourself with 500 sequences to analyze. 

With a little clever programming, you can develop scripts that allow you to hit a web server with 
multiple requests without entering them manually into a form, but if you're capable of doing that, 
you're probably able to download a local copy of the software and run it on your own machine. Using 
your own processor in such cases avoids slow data transfer to and from remote sites and is also 
considered more polite than running huge jobs on someone else's web server. 

In the next four chapters, we'll discuss the software packages you are most likely to want to use. We'll 
show you how to set them up on your own computer and use them independent of web interfaces. 

We can't cover every available software package and web server in this book; there are just too many. 
You will eventually want to go out on your own and find new tools to use. Keep a few things in mind 
when searching for software, and you'll soon be able to judge for yourself if a new computer program is 
something you want to use. 

6.7 Judging the Quality of Information 

Your ability to judge the quality of information and software you find on the Web will improve as you 
continue to learn the field. At a more obvious level, however, some simple guidelines can help you 
screen the information you find. Approach software, information, and services offered on the Web with 
a healthy skepticism, and you're not likely to be led astray. 

6.7.1 Authority 

One of the first things to consider when evaluating software, data, or information found on the Internet 
is the source. Who are the authors? If you don't know the authors presenting the information by 
reputation, is information about their affiliation and credentials available on the web site? Is their 
expertise related to the topic or purpose of the web site? Do they make it possible for you to contact 
them and ask questions? 

What is the purpose of the organization sponsoring the information? Is it an academic organization? A 
government agency? A company? For-profit corporations often have different motivations for offering 
access to their software and data than nonprofits and academic research groups; usually they are 
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offering a stripped-down version of their software or services to get you to buy a more complete 
package. An individual academic researcher's site doesn't always have the same need to be all-inclusive 
as a publicly funded database does. There is nothing inherently wrong with these offerings, but you 
should be aware of whether or not they are comprehensive, whether all their features are available to 
the casual user, and why. 

Even data and software from national or international public sites are not necessarily entirely correct. It 
has been estimated that any given sequence in GenBank is likely to contain at least one error. While 
these errors generally don't render the data meaningless, it's always best to be aware of such issues even 
when using top-of-the-line public resources. Like any other software you find on the Web, software 
offered by public agencies such as NCBI and the PDB may still be under development. You can use 
this software, and much of it is of good quality. If you're basing your research on a beta version (a 
version still under development) of a software package, just read the documentation carefully so that 
you know what problems still remain to be worked out.  

6.7.2 Transparency 

When you send data off to a web server for processing, do you ever wonder exactly what happens to it? 
You should. It's OK to use your word processor as a black box, but if you're publishing scientific 
conclusions based on output that you get from a web server or software package, you should definitely 
know at least the basics of what's under the hood. Anyone can create a web server, based on any 
software, whether it's good or just goofy. Creating a web server creates an illusion of authority; after 
all, the authors know how to build a web server that works, so their other software must work too. But 
that appearance of authority isn't always well founded. 

Ideally, you have access to the source code (the human-readable version of a computer program) for 
whatever the web server is doing, and you can read the source code and know it's doing what you 
expect. But you might not know how to read source code, and even if you do, you might not be able to 
get hold of it. Unfortunately, some bioinformatics software authors don't make their source code 
publicly available, preferring to set up web servers that are easier to use and maintain. This can 
incidentally have the effect of hiding the underlying method from close scrutiny by users. 

If you can't read the source code, what can you read? Most software or web servers made available by 
academic researchers or government institutions have online help pages and other documentation, 
including bibliographic information for publications in refereed journals that describe the methods 
encoded in the software. Read this documentation and understand the method and its results before you 
use it, just as you would for an experimental method that is new to you. 

If the program or server you want to use has no documentation and doesn't allow you to check the 
source code, you should seriously consider not using that program, unless you have some way to verify 
its output (for instance, by comparison with the output of a well-documented program). After all, you're 
drawing conclusions based on your results; do you want to stake your scientific credibility on an 
unknown quantity? 

6.7.3 Timeliness 

One of the most frequently linked biology resource sites on the Web is Pedro's Biomolecular Research 
Tools (http://www.public.iastate.edu/~pedro/research_tools.html). Sites all over the world still have 
pointers to this collection of links. And yet, if you click to Pedro's site, you'll find that the collection 
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was last updated in 1996. A funny thing about the Web is that out-of-date sites don't just go away. They 
remain on the server, looking authoritative. Check web sites for dates. If there's no sign of activity in or 
reference to the current year, be skeptical.  

Timeliness isn't always an issue with software. Software written in 1980 can be as useful and functional 
now as it was then. What you may encounter are problems compiling software that incorporates 
proprietary technologies that are no longer supported, or code libraries that have since ceased to be 
developed. 
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Chapter 7. Sequence Analysis, Pairwise Alignment, and 
Database Searching 

We now begin our tour of bioinformatics tools in earnest. In the next five chapters, we describe some 
of the software tools and applications you can expect to see in current research in computational 
biology. From gene sequences to the proteins they encode to the complicated biological networks they 
are involved in, computational methods are available to help you analyze data and formulate 
hypotheses. We have focused on commonly used software packages and packages we have used; to 
attempt to encompass every detail of every program out there, however, we'd need to turn every 
chapter in this book into a book of its own.  

The first tools we describe are those that analyze protein and DNA sequence data. Sequence data is the 
most abundant type of biological data available electronically. While other databases may eventually 
rival them in size, the importance of sequence databases to biology remains central. Pairwise sequence 
comparison, which we discuss in this chapter, is the most essential technique in computational biology. 
It allows you to do everything from sequence-based database searching, to building evolutionary trees 
and identifying characteristic features of protein families, to creating homology models. But it's also 
the key to larger projects, limited only by your imagination—comparing genomes, exploring the 
sequence determinants of protein structure, connecting expression data to genomic information, and 
much more.  

The types of analysis that you can do with sequence data are:  

• Knowledge-based single sequence analysis for sequence characteristics  
• Pairwise sequence comparison and sequence-based searching  
• Multiple sequence alignment  
• Sequence motif discovery in multiple alignments  
• Phylogenetic inference  

We divide our coverage of sequence analysis tools into two chapters. This chapter focuses on programs 
that operate on single sequences, or compare gene or protein sequences against each other. Chapter 8 is 
devoted to multiple sequence alignment methods.  

Pairwise sequence comparison is the primary means of linking biological function to the genome and 
of propagating known information from one genome to another. In this chapter, we discuss the 
techniques of biological sequence analysis and, most importantly, how to assess the significance of 
results from sequence comparison. There are also a number of software tools available for doing 
pairwise sequence comparison. Table 7-1 provides a summary.  

Table 7-1. Sequence Analysis Tools and Techniques  
What you do Why you do it What you use to do it 

Gene finding Identify possible coding regions in genomic DNA sequences GENSCAN, GeneWise, 
PROCRUSTES, GRAIL  

DNA feature detection Locate splice sites, promoters, and sequences involved in 
regulation of gene expression  CBS Prediction Server  

DNA translation and 
reverse translation Convert a DNA sequence into protein sequence or vice versa "Protein machine" server at 

EBI 
Pairwise sequence Locate short regions of homology in a pair of longer sequences BLAST, FASTA  
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alignment (local) 
Pairwise sequence 
alignment (global) Find the best full-length alignment between two sequences ALIGN  

Sequence database search 
by pairwise comparison 

Find sequence matches that aren't recognized by a keyword 
search; find only matches that actually have some sequence 
homology  

BLAST, FASTA, SSEARCH  

7.1 Chemical Composition of Biomolecules 

Sequence analysis techniques can be applied to DNA and RNA (nucleotide) sequences or to protein 
(amino-acid) sequences. To understand why DNA and protein sequences are informative, you need to 
know a bit about the chemistry of DNA and proteins. In the context of the sequence analysis 
applications we discuss in this chapter, it's perfectly fine to think of a DNA sequence as pure 
information. If you really want to, you can skip over the chemical structures and think of DNA as a 
string of letters. But keep this fact in mind: the single-letter sequence code that describes DNA and is a 
simplified representation of a 3D chemical entity, and in some cases the 3D structure of the DNA is 
really significant.  

Proteins, at least at first glance, are more chemically complicated than DNA, and it's impossible to 
separate the information content of their sequences from the chemical properties of the amino acids 
they're built from. You can't safely forget about the chemistry of proteins when you're analyzing their 
sequences, so we'll discuss protein chemistry thoroughly at the beginning of Chapter 9, before we 
introduce techniques for protein structure analysis. As discussed in Chapter 2, DNA is the medium for 
storing information in cells, and it stores and transmits that information through the sequence of 
nucleotides that make up the DNA chain. DNA occurs as a "double helix"—two long sequences of 
nucleotides that are chemical mirror images of each other. This double-helical structure and the 
chemistry that forces a specific pattern of pairing between nucleotides in the two halves of the helix is 
what gives DNA the ability to replicate itself and faithfully pass its information from cell to cell and 
generation to generation. The chemistry of pairing between nucleotide chains also allows the DNA 
sequence to be transcribed into RNA and translated into proteins.  

7.2 Composition of DNA and RNA 

DNA and RNA are polymer chains composed of a small alphabet of chemically similar compounds. 
The individual units are called nucleotides. As you can see in Figure 7-1, nucleotides are made up of 
three distinct parts: a cyclic base, a cyclic sugar (deoxyribose or ribose, respectively), and a phosphate 
group. Base utilization is different in DNA than in RNA. The DNA code consists of patterns built up 
from the A (adenine), T (thymine), G (guanine), and C (cytosine) nucleotides, while the RNA code 
substitutes U (uracil) for T.  

Figure 7-1. The "backbone" bits of DNA and RNA—ribose and deoxyribose phosphates 
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Figure 7-2 shows the five nucleotides, which are also referred to as bases. In hydrolyzed double-
stranded DNA, there are always equal amounts of A and T nucleotides (A = T). The amounts of G and 
C in the solution are also always equal (G = C). This is called Chargaff's rule after the researcher who 
discovered the relationships between A and T, G and C. (Note that there can different amounts of A 
and T, G, and C; the ratio of A-T to G-C base pairs can vary widely from species to species.)  

Figure 7-2. The five "bases" that commonly appear in DNA or RNA 

 

7.3 Watson and Crick Solve the Structure of DNA 

The quantitative relationships between adenine and thymine, and cytosine and guanine led Watson and 
Crick to propose a structural model for DNA in 1953, and later Crick's central dogma of biology. 
Watson and Crick's model of DNA was based on several observations:  
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• The x-ray crystallography experiments of their colleague Rosalind Franklin who observed a 
diffraction pattern from DNA that suggested a helical molecule with a regular repeating 
structure at a spacing of 3.4 angstroms  

• Chargaff's rules 
• Experimental evidence that the bases were connected by hydrogen bonds in the DNA molecule  
• The knowledge of the correct structural conformations of the bases from x-ray crystallography  

What Watson and Crick did was to combine this disparate information to propose the double helix. The 
double helix of DNA, which has now been determined in atomic detail using x-ray crystallography, is a 
structure in which adenine pairs with thymine, and guanine with cytosine by hydrogen bonding (Figure 
7-3). The hydrogen bonded base pairs form the core of the molecule.  

Figure 7-3. Two common base pairs, A-T and G-C 

 

As shown in Figure 7-4, the base pairs stack on top of and parallel to each other with a spacing of 3.4 
angstroms. They are held together in sequence by covalent chemical bonds between the sugar group of 
one nucleotide and the phosphate group of the next. This chain has a directionality: the end left with an 
exposed phosphate group is called the 5' end, while the end with the exposed ribose group is the 3' end.  

Figure 7-4. Schematic of the DNA chain 
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The specific chemical pairing of nucleotides in DNA and RNA sequences suggests a mechanism by 
which each strand of DNA can serve as the template for the synthesis of a complementary strand. The 
use of a similar nucleotide code in RNA suggests that DNA can also be used as a template for synthesis 
of RNA. From these two pieces of evidence, Crick proposed his central dogma: that DNA directs its 
own replication and its transcription into RNA and that RNA is translated into protein. 

7.4 Development of DNA Sequencing Methods 

If you just digest DNA into its four component bases and measure the quantity of each, it tells you 
nothing about the DNA sequence. Modern methods for DNA sequencing rely on controlled 
biochemical reactions that allow the base content at each position in the DNA sequence to be 
quantitated independently. The chemical cleavage method for sequencing DNA relies on the specificity 
of chemical reagents (reactive substances) to break DNA chains at four specific types of sites. There 
are reagents that break or cleave the chain specifically after G nucleotides and reagents that cleave 
specifically after C nucleotides. There are also reagents that cleave less specifically: one to cleave after 
A and G nucleotides and one to cleave after C and T nucleotides. The method Maxam and Gilbert 
designed was conceptually simple. Four samples of DNA are required for this method. One type of 
reagent is mixed with each sample in a quantity that causes each DNA chain in the sample to be broken 
only one time, on average, at a random location. One end of the DNA is radioactively labeled, and the 
other is not, so only one piece of each broken chain is radioactive after the chain is cleaved. DNA 
fragments of different sizes can be separated using an electric current to drive them through a viscous 
medium called a gel. The larger the fragment, the more it's slowed by the gel, so at the end of some 
period of time, different-sized radioactive pieces of DNA are spread out at regular intervals down the 
gel. Figure 7-5 shows a partial autoradiogram of a DNA sequencing gel. Each set of four closely 
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spaced lanes represents an individual sequencing experiment. The gel is read from bottom to top. Each 
band on the gel identifies the nucleotide present at the position in the sequence, depending on which of 
the four lanes it appears in. (Image courtesy of Dr. Dennis Dean, Virginia Tech.) If each DNA chain is 
broken once after a random A, C, G, or T, a uniform distribution of fragments that map the entire 
sequence of the DNA is created. Depending on which sample the radioactive piece is from, the last 
base in its sequence is known, and the sequence can be read off the gel from end to end.  

Figure 7-5. DNA sequencing gel 

 

Sanger's chain-terminator procedure is the most commonly used sequencing chemistry in modern 
laboratories. This procedure takes advantage of an enzyme called DNA polymerase, which builds a 
complementary strand of DNA for an existing single strand. In Sanger's method, the DNA polymerase 
reaction is carried out in the presence of specific analogues of nucleotides that, when they are 
incorporated, cause the synthesis of the complementary strand to stop. Four samples are prepared, each 
containing a small amount of one type of chain terminator. Analogously to the Maxam and Gilbert 
method, a uniform distribution of DNA fragments is generated, each with a known end residue. The 
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fragments are analyzed based on the strength of this fluorescence signal, giving the sequence of the 
complementary strand to the original DNA.  

The chain termination method is easily automated, and computer-compatible sequencing systems that 
use this method are readily available. Most genome sequence data is currently generated using this 
method, though new sequencing methods that don't involve chain cleavage or chain termination are in 
development. We discuss the process of sequencing data analysis and genome assembly further in 
Chapter 11.  

7.4.1 The Chemical Composition of Proteins 

Unlike DNA, protein polymers consist of a common set of building blocks called amino acids. There 
are 20 amino acids that make up the standard chemical alphabet used to build proteins. Amino acids are 
small molecules that share a common motif, of three substituent chemical groups arranged around a 
central carbon atom. One of the substituent groups is always an amino group; another is always 
carboxylic acid group. To form the protein polymer, the amino and carboxyl groups react with each 
other and form a bond called the peptide bond. The third substituent on the central carbon of an amino 
acid is variable, and it's this property that makes the amino acids into a code for storing information. 
The sequence of amino acids in a protein is referred to as the protein's primary structure. Protein 
sequence can be subjected to the same analyses (described later) for DNA sequence. As we describe 
sequence analysis methods, we will point out ways in which these methods differ for proteins and 
DNA.  

7.4.2 Mechanisms of Molecular Evolution 

The discovery of DNA as the molecular basis of heredity and evolution made it possib le to understand 
the process of evolution in a whole new way. Darwin's theory of evolution by natural selection 
describes the observable process of evolution and speciation. However, it doesn't explain how 
information is passed from generation to generation, nor does it explain the mechanisms that give rise 
to, or that limit, variation within each generation.  

The two halves of the double-helical DNA molecule serve as a template for replication of the DNA 
molecule. Even though the molecular rules governing replication of DNA are specific, replication 
doesn't always occur with perfect fidelity. When a piece of DNA is replicated incorrectly and the error 
is not corrected by the cell's repair machinery, it's called a mutation.  

Mutations can occur in any part of an organism's DNA: in the middle of genes that code for proteins or 
functional RNA molecules, in the middle of regulatory sequences that govern when a gene is turned on, 
or out in the "middle of nowhere", in the regions between gene sequences. Mutations can have dramatic 
effects on the organism's phenotype (its visible or measurable characteristics) or they can have no 
apparent effect. Over time—thousands or millions of years—mutations that are beneficial or at least 
not harmful to a species can become fixed in the population, meaning that the mutated form of the gene 
occurs with a certain frequency among all individuals of a particular species. Over longer time scales, 
enough mutations may accumulate that new species develop.  

There are two classes of mutations: point mutations, in which a change affects a single nucleotide in the 
DNA sequence; and segmental mutations, which can affect anywhere from a few to many hundreds of 
adjacent nucleotides.  
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Point mutations usually result from a single mismatch, in which one nucleotide is mispaired with the 
template DNA as a new complementary DNA strand is being built. Point mutations become significant 
only if they occur in the middle of a coding region or signal sequence, and then only if they cause a 
change in functionality. In coding regions, point mutations can either be synonymous, meaning that the 
mutated strand codes for the same amino acid as it did before the mutation occurred, or 
nonsynonymous. The genetic code (which was shown back in Figure 2-3) is degenerate; that is, several 
different three-letter combinations code for each amino acid. The groups of codons which code for each 
amino acid are by no means random; instead, nature has arranged a fail-safe mechanism in which 
several codons that differ by only one nucleotide represent a single amino acid, thereby allowing a little 
room for synonymous replication errors in DNA.  

Segmental mutations, which can result in insertion or deletion of long stretches of DNA, can occur by 
many different mechanisms, all of which involve mismatching of a strand of DNA either with the 
wrong partner or with a part of itself. Segmental mutations can result in duplications of whole genes or 
even large regions of chromosomes; some genetic events can even result in the duplication of entire 
genomes. Generated by gene and chromosome duplication, redundant copies of genes can be 
repurposed (through a slow process of mutational trial and error) to perform new functions in the cell. 
A detailed discussion of these mechanisms is given in the excellent book Fundamentals of Molecular 
Evolution; see the Bibliography.  

Both types of mutation leave traces in the evolutionary record, that is, in the DNA sequences of living 
things. Since mutations tend to be preserved only if they are functionally useful (or at least, not 
harmful), there is a tendency for functionally important parts of sequences to be conserved (to remain 
constant throughout the evolutionary process) while noncoding or nonfunctional sequences diverge 
wildly. This tendency to conserve functionally important sequences is the basis for the whole field of 
sequence analysis; it lets us draw evolutionary connections between genes that are related in sequence.  

By comparative study of DNA sequences, and on a larger scale, of whole genomes, it's possible to 
develop quantitative methods for understanding when and how mutational events occurred, as well as 
how and why they were preserved to survive in existing species and populations. Genomics and 
bioinformatics—the production of genome data and the development of tools for analyzing it—have 
made it possible to examine the evolutionary record and make increasingly quantitative statements 
about the evolutionary relationship of one species to another. Taxonomies can begin to be based not 
merely on anatomy but on quantitative measurements of differences in the genetic code. Both point 
mutations and segmental mutations are explicitly modeled in the scoring schemes for comparison of 
protein and DNA sequences discussed later in this chapter. Changes in the identity of the residue 
(nucleotide or amino acid) at a given position in the sequence are scored using standard substitution 
scores (for example, a positive score for a match and a negative score for a mismatch) or substitution 
matrices. Insertions and deletions are scored with penalties for gap opening and gap extension.  

7.5 Genefinders and Feature Detection in DNA 

Once a large chunk of DNA has been mapped and sequenced, the task of understanding its function 
begins. In this section, we describe some programs that search the sequence for genes and other 
biologically important features. A feature is a sequence pattern with some functional significance, such 
as start and stop codons, splice sites (in the case of eukaryotes), and sequences that are bound by 
proteins in order to regulate gene expression. Some features can be found by searching for a specific 
sequence, such as the restriction site cleaved by a given restriction enzyme. Others, such as promoters 
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and genes, aren't so easy to pick out. Analysis of single DNA sequences in search of sequence features 
is a rapidly growing research area in bioinformatics.  

There are two reasons that genefinding and feature detection are such notoriously difficult problems. 
First, there are a huge number of protein-DNA interactions, many of which have not yet been 
experimentally characterized, and some of which differ from organism to organism. More importantly, 
we don't always know what constitutes a binding sequence. Current promoter detection algorithms 
yield about 20-40 false positives for each real promoter identified. Some proteins bind to specific 
sequences; others are more flexible in their preference for attachment sites. To complicate matters 
further, a protein can bind in one part of a chromosome but affect a completely different region 
hundreds or thousands of base pairs away.  

7.5.1 Predicting Gene Locations 

Genefinders are programs that identify (or try to, anyway) all the open reading frames in unannotated 
DNA. They use a variety of approaches to locate genes, but the most successful combine content-based 
and pattern-recognition approaches. Content-based methods for gene prediction take advantage of the 
fact that the distribution of nucleotides in genes is different than in non-genes. The GRAIL family of 
programs developed at Oak Ridge National Laboratories uses a neural network to combine evidence 
from seven different statistical measures of DNA content (frame bias, periodicities, fractal dimension, 
coding 6-tuples, in-frame 6-tuples, k-tuple commonality, and repetitive 6-tuple words); subsequent 
versions measure additional features to better exploit these different types of data. At each position in 
the DNA sequence, the program weighs each type of information, integrates them, and comes up with a 
score that represents the likelihood that the region in question is in an ORF or an intergenic region. 
Pattern-recognition methods look for characteristic sequences associated with genes (start and stop 
codons, promoters, splice sites) to infer the presence and structure of a gene.  

In isolation, each method goes only so far. You have a similar rate of success if you try to identify 
human faces by looking for either a characteristic skin texture (content) or the presence of a moustache 
(pattern), but not both. Not surprisingly, the current generation of genefinders combine both methods 
with additional knowledge, such as gene structure or sequences of other, known genes.  

Some genefinders are accessible only though web interfaces, making the interaction very 
straightforward: the sequence that needs to be examined for genes is submitted to the program, it is 
processed, and the output is returned. On one hand, this eliminates the need for installation and 
maintenance of the genefinder on your system, and it provides a relatively uniform interface for the 
different programs. On the other, if you plan to rely on the results of a genefinder, you should take the 
time to understand underlying algorithm, find out if the model is specific for a given species or family, 
and, in the case of content-based models, know which sequences they are. The accuracy of a genefinder 
can be misleadingly high if it is trained on the same sequence with which you test it.  

Some commonly used programs in gene finding include Oak Ridge National Labs' GRAIL, 
GENSCAN (developed by Chris Burge, now at MIT, and Samuel Karlin at Stanford), PROCRUSTES 
(developed by Pavel Pevzner and coworkers), and GeneWise (developed by Ewan Birney and Richard 
Durbin). GRAIL combines evidence from a variety of signal and content information using a neural 
network. GENSCAN combines information about content statistics with a probabilistic model of gene 
structure. PROCRUSTES and GeneWise find open reading frames by translating the DNA sequence 
and comparing the resulting protein sequence with known protein sequences. PROCRUSTES compares 
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potential ORFs with close homologs, while GeneWise compares the gene against a single sequence or a 
model of an entire protein family.  

7.5.2 Feature Detection 

In addition to their role in genefinder systems, feature-detection algorithms can be used on their own to 
find patterns in DNA sequences. Frequently, these tools help interpret freshly sequenced DNA or 
choose targets for designing PCR primers or microarray oligomers. Some starting places for tools like 
these include the Center for Biological Sequence Analysis at the Technical University of Denmark 
(which has several web-based applications for finding intron-exon splice sites and transcription start 
sites in eukaryotic DNA), the CodeHop server at the Fred Hutchinson Cancer Research Center (which 
predicts PCR primers based on conserved protein sequences), and the Tools collection at the European 
Bioinformatics Institute.  

In addition to these special-purpose tools, another popular approach is to use motif discovery programs 
that automatically find common patterns in sequences. We will examine these programs in greater 
detail when we look at multiple sequence analysis methods.  

7.6 DNA Translation 

Before a protein can be synthesized, its sequence must be translated from the DNA. Translation of 
DNA sequence into protein sequenc e isn't conceptually or computationally difficult. All that is required 
is the DNA sequence, a genetic code, and a program that reads in one type of sequence and outputs the 
other.  

Any DNA sequence can be translated in six possible ways. The sequence can be translated backward 
and forward. Because each amino acid in a protein is specified by three bases in the DNA sequence, 
there are three possible translations of any DNA sequence in each direction: one beginning with the 
very first character in the sequence, one beginning with the second character, and one beginning with 
the third character.  

Figure 7-6 shows "back-translation" of a protein sequence (shown on the top line) into DNA, using the 
bacterial and plant plastid genetic code. As you can see, back-translation of a protein sequence into 
DNA isn't unique. Each amino acid in the short sequence shown can be represented by as many as six 
codons, and the possible codons can be combined in many ways to produce not one, but hundreds of 
possible coding sequences, even for a short peptide. However, note that nature has grouped the codons 
"sensibly": alanine (A) is always specified by a "G-C-X" codon, arginine (R) is specified either by a 
"C-G-X" codon or an "A-G-pyrimidine" codon, etc. This reduces the number of potential sequences 
that have to be checked if you (for example) try to write a program to compare a protein sequence to a 
DNA sequence database.[1]  

[1] The more computationally efficient solution to this problem is simply to translate the DNA sequence database in all six reading frames. 

Figure 7-6. Back-translation from a protein sequence 
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There are no markers in the DNA sequence to indicate where one codon ends and the next one begins. 
Consequently, unless the location of the start codon is known ahead of time, a double-stranded DNA 
sequence can be interpreted in any of six ways: an open reading frame can start at nucleotide i, at i+1, 
or at i+2 on either the observed or complementary strand. To account for this unc ertainty, when a 
protein is compared with a set of DNA sequences, the DNA sequences are translated into all six 
possible amino acid sequences, and the protein query sequence is compared with these resulting 
conceptual translations. This exhaustive translation is called a "six-frame translation" and is illustrated 
in Figure 7-7.  

Figure 7-7. A DNA sequence and its translation in three of six possible reading frames 

 

Because of the large number of codon possibilities for some amino acids, back-translation of a protein 
into DNA sequence can result in an extremely large number of possible sequences. However, codon 
usage statistics for different species are available and can be used to suggest the most likely back-
translation out of the range of possibilities.  

BLAST and FASTA dynamically translate query and database sequences so you don't need to worry 
about translating a database before you do a sequence comparison. However, in the event that you need 
to produce a six-frame translation of a single DNA sequence or translate a protein back into a set of 
possible DNA sequences, and you don't want to script it yourself, the Protein Machine server 
(http://www.ebi.ac.uk/translate/) at the European Bioinformatics Institute (EBI) will do it for you.  

7.7 Pairwise Sequence Comparison 

Comparison of protein and DNA sequences is one of the foundations of bioinformatics. Our ability to 
perform rapid automated comparisons of sequences facilitates everything from assignment of function 
to a new sequence, to prediction and construction of model protein structures, to design and analysis of 
gene expression experiments. As biological sequence data has accumulated, it has become apparent 
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that nature is conservative. A new biochemistry isn't created for each new species, and new 
functionality isn't created by the sudden appearance of whole new genes. Instead, incremental 
modifications give rise to genetic diversity and novel function. With this premise in mind, detection of 
similarity between sequences allows you to transfer information about one sequence to other similar 
sequences with reasonable, though not always total, confidence.  

Before you can make comparative statements about nucleic acid or protein sequences, a sequence 
alignment is needed. The basic concept of selecting an optimal sequence alignment is simple. The two 
sequences are matched up in an arbitrary way. The quality of the match is scored. Then one sequence is 
moved with respect to the other and the match is scored again, until the best-scoring alignment is 
found.  

What sounds simple in principle isn't at all simple in practice. Choosing a good alignment by eye is 
possible, but life is too short to do it more than once or twice. An automated method for finding the 
optimal alignment out of the thousands of alternatives is clearly the right approach, but in order for the 
method to be consistent and biologically meaningful, several questions must be answered. How should 
alignments be scored? A scoring scheme can be as simple as +1 for a match and -1 for a mismatch, but 
what is the best scoring scheme for the data? Should gaps be allowed to open in the sequences to 
facilitate better matches elsewhere? If gaps are allowed, how should they be scored? Given the correct 
scoring parameters, what is the best algorithm for finding the optimal alignment of two sequences? And 
when an alignment is produced, is it necessarily significant? Can an alignment of similar quality be 
produced for two random sequences? Through the rest of this section, we consider each of these 
questions in greater detail.  

Figure 7-8 shows examples of three kinds of alignment. These are three pairwise sequence alignments 
generated using a program called ALIGN. In each alignment, the sequences being compared are 
displayed, one above the other, such that matching residues are aligned. Identical matches are indicated 
with a colon (:) between the matching residues, while similarities are indicated with a single dot (.). 
Information about the alignment is presented at the top, including percent identity (the number of 
identical matches divided by the length of the alignment) and score. Finally, gaps in one sequence 
relative to another are represented by dashes (-) for each position in that sequence occupied by a gap.  

Figure 7-8. Three alignments: high scoring, low scoring but meaningful, and random 
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The first alignment is a high-scoring one: it shows a comparison of two closely related proteins (two 
hemoglobin molecules, one from a sea lamprey and one from a hagfish). Compare that alignment with 
the second, a comparison of two distantly related proteins (again, two hemoglobin molecules, in this 
case taken from lamprey and rice). Cursory inspection shows fewer identical residues are shared by the 
sequences in the low-scoring alignment than in the high-scoring one. Still, there are several similarities 
or conservative changes—changes in which one amino acid has been replaced by another, chemically 
similar residue. The third alignment is a random alignment, a comparison between two unrelated 
sequences (the lamprey hemoglobin and a human retinol binding protein). Notice that, in addition to 
the few identities and conservative mutations between the two, large gaps have been opened in both 
sequences to achieve this alignment. Gene families aren't likely to evolve in this way, and given the 
lack of similarity between the sequences, you can conclude that these proteins are unrelated.  

In describing sequence comparisons, several different terms are commonly used. Sequence identity, 
sequence similarity, and sequence homology are the most important of these terms. Each means 
something slightly different, though they are often casually used interchangeably.  
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Sequence identity refers to the occurrence of exactly the same nucleic acid or amino acid in the same 
position in two aligned sequences. Sequence similarity is meaningful only when possible substitutions 
are scored according to the probability with which they occur. In protein sequences, amino acids of 
similar chemical properties are found to substitute for each other much more readily than dissimilar 
amino acids. These propensities are represented in scoring matrices that score sequence alignments. 
Two amino acids are considered similar if one can be substituted for another with a positive log odds 
score from a scoring matrix (described in the next section).  

Sequence homology is a more general term that indicates evolutionary relatedness among sequences. It 
is common to speak of a percentage of sequence homology when comparing two sequences, although 
that percentage may indicate a mixture of identical and similar sites. Finally, sequence homology refers 
to the evolutionary relatedness between sequences. Two sequences are said to be homologous if they 
are both derived from a common ancestral sequence. The terms similarity and homology are often used 
interchangeably to describe sequences, but, strictly speaking, they mean different things. Similarity 
refers to the presence of identical and similar sites in the two sequences, while homology reflects a 
stronger claim that the two sequences share a common ancestor.  

7.7.1 Scoring Matrices 

What you really want to learn when evaluating a sequence alignment is whether a given alignment is 
random, or meaningful. If the alignment is meaningful, you want to gauge just how meaningful it is. 
You attempt to do this by constructing a scoring matrix.  

A scoring matrix is a table of values that describe the probability of a residue (amino acid or base) pair 
occurring in an alignment. The values in a scoring matrix are logarithms of ratios of two probabilities. 
One is the probability of random occurrence of an amino acid in a sequence alignment. This value is 
simply the product of the independent frequencies of occurrence of each of the amino acids. The other 
is the probability of meaningful occurrence of a pair of residues in a sequence alignment. These 
probabilities are derived from samples of actual sequence alignments that are known to be valid.  

In order to score an alignment, the alignment program needs to know if it is more likely that a given 
amino acid pair has occurred randomly, or that it has occurred as a result of an evolutionary event. The 
logarithm of the ratio of the probability of meaningful occurrence to the probability of random 
occurrence is positive if the probability of meaningful occurrence is greater, and negative if the 
probability of random occurrence is greater. Because the scores are logarithms of probability ratios, 
they can be meaningfully added to give a score for the entire sequence. The more positive the score, the 
more likely the alignment is to be significant.  

Figure 7-9 shows an example of a BLOSUM45 matrix, a popular substitution matrix for amino acids.  

Figure 7-9. The BLOSUM45 matrix, a popular substitution matrix for amino acids 
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Substitution matrices for amino acids are complicated because they reflect the chemical nature and 
frequency of occurrence of the amino acids. For example, in the BLOSUM matrix, glutamic acid (E) 
has a positive score for substitution with aspartic acid (D) and also with glutamine (Q). Both these 
substitutions are chemically conservative. Aspartic acid has a sidechain that is chemically similar to 
glutamic acid, though one methyl group shorter. On the other hand, glutamine is similar in size and 
chemistry to glutamic acid, but it is neutral while glutamic acid is negatively charged. Substitution 
scores for glutamic acid with residues such as isoleucine (I) and leucine (L) are negative. These 
residues have neutral, nonpolar sidechains and are chemically different from glutamic acid. The scores 
on the diagonal of the matrix reflect the frequency of occurrence of each amino acid. For example, with 
a positive score of 15, it is extremely unlikely that the alignment of a rare tryptophan (W) with another 
tryptophan is coincidence, while the more common serine (S) has a positive score of only 4 for a match 
with another serine. It's important to remember that these scores are logarithms, which means that a 
match of two serines is far from being mere coincidence.  

Substitution matrices for bases in DNA or RNA sequence are very simple. By default, the sequence 
alignment program BLAST uses the scheme of assigning a standard reward for a match and a standard 
penalty for a mismatch, with no regard to overall frequencies of bases. In most cases, it is reasonable to 
assume that A:T and G:C occur in roughly equal proportions.  

Commonly used substitution matrices include the BLOSUM and PAM matrices. When using BLAST, 
you need to select a scoring matrix. Most automated servers select a default matrix for you (usually 
something like BLOSUM62), and if you're just doing a quick sequence search, it's fine to accept the 
default.  

BLOSUM matrices are derived from the Blocks database, a set of ungapped alignments of sequence 
regions from families of related proteins. A clustering approach sorts the sequences in each block into 
closely related groups, and the frequencies of substitutions between these within a family derives the 
probability of a meaningful substitution. The numerical value (e.g., 62) associated with a BLOSUM 
matrix represents the cutoff value for the clustering step. A value of 62 indicates that sequences were 
put into the same cluster if they were more than 62% identical. By allowing more diverse sequences to 
be included in each cluster, lower cutoff values represent longer evolutionary time scales, so matrices 
with low cutoff values are appropriate for seeking more distant relationships. BLOSUM62 is the 
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standard matrix for ungapped alignments, while BLOSUM50 is more commonly used when generating 
alignments with gaps.  

Point accepted mutation (PAM) matrices are scaled according to a model of evolutionary distance from 
alignments of closely related sequences. One PAM "unit" is equivalent to an average change in 1% of 
all amino acid positions. The most commonly used PAM matrix is PAM250. However, comparison of 
results using PAM and BLOSUM matrices suggest that BLOSUM matrices are better at detecting 
biologically significant similarities.  

7.7.2 Gap Penalties 

DNA sequences change not only by point mutation, but by insertion and deletion of residues as well. 
Consequently, it is often necessary to introduce gaps into one or both of the sequences being aligned to 
produce a meaningful alignment between them. Most algorithms use a gap penalty to represent the 
validity of adding a gap in an alignment.  

The addition of a gap has to be costly enough, in terms of the overall alignment score, that gaps will 
open only where they are really needed and not all over the sequence. Most sequence alignment models 
use affine gap penalties, in which the cost of opening a gap in a sequence is different from the cost of 
extending a gap that has already been started. Of these two penalties—-the gap opening penalty and the 
gap extension penalty—-the gap opening penalties tend to be much higher than the associated 
extension penalty. This tendency reflects the tendency for insertions and deletions to occur over several 
residues at a time.  

Gap penalties are intimately tied to the scoring matrix that aligns the sequences: the best pair of gap 
opening and extension penalties for one scoring matrix doesn't necessarily work with another. Scores of 
-11 for gap opening and -1 for gap extension are commonly used in conjunction with the BLOSUM 62 
matrix for gapped-BLAST, while BLOSUM50 uses a -12/-1 penalty.  

7.7.3 Dynamic Programming 

Dynamic programming methods are a general class of algorithms that are often seen both in sequence 
alignment and other computational problems. They were first described in the 1950s by Richard 
Bellman of Princeton University as a general optimization technique. Dynamic programming seems to 
have been introduced [2] to biological sequence comparison by Saul Needleman and Christian Wunsch, 
who apparently were unaware of the similarity between their method and Bellman's.  

[2] Or, as mathematicians might say, "rediscovered." Because computational biology combines research from so many different areas, this independent discovery 
happens often and is only noticed later. 

As we mentioned, dynamic programming algorithms solve optimization problems, problems in which 
there are a large number of possible solutions, but only one (or a small number of ) best solutions. A 
dynamic programming algorithm finds the best solution by first breaking the original problem into 
smaller subproblems and then solving. These pieces of the larger problem have a sequential 
dependency; that is, the fourth piece can be solved only with the answer to the third piece, the third can 
be solved only with the answer to the second, and so on. Dynamic programming works by first solving 
all these subproblems, storing each intermediate solution in a table along with a score, and finally 
choosing the sequence of solutions that yields the highest score. The goal of the dynamic programming 
algorithm is to maximize the total score for the alignment. In order to do this, the number of high-



 158 

scoring residue pairs must be maximized and the number of gaps and low-scoring pairs must be 
minimized.  

In sequence comparison, the overall problem is finding the best alignment between two sequences. This 
problem is broken down into subproblems of aligning each residue from one sequence with each 
residue from the other. The solution is a decision as to whether the residues should be aligned with 
each other, a gap should be introduced in the first sequence, or a gap should be introduced in the 
second sequence. Each high-scoring choice rules out the other two low-scoring possibilities, so that if 
information about the accumulated scores is stored at each step, every possible alignment need not be 
evaluated.  

The algorithm uses an (m x n) matrix of scores (illustrated in Figure 7-10) in which m and n are the 
lengths of the sequences being aligned. Starting with the alignment of a gap against itself (which is 
given the initial score zero), the algorithm fills in the matrix one row at a time. At each position in the 
matrix, the algorithm computes the scores that result for each of its three choices, selects the one that 
yields the highest score, then stores a pointer at the current position to the preceding position that was 
used to arrive at the high score. When every position in the matrix has been filled in, a traceback step is 
performed, and the highest-scoring path along the pointers is followed back to the beginning of the 
alignment.  

Figure 7-10. A matrix of scores comparing two sequences; continuous high-scoring matches are 
highlighted 

 

7.7.4 Global Alignment 

One alignment scenario you may encounter is the alignment of two sequences along their whole length. 
The algorithm for alignment of whole sequences is called the Needleman-Wunsch algorithm. In this 
scenario, an optimal alignment is built up from high-scoring alignments of subsequences, stepping 
through the matrix from top left to bottom right. Only the best-scoring path can be traced through the 
matrix, resulting in an optimal alignment.  

7.7.4.1 Using ALIGN to produce a global sequence alignment 
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Now that we have seen the theory behind the global alignment of two sequences, let's examine a 
program that implements this algorithm. ALIGN is a simple utility for computing global alignments. It 
is part of the FASTA software distribution, described later in this chapter. The programs in the FASTA 
distribution are easily run from the Unix command line, although many of them have been incorporated 
into the SDSC Biology Workbench web-based sequence analysis software, if you prefer to access them 
through a point-and-click interface. The FASTA programs compile easily under Linux; however, once 
they are compiled, you need to link them into your /usr/local/bin directory or some other sensible 
location by hand.  

To run ALIGN and any of the other FASTA programs, you need sequence data in FASTA format. This 
is one of the most frequently used sequence formats and probably the simplest. To use ALIGN, each of 
the sequences you are aligning should be in a separate file.  

A sequence in FASTA format[3] looks like this:  

[3] Also known as Pearson format, after the author of the FASTA software, William Pearson. 

>2HHB:A HEMOGLOBIN (DEOXY) - CHAIN A  
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK 
KVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPA 
VHASLDKFLASVSTVLTSKYR  

The FASTA format is very flexible, and it is one of the most commonly used formats for sequence 
analysis programs. A FASTA file contains one or more records in FASTA format, separated by empty 
lines. Each record consists of a human-readable comment followed by a nucleotide or protein sequence. 
The comment appears in the first line of the record; it must begin with a greater-than (>) symbol 
followed by one or more identifiers for the sequence. The comment may contain information about the 
molecule represented by the sequence, such as the protein or gene name and source organism. In the 
previous example, the identifier is a PDB code (2HHB), followed by a description of the sequence (the 
A chain of a deoxyhemoglobin protein). The remainder of the record contains the sequence itself, 
divided into separate lines by line breaks. Lines are usually 60 characters long, but the format doesn't 
specify a line length. Programs that take FASTA data as input (such as ALIGN) usually make 
allowances for FASTA's free-form nature. Still, it's a good practice to check the program's 
documentation to make sure that your data is appropriately formatted.  

To use ALIGN, simply enter align at the command prompt. You are then prompted for sequence 
filenames. Results are sent to standard output. The ASCII format for pairwise alignments that is 
produced by FASTA is still commonly used, although there is a trend toward use of more easily parsed 
alignment formats:  

Output scoring matrix: BLOSUM50, gap penalties: -12/-2 43.2% identity;           
Global alignment score: 374 
 
                10        20        30        40              50     
2HHB_A V-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-----HGSA 
       : :.: .:. : : ::::  .. : :.::: :... .: :. .:  : :::      :. 
2HHB:B VHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNP              
 
               10          20        30        40        50         
            60        70        80        90       100       110 
2HHB_A QVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHL 
       .::.:::::  :.....::.:.. .....::.::  ::.::: ::.::.. :. .:: :. 
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2HHB:B KVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHF 
       60        70        80        90       100       110         
           120       130       140 
2HHB_A PAEFTPAVHASLDKFLASVSTVLTSKYR 
         :::: :.:. .: .:.:...:. ::. 
2HHB:B GKEFTPPVQAAYQKVVAGVANALAHKYH 
      120       130       140 

The FASTA distribution contains a sample HTML form and CGI script for use with the program 
LALIGN, a pairwise local alignment program. The script can be modified to work with the ALIGN 
program if a web-based interface is desired.  

7.7.5 Local Alignment 

The most commonly used sequence alignment tools rely on a strategy called local alignment. The 
global alignment strategy discussed earlier assumes that the two sequences to be aligned are known and 
are to be aligned over their full length. In the scenarios that are encountered most often with sequence 
alignment, however, you are either searching with one sequence against a sequence database looking 
for unknown sequences, or searching a very long DNA sequence, such as part of a genome, for partial 
segments that match a query sequence. In protein or gene sequences that do have some evolutionary 
relatedness, but which have diverged significantly from each other, short homologous segments may be 
all the evidence of sequence homology that remains.  

The version of the dynamic programming algorithm that performs local alignment of two sequences is 
known as the Smith-Waterman algorithm. Named for its inventors, Dr. Temple Smith and Dr. Michael 
Waterman, this algorithm is similar to the Needleman-Wunsch algorithm except that an additional 
choice is allowed when tracing through the matrix. A local alignment isn't required to extend from 
beginning to end of the two sequences being aligned. If the cumulative score up to some point in the 
sequence is negative, the alignment can be abandoned and a new alignment started. The alignment can 
also end anywhere in the matrix.  

7.7.5.1 Tools for local alignment 

One of the most frequently reported implementations of the Smith-Waterman algorithm for database 
searching is the program SSEARCH, which is part of the FASTA distribution described later. 
LALIGN, also part of the FASTA package, is an implementation of the Smith-Waterman algorithm for 
aligning two sequences. 

7.8 Sequence Queries Against Biological Databases 

A common application of sequence alignment is searching a database for sequences that are similar to a 
query sequence. In these searches, an alignment of a sequence hundreds or thousands of residues long 
is matched against a database of at least tens of thousands of comparably sized sequences. Using 
dynamic programming-based methods, this isn't very practical unless special-purpose hardware is 
available. Instead, for routine searches, special heuristic database-searching methods are used. 
Heuristic methods exploit knowledge about sequences and alignment statistics to make these large-
scale searches efficient and practical. While they don't guarantee optimal alignments, they make 
sensitive searches of large sequence databases possible. In this section, we describe BLAST and 
FASTA, two commonly used database-searching programs.  
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7.8.1 Local Alignment-Based Searching Using BLAST  

By far, the most popular tool for searching sequence databases is a program called BLAST (Basic 
Local Alignment Search Tool). BLAST is the algorithm at the core of most online sequence search 
servers.[4] It performs pairwise comparisons of sequences, seeking regions of local similarity, rather than 
optimal global alignments between whole sequences.  

[4] To give you perspective on how long the common tools of bioinformatics have been available, the original BLAST paper by Altschul et al. was published in the 
Journal of Molecular Biology in October 1990. 

BLAST can perform hundreds or even thousands of sequence comparisons in a matter of minutes. And 
in less than a few hours, a query sequence can be compared to an entire database to find all similar 
sequences. BLAST is so popular for this purpose that it's become a verb in the computational biology 
community, as in "I BLASTed this sequence against GenBank and came up with three matches."  

7.8.1.1 The BLAST algorithm  

Local sequence alignment searching using a standard Smith-Waterman algorithm is a fairly slow 
process. The BLAST algorithm, which speeds up local sequence alignment, has three basic steps. First, 
it creates a list of all short sequences (called words in BLAST terminology) that score above a 
threshold value when aligned with the query sequence. Next, the sequence database is searched for 
occurrences of these words. Because the word length is so short (3 residues for proteins, 11 residues for 
nucleic acids), it's possible to search a precomputed table of all words and their positions in the 
sequences for improved speed. These matching words are then extended into ungapped local 
alignments between the query sequence and the sequence from the database. Extensions are continued 
until the score of the alignment drops below a threshold. The top-scoring alignments in a sequence, or 
maximal-scoring segment pairs (MSPs), are combined where possible into local alignments. Originally, 
BLAST searched only for ungapped alignments. However, new additions to the BLAST software 
package that do search for gapped alignments have since been introduced.  

7.8.1.2 NCBI BLAST and WU-BLAST 

There are two implementations of the BLAST algorithm: NCBI BLAST and WU-BLAST. Both 
implementations can be used as web services and as downloadable software packages. NCBI BLAST is 
available from the National Center for Biotechnology Information (NCBI), while WU-BLAST is an 
alternate version that grew out of NCBI BLAST 1.4 and is developed and maintained by Dr. Warren 
Gish and coworkers at Washington University.  

NCBI BLAST is the more commonly used of the two. The most recent versions of this program have 
focused on the development of methods for comparing multiple-sequence profiles (see Chapter 8). 
WU-BLAST, on the other hand, has developed a different system for handling gaps as well as a 
number of features (such as filtering for repeats) that are useful for searching genome sequences. 
Consequently, TIGR, Stanford's yeast genome server, Berkeley's Drosophila genome project, and 
others use WU-BLAST 2.0 as the sequence-comparison tool for searching their genome sequence data 
via the Web. As of this writing, WU-BLAST 2.0, the most recent version of the software, is 
copyrighted. NCBI BLAST and WU-BLAST's previous version, 1.4, are both in the public domain and 
freely available to all researchers. Because of its ubiquity we focus on NCBI BLAST in the following 
section, but WU-BLAST is an alternative. For more information on these flavors of BLAST see the 
NCBI web site at http://www.ncbi.nlm.nih.gov/BLAST, or the WU-BLAST web site at 
http://blast.wustl.edu.  
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7.8.1.3 What do the various BLAST programs do? 

Frequent us ers of BLAST can also download and install BLAST binaries on their own machines. 
BLAST installs easily on a Linux system. Simply create a new directory (e.g., /usr/local/blast), move 
the archive into it, and extract. Here are the four main executable programs in the BLAST distribution:  

[blastall]  

Performs BLAST searches using one of five BLAST programs: blastp, blastn, blastx, tblastn, or 
tblastx  

[blastpgp]  

Performs searches in PSI-BLAST or PHI-BLAST mode  

[bl2seq]  

Performs a local alignment of two sequences 

[formatdb]  

Converts a FASTA-format flat file sequence database into a BLAST database  

blastall encompasses all the major options for ungapped and gapped BLAST searches. A full list of its 
command-line arguments can be displayed with the command blastall - :  

[-p]  

Program name. Its options include:  

blastp  

Protein sequence (PS) query versus PS database 

blastn  

Nucleic acid sequence (NS) query versus NS database 

blastx  

NS query translated in all six reading frames versus PS database 

tblastn  

PS query versus NS database dynamically translated in all six reading frames  

tblastx  

Translated NS query versus translated NS database—computationally intensive  
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[-d]  

Database name. Each indexed database consists of several files; the name is the common 
portion of those filenames.  

[-i]  

Query sequence filename. Defaults to standard input if not specified.  

[-e]  

Expectation value cutoff. (See Section 7.8.1.5.)  

[-m]  

Alignment view. Its options include: 

0  

Pairwise 

1  

Master-slave, show identities 

2  

Master-slave, no identities 

3  

Flat master-slave, show identities 

4  

Flat master-slave, no identities 

5  

Master-slave, no identities, blunt ends 

6  

Flat master-slave, no identit ies, blunt ends 

[-o]  

Output file name. Defaults to standard output if not specified.  
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[-G]  

Gap opening penalty. Defaults to 11 (for BLOSUM63 matrix).  

[-E]  

Gap extension penalty. Defaults to 1 (for BLOSUM63 matrix).  

[-q]  

Nucleotide mismatch penalty. blastn only. Defaults to -3.  

[-r]  

Reward for nucleotide match. blastn only. Defaults to 1.  

[-b]  

Number of alignments to show.  

[-g]  

Perform gapped alignment. T/F. Unavailable with tblastx.  

[-M]  

Scoring matrix. Defaults to BLOSUM62.  

[-T]  

Produce HTML output. T/F. Defaults to F.  

These are the command-line options you are most likely to use, but there are a large number of other 
options available. As you become familiar with BLAST, you may want to learn to use them.  

blastpgp allows you to use two new BLAST modes: PHI-BLAST (Pattern Hit Initiated BLAST) and 
PSI-BLAST (Position Specific Iterative BLAST). PHI-BLAST uses protein motifs, such as those found 
in PROSITE and other motif databases, to increase the likelihood of finding biologically significant 
matches. PSI-BLAST uses an iterative alignment procedure to develop position-specific scoring 
matrices, which increases its capability to detect weak pattern matches. Both methods are discussed 
further when we get to multiple sequence analysis in Chapter 8.  

bl2seq  allows the comparison of two known sequences using the blastp  or blastn programs. Most of the 
command-line options for bl2seq are similar to those for blastall.  

7.8.1.4 Building a local database with formatdb 

Usage: formatdb -i araseed.nt -p F -o T  



 165 

Although BLAST is available on many web servers, one of the benefits of installing and using BLAST 
locally is the ability to create your own sequence databases. For instance, you may have a set of 
sequences that aren't yet published or publicly distributed. They're not in the GenBank database, so if 
you can't run BLAST on your own machine, how do you search them?  

The program formatdb accepts an input sequence database either in FASTA format or in NCBI's 
ASN.1 format (described in Chapter 12 ). On the program command line it is necessary to specify the 
input filename, whether the input is a protein or nucleic acid sequence, and whether you want to create 
indexes for the database or not. There are other command-line options available, which can be viewed 
by trying to run formatdb with no command-line options specified.  

The files created are: 

araseed.nt.nhr 
araseed.nt.nin 
araseed.nt.nsd 
araseed.nt.nsi 
araseed.nt.nsq 

7.8.1.5 Evaluating BLAST results 

A BLAST search in a sequence database can produce dozens or hundreds of candidate alignments. Out 
of these alignments, how can you tell which are really significantly homologous, and which are merely 
the best matches between unrelated sequences? BLAST provides three related pieces of information 
that allow you to interpret its results: raw scores, bit scores, and E-values.  

The raw score for a local sequence alignment is the sum of the scores of the maximal-scoring segment 
pairs (MSPs) that make up the alignment. Because of differences between scoring matrices, raw scores 
aren't always directly comparable. Bit scores are raw scores that have been converted from the log base 
of the scoring matrix that creates the alignment to log base 2. This rescaling allows bit scores to be 
compared between alignments.  

E-values provide information about the likelihood that a given sequence alignment is significant. An 
alignment's E-value indicates the number of alignments one expects to find with a score greater than or 
equal to the observed alignment's score in a search against a random database. Thus, a large E-value (5 
or 10) indicates that the alignment probably has occurred by chance, and that the target sequence has 
been aligned to an unrelated sequence in the database. E-values of 0.1 or 0.05 are typically used as 
cutoffs in sequence database searches. Using a larger E-value cutoff in a database search allows more 
distant matches to be found, but it also results in a higher rate of spurious alignments. Of the three, E-
values are the values most often reported in the literature.  

There is a limit beyond which sequence similarity becomes uninformative about the relatedness of the 
sequences being compared. This limit is encountered below approximately 25% sequence similarity for 
protein sequences of normal length, although research continues to push at this boundary. In the case of 
protein sequences with low sequence similarity that are still believed to be related, structural analysis 
techniques may provide evidence for such a relationship. Where structure is unknown, sequences with 
low similarity are categorized as unrelated, but that may mean only that the evolutionary distance 
between sequences is so great that a relationship can't be detected.  

7.8.2 Local Alignment Using FASTA 
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Another heuristic method for local sequence alignment is the FASTA algorithm. FASTA predates 
BLAST, and it is still actively maintained by Dr. William Pearson at the University of Virginia. Like 
BLAST, it is available both as a service over the Web and as a downloadable set of programs. In this 
section, we describe the current version of the FASTA algorithm and some of the programs included in 
the FASTA distribution.  

7.8.2.1 The FASTA algorithm 

FASTA first searches for short sequences (called ktups)[5] that occur in both the query sequence and the 
sequence database. Then, using the BLOSUM50 matrix, the algorithm scores the 10 ungapped 
alignments that contain the most identical ktups. These ungapped alignments are tested for their ability 
to be merged into a gapped alignment without reducing the score below a threshold. For those merged 
alignments that score over the threshold, an optimal local alignment of that region is then computed, 
and the score for that alignment (called the optimized score) is reported.  

[5] An abbreviation for k tuples, o r ordered sequences of k residues. 

FASTA ktups are shorter than BLAST words, typically 1 or 2 for proteins, and 4 or 6 for nucleic acids. 
Lower ktup values result in slower but more sensitive searches, while higher ktup values yield faster 
searches with fewer false positives.  

7.8.2.2 The FASTA programs 

The FASTA distribution contains search programs that are analogous to the main BLAST modes, with 
the exception of PHI-BLAST and PSI-BLAST, as well as programs for global and local pairwise 
alignment and other useful functions. The FASTA programs listed here all compile easily on a Linux 
system:  

[fasta]  

Compares a protein sequence against a protein database (or a DNA sequence against a DNA 
database) using the FASTA algorithm  

[ssearch]  

Compares a protein sequence against a protein database (or DNA sequence against a DNA 
database) using the Smith-Waterman algorithm  

[fastx /fasty]  

Compares a DNA sequence against a protein database, performing translations on the DNA 
sequence  

[tfastx /tfasty]  

Compares a protein sequence against a DNA database, performing translations on the DNA 
sequence database  

[align]  
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Computes the global alignment between two DNA or protein sequences  

[lalign]  

Computes the local alignment between two DNA or protein sequences  

As of this writing, all these programs except ALIGN and LALIGN are available in the FASTA 3.3 
package; for now, ALIGN and LALIGN are available only in the FASTA 2 distribution.  

7.9 Multifunctional Tools for Sequence Analysis 

Several research groups and companies have assembled web-based interfaces to collections of 
sequence tools. The best of these have fully integrated tools, public databases, and the ability to save a 
record of user data and activities from one use to another. If you're searching for matches to just one or 
a few sequences and you want to search the standard public databases, these portals can save you a lot 
of time while providing most of the functionality and ease of use of a commercial sequence analysis 
package. In some cases, you'll have to pay for a license or subscription to access the full functionality 
of these sites; others are freely accessible.  

7.9.1 NCBI SEALS 

The NCBI SEALS project aims to develop a Perl-based command-line environment for Systematic 
Analysis of Lots of Sequences. SEALS is far from a fully automated genome analysis tool, and it isn't 
intended to be. What SEALS does provide is an enhancement to the command-line environment on 
Unix systems. It is composed of a large suite of scripts with a variety of useful functions: converting 
file formats, manipulating BLAST results and FASTA files, database retrieval, piping files into 
Netscape, and a host of other features that make your data easier to look at without requiring a 
resource-sucking GUI. SEALS runs on Unix systems and is probably most useful for those who are 
already Unix aficionados. Before you write a script to process a lot of sequences, check to see if the 
process you want has been implemented in SEALS.  

7.9.2 The Biology Workbench 

The San Diego Supercomputing Center offers access to sequence-analysis tools through the Biology 
Workbench. This resource has been freely available to academic users in one form or another since 
1995. Users obtain a login and password at the SDSC site, and work sessions and data can be saved 
securely on the server.  

The Biology Workbench offers keyword and sequence-based searching of nearly 40 major sequence 
databases and over 25 whole genomes. Both BLAST and FASTA are implemented as search and 
alignment tools in the Workbench, along with several local and global alignment tools, tools for DNA 
sequence translation, protein sequence feature analysis, multiple sequence alignment, and phylogenetic 
tree drawing. The Workbench group has not yet implemented profile tools, such as MEME, HMMer, or 
sequence logo tools, although PSI-BLAST is available for sequence searches.  

Although its interface can be somewhat cumbersome, involving a lot of window scrolling and button 
clicking, the Biology Workbench is still the most comprehensive, convenient, and accessible of the 
web-based toolkits. One of its main benefits is that many sequence file formats are accepted and 
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translated by the software. Users of the Workbench need never worry about file type incompatibility 
and can move seamlessly from keyword-based database search, to sequence-based search, to multiple 
alignment, to phylogenetic analysis.  

7.9.3 DoubleTwist 

Another entry into the sequence analysis portal arena is DoubleTwist at http://doubletwist.com. This 
site allows you to submit a sequence for comparison to multiple databases using BLAST. It also 
provides "agents" that monitor databases for new additions that match a submitted sequence and 
automatically notifies the user. These services, as well as access to the EcoCyc pathways database and 
to an online biology research protocols database, are free with registration at the site at the time of this 
writing.  
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Chapter 8. Multiple Sequence Alignments, Trees, and 
Profiles 

In Chapter 7, we introduced the idea of using sequence alignment to find and compare pairs of related 
sequences. Biologically interesting problems, however, often involve comparing more than two 
sequences at onc e. For example, a BLAST or FASTA search can yield a large number of sequences 
that match the query. How do you compare all these resulting sequences with each other? In other 
words, how can you examine these sequences to understand how they are related to one another?  

One approach is to perform pairwise alignments of all pairs of sequences, then study these pairwise 
alignments individually. It's more efficient (and easier to comprehend), however, if you compare all the 
sequences at once, then examine the resulting ensemble alignment. This process is known as multiple 
sequence alignment. Multiple sequence alignments can be used to study groups of related genes or 
proteins, to infer evolutionary relationships between genes, and to discover patterns that are shared 
among groups of functionally or structurally related sequences. In this chapter, we introduce some tools 
for creating and interpreting multiple sequence alignments and describe some of their applications, 
including phylogenetic inference and motif discovery. Phylogenetic inference and motif discovery are 
rooted in evolutionary theory, so before we dive into a discussion of that area of bioinformatics, let's 
take a minute to review the history and theory of evolution.  

8.1 The Morphological to the Molecular 

In order to ground our discussion of the details of multiple sequence alignment, let's take another brief 
look at evolution. One of the goals of biology has been the creation of a taxonomy for living things, a 
method of organizing species in terms of their relationships to one another. Early biologists classified 
species solely according to their morphology—the physical appearance of the organism—and later, as 
dissection became a more common practice, their anatomy.  

Naturalists also discovered fossils of creatures that didn't resemble anything alive at the time, but were 
thought to have once been living things. This evidence introduced the possibility that life on Earth had 
changed over time. It also suggested that the interrelationship between species isn't static, but rather is 
the result of an evolutionary process. As understanding of the geophysical processes of the planet 
improved, the amount of time required for such changes to occur became clearer. It is now widely 
accepted by scientists that life on Earth is approximately 3.5 billion years old. Fossil records of single-
celled organisms resembling bacteria, with an estimated age of 3.5 billion years, have been found and 
catalogued.  

The evolutionary theory that was eventually accepted by most biologists was that of Charles Darwin. 
Darwin proposed that every generation of living creatures has some variability. The individuals whose 
variations predispose them to survive in their environment are the ones who reproduce most 
successfully and pass on their traits in greater numbers. In light of this theory, it has been hypothesized 
that the diversity of life forms on Earth is due to divergence, perhaps even from one common ancestral 
unicellular organism, to fill various biological niches.  

Molecular evolution extends the concept of evolution to the level of DNA and protein sequences. 
Although the replication of DNA sequence is a very accurate process, small replication errors 
accumulate over time, along with radiation damage and other mutations or alterations of the genomic 
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sequence. Instead of evolutionary pressure selecting organisms based on morphological traits, selection 
occurs at the level of mutations. Consequently, the only mutations observed in genes from healthy 
organisms are those that don't result in the organisms' death.  

Because these changes between gene sequences are incremental, we can take homologous genes —
genes with common evolutionary origin and related function—from a number of divergent organisms 
and compare them by aligning identical or similar residues. This comparison of multiple sequences 
shows which regions of a gene (or its derived protein) are sensitive to mutation and which are tolerant 
of having one residue replaced by another. Thus, we can develop hypotheses about the molecular 
events underlying the evolution of these sequences. Many bioinformatics methods, including pairwise 
sequence comparison and sequence database searching, are based on this observation that homologous 
genes have similar sequences.  

In considering sequence similarity, there is one additional wrinkle to bear in mind: the difference 
between orthologs and paralogs. The chemical processes of molecular evolution are responsible for 
more than just giving rise to species differences. Evolutionary change can occur within the genome of a 
single species as well. Orthologs are genes that are evolutionarily related, share a function, and have 
diverged by speciation. Paralogs, on the other hand, have a common ancestor but have diverged by 
gene duplication and no longer have a common functional role. In other words, orthologs have the 
same function but occur in different species, while paralogs exist in the same genome but have 
different functions. A sequence database search may return both orthologs and paralogs. Depending on 
the objectives of your study, you probably will not want to treat them all as members of the same set.  

8.2 Multiple Sequence Alignment 

Multiple sequence alignment techniques are most commonly applied to protein sequences; ideally they 
are a statement of both evolutionary and structural similarity among the proteins encoded by each 
sequence in the alignment. We know that proteins with closely related functions are similar in both 
sequence and structure from organism to organism, and that sequence tends to change more rapidly 
than structure in the course of evolution. In multiple alignments generated from sequence data alone, 
regions that are similar in sequence are usually found to be superimposable in structure as well.  

With a detailed knowledge of the biochemistry of a protein, you can create a multiple alignment by 
hand. This is a painstaking process, however. The challenge of automatic alignment is that it is hard to 
define exactly what an optimal multiple alignment is, and impossible to set a standard for a single 
correct multiple alignment. In theory, there is one underlying evolutionary process and one 
evolutionarily correct alignment to be generated from any group of sequences. However, the 
differences between sequences can be so great in parts of an alignment that there isn't an apparent, 
unique solution to be found by an alignment algorithm. Those same divergent regions are often 
structurally unalignable as well. Most of the insight that we derive from multiple alignments comes 
from analyzing the regions of similarity, not from attempting to align the very diverged regions.  

The dynamic programming algorithm used for pairwise sequence alignment can theoretically be 
extended to any number of sequences. However, the time and memory requirements of this algorithm 
increase exponentially with the number of sequences. Dynamic programming alignment of two 
sequences takes seconds. Alignment of four relatively short sequences takes a few hours. Beyond that, 
it becomes impractical to align sequences this way. The program MSA is an implementation of an 
algorithm that reduces the complexity of the dynamic programming problem for multiple sequences to 
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some extent. It can align about seven relatively short (200 -300) protein sequences in a reasonable 
amount of time. However, MSA is of little use when comparing large numbers of sequences.  

8.2.1 Progressive Strategies for Multiple Alignment 

A common approach to multiple sequence alignment is to progressively align pairs of sequences. The 
general progressive strategy can be outlined as follows: a starting pair of sequences is selected and 
aligned, then each subsequent sequence is aligned to the previous alignment. Like the Needleman-
Wunsch and Smith-Waterman algorithms for sequence alignment, progressive alignment is  an instance 
of a heuristic algorithm. Specifically, it is a greedy algorithm. Greedy algorithms decompose a problem 
into pieces, then choose the best solution to each piece without paying attention to the problem as a 
whole. In the case of progressive alignment, the overall problem (alignment of many sequences) is 
decomposed into a series of pairwise alignment steps.  

Because it is a heuristic algorithm, progressive alignment isn't guaranteed to find the best possible 
alignment. In practice, however, it is  efficient and produces biologically meaningful results. 
Progressive alignment methods differ in several respects: how they choose the initial pair of sequences 
to align, whether they align every subsequent sequence to a single cumulative alignment or create 
subfamilies, and how they score individual alignments and alignments of individual sequences to 
previous alignments.  

8.2.2 Multiple Alignment with ClustalW 

One commonly used program for progressive multiple sequence alignment is ClustalW. The heuristic  
used in ClustalW is based on phylogenetic analysis. First, a pairwise distance matrix for all the 
sequences to be aligned is generated, and a guide tree is created using the neighbor-joining algorithm. 
Then, each of the most closely related pairs of sequences—the outermost branches of the tree—are 
aligned to each other using dynamic programming. Next, each new alignment is analyzed to build a 
sequence profile. Finally, alignment profiles are aligned to each other or to other sequences (depending 
on the topology of the tree) until a full alignment is built.  

This strategy produces reasonable alignments under a range of conditions. It's not foolproof; for 
distantly related sequences, it can build on the inaccuracies of pairwise alignment and phylogenetic 
analysis. But for sequence sets with some recognizably related pairs, it builds on the strengths of these 
methods. Pairwise sequence alignment by dynamic programming is very accurate for closely related 
sequences regardless of which scoring matrix or penalty values are used. Phylogenetic analysis is 
relatively unambiguous for closely related sequences. Using multiple sequences to create profiles 
increases the accuracy of pairwise alignment for more distantly related sequences.  

There are many parameters involved in multiple sequence alignment. There are, of course, scoring 
matrices and gap penalties associated with the pairwise alignment steps. In addition, there are 
weighting parameters that alter the scoring matrix used in sequence-profile and profile-profile 
alignments. In ClustalW, these are set from the Multiple Alignment submenu or the Profile Structure 
Alignments submenu. In ClustalX, they are set from the Alignment pulldown menu.  

The pairwise alignment parameters are familiar and have the same meaning in multiple alignment as 
they do in pairwise alignment. The multiple alignment parameters include gap opening and gap 
extension penalties for the multiple alignment process—to be used when fine-tuning alignments —and a 
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maximum allowable delay, in terms of sequence length, for the start of divergent sequences at the 
beginning of the alignment.  

One of ClustalW's heuristics is that, in protein sequence alignment, different scoring matrices are used 
for each alignment based on expected evolutionary distance. If two sequences are close neighbors in 
the tree, a scoring matrix optimized for close relationships aligns them. Distant neighbors are aligned 
using matrices optimized for distant relationships. Thus, when prompted to choose a series of matrices 
in the Multiple Alignment Parameters menu, it means just that: use BLOSUM62 for close relationships 
and BLOSUM45 for more distant relationships, rather than the same scoring matrix for all pairwise 
alignments.  

Another heuristic that ClustalW uses is scalable gap penalties for protein profile alignments. A gap 
opening next to a conserved hydrophobic residue can be penalized more heavily than a gap opening 
next to a hydrophilic residue. A gap opening too close to another gap can be penalized more heavily 
than an isolated gap. These parameters are set in the Protein Gap Parameters menu.  

Although ClustalW is run from the Unix command line, it is menu-driven and doesn't rely on 
command-line options. To start the program, you can simply type clustalw, and a menu of options is 
presented:  

************************************************************** 
******** CLUSTAL W (1.8) Multiple Sequence Alignments  ********   
************************************************************** 
     1. Sequence Input From Disc 
     2. Multiple Alignments 
     3. Profile / Structure Alignments 
     4. Phylogenetic trees 
 
     S. Execute a system command 
     H. HELP 
     X. EXIT (leave program)  

This menu, along with subsequent menus that appear after you input your sequences, guides you 
through the use of ClustalW in a fairly straightforward fashion. Alignments are written in a plain-text 
format.  

While ClustalW is simple to install and use on a Linux workstation, ClustalX, the X Windows-based 
graphical user interface for ClustalW, isn't so easy to compile. However, ClustalX runs in its own X 
window, has pulldown menus, and allows viewing and plotting of multiple sequence alignments in a 
color-coded format. It also allows you to append sequences to an alignment one at a time, and to 
produce color PostScript output of specified sequence ranges in an alignment from different files, if 
desired, along with other convenient features. To install ClustalX on a Linux machine, you need:  

• The ClustalX binaries 
• The NCBI software toolkit source distribution  
• The LessTif libraries  

The first thing you need to do is install the LessTif libraries. This distribution is extremely easy to work 
with. The LessTif libraries are available from http://www.lesstif.org and may also be available within 
your Linux distribution. The NCBI Toolkit (available from http://www.ncbi.nlm.nih.gov) should 
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compile completely as long as your LessTif libraries are installed in /usr/X11R6/lib. If the NCBI 
Toolkit installation produces the file libvibrant.a, the command clustalx will work.  

8.2.3 Viewing and Editing Alignments with Jalview 

Usage: Jalview alignmentfile FORMAT  

Viewing alignments is useful, but it's often necessary to edit them as well. Alignment editing is one of 
the few bioinformatics functions that's actually been done better for the Windows platform than for 
Unix, but if you've installed Java support on your workstation you can use a program called Jalview, 
written by Michele Clamp and available from the EBI at 
http://www.ebi.ac.uk/~michele/jalview/contents.html.[1]  

[1] Installing Java support involves installing a Java Development Kit and a Java Runtime Environment. IBM has ported JDK and JRE 1.1.8 to Linux. They are 
available at the IBM site, http://www.ibm.com/java/jdk/index.html. You have to register to download the kits, but it's free. The kits are available as easy-to-install 
RPMs. You won't encounter a lot of Java applications for bioinformatics, but when you do, it's nice to be able to run them. 

To use Jalview on a Linux workstation, download the full Unix distribution of the version you want. 
Unpack the distribution, then edit the file Jalview to reflect your local environment. Jalview  is a script 
that sets up the environment for Jalview and actually starts the program. Specifically, you want to set 
the environment variable CLASSPATH to reflect the location of the class file in your JDK ( Java 
Development Kit) and the location of the Jalview classes (your jalview.jar file). Set the environment 
variable JAVA_EXE to point to your Java executable:  

setenv CLASSPATH /usr/jdk118/lib/classes.zip:/usr/local/jalview/jalview.jar 
setenv JAVA_EXE /usr/jdk118/bin/java  

Jalview can read an alignment (.aln) file from Clustal, as well as several other alignment formats. We 
focus on using Jalview as an alignment editor, but it does have other functions you can explore. It's also 
capable of searching databases if you specify them as a command-line option.  

To run Jalview, make a link to the Jalview script in your working directory.  

The common alignment formats that Jalview recognizes are MSF, CLUSTAL, and FASTA. These need 
to be indicated in all capital letters when the command is given.  

The Jalview window is an active place: click with care. You can select individual sequences by 
clicking on their names at the left of the window, and you can select ranges of sequence by clicking on 
the numerical labels at the top of the sequence alignment. A red box appears to indicate the selected 
rows.  

As in any other menu interface, the File menu contains file import and export options. Sequence 
alignments can be read from a file or even from a web URL. The Edit pulldown contains commands 
that allow you to delete, copy, and move selected sequences or columns. You can also manipulate the 
alignment by hand. Clicking on any letter in the alignment allows you to open a gap and move 
everything to the left of that letter over by dragging in either direction with the mouse. The Colour 
menu contains options for color-coding alignments, most of which are most informative for protein 
sequence. The Calculate menu contains options for calculating consensus sequences and phylogenetic 
trees.  
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8.2.4 Sequence Logos 

Another way to view sequence alignments, and one which has become quite popular recently, is the 
sequence logo format developed by Tom Schneider of the National Cancer Institute. This format is 
especially good for shorter sequence regions, such as protein motifs. Consensus sequences represent 
each position in an alignment with the residue that is most commonly found in that position. Other 
information in the alignment, such as whether there are any other residues that occur at that site and 
with what relative frequencies they occur, is lost in a consensus sequence.  

Sequence logos, as illustrated in Figure 8-1, are a graphical way to represent relative frequencies, 
information content, order of substitution preference, and other characteristics of each site in an 
alignment.  

Figure 8-1. A sequence logo 

 

In a sequence logo, the letters in the column at each sequence position represent the consensus 
sequence in more detail than a standard single-letter consensus sequence would. The total height of a 
column represents the amount of information contained in that sequence position. [2] The sizes of the 
individual letters depict their relative frequency of occurrence.  

[2] For a thorough discussion of sequence logos and of information content in biological sequence data, you can download some very readable papers from Dr. Tom 
Schneider's web site at the National Cancer Institute: http://www-lecb.ncifcrf.gov/~toms/index.html. 

The software for creating sequence logos is part of a larger group of programs called the DELILA 
package, which was originally developed in the Pascal language. You actually need only two of the 
many DELILA programs (alpro and makelogo) to create logos from aligned sequences. Pascal 
compilers aren't among the compilers commonly found on Linux systems, but there is a standard GNU 
Pascal compiler you can download if you're feeling adventurous. The other way to compile the 
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software is to use the C versions of the programs that are now available. Because these programs have 
been automatically translated from Pascal, they require that the p2c (Pascal-to-C) libraries are installed 
on your system.  

An easier approach for the novice is to use the sequence logo web server at the University of 
Cambridge, which (as of this writing) is actually recommended by the author of the DELILA programs 
and hence, we assume, does exactly what it's supposed to do. Aligned sequences can be submitted to 
this server in FASTA alignment format, which can be generated by ClustalX.  

8.3 Phylogenetic Analysis 

Having covered some of the basics of multiple sequence alignment, we now introduce one of its 
applications: phylogenetic inference. Phylogenetic inference is the process of developing hypotheses 
about the evolutionary relatedness of organisms based on their observable characteristics. Traditionally, 
phylogenetic analyses have been based on the gross anatomy of species. When Linneaus developed the 
system of classification into kingdoms, phyla, genera, and species, the early biologists sorted living 
things into a symbolic Tree of Life, which we saw in Figure 1-3. This tree-based representation of the 
relationships among species is a phylogenetic tree; it has since been adopted as a convenient schematic 
for depicting evolutionary relatedness based on sequence similarity. The quantitative nature of 
sequence relationships has allowed the development of more rigorous methods and rules for tree 
drawing.  

While hand-drawn trees of life may branch fancifully according to what is essentially an artist's 
conception of evolutionary relationships, modern phylogenetic trees are strictly binary; that is, at any 
branch point, a parent branch splits into only two daughter branches. Binary trees can approximate any 
other branching pattern, and the assumption that trees are binary greatly simplifies the tree-building 
algorithms.  

The length of branches in a quantitative phylogenetic tree can be determined in more than one way. 
Evolutionary distance between pairs of sequences, relative to other sequences in an input data set, is 
one way to assign branch length.  

While a phylogeny of species generally has a root, assuming that all species have a specific common 
ancestor, a phylogenetic tree derived from sequence data may be rooted or unrooted. It isn't too 
difficult to calculate the similarity between any two sequences in a group and to determine where 
branching points belong. It is much harder to pinpoint which sequence in such a tree is the common 
ancestor, or which pair of sequences can be selected as the first daughters of a common ancestor. While 
some phylogenetic inference programs do offer a hypothesis about the root of a tree, most simply 
produce unrooted trees. Figure 8-2 and Figure 8-3 illustrate rooted and unrooted phylogenetic trees.  

Figure 8-2. A rooted phylogenetic tree 
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Figure 8-3. An unrooted phylogenetic tree 

 

A phylogeny inferred from a protein or nucleic acid sequence has only a passing resemblance to a 
whole-organism tree of life (a true tree) that represents actual speciation events. A single phylogeny 
may be a tree, and it may describe a biological entity, but it takes far more than a single evolutionary 
analysis to draw conclusions about whole-organism phylogeny. Sequence-based phylogenies are 
quantitative. When they are built based on sufficient amounts of data, they can provide valuable, 
scientifically valid evidence to support theories of evolutionary history. However, a single sequence-
based phylogenetic analysis can only quantitatively describe the input data set. It isn't valid as a 
quantitative tool beyond the bounds of that data set, and if you are using phylogenetic analysis tools to 
develop evolutionary hypotheses, it is critical to remember this point.  

It has been shown, by comparative analysis of phylogenies generated for different protein and gene 
families, that one protein may evolve more quickly than another, and that a single protein may evolve 
more quickly in some organisms than in others. Thus, the phylogenetic analysis of a sequence family is 
most informative about the evolution of that particular gene. Only by analysis of much larger sets of 
data can theories of whole-organism phylogeny be suggested.  

8.3.1 Phylogenetic Trees Based on Pairwise Distances 

One of the easiest to understand algorithms for tree drawing is the pairwise distance method. This 
method produces a rooted tree. The algorithm is initialized by defining a matrix of distances between 
each pair of sequences in the input set. Sequences are then clustered according to distance, in effect 
building the tree from the branches down to the root.  

Distances can be defined by more than one measure, but one of the more common and simple measures 
of dissimilarity between DNA sequences is the Jukes-Cantor distance, which is logarithmically related 
to the fraction of sites at which two sequences in an alignment differ. The fraction of matching 
positions in an ungapped alignment between two unrelated DNA sequences approaches 25%. 
Consequently, the Jukes-Cantor distance is scaled such that it approaches infinity as the fraction of 
unmatched residue pairs approaches 75%.  
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The pairwise clustering procedure used for tree drawing (UPGMA, unweighted pair group method 
using arithmetic averages) is intuitive. To begin with, each sequence is assigned to its own cluster, and 
a branch (or leaf ) of the tree is started for that sequence at height zero in the tree. Then, the two 
clusters that are closest together in terms of whatever distance measure has been chosen are merged 
into a single cluster. A branch point (or node) is defined that connects the two branches. The node is 
placed at a height in the tree that reflects the distance between the two leaves that have been joined. 
This process is repeated iteratively, until there are only two clusters left. When they are joined, the root 
of the tree is defined. The branch lengths in a tree constructed using this process theoretically reflect 
evolutionary time.  

8.3.2 Phylogenetic Trees Based on Neighbor Joining 

Neighbor joining is another distance matrix method. It eliminates a possible error that can occur when 
the UPGMA method is used. UPGMA produces trees in which the branches that are closest together by 
absolute distance are placed as neighbors in the tree. This assumption places a restriction on the 
topology of the tree that can lead to incorrect tree construction under some conditions.  

In order to get around this problem, the neighbor-joining algorithm searches not just for minimum 
pairwise distances according to the distance metric, but for sets of neighbors that minimize the total 
length of the tree. Neighbor joining is the most widely used of the distance-based methods and can 
produce reasonable trees, especially when evolutionary distances are short.  

8.3.3 Phylogenetic Trees Based on Maximum Parsimony 

A more widely used algorithm for tree drawing is called parsimony. Parsimony is related to Occam's 
Razor, a principle formulated by the medieval philosopher William of Ockham that states the simplest 
explanation is probably the correct one. [3] Parsimony searches among the set of possible trees to find the 
one requiring the least number of nucleic acid or amino acid substitutions to explain the observed 
differences between sequences.  

[3] Or, in other words, "It is futile to do with more what can be done with fewer."  

The only sites considered in a parsimony analysis of aligned sequences are those that provide 
evolutionary information—that is, those sites that favor the choice of one tree topology over another. A 
site is  considered to be informative if there is more than one kind of residue at the site, and if each type 
of residue is represented in more than one sequence in the alignment. Then, for each possible tree 
topology, the number of inferred evolutionary changes at each site is calculated. The topology that is 
maximally parsimonious is that for which the total number of inferred changes at all the informative 
sites is minimized. In some cases there may be multiple tree topologies that are equally parsimonious.  

As the number of sequences increases, so does the number of possible tree topologies. After a certain 
point, it is impossible to exhaustively enumerate the scores of each topology. A shortcut algorithm that 
finds the maximally parsimonious tree in such cases is the branch-and-bound algorithm. This algorithm 
establishes an upper bound for the number of allowed evolutionary changes by computing a tree using 
a fast or arbitrary method. As it evaluates other trees, it throws out any exceeding this upper bound 
before the calculation is completed.  

8.3.4 Phylogenetic Trees Based on Maximum Likelihood Estimation 
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Maximum likelihood methods also evaluate every possible tree topology given a starting set of 
sequences. Maximum likelihood methods are probabilistic; that is , they search for the optimal choice 
by assigning probabilities to every possible evolutionary change at informative sites, and by 
maximizing the total probability of the tree. Maximum likelihood methods use information about 
amino acid or nucleotide substitution rates, analogous to the substitution matrices that are used in 
multiple sequence alignment.  

8.3.5 Software for Phylogenetic Analysis 

There is a variety of phylogenetic analysis software available for many operating systems. With such a 
range of choices, which package do you use? One of the most extensive listings currently available is 
maintained by Dr. Joe Felsenstein, the author of the PHYLIP package, and is accessible from the 
PHYLIP web page (http://evolution.genetics.washington.edu/phylip.html). If you don't want to follow 
our example and use PHYLIP, you can easily find information about other packages.  

8.3.5.1 PHYLIP 

The most widely distributed phylogenetic analysis package is PHYLIP. It contains 30 programs that 
implement different phylogenetic analysis algorithms. Each of the programs runs separately, from the 
command line. By default, most of the programs look for an input file called infile and write an output 
file called outfile. Rather than entering parameters via command-line flags, as with BLAST, the 
programs have an interactive text interface that prompts you for information.  

The following are the PHYLIP programs you are most likely to use when you're just getting started 
analyzing protein and DNA sequence data:  

PROTPARS  

Infers phylogenies from protein sequence input using the parsimony method  

PROTDIST   

Computes an evolutionary distance matrix from protein sequence input, using maximum 
likelihood estimation  

DNAPARS  

Infers phylogenies from DNA sequence input using parsimony 

DNAPENNY  

Finds all maximally parsimonious phylogenies for a set of sequences using a branch-and-bound 
search  

DNAML  

Infers phylogenies from DNA sequence input using maximum likelihood estimation  

DNADIST  
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Computes a distance matrix from DNA sequence input using the Jukes-Cantor distance or one 
of three other distance criteria  

NEIGHBOR  

Infers phylogenies from distance matrix data using either the pairwise clustering or the neighbor 
joining algorithm  

DRAWGRAM  

Draws a rooted tree based on output from one of the phylogeny inference programs  

DRAWTREE  

Draws an unrooted tree based on output from one of the phylogeny inference programs  

CONSENSE  

Computes a consensus tree from a group of phylogenies  

RETREE  

Allows interactive manipulation of a tree by the user—not based on data  

PHYLIP is a flexible package, and the programs can be used together in many ways. To analyze a set 
of protein sequences with PHYLIP, you can:  

1. Read a multiple protein sequence alignment using PROTDIST and create a distance matrix.  
2. Input the distance matrix to NEIGHBOR and generate a phylogeny based on neighbor joining.  
3. Read the phylogeny into DRAWTREE and produce an unrooted phylogenetic tree.  

Or, you can: 

1. Read a multiple sequence alignment using PROTPARS and produce a phylogeny based on 
parsimony.  

2. Read the phylogeny using DRAWGRAM and produce a rooted tree.  

Each of the PHYLIP programs is exhaustively documented in the *.doc files available with the 
PHYLIP distribution. This documentation has been converted into HTML by several groups. Links to 
web-based PHYLIP documentation are available from the PHYLIP home page.  

Several organizations have made PHYLIP servers available on the Web; the version of PHYLIP in the 
SDSC Biology Workbench produces downloadable PostScript output.  

8.3.5.1.1 The PHYLIP input format 

PHYLIP's molecular sequence analysis programs can accept sequence data in an aligned (interleaved) 
format:  
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39  
Archaeopt  CGATGCTTAC CGCCGATGCT 
Hesperorni CGTTACTCGT TGTCGTTACT 
Baluchithe TAATGTTAAT TGTTAATGTT 
B. virgini TAATGTTCGT TGTTAATGTT 
Brontosaur CAAAACCCAT CATCAAAACC 
B.subtilis GGCAGCCAAT CACGGCAGCC 
 
TACCGCCGAT GCTTACCGC 
CGTTGTCGTT ACTCGTTGT 
AATTGTTAAT GTTAATTGT 
CGTTGTTAAT GTTCGTTGT 
CATCATCAAA ACCCATCAT 
AATCACGGCA GCCAATCAC 

where the first 10 characters are that sequence's name followed by the sequence in aligned form. 
Subsequent rows follow. In a sequential format, the complete first sequence is given, then the second 
complete sequence, etc. However, in either case, the sequences must be prealigned by another program. 
PHYLIP doesn't have a utility for computing multiple sequence alignments.  

If you examine the phylogeny output from PHYLIP, you'll find it's represented by codes indicating 
each of the sequences, arranged in nested parentheses. This is called Newick notation. The pattern of 
the parentheses indicates the topology of the tree. The innermost parentheses surround the terminal 
branches of the tree, e.g., (A,B), and each subsequent set of parentheses joins another pair of branches, 
e.g., ((A,B),(C,D)). If the algorithm that generates the phylogeny produces branch lengths, these branch 
lengths are associated explicitly with each branch within the Newick notation: e.g., 
((A:1.2,B:1.5):1.0,(C:2.5,D:0.5):1.2).  

8.3.5.2 Generating input for PHYLIP with ClustalX 

The multiple sequence alignment program ClustalX, which we discussed earlier in this chapter, draws 
phylogenetic trees with the neighbor joining method. Perhaps more importantly, it can read sequences 
in various input formats and then write PHYLIP-format files from multiple sequence alignments, using 
a simple Save As command from within the ClustalX interface.  

8.4 Profiles and Motifs 

In addition to studying relationships between sequences, one of the most successful applications of 
multiple sequence alignments is in discovering novel, related sequences. This profile- or motif-based 
analysis uses knowledge derived from multiple alignments to construct and search for sequence 
patterns. In this section, we first introduce some of the concepts behind motifs, then describe tools that 
use these principles to search sequence databases.  

First, by way of a refresher, a multiple sequence alignment is an alignment of anywhere from three to 
hundreds of sequences. Multiple sequence alignments can span the full sequence of the proteins 
involved or a single region of similarity, depending on their purpose. Multiple sequence alignments, 
such as the one shown in Figure 8-4, are generally built up by iterative pairwise comparison of 
sequences and sequence groups, rather than by explicit multiple alignment.  

Figure 8-4. A multiple sequence alignment, shown using ClustalX 
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A sequence motif is a locally conserved region of a sequence, or a short sequence pattern shared by a 
set of sequences. The term "motif" most often refers to any sequence pattern that is predictive of a 
molecule's function, a structural feature, or family membership. Motifs can be detected in protein, 
DNA, and RNA sequences, but the most common use of motif-based analyses is the detection of 
sequence motifs that correspond to structural or functional features in proteins. Motifs are generated 
from multiple sequence alignments and can be displayed as patterns of amino acids (such as those in 
the Prosite database) or as sequence logos. For computational purposes, they can be represented as 
flexible patterns, position-specific scoring matrices, or profile hidden Markov models.  

Motifs can be created for protein families, or sets of proteins whose members are evolutionarily related. 
Protein families can consist of many proteins that range from very similar to quite diverse. While the 
idea of a protein family is a fairly common concept, the method of selecting a protein family and 
defining its limits depends on the researcher who defines it. As in pairwise sequence comparison, there 
is a lower bound beyond which homology can't easily be detected. Motif-based methods can push this 
lower bound by detecting particularly subtle sequence patterns and distant homologs.  

A sequence profile is a quantitative or qualitative method of describing a motif. A profile can be 
expressed in its most rudimentary form as a list of the amino acids occurring at each position in the 
motif. Early profile methods used simple profiles of this sort; however, modern profile methods usually 
weight amino acids according to their probability of being observed at each position.  

Figure 8-5 shows a position-specific scoring matrix (PSSM), which is a matrix of scores representing a 
motif. Unlike a standard scoring matrix, the first dimension of the matrix is the length of the motif; the 
second dimension consists of the 20 amino acid possibilities. For each position in the matrix, there is a 
probability score for the occurrence of each amino acid. Most methods for developing position-specific 
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scoring matrices normalize the raw probabilities with respect to a standard scoring matrix such as 
BLOSUM62.  

Figure 8-5. PSSMs for sequence motifs common to zinc finger proteins 

 

Finally, a profile hidden Markov model (HMM) is the rigorous probabilistic formulation of a sequence 
profile. Profile HMMs contain the same probability information found in a PSSM; however, they can 
also account for gaps in the alignment, which tends to improve their sensitivity. Because profile 
analysis methods are still a subject of active research, there are many different programs and methods 
for motif discovery and profile building. We will focus on two of the easiest motif discovery packages 
to use, MEME and HMMer. We also describe the searchable databases of preconstructed protein 
family motifs—some with associated PSSMs or profile HMMs—offered by several organizations.  

8.4.1 Motif Databases 

We have seen that profiles and other consensus representations of sequence families can be used to 
search sequence databases. It shouldn't be too surprising, then, that there are motif databases that can be 
searched us ing individual sequences. Motif databases contain representations of conserved sequences 
shared by a sequence family. Today, their primary use is in annotation of unknown sequences: if you 
get a new gene sequence hot off the sequencer, scanning it against a motif database is a good first 
indicator of the function of the protein it encodes.  

Motifs are generated by a variety of methods and with different objectives in mind. Some rely on 
automated analysis, but there is often a large amount of hands-on labor invested in the database by an 
expert curator. Because they store only those motifs that are present in reasonably large families, motif 
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databases are small relative to GenBank, and they don't reflect the breadth of the protein structure or 
sequence databases. Be aware that an unsuccessful search against a motif database doesn't mean your 
sequence contains no detectable pattern; it could be part of a family that has not yet been curated or that 
doesn't meet the criteria of the particular pattern database you've searched. For proteins that do match 
defined families, a search against the pattern databases can yield a lot of homology information very 
quickly.  

8.4.1.1 Blocks 

Blocks, a service of the Fred Hutchinson Cancer Research Center, is an automatically generated 
database of ungapped multiple sequence alignments that correspond to the most conserved regions of 
proteins. Blocks is created using a combination of motif-detection methods, beginning with a step that 
exhaustively searches all spaced amino acid triplets in the sequence to discover a seed alignment, 
followed by a step that extends the alignment to find an aligned region of maximum length. The Blocks 
database itself contains more than 4,000 entries; it is extended to over 10,000 entries by inclusion of 
blocks created from entries in several other protein family databases (see Section 8.4.1.6). The Blocks 
server also provides several useful search services, including IMPALA (which uses the BLAST 
statistical model to compare a sequence against a library of profiles) and LAMA (Local Alignment of 
Multiple Alignments; Shmuel Pietrokovski's program for comparing an alignment of your own 
sequences against a database of Blocks).  

8.4.1.2 PROSITE 

PROSITE is an expert-curated database of patterns hosted by the Swiss Institute of Bioinformatics. It 
currently contains approximately 1,200 records, and is available for download as a structured flat file 
from http://ftp.expasy.ch. PROSITE uses a single consensus pattern to characterize each family of 
sequences. Patterns in PROSITE aren't developed based on automated analysis. Instead, they are 
carefully selected based on data published in the primary literature or on reviews describing the 
functionality of specific groups of proteins. A humorous cartoon on the PROSITE server indicates that 
the optimal method for identifying patterns requires only a human, chalk, and a chalkboard. PROSITE 
contains pattern information as well as position-specific scoring matrices that can detect new instances 
of the pattern.  

8.4.1.3 Pfam 

Pfam is a database of alignments of protein domain families. Pfam is made up of two databases: Pfam-
A and Pfam-B. Pfam-A is a curated database of over 2,700 gapped profiles, most of which cover whole 
protein domains; Pfam-B entries are generated automatically by applying a clustering method to the 
sequences left over from the creation of Pfam-A. Pfam-A entries begin with a seed alignment, a 
multiple sequence alignment that the curators are confident is biologically meaningful and that may 
involve some manual editing. From each seed alignment, a profile hidden Markov model is constructed 
and used to search a nonredundant database of available protein sequences. A full alignment of the 
family is produced from the seed alignments and any new matches. This process can be iterated to 
produce more extensive families and detect remote matches. Pfam entries are annotated with 
information extracted from the scientific literature, and incorporate structural data where available. As 
a final note, Pfam is the database of profile HMMs used by the GeneWise genefinder to search for open 
reading frames.  

8.4.1.4 PRINTS 
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PRINTS is a database of protein motifs similar to PROSITE, except that it uses "fingerprints" 
composed of more than one pattern to characterize an entire protein sequence. Motifs are often short 
relative to an entire protein sequence. In PRINTS, groups of motifs found in a sequence family can 
define a signature for that family.  

8.4.1.5 COG 

NCBI's Clusters of Orthologous Groups (COG) database is a different type of pattern database. COG is 
constructed by comparing all the protein sequences encoded in 21 complete genomes. Each cluster 
must consist of protein sequences from at least three separate genomes. The premise of COG is that 
proteins that are conserved across these genomes from many diverse organisms represent ancient 
functions that have been conserved throughout evolution. COG entries can be accessed by organism or 
by functional category from the NCBI web site. COG currently contains more than 2,100 entries.  

8.4.1.6 Accessing multiple databases 

So, which motif database should you use to analyze a new sequence? Because the comparisons are 
performed quickly and efficiently, we recommend you use as many as possible, keeping track of the 
best matches from each, their scores, and (if available) the significance of the hit. While Blocks uses 
InterPro as one of the sources for its  own patterns, as of June 2000 it contains only ungapped patterns, 
omitting gapped profiles such as those contained in Pfam-A and PROSITE. Fortunately, all the motif 
databases discussed here have search interfaces available on the Web, most of which accept input in 
FASTA format or FASTA alignment format.  

One service that allows integrated searching of many motif databases is the European Bioinformatics 
Institute's Integrated Resource of Protein Domains and Functional Sites (InterPro to its friends). 
InterP ro allows you to compare a sequence against all the motifs from Pfam, PRINTS, ProDom, and 
PROSITE. InterPro motifs are annotated with the name of the source protein, examples of proteins in 
which the motif occurs, references to the literature, and related motifs.  

8.4.2 Constructing and Using Your Own Profiles 

Motif databases are useful if you're looking for protein families that are already well documented. 
However, if you think you've found a new motif you want to use to search GenBank, or you want to get 
creative and look for patterns in unusual places, you need to build your own profiles. Several software 
packages and servers are available for motif discovery, the process of finding and constructing your 
own motifs from a set of sequences. The simplest way to construct a motif is to find a well-conserved 
section out of a multiple sequence alignment. As usual, though, we encourage you to use automated 
approaches instead of doing things by hand: automation makes your work faster, more reproducible, 
and less error-prone. In addition to Block Maker, a number of other programs are commonly used to 
search for and discover motifs. In this section, we discuss the use of the MEME and HMMer programs, 
two packages commonly used for motif analysis.  

Before we begin, though, here are two observations about motif discovery. First, as InterPro and 
Blocks grow, it is becoming increasingly difficult to find completely novel sequence motifs 
undocumented by one of their member databases. Be sure to check your motif against the set of known 
motifs, either by searching your sequences against the databases or by using a motif-comparison tool, 
such as the Blocks server's LAMA program. Second, in order to find patterns reliably and search with 
them, you need a lot of sequences. We have used these programs in projects where very few (5-10) 
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sequences were available, but, as a rule of thumb, more than 20 sequences are needed for reasonable 
motif predictions. The more sequences you have, the more reliable the resulting motifs will be.  

8.4.2.1 Finding new motifs with MEME 

The MEME programs are a set of tools for motif analysis developed by Charles Elkan, Tim Bailey, and 
William Grundy of the University of California, San Diego. MEME is short for Multiple EM for Motif 
Elicitation (EM, in turn, is short for Expectation Maximization, a procedure from the world of statistics 
for predicting the values of "missing," or unobserved, values). They can be used over the Web 
(http://meme.sdsc.edu) or their C source code can be downloaded, compiled, and run on a local 
computer; here, we look at the web version. There are three programs in the MEME suite:  

MEME  

Discovers shared motifs in a set of unaligned sequences  

MAST  

Takes a motif discovered by MEME and uses it to search a sequence database  

MetaMEME   

Constructs a model from multiple MEME motifs and uses it to search a sequence database  

When you submit a set of sequences to MEME, you are testing the hypothesis that, although though 
you don't know the overall alignment of the sequences, they share short regions of similarity. You 
begin using MEME by entering on a web form your email address and a set of sequences in which you 
wish to search for a motif. Sequences can be in one of several formats, although FASTA is preferred. 
At the bottom of the sumission page are some parameters you need to set regarding the number of 
times per sequence you expect a motif to occur, the number of motifs you expect to find, and the 
approximate width of each motif.  

The results will be sent back to you in three emails. The first is just a confirmation message, letting you 
know that the job is being processed. The second (with the subject line "MEME Job xxxxx results:", 
where xxxxx is the job number assigned by the MEME server) contains MEME's prediction for the 
motifs in both human- and machine-readable form. This message is the one you need to search the 
database; be sure to save the contents of this message to a text file, so you can later submit it to MAST 
or MetaMEME. The third message (with the subject line "MEME job... MAST analysis:") is an HTML 
document (making it suitable for viewing in a web browser) that shows the location of each motif in the 
sequences you submitted. Each message is well documented and contains detailed explanations of the 
contents.  

8.4.2.2 Searching for motifs with MAST and MetaMEME 

The next step of a motif analysis is to see whether there are new occurrences of your motif in other 
sequences. The MEME server provides two distinct programs, MAST and MetaMEME, that allow you 
to search a sequence database using your new MEME motifs. MAST simply searches for occurrences 
of each motif and reports matching sequences, while MetaMEME combines multiple MEME motifs 
into a hidden Markov model and uses that model to search the database. Both MAST and MetaMEME 
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take the MEME motif prediction from the second email [4] as input; MetaMEME also uses the original 
sequence file that generates the MEME motifs in creating its HMM. Both programs return results 
showing the position of each match, its score, and its statistical significance.  

[4] You did save the second email to a text file as we suggested, didn't you? 

8.4.2.3 Motif discovery with other programs 

As we mentioned previously, there are a number of programs that discover motifs in groups of 
unaligned sequences. Besides the ones we mentioned, you may want to try these: the SAM HMM 
programs developed by David Haussler and coworkers at University of California, Santa Cruz; the 
Emotif and Ematrix servers in the Brutlag group at Stanford University; and the ASSET, gibbs, and 
Probe tools available for download from NCBI. Again, a good thing to do early on is to use the LAMA 
program to compare your motif against the motifs in the Blocks database. If it looks like you really do 
have a novel motif, it can be useful to compare the results of one or more of these other motif discovery 
tools. If all the programs predict the same motif from the same sequences, you can be more confident in 
your results.  

8.4.2.4 HMMer 

HMMer is a software package for building profile HMMs. HMMer's central functionality is located in 
the hmmbuild program, which creates profile HMMs from sequence alignment, and the hmmcalibrate 
program, which calibrates search statistics for the HMM. The HMMer package also contains tools for 
generating new sequences probabilistically based on an HMM, searching sequence databases with a 
profile as the query, and searching profile databases with a query sequence, as well as the handy utility 
programs we list here:  

getseq  

Extracts a sequence from a large flat-file database by name. Handy to have around if you're 
selecting specific records out of a database from the command line.  

hmmalign  

Reads both a sequence file and a profile HMM and creates a multiple sequence alignment.  

hmmbuild  

Builds a profile HMM from a multiple sequence alignment. It can produce global results for the 
entire alignment or results for multiple local alignments.  

hmmcalibrate  

Reads an HMM and calibrates its search statistics.  

hmmconvert  

Converts an HMM into other profile formats, notably GCG profile format.  
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hmmemit  

Generates sequences probabilistically based on a profile HMM. It can also generate a consensus 
sequence.  

hmmfetch  

Retrieves a profile HMM from a database if the name of the desired record is known.  

hmmindex  

Indexes a profile HMM database.  

hmmpfam  

Searches a profile HMM database (e.g., Pfam) with a query sequence. Use this if you're trying 
to annotate an unknown sequence.  

hmmsearch  

Searches a sequence database with a profile HMM. Use this if you're looking for more instances 
of a pattern in a sequence database.  

sreformat  

Converts a sequence or alignment file from one format to another. Handy to have around.  

HMMer reads multiple sequence alignment files from several different sequence alignment programs, 
including ClustalW. The HMMer authors recommend ClustalW as a tool to generate multiple 
alignments for input into hmmbuild.  

HMMer is available for download from Dr. Sean Eddy at Washington University 
(http://hmmer.wustl.edu). HMMer is a very well-behaved program, which installs without difficulty 
from source on Linux systems: just follow the directions in the INSTALL file. It even installs its own 
Unix manpages so you can access online help for each of the HMMer programs using the man 
command. Specific information about each of the HMMer programs' command-line options can also be 
viewed by running the program with the -h option.  

8.4.3 Incorporating Motif Information into Pairwise Alignment 

Multiple sequence information can optimize pairwise alignments. The BLAST package contains two 
new modes that use multiple alignment information to improve the specificity of database searches. 
These modes are accessed through the blastpgp program.  

Position Specific Iterative BLAST (PSI-BLAST) is an enhancement of the original BLAST program 
that implements profiles to increase the specificity of database searches. Starting with a single 
sequence, PSI-BLAST searches a database for local alignments using gapped BLAST and builds a 
multiple alignment and a profile the length of the original query sequence. The profile is then used to 
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search the protein database again, seeking local alignments. This procedure can be iterated any number 
of times. One caveat of using PSI-BLAST is that you need to know where to stop. Errors in alignment 
can be magnified by iteration, giving rise to false positives in the ultimate sequence search. PSI-
BLAST can be used as a standalone by running the blastpgp program. However, the NCBI PSI-BLAST 
server is probably the optimal way to run a PSI-BLAST search. The server requires you to decide after 
each iteration whether to continue to another iteration, and you can hand-pick the sequences that 
contribute to the profile at each step.  

Pattern Hit Initiated BLAST (PHI-BLAST) takes a sequence and a preselected pattern found in that 
sequence as input to query a protein sequence database. The pattern must be expressed in PROSITE 
syntax, which is described in detail on the PHI-BLAST server site. PHI-BLAST can also initiate a 
series of PSI-BLAST iterations, and can be a standalone program or a (vastly more user-friendly) web 
server.  
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Chapter 9. Visualizing Protein Structures and Computing 
Structural Properties 

Analysis of protein 3D structures is a more mature field than biological sequence analysis. The Protein 
Data Bank started distributing coordinates of macromolecular crystal structures in the early 1970s, and 
since that time, many research groups and companies have developed software to visualize and 
measure the properties of protein structures.  

Visualization of structure and measurement of structural properties are important tools for molecular 
and structural biologists. Being able to "see" the 3D structure of a protein and analyze its shape in 
detail can suggest the location of catalytic sites and interaction sites, and can help identify targets for 
the site-directed mutagenesis studies that are so often used to arrive at a detailed characterization of a 
protein's functional chemistry.  

Here are some recent applications of this type of approach in molecular biology:  

• Molecular modeling of an allergy-causing protein from mountain cedar pollen and subsequent 
identification of the region that causes allergic response  

• Characterization of the mutagenic active site in DNA reverse transcriptase from the HIV virus; 
this site is thought to be responsible for the ability of the HIV virus to mutate rapidly  

• Modeling of a DNA binding protein involved in Bloom syndrome, and characterization of the 
mutations that cause the disease  

There are many specialized analysis programs in the protein structure literature, and we will not 
attempt to catalogue all these methods. Instead, we present an introduction to standard operations for 
analyzing and modeling protein structure, with examples of software for each purpose: visualization 
and plotting; geometric and surface property analysis; classification; analysis of intramolecular 
interactions and solvent interactions; and computation of some physicochemical properties.  

For all-purpose molecular structure modeling, the easiest-to-use tools are still commercial packages 
such as MSI's Quanta and Insight, Tripos' SYBYL, and others. However, licensing for these packages, 
especially for multiple users, is quite expensive and they generally require specialized high-end 
hardware (such as SGI and IBM Unix workstations) to run. In this chapter, we again focus on software 
that can run on a standard desktop PC under Linux or within a web browser on any platform.  

9.1 A Word About Protein Structure Data 

Because protein structure analysis is a relatively old field, evolving earlier in the history of computers 
than sequence analysis, it has inherited some inconveniences. While many programs use the standard 
PDB format, others, especially molecular simulation software, expect input in slightly or significantly 
different forms. And because protein structure analysis software is older, many programs are written in 
the FORTRAN language and are very picky about data input formats. Data standardization at the PDB 
is excellent, but standardization at the individual software package level isn't as good. If you're going to 
be doing a lot of work with protein structure data it may be necessary to learn some programming to be 
able to convert structure files to alternate formats when necessary. We show an example of a simple 
structure file-format conversion in Chapter 12.  
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The Brookhaven PDB format is the protein structure data format that most structure-analysis programs 
use. This format met the needs of the protein structure field in the 1970s, and was especially human-
readable, and compatible with FORTRAN programs, because of its use of rigidly structured 80-
character lines. This format consists of a header section that contains miscellaneous information about 
the structure, including literature citations; resolution; crystallographic parameters; sequence, and 
sometimes secondary structure information; and a section that contains atom records. Atoms labeled 
ATOM are part of the protein chain, while atoms labeled HETATM (for heteroatom group) are part of 
cofactor molecules, substrates, ions, or other groups that aren't a covalently bound part of the protein 
chain. A detailed line-by-line description of the Brookhaven format is available from the RCSB PDB 
web site.  

Protein structure files also are available from the PDB in a new format called mmCIF (the 
Macromolecular Crystallographic Information Format) and from NCBI in the ASN.1 file format. Both 
of these formats are highly parseable by computers, and if you are writing computer programs to 
analyze protein structures, they may be easier to use than the obsolete Brookhaven format. However, 
you'll need to consider that the user community is still attached to the Brookhaven format.  

9.2 The Chemistry of Proteins 

To work with protein sequence and structure, you need a working knowledge of protein chemistry—the 
kind of knowledge you'd probably have picked up in an undergraduate organic chemistry course. We'll 
provide you with a little of that vocabulary here, and you can find out more from the references listed 
in the Bibliography. If you already know what you need to know about protein chemistry, you can skip 
ahead to Section 9.3.  

The reason you should have a basic knowledge of organic chemistry when studying protein structures 
is simple. Proteins often perform their functions using standard organic reaction mechanisms, mediated 
by amino acids and small organic molecules (cofactors) that bind to the protein, or by metal ions. To 
understand how the protein structure might catalyze a reaction, you need to understand enough about 
organic reaction mechanisms to develop a hypothesis about how the reaction might work, given the 
shape of the protein and the location of various amino acids.  

Even in cases in which a catalytic mechanism isn't your main concern, chemistry comes into play. 
Protein association is often mediated by the electrostatic properties of the protein structure; interacting 
molecules can be drawn together over considerable distances by strong electrostatic potentials. Within 
protein structures, hydrogen bonds and other interatomic interactions confer structural stability. 
Interatomic interactions and molecular shapes are the basis of the specificity of intermolecular 
interactions —the interactions of proteins with other proteins or with small molecule substrates. You are 
likely to be concerned about molecular specificity in practical applications of biochemistry—designing 
small-molecule or peptide drugs, understanding the molecular basis of disease and immunity, or 
delving into the specific molecules involved in sending molecular signals between cells and through the 
body.  

The tools in this chapter enable you to look at a protein structure, see what its features are, locate 
different types of amino acids and visualize specific subsets of the protein, measure distances and 
surface areas, and compute spatially variable properties such as solvent accessibility and electrostatic 
potentials. However, what you can do with those tools depends on your understanding of protein 
chemistry.  
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9.2.1 From 1D to 3D 

How does the chemistry of a protein relate to its 1D sequence? In Chapter 8, we discussed techniques 
for detecting characteristic conserved patterns, called motifs, in families of protein sequences. We can 
find these sequence patterns in 1D data because although the 3D structure of a protein is complex, it is 
somehow determined by the invariant sequence of amino acids that makes up the protein. Motifs that 
are conserved in sequence often are related to important structural or functional features of a protein 
family, and those features often can be understood by their roles in the protein structure.  

When amino acids come together in sequence to form a polymer, they do so by forming a peptide bond 
between the basic amino group and the acidic carboxyl group of each amino acid (Figure 9-1). This 
results in a long chain of amino acids that has a repeating backbone structure.  

Figure 9-1. Peptide bond, peptide chain (chemical notation) 

 

The variable group of each amino acid protrudes from the repeating backbone and is referred to in the 
protein structure business as a sidechain (Figure 9-2). Each of the 20 amino acid sidechains is 
chemically different from the others in some respect.  

Figure 9-2. The amino acid sidechains (chemical notation) 
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The sidechains can be classified in many ways. Some are relatively large, while others are tiny or in 
one case nonexistent. Some have a positive or negative charge. Some are oily, or hydrophobic (water-
fearing), meaning that it's energetically unfavorable for them to be solvated in water. Others are 
hydrophilic (water-loving), and they solvate easily in water. Some have bulky ringlike structures, while 
others are straight carbon chains. Some are acids, others are bases. Amino acids are conserved through 
evolution at specific locations in a protein sequence because they are needed there, whether to stabilize 
the protein structure, to form a specific binding site, or to catalyze a reaction. You can detect that 
particular amino acids in a protein are conserved by looking at sequence data, but to develop a 
hypothesis about why they are conserved, it's helpful to examine the 3D protein structure. Figure 9-3 
shows the 20 amino acids classified into chemically similar groups. Note that many of the amino acids 
fall into more than one category. An amino acid sidechain can be both "nonpolar" and "basic," for 
instance, like lysine, which has a long aliphatic sidechain that terminates in an amino group. Because 
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the relationship between chemical characteristics and amino acids isn't one-to-one, but rather many-to-
many, it's not always simple to predict the effects of an amino acid substitution.  

Figure 9-3. The amino acid sidechains (classification in a Venn diagram)  

 

Interatomic forces aren't responsible only for specific interactions that form binding and interaction 
sites; they also are responsible for the formation of certain standard patterns that are consistently 
observed in protein structure. The amino acid backbone is sterically constrained—restricted from 
moving in certain ways because atoms will bump into each other—to follow only certain pathways. 
You may already be familiar with the alpha helix and beta sheet structures that commonly occur in 
protein structures; the reason that alpha helices and beta sheets are common is the steric restrictions on 
the protein backbone.  

From the known structures of amino acids, Pauling and Corey first predicted the existence of alpha 
helices and beta sheets as a component of protein structure. Ramachandran first described exactly what 
range of conformations are available to amino acids in a peptide chain. Peptide chain conformation is 
simply described by the values of the dihedral angles in the protein backbone (i.e., the angle described 
by the four atoms surrounding the N-C  bond and the angle described by the four atoms surrounding 

the C -C bond). These angles are referred to as and , respectively. The chain isn't free to rotate 
around the third kind of bond in the protein backbone, the peptide bond, because it is a partial double 

bond and hence chemically constrained to be planar, so the values of and for each amino acid 
provide a complete description of the protein backbone. A Ramachandran map is simply a plot of 

versus for an entire protein structure. One means of evaluating a protein structure model is to 
compare its individual Ramachandran map with the general Ramachandran map of allowed values of 

and .  

Figure 9-4 is a general Ramachandran map that shows the allowed combinations of and values for 
amino acids in protein structures. The small shaded region in the lower left quadrant of the map is the 
standard conformation of an amino acid in an alpha helix. The larger shaded region in the upper left 
quadrant of the map is the standard conformation of an amino acid in a beta sheet, or extended 
structure.  

Figure 9-4. Ramachandran map of allowed conformation for protein backbones 
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It's apparent from the Ramachandran map that steric interactions are very important determinants of the 
general features of protein structure. Steric interactions instantly eliminate a large fraction of possible 
conformations for proteins and leave relatively few options for how a compact structure can form from 
a linear chain of amino acids.  

The sequence of a protein is called its primary structure; the most basic level of organization in a 
protein is the sequence of amino acids. Alpha helix and beta sheet structures, shown in Figure 9-5, are 
known collectively as secondary structures and are the next level of organization. Interactions between 
multiple secondary structure elements give rise to supersecondary structure and tertiary structure—
helices and sheets contacting each other to form larger characteristic structures, which can be described 
by their topology.  

Figure 9-5. Alpha helix and beta strand structures 
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To create a functional protein, the sequence of amino acids in the protein chain must give rise to the 
proper 3D fold for the protein, and it must also place individual amino acids at appropriate points on 
that scaffold to carry out the protein's chemistry. Finding ways to extract those chemical instructions 
from the sequences of known proteins, formulating them as rules, and using those rules to predict the 
structure of other proteins is one of the biggest open research problems in bioinformatics.  

9.2.2 Interatomic Forces and Protein Structure 

Since the form that a protein structure can take and its chemical characteristics are governed by 
interatomic interactions, it is important to have at least a basic understanding of the interatomic 
interactions that play a role in protein structure. Interactions between atoms are physically complicated 
and to describe them in detail would require a whole other book, which fortunately has already been 
written by someone else: see the Bibliography. What we hope to give you is a rudimentary knowledge 
of these forces, to help you understand why computer methods have been developed to measure and 
calculate particular structural properties of proteins.  

Understanding these forces gives us a basis for designing evaluative and predictive methods. Threading 
methods rely on the ability to discriminate between an amino acid that is in a favorable chemical 
environment and one that isn't. Homology modeling and structure optimization methods rely on rules 
for spacing between atoms, bond lengths, bond angles, and other values. These rules can be derived 
from chemical experiments on small molecules or from the distribution of observed values in known 
protein structures. However these rules are constructed, though, they reflect energetically favorable 
interactions between atoms.  

9.2.2.1 Covalent interactions 
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Covalent interactions are the very short range (approximately 1 to 1.5 angstroms); they are very strong 
forces that bind atoms together into a molecule. In covalent bonding, the atoms involved actually share 
electrons. Unlike other forces encountered in protein structures, covalent bonds actually change the 
nature of the atoms involved to some extent. Atoms involved in covalent bonds are no longer discrete 
entities; instead, they combine to form a new molecule.  

The protein backbone, including the peptide bond that joins one amino acid to another, is held together 
by covalent bonds. Amino acids retain some of their chemical individuality within the protein structure, 
but formally they become part of a new molecule. Atoms within individual amino acid sidechains are 
also covalently bonded to each other. These covalent bonds place strong constraints on the distance 
between atoms in a protein structure.  

Because covalent interactions are strongly constrained by physicochemical rules, an important part of 
the verification process for structural quality is making sure that bond lengths, bond angles, and 
dihedral angles don't vary dramatically from their allowed values. Covalent bond lengths are 
determined by the size and type of the atoms involved and by the number of electrons shared between 
atoms. The more electrons are shared, the shorter and stronger the bond. Bond angles are constrained 
by the structure of atomic orbitals. Dihedral angles, the angles of rotation of two bonded pairs of atoms 
with respect to each other around a central bond, are constrained primarily by steric hindrance. These 
chemical constraints are also used in macromolecular simulation, where they are associated with 
applied forces that keep the molecule in allowed conformations.  

9.2.2.2 Hydrogen bonds 

Hydrogen bonds arise when two polar groups interact. The two polar groups must be of specific types. 
One must be a proton donor, a chemical group in which a proton (hydrogen atom) is covalently bonded 
to a strongly electronegative atom such as oxygen. The bond between the proton and the 
electronegative atom is polarized, giving the proton a partial positive charge and the electronegative 
atom a partial negative charge. The other group must be a proton acceptor, an electronegative atom 
with a partial negative charge and no attached proton. The positively polarized proton in the first group 
is attracted to the negatively polarized second group, and the two form a bond that isn't covalent, but is 
nonetheless, much shorter and stronger than a normal nonbonded interaction. Hydrogen bonds are 
unusual among nonbonded and electrostatic interactions because they are strongly directional; they 
weaken if the angle described by the three atoms involved is too large or too small.  

Hydrogen bond interactions are one of the most important stabilizing forces in protein structure. The 
protein backbone contains a proton donor, in its N-H group, and a proton acceptor, in its carbonyl 
oxygen, spaced at regular intervals along the chain (Figure 9-6). The interaction of these groups 
stabilizes the two major types of secondary structure, the alpha helix and the beta sheet (Figure 9-7). 
Therefore, some structure prediction methods attempt to use the presence of potential hydrogen bond 
pairs to improve the accuracy of predictions.  

Figure 9-6. Proton donor and acceptor in the protein backbone 
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Figure 9-7. Hydrogen bonding in alpha helices and beta sheets 

 

9.2.2.3 Hydrophobic and hydrophilic interactions 

A much-discussed (and frequently wrongly used) concept in protein structure analysis is that of the 
hydrophobic force. We've already mentioned in passing that amino acids can be classified as 
hydrophobic or hydrophilic. What exactly does this mean?  

Proteins, except for those bound within cell membranes, always exist in aqueous solution. They 
constantly interact with water molecules. Water is a solution that has some interesting properties, and 
these properties contribute to the stability of the compact globular structures that characterize cellular 
proteins.  
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Water is a polar molecule. Individual water molecules in liquid water can each form four hydrogen 
bonds with neighboring water molecules. Liquid water is an essentially uninterrupted lattice of 
hydrogen bonded molecules, as seen in Figure 9-8. This unusual property contributes to the high 
melting and boiling points of water, as well as to such properties as low compressibility and high 
surface tension. It also results in interesting interactions of water with soluble proteins.  

Figure 9-8. Hydrogen bonding in water 

 

A nonpolar molecule dissolved in water interrupts the regular hydrogen bond lattice of liquid water. 
Individual water molecules can reorient around a small nonpolar molecule to preserve their network of 
hydrogen bonds, but this reorientation has a cost in terms of free energy (which is how cost is measured 
in chemistry). The presence of a nonpolar solute forces water molecules into a more ordered 
conformation than they would ordinarily assume. Instead of being able to face any which way and 
rotate freely, water molecules near the surface of a nonpolar solute have to work around it and form a 
cage. This is entropically unfavorable.  

The larger a nonpolar solute gets, the more water molecules need to reorient to accommodate it, and the 
higher the energy cost of solvating the molecule becomes. Of course, if the nonpolar solute has some 
polar groups on its surface, water molecules can use those groups as hydrogen bonding partners instead 
of other water molecules, and the water lattice is less disturbed. Globular proteins, which exist in 
aqueous solution even though they are composed substantially of nonpolar groups, must present a good 
hydrogen-bonding surface to the world. Hydrophilic amino acids are those whose sidechains offer 
hydrogen bonding partners to the surrounding medium, while hydrophobic amino acids' sidechains 
don't. The surface of a globular protein is usually anywhere from 50%-75% polar atoms, and deviations 
in this pattern can suggest binding or complexation sites.  

Solvent accessibility and hydrophobicity play an important role in evaluating model structures. 
Threading methods for protein fold recognition use amino acid environments in evaluating models. 
When many hydrophobic amino acids are found in solvent-exposed structural environments or 
hydrophilic amino acids buried in the protein interior, it is considered unlikely that the protein model is 
folded correctly.  

9.2.2.4 Charge-charge, charge-dipole, and dipole-dipole interactions 

Unlike covalent bonds, the other important interactions in protein structure are nonspecific. They don't 
change the discrete nature of the interacting atoms. They involve no sharing of electrons. Covalently 
bonded atoms are married; noncovalently bonded atoms are just shacking up.  



 199 

Several kinds of important forces can aris e among polar and charged atoms. An ion is an atom that has 
a net positive or negative charge due to either a surplus or a deficit of electrons. Atoms that carry a 
positive ionic charge are attracted to atoms that carry a negative ionic charge, with a strength that 
depends on the size of the charges and the inverse of the distance between the atoms. In proteins, 
charge-charge interactions occur between the sidechains of acidic and basic amino acids that are 
negatively charged or positively charged due to loss or gain of a labile proton under normal 
physiological conditions. The charge-charge interactions between amino acids in a protein structure are 
called salt bridges, and they can contribute a significant stabilizing force to a protein structure.  

There are other, weaker interactions that occur between charges and groups that don't carry a positive 
or negative ionic charge. Dipolar molecules are molecules like those involved in hydrogen bonds, in 
which one end of the molecule has a partial positive charge and the other end has a partial negative 
charge. The dipole of a molecule is essentially a vector that describes the magnitude of the polarization 
along a bond. Dipolar molecules can be strongly attracted to other partial charges or to ionic charges. 
Many amino acid sidechains, as well as the protein backbone, have a strongly dipolar character, so 
charge-dipole and dipole-dipole interactions play a substantial role in stabilization of protein structure.  

9.2.2.5 Van der Waals forces 

The van der Waals force is a nonspecific attractive force between molecules. This force is loosely 
analogous to gravity, in that it exists between every pair of nonbonded atoms, and it's a fairly long-
range force. However, it doesn't arise simply from the mass of the atoms involved, but from the 
transient attractive forces between the instantaneous dipole moments of each atom. The van der Waals 
force is quite strong, and because van der Waals interactions are nonspecific and numerous they play a 
significant role in protein folding and protein association.  

9.2.2.6 Repulsive forces 

Repulsive forces, or steric interactions, are very short range forces that increase sharply as atomic 
centers approach each other. The radius at which the repulsive force begins to increase sharply defines 
a spherical boundary around each atom center inside which another atom's spherical boundary (called 
the van der Waals radius) can't pass. If two nonbonded atoms in a structure get into each other's 
personal space, the contact is energetically unfavorable. In real molecules, atoms stay out of each 
other's way. However, in models of molecules, whether derived from NMR or x-ray data or built from 
scratch, checking for van der Waals bumps between nonbonded atoms is an important part of the 
structure-refinement process.  

9.2.2.7 Relative strength of interatomic forces 

The interaction between atoms can be described by a pair potential, such as the Lennard-Jones 
potential (Figure 9-9), which includes both an attractive and a repulsive term. The form of the potential 
shows that atoms tend to repel each other at very short range (positive potential energy indicating an 
unfavorable interaction) but to attract each other at slightly longer range. The strength of the attraction 
decays with distance, depending on the forces modeled.  

Figure 9-9. Plot of Lennard-Jones potential 
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When making inferences about structural stability or function based on intermolecular interactions, it is 
important to understand the relative strengths of these interactions, and how they scale with distance 
(Table 9-1).  

Table 9-1. How Interatomic Forces Scale with Distance  
Type of Bond Range of Interaction 

Covalent  Complicated short range  
Hydrogen bond  Roughly 1/r2 
Charge-charge  Scales with 1/r 
Charge-fixed dipole  Scales with 1/r2 
Charge-rotating dipole  Scales with 1/r4 
Fixed dipole-fixed dipole  Scales with 1/r3 
Rotating dipole-rotating dipole  Scales with 1/r6 
Charge-nonpolar  Scales with 1/r4 
Dipole-nonpolar  Scales with 1/r6 
Nonpolar-nonpolar  Scales with 1/r6 

In Table 9-1, r represents the distance between two atoms in angstroms. Interactions that decrease in 
strength with 1/r are effective at a much longer range than those that decrease in strength with higher 
powers of r. Covalent interactions and hydrogen bonds are strong, and very energetically significant at 
short distances. Charge-charge interactions have some of the longest-range effects; electrostatic effects 
on protein activity have been experimentally shown at over 15-angstrom distance, a substantial range in 
molecular terms. A concentration of charges on a protein surface can create a powerful electrostatic 
steering effect that can attract ligand molecules or other proteins at even longer range. Hydrogen bonds 
and charge-dipole interactions are also relatively strong. The effects of these interactions are modeled 
by computing electrostatic potentials and using the computed potentials as the basis for calculating 
other molecular properties such as binding constants (via Brownian dynamics) or pKa values.  

On the other hand, interactions between noncharged and nonpolar atoms are very weak and effective 
only at short range. However, the effects of these interactions can be cumulative, stabilizing structure 
and making intermolecular associations more favorable. The effects of these interactions are addressed 
when you compute the size of intermolecular contact surfaces or enumerate interactions between 
neighboring interactions in a protein. In the remainder of this chapter, we discuss various methods for 
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measuring and evaluating atomic structures of proteins, all of which can be used together to add to your 
understanding of protein chemistry.  

9.3 Web-Based Protein Structure Tools 

Now that we've reviewed the basics of protein chemistry, let's turn our attention to the tools. The most 
important source of information about protein structure is the PDB. In addition to being an entry point 
to the structural data itself, the PDB web site (http://www.rcsb.org/pdb) contains links to many tools 
database you can apply to individual protein structures as you search the database. Information from 
the database is made available through the Protein Structure Explorer interface. For each protein, you 
can view the molecular structure using 3D display tools such as RasMol and the Java QuickPDB 
viewer. PDB files and file headers can be viewed as HTML and downloaded in a variety of formats. 
Links to the protein structure classification databases CATH, FSSP, and SCOP are provided, along 
with the tools CE and VAST, which search for structures based on structural alignment. Average 
geometric properties, including dihedral angles, bond angles, and bond lengths can be displayed in 
tabular format with extremes and deviations noted. Sequences can be viewed and labeled according to 
secondary structure, and sequence information downloaded in FASTA format.  

You can go directly to the page for a particular protein of interest by entering that protein's four-letter 
PDB code in the Explore box on the PDB's main page. The PDB can also be searched using two 
different search tools, SearchLite and SearchFields. SearchLite is a simple search tool that allows you 
to enter one or more search terms separated by boolean operators into a single search field. 
SearchFields is a tool for advanced searches that provides a customizable search form that allows you 
to use separate keywords to search each PDB header field. You can modify the form by selecting 
checkboxes at the bottom of the form and regenerating the form. SearchFields supports options for 
searching a dozen of the most important fields in the PDB header, as well as crystallographic 
information. SearchFields also allows the database to be searched using FASTA for sequence 
comparison, as well as secondary structure features or short sequence features.  

From the individual protein page generated by the Structure Explorer, the PDB provides a menu of 
links through which to connect to other tools. These features are still evolving rapidly. Table 9-2 
provides a brief overview of the PDB protein page. We also encourage you to explore the PDB site 
regularly if you are interested in tools for protein structure analysis.  

Table 9-2. PDB Summary Information  
Page Description 

Summary page  The Summary page shows important information from the PDB header, as well, the chain composition 
of the protein and chemical information about any ligands and cofactors.  

View Structure  The View Structure page provides links to everything from static images to interactive protein views 
using VRML, RasMol, and the PDB's Protein Explorer tool.  

Download/Display 
File  

The Download page offers several options for downloading individual protein structures and headers 
in both classic PDB format and the new mmCIF format.  

Structural 
Neighbors  

The Structural Neighbors page links to manually curated protein classification databases, such as 
SCOP and CATH, as well as the automated protein structure comparison tools CE and VAST.  

Geometry  The Geometry page provides tabular views of bond length, bond angle, and dihedral angle data for the 
protein.  

Other Sources  

The Other Sources page is a rich catalog of links for each protein to everything from its SWISS-PROT 
accession code to literature references describing the structure. From this page, you can generate 
everything from domain analyses to structural quality reports to searches of genome catalogs and the 
NCBI Taxonomy database.  
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Sequence Details  
The Sequence Details page shows the sequence of the protein and the location of its secondary 
structure features, as extracted from the crystallographic data. The sequences of the individual protein 
chains in a PDB entry are also available for download in FASTA format.  

We'll discuss the specifics of some of the tools linked from the PDB web site in the upcoming sections. 
Again, as with any web-based tool, it's a good idea to learn as much as you can about the underlying 
algorithms before basing any conclusions on their results. Just because a method is endorsed by the 
PDB, doesn't mean that it's 100% foolproof, or that you can interpret results without understanding the 
method.  

9.4 Structure Visualization 

One of the first tools developed for structure analysis and one of the first analyses you will probably 
want to do is simply structure visualization. Protein structure data is stored as collections of x, y, z 
coordinates, but proteins can't be visualized simply by plotting those points. The connectivity between 
atoms in proteins has to be taken into account, and for the visualization to be effective, a virtual 3D 
environment, which provides the illusion of depth, needs to be created. Fortunately, all this was worked 
out in the 1970s and 1980s, and there are now a variety of free and commercial structure visualization 
tools available for every operating system.  

Even with virtual 3D representation, protein structures are so complex that they are difficult to interpret 
visually. The human eye can interpret 3D solids, but has a difficult time with topologically complex 3D 
data sets. There are a number of conventional simplified representations of protein structure that allow 
you to see the overall topology of the protein without the confusion of atomic detail. In order to be 
useful, a protein structure visualization program needs to, at minimum, be able to display user-selected 
subsets of atoms with correct connectivity, draw standard cartoon representations of proteins such as 
ribbons and cylinders, and recolor subsets of a molecule according to a specified parameter.  

9.4.1 Molecular Structure Viewers for Your Web Browser 

One type of molecular structure viewers are lightweight applications that can be set up to work with 
your web browser. When properly configured, they will display molecular data as you access it on the 
Web. RasMol and CnD3 are two of the most popular viewers.  

9.4.1.1 RasMol 

One of the most popular molecular structure visualization program tools is RasMol. It is available for a 
wide range of operating systems, and it reads molecular structure files in the standard PDB format. 
RasMol 2.7.1, the most up-to-date version, can be downloaded from Bernstein and Sons 
(http://www.bernstein-plus -sons.com). Either source code or precompiled binary distributions can be 
downloaded.  

RasMol comes in three display depths: 8-, 16-, and 32-bit. Eight-bit is the default, but if you have a 
high-resolution monitor, you may have to experiment and find out which executable is right for your 
system. You'll know you have a problem when you try to run RasMol and it complains that no 
appropriate display has been detected. Start with the 8-bit version, and work your way up.  
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If you plan to compile RasMol yourself, you need to get into the src directory and edit the Makefile to 
produce the appropriate version. To do this, open the Makefile with an ASCII text editor such as vim or 
Emacs and search for the variable DEPTHDEF. You should find something like this:  

# DEPTHDEF = -DTHIRTYTWOBIT 
DEPTHDEF = -DSIXTEENBIT 
# DEPTHDEF = -DEIGHTBIT 

In this example, DEPTHDEF has been defined as 16-bit.  

The # character at the beginning of a line marks that line as a comment, which isn't read by the make 
program when it scans the Makefile. Lines of code can be skipped over by being commented out; that 
is, marked as a comment. Remove the # character in front of the depth definition you need to use, and 
add it to comment out the others. Comment characters vary from programming language to 
programming language, but the notion of a comment line is common to all standard languages.  

You may also need to edit the rasmol.h file, according to the install instructions.  

Once you have the proper RasMol executable, whether you download it or compile it yourself, you 
need to copy it into /usr/local/bin and copy the file rasmol.hlp into the directory /usr/local/lib/rasmol. 
Then, in your web browser's preferences, you need to add RasMol as an application. If you're using 
Netscape, the default browser on most Linux systems, go to the Preferences?Navigator?Applications 
menu, select New, and enter the following values into the dialog box:  

Description:  Brookhaven PDB  
MIMEType:  chemical/x-pdb  
Suffixes: .pdb  
Application:  /usr/local/bin/rasmol 

You may also want to create a second entry for the MIME type chemical/x-ras.  

When run from the command line, RasMol opens a single graphics display window with a black 
background. The molecule can be rotated in this window either directly with the mouse, or with the 
sliders on the bottom and right side of the window. This window has five pulldown menus. The File 
menu contains commands for opening molecular structure files. The Display menu contains commands 
for changing the molecular display style to formats including ball and stick, cartoons, and spacefill. 
These display commands execute quickly, so you can try each of them out to see the different standard 
molecular display formats. The Colours menu allows you to change the color scheme of the entire 
molecule, and the Options menu changes the display style, allowing you to display the molecule in 
stereo, turn the display of heteroatom groups or labels on and off, etc. The Export menu allows you to 
write the displayed image in common electronic image formats such as GIF, PostScript, and PPM, 
which can be edited later using standard image manipulation programs that come with most Linux 
distributions, such as GIMP.  

When you import or save files in RasMol, you do it from the RasMol command line. In the shell 
window from which you start RasMol, the command prompt changes to RasMol >. Enter help 
commands at this command prompt to see the full range of RasMol commands, including commands 
for selecting subsets of atoms. If RasMol complains that it can't find its help file, create a symbolic link 
to /usr/local/lib/rasmol/rasmol.hlp in the directory in which you installed RasMol and/or the directory 
in which you are running it. Help commands allow you to create your own combinations of colors and 
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structure display formats, including some not available from the menus; create interatomic distance 
monitors; and display some intermolecular interactions, such as hydrogen bonds and disulfide bridges.  

9.4.1.2 Cn3D 

Cn3D is an application from NCBI that can view protein structure files in NCBI ASN.1 format. If you 
use the NCBI databases frequently, you will also want to install this tool and set it up to work as an 
application in your browser.  

To install Cn3D on a Linux workstation and set it up as a browser application, you simply need to 
download the Cn3D archive from NCBI, make a Cn3D directory on your own machine, move the 
archive into that directory, and extract it.  

Then, in your web browser's application preferences, make the following new entry:  

Description:  NCBI ASN.1  
MIMEType:  chemical/ncbi-asn1-binary  
Suffixes: .prt  
Application:  /usr/local/cn3d/Cn3D 

Cn3D opens two windows: a color structure viewer, in which a molecule can be rotated, colored 
according to different properties, and rendered in different display formats; a sequence viewer, which 
allows you to view sequences and alignments corresponding to the displayed protein and to add 
graphics to the sequence display to highlight the location of secondary structure features.  

9.4.1.3 SWISS-PDBViewer 

The SWISS-PDBViewer is a relatively new 3D structure display and analysis tool that complements 
the services offered by the Swiss Institute of Bioinformatics. It can be used to prepare input for 
homology modeling using the SWISS-Model web server. However, it is also useful as a standalone 
visualization tool. The viewer incorporates many useful functions, including superimposition of 
structures, calculation of molecular surfaces and electrostatic potentials, high-quality rendering, 
analysis of torsion angles, creation of mutations to the structure, and much more. At the time of this 
writing, SWISS-PDBViewer is in a phase of rapid development; if interested, you should check the 
Swiss Institute of Bioinformatics web site for the current version and online documentation.  

9.4.2 Standalone Modeling Packages 

Heavy-duty molecular structure viewers tend to have many more features than web applications such as 
RasMol and Cn3D. The most popular examples are MolMol, MidasPlus, and VMD. These programs 
run on your desktop machine, and to use them you need copies of the PDB files you're interested in 
using already stored on your computer.  

9.4.2.1 MolMol 

If you have Cn3D and RasMol linked to your web browser, you are well-equipped to view any 
molecular structure on the fly. However, there are times when you need to do more extensive 
manipulations of a molecular structure. MolMol is a full-featured molecular structure visualization 
package that allows you to display molecules, edit structures, and compute molecular properties.  
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You run the MolMol program by issuing the command molmol from the command line. There are no 
command-line options. The program opens with one large window with a white background, and a 
separate smaller window, which contains sliders for x, y and z rotation and for changing depth and 
position of the clipping plane. The clipping plane controls the simulated depth of the display window 
and the point at which the display window intersects the molecular structure. Atom selection options 
are controlled from the menu bar to the right of the main window.  

Like RasMol, MolMol has pulldown menus, but all its options are available from the pulldown menus, 
and there are substantially more of them. MolMol has a complete manual, which is distributed, along 
with the software, in HTML, and several printable formats, so we will not discuss each command here 
in detail. Some MolMol features you may find useful, in addition to the standard molecular display 
functions, are the display of Ramachandran and contact maps, calculation and display of 
macromolecular surfaces, and display of qualitatively accurate electrostatic potentials.  

MolMol is available as a binary distribution from ETH Zurich and is simple to install on a Linux 
workstation. Follow the directions provided, and you can't go wrong. While the MolMol interface isn't 
quite as slick as that of a commercial product like MSI's Quanta, it is an amazing value for the price. A 
couple of general tips: be sure to close dialog boxes and windows by clicking on their OK buttons or by 
selecting Quit from the menus, rather than by clicking the Kill Window button at the top-right corner. 
If the program seems to need to take its time to do something, don't click a lot of extra buttons or try to 
force it to close down—just wait. This will keep the program from hanging up your machine.  

9.4.2.2 MidasPlus 

MidasPlus is a near commercial-quality molecular modeling package available from the University of 
California at San Francisco. It provides many standard molecular display functions, as well as tools for 
measurement, limited modeling capabilities (for instance, the ability to substitute amino acids in the 
structure), and computation of molecular surfaces and electrostatics. The MidasPlus source code and 
executables for various platforms, including some Linux systems, are available from UCSF for a 
licensing fee of $350 —much less than comparable commercial software packages. Your Linux 
workstation must be equipped with a good-quality 3D graphics card in order to support MidasPlus.  

9.4.2.3 VMD 

Another excellent package for creating molecular graphics is VMD, the Visual Molecular Dynamics 
program from the Theoretical Biophysics group at the University of Illinois. VMD was designed to 
visualize and animate trajectories from molecular dynamics simulations, but it can also produce quite 
nice visualizations of single molecules. VMD is available for Linux systems and has an easy-to-use, 
menu-driven graphical user interface.  

9.4.3 Creating High-Quality Graphics with MolScript 

Usage: molscript -in infile -[options] -out outfile  
Usage: molauto -[options] infile > outfile  

MolScript has a completely different purpose from the other visualization packages we have discussed. 
It is designed to produce high-quality graphics for print publication, as you can see in Figure 9-10. It 
can be configured to run from the command line and to produce PostScript, Raster3D, and VRML 
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output only; it can also be configured to run interactively in its own window, using OpenGL, and to 
produce output in many additional image file formats.[1]  

[1] The image in Figure 9-10 was contributed by Per J. Kraulis, from "MOLSCRIPT: A Program to Produce Both Detailed and Schematic Plots of Protein Structures," 
Journal of Applied Crystallography (1991), vol. 24, pp. 946-950. 

Figure 9-10. A sample image generated by molscript 

 

Setting up interactive MolScript with OpenGL on a Linux workstation isn't straightforwRasMolard; it 
requires the installation of Mesa (open source OpenGL) libraries and customization of the Makefile that 
comes with the distribution. However, the basic MolScript installation is quick and simple and can 
produce visually appealing line drawings of molecular structure cartoons in color or black and white, in 
a style that is uniquely elegant and appropriate for print media. To install the basic version of 
MolScript, simply follow the directions in the install file. Copy the resulting executables (molscript and 
molauto) to your /usr/local/bin directory or to another directory in your default path. Here's what 
molscript and molauto do:  

molscript  

The main MolScript program; generates images 

molauto  
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The MolScript setup program; automatically generates a rudimentary MolScript input file from 
an input PDB file  

MolScript takes two input files: a MolScript command file and a PDB coordinate file. Here's the 
MolScript input file that produced the images in Figure 9-10:  

! MolScript v2.1 input file  
! generated by MolAuto v1.1.1 
title "MYOGLOBIN  (FERRIC IRON - METMYOGLOBIN)" 
plot 
  read mol "1MBN.pdb"; 
  transform atom * by centre position atom *; 
  set segments 2; 
  set planecolour hsb 0.6667 1 1 
coil from 1 to 3 
set planecolour hsb 0.619 1 1 
helix from 3 to 18 
set planecolour hsb 0.5714 1 1 
coil from 18 to 20 
set planecolour hsb 0.5238 1 1 
helix from 20 to 35 
... 
coil from 94 to 100 
set planecolour hsb 0.1429 1 1 
helix from 100 to 118 
set planecolour hsb 0.09524 1 1 
coil from 118 to 125 
set planecolour hsb 0.04762 1 1 
helix from 125 to 148 
set planecolour hsb 0 1 1 
coil from 148 to 153; 
 
set colourparts on 
bonds in require residue 1 and type HEM; 
 
end_plot 

The MolScript scripting language is unique and not really based on any standard computer language. 
The only way to learn it is to decide what you want to do, study the manual and examples, and learn the 
language. The example just shown is a simple MolScript command file; it reads in a single molecule, 
centers it on the molecule's center of mass, defines the locations of the various secondary structure 
elements and shades them through the spectrum from red to blue. MolScript can produce much more 
complex figures than this, however. MolScript plots can be scaled and multiple plots shown on a single 
page. Subsets of atoms in the molecule can be turned on, displayed in different formats, and custom 
colored. Labels can be added to figures.  

Fortunately, the molauto program automatically produces simple input files for the molscript program, 
which can help you get started using the MolScript command language. molauto does the most tedious 
part of input file setup for you—assigning helix, sheet, or coil drawing styles, and colors, to each 
segment of secondary structure. molauto has a variety of command-line options, which you can access 
by entering molauto -h. molauto reads input in the standard PDB file format, and writes to standard 
output unless a redirector is used.  

The following are some of the most useful command line options for molauto:  
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-ss_pdb  

Reads secondary structure assignments from the PDB file  

-ss_hb   

Uses hydrogen bonding patterns to assign secondary structure 

-cylinder  

Uses cylinders to indicate alpha helices 

-stick  

Renders cofactor molecules using a ball-and-stick representation 

-nocolour  

Leaves out the coloring commands 

-nice  

Improves the quality of the rendering, using more colo rs and segments 

The output of the molauto program is an input for the main molscript program. Command-line options 
for molscript include:  

-ps  

Produces PostScript output 

-v  

Produces VRML output 

-size width height  

Changes the size of the output image 

The default input files produced by molauto can be hand -edited to produce various effects. One 
important thing you might want to do (and can't do automatically unless you have installed the 
MolScript package with OpenGL support) is to rotate the molecular structure until you achieve a good 
view.  

To rotate the molecule view using the noninteractive version of molscript, add the following lines to 
your molscript input file, replacing the line that currently reads:  

transform atom * by centre position atom *;  
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with: 

transform atom * by centre position in amino-acids 
                 by rotation x    0.0 
                 by rotation y    0.0 
                 by rotation z    0.0 
                                    ;  !Be sure to include this semicolon. 

After you generate your first version of the image, open it in a fast PostScript viewer such as gv. To 
change the view of the molecule, experiment with changing the values of x, y, and z rotation in your 
input file. Since molscript takes only seconds to run on any protein input file, you can make changes to 
the input file, save the file, and redisplay the new output several times until you like the view.  

Once generated, the molscript image file can be viewed, converted to other file formats, and edited 
using standard Unix image-manipulation tools. One program you can load when you install most major 
Linux distributions is GIMP, the freeware package similar to Adobe Photoshop.  

9.4.4 Active Site Visualization with LIGPLOT 

Usage: ligplot protein.pdb  resid resid chain  

Another useful tool for producing graphics for publication is the program LIGPLOT 
(http://www.biochem.ucl.ac.uk/bsm/ligplot/ligplot.html), which is available from the Structure and 
Modelling group at University College London (UCL). Given a molecular structure and a specific 
residue or heteroatom group within the structure as input, LIGPLOT automatically generates a 2D 
schematic drawing showing hydrogen bonds, interatomic contacts, and solvent accessibility. A sample 
of LIGPLOT is shown in Figure 9-11  

Figure 9-11. A schematic diagram of ligands to the heme cofactor in cytochrome B5, generated with 
LIGPLOT 
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To install LIGPLOT on a Linux workstation, simply follow the directions in the README file.  

In order for LIGPLOT to find its parameter files and helper programs correctly, you need to add some 
path information to your .cshrc file:  

setenv ligdir /usr/local/ligplot 
alias ligplot $ligdir'/ligplot.scr' 
alias ligonly $ligdir'/ligonly.scr' 
alias dimplot $ligdir'/dimplot.scr' 
alias dimonly $ligdir'/dimonly.scr' 
setenv hbdir /usr/local/hbplus 
alias hbplus $hbdir'/hbplus'  

The values on the command line specify a residue range in a particular protein chain. The program 
doesn't have to display only interactions with ligands and prosthetic groups; it can also display the 
network of close interactions with any residue in a protein. This works best when the residue range 
selected is small.  

9.4.5 dimplot 

Usage: dimplot protein.pdbchain1chain2   
Usage: dimplot protein.pdb  -d domain1 domain2  

The dimplot program, a variant of LIGPLOT, displays interactions across an interface between two 
protein chains or domains. The domain variant works only if your PDB file labels proteins at the 
domain level of organization.  

The painful part of installing the LIGPLOT, hbplus, and naccess programs on some Linux systems is, 
ironically, not the installation itself, but having the capability to decrypt the encrypted archives you get 
from UCL. The files are encrypted using the standard Unix crypt command. This sounds 
straightforward enough, but many Linux vendors don't include crypt in their distributions. In order to 
use crypt on your system, you may in fact need to reinstall the latest version of glibc-2.0. If you don't 
want to deal with this, request a decrypted copy of the LIGPLOT tar archive from the authors when 
you send in your license agreement.  

9.5 Structure Classification 

Protein structure classification is important because it gives you an entry point into the world of protein 
structure that is independent of sequence similarity. Proteins are grouped not by functional families, but 
according to what kind of secondary structure (alpha helix, beta sheet, or both) they have. Within those 
larger classes, subclasses are defined based on how the secondary structures in the protein are arranged.  

The focus in protein classification is on finding proteins that have similar chemical architectures; it 
doesn't matter if their sequences are related. Over the years, we've learned from classification that there 
are far fewer unique protein folds than there are protein sequence families. Protein chemists often are 
interested in the information that can be extracted from broader structural classes of proteins, since 
analyzing that information can help them better understand how proteins fold.  

Classification of protein structures into families is a nontrivial task. Proteins have many levels of 
structure: the primary structure, which is the 1D sequence; the secondary structure, which is composed 
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of the regular substructures that the protein polymer forms due to steric and hydrogen bond 
interactions; the tertiary structure, which is the overall 3D structure of the protein; and the quaternary 
structure, which is the most complex protein structure composed of multiple chains. The quaternary 
structure is required to form a functional protein. Structure classification involves developing a 
representation of how units of secondary structure come together to form domains, which are compact 
regions of structure within the larger protein structure. Dividing proteins into domains is another aspect 
of structure classification.  

There isn't really a consensus as to how to classify protein structures quantitatively. Instead, structures 
end up in qualitatively named classes such as "greek key," "helix bundle," and "alpha-beta barrel." 
These fold classes are useful in that they draw attention to prominent structural features and create a 
frame of reference for classifying structure. However, qualitative classifications don't lend themselves 
to automated analysis, and such protein classification databases still require the involvement of expert 
curators.  

If you're simply concerned with finding the close structural relatives of a published protein structure, 
there are a number of online classification databases in which existing structures have been annotated 
by a combination of automated analysis and input from protein structure experts. There are also 
automated tools for finding structural neighbors by structure alignment, though like any alignment 
method, these tools require you to understand the significance of comparison scores when analyzing 
results.  

If you're interested in doing your own analysis of a protein structure, there are several structure 
classification processes and tools that might help.  

9.5.1 Secondary Structure from Coordinates 

Protein coordinate data sets don't automatically come labeled with alpha-helix and beta-sheet 
classifiers. Secondary structure features in the protein can be distinguished with reasonable certainty by 
their hydrogen bonding patterns and their backbone torsion angles.  

The standard program for extracting secondary structure from sequence is the DSSP program. DSSP 
analyzes the geometry and backbone hydrogen bonding partners of each residue in a known protein 
structure, producing a tabular output that includes residue numbering, sequence, hydrogen bonding, and 
geometry details. The DSSP database, and DSSP executables derived from the 1995 release of the 
program, are available from the European Bioinformatics Institute (EBI); these executables may still 
cause Y2K-related errors on some older Linux systems. Updated DSSP source code is available from 
the Gerrit Vriend at the Center for Molecular and Biomolecular Informatics at the University of 
Nijmegen, Netherlands.  

9.5.1.1 STRIDE 

Usage: stride -[options] infile > outfile  

An alternative to DSSP is the program STRIDE, offered in either web server or downloadable form at 
the European Molecular Biology Laboratory (EMBL, http://embl-heidelberg.de/stride/stride.html/). 
STRIDE compiles easily on a Linux machine. Create a directory for the program, move the tar archive 
into the directory, and extract. Compile the program with make.  
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Command-line options for STRIDE include: 

-M molscript file  

Produces a simple MolScript input  

-h  

Reports hydrogen bond information  

-o  

Reports secondary structure assignments only 

A complete list of commands can be viewed by running STRIDE with no command-line options.  

The STRIDE output format is in structured 78-character lines. The following example illustrates the 
hydrogen bond information output format:  

ACC  ALA -  143  142 ->  TYR -  146  145  3.3  107.8  125.8   58.5   76.9  1MBN  
 
ACC  ALA -  143  142 ->  LYS -  147  146  3.2  154.3  113.4    0.1   43.4  1MBN  
DNR  ALA -  144  143 ->  LYS -  140  139  3.0  153.6  109.9   16.4   27.2  1MBN  
 
ACC  ALA -  144  143 ->  GLU -  148  147  3.0  160.3  109.4   11.6    6.4  1MBN  
DNR  LYS -  145  144 ->  ASP -  141  140  3.2  145.3  119.5    3.7   73.8  1MBN  
 
ACC  LYS -  145  144 ->  LEU -  149  148  3.0  149.4  128.8    4.7   63.7  1MBN  
DNR  TYR -  146  145 ->  ILE -  142  141  3.2  158.7  121.8   20.1   52.6  1MBN  
DNR  TYR -  146  145 ->  ALA -  143  142  3.3  107.8  125.8   58.5   76.9  1MBN  
 
ACC  TYR -  146  145 ->  GLY -  150  149  3.0  156.9   96.3   37.1   37.7  1MBN  
 
ACC  TYR -  146  145 ->  TYR -  151  150  3.1  111.2  118.0    4.2   89.9  1MBN  
DNR  LYS -  147  146 ->  ALA -  143  142  3.2  154.3  113.4     0.1   43.4  1MBN  

The STRIDE source code is well constructed and documented. It's an excellent example of how 
molecular geometry is analyzed. Each function, e.g., surface area calculation, torsion angle calculation, 
etc., lives in its own separate program. If you want to understand many of the standard operations 
involved in analyzing geometric properties of proteins, we highly recommend the STRIDE source 
code.  

9.5.2 Topology Cartoons 

Topology cartoons are a 2D notation for depicting the topological arrangement of secondary structural 
elements in proteins. The cartoons can clarify the spatial relationships and connectivity between 
secondary structure elements in a protein. These relationships may not be easily seen in a 3D structure, 
even if only the structural backbone is displayed or a ribbon diagram is drawn. Software for generating 
your own cartoons may be found on the Protein topology page, http://www.sander.embl-
ebi.ac.uk/tops/.  
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Topology cartoons, as illustrated in Figure 9-12, represent each secondary structural unit as a shape. 
Circles are helices, and triangles are beta strands. The beginning of the chain is marked with an N, the 
end with a C. Each element has a directionality, which can be deduced from the way the connecting 
segment is drawn. If the N-terminal connection is to the edge of the secondary structural element, that 
element is directed out of the plane of the drawing; if the N-terminal connection is to the center of the 
secondary structural element, it is directed back into the plane of the drawing.  

Figure 9-12. A protein topology cartoon 

 

9.5.2.1 TOPS 

Usage: tops pdbcode  

The TOPS program expects a file in DSSP format, generated from your protein of interest, as its input.  

In order to compile the TOPS code on your own machine, you need Java support. Linux ports of Java 
are available from IBM and Blackdown at http://blackdown.org. The Blackdown version requires that 
you update to glibc2.1.2, but the IBM version installs easily under Red Hat 6.1 using GnoRPM (if you 
download RPMs, of course). Once the IBM JRE and JDK are installed, TOPS installs without any 
difficulty. To run the EditTOPS executable, which allows you to actually view and plot topology files, 
be sure that these environmental variables are set correctly:  

PATH  

Includes /usr/jdk118/bin (or wherever you installed Java)  

CLASSPATH  

Where you installed TOPS classes TOPS.jar 

TOPS_HOME  

Where you installed TOPS  

You can set these variables by writing a script called topssetup, which contains the following three 
lines, and placing it in your home directory. Before you try to run TOPS or EditTOPS, use source 
topssetup to set the environment variables correctly.  

setenv PATH "/usr/sbin:/sbin:/usr/jdk118/bin:${PATH:." 
setenv CLASSPATH "/usr/local/Tops/classes/TOPS.jar:${CLASSPATH" 
setenv TOPS_HOME "/usr/local/Tops" 
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Topology patterns also have been implemented as data structures in web-based search tools that allow 
you to compare topologies of two structures or to search a protein database for structures of similar 
topology. These services are available from the EBI at http://www.ebi.ac.uk.  

9.5.3 Classification Databases 

Classification databases are taxonomies of protein structure, and they bear a strong resemblance to the 
morphology-based taxonomies developed by early biologists. Proteins that "look" grossly the same, in 
terms of shape and topology, are classified as more closely related than proteins that look substantially 
different. Protein structure types have whimsical names (like Greek key beta barrel ) based on visual 
observation and comparison with familiar objects. The classification databases can be envisioned as 
trees with many branchings at each branch point—very similar to phylogenetic trees, in concept.  

9.5.3.1 SCOP 

The Structural Classification of Proteins (SCOP, http://scop.mrc-lmb.cam.ac.uk/scop/) is a database 
maintained by the MRC Laboratory of Molecular Biology at Cambridge, United Kingdom. SCOP is 
extensively hand -curated, and tends to lag at least several months behind the PDB in terms of its 
content. SCOP is a simple, relatively low-tech resource composed of a hierarchy of HTML pages with 
links to still pictures of individual proteins and folds, as well as embedded links to structure files to be 
opened with RasMol or Chime plugins and links back to the PDB to download structures.  

At the top level of SCOP, known proteins are generally grouped by their secondary structure 
characteristics into all-alpha, all-beta, coiled coil, small proteins with structural metal ions, and various 
types of mixed alpha-beta structures. These major types are called Classes within SCOP. The next layer 
of classification, the Fold level, is a mixture of topology and similarity to domains of known function: 
one fold can be called "globin-like" and the next "four helical up and down bundle." Beyond the Fold 
level, proteins are divided further into Superfamilies and Families. Superfamily and Family divisions 
may be purely functional, or they may also involve some structural difference.  

9.5.3.2 CATH 

CATH (http://www.biochem.ucl.ac.uk/bsm/cath_new/) is similar to SCOP in concept, but it divides up 
the PDB a little differently. In CATH, proteins are classified at the level of (C)lass, (A)rchitecture, 
(T)opology, and (H)omologous superfamily. The CATH interface is easily navigated, and it is an 
excellent resource for examining the variety of known protein structures. CATH can be searched by 
PDB code, and proteins can be displayed within the browser page. The CATH maintainers provide an 
excellent lexicon of protein structure description to give you a feel for the structural reality behind the 
somewhat whimsical protein family names. At the time of this writing, the CATH web interface is 
undergoing rapid revision and expansion of its capabilities, to include everything from structural 
assignments of uncharacterized genes that may fit into CATH classes, to new levels of classification 
hierarchy.  

9.5.3.3 Unique protein structure data sets 

The PDB is full of duplication. It's been estimated that out of the approximately 13,000 structures in the 
PDB at this time, only around 1,000 of them actually represent unique folds. This lack of uniqueness 
can bias predictive and analytical methods based on extraction of structural patterns and features from 
the protein database. Thus, there is a need to produce nonredundant subsets of the PDB and to select, 



 215 

from among groups of similar proteins, the best representative of each class. This is essentially a subset 
of the classification problem, and for a long time it was done based on manual examination and 
annotation of PDB data. But as the PDB has grown, automated methods for generating nonredundant 
data sets based on sequence comparison have emerged.  

The process for generating such data sets is fairly standard, although the particular parameters differ. 
First, the PDB is culled to remove extremely short protein chains, chains of very poor resolution, and 
chains containing a large number of nonstandard residues. The PDB is then decomposed into individual 
chains, and the chains are sorted by various quality criteria. An all-against-all sequence comparison is 
done, and chains that don't differ sufficiently to meet a certain cutoff are removed, choosing the lowest-
quality chain in a pair to be removed, until all the chains in the list meet the uniqueness criteria in a 
pairwise comparison. Finally, the removed chains are reintroduced and added back to the set if they 
don't violate the uniqueness criteria with any other chain in the final set.  

At this time, nonredundant data sets can be obtained from PDB Select, at EMBL, from NCBI, and from 
Dr. Roland Dunbrack at the Fox Chase Cancer Center. There is no software we know of that allows 
you to create a unique data set based on your own choice of parameters, although the groups mentioned 
may be willing to generate data sets by special request. A Perl script for creation of nonredundant 
databases from a sequence DB, called nrdb90.pl, is also available from EBI; however, it's hardcoded to 
produce a nonredundant set at the 90% sequence identity level. If you're intrepid, you can modify this 
script for your own purposes.  

9.6 Structural Alignment 

Recently, there have been many attempts to make protein-structure classification an automatic and 
quantitative process, rather than an expert-curated process. Overlaying and comparing structures is a 
3D problem that is much more resource-intensive than comparing 1D sequence data. The automated 
structure comparison tools that exist, therefore, are available primarily as online tools for searching 
precomputed databases of structure comparisons.  

9.6.1 Comparing Two Protein Structures 

The most common parameter that expresses the difference between two protein structures is RMSD, or 
root mean squared deviation, in atomic positions between the two structures. RMSD can be computed 
as a function of all the atoms in a protein or as a function of some subset of the atoms, such as the 
protein backbone or the alpha-carbon positions only. Using a subset of the protein atoms is common, 
because it is likely that, when two protein structures are compared, they will not be identical to each 
other in sequence, and therefore the only atoms between which one-to-one comparisons in position can 
be made will be the backbone atoms.  

This is the first context we've discussed in which the orientation of a molecular structure becomes 
important. Because protein structures are generally described in Cartesian coordinates, they essentially 
exist within a virtual space, and they come with a built-in orientation with respect to that space. RMSD 
is a function of the distance between atoms in one structure and the same atoms in another structure. 
Thus, if one molecule starts out in a different position with respect to the reference coordinate system, 
the other molecule—the RMSD between the two proteins—will be large whether they are similar or 
not.  
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In order to compute meaningful RMSDs, the two structures under consideration must first be 
superimposed, insofar as that is possible. Superimposition of protein structures usually starts with a 
sequence comparison. The sequence comparison establishes the one-to-one relationships between pairs 
of atoms from which the RMSD is computed. Atom-to-atom relationships, for the purpose of structure 
comparison, may actually occur between residues that aren't in the same relative position in the amino 
acid sequence. Sequence insertions and deletions can push two sequences out of register with each 
other, while the core architecture of the two structures remains similar.  

Once atom-to-atom relationships between two structures are established, the task of a superposition 
program is to achieve an optimal superposition between the two programs —that is, the superposition 
with the smallest possible RMSD. Because protein scaffolds, or cores, can be similar in topology 
without being identical, it isn't usually possible to achieve perfect overlap in all pairs of atoms in two 
structures that are being compared. Overlaying one pair of atoms perfectly may push another pair of 
atoms further apart. Superposition algorithms optimize the orientation and spatial position of the two 
molecules with respect to each other.  

Figure 9-13 shows an optimal alignment between atomic structures of triosephosphate isomerase and 
beta-mannase, shown in Compare3D. The two structures are similar enough to be classified as 
structural neighbors, and their chain traces are relatively similar. However, their sequence identity is 
only 8.5%.  

Figure 9-13. An optimal superposition of myoglobin and the 4 chain of hemoglobin, which are structural 
neighbors 

 

Once optimal superpositions of all pairs of structures have been made, the RMSD values that are 
computed as a result can be compared with each other, because the structures have been moved to the 
same frame of reference before making the RMSD calculations.  

9.6.1.1 ProFit 
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Usage: profit reference.pdb mobile.pdb   

ProFit, developed by Andrew Martin at the University of Reading, United Kingdom, is an easy-to-use 
program for superimposing two protein structures. One protein is assigned by the user to be the 
reference structure, and the other protein is mobile with respect to the reference. ProFit outputs RMSD 
and can also write out coordinates for the superimposed proteins. ProFit allows the option of 
superimposing only selected regions of each protein so that domains can be examined independently. 
ProFit compiles and runs on any Unix workstation. ProFit may be downloaded from Andrew's web site 
(http://www.bioinf.org.uk/).  

9.6.2 DALI Domain Dictionary 

The DALI Domain Dictionary (DDD) at the EBI is based on an automatic classification of protein 
domains by sequence identity. Rather than using a human-designed classification scheme, DDD is 
constructed by clustering protein neighbors within an abstract fold space. Instead of working with 
whole proteins, DDD classifies structures based on compact, recurring structures (called domains) that 
may repeat themselves within, and among, different protein structures. The content of DDD may also 
be familiar to you as FSSP, the "Fold classification based on Structure-Structure alignment of Proteins" 
database.  

DDD can be searched based on text keywords; it can also be viewed as a tree or a clickable graphical 
representation of fold space. Views of sequence data for conserved domains are available through the 
DDD interface, as well as connections to structural neighbors.  

The superposition program (SUPPOS) that produces the structural alignments in DALI/FSSP is 
available within the WHAT IF software package of protein structure analysis tools, which is discussed 
in Section 9.7.1.2.  

9.6.3 CE and CL 

The Combinatorial Extension of the Optimal Path (CE) is a sophisticated automatic structure alignment 
algorithm that uses characteristics of local geometry to "seed" structural alignments and then joins 
these regions of local similarity into an optimal path for the full alignment. Dynamic programming can 
then optimize the alignment.  

CE is available either as a web server or as source code from the San Diego Supercomputer Center. 
The web server allows you to upload files for pairwise comparison to each other or to proteins in the 
PDB, to compare a structure to all structures in the PDB, to compare a structure to a list of 
representative chains, and review alignments for specific protein families. CE also is fully integrated 
with the PDB's web site, and CE searches can be initiated directly from the web page generated for any 
protein you identify in a sequence search. Along with the source code, you can download a current, 
precomputed pairwise comparison database containing all structures in the PDB. If you're doing only a 
few comparisons, however, you probably won't even want to do this.  

When using the CE server to compute similarities, there are several parameters that you can set, 
including cutoffs for percent sequence identity, percent of the alignment spanned by gaps, and percent 
length difference between two chains. You can also set an RMSD cutoff and a Z-score cutoff. The Z-
score is a measure of the significance of an alignment relative to a random alignment, analogous to a 
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BLAST E-value. A Z-score of 3.5 or above from CE usually indicates that two proteins have a similar 
fold.  

Along with CE, the SDSC offers the Compound Likeness (CL) server, a suite of tools for probabilistic 
comparison between protein structures. In CL, you select either an entire protein structure or a structure 
fragment to use as a probe for searching the PDB. Search features include bond length and angle 
parameters, surface polarity and accessibility, dihedral angles, secondary structure, shape, and 
predicted alpha helix and beta sheet coefficients. CL allows you to ask the question "what else is 
chemically similar to this protein (or fragment) that is of interest to me" and to define chemical 
similarity very broadly. A full tutorial on CL is available at the CL web site (http://cl.sdsc.edu/cl1.html/ 
).  

9.6.4 VAST 

VAST is a pairwise structural alignment tool offered by NCBI. VAST reports slightly different 
parameters about structural comparison than CE does, and the underlying algorithm differs in 
significant respects. However, the results tend to be quite similar. VAST searches automatically allow 
you to view your superimposed protein structures in the Cn3D browser plug-in, with aligned sequences 
displayed in Cn3D as well. For practical purposes, either CE or VAST is sufficient to give you an idea 
of how two structures match up; if you are concerned about the algorithmic differences, both groups 
provide access to detailed explanations at their sites. Unlike CE, the VAST software doesn't appear to 
be available to download, so if you want to perform a large number of comparisons on your own 
server, CE may be preferable. 

9.7 Structure Analysis 

Geometric analysis of protein structures serves two main purposes. It is useful for verifying the 
chemical correctness of a protein structure, both as a means of deciding whether the structural model is 
ready to be submitted to the PDB and for analyzing existing structures. Geometric analysis also allows 
you to examine the internal contacts within a protein structure. Since protein function often depends on 
the interactions of amino acids that aren't adjacent in the protein sequence, contact analysis can provide 
insight into complex, nonsequential structural patterns in proteins.  

9.7.1 Analyzing Structure Quality 

Geometric analysis can show where a model developed from x-ray crystallography data or NMR data 
violates the laws of chemistry. As mentioned earlier, there are physical laws governing intermolecular 
interactions: nonbonded atoms can get only so close to each other because as two atoms are forced 
together beyond the boundary set by their van der Waals radius, the energetics of the contact become 
very unfavorable. These interactions limit not only the contacts between pairs of atoms in different 
parts of a protein chain, but also how freely atoms can rotate around the bonds that connect them. The 
structure of atomic orbitals and the nature of bonds between atoms place natural limits on the position 
of bonded atoms with respect to each other, so bond angles and dihedral angles are, in practice, 
restricted to a limited set of values. Tools for geometric analysis generally have been developed by 
crystallographers to show where their structural models violate these laws of nature; they also can be 
used by homology modelers or ab-initio structure modelers to evaluate the quality of a structural 
model.  
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There are a variety of tools for analyzing structure quality. Some run as standalones; others are 
incorporated into more comprehensive structure analysis and simulation packages. An exhaustive 
listing of the best of these tools can be found on the PDB web site.  

9.7.1.1 PROCHECK 

PROCHECK http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html) is a popular software 
package for checking protein quality. It produces easily interpreted color PostScript plots describing a 
protein structure and can also compare two related protein structures. It runs on Unix systems and also 
been ported to Windows.  

Using PROCHECK requires that you set up several aliases in your .cshrc file. The aliases you need are:  

setenv prodir /usr/local/procheck 
alias procheck '$prodir /procheck.scr' 
alias procheck_comp '$prodir /procheck_comp.scr' 
alias procheck_nmr '$prodir /procheck_nmr.scr' 
alias proplot '$prodir /proplot.scr' 
alias proplot_comp '$prodir /proplot_comp.scr' 
alias proplot_nmr '$prodir /proplot_nmr.scr' 
alias aquapro '$prodir /aquapro.scr' 
alias gfac2pdb '$prodir /gfac2pdb.scr'  
alias viol2pdb '$prodir /viol2pdb.scr'  

The aliases are required by the various PROCHECK command scripts, so you can't just run 
PROCHECK by typing the full pathnames to each individual module. When you run PROCHECK or 
PROCOMP, the program you actually run is a command script that calls several other programs and 
scripts.  

PROCHECK can be set up to produce several different kinds of output, either in color or black and 
white, by editing the procheck.prm file in the directory in which you are about to issue the procheck 
command. The parameters are edited by changing Y to N or vice versa at points in the procheck.prm 
file where those options are available. The file is self-documenting and easy to understand. The most 
important part of the file, for reference, is probably the portion in which you turn on or off the various 
types of plots that are available. The rest of the parameters in procheck.prm are mainly default color 
values for different types of plots.  

Colour all plots? 
-----------------   
Y <- Produce all plots in colour (Y/N)? 
 
Which plots to produce 
---------------------- 
Y <-  1. Ramachandran plot (Y/N)? 
N <-  2. Gly & Pro Ramachandran plots (Y/N)? 
N <-  3. Chi1-Chi2 plots (Y/N)? 
N <-  4. Main-chain parameters (Y/N)? 
N <-  5. Side-chain parameters (Y/N)? 
N <-  6. Residue properties (Y/N)? 
N <-  7. Main-chain bond length distributions (Y/N)? 
N <-  8. Main-chain bond angle distributions (Y/N)? 
N <-  9. RMS distances from planarity (Y/N)? 
N <- 10. Distorted geometry plots (Y/N)? 
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Once you've edited the procheck.prm  file to your satisfaction, run PROCHECK with the command 
procheck filename.pdb [chain] resolution . The resolution parameter causes your protein to be 
compared to a "reference protein of X angstrom resolution" in the PROCHECK output. This parameter 
isn't optional. The command line for PROCOMP requires a second protein filename and chain ID 
instead of the resolution parameter.  

9.7.1.2 WHAT IF/ WHAT CHECK 

WHAT IF is a multifunctional menu-driven molecular modeling package developed by Gert Vriend 
and now available through the University of Nijmegen. WHAT IF can calculate just about any property 
of proteins we discuss in this chapter, from solvent accessible surface area to pKa values to contacts to 
molecular dynamics using GROMOS. The full WHAT IF package is available to academic users for a 
small fee, and it is known to compile and run well on Linux systems.  

WHAT CHECK provides access to a subset of WHAT IF structural quality checks. WHAT CHECK 
reports on stereochemistry, bond lengths, angles, and dihedrals, among other quantities. Complete 
WHAT CHECK reports for any protein in the PDB can be downloaded from the PDBREPORTS 
database at EMBL. WHAT CHECK also is available as part of the Biotech Validation Suite web server 
at EMBL, for use on models and on structures not already deposited in the PDB.  

9.7.2 Intramolecular Interactions 

Geometric analysis can also be useful in understanding a protein's fold and function. In this case, the 
geometry of interest isn't the chemical bonding interactions between atoms adjacent to each other in the 
protein chain, but the nonbonded interactions between atoms that are widely separated in the protein 
chain. The density of intramolecular contacts in the structural core of a domain may be quite different 
from the density of contacts in a region between two structural domains. Measuring this density over 
the whole protein may give clues as to the process by which a protein folds. The patterns of hydrogen 
bonds that hold a protein together may serve as an identifying signature for a protein fold. And contacts 
between certain chemically important residues in a protein may suggest hypotheses about the protein's 
catalytic mechanism or function. Protein engineers may want to examine the intramolecular contacts in 
a protein to determine where changes are least likely to disrupt the protein's structure.  

9.7.2.1 Computing contacts with HBPLUS 

Listings of intramolecular nonbonded interactions and hydrogen bonds can be computed using the 
standalone program HBPLUS, available from the Biomolecular Structure group at UCL. Obtaining the 
HBPLUS program and running it are straightforward, but because the results are produced as a single 
long text file, they require some scripted postprocessing to become useful. The LPC-CSU (Ligand-
Protein Contacts/Contacts of Structural Units) server at the Weizmann Institute (Rehovot, Israel, 
http://bioinfo.weizmann.ac.il:8500/oca-bin/lpccsu/) can produce textual reports of important intra- and 
intermolecular contacts in any protein. Protein structures can be uploaded to the server from the user's 
machine or found on the server using their PDB ID codes.  

Contact mapping and display functionality also can be found within the WHAT IF package. Two-
dimensional contact maps are a standard feature of most molecular modeling packages. A 2D contact 
map is simply a plot of pairwise interactions between residues, where residue number within the 
protein is plotted on each axis and a dot (perhaps color-coded to indicate the contact distance) is drawn 
wherever residue X and residue Y come into close contact. Contact maps have distinct patterns that can 
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help identify a protein's fold, and some efforts have even been made to predict contact maps for 
proteins of unknown structure based on their sequences and predicted secondary structure features.  

9.8 Solvent Accessibility and Interactions 

Solvent-accessible surface calculations help you figure out which chemical groups are on the surface of 
a protein. Amino acids on the surface of a protein usually are the ones that determine how it interacts 
with other molecules, such as chemical substrates, ligands, other proteins, and receptors If you know 
what the chemical surface of the protein looks like, you can use that information to help determine why 
one molecule binds to another, why an enzyme is specific for a particular substrate, or how the protein 
influences its environment in other ways.  

Analytical shape calculations also help you describe the geometry of the protein surface. A lot of 
biochemistry textbooks describe intermolecular interactions in terms of locks and keys. Molecules fit 
together in geometrically specific ways, so the shape of the lock (e.g., the enzyme) has to complement 
to the shape of the key (the substrate). The shape of a receptor on the cell surface has to complement to 
the ligand it's supposed to respond to, or the cellular response isn't triggered. The immune system is a 
good example. In the immune response, the organism produces antibodies that attack antigens of a 
particular shape. This is why you can vaccinate an animal against a disease by injecting a sample of 
killed virus. The killed virus is shaped just like the live, deadly virus, but it can't harm the animal. 
Nonetheless, the animal develops antibodies that recognize the shape of the killed virus. Then, when 
the live virus comes along and tries to invade, the animal already has antibodies that are the right shape 
to attack the live virus.  

So, for instance, if you want to design a new vaccine or engineer a protein that will carry out a 
particular reaction, or understand how two proteins in a metabolic pathway interact with each other, it's 
important to be able to measure the shape of the molecule.  

The standard method for computing solvent accessibility is quite simple. Each atom in the molecular 
structure is represented by a sphere; there is a different sphere radius for each distinct atom type. The 
spheres surround the known atomic centers and are modeled by a collection of several hundred discrete 
points. To determine the solvent-accessible surface of the protein, solvent-accessibility calculators 
simulate a spherical "probe" with a radius equivalent to that of water (1.4 angstroms) rolling over the 
surface of the atomic spheres. The path of the center of the probe determines the solvent-accessible 
surface of the molecule. Because the probe (and hence, water molecules) can't fit into sharp crevices in 
the molecular surface, the computed solvent accessible surface is much smoother than the underlying 
molecular surface (Figure 9-14).  

Figure 9-14. Determination of solvent accessibility by probe-rolling 
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Because proteins are dynamic entities rather than the rigid bodies assumed by solvent-accessibility 
calculations, it's likely that the interior of the molecule has more contact with solvent than can be 
computed using a probe-rolling algorithm. However, solvent-accessibility calculations can help 
develop an initial understanding of a protein molecule that will inform further experimentation. 
Accessibility calculations are one way of getting at the complex physicochemical properties of a 
protein; the nature of the protein surface affects its interaction with the surrounding media as well as 
with other proteins or substrates.  

9.8.1 Computing Solvent Accessibility with naccess 

Usage: naccess pdb file [-p probe size] [-r vdw file] [-s stdfile] -[hwyc]  

There are many programs for calculating solvent accessibility by probe-rolling. They are all 
straightforward and easy to use, requiring a standard PDB file as input and usually giving output in the 
form of a percentage of accessibility for each amino acid or atom in the protein. One popular program 
is naccess, which is available from the Biomolecular Structure and Modelling group at UCL. naccess 
can be used in combination with other programs developed by this group, such as HBPLUS (a program 
for computing intermolecular interactions and hydrogen bonds) and LIGPLOT, which we covered 
earlier. It also runs as a standalone. naccess is written in FORTRAN, so you'll need the g77 compiler 
installed on your machine to compile it.  

naccess outputs two files, an .asa file with accessible surface areas for each atom in the molecule and 
an .rsa file with accessible surface areas and relative accessibilities for each amino acid. It handles both 
protein and nucleic acid molecules and produces reports of accessibilities for individual molecular 
chains as well as complete structures. The -h, -w, and -y flags cause the program to ignore hydrogen 
atoms, water molecules, or heteroatoms, respectively. Run with the -c option, naccess produces 
intermolecular contact areas rather than accessible areas.  

SURFNET is a program developed by Roman Laskowski at UCL to manipulate solvent-accessibility 
information and display useful representations of surface features, clefts, cavities, and binding sites. 
SURFNET generates surface output in formats that can be displayed in molecular visualization 
programs, including RasMol.  

9.8.2 Solvent Accessibility with Alpha Shapes 

The Alpha Shapes software is a mathematically exact alternative to the standard Connolly surface 
method of computing solvent accessibility. Developed by the research group of mathematician Herbert 
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Edelsbrunner at NCSA (http://www.alphashapes.org/alpha/), the Alpha Shapes software is a general-
purpose program for modeling the surfaces of objects. A set of extensions to the Alpha Shapes 
software, specifically for analyzing protein molecules, is also available.  

The Alpha Shapes method constructs what is called a simplicial complex or alpha complex of a 
structure, based on a rigorous geometrical decomposition of the space surrounding the collection of 
points that describes the structure. Once the alpha complex is constructed for a protein structure, 
algorithms for inclusion and exclusion can describe exactly the surface area or volume of the structure 
as well as cavities, clefts, and regions of contact. The main benefit of using the Alpha Shapes algorithm 
to compute protein shapes is that the software comes with a sophisticated visualization program called 
alvis, which can display such geometrical features as the interior shape of an ion channel or the cavities 
in the interior of a protein.  

Several programs make up the Alpha Shapes distribution. These programs must be run in the proper 
sequence to correctly analyze molecular data:  

pdb2alf  

Translates a PDB file into an alpha datafile.  

delcx  

Computes the Delaunay complex of the molecule on the output from pdb2alf.  

mkalf  

Computes the alpha complex from the Delaunay complex computed by delcx.  

VOLBL  

Computes protein properties, using the alpha complex computed by mkalf and information from 
the original the PDB file. Depending on which command-line options are used, VOLBL can 
compute cavities in the protein interior and space-filling models of the protein, as well as 
volumes of molecules and cavities. Multiple VOLBL runs can produce complimentary data 
sets, which can be added or subtracted to determine contact areas and other molecular 
properties.  

You can find usage details of each of these programs in a README file that accompanies the Alpha 
Shapes distribution, or by attempting to run the program with no arguments on the command line.  

Using alvis to visualize your Alpha Shapes data can be quite interesting. To do this, you need output 
from delcx and mkalf, but not from VOLBL. To run alvis on a data set generated from molecule.PDB, 
where output files molecule.dt and molecule.alf are also present, enter alvis molecule. The visualizer 
opens with the convex hull of the molecule displayed. The standard atomic structure of the molecule 
can't be seen from within the current version of alvis, but you can compare your alvis view with 
another view of the same molecule (perhaps using RasMol or a similar molecular visualization 
program) side by side.  
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In the bottom left of the alvis control panel, you'll see a box containing a graph with three colored 
curves. This graph is called the alpha rank graph, and it can be used to select a desirable view of the 
molecule. Posit ioning your cursor at peaks, valleys, or intersections on these graphs gives the most 
interesting views of the molecular shape.  

Using the Pocket Panel, available from the Gizmos pulldown in alvis, you can make selections that 
shows voids, pockets, and difference areas in a protein. The online alvis tutorial at 
http://www.alphashapes.org describes in full the settings needed to view these features.  

Along with the main Alpha Shapes programs, a number of utility scripts are provided that can 
postprocess VOLBL output to give specific information. These include:  

aacount  

Computes an itemized residue-wise contribution to area or volume from a VOLBL output file  

aadiff  

Computes residue-wise differences in accessible area between two models  

aanonpolar  

Outputs area or volume contributions from nonpolar atoms; aapolar does the same thing for 
polar groups  

areadiff  

Computes atom-wise differences in area between two files 

Analogous scripts for computing volume differences are also included. 

Analytical surface potentials based on Alpha Shapes can also be accessed with the CAST-P web server 
at the University of Illinois at Chicago. At the time of this writing, not all protein structures in the PDB 
are represented on CAST-P; the site is currently under development. However, it promises to be a 
useful analytical tool in the future. CAST-P features an integrated Java-based visualization of cavities 
in protein structures and the amino acids that are in contact with cavities.  

9.9 Computing Physicochemical Properties 

We've already discussed forces that control the interactions between individual atoms in a protein 
molecule. However, to understand intermolecular interactions, it may be more interesting to learn how 
all the atoms in a protein act together at a distance, to influence other proteins or ligands.  

The electrostatic potential of an object is a measure of the force exerted by that object on other nearby 
objects. The electrostatic potential of a protein molecule is a long-range force that can influence the 
behavior of other molecules in the environment at a range of up to 15 angstroms.  
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Electrostatic interactions within the macromolecule can also be important. Nearby charged groups 
within a protein may cause the pKa value (the pH at which an acidic or basic group loses or gains a 
proton) of an amino acid to shift, creating the chemistry necessary for that molecule to perform its 
chemical function.  

9.9.1 Macromolecular Electrostatics 

A protein molecule can be thought of as a collection of charges in a dielectric medium. In the model 
that computes electrostatic potentials for protein molecules, each atom is represented as a point with a 
partial atomic charge. The solvent accessible surface of the protein forms the boundary between the 
interior medium of the protein and the exterior medium surrounding the protein.  

Computing the electrostatic potential of a protein structure allows you to predict quantities such as 
individual amino acid pKa values, solvation energies, and approximations to intermolecular binding 
energies. If you are interested in protein modeling, macromolecular electrostatics is a topic that you 
may wish to explore further. Our review of the subject in the March 2000 issue of Methods provides an 
entry point to the molecular electrostatics literature.  

The University of Houston Brownian Dynamics (UHBD) package is a state-of-the-art software package 
for computing macromolecular electrostatics. UHBD computes electrostatic potentials and can also use 
those potentials as parameters in subsequent Brownian Dynamics and Molecular Dynamics 
simulations. The most recent release of UHBD can be compiled on Linux systems and includes several 
control scripts that implement UHBD to calculate pKa values for individual titrating amino acids in the 
protein, as well as theoretical titration curves for the protein as a whole. UHBD is accessed by a 
scripting language; it requires a protein structure file and a command script as input. It also requires a 
file containing atomic partial charges for any amino acids and other atoms in the input structure. 
Detailed scripting examples are provided in the UHBD distribution, along with charge datafiles that 
allow the program to assign correct partial atomic charges to all but unusual atom groups.  

UHBD, and other similar programs such as DelPhi—which overlaps only the electrostatics 
functionality of UHBD—use numerical approximations to solve the Poisson-Boltzmann equation for 
the large number of interacting charges that make up a protein. In the finite-difference approach used 
by UHBD, the irregularly spaced charges in a protein molecule are mapped onto a regular 3D grid, and 
the Poisson-Boltzmann equation is solved iteratively for each point on the grid until the solution 
converges to an electrostatic potential for each point.  

9.9.2 Visualization of Molecular Surfaces with Mapped Properties 

Other than alvis, which doesn't truly display a molecular surface but rather a mathematically derived 
pseudosurface, there are several options for displaying the shapes of molecules. Most molecular 
modeling packages incorporate a molecular surface display feature and allow the surface to be colored 
according to chemical properties. However, the display schemes in programs not specifically designed 
for that purpose are too unsophisticated to handle data from macromolecular electrostatics calculations 
and other representations of physicochemical properties. An exception seems to be the SWISS-
PDBViewer (discussed earlier), which can interpret data from external electrostatics calculations and 
analytical molecular surface calculations.  

9.9.2.1 GRASP/GRASS 
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GRASP is a high-quality molecular surface visualization program developed by Barry Honig's group at 
Columbia University. GRASP can read electrostatic potential files and display them as features of a 
molecular surface, and has many other display options for creating really beautiful visual 
interpretations of electrostatic properties. Unfortunately, GRASP is available only for SGI IRIX 
workstations and there are no plans to make it available for other operating systems at this time.  

If you're using a Mac or PC, some of GRASP's functionality can be accessed through the GRASS web 
interface at Columbia. However, this web interface relies heavily on an interface to either GRASP itself 
(on SGI workstations), the Chime browser plug-in, or a VRML viewer, all of which are still 
problematic or nonexistent if you're working on a Linux system. We have had some success using the 
vrmlview viewer with Netscape to visualize VRML models from the GRASS server, although the 
image quality is relatively low. To use vrmlview, download and install the program and then set your 
Netscape preferences to use the vrmlview executable to handle files with MIME type model/vrml. The 
"Handled By" entry in your Netscape applications list should read /usr/local/bin/vrmlview %s (or 
wherever you installed vrmlview ).  

The GRASS interface is straightforward and clickable. You can select from several molecular display 
options: CPK surface, molecular surface, ribbons, or a stick model. Then, a property can be chosen to 
be mapped onto the molecular graphics. Available properties include electrostatic potentials computed 
using GRASP's built-in FDPB solver, surface curvature, hydrophobicity, and amino ac id variability 
within the protein's sequence family. GRASS doesn't implement the full functionality of GRASP, but 
many of the most useful features are available.  

9.10 Structure Optimization 

Protein structure optimization is the process of bringing a structure into agreement with some "ideal" 
set of geometric parameters. As mentioned earlier when we discussed structure quality checking, 
protein structural models sometimes violate the laws of chemistry. Placing atoms too close together 
causes unfavorable intramolecular contacts, or van der Waals bumps. Bond lengths, bond angles, and 
dihedral angles between atoms in the protein can also be "wrong"; that is, they can fall outside some 
normal range of values expected for that type of bond or angle.  

Structure optimization is an important issue not just to developers of theoretical models, but to 
researchers who experimentally determine protein structures. All protein atomic coordinates are, in an 
important sense, structural models. Structure optimization tools have long been part of the x-ray 
crystallographer's toolkit. The process of optimization can be computationally intensive. Because all 
atoms in a protein structure are connected by bonds with rigidly fixed lengths, moving an atom in one 
part of the protein structure has wide-ranging effects on its neighbors. Often moving one part of the 
protein into a better configuration means moving another part of the protein into an unfavorable 
configuration. Optimization is, essentially, an iterative series of small changes designed to converge to 
the best overall result. There are many methods of optimization, which is its own subdiscipline within 
theoretical computer science.  

You won't always need to know the particulars of optimization methods, but if you begin using 
structure optimization and molecular simulation methods frequently, you should be aware that your 
choice of optimization algorithms may be an issue. It's not always certain that optimization will provide 
you with a better structural model; if the method is  based on incorrect structural rules, or if the rules are 
prioritized incorrectly, optimization can actually give you a worse model than you started with.  
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9.10.1 Informatics Plays a Role in Optimization 

What are the "ideal" parameters or constraints used in optimization? In some cases, they are based 
entirely on chemical principles: bond lengths and angles determined by steric restrictions and 
nonbonded interactions described as Lennard-Jones potentials. In other cases, structural constraints are 
based on information derived from the database of known protein structures. If a particular amino acid 
in a particular sequence context always has the same conformation, a higher probability can be 
assigned to it assuming that conformation again, rather than a different conformation. Secondary 
structure prediction methods use an information-based approach to predicting likely conformations for 
the protein backbone. Optimization methods use information to refine atomic structures at the level of 
individual sidechain atoms once the backbone trace has been worked out.  

9.10.2 Rotamer Libraries 

Rotamer libraries are parameter sets specifically for the optimization of sidechain positions in 
molecular model building. They are called rotamer libraries because they contain information about 

allowed rotations of the remote amino acid sidechain atoms around the C  - C  bond, expressed as 
the allowed values of sidechain dihedral angles.  

Because of steric constraints on bond rotation, amino acid sidechains in proteins can assume only a few 
conformations without unfavorable energetic consequences. Rotamer libraries can be derived using 
chemical bond and angle constraints, but, they are more likely to be developed by analysis of the 
conformations assumed by amino acid sidechains in known protein structures. Rotamer libraries can be 
either backbone-dependent or -independent. Backbone-independent rotamer libraries classify all 
instances of a particular amino acid as part of the same set, even if one occurrence is within a beta sheet 
and the other is within an alpha helix. Backbone-dependent rotamer libraries, on the other hand, further 
classify amino acids according to their occurrence in specific secondary structures.[2]  

[2] When rules fo r structure evaluation and optimization are derived from existing occurrences of patterns in a database, there is a trade-off between highly specific 
classification of occurrences and the size of the data set for each type of occurrence. The more data in the data set, the better the value of the rule is likely to be; 
however, the less specific the classification of occurrences, the less value the rule is likely to have for prediction. This is true not only of rotamer libraries but of 
PDFs and any other database-derived rules. 

SCRWL, available from the Fred Cohen research group at UCSF, is a program that allows you to 
model sidechain conformations using a backbone-dependent rotamer library.  

9.10.3 PDFs 

The derivation of probability density functions (PDFs) is similar in concept to the development of 
rotamer libraries, although more mathematically rigorous. The essence of a PDF is that a mathematical 
function is developed to represent a distribution of discrete values. The discrete values that make up the 
distribution are harvested from occurrences of a situation in a representative database of samples. That 
mathematical function can then be used to evaluate and optimize (and in some cases even predict) the 
properties of future occurrences of the same situation.  

In protein modeling, PDFs have been used to describe intra- and inter-residue interatomic distances, as 
well as bond angles, dihedral angles, and other more spatially extensive regions of protein structure. 
Modeller, which is discussed in Chapter 10, uses a combination of bond angle and dihedral angle PDFs 
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to optimize the protein structure models it builds. Modeller's internal OPTIMIZE routine can be used 
for PDF-based structure optimization.  

The data from which PDFs are generated can be broken down into specific occurrences; for example, 

all contacts between C  in residue i and C  in residue i+4 when both residues are leucine but again, 
trade-offs between classification detail and class population occur. Distance PDFs for proteins have 
been used by several groups to evaluate and optimize protein structures. Most such work is still in its 
early stages, and software isn't yet available for public use.  

Figure 9-15 shows a plot of a distance probability density function for tertiary interactions between 
sulfur atoms in cysteine residues generated from known protein structures. The function's peak near 2 
angstroms corresponds to the high propensity with which the sulfur atoms form disulfide bridges 
between cysteine residues. These data are taken from the Biology Workbench at the San Diego 
Supercomputer Center (http://workbench.sdsc.edu/) and plotted us ing xmgr. Note that the Workbench 
PDFs make a distinction between cysteine residues participating in disulfide bridges (pictured here and 
referred to as CSS residues at the Workbench site) and those cysteines that don't participate in disulfide 
bonds (which the Workbench site calls CYS).  

Figure 9-15. Interatomic distance probability density function 

 

Structure evaluation based on PDFs is implemented in the Structure Tools section of the SDSC Biology 
Workbench (Figure 9-16). You can upload a PDB structure or a theoretical model and score the 
structure either on a residue-by-residue or an atom-by-atom basis. Scores can be displayed on a plot, 
where the Y-axis represents the relative probability of the region of structure that's being evaluated. 
This can be thought of in terms of the probability that a particular residue or atom is in the "correct" 
position, given what is known about other occurrences of that residue or atom in similar sequence 
environments. Regions with low probability are likely to be misfolded or poorly modeled. PDF 
probability scores can also be written out in a special PDB file, in place of the temperature factor 
values found in the original PDB file. These special PDB files can then be displayed using a 
visualization program such as RasMol or Chime. Coloring the molecule by temperature factor maps the 
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PDF probability scores onto the molecular structure, highlighting regions of the structure that score 
poorly.  

Figure 9-16. Comparing PDF scores for an obsolete PDB structure (1B5C) and (1CY0) that superseded it 

 

9.11 Protein Resource Databases 

Several new databases containing information about protein structure and function, and designed for 
users of genome-level information, have recently emerged on the Web. Some of the most notable are 
GeneCensus, PRESAGE, and BIND. These databases are still relatively lightly populated, and have not 
yet taken the central role in biological research that PDB and NCBI. However, certainly these or 
similar resources will soon become vital to molecular biology research.  

9.11.1 GeneCensus 

The GeneCensus project is a broad, sequence-based comparison of the protein content of several 
genomes. At the time of this writing, GeneCensus contains information from 20 genomes. GeneCensus 
currently can be searched with a PDB ID or an ORF ID to locate occurrences of specific protein folds 
in the GeneCensus genomes.  

9.11.2 PRESAGE 

PRESAGE is a database of information about experimental progress with the structures of various 
proteins. You can search PRESAGE with a TIGR ORF code, NCBI or SWISS-PROT accession 
number, and a number of other codes to find out if someone is attempting to isolate, crystallize, and 
solve the structure of that protein, and if so, how far along they are. PRESAGE is relatively new at 
press time; it currently contains only about 6,000 records and isn't guaranteed to be comprehensive. It 
can't be searched directly by BLAST or FASTA search with a sequence, so before checking PRESAGE 
for instances of an unknown sequence, you have to search for matching accession codes. However, in 
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principle, the PRESAGE database promises to be useful, both for crystallographers and their 
collaborators, and for curious citizens of the molecular biology community who are wondering if the 
structure of their protein has been solved yet.  

9.11.3 BIND 

The Biomolecular Interaction Network Database (BIND) is another relatively new data repository 
offered by the Samuel Lunenfeld Research Institute. BIND was designed to be a central deposition site 
for known information about macromolecular interactions. BIND is a complex database, containing 
information about interactions between objects in the database, molecular complex information, and 
metabolic pathway information. The BIND format is designed to contain information about 
experimental conditions that observe the interactions stored in the database, as well as information 
about binding site location, biochemical activity, kinetics, and thermodynamics. BIND is still in its beta 
testing phase, containing only a few hundred interactions. However, BIND has been funded to hire 
indexers and it is expected to grow rapidly in the near future. One interesting aspect of the BIND data 
entry process is that methods for automated reading of existing journal literature are being implemented 
to extract known interactions from their inconvenient location in dusty library stacks and put them 
more effectively in the public domain.  

9.12 Putting It All Together 

We can't give you a single recipe for using the techniques described in this chapter to characterize a 
protein. There are too many variables from system to system, and too much diversity in what you as a 
biologist might want to know. However, some common features of a structural modeling approach 
include:  

• Gathering useful structural and biophysical information about the system under study. 
Everything from site-directed mutagenesis to classic biochemical and biophysical studies may 
be useful.  

• Using multiple sequence analysis to analyze the protein as part of a related family. This may 
give insight into the location of functionally important residues and active sites.  

• Analyzing a crystal structure or theoretical model to identify the location of buried polar and 
charged residues, unusual hydrogen bonds, networks of structured solvent molecules, and other 
chemical features that may be involved in structural stability or function.  

• Analyzing a family of related proteins by superimposing or comparing their structures to 
identify common features.  

• Mapping identified properties—sites known to affect function if mutated, sites conserved in 
multiple sequences, etc.—onto the protein sequence and structure.  

• Visualizing the structure and interpreting the location of potentially important amino acids and 
sites.  

• Computing the molecular surface and characterizing possible substrate binding sites or 
molecular interaction regions by their shapes.  

• Computing electrostatic potentials and modeling electrostatic properties such as individual 
amino acid pKa values or molecular interaction energies. Unusually strong electrostatic 
potentials or unusual pKa values may indicate regions of catalytic importance.  

Obviously, this type of analysis requires a real understanding of protein chemistry. We've identified the 
tools of structural biology for you, but you will decide how to put them to use. To help you toward that 
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end, Table 9-3 contains a quick reference of molecular structure tools and how they are commonly 
used.  

Table 9-3. Structure Tools and Techniques  
What you do Why you do it What you use to do it 

View molecular structure Computer graphics are the only way to "see" a protein 
structure in detail  

Browser plugins: RasMol, Cn3D, 
SWISS-PDBViewer; standalones: 
MolMol, MidasPlus, VMD  

Create high-quality PostScript 
schematic diagrams and color 
graphics of proteins  

For publication MolScript  

Create schematic diagrams of 
active sites 

To help identify the structural components of the 
functional site; for publication  LIGPLOT  

Structure classification To identify relationships among proteins  CATH, SCOP  

Secondary structure analysis To extract recognizable features at the SS level, which 
aids in classification  DSSP, STRIDE  

Topology analysis To extract recognizable supersecondary motifs, which 
aids in classification  TOPS  

Domain identification To extract recognizable domains, which aids in 
classification 3Dee 

Unique structure database 
subsets 

To eliminate bias in source data sets for knowledge-
based modeling PDBSelect, culled PDB databases  

Structure alignment 

To identify relationships among distantly related 
proteins that may have evolved beyond recognizable 
sequence similarity, while preserving structural 
similarity  

CE, DALI, VAST  

Molecular geometry analysis To identify strained conformations or incorrectly 
represented regions in a structure model  PROCHECK, WHAT IF  

Intramolecular contact analysis To identify residue-residue interactions that may help 
identify active sites, structure-stabilizing features, etc.  CSU, HBPLUS 

Solvent accessibility 
calculation To identify amino acids that interact with a solvent naccess, Alpha Shapes  

Solvent modeling 
To place a chemically realistic solvent shell around the 
molecule in preparation for some types of simulations; 
aids in understanding functional mechanism  

HBUILD 

Molecular surface 
visualization 

To gain a visual understanding of molecular shape and 
chemical surface features  

GRASP, GRASS server, SWISS-
PDBViewer  

Electrostatic potential 
calculation 

To visualize the chemically important surface features 
of a protein, and as a preliminary step in pKa 
calculations, binding energy calculations, and Brownian 
dynamics simulations  

UHBD, DelPhi  

Protein pKa calculation 
To model pH-dependent behavior of proteins, identify 
possible active sites, and and identify residues in 
unusual chemical environments  

UHBD, DelPhi  
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Chapter 10. Predicting Protein Structure and Function 
from Sequence 

The amino acid sequence of a protein contains interesting information in and of itself. A protein 
sequence can be compared and contrasted with the sequences of other proteins to establish its 
relationship, if any, to known protein families, and to provide information about the evolution of 
biochemical function. However, for the purpose of understanding protein function, the 3D structure of 
a protein is far more useful than its sequence.  

The key property of proteins that allows them to perform a variety of biochemical functions is the 
sequence of amino acids in the protein chain, which somehow uniquely determines the 3D structure of 
the protein. [1] Given 20 amino acid possibilities, there are a vast number of ways they can be combined 
to make up even a short protein sequence, which means that given time, organisms can evolve proteins 
that carry out practically any imaginable purpose. 

[1] That "somehow," incidentally, represents several decades of work by hundreds of researchers, on a fundamental question that remains open to this day. 

Each time a particular protein chain is synthesized in the cell, it folds together so that each of the 
critical chemical groups for that particular protein's function is brought into a precise geometric 
arrangement. The fold assumed by a protein sequence doesn't vary. Every occurrence of that particular 
protein folds into exactly the same structure. 

Despite this consistency on the part of proteins, no one has figured out how to accurately predict the 3D 
structure that a protein will fold into based on its sequence alone. Patterns are clearly present in the 
amino acid sequences of proteins, but those patterns are degenerate ; that is, more than one sequence 
can specify a particular type of fold. While there are thousands upon thousands of ways amino acids 
can combine to form a sequence of a particular length, the number of unique ways that a protein 
structure can organize itself seems to be much smaller. Only a few hundred unique protein folds have 
been observed in the Protein Data Bank. Proteins with almost completely nonhomologous sequences 
nonetheless fold into structures that are similar. And so, prediction of structure from sequence is a 
difficult problem. 

10.1 Determining the Structures of Proteins 

If we can experimentally determine the structures of proteins, and structure prediction is so hard, why 
bother with predicting structure at all? The answer is that solving protein structures is difficult, and 
there are many bottlenecks in the experimental process. Although the first protein structure was 
determined decades before the first DNA sequence, the protein structure database has grown far more 
slowly in the interim than the sequence database. There are now on the order of 10,000 protein 
structures in the PDB, and on the order of 10 million gene sequences in GenBank. Only about 3,000 
unique protein structures have been solved (excluding structures of proteins that are more than 95% 
identical in sequence). Approximately 1,000 of these are from proteins that are substantially different 
from each other (no more than 25% identical in sequence). 

10.1.1 Solving Protein Structures by X-ray Crystallography 
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In the late 1930s, it was already known that proteins were made up of amino acids, although it had not 
yet been proven that these components came together in a unique sequence. Linus Pauling and Robert 
Corey began to use x-ray crystallography to study the atomic structures of amino acids and peptides. 

Pure proteins had been crystallized by the time that Pauling and Corey began their experiments. 
However, x-ray crystallography requires large, unflawed protein crystals, and the technology of protein 
purification and crystallization had not advanced to the point of producing useful crystals. What 
Pauling and Corey did discover in their studies of amino acids and peptides was that the peptide bond is 
flat and rigid, and that the carboxylic acid oxygen is almost always on the opposite side of the peptide 
bond as the amino hydrogen. (See the illustration of a peptide bond in Figure 9-1). Using this 
information to constrain their models, along with the atomic bond lengths and angles that they observed 
for amino acids, Pauling and Corey built structural models of polypeptide chains. As a result, they were 
able to propose two types of repetitive structure that occur in proteins: the alpha helix and the beta 
sheet, as shown previously in Chapter 9. 

In experiments that began in the early 1950s, John Kendrew determined the structure of a protein called 
myoglobin, and Max Perutz determined the structure of a similar protein called hemoglobin. Both 
proteins are oxygen transporters, easily isolated in large quantities from blood and readily crystallized. 
Obtaining x-ray data of reasonably high quality and analyzing it without the aid of modern computers 
took several years. The structures of hemoglobin and myoglobin were found to be composed of high-
density rods of the dimensions expected for Pauling's proposed alpha helix. Two years later, a much 
higher-quality crystallographic data set allowed the positions of 1200 of myoglobin's 1260 atoms to be 
determined exactly. The experiments of Kendrew and Perutz paved the way for x-ray crystallographic 
analysis of other proteins. 

In x-ray crystallography, a crystal of a substance is placed in an x-ray beam. X-rays are reflected by the 
electron clouds surrounding the atoms in the crystal. In a protein crystal, individual protein molecules 
are arranged in a regular lattice, so x-rays are reflected by the crystal in regular patterns. The x-ray 
reflections scattered from a protein crystal can be analyzed to produce an electron density map of the 
protein (see Figure 10-1: images are courtesy of the Holden Group, University of Wisconsin, Madison, 
and Bruker Analytical X Ray Systems). Protein atomic coordinates are produced by modeling the best 
possible way for the atoms making up the known sequence of the protein to fit into this electron 
density. The fitting process isn't unambiguous; there are many incrementally different ways in which an 
atomic structure can be fit into an electron density map, and not all of them are chemically correct. A 
protein structure isn't an exact representation of the positions of atoms in the crystal; it's simply the 
model that best fits both the electron density map of the protein and the stereochemical constraints that 
govern protein structures. 

Figure 10-1. X-ray diffraction pattern and corresponding electron density map of the 3D structure of zinc-
containing phosphodiesterase 
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In order to determine a protein structure by x-ray crystallography, an extremely pure protein sample is 
needed. The protein sample has to form crystals that are relatively large (about 0.5 mm) and singular, 
without flaws. Producing large samples of pure protein has become easier with recombinant DNA 
technology. However, crystallizing proteins is still somewhat of an art form. There is no generic recipe 
for crystallization conditions (e.g., the salt content and pH of the protein solution) that cause proteins to 
crystallize rapidly, and even when the right solution conditions are found, it may take months for 
crystals of suitable size to form. 

Many protein structures aren't amenable to crystallizatio n at all. For instance, proteins that do their 
work in the cell membrane usually aren't soluble in water and tend to aggregate in solution, so it's 
difficult to solve the structures of membrane proteins by x-ray crystallography. Integral membrane 
proteins account for about 30% of the protein complement (proteome) of living things, and yet less 
than a dozen proteins of this type have been crystallized in a pure enough form for their structures to be 
solved at atomic resolution. 
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10.1.2 Solving Structures by NMR Spectroscopy 

An increasing number of protein structures are being solved by nuclear magnetic resonance (NMR) 
spectroscopy. Figure 10-2 shows raw data from NMR spectroscopy. NMR detects atomic nuclei with 
nonzero spin; the signals produced by these nuclei are shifted in the magnetic field depending on their 
electronic environment. By interpreting the chemical shifts observed in the NMR spectrum of a 
molecule, distances between particular atoms in the molecule can be estimated. (The image in Figure 
10-2 is courtesy of Clemens Anklin, Bruker Analytical X Ray Systems.) 

Figure 10-2. NOESY (2D NMR) spectrum of lysozyme 

 

To be studied using NMR, a protein needs to be small enough to rotate rapidly in solution (on the order 
of 30 kilodaltons in molecular weight), soluble at high concentrations, and stable at room temperature 
for time periods as long as several days. 

Analysis of the chemical shift data from an NMR experiment produces a set of distance constraints 
between labeled atoms in a protein. Solving an NMR structure means producing a model or set of 
models that manage to satisfy all the known distance constraints determined by the NMR experiment, 
as well as the general stereochemical constraints that govern protein structures. NMR models are often 
released in groups of 20 -40 models, because the solution to a structure determined by NMR is more 
ambiguous than the solution to a structure determined by crystallography. An NMR average structure is 
created by averaging such a group of models (Figure 10-3). Depending on how this averaging is done, 
stereochemical errors may be introduced into the resulting structure, so it's generally wise to check the 
quality of average structures before using them in modeling. 

Figure 10-3. Structural diversity in a set of NMR models 
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10.2 Predicting the Structures of Proteins 

Ideally, what we'd like to do in analyzing proteins is take the sequence of a protein, which is cheap to 
obtain experimentally, and predict the structure of the protein, which is expensive and sometimes 
impossible to determine experimentally. It would also be interesting to be able to accurately predict 
function from sequence, identify functional sites in uncharacterized 3D structures, and eventually, build 
designed proteins—molecular machines that do whatever we need them to do. But without an 
understanding of how sequence determines structure, these other goals can't reliably be achieved. 

There are two approaches in computational modeling of protein structure. The first is knowledge-based 
modeling. Knowledge-based methods employ parameters extracted from the database of existing 
structures to evaluate and optimize structures or predict structure from sequence (the protein structure 
prediction problem). The second approach is based on simulation of physical forces and molecular 
dynamics. Physicochemical simulations are often used to attempt to model how a protein folds into its 
compact, functional, native form from a nonfunctional, not-as-compact, denatured form (the protein 
folding problem). In this chapter we focus on knowledge-based protein structure prediction and 
analysis methods in which bioinformatics plays an important role.  

Ab-initio protein structure prediction from protein sequence remains an unsolved problem in 
computational biology. Although many researchers have worked to develop methods for structure 
prediction, the only methods that produce a large number of successful 3D structure predictions are 
those based on sequence homology. If you have a protein sequence and you want to know its structure, 
you either need a homologous structure to use as a template for model-building, or you need to find a 
crystallographer who will collaborate with you to solve the structure experimentally. 

The protein-structure community is addressing the database gap between sequence and structure in a 
couple of ways. Pilot projects in structural genomics—the effort to experimentally solve all, or some 
large fraction of, the protein structures encoded by an entire genome—are underway at several 
institutions. However, these projects stand little chance of catching up to the sheer volume of sequence 
data that's being produced, at least in the near future. 

10.2.1 CASP: The Search for the Holy Grail 

In light of the database gap, computational structure prediction is a hot target. It's often been referred to 
as the "holy grail" of computational biology; it's both an important goal and an elusive, perhaps 
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impossible, goal. However, it's possible to track progress in the area of protein structure prediction in 
the literature and try out approaches that have shown partial success. 

Every two years, structure prediction research groups compete in the Community Wide Experiment on 
the Critical Assessment of Techniques for Protein Structure Prediction (CASP, 
http://predictioncenter.llnl.gov/). The results of the CASP competition showcase the latest methods for 
protein-structure prediction. CASP has three areas of competition: homology modeling, threading, and 
ab initio prediction. In addition, CASP is a testing ground for new methods of evaluating the 
correctness of structure predictions. 

Homology modeling focuses on the use of a structural template derived from known structures to build 
an all-atom model of a protein. The quality of CASP predictions in 1998 showed that structure 
prediction based on homology is very successful in producing reasonable models in any case in which a 
significantly homologous structure was available. The challenge for homology-based prediction, as for 
sequence alignment, is detecting meaningful sequence homology in the Twilight Zone—below 25% 
sequence homology. 

Threading methods take the amino acid sequence of an uncharacterized protein structure, rapidly 
compute models based on existing 3D structures, and then evaluate these models to determine how well 
the unknown amino acid "fits" each template structure. All the threading methods reported in the most 
recent CASP competition produce accurate structural models in less than half of the cases in which 
they are applied. They are more successfully used to detect remote homologies that can't be detected by 
standard sequence alignment; if parts of a sequence fit a fold well, an alignment can generally be 
inferred, although there may not be enough information to build a complete model. 

Ab-initio prediction methods focus on building structure with no prior information. While none of the 
ab-initio methods evaluated in CASP 3 produce accurate models with any reliability, a variety of 
methods are showing some promise in this area. One informatics-based strategy for structure prediction 
has been to develop representative libraries of short structural segments out of which structures can be 
built. Since structural "words" that aren't in the library of segments are out of bounds, the structural 
space to be searched in model building is somewhat constrained. Another common ab-initio method is 
to use a reduced representation of the protein structure to simulate folding. In these methods, proteins 
can be represented as beads on a string. Each amino acid, or each fixed secondary structure unit in 
some approaches, becomes a bead with assigned properties that attract and repel other types of beads, 
and statistical mechanical simulation methods are used to search the conformational space available to 
the simplified model. These methods can be successful in identifying protein folds, even when the 
details of the structure can't be predicted. 

10.3 From 3D to 1D 

Proteins and DNA are, in reality, complicated chemical structures made up of thousands or even 
millions of atoms. Simulating such complicated structures explicitly isn't possible even with modern 
computers, so computational biologists use abstractions of proteins and DNA when developing 
analytical methods. The most commonly used abstraction of biological macromolecules is the single-
letter sequence. However, reducing the information content of a complicated structure to a simple 
sequence code leaves behind valuable information.  
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The sequence analysis methods discussed in Chapter 7 and Chapter 8, treat proteins as strings of 
characters. For the purpose of sequence comparison, the character sequence of a protein is almost a 
sufficient representation of a protein structure. However, even the need for substitution matrices in 
scoring protein sequence alignments points to the more complicated chemical nature of proteins. Some 
amino acids are chemically similar to each other and likely to substitute for each other. Some are 
different. Some are large, and some are small. Some are polar; some are nonpolar. Substitution 
matrices are a simple, quantitative way to map amino acid property information onto a linear sequence. 
Asking no questions about the nature of the similarities, substitution matrices reflect the tendencies of 
one amino acid to substitute for another, but that is all. 

However, each amino acid residue in a protein structure (or each base in a DNA or RNA structure, as 
we are beginning to learn) doesn't exist just within its sequence context. 1D information has not proven 
sufficient to show unambiguously how protein structure and function are determined from sequence. 
The 3D structural and chemical context of a residue contains many types of information. 

Until quite recently, 3D information about protein structure was usually condensed into a more easily 
analyzable form via 3D-to-1D mapping. A property extracted from a database can be mapped, usually 
in the form of a numerical or alphabetic character score, to each residue in a sequence. Knowledge-
based methods for secondary structure prediction were one of the first uses of 3D-to-1D mapping. By 
mapping secondary structure context onto sequence information as a property—attaching a code 
representing "helix," "sheet," or "coil" to each amino acid—a set of secondary structure propensities 
can be derived from the structure database and then used to predict the secondary structure content of 
new sequences. 

What important properties does each amino acid in a protein sequence have, besides occurrence in a 
secondary structure? Some commonly used properties are solvent accessibility, acid/base properties, 
polarizability, nearest sequence neighbors, and nearest spatial neighbors. All these properties have 
something to do with intermolecular interactions, as discussed in Chapter 9. 

10.4 Feature Detection in Protein Sequences 

Protein sequence analysis is based to some extent on understanding the physicochemical properties of 
the chemical components of the protein chain, and to some extent on knowing the frequency of 
occurrence of particular amino acids in specific positions in protein structures and substructures. 
Although protein sequence-analysis tools operate on 1D sequence data, they contain implicit 
assumptions about how structural features map to sequence data. Before using these tools, it's best to 
know some protein biochemistry. 

Features in protein sequences represent the details of the protein's function. These usually include sites 
of post-translational modifications and localization signals. Post-translational modifications are 
chemical changes made to the protein after it's transcribed from a messenger RNA. They include 
truncations of the protein (cleavages) and the addition of a chemical group to regulate the behavior of 
the protein (phosphorylation, glycosylation, and acetylation are common examples). Localization or 
targeting signals are used by the cell to ensure that proteins are in the right place at the right time. They 
include nuclear localization signals, ER targeting peptides, and transmembrane helices (which we saw 
in Chapter 9). 
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Protein sequence feature detection is often the first problem in computational biology tackled by 
molecular biologists. Unfortunately, the software tools used for feature detection aren't centrally 
located. They are scattered across the Web on personal or laboratory sites, and to find them you'll need 
to do some digging using your favorite search engine. 

One collection of web-based resources for protein sequence feature detection is maintained at the 
Technical University of Denmark's Center for Biological Sequence Analysis Prediction Servers 
(http://www.cbs.dtu.dk/services/). This site provides access to server-based programs for finding 
(among other things) cleavage sites, glycosylation sites, and subcellular localization signals. These 
tools all work similarly; they search for simple sequence patterns, or profiles, that are known to be 
associated with various post-translational modifications. The programs have standardized interfaces 
and are straightforward to use: each has a submission form into which you paste your sequence of 
interest, and each returns an HTML page containing the results. 

10.5 Secondary Structure Prediction 

Secondary structure prediction is often regarded as a first step in predicting the structure of a protein. 
As with any prediction method, a healthy amount of skepticism should be employed in interpreting the 
output of these programs as actual predictions of secondary structure. By the same token, secondary 
structure predictions can help you analyze and compare protein sequences. In this section, we briefly 
survey secondary structure prediction methods, the ways in which they are measured, and some 
applications. 

Protein secondary structure prediction is the classification of amino acids in a protein sequence 
according to their predicted local structure. Secondary structure is usually divided into one of three 
types (alpha helix, beta sheet, or coil), although the number of states depends on the model being used. 

Secondary structure prediction methods can be divided into alignment-based and single sequence-based 
methods. Alignment-based  secondary structure prediction is quite intuitive and related to the concept of 
sequence profiles. In an alignment-based secondary structure prediction, the investigator finds a family 
of sequences that are similar to the unknown. The homologous regions in the family of sequences are 
then assumed to share the same secondary structure and the prediction is made not based on one 
sequence but on the consensus of all the sequences in the set. Single sequence-based approaches, on the 
other hand, predict local structure for only one unknown. 

10.5.1 Alignment-Based and Hybrid Methods 

Modern methods for secondary structure prediction exploit information from multiple sequence 
alignments, or combinations of predictions from multiple methods, or both. These methods claim 
accuracy in the 70 -77% range. Many of these programs are available for use over the Web. They take 
a sequence (usually in FASTA format) as input, execute some procedure on them, then return a 
prediction, usually by email, since the prediction algorithms are compute-intensive and tend to be run 
in a queue. The following is a list of six of the most commonly used methods: 

PHD  

PHD combines results from a number of neural networks, each of which predicts the secondary 
structure of a residue based on the local sequence context and on global sequence characteristics 
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(protein length, amino acid frequencies, etc.) The final prediction, then, is an arithmetic average 
of the output of each of these neural networks. Such combination schemes are known as jury 
decision or (more colloquially) winner-take-all methods. PHD is regarded as a standard for 
secondary structure prediction. 

PSIPRED  

PSIPRED combines neural network predictions with a multiple sequence alignment derived 
from a PSI-BLAST database search. PSIPRED was one of the top performers on secondary 
structure prediction at CASP 3. 

JPred  

JPred secondary structure predictions are taken from a consensus of several other 
complementary prediction methods, supplemented by multiple sequence alignment information. 
JPred is another one of the top-performing secondary structure predictors. The JPred server 
returns output that can in turn be displayed, edited, and saved for use by other programs using 
the Jalview alignment editor. 

PREDATOR  

PREDATOR combines multiple sequence alignment information with the hydrogen bonding 
characteristics of the amino acids to predict secondary structure. 

PSA  

PSA is another Markov model-based approach to secondary structure prediction. It's notable for 
its detailed graphical output, which represents predicted probabilities of helix, sheet, and coil 
states for each position in the protein sequence. 

10.5.2 Single Sequence Prediction Methods 

The first structure prediction methods in the 1970s were single sequence approaches. The Chou-
Fasman method uses rules derived from physicochemical data about amino acids to predict secondary 
structure. The GOR algorithm (named for its authors, Garnier, Osguthorpe, and Robson) and its 
successors use information about the frequency with which residues occur in helices, sheets, and coils 
in proteins of known structure to predict structures. Both methods are still in use, often on multiple-tool 
servers such as the SDSC Biology Workbench. Modern methods based on structural rules and 
frequencies can achieve prediction accuracies in the 70 -75% range, especially when families of related 
sequences are analyzed, rather than single sequences. 

The surge in popularity of artificial intelligence methods in the 1980s gave rise to AI-based approaches 
to secondary structure prediction, most notably the pattern-recognition approaches developed in the 
laboratories of Fred Cohen (University of California, San Francisco) and Michael Sternberg (Imperial 
Cancer Research Fund), and the neural network applications of Terrence Sejnowski and N. Qian (then 
at Johns Hopkins). These methods exploited similar information as the earlier single-sequence methods 
did, using the AI techniques to automate knowledge acquisition and application. 

10.5.3 Measuring Prediction Accuracy 
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Authors who present papers on secondary structure prediction methods often use a measure of 
prediction accuracy called Q3. The Q3 score is defined as: 

Q = true_positives + true_negatives / total_residues  

A second measure of prediction accuracy is the segment overlap score (Sov) proposed by Burkhard 
Rost and coworkers. The Sov metric tends to be more stringent than Q3, since it gives high scores to 
non-overlapping segments of a single kind of secondary structure, and penalizes sparse predictions 
(Figure 10-4). 

Figure 10-4. Good and bad (sparse) secondary structure predictions 

 

When comparing methods, it pays to be conservative; look at both the average scores and their standard 
deviations instead of the best reported score. As you can see, Q3 and Sov are fairly simple statistics. 
Unlike E-values reported in sequence comparison, neither is a test statistic; both measure the percent of 
residues predicted correctly instead of measuring the significance of prediction accuracy. And, as with 
genefinders, make sure you know what kind of data is used to train the prediction method. 

10.5.4 Putting Predictions to Use 

Originally, the goal of predicting secondary structure was to come up with the most accurate prediction 
possib le. Many researchers took this as their goal, resulting in many gnawed fingernails and pulled-out 
hairs. As mentioned earlier, the hard -won lesson of secondary structure prediction is that it isn't very 
accurate. However, secondary structure prediction methods have practical applications in 
bioinformatics, particularly in detecting remote homologs. Drug companies compare secondary 
structure predictions to locate potential remote homologs in searches for drug targets. Patterns of 
predicted secondary structure can predict fold classes of proteins and select targets in structural 
genomics. 

Secondary structure prediction tools such as PredictProtein and JPred combine the results of several 
approaches, including secondary structure prediction and threading methods. Using secondary structure 
predictions from several complementary methods (both single-sequence and homology-based 
approaches) can result in a better answer than using just one method. If all the methods agree on the 
predicted structure of a region, you can be more confident of the prediction than if it had been arrived 
at by only one or two programs. This is known as a voting procedure in machine learning. 

As with any other prediction, secondary structure predictions are most useful if some information about 
the secondary structure is known. For example, if the structure of even a short segment of the protein 
has been determined, that data can be used as a sanity check for the prediction. 

10.5.5 Predicting Transmembrane Helices 
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Transmembrane helix prediction is related to secondary structure prediction. It involves the recognition 
of regions in protein sequences that can be inserted into cell membranes. Methods for predicting 
transmembrane helices in protein sequences identify regions in the sequence that can fold into a helix 
and exist in the hydrophobic environment of the membrane. Transmembrane helix prediction grew out 
of research into hydrophobicity in the early 1980s, pioneered by Russell Doolittle (University of 
California, San Diego). Again, there are a number of transmembrane helix prediction servers available 
over the Web. Programs that have emerged as standards for transmembrane helix prediction include 
TMHMM (http://www.cbs.dtu.dk/services/TMHMM-1.0/), MEMSAT 
(http://insulin.brunel.ac.uk/~jones/memsat.html), and TopPred 
(http://www.sbc.su.se/~erikw/toppred2/). 

Although structure determination for soluble proteins can be difficult, a far greater challenge is 
structure determination for membrane-bound proteins. Some of the most interesting biological 
processes involve membrane proteins—for example, photosynthesis, vision, neuron excitation, 
respiration, immune response, and the passing of signals from one cell to another. Yet only a handful of 
membrane proteins have been crystallized. Because these proteins don't exist entirely in aqueous 
solution, their physicochemical properties are very different from those of soluble proteins and they 
require unusual conditions to crystallize—if they are amenable to crystallization at all. 

As a result, many computer programs exist that detect transmembrane segments in protein sequence. 
These segments have distinct characteristics that make it possible to detect them with reasonable 
certainty. In order to span a cell membrane, an alpha helix must be about 17-25 amino acids in length. 
Because the interior of a cell membrane is composed of the long hydrocarbon chains of fatty acids, an 
alpha helix embedded in the membrane must present a relatively nonpolar surface to the membrane in 
order for its position to be energetically favorable. 

Early transmembrane segment identification programs exploited these problems directly. By analyzing 
every 17-25 residue windows of an amino acid sequence and assigning a hydrophobicity score to each 
window, high-scoring segments can be predicted to be transmembrane helices. Recent improvements to 
these early methods have boosted prediction of individual transmembrane segments to an accuracy 
level of 90 -95%. 

The topology of the protein in the membrane isn't as easy to predict. The orientation of the first helix in 
the membrane determines the orientation of all the remaining helices. The connections of the helices 
can be categorized as falling on one side or the other of the membrane, but determining which side is 
which, physiologically, is more complicated. 

10.5.6 Threading 

The basic principle of structure analysis by threadingis that an unknown amino acid sequence is fitted 
into (threaded through) a variety of existing 3D structures, and the fitness of the sequence to fold into 
that structure is evaluated. All threading methods operate on this premise, but they differ in their 
details. 

Threading methods don't build a refined all-atom model of the protein; rather, they rapidly substitute 
amino acid positions in a known structure with the sidechains from the unknown sequence. Each 
sidechain position in a folded protein can be described in terms of its environment: to what extent the 
sidechain is exposed to solvent and, if it isn't exposed to solvent, what other amino acids it's in contact 
with. A threaded model is scored highly if hydrophobic residues are found in solvent-inaccessible 



 243 

environments and hydrophilic residues on the protein surface. But these high scores are possible only if 
buried charged and polar residues are found to have appropriate countercharges or hydrogen bonding 
partners, etc. 

Threading is most profitably used for fold recognition, rather than for model building. For this purpose, 
the UCLA-DOE Structure Prediction Server (http://www.doe-mbi.ucla.edu/people/frsur/frsur.html) is 
by far the easiest tool to use. It allows you to submit a single sequence and try out multiple fold-
recognition and evaluation methods, including the DOE lab's own Gon prediction method as well as 
EMBL's TOPITS method and NIH's 123D+ method. Other features, including BLAST and FASTA 
searches, PROSITE searches, and Bowie profiles, which evaluate the fitness of a sequence for its 
apparent structure, are also available. 

Another threading server, the 3D-PSSM server offered by the Biomolecular Modelling Laboratory of 
the Imperial Cancer Research Fund, provides a fold prediction based on a profile of the unknown 
sequence family. 3D-PSSM incorporates multiple analysis steps into a simple interface. First the 
unknown protein sequence is compared to a nonredundant protein sequence database using PSI-
BLAST, and a position-specific scoring matrix (PSSM) for the protein is generated. The query PSSM 
is compared to all the sequences in the library database; the query sequence is also compared to 1D-
PSSMs (PSSMs based on standard multiple sequence alignments) and 3D-PSSMs (PSSMs based on 
structural alignments) of all the protein families in the library database. Secondary structure predictions 
based on these comparisons are shown, aligned to known secondary structures of possible structural 
matches for the query protein. The results from the 3D-PSSM search are presented in an easy-to-
understand graphical format, but they can also be downloaded, along with carbon-alpha-only models of 
the unknown sequence built using each possible structural match as a template. 

Most threading methods are considered experimental, and new methods are always under development. 
More than one method can be used to help identify any unknown sequence, and the results interpreted 
as a consensus of multiple experts. The main thing to remember about any structural model you build 
using a threading server is that it's likely to lack atomic detail, and it's also likely to be based on a 
slightly or grossly incorrect alignment. The threading approach is designed to assess sequences as 
likely candidates to fit into particular folds, not to build usable models. Putative structural alignments 
generated using threading servers can serve as a basis for homology modeling, but they should be 
carefully examined and edited prior to building an all-atom model. 

10.6 Predicting 3D Structure 

As was stated earlier in the chapter, predicting protein structure from sequence is a difficult task, and 
there is no method yet that satisfies all parameters. There are, however, a number of tools that can 
predict 3D structure. They fall into two subgroups: homology modeling and ab-initio prediction.  

10.6.1 Homology Modeling 

Let's say you align a protein sequence (a "target" sequence) against the sequence of another protein 
with a known structure. If the target sequence has a high level of similarity to the sequence with known 
structure (over the full length of the sequence), you can use that known structure as a template for the 
target protein with a reasonable degree of confidence. 
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There is a standard process that is used in homology modeling. While the programs that carry out each 
step may be different, the process is consistent: 

1. Use the unknown sequence as a query to search for known protein structures. 
2. Produce the best possible global alignment of the unknown sequence and the template 

sequence(s). 
3. Build a model of the protein backbone, taking the backbone of the template structure as a 

model. 
4. In regions in which there are gaps in either the target or the template, use a loop-modeling 

procedure to substitute segments of appropriate length. 
5. Add sidechains to the model backbone. 
6. Optimize positions of sidechains. 
7. Optimize structure with energy minimization or knowledge-based optimization. 

The key to a successful homology-modeling project isn't usually the software or server used to produce 
the 3D model. Your skill in designing a good alignment to a template structure is far more critical. A 
combination of standard sequence alignment methods, profile methods, and structural alignment 
techniques may be employed to produce this alignment, as we discuss in the example at the end of this 
chapter. Once a good alignment exists, there are several programs that can use the information in that 
alignment to produce a structural model.  

10.6.1.1 Modeller 

Modeller (http://guitar.rockefeller.edu/modeller/modeller.html) is a program for homology modeling. 
It's available free to academics as a standalone program or as part of MSI's Quanta package 
(http://www.msi.com). 

Modeller has no graphical interface of its own, but once you are comfortable in the command-line 
environment, it's not all that difficult to use. Modeller executables can be downloaded from the web 
site at Rockefeller University, and installation is straightforward; follow the directions in the README 
file available with the distribution. There are several different executables available for each operating 
system; you should choose based on the size of the modeling problems you will use them for. The 
README file contains information on the array size limits of the various executables. There are limits 
on total number of atoms, total number of residues, and total number of sequences in the input 
alignment.  

As input to Modeller, you'll need two input files, an alignment file, and a Modeller script. The 
alignment file format is described in detail in the Modeller manpages; the Modeller script for a simple 
alignment consists of just a few lines written in the TOP language (Modeller's internal language). 
Modeller can calculate multiple models for any input. If the ENDING_ MODEL value in the example 
script shown is set to a number other than one, more models are generated. Usually, it's preferable to 
generate more than one model, evaluate each model independently, and choose the best result as your 
final model. 

The example provided in the Modeller documentation shows the setup for an alignment with a 
pregenerated alignment file between one known protein and one unknown sequence: 

INCLUDE                           # Include the predefined TOP routines 
SET ALNFILE = 'alignment.ali'     # alignment filename 
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SET KNOWNS  = '5fd1'              # codes of the templates 
SET SEQUENCE = '1fdx'             # code of the target 
SET ATOMS_FILES_DIRECTORY = './:../atom_files'# directories for input atom files 
SET STARTING_MODEL= 1             # index of the first model 
SET ENDING_MODEL = 1              # index of the last model 
                                  # (determines how many models to calculate) 
CALL ROUTINE = 'model'            # do homology modeling 

Modeller is run by giving the command mod scriptname. If you name your script fdx.top, the command 
is mod fdx.  

Modeller is multifunctional and has built-in commands that will help you prepare your input: 

SEQUENCE_SEARCH  

Searches for similar sequences in a database of fold class representative structures 

MALIGN3D   

Aligns two or more structures 

ALIGN   

Aligns two blocks of sequences 

CHECK_ ALIGNMENT  

Evaluates an alignment to be used for modeling 

COMPARE_SEQUENCES  

Scores sequences in an alignment based on pairwise similarity 

SUPERPOSE  

Superimposes one model on another or on the template structure 

ENERGY  

Generates a report of restraint violations in a modeled structure 

Each command needs to be submitted to Modeller via a script that calls that command, as shown in the 
previous sample script. Dozens of other Modeller commands and full details of writing scripts are 
described in the Modeller manual. 

One caveat in automated homology modeling is that sidechain atoms may not be correctly located in 
the resulting model; automatic model building methods focus on building a reasonable model of the 
structural backbone of the protein because homology provides that information with reasonable 
confidence. Homology doesn't provide information about sidechain orientation, so the main task of the 
automatic model builder is to avoid steric conflicts and improbable conformations rather than optimize 
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sidechain orientations. Incorrect sidechain positions may be misleading if the goal of the model 
building is to explore functional mechanisms. 

10.6.1.2 How Modeller builds a model 

Though Modeller incorporates tools for sequence alignment and even database searching, the starting 
point for Modeller is a multiple sequence alignment between the target sequence and the template 
protein sequence(s). Modeller uses the template structures to generate a set of spatial restraints, which 
are applied to the target sequence. The restraints limit, for example, the distance between two residues 
in the model that's being built, based on the distance between the two homologous residues in the 
template structure. Restraints can also be applied to bond angles, dihedral angles, and pairs of 
dihedrals. By applying enough of these spatial restraints, Modeller effectively limits the number of 
conformations the model can assume. 

The exact form of the restraints are based on a statistical analysis of differences between pairs of 
homologous structures. What those statistics contribute is a quantitative description of how much 
various properties are likely to vary among homologous structures. The amount of allowed variation 
between, for instance, equivalent alpha-carbon-to-alpha-carbon distances is expressed as a PDF, or 
probability density function. 

What the use of PDF-based restraints allows you to do, in homology modeling, is to build a structure 
that isn't exactly like the template structure. Instead, the structure of the model is allowed to deviate 
from the template but only in a way consistent with differences found between homologous proteins of 
known structure. For instance, if a particular dihedral angle in your template structure has a value of -
60º, the PDF-based restraint you apply should allow that dihedral angle to assume a value of 60 plus or 
minus some value. That value is determined by what is observed in known pairs of homologous 
structures, and it's assigned probabilistically, according to the form of the probability density function. 

Homology-based spatial restraints aren't the only restraints applied to the model. A force field 
controlling proper stereochemistry is also applied, so that the model structure can't violate the rules of 
chemistry to satisfy the spatial restraints derived from the template structures. All chemical restraints 
and spatial restraints applied to the model are combined in a function (called an objective function) 
that's optimized in the course of the model building process. 

10.6.1.3 ModBase: a database of automatically generated models 

The developers of Modeller have made available a queryable online database of annotated homology 
models. The models are prepared using an automated prediction pipeline. The first step in the pipeline 
is to compare each unknown protein sequence with a database of existing protein structures. Proteins 
that have significant sequence homology to domains of known structures are then modeled using those 
structures as templates. Unknown sequences are aligned to known structures using the ALIGN2D 
command in Modeller, and 3D structures are built using the Modeller program. The final step in the 
pipeline is to evaluate the models; results of the evaluation step are presented to the ModBase user as 
part of the search results. Since this is all standard procedure for homology-model development that's 
managed by a group of expert homology modelers, checking ModBase before you set off to build a 
homology model on your own is highly recommended. 

The general procedure for building a model with Modeller is to identify homologies between the 
unknown sequence and proteins of known structures, build a multiple alignment of known structures 
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for use as a template, and apply the Modeller algorithm to the unknown sequence. Models can 
subsequently be evaluated using standard structure-evaluation methods. 

10.6.1.4 The SWISS-MODEL server 

SWISS-MODEL is an automated homology modeling web server based at the Swiss Institute of 
Bioinformatics. SWISS-MODEL allows you to submit a sequence and get back a structure 
automatically. The automated procedure that's used by SWISS-MODEL mimics the standard steps in a 
homology modeling project: 

1. Uses BLAST to search the protein structure database for sequences of known structure 
2. Selects templates and looks for domains that can be modeled based on non-homologous 

templates 
3. Uses a model-building program to generate a model 
4. Uses a molecular mechanics force field to optimize the model 

You must supply an unknown sequence to initiate a SWISS-MODEL run in their First Approach mode; 
however, you can also select the template chains that are used in the model building process. This 
information is entered via a simple web form. You can have the results sent to you as a plain PDB file, 
or as a project file that can be opened using the SWISS-PDBViewer, a companion tool for the SWISS-
MODEL server you can download and install on your own machine. 

Although that sounds simple, such an automatic procedure is error-prone. In a nonautomated molecular 
modeling project, there is plenty of room for user intervention. SWISS-MODEL actually allows you to 
intervene in the process using their Project Mode. In Project Mode, you can use the SWISS-
PDBViewer to align your template and target sequences manually, then write out a project file, and 
upload it to the SWISS-MODEL server. 

10.6.2 Tools for Ab-Initio Prediction 

Since ab-initio structure prediction from sequence has not been done with any great degree of success 
so far, we can't recommend software for doing this routinely. If you are interested in the ab-initio 
structure-prediction problem and want to familiarize yourself with current research in the field, we 
suggest you start with any of these tools: the software package RAMP developed by Ram Samudrala, 
the I-Sites/ ROSETTA prediction server developed by David Baker and Chris Bystroff, and the 
ongoing work of John Moult. Recent journal articles describing these methods can serve as adequate 
entry points into the ab-initio protein structure prediction literature. 

10.7 Putting It All Together: A Protein Modeling Project 

So how do all of these tools work to produce a protein structure model from sequence? We haven't 
described every single point and click in this chapter, because most of the software is web-based and 
quite self-explanatory in that respect. However, you may still be wondering how you'd put it all 
together to manage a tough modeling project.  

As an example, we built a model of a target sequence from CASP 4, the most recent CASP 
competition. We've deliberately chosen a difficult sequence to model. There are no unambiguously 
homologous structures in the PDB, though there are clues that can be brought together to align the 
target with a possible template and build a model. We make no claims that the model is correct; its 



 248 

purpose is to illustrate the kind of process you might go through to build a partial 3D model of a protein 
based on a distant similarity. 

The process for building an initial homology model when you do have an obvious, strong homology to 
a known structure is much more straightforward: simply align the template and target along their full 
length, edit the alignment if necessary, write it out in a format that Modeller can read, and submit; or 
submit the sequence of your unknown to SWISS-MODEL in First Approach mode. 

10.7.1 Finding Homologous Structures 

The first step in any protein modeling project is to find a template structure (if possible) to base a 
homology model on. 

Using the target sequence T0101 from CASP 4, identified as a "400 amino acid pectate lyase L" from a 
bacterium called Erwinia chrysanthemi, we searched the PDB for homologs. We started by using the 
PDB SearchFields form to initiate a FASTA search. 

The results returned were disheartening at first glance. As the CASP target list indicated, there were no 
strong sequence homologies to the target to be found in the PDB. None of the matches had E-values 
less than 1, though there were several in the less-than-10 range. None of the matches spanned the full 
length of the protein, the longest matching being a 330 amino acid overlap with a chondroitinase, with 
an E-value of 3.9. 

Each of the top scoring proteins looked different, too, as you can see in Figure 10-5. The top match was 
an alpha-beta barrel type structure, while the second match (the chondroitinase) was a mainly beta 
structure with a few decorative alpha helices, and the third match was an entirely different, 
multidomain all-beta structure.  

Figure 10-5. Pictures of top three sequence matches of a target sequence from CASP 4 
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Out of curiosity, we also did a simple keyword search for pectate lyase in the PDB. There were eight 
pectate lyase structures listed, but none, apparently, were close enough in sequence to the T0101 target 
to be recognized as related by sequence information alone. None of these structures was classified as 
pectate lyase L; they included types A, E, and C. However, we observed that each of the pectate lyase 
molecules in the PDB had a common structural feature: a large, quasihelical arrangement of short beta 
strands known as a beta solenoid, or, less picturesquely, as a single-stranded right-handed beta helix 
(Figure 10-6). 

Figure 10-6. The beta-solenoid domain 
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10.7.2 Looking for Distant Homologies 

We used CE to examine the structural neighbors of the known pectate lyases. Interestingly, one of the 
three proteins (1DBG, a chondroitinase from Flavobacterium heparinium) we first identified with 
FASTA as a sequence match for our target sequence showed up as a high-scoring structural neighbor of 
many of the known pectate lyases. 

Although the homology between T0101 and these other pectate lyases wasn't significant, the sequence 
similarity between T0101 and their close structural neighbor 1DBG seemed to suggest that the structure 
of our target protein might be distantly related to that of the other pectate lyases (Figure 10-7). Note 
that the alignment in the figure shows a strongly conserved structural domain—the ladderlike structure 
at the right of the molecule where the chain traces coincide. 

Figure 10-7. A structural alignment of known pectate lyase structures; the beta solenoid domain is 
visible as a ladderlike structure in the center of the molecule 

 

However, in order to do any actual homology modeling, we need to somehow align the T0101 
sequence to potential template structures. And since none of the pectate lyase sequences were similar 
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enough to the unknown sequence to be aligned to it using standard pairwise alignment, we would need 
to get a little bit crafty with our alignment strategy.  

10.7.3 Predicting Secondary Structure from Sequence 

We applied several secondary structure prediction algorithms to the T0101 target sequence using the 
JPred structure prediction server. While the predictions from each method aren't exactly the same, we 
can see from Figure 10-8 that the consensus from JPred is clear: the T0101 sequence is predicted to 
form many short stretches of beta structure, exactly the pattern that is required to form the beta-
solenoid domain. 

Figure 10-8. Partial secondary structure predictions for T0101, from JPred 

 

10.7.4 Using Threading Methods to Find Potential Folds 

We also sent the sequence to the 3D-PSSM and 123D+ threading servers to analyze its fitness for 
various protein folds. The top-scoring results from the 3D-PSSM threading server, with E-values in the 
95% certainty range, included the proteins 1AIR (a pectate lyase), 1DBG (the chondroitinase that was 
identified as a homolog of our unknown by sequence-based searching), 1IDK, and 1PCL, all pectate 
lyases identified by CE as structural neighbors of 1DBG. These proteins were also found in the top 
results from 123D+. 

10.7.5 Using Profile Methods to Align Distantly Related Sequences 

We now had evidence from multiple sources that suggested the structures 1AIR, 1DBG, and 1IDK 
would be reasonable candidates to use as templates to construct a model of the T0101 unknown 
sequence. However, the remaining challenge was to align the unknown sequence to the template 
structures. We had many different alignments to work with: the initial FASTA alignment of the 
unknown with 1DBG; the CE structural alignment of 1DBG and its structural neighbors 1AIR, 1DBG, 
and 1IDK; and the individual alignments of predicted secondary structure in the unknown to known 
secondary structure for each of the database hits from 3D-PSSM. Each alignment was different, of 
course, because they were generated by different methods. We chose to combine the information in the 
individual 3D-PSSM sequence-to-structure alignments of the unknown sequence with 1AIR and 1IDK 
into a single alignment file. We did this by aligning those two alignments to each other using Clustal's 



 252 

Profile Alignment mode. Finally, we wrote out the alignment to a single file in a format appropriate for 
Modeller and used this as input for our first approach. 

10.7.6 Building a Homology Model 

We created the following input for Modeller: 

The input script, peclyase.top: 
 
Homology modelling by the MODELLER TOP routine 'model'. 
 
INCLUDE                          # Include the predefined TOP routines 
SET ALNFILE = 'peclyase.ali'     # alignment filename 
SET KNOWNS  = '1air','1idk'      # codes of the templates 
SET SEQUENCE = 't0101'           # code of the target 
SET ATOM_FILES_DIRECTORY = './templates' # directories for input atom files 
SET STARTING_MODEL= 1            # index of the first model 
SET ENDING_MODEL = 3             # index of the last model 
                                 # (determines how many models to calculate) 
CALL ROUTINE = 'model'           # do homology modeling 

We created a sequence alignment file, peclyase.ali, in PIR format, built as described in the example and 
modified to indicate to Modeller whether each sequence was a template or a target. 

We also placed PDB files, containing structural information for the template chains of 1AIR and 1IDK, 
in a templates subdirectory of our working directory. The files were named 1air.atm and 1idk.atm, as 
Modeller requires, and we then ran Modeller to create structural models. The models looked similar to 
their templates, especially in the beta solenoid domain, and evaluated reasonably well by standard 
methods of structure verification, including 3D/1D profiles and geometric evaluation methods. 
However, just like the actual CASP 4 competitors, we await the publication of the actual structure of 
the T0101 target for validation of our structural model. 

10.8 Summary 

Solving protein structure is complicated at best, but as you've seen, there are a number of software tools 
to make it easier. Table 1 provides a summary of the most popular structure prediction tools and 
techniques available to you. 

Table 1. Structure Prediction Tools and Techniques 
What you do Why you do it What you use to do it 

Secondary structure 
prediction As a starting point for classification and structural modeling JPred, Predict-Protein 

Threading To check the fitness of a protein sequence to assume a known fold; to 
identify distantly related structural homologs 3D-PSSM, PhD, 123D 

Homology modeling To build a model from a sequence, based on homologies to known 
structures Modeller, SWISS-MODEL 

Model verification To check the fitness of a modeled structure for its protein sequence VERIFY-3D, PROCHECK, 
WHAT IF 

Ab-initio structure 
modeling To predict a 3D structure from sequence in the absence of homology ROSETTA, RAMP 
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Chapter 11. Tools for Genomics and Proteomics 

The methods we have discussed so far can be used to analyze a single sequence or structure and 
compare multiple sequences of single-gene length. These methods can help you understand the 
function of a particular gene or the mechanism of a particular protein. What you're more likely to be 
interested in, though, is how gene functions manifest in the observable characteristics of an organism: 
its phenotype. In this chapter we discuss some datatypes and tools that are beginning to be available for 
studying the integrated function of all the genes in a genome.  

What sets genomic science apart from the traditional experimental biological sciences is the emphasis 
on automated data gathering and integration of large volumes of information. Experimental strategies 
for examining one gene or one protein are gradually being replaced by parallel strategies in which 
many genes are examined simultaneously. Bioinformatics is absolutely required to support these 
parallel strategies and make the resulting data useful to the biology community at large. While 
bioinformatics algorithms may be complicated, the ultimate goals of bioinformatics and genomics are 
straightforward. Information from multiple sources is being integrated to form a complete picture of 
genomic function and its expression as the pheotype of an organism, as well as to allow comparison 
between the genomes of different organisms. Figure 11-1 shows the sort of flowchart you might create 
when moving from genetic function to phenotypic expression.  

Figure 11-1. A flowchart moving from genome to phenotype 

 

From the molecular level to the cellular level and beyond, biologists have been collecting information 
about pieces of this picture for decades. As in the story of the blind men and the elephant, focusing on 
specific pieces of the biological picture has made it difficult to step back and see the functions of the 
genome as a whole. The process of automating and scaling up biochemical experimentation, and 
treating biochemical data as a public resource, is just beginning.  

The Human Genome Project has not only made gigabytes of biological sequence information available; 
it has begun to change the entire landscape of biological research by its example. Protein structure 
determination has not yet been automated at the same level as sequence determination, but several pilot 
projects in structural genomics are underway, with the goal of creating a high-speed structure 
determination pipeline. The concept behind the DNA microarray experiment—thousands of 
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microscopic experiments arrayed on a chip and running in parallel—doesn't translate trivially to other 
types of biochemical and molecular biology experiments. Nonetheless, the trend is toward efficiency, 
miniaturization, and automation in all fields of biological experimentation.  

A long string of genomic sequence data is inherently about as useful as a reference book with no 
subject headings, page numbers, or index. One of the major tasks of bioinformatics is creating software 
systems for information management that can effectively annotate each part of a genome sequence with 
information about everything from its function, to the structure of its protein product (if it has one), to 
the rate at which the gene is expressed at different life stages of an organism. Currently, the only way 
to get the functional information that is needed to fully annotate and understand the workings of the 
genome is traditional biochemical experimentation, one gene or protein at a time. The growing genome 
databases are the motivation for further parallelization and automation of biological research.  

Another task of genome information management systems is to allow users to make intuitive, visual 
comparisons between large data sets. Many new data integration projects, from visual comparison of 
multiple genomes to visual integration of expression data with genome map data, are under 
development.  

Bioinformatics methods for genome-level analysis are obviously not as advanced in their development 
as sequence and structure analysis methods. Sequence and structure data have been publicly available 
since the 1970s; a significant number of whole genomes have become available only very recently. In 
this chapter, we focus on some data presentation and search strategies the research community has 
identified as particularly useful in genomic science.  

11.1 From Sequencing Genes to Sequencing Genomes 

In Chapter 7, we discussed the chemistry that allows us to sequence DNA by somehow producing a 
ladder of sequence fragments, each differing in size by one base, which can then be separated by 
electrophoresis. One of the first computational challenges in the process of sequencing a gene (or a 
genome) is the interpretation of the pattern of fragments on a sequencing gel.  

11.1.1 Analysis of Raw Sequence Data: Basecalling 

The process of assigning a sequence to raw data from DNA sequencing is called basecalling. As an end 
user of genome sequence data, you don't have access to the raw data directly from the sequencer; you 
have to rely on a sequence that has been assigned to this data by some kind of processing software. 
While it's not likely you will actually need basecalling software, it is helpful to remember what the 
software does and that it can give rise to errors.  

If this step doesn't produce a correct DNA sequence, any subsequent analysis of the sequence is 
affected. All sequences deposited in public databases are affected by basecalling errors due to 
ambiguities in sequencer output or to equipment malfunctions. EST and genome survey sequences have 
the highest error rates (1/10 -1/100 errors per base), followed by finished sequences from small 
laboratories (1/100 - 1/1,000 per base) and finished sequences from large genome sequencing centers 
(1/10,000 -1/100,000 per base). [1] Any sequence in GenBank is likely to have at least one error. 
Improving sequencing technology, and especially the signal detection and processing involved in DNA 
sequencing, is still the subject of active research.  

[1] These values were provided by Dr. Sean Eddy of Washington University. 
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There are two popular high-throughput protocols for DNA sequencing. As discussed earlier, DNA 
sequencing as it is done today relies on the ability to create a ladder of fragments of DNA at single-
base resolution and separate the DNA fragments by gel electrophoresis. The popular Applied 
Biosystems sequencers label the fragmented DNA with four different fluorescent labels, one for each 
base-specific fragmentation, and run a mixture of the four samples in one gel lane. Another commonly 
used automated sequencer, the Pharmacia ALF instrument, runs each sample in a separate, closely 
spaced lane. In both cases, the gel is scanned with a laser, which excites each fluorescent band on the 
gel in sequence. In the four-color protocol, the fluorescence signal is elicited by a laser perpendicular to 
the gel, one lane at a time, and is then filtered using four colored filters to obtain differential signals 
from each fluorescent label. In the single-color protocol, a laser parallel to the gel excites all four lanes 
from a single sequencing experiment at once, and the fluorescent emissions are recorded by an array of 
detectors. Each of these protocols has its advantages in different types of experiments, so both are in 
common use. Obviously, the differences in hardware result in differences in the format of the data 
collected, and the use of proprietary file formats for data storage doesn't resolve this problem.  

There are a variety of commercial and noncommercial tools for automated basecalling. Some of them 
are fully integrated with particular sequencing hardware and input datatypes. Most of them allow, and 
in fact require, curation by an expert user as sequence is determined.  

The raw result of sequencing is a record of fluorescence intensities at each position in a sequencing gel. 
Figure 11-2 shows detector ouput from a modern sequencing experiment. The challenge for automated 
basecalling software is to resolve the sequence of apparent fluorescence peaks into four-letter DNA 
sequence code. While this seems straightforward, there are fairly hard limits on how much sequence 
can be read in a single experiment. Because separation of bands on a sequencing gel isn't perfect, the 
quality of the separation and the shape of the bands deteriorates over the length of the gel. Peaks 
broaden and intermingle, and at some point in the sequencing run (usually 400 -500 bases), the peaks 
become impossible to resolve. Various properties of DNA result in nonuniform reactions with the 
sequencing gel, so that fragment mobility is slightly dependent on the identity of the last base in a 
fragment; overall signal intensities can depend on local sequence and on the reagents used in the 
experiment. Unreadable regions can occur when DNA fragments fold back upon themselves or when a 
sequencing primer reacts with more than one site in a DNA sequence, leading to sample heterogeneity. 
Because these are fairly well-understood, systematic errors, computer algorithms can be developed to 
compensate for them. The ultimate goal of basecalling software development is to improve the 
accuracy of each sequence read, as well as to extend the range of sequencing runs, by providing means 
to deconvolute the more ambiguous fluorescence peaks at the end of the run.  

Figure 11-2. Detector output from a modern sequencing experiment 
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Most sequencing projects deal with the inherent errors in the sequencing process by simply sequencing 
each region of a genome multiple times and by sequencing both DNA strands (which results in high-
quality reads of both ends of a sequence). If you read that a genome has been sequenced with 4X 
coverage or 10X coverage, that means that portion of the genome has been sequenced multiple times, 
and the results merged to produce the final sequence.  

Modern sequencing technologies replace gels with microscopic capillary systems, but the core concepts 
of the process are the same as in gel-based sequencing: fragmentation of the DNA and separation of 
individual fragments by electrophoresis.  

At this point, the major genome databases don't provide raw sequence data to users, and for most 
applications, access to raw sequence data isn't really necessary. However, it is likely that, with the 
constant growth of computing power, this will change in the future, and that you may want to know 
how to reanalyze the raw sequence data underlying the sequences available in the public databases.  

One noncommercial software package for basecalling is Phred, which is available from the University 
of Washington Genome Center. Phred runs on either Unix or Windows NT workstations. It uses 
Fourier analysis to resolve fluorescence traces to predict an evenly spaced set of peak locations, then 
uses dynamic programming to match the actual peak locations with the predicted results. It then 
annotates output from basecalling with the probability that the call is an error. Phred scores represent 
scaled negative log probability that a base call is in error; hence, the higher the Phred score, the lower 
the probability that an error has been made. These values can be helpful in determining whether a 
region of the genome may need to be resequenced. Phred can also feed data to a sequence-assembly 
program called Phrap, which then uses both the sequence information and quality scores to aid in 
sequence assembly.  

11.1.2 Sequencing an Entire Genome 

Genome sequencing isn't simply a scaled -up version of a gene-sequencing run. As noted earlier, the 
sequence length limit of a sequencing run is something like 500 base pairs. And the length of a genome 
can range from tens of thousands to billions of base pairs. So in order to sequence an entire genome, 
the genome has to be broken into fragments, and then the sequenced fragments need to be reassembled 
into a continuous sequence.  

There are two popular strategies for sequencing genomes: the shotgun approach and the clone contig 
approach. Combinations of these strategies are often used to sequence larger genomes.  

11.1.2.1 The shotgun approach 

Shotgun DNA sequencing is the ultimate automated approach to DNA sequencing. In shotgun 
sequencing, a length of DNA, either a whole genome or a defined subset of the genome, is broken into 
random fragments. Fragments of manageable length (around 2,000 KB) are cloned into plasmids 
(together, all the clones are called a clone library). Plasmids are simple biological vectors that can 
incorporate any random piece of DNA and reproduce it quickly to provide sufficient material for 
sequencing.  

If a sufficiently large amount of genomic DNA is fragmented, the set of clones spans every base pair of 
the genome many times. The end of each cloned DNA fragment is then sequenced, or in some cases, 
both ends are sequenced, which puts extra constraints on the way the sequences can be assembled. 
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Although only 400 -500 bases at the end or ends of the fragment are sequenced, if enough clones are 
randomly selected from the library and sequenced, the amount of sequenced DNA still spans every 
base pair of the genome several times. In a shotgun sequencing experiment, enough DNA sequencing 
to span the entire genome 6 -10 times is usually required.  

The final step in shotgun sequencing is sequence assembly, which we discuss in more detail in the next 
section. Assembly of all the short sequences from the shotgun sequencing experiment usually doesn't 
result in one single complete sequence. Rather, it results in multiple contigs—unambiguously 
assembled lengths of sequence that don't overlap each other. In the assembly process, contigs start and 
end because a region of the genome is encountered from which there isn't enough information (i.e., not 
enough clones representing that region) to continue assembling fragments. The final steps in 
sequencing a complete genome by shotgun sequencing are either to find clones that can fill in these 
missing regions, or, if there are no clones in the original library that can fill in the gaps, to use PCR or 
other techniques to amplify DNA sequence that spans the gaps.  

Recently, Celera Genomics has shown that shotgun DNA sequencing—sequencing without a map—
can work at the whole genome level even in organisms with very large genomes. The largely 
completed Drosophila genome sequence is evidence of their success.  

11.1.2.2 The clone contig approach 

The clone contig approach relies on shotgun sequencing as well, but on a smaller scale. Instead of 
starting by breaking down the entire genome into random fragments, the clone contig approach starts 
by breaking it down into restriction fragments, which can then be cloned into artificial chromosome 
vectors and amplified. Restriction enzymes are enzymes that cut DNA. These enzymes are sequence-
specific; that is, they recognize only one specific sequence of DNA, anywhere from 6-10 base pairs in 
length. By pure statistics, any base has a 1 in 4 chance of occurring randomly in a DNA sequence; an 
N-residue sequence has a 1 in 4N chance of occurring. Enzymes that cut at a specific 6 -10 base pair 
sequence of DNA end up cutting genomic DNA relatively rarely, but because DNA sequence isn't 
random, the restriction enzyme cuts result in a specific pattern of fragment lengths that is characteristic 
of a genome.  

Each of the cloned restriction fragments can be sequenced and assembled by a standard shotgun 
approach. But assembly of the restriction fragments into a whole genome is a different sort of problem. 
When the genome is digested into restriction fragments, it is only partially digested. The amount of 
restriction enzyme applied to the DNA sample is sufficient to cut at only approximately 50% of the 
available restriction sites in the sample. This means that some fragments will span a particular 
restriction site, while other fragments will be cut at that particular site and will span other restriction 
sites. So the clone library that is made up of these restriction fragments will contain overlapping 
fragments.  

Chromosome walking is the process of starting with a specific clone, then finding the next clone that 
overlaps it, and then the next, etc. Methods such as probe hybridization or PCR are used to help 
identify the restriction fragment that has been inserted into each clone, and there are a number of 
experimental strategies that can make building up the genome map this way less time-consuming. A 
genome map is a record of the location of known features in the genome, which makes it relatively 
simple to associate particular clone sequences with a specific location in the genome by probe 
hybridization or other methods.  
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Genomes can be mapped at various levels of detail. Geneticists are used to thinking in terms of genetic 
linkage maps, which roughly assign the genes that give rise to particular traits to specific loci on the 
chromosome. However, genetic linkage maps don't provide enough detail to support the assembly of a 
full genome worth of sequence, nor do they point to the actual DNA sequence that corresponds to a 
particular trait. What genetic linkage maps do provide, though, is a set of ordered markers, sometimes 
very detailed depending on the organism, which can help researchers understand genome function (and 
provide a framework for assembling a full genome map).  

Physical maps can be created in several ways: by digesting the DNA with restriction enzymes that cut 
at particular sites, by developing ordered clone libraries, and recently, by fluorescence microscopy of 
single, restriction enzyme-cleaved DNA molecules fixed to a glass substrate. The key to each method is 
that, using a combination of labeled probes and known genetic markers (in restriction mapping) or by 
identifying overlapping regions (in library creation), the fragments of a genome can be ordered 
correctly into a highly specific map (see Figure 11-2).  

11.1.2.3 LIMS: Tracking all those minisequences 

In carrying out a sequencing project, tracking the millions of unique DNA samples that may be isolated 
from the genome is one of the biggest information technology challenges. It's also probably one of the 
least scientifically exciting, because it involves keeping track of where in the genome each sample 
came from, which sample goes into each container, where each container goes in what may be a huge 
sample storage system, and finally, which data came from which sample. The systems that manage 
output from high-throughput sequencing are called Laboratory Information Management Systems 
(LIMS), and while we will not discuss them in the context of this book, LIMS development and 
maintenance makes up the lion's share of bioinformatics work in industrial settings. Other high-
throughput technologies, such as microarrays and cheminformatics, also require complicated LIMS 
support.  

11.2 Sequence Assembly 

Basecalling is only the first step in putting together a complete genome sequence. Once the short 
fragments of sequence are obtained, they must be assembled into a complete sequence that may be 
many thousands of times their length. The next step is sequence assembly.  

Sequence assembly isn't something you're likely to be doing on your own on a large scale, unless you 
happen to be working for a genome project. However, even small labs may need to solve sequence-
assembly problems that require some computer assistance.  

DNA sequencing using a shotgun approach provides thousands or millions of minisequences, each 400 
-500 fragments in length. The fragments are random and can partially or completely overlap each other. 
Because of these overlaps, every fragment in the set can be identified by sequence identity as adjacent 
to some number of other fragments. Each of those fragments overlaps yet another set of fragments, and 
so on. It's standard procedure for the sequences of both ends of some fragments to be known, and the 
sequences of only one end of other fragments to be known. Figure 11-3 illustrates the shotgun 
sequencing approach.  

Figure 11-3. The shotgun DNA sequencing approach 
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Ultimately, all the fragments need to be optimally tiled together into one continuous sequence. 
Identifying sequence overlaps between fragments puts some constraints on how the sequences can be 
assembled. For some fragments, the length of the sequence and the sequences of both its ends are 
known, which puts even more constraints on how the sequences can be assembled. The assembly 
algorithm attempts to satisfy all the constraints and produce an optimal ordering of all the fragments 
that make up the genome.  

Repetitive sequence features can complicate the assembly process. Some fragments will be 
uncloneable, and the sequencing process will fail in other cases, leaving gaps in the DNA sequence that 
must be resolved by resequencing. These gaps complicate automated assembly. If there isn't sufficient 
information at some point in the sequence for assembly to continue, the sequence contig that is being 
created comes to an end, and a new contig starts when there is sufficient sequence information for 
assembly to resume.  

The Phrap program, available from the University of Washington Genome Center, does an effective job 
assembling sequence fragments, although a large amount of computer time is required. The 
accompanying program Consed is a Unix-based editor for Phrap sequence assembly output. TIGR 
Assembler is another genome assembly package that works well for small genomes, BACs, or ESTs.  

11.3 Accessing Genome Informationon the Web 

Partial or complete DNA sequences from hundreds of genomes are available in GenBank. Putting those 
sequence records together into an intelligible representation of genome structure isn't so easy. There are 
several efforts underway to integrate DNA sequence with higher-level maps of genomes in a user-
friendly format. So far, these efforts are focused on the human genome and genomes of important plant 
and animal model systems. They aren't collected into one uniform resource at present, although NCBI 
does aim to be comprehensive in its coverage of available genome data eventually.  

Looking at genome data is analogous to looking at a map of the world. You may want to look at the 
map from a distance, to see the overall layout of continents and countries, or you may want to find a 
shortcut from point A to point B. Each choice requires a different sort of map. However, the maps need 
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to be linked, because you may want to know the general directions from San Diego to Blacksburg, VA, 
but may also want to know exactly how to get to a specific building on the Virginia Tech campus when 
you get there. The approach that web-based genome analysis tools are taking is similar to the approach 
taken by online map databases such as MapQuest. Place names and zip codes are analogous to gene 
names and GenBank IDs. You can search as specifically as you wish, or you can begin with a top view 
of the genome and zoom in.  

The genome map resources have the same limitations as online map resources, as well. You can search 
MapQuest and see every street in Blacksburg, but ask MapQuest for a back-road shortcut between 
Cochin and Mangalore on the southwest coast of India, and it can't help you. Currently, NCBI and 
EMBL provide detailed maps and tools for looking at the human genome, but if your major interest is 
the cat genome, you're (at least this year) out of luck.  

Genome resources are also limited by the capabilities of bioinformatics analysis methods. The available 
analysis tools at the genome sites are usually limited to sequence comparison tools and whatever 
single-sequence feature-detection tools are available for that genome, along with any information about 
the genome that can be seamlessly integrated from other databases. If you are hoping to do something 
with tools at a genome site you can't do with existing sequence or structure analysis tools, you will still 
be disappointed. What genome sites do provide is a highly automated user experience and expertly 
curated links between related concepts and entities. This is a valuable contribution, but there are still 
questions that can't be answered.  

11.3.1 NCBI Genome Resources 

NCBI offers access to a wide selection of web-based genome analysis tools from the Genomic Biology 
section of its main web site. These tools are designed for the biologist seeking answers to specific 
questions. Nothing beyond basic web skills and biological knowledge is required to apply these tools to 
a question of interest. Their interfaces are entirely point-and-click, and NCBI supplies ample 
documentation to help you learn how to use their tools and databases.  

Here's a list of the available tools: 

Genome Information  

Genome project information is available from the Entrez Genomes page at NCBI. Database 
listings are available for the full database or for related groups of organisms such as 
microorganisms, archaea, bacteria, eukaryotes, and viruses. Each entry in the database is linked 
to a taxonomy browser entry or a home page with further links to available information about 
the organism. If a genome map of the organism is available, a "See the Genome" link shows up 
on the organism's home page. From the home page, you can also download genome sequences 
and references.  

Map Viewer  

If a genome map is available for the organism, you can click on parts of the cartoon map that is 
first displayed and access several different viewing options. Depending on the genome, you can 
access links to overview maps, maps showing known protein-coding regions, listings of coding 
regions for protein and RNA, and other information. Information is generally downloadable in 
text format. Map Viewer distinguishes between four levels of information: the organism's home 
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page, the graphical view of the genome, the detailed map for each chromosome (aligned to a 
master map from which the user can select where to zoom in), and the sequence view, which 
graphically displays annotations for regions of the genome sequence. Full Map Viewer 
functionality is available only for human and drosophila genomes at the time of this writing; 
however, for any complete genome, clickable genome maps and views of the annotated genome 
at the sequence level are available.  

ORF Finder  

The Open Reading Frame (ORF) Finder is a tool for locating open reading frames in a DNA 
sequence. ORF finders translate the sequence using standard or user-specified genetic code. In 
noncoding DNA, stop codons are frequently found. Only long uninterrupted stretches without 
stop codons are taken to be coding regions. Information from the ORF finder can provide clues 
about the correct reading frame for a DNA sequence and about where coding regions start and 
stop. For many genomes found in the Entrez Genomes database, ORF Finder is available as an 
integrated tool from the map view of the genome.  

LocusLink  

LocusLink is a curated database of genetic loci in several eukaryotic organisms that give rise to 
known phenotypes. LocusLink provides an alphabetical listing of traits as well as links to 
HomoloGene and Map Viewer.  

HomoloGene  

HomoloGene is a database of pairwise orthologs (homologous genes from different organisms 
that have diverged by speciation, as opposed to paralogs that have diverged by gene 
duplication) across four major eukaryotic genomes: human, mouse, rat, and zebrafish. The 
ortholog pairs are identified either by curation of literature reports or calculation of similarity. 
The HomoloGene database can be searched using gene symbols, gene names, GenBank 
accession numbers, and other features.  

Clusters of Orthologous Groups (COG)  

COG is a database of orthologous protein groups. The database was developed by comparing 
protein sequences across 21 complete genomes. The entries in COG represent genome functions 
that are conserved throughout much of evolutionary history—functions that were developed 
early and retained in all of the known complete genomes. The authors' assumption is that these 
ancient conserved sequences comprise the minimal core of functionality that a modern species 
(i.e., one that has survived into the era of genome sequencing) requires. The COG database can 
be searched by functional category, phylogenetic pattern, and a number of other properties.  

NCBI also provides detailed genome-specific resources for several important eukaryotic genomes, 
including human, fruit fly, mouse, rat, and zebrafish.  

11.3.2 TIGR Genome Resources 

The Institute for Genome Research (TIGR, http://www.tigr.org) is one of the main producers of new 
genome sequence data, along with the other major human genome sequencing centers and commercial 
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enterprises such as Celera. TIGR's main sequencing projects have been in microbial and crop genomes, 
and human chromosome 16. TIGR recently announced the Comprehensive Microbial Resource, a 
complete microbial genome resource for all of the genomes they have sequenced. At the present time, 
each microbial genome has its own web page from which various views of the genome are available. 
There are also tools within the resource that allow you to search the omniome, as TIGR designates the 
combined genomic information in its database. The TIGR tools aren't as visual as the NCBI genome 
analysis tools. Selection of regions to examine requires you to enter specific information into a form 
rather than just pointing and clicking on a genome map. However, the TIGR resources are a useful 
supplement to the NCBI tools, providing a different view on the same genetic information.  

TIGR maintains many genome-specific databases focused on expressed sequence tags (ESTs) rather 
than complete genomic data. ESTs are partial sequences from either end of a cDNA clone. Despite 
their incompleteness, ESTs are useful for experimental molecular biolo gists. Since cDNA libraries are 
prepared by producing the DNA complement to cellular mRNA (messenger RNA), a cDNA library 
gives clues as to what genes are actually expressed in a particular cell or tissue. Therefore, a sequence 
match with an EST can be an initial step in helping to identify the function of a new gene. TIGR's EST 
databases can be searched by sequence, EST identifier, cDNA library name, tissue, or gene product 
name, using a simple forms -based web interface.  

11.3.3 EnsEMBL 

EnsEMBL is a collaborative project of EMBL, EBI, and the Sanger Centre (http://www.sanger.ac.uk) 
to automatically track sequenced fragments of the human genome and assemble them into longer 
stretches. Automated analysis methods, such as genefinding and feature-finding tools and sequence-
comparison tools, are then applied to the assembled sequence and made available to users through a 
web interface.  

In June 2000, the Human Genome consortium announced the completion of the first map of the human 
genome. It's important to stress that such maps, and indeed much of the genomic information now 
available, are only drafts of a final picture that may take years to assemble. To remain useful, the draft 
maps must be constantly updated to stay in sync with the constantly updated sequence databases. The 
EnsEMBL project expects to apply its automated data analysis pipeline to many different genomes, 
beginning with human and mouse.  

There are three ways to search EnsEMBL: a BLAST search of a query sequence against the database; a 
search using a known gene, transcript, or map marker ID; or a chromosome map browser that allows 
you to pick a chromosome and zoom in to ever-more specific regions. All these tools are relatively self-
explanatory and available from the EnsEMBL web site. In order to use them, however, you should 
know something of what you are looking for or on which chromosome to look.  

11.3.4 Other Sequencing Centers 

TIGR isn't the only genome center to provide software and online tools for analyzing genomic data. 
Genome sequencing programs generally incorporate a bioinformatics component and attract 
researchers with interests in developing bioinformatics methods; their web sites are good points of 
entry to the bioinformatics world. The University of Washington Genome Center is known for the 
development of sequence assembly tools —its Phred and Phrap software are widely used. Other genome 
centers include, but aren't limited to, the Sanger Centre, the DOE Joint Genome Institute, Washington 
University in St. Louis, and many corporate centers.  
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A complete list of genome sequencing projects in progress and active genome centers can be found 
online in the Genomes OnLine Database (GOLD), a public site maintained by Integrated Genomics, 
Inc. (http://wit.integratedgenomics.com/GOLD/).  

11.3.5 Organism-Specific Resources 

The Arabidopsis Information Resource (TAIR) is an excellent example of an organism-specific 
genome resource, this one focusing on the widely used plant model system Arabidopsis thaliana. In 
addition to the standard features offered at EnsEMBL and NCBI, such as clickable and zoomable 
chromosome maps and sequence analysis tools, TAIR offers a variety of expert-curated links to other 
information for users of the resource. TAIR is limited in its scope to Arabidopsis, but it is a much 
deeper resource than the general public databases. Similar resources are available for many organisms, 
from maize to zebrafish. Listings of online genome resources can be located at several sites, such as 
GOLD, NCBI, and EMBL.  

11.4 Annotating and Analyzing Whole Genome Sequences 

Genome data presents completely new issues in data storage and analysis:  

• Genome sequences are extremely large.  
• Users need to access genome data both as a whole and as meaningful pieces.  
• The majority of the sequence in a genome doesn't correspond to known functionality.  

Annotation of the genome with functional information can be accomplished by several means: 
comparison with existing information for the organism in the sequence databases, comparison with 
published information in the primary literature, computational methods such as ORF detection and 
genefinding, or propagation of information from one genome to another by evolutionary inference 
based on sequence comparison. Due to the sheer amount of data available, automatic annotation is 
desirable, but it must be automatic without propagating errors. The use of computational methods is 
fallible; sequence similarity searches can result in hits that aren't biologically meaningful, and 
genefinders often have difficulty detecting the exact start and end of a gene. Sometimes experimental 
information is incorrect or is recorded incorrectly in the database. Using this info rmation to annotate 
genomes leaves a residue of error in the database, which can then be propagated further by use of 
comparative methods.  

11.4.1 Genome Annotation 

Genome annotation is a difficult business. This is in part because there are a huge number of different 
pieces of information attached to every gene in a genome. Not every piece of information is interesting 
to every user, and not every piece of this information can (or should) be crammed in a single file of 
information about the gene. Genome annotation relies on relational databases to integrate genome 
sequence information with other data. [2]  

[2] The term relational database should give you a clue that the function of the database is to maintain relationships or connections among entries. We discuss this in 
more detail in Chapter 13. 

The primary sources of information about what genes do are laboratory experiments. It may take many 
experiments to figure out what a gene does. Ideally, all that diverse experimental data should somehow 
be associated with the gene annotation. What this means in practice is hyperlinking of content between 
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multiple databases—sequence, structure, and functional genomics fully linked together in a queryable 
system. This strategy is beginning to be implemented in most of the major public databases, although 
the goal of "one world database" (in the user's perception) has not yet been reached and perhaps never 
will.  

11.4.1.1 MAGPIE 

MAGPIE is an environment for annotation of genomes based on sequence similarity. It can maintain 
status information for a genome project and make information about the genome available on the Web, 
as well as provide an interface for automated sequence similarity-based and manual annotation. Even if 
you're not maintaining a genome database for public use, a look at the features of MAGPIE may help 
clarify some of the information technology issues in genome annotation. The Sulfolobus solfataricus P2 
Genome Project and many other smaller genome projects have implemented MAGPIE; the S. 
solfataricus project provides information on its web site about the role MAGPIE plays in the genome 
annotation process.  

11.4.2 Genome Comparison 

Pairwise or multiple comparison of genomes is an idea that will be useful for many studies, ranging 
from basic questions of evolutionary biology to very specific clinical questions, such as the 
identification of genetic polymorphisms, which give rise to disease states or significant variations in 
phenotype.  

Why compare whole genomes rather than just comparing genes one at a time? As the Human Genome 
Project reaches completion, researchers are just beginning to explore in detail how genome structure 
affects genome function. Is junk DNA really junk? Are there structural features in DNA that control 
expression? Are there promoters and regulatory regions we haven't yet figured out? Genome 
comparison can help answer such questions by pointing to regions of similarity within uncharacterized 
or even supposedly redundant DNA. Genome comparison will also aid in genomic annotation. 
Prototype genome comparisons have helped to justify the sequencing of additional genomes; the 
comparison of mouse and human genomes is one such example. Genome comparison is useful both at 
the map level and directly at the sequence level.  

11.4.2.1 PipMaker 

PipMaker is a tool that compares two DNA sequences of up to 2 MB each (longer sequences will be 
handled by the new Version 2.0, to be released soon) and produces a percent identity plot as output. 
This is useful in identifying large-scale patterns of similarity in longer sequences, although obviously 
not entire larger genomes. The process of using PipMaker is relatively simple. Starting with two 
FASTA-format sequence files, you first generate a set of instructions for masking sequence repeats 
(generated using the RepeatMasker server). This reduces the number of uninformative hits in the 
sequence comparison. The resulting information, plus a simple file containing a numerical list of 
known gene positions, is submitted to the PipMaker web server at Penn State University and the results 
are emailed to you. A detailed PipMaker tutorial is available at the web site 
(http://bio.cse.psu.edu/pipmaker/). PipMaker relies on BLASTZ to align sequences. BLASTZ is an 
experimental version of BLAST designed for extremely long sequences and developed at NCBI.  

11.4.2.2 MUMmer 
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Another program for pairwise genome comparison is TIGR's MUMmer. MUMmer was designed to 
meet the needs of the sequencing projects at TIGR and is optimized for comparing microbial genome 
sequences that are assumed to be relatively similar. Its first application was a detailed comparison of 
genomes of two strains of M. tuberculosis. MUMmer can compare sequences millions of base pairs in 
length and produce colorful visualizations of regions of similarity. MUMmer is based on a computer 
algorithm called a suffix tree, which essentially makes it easy for the system to rapidly handle a large 
number of pairwise comparisons. The dynamic programming algorithm used in standard BLAST 
comparison doesn't scale well with sequence length. For genome-length sequences, dynamic 
programming methods are unacceptably slow. MUMmer is an example of a novel method developed to 
get around the problems involved in using standard pairwise sequence comparison to compare full 
genome sequences. MUMmer is designed for Unix systems and is freely available for use in nonprofit 
institutions. A new public web interface to MUMmer has recently become available on the TIGR web 
site.  

11.5 Functional Genomics: New Data Analysis Challenges 

The advent of high-speed sequencing methods has changed the way we study the DNA sequences that 
code for proteins. Once, finding these bits of DNA in the genome of an organism was the goal, without 
much concern for the context. It is now becoming possible to view the whole DNA sequence of a 
chromosome as a single entity and to examine how the parts of it work together to produce the 
complexity of the organism as a whole.  

The functions of the genome break down loosely into a few obvious categories: metabolism, regulation, 
signaling, and construction. Metabolic pathways convert chemical energy derived from environmental 
sources (i.e., food) into useful work in the cell. Regulatory pathways are biochemical mechanisms that 
control what genomic DNA does: when it is expressed and when it isn't. Genomic regulation involves 
not only expressed genes but structural and sequence signals in the DNA where regulatory proteins 
may bind. Signaling pathways control, among other things, the movement of chemicals from one 
compartment in a cell to another. Teasing out the complex networks of interactions that make up these 
pathways is the work of biochemists and molecular biologists. Many regulatory systems for the control 
of DNA transcription have been studied. Mapping these metabolic, regulatory, and signaling systems to 
the genome sequence is the goal of the field of functional genomics.  

11.5.1 Sequence-Based Approaches for Analyzing Gene Expression 

In addition to genome sequence, GenBank contains many other kinds of DNA sequence. Expressed 
sequence tag (EST) data for an organism can be an extremely useful starting point for discovery-
oriented exploration of gene expression. To understand why this is, you need to recall what ESTs 
represent. ESTs are partial sequences of cDNA clones; cDNA clones are DNA strands built using 
cellular mRNA as templates.[3] In the cell, mRNA is RNA with a mission—to be converted into protein, 
and soon. mRNA levels respond to changes in the cell or its environment; mRNA levels are tissue-
dependent, and they change during the life cycle of the organism as well. Quantitation of mRNA or 
cDNA provides a pretty good measure of what a genome is doing under particular conditions.  

[3] The term transcriptome has been used to describe the collection of sequenced transcripts from a given organism. 

The sequence of a cDNA molecule built off an mRNA template should be the same as the sequence of 
the DNA that originally served as a template for building the mRNA. Sequencing a short stretch of 
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bases from a cDNA sequence provides enough information to localize the source of an mRNA in a 
genome sequence.  

NCBI offers a database called dbEST that provides access to several thousand libraries of ESTs. Quite 
a large number of these are human EST libraries, but there are libraries from dozens of other organisms 
as well. NCBI's UniGene database provides fully searchable access to specific EST libraries from 
human, mouse, rat, and zebrafish. EST data within UniGene has been combined with sequences of 
well-characterized genes and clustered, using an automated clustering procedure, to identify groups of 
related sequences. The Library Browser can locate libraries of interest within UniGene.  

Another NCBI resource for sequence-based expression analysis is SAGEmap. Serial Analysis of Gene 
Expression (SAGE) is an experimental technique in which the transcription products of many genes are 
rapidly quantitated by sequencing short "tags" of DNA at a specif ic position (usually a restriction site) 
in the sequence. SAGEmap is a specialized online resource for the SAGE user community that 
identifies potential SAGE tags in human DNA sequence and maps them to the genome.  

11.5.2 DNA Microarrays: Emerging Technologiesin Functional Genomics 

Recently, new technology has made it possible for researchers to rapidly explore expression patterns of 
entire genomes worth of DNA. A microarray (or gene chip) is a small glass slide—like a microscope 
slide—about a centimeter on a side. The surface of the slide is covered with 20,000 or more precisely 
placed spots each containing a different DNA oligomer (short polynucleotide chain). cDNA can also be 
affixed to the slide to function as probes. Other media, such as thin membranes, can be used in place of 
slides. The key to the experiment is that each piece of DNA is immobilized—attached at one end to the 
slide's surface. Any reaction that results in a change in microarray signal can be precisely assigned to a 
specific DNA sequence.  

Microarray experiments capitalize on an important property of DNA. One strand of DNA (or RNA) can 
hybridize with a complementary strand of DNA. If the complementarity of the two strands is perfect, 
the bond between the two strands is difficult to break. Each oligomer in a DNA microarray can serve as 
a probe to detect a unique, complementary DNA or RNA molecule. These oligomers can be bound by 
fluorescently labeled DNA, allowing the chip to be scanned using a confocal scanner or CCD camera. 
The presence or absence of a complementary sequence in the DNA sample being run over the chip 
determines whether the position on the array "lights up" or not. Thus, the presence or absence of an 
average of 20,000 sequences can be experimentally demonstrated with one gene chip.  

Microarrays are conceptually no different from traditional hybridization experiments such as Southern 
Blots (probing DNA samples separated on a filter with labeled probe sequences) or Northern Blots 
(probing RNA samples separated on a filter). In traditional blotting, the protein sample is immobilized; 
in microarray experiments, the probe is immobilized, and the amount of information that can be 
collected in one experiment is vastly larger. Figure 11-4 shows just a portion of a microarray scan from 
Arabidopsis (Image courtesy of the Arabidopsis Functional Genomics Consortium (AFGC) and the 
Stanford Microarray Database, http://genome-www.stanford.edu/microarray). Other advantages are 
that microarray experiments rely on fluorescent probes rather than the radioactive probes used in 
blotting techniques, and gene chips can be manufactured robotically rather than laboriously generated 
by hand.  

Figure 11-4. A microarray scan 
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Microarray technology is now routinely used for DNA sequencing experiments; for instance, in testing 
for the presence of polymorphisms. Another recent development is the use of microarrays for gene 
expression analysis. When a gene is expressed, an mRNA transcript is produced. If DNA oligomers 
complementary to the genes of interest are placed on the microarray, mRNA or cDNA copies can be 
hybridized to the chip, providing a rapid assay as to whether or not those genes are being expressed. 
Experiments like these have been performed in yeast to test differences in whole-genome expression 
patterns in response to changes in ambient sugar concentration. Microarray experiments can provide 
information about the behavior of every one of an organism's genes in response to environmental 
changes.  

11.5.3 Bioinformatics Challenges in Microarray Design and Analysis 

So why do microarrays merit a section in a book on bioinformatics? Bioinformatics plays multiple 
roles in microarray experiments. In fact, it is difficult to conceive of microarrays as useful without the 
involvement of computers and databases. From the design of chips for specific purposes, to the 
quantitation of signals, to the extraction of groups of genes with linked expression profiles, microarray 
analysis is a process that is difficult, if not impossible, to do by eye or with a pencil and a notebook.  

The most popular laboratory equipment for microarray experiments, at the time of this writing, is the 
Affymetrix machine; however, it's been followed closely by home-built configurations. If you're 
working with a commercial arrayer, integrated software will probably make it relatively easy for you to 
analyze data. However, home-built microarray setups put out data sets of varying sizes. Arrayers may 
not spot quite as uniformly as commercial machines. Standardization is difficult. And running a home-
built setup means you have to find software that supports all the steps of the array experiment and has 
the features you need for data analysis.  

One of the main challenges in conducting microarray experiments with noncommercial equipment is 
that there are a limited number of available tools for linking expression data with associated sequences 
and annotations. Constructing such a database interface can be a real burden for a novice. Proprietary 
software, based on proprietary chip formats, is often quite well supported by a database backend 
specific to the chip, but it isn't always generalizable, or not easily so, to a variety of image formats and 
data-set sizes. In the public domain, several projects are underway to improve this situation for 
academic researchers, including NCGR's GeneX and EMBL-EBI's ArrayExpress. The National Human 
Genome Research Institute (NHGRI) is currently offering a demonstration version of an array data 
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management system called ArrayDB (http://genome.nhgri.nih.gov/arraydb/) that includes both analysis 
tools and relational database support. [4] ArrayDB will also allow a community of users to add records to 
a central database.  

[4] It's in alpha release at the time of this writing. 

The Pat Brown group at Stanford has a comprehensive listing of microarray resources on their web site, 
including instructions for building your own arrayer (for about 10% of the cost of a commercial setup) 
and the ArrayMaker software that controls the printing of arrays. This site is an excellent resource for 
microarray beginners.  

11.5.3.1 Planning array experiments 

A key element in microarray experiments is chip design. This is the aspect that's often forgotten by 
users of commercial devices and commercial chips, because one benefit of those systems is that chip 
design has been done for you, by an expert, before you ever think about doing an experiment. Chip 
design is a process that can take months.  

Even the largest chip can't fit all the proteins in a eukaryotic genome; there may be hundreds of 
thousands of different targets. The chip designer has to select subsets of the genome that are likely to 
be informative when assayed together. EST data sets can be helpful in designing microarray primers; 
while they are quantitatively uninformative, ESTs do indicate which subsets of genes are likely to be 
active under particular conditions and hence are informative for a specific microarray experiment.  

In order for microarray results to be clear and unambiguous, each DNA probe in the array must be 
sufficiently unique that only one specific target gene can hybridize with it. Otherwise, the amount of 
signal detected at each spot will be quantitatively incorrect.  

What this means, in practice, is lots of sequence analysis: finding possible genes of interest, and 
selecting and synthesizing appropriate probes. Once the probes are selected, their sequence, plus 
available background information for each spot in the array, must be recorded in a database so that 
information is accessible when results are analyzed. Finally, the database must be robust enough to take 
into account changing annotations and information in the public sequence databases, so that incorrect 
interpretations of results can be avoided.  

Some resources for probe and primer design are available on the Web. A "good" oligonucleotide—one 
that is useful as a probe or primer for microarrays, PCR, and other hybridization experiments shouldn't 
hybridize with itself to form dimers or hairpins. It should hybridize uniquely with the target sequence 
you are interested in. For PCR applications, primers must have an optimal melting temperature and 
stability. An excellent web resource for designing PCR primers is the Primer3 web site at the 
Whitehead Institute; CODEHOP is another primer/probe design application based on sequence motifs 
found in the Blocks database.  

11.5.3.2 Analyzing scanned microarray images with CrazyQuant 

Once the array experiment is complete, you'll find yourself in possession of a lot of very large TIFF 
files containing scanned images of your arrays. If you're not using an integrated analysis package, 
where do you go from there?  
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The standard for public-domain microarray analysis tools are the packages developed at Stanford. One 
package, ScanAlyze, available for Windows, is the image analysis tool in this group. ScanAlyze is well 
regarded and widely used, especially in academia and features semiautomatic grid definition and 
multichannel pixel analysis. It supports TIFF files as well as the Stanford SCN format. It's by far the 
most sophisticated of the image-analysis programs discussed here.  

A relatively straightforward public-domain program for array-image analysis is CrazyQuant, a Java 
application available from the Hood Laboratory at the University of Washington. CrazyQuant is menu-
driven and can load TIFF, JPG, or GIF format microarray images. CrazyQuant assumes a 2D matrix of 
regularly spaced spots, and to begin the analysis process, you need to define a 2D grid that pinpoints 
the spot locations. The program then computes relative intensities at each spot and stores them as 
integer values. CrazyQuant can quantitate both one- and two-color (differential) array data. CrazyQuant 
is extremely simple to install on a Linux workstation. Download the archive, move it to its own 
directory, unzip it, and run the program by entering java CrazyQuant. A sample GIF image is included 
in the archive so that you can see how it works.  

TIGR also offers a Windows application for microarray image analysis called SpotFinder. SpotFinder 
can process the TIFF-format files produced by most microarray scanners and produce output that is 
compatible with both TIGR's ArrayViewer and other microarray analysis software.  

11.5.3.3 Visualizing high-dimensional data 

Microarray results can be difficult to visualize. Array experiments generally have at least four 
dimensions (x-location, y-location, fluorescence intensity, and time). Straightforward plotting of array 
images isn't very informative. Tools that help extract features from higher-dimensional data sets and 
display these features in a sensible image format are needed.  

TIGR offers a Java application called ArrayViewer. Currently, ArrayViewer's functions are focused on 
detecting differentially expressed genes and displaying differential expression results in a graphical 
format. ArrayViewer's parameters can be adjusted to incorporate data from arrays of any size, and it 
can be configured to allow straightforward access to underlying gene sequence data and annotation. 
Several normalization options are offered. Features for analysis of time series data and other more 
complicated data sets aren't yet implemented, but ArrayViewer does meet most basic array 
visualization needs.  

Some general visualization and data-mining packages such as Xgobi, which we discuss in Chapter 14, 
can also be used to examine array data.  

11.5.3.4 Clustering expression profiles 

At the time of this writing, the most popular strategy for analysis of microarray data is the clustering of 
expression profiles. An expression profile can be visualized as a plot that describes the change in 
expression at one spot on a microarray grid over the course of the experiment. The course of the 
experiment changes with the context, anything from changes in the concentration of nutrients in the 
medium in which cells are being grown prior to having their DNA hybridized to the array, to cell cycle 
stages.  

In this context, what is clustered is essentially the shape of the plot. Different clustering methods, such 
as hierarchical clustering or SOMs (self-organizing maps) may work better in different situations, but 
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the general aim of each of these methods is the same.[5] If two genes change expression levels in the 
same way in response to a change in conditions, it can be assumed that those genes are related. They 
may share something as simple as a promoter, or more likely, they are controlled by the same complex 
regulatory pathway. Automated clustering of expression profiles looks for similar symptoms (similarly 
shaped expression profiles) but doesn't necessarily point to causes for those changes. That's the job of 
the scientist analyzing the results, at least for now.  

[5] We discuss clustering approaches in a little more detail in Chapter 14. 

The programs Cluster and TreeView, also from Stanford, are Windows -platform tools for clustering 
expression profiles. Various algorithms for clustering are implemented, including SOMs and 
hierarchical clustering. XCluster, which implements most of the features of Cluster, is available for 
Unix platforms. All these programs require a specific file format (detailed in the manual, which is 
available online).  

11.5.3.5 A note on commercial software for expression analysis 

Several commercial software packages, with tools for visualizing complex microarray data sets, are 
available. Many of these are specific to particular hardware or array configurations. Others, such as 
SpotFire and Silicon Genetics' GeneSpring, are more universal. These software packages are often 
rather expensive to license; however, at this stage of the development of microarray technology, their 
relative ease of use may make them worthwhile.  

11.6 Proteomics 

Proteomics refers to techniques that simultaneously study the entire protein complement of a cell. 
While protein purification and separation methods are constantly improving, and the time-to-
completion of protein structures determined by NMR and x-ray crystallography is decreasing, there is 
as yet no single way to rapidly crystallize the entire protein complement of an organism and determine 
every structure. Techniques in biochemical characterization, on the other hand, are getting better and 
faster. The technological advance in biochemistry that most requires informatics support is the 
immobilized-gradient 2D-PAGE process and the subsequent characterization of separated protein 
products by mass spectrometry. Microarraying robots have begun to be used to create protein arrays, 
which can be used in protein interaction assays, drug discovery, and other applications. However, 
protein microarrays are still far from a routine approach.  

11.6.1 Experimental Approaches in Proteomics 

Knowing when and at what levels genes are being expressed is only the first step in understanding how 
the genome determines phenotype. While mRNA levels are correlated with protein concentration in the 
cell, proteins are subject to post-translational modifications that can't be detected with a hybridization 
experiment. Experimental tools for determining protein concentration and activity in the cell are the 
crucial next step in the process.  

Another high-throughput technology that is emerging as a tool in functional genomics is 2D gel 
electrophoresis. Gels have long been used in molecular biology to separate mixtures of components. 
Depending on the conditions of the experiment and the type of gel used, different components will 
migrate through a gel matrix at different rates. (This same principle makes DNA sequencing possible).  



 271 

Two-dimensional gel electrophoresis can be used to separate protein mixtures containing thousands of 
components. The first dimension of the experiment is separation of the components of a solution along 
a pH gradient (isoelectric focusing). The second dimension is separation of the components 
orthogonally by molecular weight. Separation in these two dimensions can resolve even a complicated 
mixture of components. Figure 11-5 shows a 2D-PAGE reference map from Arabidopsis thaliana. The 
2D-PAGE experiment separates proteins from a mixed sample so that individual proteins can be 
identified. Each spot on the map represents a different protein. (Image © Swiss Institute of 
Bioinformatics, Geneva, Switzerland.)  

Figure 11-5. A 2D-PAGE reference map from Arabidopsis thaliana 

 

While 2D gel electrophoresis is a useful and interesting technology in itself, the technology did not 
really come into its own until the development of standardized immobilized-gradient gels. These gels 
allow very precise protein separations, resulting in standardized high density data arrays. They can 
therefore be subjected to automated image analysis and quantitation and used for accurate comparative 
studies. The other advance that has put 2D gel technology at the forefront of modern molecular biology 
methods is the capacity to chemically analyze each spot on the gel using mass spectrometry. This 
allows the measurable biochemical phenomenon—the amount of protein found in a particular spot on 
the gel—to be directly connected to the sequence of the protein found at that spot.  

11.6.2 Informatics Challenges in 2D-PAGE Analysis 
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The analysis pathway for 2D-PAGE gel images is essentially quite similar to that for microarrays. The 
first step is an image analysis, in which the positions of spots on the gel are identified and the 
boundaries between different spots are resolved. Molecular weight and isoelectric point (PI) for each 
protein in the gel can be estimated according to position.  

Next, the spots are identified, and sequence information is used to make the connection between a 
particular spot and its gene sequence. In microarray experiments, this step is planned in advance, as the 
primers or cDNA fragments are laid down in the original chip design. In proteome analysis, the 
immobilized proteins can either be sequenced in situ or spots of protein can be physically removed 
from the gel, eluted, and analyzed using mass spectrometry methods such as electrospray ionization-
mass spectrometry (ESI-MS) or matrix-assisted laser desorption ionization mass spectrometry 
(MALDI).  

The essence of mass spectrometry methods is that they can determine the masses of components in a 
mixture, starting from a very small sample. Proteins, fragmented by various chemically specific 
digestion methods, have characteristic fingerprints (patterns of peptide masses) that can identify 
specific proteins and match them with a gene sequence.  

Peptide fingerprints are sufficient to identify proteins only in cases in which the sequence of a protein 
is already known and can be found in a database. When full sequence information isn't available, a 
second mass spectrometry step can obtain partial sequence information from each individual peptide 
that makes up the peptide fingerprint. The initial peptide fingerprinting process separates the protein 
into peptides and characterizes them by mass. Within the mass spectrometer, each peptide can then be 
further broken down into ionized fragments. The goal of the peptide fragmentation step is to produce a 
ladder of fragments each differing in length by one amino acid. Because each type of amino acid has a 
different molecular weight, the sequence of each peptide can be deduced from the resulting mass 
spectrum.  

Finally, staining, radiolabeling, fluorescence, or other methods are used to quantitate each protein spot 
on the gel. Both in the microarray experiment and the 2D-PAGE experiment, quantitation is a fairly 
difficult step. In this step, computer algorithms can help analyze the amount of signal at each spot and 
deconvolute complex patterns of spots.  

11.6.3 Tools for Proteomics Analysis 

Several public-domain programs for proteomics analysis are available on the Web. Most of these can 
be accessed through the excellent proteomics resource at Expert Protein Analysis System (ExPASy, 
http://www.expasy.ch/tools/), the excellent resource maintained by the Swiss Institute of 
Bioinformatics. ExPASy is linked with SWISS-PROT, an expert-curated database of protein sequence 
information, and TrEMBL, the computer-generated counterpart to SWISS-PROT. Most of its tools are 
web-based and tied into these and other protein databases. The Swiss Institute of Bioinformatics also 
maintains SWISS-2DPAGE, a database of reference gel maps that are fully searchable and integrated 
with other protein information. SWISS-2DPAGE, like other biological databases, is growing rapidly; 
however deposition of 2D-PAGE results into databases isn't, at this time, required for publication, so 
the database isn't comprehensive.  

The Melanie3 software package, a Windows-based package for 2D-PAGE image analysis, was 
developed at ExPASy, although it has since been commercialized. A Melanie viewer, which allows 
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users who don't own Melanie3 to view Melanie3 data sets generated by colleagues, is freely distributed 
by ExPASy.  

Here are some other ExPASy proteomics tools: 

AACompIdent  

Allows you to identify proteins by their amino acid composition 

AACompSim  

Compares a protein's amino acid composition with other proteins in SWISS-PROT  

MultiDent  

A multifunction tool that uses PI, molecular weight, mass fingerprints, and other data to help 
identify proteins  

PeptIdent  

Compares experimentally determined mass fingerprints with theoretically calculated mass 
fingerprints for all proteins in SWISS-PROT  

FindMod  

Predicts specific post-translational modifications to proteins based on mass differences between 
experimental and computed fingerprints  

GlycoMod   

Predicts oligosaccharide modifications from mass differences 

PeptideMass  

Computes a theoretical mass fingerprint for a SWISS-PROT or TrEMBL entry, or for a user-
entered protein sequence  

These tools are entirely forms-based and very approachable for the novice user. In addition, ExPASy 
provides links to many externally developed tools and web servers. It is an excellent starting resource 
for anyone interested in proteomics.  

The PROWL database is a relatively new web resource for proteomics. PROWL tools can be used to 
search a protein database with peptide fingerprint or partial sequence information. The PROWL group 
also provides a suite of software for mass spectrometry data analysis.  

11.6.4 Generalizing the Array Approach 
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Integration of microarray and 2D-PAGE methods—which provide information about gene transcription 
and translation, respectively—with genome sequence data is the best way currently available to form a 
picture of whole-genome function. However, these methods are still fairly new. Although the 
technology is moving forward by leaps and bounds, their results aren't yet fully standardized, and 
consensus software tools and analysis methods for these types of data are still emerging.  

Array and 2D-PAGE experiments have elements in common, including the ability to separate and 
quantitate components in a mixture and fix particular components consistently to positions in a grid, 
and the ability to measure changes in signal at each position over time. Approaches for analyzing array-
formatted biochemical data are likely to be similar on some level, whether the experiments involve 
DNA-DNA, DNA-mRNA, or even protein-protein interactions. Array strategies have recently been 
used to conduct a genome-wide survey of protein-protein interactions in yeast, and other applications 
of the strategy are, no doubt, in the works. Array methods and other parallel methods promise to 
continue to revolutionize biology. However, the biology community is still in the process of developing 
standards for reporting and archiving array data, and it is unlikely that a consensus will be reached 
before this book goes to press.  

11.7 Biochemical Pathway Databases 

Gene and protein expression are only two steps in the translation of genetic code to phenotype. Once 
genes are expressed and translated into proteins, their products participate in complicated biochemical 
interactions called pathways, as shown in Figure 11-6 (the image in the figure is © Kyoto Encyclopedia 
of Genes and Genomes). It is highly unlikely that one enzyme-catalyzed chemical reaction will produce 
a needed product from a material readily available to the organism. Instead, a complicated series of 
steps is usually required. Each pathway may supply chemical precursors to many other pathways, 
meaning that each protein has relationships not only to the preceding and following biochemical steps 
in a single pathway, but possibly to steps in several pathways. The complicated branchings of 
metabolic pathways are far more difficult to represent and search than the linear sequences of genes 
and genomes.  

Figure 11-6. A complex metabolic pathway 
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11.7.1 Illustration of a Complex Metabolic Pathway 

Several web-based services offer access to metabolic pathway information. These resources are 
primarily databases of information linked by search tools; at the time of this writing metabolic 
simulation tools, such as those we describe in the next section, have not been fully integrated with 
databases of known metabolic pathway information into a central web-based resource.  

11.7.2 EC Nomenclature 

Enzymes (proteins that catalyze metabolic reactions) can be described using a standard code called the 
EC code. The EC nomenclature is a hierarchical naming scheme that divides enzymes into several 
major classes. The first class number refers to the chemistry of the enzyme: oxidoreductase, lyase, 
hydrolase, transferase, isomerase, or ligase. The second class number indicates what class of substrate 
the enzyme acts on. The third class number, which can be omitted, indicates other chemical participants 
in the reaction. Finally, the fourth number narrows the search to the specific enzyme. Thus, EC number 
1.1.1.1 refers to alcohol dehydrogenase, which is a (1) oxidoreductase acting on the (1) CH-OH group 
of donors with (1) NADH as acceptor. If you are interested in using most metabolic pathway resources, 
it's helpful to become familiar with EC nomenclature. The EC code and hierarchy of functional 
definitions can be found online at the IUBMB Biochemical Nomenclature Committee web site.  
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11.7.3 WIT and KEGG 

The best known metabolic pathway resources on the Web are What is There (WIT, 
http://wit.mcs.anl.gov/WIT2/) and the Kyoto Encyclopedia of Genes and Genomes (KEGG, 
http://www.genome.ad.jp/kegg/). WIT is a metabolic pathway reconstruction resource; that is, the 
curators of WIT are attempting to reconstruct complete metabolic pathway models for organisms 
whose genomes have been completely sequenced. WIT currently contains metabolic models for 39 
organisms. The WIT models include far more than just metabolism and bioenergetics; they range from 
transcription and translation pathways to transmembrane transport to signal transduction.  

WIT can be searched and queried in a number of ways. You can browse the database beginning at the 
very top level, a functional overview of the WIT contents, which is found under the heading General 
Overview on the main page. Each heading in the metabolic outline is a clickable link that takes you to 
increasingly specific levels of detail about that subset of metabolism. The View Models menu takes 
you directly to organism-specific metabolic models.  

The General Search function allows you to search all of WIT, or subsets of organisms. This type of 
search is based on keywords, using Unix-style regular expressions to find matches. There is also a 
similarity search function that allows you to search all the open reading frames (ORFs) of a selected 
organism for sequence pattern matches, using either BLAST or FASTA. Pathway queries require you 
to specify the names of metabolites and/or specific EC enzyme codes. Enzyme queries allow you to 
specify an enzyme name or EC code, along with location information such as tissue specificity, cellular 
compartment specificity, or organelle specificity. In all except the regular-expression searches, the 
keywords are drawn from standardized metabolic vocabularies. WIT searches require some prior 
knowledge of these vocabularies when you submit the query. WIT was primarily designed as a tool to 
aid its developers in producing metabolic reconstructions, and documentation of the vocabularies used 
may not always be sufficient for the novic e user. WIT is relatively text-heavy, although at the highest 
level of detail, metabolic pathway diagrams can be displayed.  

Another web-based metabolic reconstruction resource is KEGG, which provides its metabolic 
overviews as map illustrations, rather than text-only, and can be easier to use for the visually-oriented 
user. KEGG also provides listings of EC numbers and their corresponding enzymes broken down by 
level, and many helpful links to sites describing enzyme and ligand nomenclature in detail. The 
LIGAND database, associated with KEGG, is a useful resource for identifying small molecules 
involved in biochemical pathways. Like WIT, KEGG is searchable by sequence homology, keyword, 
and chemical entity; you can also input the LIGAND ID codes of two small molecules and find all of 
the possible metabolic pathways connecting them.  

11.7.4 PathDB 

PathDB is another type of metabolic pathway database. While it contains roughly the same information 
as KEGG and WIT—identities of compounds and metabolic proteins, and information about the steps 
that connect these entities —it handles information in a far more flexible way than the other metabolic 
databases. Instead of limiting searches to arbitrary metabolic pathways and describing pathways with 
preconceived images, PathDB allows you to find any set of connected reactions that link point A to 
point B, or compound A to compound B.  

PathDB contains, in addition to the usual search tools, a pathway visualization interface that allows you 
to inspect any selected pathway and display different representations of the pathway. The PathDB 



 277 

developers plan to incorporate metabolic simulation into the user interface as well, although those 
features aren't available at the time of this writing.  

The PathDB browser is a platform-independent tool you can use on any machine with a Java Runtime 
Environment ( JRE) Version 1.1.4 or later installed. Both Sun and IBM supply a JRE for Linux 
systems. Once the JRE is installed, you can run the PathDB installer, making sure that the installer uses 
the correct version of the JRE (for this to work, you may need to add the JRE binary directory to your 
path). Let the installer create a link to PathDB in your home directory. To run the program, enter 
PathDB. You may be prompted to specify the correct Java virtual machine or exit; use the same Java 
pathway you did when you installed the software.  

To sample how PathDB works, submit a simple query that will assure you get results the first time 
(such as "All Catalysts with EC Number like 1.1.1.1," which brings up a list of alcohol 
dehydrogenases). You can also follow the tutorials available from the PathDB web site.  

11.8 Modeling Kinetics and Physiology 

A new "omics" buzzword that has begun to crop up in the literature rather recently is "metabolomics." 
Researchers have begun to recognize the need to exhaustively track the availability and concentration 
of small molecules—everything from electrolytes to metabolic intermediates to enzyme cofactors—in 
biological systems. Small molecules are extremely important in biochemistry, playing roles in 
everything from signal transduction to bioenergetics to regulation. The populations of small molecules 
that interact with proteins in the cell will continue to be a key topic of research as biologists attempt to 
assemble the big picture of cellular function and physiology.  

Mathematical modeling of biochemical kinetics and physiology is a complicated topic that is largely 
beyond the scope of this book. Mathematical models are generally system-specific, and to develop 
them requires a detailed understanding of a biological system and a facility with differential equations. 
However, a few groups have begun to develop context-independent software for developing 
biochemical and physiological models. Some of the best known of these are Gepasi, a system for 
biochemical modeling; XPP, a more general package for dynamical simulation; and the Virtual Cell 
portal.  

The essential principle behind biochemical and physiological modeling is that changes in biochemical 
systems can be modeled in terms of chemical concentrations and associated rate equations. Each "pool" 
of biochemical reagent in a system has an associated rate of formation and rate of breakdown, and the 
model is capable of predicting how the system will behave over time under various starting conditions. 
A model of metabolism may consist of dozens of reagents, each being formed and consumed by 
multiple reactions. Models that accurately simulate the behavior of a complex biochemical pathway 
aren't trivially developed, but once created, they can predict the effect of perturbations to the system 
and help researchers develop new hypotheses.  

If you're coming from a biological sciences background, you are probably familiar with the Michaelis-
Menten model for describing enzyme kinetics. Biochemical modeling extends this relatively simple 
mathematical model of a single enzyme-catalyzed reaction to encompass multiple reactions that may 
feed back upon each other in complex ways. Physiological models also involve multiple compartments 
with barriers through which only some components can diffuse or be transported. However, the 
underlying principles are similar, no matter how complex the model.  
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11.8.1 Modeling Kinetics with Gepasi 

Gepasi (http://www.gepasi.org/) is a user-friendly biochemical kinetics simulator for Windows/NT that 
can model systems of up to 45 metabolites and 45 rate equations. The Gepasi interface includes 
interactive tools for creating a new metabolic model: entering chemical reactions, adding metabolites 
that may be effectors or inhibitors of the reactions, defining reaction kinetics, setting metabolite 
concentrations, and other key steps in model development. You can apply Gepasi's predefined reaction 
types to your model or define your own reaction types. Gepasi automatically checks on mass 
conservation relations that need to be accounted for in the simulation. Gepasi has numerous options for 
running simulations over various time courses and testing the results of changing variable values over a 
user-defined range. Gepasi can also optimize metabolic models used in metabolic engineering and fit 
experimental data to metabolic models.  

At the time of this writing, versions of Gepasi for platforms other than Windows/NT are in 
development.  

11.8.2 XPP 

XPP (http://www.math.pitt.edu/~bard/xpp/xpp.html) is a dynamical systems simulation tool that is 
available for both Windows/NT and Linux. While it lacks some of the user-friendly features of Gepasi, 
it has been used effectively to model biochemical processes ranging from biochemical reactions to cell 
cycles and circadian rhythms. XPP compiles easily on any Linux system with a simple make command; 
just download the archive, move it into a directory of its own, extract it, then compile the program. 
Documentation, as well as example files for various simulations, are included with the XPP 
distribution.  

11.8.3 Using the Virtual Cell Portal 

The Virtual Cell portal at the National Resource for Cell Analysis and Modeling (NRCAM, 
http://www.nrcam.uchc.edu) is the first web-based resource for modeling of cellular processes. It 
allows you to model cells with an arbitrary number of compartments and complex physiology. A 
tutorial available at the Virtual Cell site walks the first-time user through the process of developing a 
physiology model for a cell, choosing a cell geometry, and setting up and running a simulation. The 
cell physiology model includes not only a compartmentation scheme for the cell, which can be created 
using simple drawing tools, but the addition of specific types of ionic species and membrane 
transporters to the cell model.  

The Virtual Cell is a Java applet, which is fully supported for Macintosh and Windows users. In order 
to use the Virtual Cell portal on a Linux workstation, you need to download the Java plug-in for 
Netscape (available from http://www.blackdown.org) and install it in your ~/.netscape directory. Once 
the plug-in is installed, you can follow the "MacIntosh Users Run the Virtual Cell" link on the main 
page, even if you're running the VCell Applet on a Linux workstation, and you can try out most 
features of the portal. At the time of this writing, Unix users aren't explicitly supported at the Virtual 
Cell portal, and while correct functionality seems to be available when the Blackdown Java applet is 
used, it might be wise for serious users of the VCell tools to compare results for some test cases on a 
Linux workstation and another machine.  

11.9 Summary 
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We've compiled a quick-reference table of genomics and proteomics tools and techniques (Table 11-1).  

Table 11-1. Genomics and Proteomics Tools and Techniques  
What you do Why you do it What you use to do it 

Online genome 
resources 

To find information about the location and function of 
particular genes in a genome  

NCBI tools, TIGR tools, EnsEMBL, and 
genome-specific databases  

Basecalling To convert fluorescence intensities from the sequencing 
experiment into four-letter sequence code  Phred  

Genome mapping and 
assembly 

To organize the sequences of short fragments of raw 
DNA sequence data into a coherent whole  Phrap, Staden package  

Genome annotation To connect functional information about the genome to 
specific sequence locations  MAGPIE 

Genome comparison To identify components of genome structure that 
differentiate one organism from another  PipMaker, MUMmer  

Microarray image 
analysis To identify and quantitate spots in raw microarray data CrazyQuant, SpotFinder, ArrayViewer  

Clustering analysis of 
microarray data 

To identify genes that appear to be expressed as linked 
groups Cluster, TreeView  

2D-PAGE analysis To analyze, visualize, and quantitate 2D-PAGE images Melanie3, Melanie Viewer  

Proteomics analysis To analyze mass spectrometry results and identify 
proteins 

ExPASy tools, ProteinProspector, 
PROWL  

Metabolic pathway 
tools 

To search metabolic pathways and discover functional 
relationships; to reconstruct metabolic pathways  PATH-DB, WIT, KEGG  

Metabolic andcellular 
simulation 

To model metabolic and cellular processes based on 
known properties and inference  Gepasi, XPP, Virtual Cell  
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Chapter 12. Automating Data Analysis with Perl 

As we've seen in previous chapters, a vast assortment of software tools exists for bioinformatics. Even 
though it's likely that someone has already written what you need, you will still encounter many 
situations in which the best solution is to do it yourself. In bioinformatics, that often means writing 
programs that sift through mountains of data to extract just the information you require. Perl, the 
Practical Extraction and Reporting Language, is ideally suited to this task.  

12.1 Why Perl?  

There are a lot of programming languages out there. In our survey of bioinformatics software, we have 
already seen programs written in Java, C, and FORTRAN. So, why use Perl? The answer is 
efficiency. [1] Biological data is stored in enormous databases and text files. Sorting through and 
analyzing this data by hand (and it can be done) would take far too long, so the smart scientist writes 
computer tools to automate the process. Perl, with its highly developed capacity to detect patterns in 
data, and especially strings of text, is the most obvious choice. The next obvious choice would 
probably be Python. Python, the less well known of the two, is a fully object-oriented scripting 
language introduced by Guido van Rossum in 1988. Python has some outstanding contributed code, 
including a mature library for numerical methods, tools for building graphical user interfaces quickly 
and easily, and even a library of functions for structural biology. At the end of the day, however, it's the 
wealth of existing Perl code for bioinformatics, the smooth integration of that code onto Unix-based 
systems, cross-platform portability, and an incredibly enthusiastic user community that makes Perl our 
favorite scripting language for bioinformatics applications.  

[1] Efficiency from the programmer's point of view, that is. It takes far less programming time to extract data with Perl than with C or with Java. 

Perl has a flexible syntax, or grammar, so if you are familiar with programming in other languages such 
as C or BASIC, it is easy to write Perl code in a C-like or BASIC-like dialect. Perl also takes care of 
much of the dirty work involved in programming, such as memory allocation, so you can concentrate 
on solving the problem at hand. It's often the case that programming problems requiring many lines of 
code in C or Java may be solved in just a few lines of Perl.  

Many excellent books have been written about learning and using Perl, so this single chapter obviously 
can't cover everything you will ever need to know about the language. Perl has a mountain of features, 
and it's unrealistic to assume you can master it without a serious commitment to learning the art of 
computer programming. Our aim in this chapter isn't to teach you how to program in Perl, but rather to 
show you how Perl can help you solve certain problems in bioinformatics. We will take you through 
some examples that are most immediately useful in real bioinformatics research, such as reading 
datafiles, searching for character strings, performing back-of-the-envelope calculations, and reporting 
findings to the user. And we'll explain how our sample programs work. The rest is up to you. The 
ability to program in any language—but especially in Perl, Python, or Java—is an important skill for 
any bioinformatician to have. We strongly suggest you take a programming class or obtain one of the 
books on our list of recommended reading and start from the beginning. You won't regret it.  

12.1.1 Where Do I Get Perl? 
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Perl is available for a variety of operating systems, including Windows and Mac OS, as well as Linux 
and other flavors of Unix. It's distributed under an open source license, which means that it's essentially 
free. To obtain Perl from the Web, go to http://www.perl.com/pub/language/info/software.html and 
follow the instructions for downloading and installing it on your system.  

12.2 Perl Basics 

Once you've installed Perl, or confirmed with your system administrator that it's already installed on 
your system, you're ready to begin writing your first program. Writing and executing a Perl program 
can be broken into several steps: writing the program (or script) and saving it in a file, running the 
program, and reading the output.  

12.2.1 Hello World 

A Perl program is a text file that contains instructions written in the Perl language. The classic first 
program in Perl (and many other languages) is called "Hello, World!" It's written like this:  

#!/usr/bin/perl -w 
# Say hello 
print "Hello, World!\n"; 

"Hello, World!" is a short program, but it's still complete. The first line is called the shebang line and 
tells the computer that this is a Perl program. All Perl programs running on Unix begin with this line. [2] 
It's a special kind of comment to the Unix shell that tells it where to find Perl, and also instructs it to 
look for optional arguments. In our version of "Hello World!" we've included the optional argument -w 
at the end of the line. This argument tells Perl to give extra warning messages if you do something 
potentially dangerous in your program. It's a good idea to always develop your programs under -w.  

[2] Strictly speaking, the shebang line isn't necessary on Windows or Macintosh; neither of those systems has a usr/bin/perl. It's good programming form to always 
include the line, however, since it's the best place to indicate your optional arguments in Perl. On other platforms, you can run the program by invoking the Perl 
interpreter explicitly, as in perl hello.pl . 

The second line starts with a # sign. The # tells Perl that the line of text that follows is a comment, not 
part of the executable code. Comments are how humans tell each other what each part of the program is 
intended to do. Make a habit of including comments in your code. That way you and other people can 
add to your code, debug it successfully, and even more importantly, remember what it was supposed to 
do in the first place.  

The third line calls the print function with a single argument that consists of a text string. At the end of 
the text string, there is a \n, which tells the computer to move to a new line after executing the print 
statement. The print statement ends with a semicolon, as do most statements in Perl.  

To try this little program yourself, you can open a text editor such as vi, Emacs, or pico, and type the 
lines in. When you've finished entering the program, name the file hello.pl and save it in your directory 
of choice. While you're learning, you might consider creating a new directory (using the mkdir 
command, which we covered in Chapter 4) called Perl in your home directory. That way you'll always 
know where to look for your Perl programs.  

Now make the file executable using the command: 
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% chmod +x hello.pl  

(If you need a refresher on chmod, this would be a good time to review the section on changing file 
permissions in Chapter 4.) To run the program, type:  

% hello.pl 

Because of the shebang line in our program, this command invokes the Perl interpreter, which reads the 
rest of the file and then translates your Perl source code into machine code the computer can execute. 
In this case you'll notice that Hello, World! appears on your computer screen, and then the cursor 
advances to a new line. You've now written and run your first Perl program!  

12.2.2 A Bioinformatics Example 

One of the strengths of Perl—and the reason that bioinformaticians love it—is that with a few lines of 
code, you can automate a tedious task such as searching for a nucleotide string contained in a block of 
sequence data. To do this, you need a slightly more complex Perl program that might look like this:  

#!/usr/bin/perl -w 
# Look for nucleotide string in sequence data 
   
my $target = "ACCCTG"; 
my $search_string =  
    'CCACACCACACCCACACACCCACACACCACACCACACACCACACCACACCCACACACACA'. 
    'CATCCTAACACTACCCTAACACAGCCCTAATCTAACCCTGGCCAACCTGTCTCTCAACTT'. 
    'ACCCTCCATTACCCTGCCTCCACTCGTTACCCTGTCCCATTCAACCATACCACTCCGAAC'; 
   
my @matches; 
   
# Try to find a match in letters 1-6 of $search_string, then look at letters 2-7,  
# and so on. Record the starting offset of each match. 
 
foreach my $i (0..length $search_string){ 
   if( $target eq substr( $search_string, $i, length $target)){ 
      push @matches, $i; 
   } 
} 
 
# Make @matches into a comma-separated list for printing 
print "My matches occurred at the following offsets: @matches.\n"; 
   
print "done\n"; 

This program is also short and simple, but it's still quite powerful. It searches for the target string 
"ACCCTG" in a sequence of data and keeps track of the starting location of each match. The program 
demonstrates variables and loops, which are two basic programming constructs you need to understand 
to make sense of what is going on.  

12.2.3 Variables 

A variable is a name that is associated with a data value, such as a string or a number. It is common to 
say that a variable stores or contains a value. Variables allow you to store and manipulate data in your 
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programs; they are called variables because the values they represent can change throughout the life of 
a program.  

Our sequence matching program declares four variables: $target , $search_string, @matches, and $i. 
The $ and @ characters indicate the kind of variable each one is. Perl has three kinds of variables built 
into the language: scalars, arrays, and hashes.  

Unlike other programming languages, Perl doesn't require formal declaration of variables; they simply 
exist upon their first use whether you explicitly declare them or not. You may declare your variables, if 
you'd like, by using either my or our in front of the variable name. When you declare a variable, you 
give it a name. A variable name must follow two main rules: it must start with a letter or an underscore 
(the $ and @ characters aren't considered part of the name), and it must consist of letters, digits, and 
underscores. The best names are ones that clearly, concisely, and accurately describe the variable's role 
in the program. For example, it is easier to guess the role of a variable if it is named $target or 
$sequence, than if it were called $icxl.  

12.2.3.1 Scalars 

A scalar variable contains a single piece of data that is either a number or a string. The $ character 
indicates that a variable is scalar. The first two variables declared in our program are scalar variables:  

my $target = "ACCCTG"; 
my $search_string =  
    "CCACACCACACCCACACACCCACACACCACACCACACACCACACCACACCCACACACACA". 
    "CATCCTAACACTACCCTAACACAGCCCTAATCTAACCCTGGCCAACCTGTCTCTCAACTT". 
    "ACCCTCCATTACCCTGCCTCCACTCGTTACCCTGTCCCATTCAACCATACCACTCCGAAC"; 

In this case, "ACCCTG" is the target string we are seeking, and "CCACACCACACCCACAC..." is the 
sequence data in which we're hoping to find it.  

In a scalar variable, a number can be either an integer (0, 1, 2, 3, etc.) or a real number (a number that 
contains a fractional portion, such as 5.6). A string is a chunk of text that's surrounded by quotes. For 
example:  

"I am a string." 
'I, too, am a string' 

One of Perl's special features is that it has a number of built-in facilities for manipulating strings, which 
comes in handy when working with the flat text files common to bioinformatics. We cover flat text 
files and their more structured relatives, relational databases, in detail in Chapter 13.  

12.2.3.2 Arrays 

An array is an ordered list of data. In our sequence matching program, @matches is an array variable 
used to store the starting locations of all the matches. Each element stored in an array can be accessed 
by its position in the list, which is represented as a number. In Perl, array variables are given an @ 
prefix. For example, the following statement declares an array of numbers:  

@a = ( 1, "4", 9 );  
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This statement declares an array of strings: 

@names = ("T. Herman", "N. Aeschylus", "H. Ulysses", "Standish");  

And this statement declares an array with both: 

@mix = ("Caesar Augustus", "Tiberius", 18, "Caligula", "Claudius"); 

Note the syntax in the declarations: each element in the array is separated from its neighbors by a 
comma, each of the strings is quoted, and (unlike American English) the comma appears outside of the 
quotes.  

Because an array is an ordered set of information, you can retrieve each element in an array according 
to its number. The individual elements in an array are written as $this_array[i], where i is the index of 
the array element being addressed. Note that i can be either a bare number (such as 21), or a numeric 
scalar variable (such as $n) that contains a bare number. Here is a Perl statement that uses the print 
operator to display the second number in @a and the third name in @names on the screen:  

print "second number: $a[1]\n third name: $names[2]\n";  

You may be wondering why the element numbers here are one less than what you might think they 
should be. The reason is that positions in Perl arrays are numbered starting from zero. That is, the first 
element in an array is numbered 0, the second element is numbered 1, and so on. That's why, in the 
previous example, the second element in @a is addressed as $a[1]. This is an important detail to 
remember; mistakes in addressing arrays due to missing that crucial zero element are easy to make.  

12.2.3.3 Hashes 

A hash is also known as an associative array because it associates a name (or key, as it's called in Perl) 
with each piece of data (or value) stored in it. A real-world example of a hash is a telephone book, in 
which you look up a person's name in order to find her telephone number. Our sequence matching 
program doesn't use any hashes, but they can be quite handy in bioinformatics programs, as you'll see 
in a later example. Perl uses the % prefix to indicate hash variables (e.g., %sequences). There are a 
number of ways to declare a hash and its contents as a list of key/value pairs. Here is the syntax for one 
declaration style:  

%hash = ( 
    key1 => "value1", 
    key2 => "value2", ... 
    last_key => "last_value" );  

A value can then be retrieved from this hash using the corresponding key, as follows:  

$value = $hash{"key2"}; 

For example, you can declare a hash that relates each three-letter amino acid code to its one-letter 
symbol:  

my %three_to_one = ( 
    ALA => A, CYS => C, ASP => D, GLU => E, 
    PHE => F, GLY => G, HIS => H, ILE => I, 
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    LYS => K, LEU => L, MET => M, ASN => N, 
    PRO => P, GLN => Q, ARG => R, SER => S, 
    THR => T, VAL => V, TRP => W, TYR => Y 
 );  

The hash entry with the one-letter code for arginine can then be displayed using the following 
statement:  

print "The one-letter code for ARG is $three_to_one{ARG}\n";  

Because there are many popular sequence databases, another place where hashes can be immediately 
useful is in keeping track of which sequence ID in one database corresponds to a sequence ID in the 
next. In the following example, we define a hash in which each of the keys is a GenBank identifier (GI) 
number of a particular enzyme, and each value is the corresponding SWISS-PROT identifier of the 
same enzyme. Using this hash, a program can take the more cryptic GI number and automatically find 
the associated SWISS-PROT ID:  

#!/usr/bin/perl -w 
# define the hash relating GI numbers to SWISSPROT IDs 
 %sods = ( 
     g134606  => "SODC_DROME", 
     g134611  => "SODC_HUMAN", 
     g464769  => "SODC_CAEEL", 
     g1711426 => "SODC_ECOLI" ); 
 
# retrieve a value from %sods  
$genbank_id = "g134611"; 
$swissprot_id = $sods{$genbank_id}; 
print "$genbank_id is the same as $swissprot_id\n"; 

If you save the previous script to a file, make the file executable, and run it, you should see:  

g134611 is the same as SODC_HUMAN 

In the first part of this script, you are declaring the hash relating GenBank IDs to SWISS-PROT IDs. In 
the second part, you access the information stored in that hash. The first step is to assign one of the 
GenBank IDs to the variable $genbank_id. Then you can retrieve the SWISS-PROT ID that %sods has 
associated with the string in $genbank_id , and store the SWISS-PROT ID in the variable 
$swissprot_id. Finally, print the values of the two scalar variables. This example is obviously rather 
contrived, but it should give you an idea of how useful hashes can be in bioinformatics programs.  

12.2.4 Loops 

Now that we've talked about scalar, array, and hash variables in Perl, let's return to our sequence 
matching program and talk about the other main programming construct it employs. A loop is a 
programming device that repeatedly executes a specific set of commands until a particular condition is 
reached. Our program uses a foreach  loop to iterate through the search string:  

foreach my $i (0..length $search_string){ 
   if( $target eq substr( $search_string, $i, length $target)){ 
      push @matches, $i; 
   } 
} 
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The first time through this loop, Perl starts at 0 and looks at the first six-letter combination in the search 
string, compares it to the target string, and, if there is a match, records it in @matches. The second 
cycle of the loop looks at letters 2-7, the third looks at letters 3 -8, and so on. Perl stops executing this 
sequence when it reaches the end of the search string. At this point, the loop is done, and the program 
moves on to the next section, where it prints the results. Don't worry if you don't understand all the 
code in the loop; all that's important right now is that you have a general understanding of what the 
code is doing.  

12.2.5 Subroutines 

Although we don't use them in any of our example programs, the use of subroutines in programs is 
worth mentioning. All modern programming languages provide a way to bundle up a set of statements 
into a subroutine so that they can be invoked concisely and repeatedly. In Perl, you can create a 
subroutine with the sub declaration:  

sub greet { 
    my ($name) = shift; 
    print "Hello, $name!\n"; 
} 

Once this greet subroutine has been declared, you can invoke it as follows:  

greet("world");    # Prints "Hello, world!" 
greet("Per");      # Prints "Hello, Per!" 

Here, "world" and "Per" are arguments—values passed into the subroutine, where they are then stored 
in $name. Our greet subroutine just prints a single line and then returns. Usually, subroutines do 
something a bit more complicated, possibly returning a value:  

$length = calculate_length($sequence); 

This sets $length to whatever the calculate_length( ) subroutine returns when provided with the single 
argument $sequence. When a subroutine is used for its return value, it's often called a function.  

12.3 Pattern Matching and Regular Expressions 

A major feature of Perl is its pattern matching, and particularly its use of regular expressions. A regular 
expression (or regex in the Perl vernacular) is a pattern that can be matched against a string of data. We 
first encountered regular expressions in our discussion of the Unix command grep, back in Chapter 5. 
grep, as you may recall, searches for occurrences of patterns in files. When you tell grep to search for a 
pattern, you describe what you're looking for in terms of a regular expression. As you know, much of 
bioinformatics is about searching for patterns in data.  

Let's look at a Perl example. Say you have a string, such as a DNA sequence, and you want to make 
sure that there are no illegal characters in it. You can use a regular expression to test for illegal 
characters as follows:  

#!/usr/bin/perl 
# check for non-DNA characters 
my $string = "CCACACCACACCCACACaCCCaCaCATCACACCACACACCACACTACACCCA*CACACACA"; 
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if( $string =~ m/([^ATCG])/i) { 
  print "Warning! Found: $1 in the string"; 
} 

This program contains the regular expression [^ATCG]. Translated into English, the regular expression 
says "look for characters in $string that don't match A, T, C, or G." (The i at the end of the statement 
tells Perl to match case insensitively; that is, to pay no attention to case. Perl's default is to treat A 
differently from a.) If Perl encounters something other than the declared pattern, the program prints out 
the offending character. The output of this program is:  

Warning! Found * in the string 

If instead you want to search for a particular combination of letters, like "CAT", you can change the 
regular expression to read CAT:  

#!/usr/bin/perl 
# check for CATs 
my $string =  
   "CCACACCACACCCACACaCCCaCaCATCACACCACACACCACACTACACCCA*CACACACA"; 
if( $string =~ m/CAT/i ){ 
  print "Meow."; 
} 

The output of this modified program is: 

Meow. 

12.4 Parsing BLAST Output Using Perl 

Now that you know enough about how Perl is written to understand these simple programs, let's apply 
it to one of the most common problems in bioinformatics: parsing BLAST output. As you already 
know, the result of a BLAST search is often a multimegabyte file full of raw data. The results of 
several searches can quickly become overwhelming. But by writing a fairly simple program in Perl, 
you can automate the process of looking for a single string or multiple strings in your data.  

Consider the following block of data: 

. . . 
gb|AC005288.1|AC005288  Homo sapiens chromosome 17, clone hC...   268  2e-68 
gb|AC008812.7|AC008812  Homo sapiens chromosome 19 clone CTD...   264  3e-67 
gb|AC009123.6|AC009123  Homo sapiens chromosome 16 clone RP1...   262  1e-66 
emb|AL137073.13|AL137073  Human DNA sequence from clone RP11...   260  5e-66 
gb|AC020904.6|AC020904  Homo sapiens chromosome 19 clone CTB...   248  2e-62 
>gb|AC007421.12|AC007421 Homo sapiens chromosome 17, clone hRPC.1030_O_14,   
complete sequence 
Query: 3407 accgtcataaagtcaaacaattgtaacttgaaccatcttttaactcaggtactgtgtata 3466 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct: 1366 accgtcataaagtcaaacaattgtaacttgaaccatcttttaactcaggtactgtgtata 1425 
Query: 3467 tacttacttctccccctcctctgttgctgcagatccgtgggcgtgagcgcttcgagatgt 3526 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct: 1426 tacttacttctccccctcctctgttgctgcagatccgtgggcgtgagcgcttcgagatgt 1485 
Query: 3527 tccgagagctgaatgaggccttggaactcaaggatgcccaggctgggaaggagccagggg 3586 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct: 1486 tccgagagctgaatgaggccttggaactcaaggatgcccaggctgggaaggagccagggg 1545 
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Query: 3587 ggagcagggctcactccaggtgagtgacctcagccccttcctggccctactcccctgcct 3646 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct: 1546 ggagcagggctcactccaggtgagtgacctcagccccttcctggccctactcccctgcct 1605 
Query: 3647 tcctaggttggaaagccataggattccattctcatcctgccttcatggtcaaaggcagct 3706 
. . . 

This is only a small portion of what you might find in a report from a BLAST search. (This is actual 
data from a BLAST report. The entire file, blast.dat, is too large to reproduce here.) The first six lines 
of this sample contain information about the BLAST search, as well as other "noise" that's of no 
importance to the search. The next 13 lines, and the ones that follow it in the actual report, contain the 
data to analyze. You want the Perl program to look at both the "Query" and "Sbjct" lines in this 
BLAST report and find the number of occurrences of the following substrings:  

• 'gtccca' 
• 'gcaatg' 
• 'cagct' 
• 'tcggga' 
• Missing data (represented by dashes in the nucleotide sequence strings)  

At the same time, you want the program to ignore irrelevant material such as information about the 
search and other noise. The program should then generate a report file called report.txt that describes 
the findings for these strings.  

In this program you need to create two very long scalar variables to represent each sequence for 
searching. Let's call them $query_src, and $sbjct_src. In any BLAST output, you'll notice that 
sometimes the "Sbjct" and "Query" lines aren't contiguous; that is, there are gaps in the data. From a 
programming perspective, the fact that the gaps exist isn't important; you simply want to read the 
nucleotides into your scalars consecutively. Here is a sample portion of BLAST data:  

Query: 1165  gagcccaggagttcaagaccagcctgggtaacatgatgaaacctcgtctctac 1217 
             |||| ||||||||  ||||||||||||| |||| | |||||||  |||||||| 
Sbjct: 11895 gagctcaggagtttgagaccagcctggggaacacggtgaaaccctgtctctac 11843 
Query: 1170  caggagttcaagaccagcctg 1190 
             ||||||||||||||||||||| 
Sbjct: 69962 caggagttcaagaccagcctg 69942 
Query: 1106  tggtggctcacacctgcaatcccagcact 1134 
             ||||||||||| |||| |||||||||||| 
Sbjct: 77363 tggtggctcacgcctgtaatcccagcact 77335 

In spite of the fact that the line numbers aren't contiguous, the sequence for "Query" starts with 
'gagccca' and still ends with 'agcact', and will be 103 (53 + 21 + 29) characters long. As you'll see 
shortly, the program is designed to ignore the gaps (and the line numbers) and input the data properly. 
Frequent BLAST users may also notice that in a full BLAST report, each sequence is grouped by E-
values. We are ignoring that (usually) important fact in the program.  

The Perl program used to search for the five substrings can be broken down into three parts:  

• Inputting the data and preparing it for analysis 
• Searching the data and looking for the patterns 
• Compiling the results and storing them in report.txt  
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Let's go through the program step by step. Here are the first few lines:  

#!/usr/bin/perl 
# Search through a large datafile, looking for particular sequences 
 
use strict; 
 
my $REPORT_FILE = "report.txt"; 
my $blast_file  = $ARGV[0] || 'blast.dat'; 
 
unless ( -e $blast_file ) { 
  die "$0: ERROR: missing file: $blast_file"; 
} 

This code makes sure that the data is in good order. Since you'll be reading large amounts of data into 
the variables, tell Perl to tighten up its rules with the line use strict;. This forces you to be more explicit 
about how you want Perl to do things. use strict is particularly useful when developing large programs 
or programs you want to modify and reuse. Go on to declare some variables, and in the last few lines, 
tell Perl to make sure that data actually exists in the input file blast.dat.  

In the next block of code, the program reads the sequences into variables:  

# First, slurp all the Query sequences into one scalar. Same for the  
# Sbjct sequences. 
my ($query_src, $sbjct_src); 
 
# Open the blast datafile and end program (die) if we can't find it 
open (IN, $blast_file) or die "$0: ERROR: $blast_file: $!"; 
 
# Go through the blast file line by line, concatenating all the Query and  
# Sbjct sequences. 
while (my $line = <IN>) { 
  chomp $line; 
  print "Processing line $.\n"; 

In this section you read all the "Query" sequences into one scalar variable, and the "Sbjct" sequences 
into another. The program then opens the file for reading with:  

 open (IN, $blast_file) or die "$0: ERROR: $blast_file: $!";   

or prints an error message if for some reason it can't find the file. Next, the program goes through the 
file line by line, removing the line-break characters with chomp $line;. And finally, with a print 
function, you ask the program to display the current row as it reads in the data.  

Now that you have the data in memory, you need to sort through it and extract the material you want. 
Remember that the datafile included a lot of superfluous material you want to ignore. To do that, 
instruct Perl to consider only those lines that begin with Query or Sbjct. Now Query and Sbjct, in 
addition to having the desired sequence data, also have line numbers of varying length you don't want. 
In order to read the sequence data correctly, you must design the program in such a way that you skip 
over line numbers no matter how many characters they have, and always land on the first nucleotide. 
You'll notic e in this line of data:  

Query: 1165 gagcccaggagttcaagaccagcctgggtaacatgatgaaacctcgtctctac 1217  
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that there is a space between Query, the beginning line number, the sequence data, and the ending line 
number. Since this happens to be true for all the query and subject lines, it becomes the key to how to 
read the data correctly. To be sure you get only what you want, split all the query and subject data into 
a four column array called @words. That task is accomplished by the following lines of code:  

    my @words = split /\s+/, $line; 
    if ($line =~ /^Query/) { 
 $query_src .= $words[2]; 
    } elsif ($line =~ /^Sbjct/) { 
 $sbjct_src .= $words[2]; 
    } 
} 
 
# We've now read the blast file, so we can close it. 
close IN; 

Once you've read the data into @words, you then instruct the program to take only the data from 
column two of @words (which is filled only with nucleotide sequence data) and store it in the variables 
$query_src and $sbjct_src. The program then closes the file and moves to a new line. You now have 
just the data you want, stored in a form you can use.  

The next part of the program performs the analysis: 

# Now, look for these given sequences... 
my @patterns = ('gtccca', 'gcaatg', 'cagct', 'tcggga', '-'); 
 
# ...and when we find them, store them in these hashes 
my (%query_counts, %sbjct_counts); 
 
# Search and store the sequences 
foreach my $pattern (@patterns) { 
   while ( $query_src =~ /$pattern/g ) { 
       $query_counts{ $pattern }++; 
   } 
   while ( $sbjct_src =~ /$pattern/g ) { 
       $sbjct_counts{ $pattern }++; 
   } 
} 

The program sets up a loop that runs five times; once for each search string or pattern. Within each 
iteration of the outer foreach loop, the program runs inner while loops that advance counters each time 
they find a pattern match. The results are stored in separate hashes called %query_counts and 
%sbjct_counts.  

Here is the last section of the program, which produces the output: 

# Create an empty report file 
open (OUT, ">$REPORT_FILE") or die "$0: ERROR: Can't write $REPORT_FILE"; 
 
# Print the header of the report file, including  
# the current date and time 
print OUT "Sequence Report\n",  
    "Run by O'Reilly on ", scalar localtime, "\n", 
    "\nNOTE: In the following reports, a dash (-) represents\n", 
    "      missing data in the chromosomal sequence\n\n",  
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    "Total length of 'Query' sequence: ", 
    length $query_src, " characters\n", "Results for 'Query':\n"; 
 
# Print the Query matches 
foreach my $key ( sort @patterns ) { 
    print OUT "\t'$key' seen $query_counts{$key}\n"; 
} 
 
print OUT "\nTotal length of 'Sbjct' sequence: ", 
    length $sbjct_src, " characters\n", "Results for 'Sbjct':\n"; 
 
# Print the Sbjct matches 
foreach my $key ( sort @patterns ) { 
    print OUT "\t'$key' seen $sbjct_counts{$key}\n"; 
} 
 
close OUT; 
 
__END__ 

This code compiles and formats the results and dumps them into a file called report.txt. If you open 
report.text you see:  

Sequence Report 
Run by O'Reilly on Tue Jan  9 15:52:48 2001 
 
NOTE: In the following reports, a dash (-) represents 
      missing data in the chromosomal sequence 
 
Total length of 'Query' sequence: 1115 characters 
Results for 'Query': 
        '-' seen 7 
        'cagct' seen 11 
        'gcaatg' seen 1 
        'gtccca' seen 6 
        'tcggga' seen 1 
 
Total length of 'Sbjct' sequence: 5845 characters 
Results for 'Sbjct': 
        '-' seen 12 
        'cagct' seen 2 
        'gcaatg' seen 6 
        'gtccca' seen 1 
        'tcggga' seen 6 

In this example the results were sent to a file. You can just as easily ask Perl to generate an HTML-
coded file you can view with your web browser. Or you can make the process interactive and use Perl 
to create a CGI script that generates a web form to analyze the data and give you back your results.  

We've only scratched the surface in terms of what this sort of program can do. You can easily modify it 
to look for more general patterns in the data or more specific ones. For example, you might search for 
`tcggga' and `gcaatg', but only count them if they are connected by `cagct'. You also might search only 
for breaks in the data. And after all the searches are complete, you might use Perl to automatically store 
all the results in a database.  
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If you're feeling a little confused by all this, don't panic. We aren't expecting you to understand all the 
code we've shown you. As we said at the beginning of the chapter, the purpose of the code isn't to teach 
you to program in Perl, but to show you how Perl works, and also to show you that programming isn't 
really all that difficult. If you have what it takes to design an experiment, then you have what it takes to 
program in Perl or any other language.  

12.5 Applying Perl to Bioinformatics  

The good news is the more you practice programming, the more you learn. And the more you learn, the 
more you can do. Programming in Perl is all about analyzing data and building tools. As we've said 
before, biological data is proliferating at an astounding rate. The only chance biologists have of 
keeping up with the job of analyzing it is by developing libraries of reusable software tools. In Perl, 
there are a huge number of reusable functions available for use in your programs. Rather than being 
wrapped in a complete program, a group of related functions are packaged as a module. In your 
programs, you can use various modules to access the functions they support. There are Perl modules for 
other scientific disciplines, as well as games, graphics programming, video, artificial intelligence, 
statistics, and music. And they're all free.  

To distinguish them from other Perl files, modules have a .pm suffix. To use functions from a module 
(say, CGI.pm) in your Perl programs, include the following line after the shebang line:  

use CGI; 

The primary source of all modules is the Comprehensive Perl Archive Network, or CPAN. CPAN 
(http://www.cpan.org) is a collection of sites located around the world, each of which mirrors the 
contents of the main CPAN site in Finland. To find the CPAN site nearest you, check the Perl web site 
(http://www.perl.com).  

Because there are so many modules available, before you sit down to write a new function, it is worth 
your time to check the CPAN archive to see if anyone has already written it for you. In this section, we 
briefly describe some Perl modules that are particularly useful for solving common problems in 
bioinformatics. This list is by no means comprehensive; you should keep an eye on CPAN for current 
developments.  

12.5.1 Bioperl 

The Bioperl Project (along with its siblings, Biopython, BioJava, and Bioxml) is dedicated to the 
creation of an open source library of modules for bioinformatics research. The general idea is that 
common items in bioinformatics (such as sequences and sequence alignments) are represented as 
objects in Bioperl. Thus, if you use Bioperl, instead of having to constantly rewrite programs that read 
and write sequence files, you simply call the appropriate functions from Bio::SeqIO, and dump the 
resulting sequence data into a sequence object.  

Bioperl isn't limited to storing sequences: it currently contains modules for generating and storing 
sequence alignments, managing annotation data, parsing output from the sequence-database search 
programs BLAST and HMMer, and has other modules on the way. In addition to the core Bioperl 
distribution, the ScriptCentral script repository at the Bioperl web site (http://www.bioperl.org) hosts a 
collection of biology-related scripts. To learn more about downloading, installing, and using Bioperl, 
see http://www.bioperl.org.  
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12.5.2 CGI.pm 

CGI.pm is a module for programming interactive web pages. The functions it provides are geared 
toward formatting web pages and creating and processing forms in which users enter information. If 
you have used the Web, you almost certainly have used web pages written using CGI.pm. For example, 
let's create a page that asks the user what his favorite color is using an HTML form. When the user 
enters the data, the script stores it in a field named `color'. When the user hits "Submit," the same page 
is loaded, only this time, $query->param(`color') contains the name of a color, so the print statement 
after the "else" is executed. The CGI script looks like this:  

#!/usr/bin/perl  
 
use CGI;                              # Load Perl's CGI module 
 
my $query = new CGI;                  # Create a CGI object named $query 
 
                                      # Send the HTML header and <HTML> tag 
print $query->header, $query->start_html; 
 
                    # If the user is visiting the site for the first time, ask him 
                    # what his favorite color is   
 
unless ($query->param('color')) {     # Page 1: Asking the user 
    print $query->start_form, "What is your favorite color? ",  
          $query->popup_menu( -name   => "color",  
         -values => ["red", "green", "blue"] ), 
          $query->submit, 
          $query->end_form; 
} else {                               # Page 2: Telling the user   
    print "Your favorite color is ", $query->param('color'); 
} 
 
print $query->end_html;                # Send the </HTML> tag 

The results of this script are shown in Figure 12-1. 

Figure 12-1. Our CGI script generates an interactive web page 

 

12.5.3 LWP 

If CGI.pm automates the Web from the server's perspective, the Library for Web Programming (LWP) 
automates web interaction from the perspective of the client. Using LWP, Perl programs can submit 
data to forms, retrieve web pages, and eliminate much of the tedium of manually interacting with web 
services through a browser. For example, let's say you want to retrieve and print out the HTML source 
for the main page of http://www.oreilly.com. You can use the LWP::Simple module as follows:  
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#!/usr/bin/perl 
use LWP::Simple; 
print get("http://www.oreilly.com"); 

This retrieves the HTML source code for http://www.oreilly.com and displays it on your screen.  

12.5.4 PDL 

The Perl Data Language (which is abbreviated PDL and pronounced "piddle") is a module for doing 
math with matrices. It is frequently used for scientific applications and image processing in conjunction 
with the GIMP (since computer representations of images are just matrices). In computational biology, 
PDL is invaluable for working with microarray expression data and scoring matrices, as well as data 
that begins as images. For example, 2D gels that measure protein-protein interaction are usually stored 
as images, and image processing tricks can locate and compare gel features.  

Why do you need a whole library to do linear algebra with Perl? PDL allows you to work with matrices 
of arbitrary dimensionality as if they were scalar variables. For example, a 2D matrix constructed using 
standard Perl arrays looks like $a[$i][$j]. If you wanted to add two array-based matrices (let's call them 
@a and @b) and store the result to another matrix, @c, you have to write code that looks like this:  

for( $i=0; $i<$row_max; $i++ ) { 
    for( $j=0; $j<$col_max; $j++ ) { 
       $c[$i][$j] = $a[$i][$j] + $b[$i][$j]; 
    } 
} 

so that you end up writing two loops, the outer one to iterate over each of the rows, and the inner to 
iterate over each column. With PDL, you simply write:  

$c = $a + $b;  

In other words, when you define your multidimensional arrays as piddles (PDL's name for its matrix 
data object) instead of Perl arrays, PDL makes it look like you are working with simple scalar objects, 
even if you are working with several-megabyte matrices. In addition, PDL comes with an interactive 
mode called perldl that is useful for trying out calculations with PDL, similar to the interactive modes 
provided by the numerical data analysis packages R and Octave (which we will meet in Chapter 14).  

12.5.5 DBI 

DBI (short for database interface) is a module for writing programs that interact with relational 
databases. It allows you to write programs that put data into databases, query databases, and extract 
records from databases, without ever having to pay attention to the specific database you are using. For 
example, a script written with DBI can be used with a MySQL database or an Oracle database with 
only minor changes.  

12.5.6 GD 

The GD.pm module allows you to generate graphics using Perl programs. GD is often used to create 
simple, customized plots on web pages, such as web server usage statistics. PaintBlast.pm, a module 



 295 

that generates graphical representations of sequence alignments from BLAST output, is an example of 
a GD application. It `s available from Bioperl's ScriptCentral.  
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Chapter 13. Building Biological Databases 

Since the advent of the World Wide Web, biological databases have become a vital part of the 
biological literature. Knowing how to find information in and download information from the central 
biological data repositories is as important a skill for researchers now as traditional literature searching. 
Major online data resources, such as the Protein Data Bank and GenBank, are expertly designed to 
provide information to users who have no understanding of how the underlying databases function, and 
to allow the deposition of data to a central repository by people who wouldn't know how to, or want to, 
build their own private databases.  

However, as web databases become more integral to sharing information within the scientific 
community, it is likely that more people will want to develop their own databases and allow their 
colleagues to access their data directly. Even something as simple as a web site for a research group 
can be improved greatly and made easier to maintain with databases. In this chapter, we introduce some 
elementary database terminology and give an example of how to set up a database for a simple data set.  

If you're relatively new to the world of computers and software, you're not going to be able to read this 
chapter and proceed directly to setting up your own database. What we hope to give you is an idea of 
the steps involved in developing a database: designing a data model, choosing a database management 
system (DBMS), implementing your data model, and developing a user-friendly frontend to your 
database. What this chapter will give you is a general understanding of the issues in database 
development. That understanding will help you to move forward, whether on your own or with the help 
of a database expert.  

You don't need to understand what makes a database tick in order to use it. However, providing access 
via the Web to data you generate is becoming more and more important in the biology community, and 
to do that you have to have at least a rudimentary knowledge of how databases work. Even if you've 
got enough money lying around the lab to spring for your own Oracle administrator, you still need to 
speak the language.  

13.1 Types of Databases 

There are two types of database management systems: flat file indexing systems and relational DBMSs. 
A third type, the object-oriented DBMS, is beginning to increase in popularity. Choosing to use a flat 
file indexing system or a relational database system is an important decision that will have long-range 
implications for the capacity and usefulness of your database.  

13.1.1 Flat File Databases 

Flat file databases are the easiest type of database for nonexperts to understand. A flat file database isn't 
truly a database, it's simply an ordered collection of similar files, usually (but not always) conforming 
to a standard format for their content. The emphasis in formatting data for a flat file database is at the 
character level; that is, at the level of how the data would appear if it were printed on a page.  

A collection of flat files is analogous to having a large filing cabinet full of pieces of paper. Flat file 
databases are made useful by ordering and indexing. A collection of flat files on a computer filesystem 
can be ordered and stored in labeled folders exactly the same way as a collection of printed papers are 
ordered in a file cabinet drawer (Figure 13-1). When we suggested, in an earlier chapter, using the 
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hierarchical nature of your filesystem and a sensible file-naming scheme to keep track of your files, 
what we were essentially encouraging you to do is to develop a rudimentary flat file database of your 
work. Creating a database means you can remember the rules of the database rather than the locations 
of individual files and so find your way around more easily.  

Figure 13-1. The relationship of a flat file to a flat file database 

 

Flat file databases are often made searchable by indexing. An index pulls out a particular attribute from 
a file and pairs the attribute value in the index with a filename and location. It's analogous to a book 
index, which for example tells you where in a book you will find the word "genome." Like book 
indexes, database indexes need to be carefully designed so that they point to a word only when it 
occurs in an informative context. Database indexes take note of context by separately indexing 
different fields within the file. The word "cytochrome" occurring in the Molecule Name field in a 
protein structure file is likely to be far more significant to the user than the same word occurring only 
in the file remarks. In the first context, finding the word "cytochrome" guarantees the file contains 
information for some kind of cytochrome molecule. In the second context, the word can appear as part 
of an article title or a comment about intermolecular interactions, even though the structure in the file 
actually belongs to a different molecule. If multiple indexes for a file are created, you can then search a 
particular index file based on keywords, which is less cumbersome than searching all the actual files in 
the database file by file.  

There's nothing inherently bad about flat file databases. They do organize data in a sensible way, and 
with the proper indexing they can be made extensively searchable. However, as flat file collections 
grow larger and larger, working with them becomes inefficient. An index is one-dimensional, so it is 
difficult (though not impossible) to make connections between attributes within an indexed flat file 
database.  

13.1.1.1 Flat file databases in biology 

Many of the popular biological databases began as flat file databases, and it's because of their legacy 
that many of the programs and software packages we discussed in previous chapters have strict internal 
requirements for the line format of input data.   

For example, the PDB began by using flat files in the well-known PDB format. The format of these flat 
files was designed to be read easily by FORTRAN programs, and in fact has its roots in the time when 
computer input data was encoded on punch cards. When there were just a few protein structure files, 
maintaining this database and accessing it was no problem. The PDB did not grow beyond a few 
hundred files until 1990, nearly 20 years after its inception.  
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As PDB growth increased in the 1990s, new solutions for storing data needed to be found. In practical 
terms, the full listing of the database was starting to be so long that, if a user entered a directory 
containing all the available PDB files and tried to list filenames, it could take several seconds to even 
produce a file list. Reading the contents of large directories slows down even simple Unix tools such as 
ls, and it is even more of a problem for computer programs that might repeatedly read a directory. At 
first, the PDB was split into subdirectories based on the letters of the PDB code. But as the database 
approached 8,000 entries, even that began to prove too cumbersome.  

The PDB now uses an object-oriented database backend (the part of the operation that resides on the 
PDB servers and that users don't see) to support database queries and file access. However, files are 
still made available in the legacy PDB format, so that users can continue to work with software that 
was developed long before the PDB was modernized.  

Beyond the PDB, flat file datab ases are still widely used by biologists. Many users of biological 
sequence data store and access sequences locally using the S equence Retrieval System (SRS), a flat 
file indexing system designed with biological data in mind.  

13.1.2 Relational Databases 

Like flat file databases, relational databases are just a way of collecting all the information about 
something and storing it in a computer. In a flat file database, all the information about the thing is 
stored in one big structured text file. In a relational database, the information is stored in a collection of 
tables.  

The flat file that describes a protein structure is like a bound book. There are chapters about the origin 
of the sample, how the data was collected, the sequence, the secondary structure, and the positions of 
the atoms.  

In a relational database, the information in each chapter is put into separate tables, and instead of 
having its own book, each protein has its own set of tables. So, there are tables of experimental 
conditions, secondary structure elements, atomic positions, etc. All these tables are labeled with the 
identity of the protein they describe, so that connections can be made between them, but they aren't 
bound together like a book. The form of the tables follows rules that are uniform across the database, so 
you can access all the tables about atomic positions or all the chapters about experimental conditions at 
once, just as easily as you can access all the tables about a particular protein.  

If you're interested in only one particular protein, it's not at all inconvenient to go to the library (the 
PDB), look the book up in the catalog, and read it straight through. The librarian can pick a few items 
of information out of the book (such as the name of the protein, the author who deposited it, etc.) and 
put them in an index (like a card catalog) that will help you find where the book is on the shelf.  

But what if you're interested in getting the secondary structure chapter out of every book in the protein 
library? You have to go to the library, take down every book from the shelf, photocopy the secondary 
structure chapter, and then convert that information into a form that you can easily analyze.  

A relational database management system (RDBMS) allows you to view all of the protein structure 
data in the database as a whole. You can "look" at the database from many different "angles," and 
extract only the information you need, without actually photocopying a particular chapter out of each 
book. Since each separate item of information about the protein is stored in its own separate table in the 
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database, the RDBMS can assemble any kind of book about proteins you want, on the fly. If you want a 
book about hemoglobin, no problem. Even better, it is just as easy for the RDBMS to make you a book 
about the secondary structures of all proteins in the database.  

All you need to do is figure out how to structure the right query to get back what you want from the 
database. If you want a book about hemoglobin, you can tell the RDBMS "if protein name equals 
hemoglobin then give me all information about this protein." If you want a book that describes only the 
secondary structure of each hemoglobin entry in the database, you can tell the RDBMS "if protein 
name equals hemoglobin then give me the secondary structure table about this protein."  

13.1.2.1 How tables are organized 

Data in a relational database table is organized in rows, with each row representing one record in the 
database. A row may contain several separate pieces of information (fields). Each field in the database 
must contain one distinct piece of information. It can't consist of a set or list that can be further broken 
into parts.  

The tables in a relational database aren't just glorified flat files, though they may look that way if you 
print them out. Rows are synonymous with records, not with 80 characters on a line. Fields in each row 
aren't limited by a number of characters; they end where the value in the field ends. The job of the 
RDBMS is to make connections between related tables by rapidly finding the common elements that 
establish those relationships.  

You can get an idea of the difference between data organized into tables and character-formatted flat 
file data by comparing the two types of protein structure datafiles available from the PDB. The 
standard PDB file is ordered into a series of 80 character lines. Each line is labeled, but especially in 
the header, the information associated with a label is quite heterogeneous. For example:  

REMARK  1                                                         4HHB  14 
REMARK  1 REFERENCE 1                                             4HHB  15 
REMARK  1  AUTH   M.F.PERUTZ,S.S.HASNAIN,P.J.DUKE,J.L.SESSLER,    4HHB  16 
REMARK  1  AUTH 2 J.E.HAHN                                        4HHB  17 
REMARK  1  TITL   STEREOCHEMISTRY OF IRON IN DEOXYHAEMOGLOBIN     4HHB  18 
REMARK  1  REF    NATURE                        V. 295   535 1982 4HHB  19  
REMARK  1  REFN   ASTM NATUAS  UK ISSN 0028-0836             006  4HHB  20 
REMARK  1 REFERENCE 2                                             4HHB  21 
REMARK  1  AUTH   G.FERMI,M.F.PERUTZ                              4HHB  22 
REMARK  1  REF    HAEMOGLOBIN AND MYOGLOBIN.    V.   2       1981 4HHB  23 
REMARK  1  REF  2 ATLAS OF MOLECULAR                              4HHB  24 
REMARK  1  REF  3 STRUCTURES IN BIOLOGY                           4HHB  25 
REMARK  1  PUBL   OXFORD UNIVERSITY PRESS                         4HHB  26 
REMARK  1  REFN              ISBN 0-19-854706-4              986  4HHB  27 

In the PDB reference records shown here, you can see that entries in each row aren't distinct pieces of 
information, nor are the rows uniform. Sometimes there are four author names on one line; sometimes 
there are two. Sometimes there are three title lines; sometimes there is only one. This can cause 
difficulties in parsing, or reading the header with a computer program.  

Compare this to an mmCIF file. mmCIF is a new data standard for results of X-ray crystallography 
experiments. Protein structures have been available from the PDB in mmCIF format since the 
management of the PDB changed in 1999.  
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Before you see any data in the mmCIF file, you see what looks almost like a series of commands in a 
computer program, lines that describe how the data in the file is to be read. Then you'll see tables of 
data. Here's an example:  

loop_ 
_citation.id 
_citation.coordinate_linkage 
_citation.title 
_citation.country 
_citation.journal_abbrev 
_citation.journal_volume 
_citation.journal_issue 
_citation.page_first 
_citation.year 
_citation.journal_id_ASTM 
_citation.journal_id_ISSN 
_citation.journal_id_CSD 
_citation.book_title 
_citation.book_publisher 
_citation.book_id_ISBN 
_citation.details 
 
primary   yes 
; THE CRYSTAL STRUCTURE OF HUMAN DEOXYHAEMOGLOBIN AT 
    1.74 ANGSTROMS RESOLUTION 
; 
UK 'J.MOL.BIOL.                 '  175  ?     159   1984 
'JMOBAK         ' '0022-2836                '  070 ? ? ? ? 
 
    1       no 
; STEREOCHEMISTRY OF IRON IN DEOXYHAEMOGLOBIN 
; 
UK 'NATURE                      '  295  ?     535   1982 
'NATUAS         ' '0028-0836                '  006 ? ? ? ? 
 
2       no 
?   ? ?    2 ?     ? 1981 ? ?  986 
; HAEMOGLOBIN AND MYOGLOBIN. 
  ATLAS OF MOLECULAR 
  STRUCTURES IN BIOLOGY 
; 
;  OXFORD UNIVERSITY PRESS 
; 
'0-19-854706-4            ' ? 

An mmCIF file contains dozens of tables that are all "about" the same protein.  

The opening lines of the reference section in the mmCIF file (which is just a flat representation of the 
collection of tables that completely describes a protein structure) describe what the fields in each 
upcoming row in the table will mean. Rows don't begin arbitrarily at character 1 and end at character 
80; they may stretch through several "lines" in the printout or onscreen view of the data. Rows don't 
end until all their fields are filled; when information is missing (as in the previous example), the fields 
have to be filled with null characters, such as a question mark or a space.  

In the protein database, the table of literature references that describes a particular structure is 
associated with a particular PDB ID. However, there are other tables associated with that PDB ID as 
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well, and they have totally different kinds of rows from the reference table. The atomic positions that 
describe a protein structure are contained in a separate table with a completely different format:  

loop_ 
_atom_site.label_seq_id 
_atom_site.group_PDB 
_atom_site.type_symbol 
_atom_site.label_atom_id 
_atom_site.label_comp_id 
_atom_site.label_asym_id 
_atom_site.auth_seq_id 
_atom_site.label_alt_id 
_atom_site.cartn_x 
_atom_site.cartn_y 
_atom_site.cartn_z 
_atom_site.occupancy 
_atom_site.B_iso_or_equiv 
_atom_site.footnote_id 
_atom_site.label_entity_id 
_atom_site.id 
1 
 ATOM  N  N    VAL A    1  .   6.204  16.869   4.854  7.00 49.05  .    1  1 1 
 ATOM  C  CA   VAL A    1  .   6.913  17.759   4.607  6.00 43.14  .    1  2 1  
 ATOM  C  C    VAL A    1  .   8.504  17.378   4.797  6.00 24.80  .    1  3 1 
 ATOM  O  O    VAL A    1  .   8.805  17.011   5.943  8.00 37.68  .    1  4 1  
 ATOM  C  CB   VAL A    1  .   6.369  19.044   5.810  6.00 72.12  .    1  5 1 
 ATOM  C  CG1  VAL A    1  .   7.009  20.127   5.418  6.00 61.79  .    1  6 1 
 ATOM  C  CG2  VAL A    1  .   5.246  18.533   5.681  6.00 80.12  .    1  7 2 
 ATOM  N  N    LEU A    2  .   9.096  18.040   3.857  7.00 26.44  .    1  8 2 
 ATOM  C  CA   LEU A    2  .  10.600  17.889   4.283  6.00 26.32  .    1  9 2 
 ATOM  C  C    LEU A    2  .  11.265  19.184   5.297  6.00 32.96  .    1 10 2 
 ATOM  O  O    LEU A    2  .  10.813  20.177   4.647  8.00 31.90  .    1 11 2 
 ATOM  C  CB   LEU A    2  .  11.099  18.007   2.815  6.00 29.23  .    1 12 2 
 ATOM  C  CG   LEU A    2  .  11.322  16.956   1.934  6.00 37.71  .    1 13 2 
 ATOM  C  CD1  LEU A    2  .  11.468  15.596   2.337  6.00 39.10  .    1 14 2 
 ATOM  C  CD2  LEU A    2  .  11.423  17.268    .300  6.00 37.47  .    1 15  

The values in the atom table are clearly related to the values in the reference table; they both contain 
information about the same PDB structure. However, the two types of data can't just be put together 
into one big table. It doesn't make sense to put the reference information into the same scheme of rows 
and columns the atom information goes into, either by tacking it on at the "bottom" of the table or by 
adding extra columns (although in flat files we are forced to do exactly that!). The two datatypes are 
related, but orthogonal to each other.  

Anywhere in a set of information where it becomes impossible to sensibly tack rows or columns onto a 
table, a new table needs to be created.[1] Tables within a database may have interconnections only at the 
topmost level, such as the atom and reference information related to the same PDB file, or they may be 
more closely linked.  

[1] The technical term for the process of separating a complex data set into a collection of mutually orthogonal, related tables is normalization. For a rigorous 
discussion of relational database theory, see the pertinent references in the Bibliography. 

You may notice in the reference records two pages back that authors' names aren't listed. How can that 
be? Well, the answer is that they're in a separate table. Because each reference can have an arbitrary 
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number of separate authors, that information can't just be tacked onto the reference table by adding a 
fixed number of extra rows or columns. So there's a separate table for authors' names:  

loop_ 
_citation_author.citation_id 
_citation_author.name 
 primary   'Fermi, G.' 
 primary   'Perutz, M.F.' 
 primary   'Shaanan, B.' 
 primary   'Fourme, R.' 
   1       'Perutz, M.F.' 
   1       'Hasnain, S.S.' 
   1       'Duke, P.J.' 
   1       'Sessler, J.L.' 
   1        'Hahn, J.E.' 
   2       'Fermi, G.' 
   2       'Perutz, M.F.' 
   3       'Perutz, M.F.' 
   4       'TenEyck, L.F.' 
   4       'Arnone, A.' 
   5       'Fermi, G.' 
   6       'Muirhead, H.' 
   6       'Greer, J.' 

This table is related to the previous reference table through the values in column 1, which match up 
with the citation IDs in the other reference table. To get from "Fermi, G." to "THE CRYSTAL 
STRUCTURE OF HUMAN DEOXYHAEMOGLOBIN AT 1.74 ANGSTROMS RESOLUTION" in 
this database, you connect through the citation ID, which specifies the relationship between the two 
entities.  

Using an RDBMS may at first seem like an overthinking of what could be a pretty simple set of data to 
store. If you ever write programs that operate on the antiquated flat-file PDB format, though, you'll 
realize how useful it might be to unambiguously assign your data to tables in a relational database. 
Among other things, databases eliminate the need for complicated line-format statements and parsing 
operations that are required when using 80 character-formatted files.  

13.1.2.2 The database schema 

The network of tables and relationships between them that makes up a database is called the database 
schema. For a database to keep its utility over time, it's best to carefully develop the schema before you 
even think about beginning to populate the database. In the example later in this chapter, we develop a 
schema for a simple database.  

Getting your brain around database schemas and tables can be a challenge without even coming up 
with your own schema. However, relational databases are the standard for large database operations, 
and understanding RDB concepts is necessary for anyone who wants to build her own. Before 
designing your own database, you should definitely consult a reference that covers relational databases 
rigorously.  

13.1.3 Object-Oriented Databases 
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You'll hear the phrase object oriented in connection with both programming languages and databases. 
An object-oriented database system is a DBMS that is consistent with object-oriented programming 
principles. Some important characteristics of object-oriented databases are: they are designed to handle 
concurrent interactions by multiple clients; they can handle complex objects (beyond tables of 
character data); and they are persistent—that is, they survive the execution of a process. In practice, 
because of the popularity of object-oriented programming strategies, most of the major relational 
DBMSs are compatible with an object-oriented approach to some extent.  

The practical upshot of the object-oriented approach in the database world is the emergence of DBMSs 
that are flexible enough to store more than just tables and to handle functions beyond those in a rigidly 
defined query-language vocabulary. Since object-oriented databases handle data as objects rather than 
as tables, an object-oriented database can provide access to everything from simple text-format data to 
images and video files within the same database. Object-oriented databases don't force the use of the 
SQL query language, but rather provide flexible bindings to programming languages. Many DBMSs 
are beginning to have both object and relational characteristics, but the giants of the DBMS world are 
still primarily relational DBMSs.  

13.2 Database Software 

Databases don't just happen: they're maintained by DBMSs. There are several DBMSs, some open 
source and some commercial. There are flat file indexing systems, RDBMSs, object DBMSs 
(ODBMSs), and object-relational hybrids. Which DBMS you use depends on what you can afford, how 
comfortable you are with software, and what you want to do.  

13.2.1 Sequence Retrieval System 

Even if you've decided to work with a flat file indexing and retrieval system, you don't need to reinvent 
the wheel. The Sequence Retrieval System (SRS) is a popular system for flat file management that has 
been extensively used in the biology community, both in corporate and academic settings. SRS was 
developed at EMBL specifically for use in molecular biology database applications, and is now 
available as a commercial product from Lion Bioscience, http://www.lionbioscience.com. It is still 
offered for free to researchers at academic institutions, along with extensive documentation (but no 
tech support). A common application of the SRS database is to maintain a local mirror of the major 
biological sequence databases. The current release is SRS 6.  

SRS can be installed on SGI, Sun, Compaq, or Intel Linux systems. To maintain your own SRS 
database and mirror the major biological databases requires tens of gigabytes of disk space, so it's not 
something to be taken on lightly. SRS has built-in parsers that know how to read EMBL nucleotide 
database files, SWISS-PROT files, and TrEMBL files. It's also possible to integrate other databases 
into SRS by using SRS's Icarus language to develop additional databank modules. For an example of 
the variety of databases that can be integrated under an SRS flat file management system, you only 
have to look at the SDSC Biology Workbench. Until its most recent release, SRS was the DBMS used 
within the Biology Workbench, and supported nearly the full range of databases now integrated into the 
Workbench.  

13.2.2 Oracle  
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Oracle is the 18-wheeler of the RDBMS world. It's an industry-standard, commercial product with 
extremely large capacity. It's also rapidly becoming a standard for federally funded research projects. 
Oracle has some object capacities as well as extensive relational capacities. Potential Oracle customers 
can now obtain a license to try Oracle for free from http://www.oracle.com. If you want to provide a 
large-scale data resource to the biology community, you may need an Oracle developer (or a bunch of 
them) to help you implement it.  

13.2.3 PostgreSQL 

PostgreSQL is a full-featured object-relational DBMS that supports user-defined datatypes and 
functions in addition to a broad set of SQL functions and types. PostgreSQL is an open source project, 
and the source code can be downloaded for free from http://www.postgresql.org, which also provides 
extensive online documentation for the DBMS. PostgreSQL can also be found in most standard Linux 
distributions. If you plan to create a database that contains data of unusual types and you need a great 
degree of flexibility to design future extensions to your database, PostgreSQL may meet your needs 
better than MySQL. PostgreSQL is somewhat limited in its capacity to handle large numbers of 
operations, relative to Oracle and other commercial DBMSs, but for midrange databases it's an 
excellent product.  

13.2.4 Open Source Object DBMS 

Several efforts to develop open source ODBMSs are underway as of this writing. One of the most high 
profile of these is the Ozone project (http://www.ozone-db.org). Ozone is completely implemented in 
Java and designed for Java developers; queries are implemented in the underlying language rather than 
in SQL. One emphasis in Ozone development is object persistence, the ability of the DBMS to 
straightforwardly save the states of a data object as it is affected by transactions with the database user. 
Like many ODBMSs, Ozone is in a relatively early stage of development and may not be particularly 
easy for a new user to understand. Unless you have a compelling reason to use object-oriented 
principles in developing your database, it's probably wise to stick with relational database models until 
object technology matures.  

13.2.5 MySQL 

MySQL is an open-source relational DBMS. It's relatively easy to set up and use, and it's available for 
both Unix and Windows operating systems. MySQL has a rich and complex set of features, and it's 
somewhat different from both PostgreSQL and Oracle, two other popular RDBMSs. Each system 
recognizes a different subset of SQL datatypes and functions, and none of them recognizes 100% of the 
possible types. MySQL sets lower limits on the number of operations allowed than PostgreSQL and 
Oracle do, in some cases, so it's considered suitable for small and medium-sized database applications, 
rather than for heavy-duty database projects. However, this isn't a hard and fast rule: it depends on what 
you plan to do with the data in your database. MySQL is strictly a relational DBMS, so if you plan to 
store unusual datatypes, it may not be the right DBMS for you. For most standard database 
applications, however, MySQL is an excellent starting point.  

MySQL's developers claim that it can manage large databases faster than other RDBMSs. While their 
benchmarks seem to bear out this claim, we haven't independently evaluated it. What we can say is that 
it's possible to learn to use MySQL and have a rudimentary database up and running within a few hours 
to a few days, depending on the user's level of experience with Unix and SQL.  
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13.3 Introduction to SQL 

As a practical matter, you are most likely to work either with specialized flat file database systems for 
biological data, like SRS, or with some kind of RDBMS. In order to work with an RDBMS, you need 
to learn something about SQL.  

SQL, or Structured Query Language (usually pronounced "see-kwl" by those in the know, ess-que-ell 
by literalists, and "squeal" by jokers) is the language RDBMSs speak. SQL commands are issued 
within the context of a DBMS interface; you don't give a SQL command at the Unix command line. 
Instead, you give the command to the DBMS program, and the program interprets the command.  

SQL commands can be passed to the DBMS by another program (for instance, a script that collects 
data from a web form) or hand-entered. Obviously, the first option is the ideal, especially for entering 
large numbers of records into a database; you don't want to do that by hand. We can't teach you all of 
the ins and outs of programming with SQL, however; in this section we'll just focus on the basic SQL 
commands and what they do. Later on, we'll show an example of a web-based program that can interact 
with a SQL database.  

SQL commands read like stilted English with a very restricted vocabulary. If you remember 
diagramming sentences in high-school English class, figuring out subject-verb-object relationships and 
conditional clauses, SQL should seem fairly intuitive. The challenge is remembering the restrictions of 
vocabulary and syntax, and constructing queries so that your DBMS can understand them. A SQL 
statement might read something like this:[2]  

[2] SQL commands don't have to appear in all capital letters; they're case-insensitive. But we'll write them in all capital letters in our examples, so that you can 
distinguish them easily from the names of files, variables, and databases. File, variable, and database names are case-sensitive in SQL, so if you name a database 
PeOPlE, you'll have to live with that. 

SELECT program FROM software WHERE program LIKE 'blast' 

This says "select the names of programs from the list of software where the name of the program is like 
blast." This is something you might want to do if you use a searchable database of bioinformatics 
software.  

As mentioned above, all DBMSs aren't created equal. There is a SQL standard vocabulary, called SQL 
92; however, most systems implement only parts of this standard. You need to study the documentation 
for the particular DBMS you're using so you don't confuse it by giving unrecognized commands.  

13.3.1 SQL Datatypes 

The notion of a datatype is simple to understand. A datatype is an adjective that describes the data 
stored in a particular column of a table. In general, data stored in a table can consist of either numeric 
values or character strings. SQL, however, defines a multitude of subtypes within these common 
datatypes, mostly variants that set different upper limits on the size of a text field or numerical field, 
but also special numeric types such as DATE or MONEY.  

When you create tables in a database, you need to define the type of each column. This means you need 
to know from the beginning, as you are setting up your data model, what type of data will be contained 
in each column. You should also have a rough idea of the likely upper and lower limits for your data, 
so that you can select the smallest possible type to contain them. For instance, if you know that the 
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integer values in a column in your table will never be greater than 255, you should use the smallest 
possible integer type, TINYINT, for that column, rather than making space for much larger values in 
your database when you won't actually need that space. On the other hand, if that value will eventually 
grow beyond 255, then you should choose a type that allows a broader range of values for that column. 
Setting up a relational database requires quite a bit of intelligent forethought.  

Here are some of the most popular SQL types, all of which are supported in most major RDBMS 
programs:  

INT  

An integer number. Variations include TINYINT, SMALLINT, MEDIUMINT, and BIGINT. 
Each of these allows a different range of numerical values.  

FLOAT  

A floating-point number. Maximum value on the order of 3 E 38; minimum value on the order 
of 1.7 E-38.  

REAL  

A longer floating-point number. Maximum value on the order of 2 E 308; minimum value on 
the order of 2 E-308.  

CHAR  

A fixed-length text string. Values shorter than the fixed length are padded with spaces.  

TEXT  

A variable-length text string with a maximum value. Variations include TINYTEXT, 
MEDIUMTEXT, and LONGTEXT.  

BLOB  

A variable-length binary field with a maximum value. Variations include TINYBLOB, 
MEDIUMBLOB, and LONGBLOB. Just about anything can go in a binary field. The 
maximum size of a LONGBLOB is 4 GB. All sorts of interesting things, such as image data, 
can go into a binary field.  

DECIMAL  

A real number that is stored as a character string rather than as a numerical field.  

DATE  

A date value that stores the year, month, and day. 
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TIMESTAMP  

A time value that updates every time the record is modified. 

ENUM  

A value that is one of a limited set of options and can be selected using either the option name 
or a numeric value that represents the name.  

SET  

A value that is one of a limited set of options. 

13.3.2 SQL Commands 

SQL has many commands, but it's probably most important for you to know how to create new tables, 
add data to them, and then search for data in your database. We'll introduce you briefly to the SQL 
CREATE, ALTER, INSERT, UPDATE, and SELECT commands, as they are implemented in MySQL. 
The references mentioned in the Bibliography contain full descriptions of the SQL commands available 
through MySQL.  

13.3.2.1 Adding a new table to a database 

New tables are created with the SQL CREATE statement. The syntax of the CREATE statement is 
simply:  

CREATE TABLE tablename (columnname type [modifiers] columnname type  
[modifiers]) 

If you want to create a table of information about software packages, for the example database we 
discuss in this chapter, you can do as follows:  

CREATE TABLE software_package  
       (packid INT NOT NULL PRIMARY KEY AUTO_INCREMENT, 
        packname VARCHAR(100)                            
        packurl VARCHAR(255)                          
        function TEXT                         
        keyword ENUM                        
        os SET                          
        format SET                           
        archfile VARCHAR(255)  
) 

This command tells MySQL to set up a table in which the first column is an automatically 
incrementing integer; that is, the DBMS automatically assigns a unique value to each entry you make. 
The second and third columns are variable-length character strings with preset maximum lengths, in 
which the name and URL of the software package will be entered. The fourth column is a text field that 
can contain up to 64 KB of text describing the software package. The fifth column allows you to 
choose one of 64 preset keywords to describe your software package; the sixth and seventh columns let 
you choose any number of values from a set of preset values to describe the operating systems the 
software will run under (e.g., mac, windows, linux) and the type of archive file available (e.g., binary, 
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rpm, source, tar ). The final field is another variable character string that will contain the URL of the 
archive file.  

13.3.2.2 Changing an existing table 

If you create a table and you decide that it should look different than you originally planned, you can 
use the ALTER command to change it. To add another column to a table, the syntax is:  

ALTER TABLE tablename ADD [COLUMN] (columnname type [modifiers]) 

13.3.2.3 Adding data to an existing table 

The INSERT command adds a new row of data to a table. The syntax of the INSERT command is:  

INSERT INTO table ( colname1, colname2, colname3 ) VALUES ( 
'value1','value2','value3') 

13.3.2.4 Altering existing data in a table 

The UPDATE and REPLACE commands can modify an existing row in a table. Your user privileges 
must allow you to use UPDATE and REPLACE. These commands can take a WHERE clause, with 
syntax analogous to that of the SELECT command, so that you can specify under what conditions a 
record is updated.  

13.3.3 Accessing Your Database with the SQLSELECT Command 

The SQL SELECT command finds data in a table for you. In other words, SELECT is the command 
that makes the database useful once you have created it and populated it with data. It can be modified 
by a conditional clause that lets you determine under what conditions a record is selected from the 
table.  

13.3.3.1 Choosing fields to select 

The general syntax of the SELECT command is:  

SELECT [fields] FROM [table] WHERE [clause] 

To select all the fields in a particular table, the asterisk character can be used:  

SELECT * FROM [table] WHERE [clause] 

In this chapter's database example, if you want to select the software package name and software 
package URL from the software table, the SELECT command is:  

SELECT packname, packurl FROM software 

13.3.3.2 Using a WHERE clause to specify selection conditions 



 309 

The WHERE clause allows you to specify conditions under which records are selected from a table. 
You can use standard operators, such as =, >=, etc., to set the conditions for your WHERE clause. 
MySQL also allows you to use the LIKE and NOT LIKE operators for pattern matching.  

If you want to set up your SELECT statement to find only software for sequence alignment, it should 
look like this:  

SELECT packname, packurl FROM software WHERE keyword = "sequence alignment"; 

If you want to find only software packages with names starting with the letter B, the SELECT 
statement looks like this:  

SELECT packname, packurl FROM software WHERE packname LIKE "B%"; 

The % character is a wildcard character that represents any number of characters, so the software 
packages you select using this statement can have names of any length as long as the name starts with 
B.  

13.3.3.3 Joining output from multiple tables 

SELECT can also join two related tables. When we talk later about developing databases, you'll find 
that relationships between tables are created by replicating information called a primary key from one 
table as a foreign key in another table. If the foreign key in one table matches the primary key in 
another, the data in the two tables refers to the same record and can be joined  to produce one set of 
output from SELECT. A MySQL SELECT statement for joining two tables might look like this:  

SELECT FROM table1, table2 WHERE primarykey1=foreignkey2 

For instance, we've already discussed creating one table that lists the names, URLs, and other details 
about the software packages listed in the database. In order to build the database properly, you have to 
have another table that lists information about the literature references that describe the functions of the 
software packages in the database.  

What if you want to select only the names and URLs of software packages that were first described in 
the literature in 1998 or later? The names and URLs are found in the software table; the dates are found 
in the reference table. Here's the SQL:  

SELECT packname, packurl, reference_date FROM software, reference  
WHERE software.package_id = reference.package_id  
AND reference_date >= "1998"; 

The variable package_id is the primary key from the software table, and it is replicated in the reference 
table to maintain a relationship between the details of software packages and the references that 
describe them. If the value of package_id  is the same in both tables, the two rows being accessed are 
part of the same record in the database. Therefore, the first part of the WHERE clause is what joins the 
two tables. The second part of the WHERE clause (AND reference_date >= "1998") specifies the 
actual selection condition.  

Different database-management systems implement different levels of join functionality, so you will 
have to check the specific documentation for your DBMS to see how joins work.  
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13.4 Installing the MySQL DBMS 

To set up and maintain your own database, you need to have a database server installed on the machine 
on which the data will be stored.  

MySQL is a lightweight relational DBMS that is fairly easy to install and run. We're going to use 
MySQL to set up the example database, so if you're interested in trying it out, be sure the MySQL 
server is installed on your machine. If you're using a Red Hat Linux distribution, this is ridiculously 
easy. If you didn't install MySQL when you set up your machine, simply use kpackage or gnorpm to 
select the MySQL components you want to install—the server, clients, and development tools. This 
will probably give you an older version of MySQL; to get the current version and install it easily, use 
the binary RPMs from the latest stable version at http://www.mysql.com. You'll also want to make sure 
the Apache web server and PHP support, available from http://www.apache.org, are installed. The next 
time you restart your machine after the install, the MySQL server daemon, [3] mysqld, is started, MySQL 
privilege databases are initialized, and the PHP module is made available to your Apache server.  

[3] System processes such as servers that run in the background on Unix systems are known as daemons. 

13.4.1 Setting Up MySQL 

When you look at RDBMS software, you usually find you have a choice of setting up a client or a 
server. The server part of the program runs on the machine on which the data is actually stored. It runs 
as a daemon on Unix machines; that is, as a system process that is always on, listening for and 
responding to requests from clients. The MySQL server program is called mysqld. Figure 13-2 shows 
an example of a client/server architecture.  

Figure 13-2. Client/server architecture 

 

Clients are programs that connect to the server and request data. Clients can be located on the database 
server itself, but they also can be located on other machines on which mysqld isn't running and connect 
over the Internet to the main database.  

The MySQL client programs include mysql, the main client that lets you do everything from designing 
databases to inserting records; mysqladmin, which performs selected administrative functions such as 
creating new databases and checking the status of the server; and client5. client5 is similar to mysql in 
that it allows interactive query processing, but for security purposes, it doesn't allow you to add and 
modify database records.  
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When we talk about the MySQL DBMS as a whole, we refer to it as MySQL. When we talk about a 
client program that's part of MySQL, we refer to it by its specific client name.  

13.4.1.1 Using the mysql client program 

The mysql program has only a few commands of its own; the commands that are primarily directed to 
the mysql program or the client5 program are SQL statements. When you are inside the mysql program, 
the program interprets any SQL statement you give to it as one continuous statement, until the 
terminating character ";" is read. Here are the mysql commands:  

use  

Takes a database name as its argument; allows you to change which database is in active use  

status   

Returns the status of the server 

connect  

Reconnects with the server 

go  

Sends a command to the MySQL server; also can be indicated by terminating a SQL statement 
with \g or ;  

help  

Prints a complete list of mysql commands  

13.4.1.2 Using the mysqladmin client program to set up MySQL 

You can get a comprehensive listing of mysqladmin commands with the command:  

mysqladmin --help   

Here are the commands you are likely to use frequently: 

create  

Takes a database name as its argument; creates a new database 

drop  

Takes a database name as its argument; deletes an entire database 

reload  
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Reloads the grant tables 

variables  

Prints available variables that describe the MySQL installation 

ping  

Checks to see if the MySQL server is alive 

shutdown  

Shuts down the MySQL server on the local machine 

13.4.1.3 Restarting the MySQL server 

mysqladmin has an option for shutting down the server. But what about starting it up again? To start 
your MySQL server, use the Unix su command to become the MySQL administrator, whether that's 
user mysql or some other user ID. Then, start the MySQL server with the command:  

safe_mysqld & 

13.4.2 Securing Your MySQL Server 

Your MySQL server isn't secure when you first install it from RPMs, although the databases are 
initialized. To secure your server, you should immediately set a root password for the MySQL 
installation. This can (and should) be different from your system root password. MySQL usernames 
and system usernames aren't connected, although server processes do need to run under a user ID that 
exists on your server. You need to use the mysql program directly to update the user grant table, the 
main table of permissions for MySQL users. To invoke the mysql program, give the command:  

mysql -u root mysql 

Your command prompt will change to mysql>, which indicates you are inside the mysql program until 
you quit using the quit command.  

To update the grant tables, type:  

UPDATE user SET Password=PASSWORD("your_password") WHERE User="root"; 

When you issue this command through the mysql program, you're giving a SQL command to update the 
table user in the database mysql. After you reset the root password, exit mysql and tell MySQL to 
reread the grant tables with the command:  

mysqladmin -u root reload 

Now you can reaccess the mysql program and other client programs only if you use the proper root 
password. To restart the mysql program on the mysql database, give the command:  
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mysql --user=root --password mysql 

You'll be prompted for your password. If you enter the password on the command line, instead of 
allowing mysql to prompt you for the password, the password can become visible to other users (or 
hackers) of your system.  

If you install MySQL from RPMs on a Linux system, during the installation the mysql user ID is added 
to your system. This user should own the MySQL data directory and its subdirectories. The MySQL 
daemon runs as a process started by system user mysql, and access to the database is controlled by that 
user. You can set the system password for user mysql using the Unix passwd command as root. To set 
the MySQL password for this user, you may need to use SQL commands to insert the user mysql into 
the grant tables. The SQL statement that creates the mysql user and grants it global access permissions 
for all of your databases is:  

INSERT INTO user VALUES("localhost","mysql",PASSWORD("your_password"),  
"Y","Y","Y","Y","Y","Y","Y","Y","Y","Y","Y","Y","Y","Y");} 

For more on administration and security of MySQL databases, we suggest you consult the pertinent 
books listed in the Bibliography.  

13.4.3 Setting Up the Data Directory 

If you install MySQL from RPMs, your data directory is automatically located in /var/lib/mysql. When 
you set up your workstation, you may not have left much space on the /var partition. If you're going to 
be doing a lot with databases, you probably want to give the MySQL data directory some room to 
grow.  

An easy way to do this is to relocate the data directory to a different partition and create a symbolic link 
from that directory to /var/lib/mysql. If you relocate the data directory this way, you don't have to 
change any MySQL configuration information.  

First, choose a location for your data directory. You can, for example, create a directory 
/home/mysql/data. Then, shut down your MySQL daemon using:[4]  

[4] You also need to include -- user=mysql -- password  on the mysqladmin command line, but from now on, we're going to assume you know that. 

mysqladmin shutdown 

Using the Unix mv command, move all the files in /var/lib/mysql to /home/mysql/data. Once the 
/var/lib/mysql directory is empty, use rmdir to remove it. cd to the /home/mysql directory and type:  

chown -Rf mysql:mysql data  

This sets the proper file ownership for all the files in that directory. Finally, use ln -s to create a 
symbolic link between the /home/mysql/data directory and /var/lib/mysql. Then restart your MySQL 
server by typing:  

safe_mysqld  & 

You'll probably need to be logged in as the superuser to do this.  
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13.4.4 Creating a New Database 

Once your MySQL server is installed and running, you need to create a new database and grant 
yourself the correct permissions to read and write to that database. You can do this as MySQL user 
mysql, unless you want to create a separate identity for yourself right now. We're going to make a 
database of bioinformatics resources on the Web, so you need to create a database called resourcedb. 
To do this, simply type:  

mysqladmin --user=mysql --password create resourcedb 

Then run mysql on the resourcedb database with the command:  

mysql --user=mysql --password resourcedb 

13.5 Database Design 

The example we'll walk you through is a simple example of how to use MySQL to create a searchable 
database of bioinformatics software web sites. [5] We'll also talk a little bit about a scripting language 
called PHP, which allows you to embed commands that let others access your database directly into an 
HTML file, and about other ways to access your database from the Web.  

[5] Don't run out and implement this on your machine just because we talked about how to do it. The Web is teeming with out-of-date collections of bioinformatics 
links (and other kinds of links), and unless you intend to be a responsible curator, no one really needs you to add to them.  

If you're looking for bioinformatics or computational biology software on the Web, there are several 
things you'll probably want to know about each item you find and several ways you'll want to query the 
database. You'll want to know the name of each item and have access to a description of what it does 
and the URL from which you can download it. You'll probably want to know the author of the item and 
what papers have been published about it. You may even want to have immediate access to a Medline 
link for each reference. You'll want to know what operating systems each item works under, and what 
format it's available in; you may even want a direct link to the archive file. You may also want to be 
able to search the database by keywords such as "sequence alignment" or "electrostatic potential."  

That sounds pretty simple, right? You may be thinking that all that information would go nicely into 
one table, and a complicated RDBMS isn't needed to implement this kind of database. Figure 13-3 
shows what that big table looks like.  

Figure 13-3. The bioinformatics software DB as one big table 

 

However, if you look more closely, you'll see it's not really possible for even a simple bioinformatics 
software database to fit in one table. Remember, data in tables must be atomic ; that is, each cell must 
contain only one distinct item, not a list or a set.  
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If you think through the possibilities, you'll realize that there are several places where lists or sets might 
occur in a bioinformatics software database record: there might be multiple authors, and/or multiple 
publications describing the software; the software might be available for many different operating 
systems; and there might be more than one keyword used to describe each item.  

13.5.1 On Entities and Attributes 

Databases can contain two kinds of information: information that indicates an entity or thing that might 
have relationships with other things; and information that is purely descriptive of a single entity—
attributes of that entity.  

In our database example, the one thing we are sure of is that a software package is an entity. Let's begin 
designing the tables in this database by listing all the information associated with each software 
package:  

Software package name 
Software URL 
Textual description of function 
Descriptive keyword 
Operating system 
Software format 
Archive filename 
Reference 
Author 
Medline link 

We may be able to think of more information about each software package in the database, but for the 
purposes of this example, we'll leave it at that.  

Entities can be described by both attributes and relationships to other entities. If an entry in a database 
has no attributes and no relationships, it shouldn't be considered an entity. One item in our list of facts 
about each software package definitely has attributes; each reference has an author or authors, and each 
reference has a Medline link. Therefore, references should be a separate entity in the database. So we'll 
need at least two tables:  

SoftwarePackage 
---------------- 
Software package ID 
Software package name 
Software URL 
Textual description of function 
Descriptive keyword 
Operating system 
Software format 
Archive filename 
 
Reference 
--------- 
Reference ID 
Reference name 
Reference year 
Author 
Medline link 
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We've included an "identifier" attribute in each table. Why? Imagine that there are two software 
packages named BLAST. Both do very different things. They need to be distinguished from each other 
in our database, but not by creating another table of "things named BLAST." The unique ID allows us 
to store information about two software packages named BLAST in the same table and distinguish 
them from each other.  

Ideally, we want entities to have either one-to-one relationships or one-to-many relationships with each 
other. The relationship of references to software packages is a one-to-many relationship: each software 
package can be described by many references, but each reference describes only one software package 
(see Figure 13-4). Many-to-many relationships can't be sorted out by the RDBMS software, so they 
need to be eliminated from the data model before creating a database.  

Figure 13-4. Relationship of package to reference 

 

If you're observant, you'll notice that within the Reference table, there is a many-to-many relationship 
just waiting to happen. Each author can produce many references, and each reference can have many 
authors. The presence of that many-to-many relationship indicates that Author should probably be a 
separate entity, even though we haven't chosen to store any attributes about authors in our current data 
model. So we actually need a third table:  

Reference 
--------- 
Reference ID 
Reference name 
Medline link  
 
Author 
--------- 
Author ID 
Author Name 

Even after we create a new table for the Author entity, though, the relationship between authors and 
references is still many-to-many. This can be resolved by creating a junction entity that has no purpose 
other than to resolve the many-to-many relationship between the two. The junction entity could be 
called AuthorRef, or any other arbitrary name. Its only attributes will be its unique identifier (primary 
key) and the foreign keys that establish its relationship with the other tables.  

13.5.2 Creating a Database from Your Data Model 

When you actually create your database, entities become tables. Every attribute becomes a column in 
the table, and the ID becomes the primarykey for that table. Relationships to information in other tables 
become foreign keys.  
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Before relationships are established, the four tables in our database contain the following information:  

SoftwarePackage 
---------------- 
Software package ID 
Software package name 
Software URL 
Textual description of function 
Descriptive keyword 
Operating system 
Software format 
Archive filename 
 
Reference 
---------------- 
Reference ID 
Reference name 
Reference date 
Medline link 
 
AuthorRef 
--------- 
AuthorRef ID 
 
Author 
--------- 
Author ID 
Author Name 

Each attribute is a column in the table, and each column must have a datatype. The primary keys can be 
integer values, but they can't be NULL or empty. The appropriate datatype for the primary key 
identifiers is thus INT_NOT_NULL; the rest of the fields can be defined as TEXT fields of one size or 
another.  

13.5.3 Creating Relationships Between Tables 

To store the relationships between tables in your database, you place the primary key from one table in 
a column in the other table; that column is called a foreignkey. In our example, the primary key of the 
SoftwarePackage table is also entered in a column in the Reference table, because there is one software 
package to many references. The primary key from the Reference table and the primary key from the 
Author table become foreign keys in the AuthorRef table; there are many AuthorRefs for each author, 
and many AuthorRefs for each reference.  

Once you've worked out what information your tables will contain, and what format each column will 
be in, you have what is called a physical model of your database and you are ready to create it using 
SQL CREATE statements, as we demonstrated earlier.  

13.6 Developing Web-Based Software That Interacts with Databases 

The purpose of public biological databases is to allow the biology community to share data in a 
straightforward manner. Nothing is more straightforward than the Web. Therefore, it's almost a given 
in developing a database (especially with federal funding involved) that you will eventually think about 
how to make data available on the Web. There are several technologies that allow communication 
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between web pages and databases. The oldest of these is called Common Gateway Interface (CGI) 
programming, but CGI is now being augmented by other technologies such as XML and PHP.  

The world of web-based software development is a rapidly changing one, and it's not our job to detail 
all the available technologies in this book. However, you should be aware of what these technologies 
are and roughly how they work, because every time you make a request that directs a web server to 
process some information, you are using one of them.  

If you want to set up your own web server and offer data-analysis services to other users, you need to 
use CGI scripts or web pages that incorporate XML or PHP code. After we give brief explanations of 
CGI and XML, we'll show you a couple of examples of how to use PHP commands in your web pages 
to access the example database we've just created.  

13.6.1 CGI 

A CGI program, or script, is a software application that resides on a web server. When the CGI 
program is called by a remote user of the web server, the application executes on the server and then 
passes information back to the remote user in the form of a web page, as shown in Figure 13-5. CGI 
programs are accessed using the Hypertext Transport Protocol (HTTP) just like normal HTML web 
pages. Unlike normal web pages, however, CGI scripts either live in a special directory (such as /cgi or 
/cgi-bin) within the server's web documents directory, or they have a special file extension such as .cgi. 
When the server receives an HTTP request, instead of just serving the CGI code to your browser as it 
does for a normal web page, the server executes the CGI program. CGI is a relatively mature 
technology and is supported by all the major web servers.  

CGI programs usually consist of multiple sections (see Figure 13-5). First, there may be a section of the 
program that collects user input from a web form. This is followed by the section of the program that 
takes the user input and does something with it. The CGI program may contain the complete code to do 
the input processing, but it is more likely that the program formats the input appropriately and passes it 
to a separate program that exists on the server, then collects the output from that program when the run 
is completed. The final function of the CGI program is to return the output from the process that ran on 
the server to the user in the form of a web page, which may contain either textual output or links to 
downloadable results files, or both.  

Figure 13-5. How a CGI program is executed 

 

An example of a CGI program you might use is the BLAST server at NCBI. When you select "Basic 
BLAST search" from the NCBI BLAST home page, you'll notice that the URL of the new page 
actually points to a CGI script:  

http://www.ncbi.nlm.nih.gov/blast/blast.cgi?Jform=0 
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The first part of the URL, up to the question mark, gives the directions to the CGI program. The second 
part of the URL is state information , which tells the CGI program what part of its functionality is 
needed. The state information in this particular URL is telling the BLAST CGI program to bring up an 
empty search form in which you can enter your sequence.  

Once you click the "Submit" button, a new page appears. The new page lists your request ID and 
approximately how long the request will take to process. Behind the scenes, the CGI program has 
passed your request to the actual BLAST program, which runs on NCBI's server. When BLAST 
finishes running your request, the results are written out and labeled with the request ID the server 
assigned to you. The CGI program then looks for your results under that request ID.  

After the search is run, you have the option of displaying your data. The URL still points to the BLAST 
CGI program, but the state information changes. The URL now looks like this:  

http://www.ncbi.nlm.nih.gov/blast/blast.cgi?RID=965246273-2980-7926 
&DESCRIPTIONS=100&ALIGNMENTS=50&ALIGNMENT_VIEW=0&&HTML=on&OVERVIEW=on 
&REFRESH_DELAY=22 

The state information that is being passed along in this URL tells the program which NCBI request ID 
(RID) to search for on the server and how the results should be displayed, information that you had the 
option of entering through the menus on the previous form. The new page that is displayed with this 
URL contains a listing of your BLAST results as well as links to other information at NCBI. The 
BLAST results and links were generated behind the scenes on the NCBI server and written to what 
appears to you as a normal web page (see Figure 13-6).  

Figure 13-6. Processing a BLAST request at NCBI 

 

CGI programs produce a lot of the dynamic content currently available on the Web, although other 
methods for producing dynamic content are becoming popular.  

13.6.2 XML 

The eXtensible Markup Language, better known as XML, is a data-representation scheme that has 
attracted a great deal of attention in the last few years. Like the HTML language that describes web 
pages, XML is derived from the Standard Generalized Markup Language (SGML). HTML and XML 
define tags that are used to annotate a document. Tags are surrounded by angle brackets and use the 
syntax <tag>text</tag>. HTML tags specify a web page's structure and appearance. For example, the 
text <B>this is bold</B> is rendered in boldface.  
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XML tags, on the other hand, define a document's content. For example, in the text:  

homologs of the sequence <gi>g7290345</gi> 

the GenBank ID g7290345 is unambiguously identified because it is bracketed by <gi> tags. If you 
write a program that searches a document for GenBank IDs, it's easier to find them if they're explicitly 
labeled than if you specify a GenBank ID regular expression. Thus, XML lends structure to flat file 
data such that it can be read and written in a standard way.  

The tags used in a given XML document are defined in a document type definition, or DTD. The DTD 
acts as a dictionary for the data format, specifying the elements that are present in a document and the 
values each attribute may have. The DTD can exist in its own file, or it can be part of the XML datafile 
itself. Because XML allows users to define their own tags in a DTD, it provides a rich and detailed 
description of information that would potentially end up in a glob of free text (for example, the 
REMARK fields in a PDB file). The downside of this descriptiveness is that records can rapidly become 
bloated with details, especially when representing complex data such as the results of microarray 
experiments.  

The fact that XML can mark up data in flat files in a standard and uniform way is significant for 
working with biological data, which is often stored in flat files. For example, if you want to use data in 
the ASN.1 format described earlier in this book, you need an ASN.1 parser, which reads only ASN.1 
data. By the same token, if you need to read in files in PDB format, you need a different parser for PDB 
files. However, if your data is marked up in XML, any XML parser can read the data into your 
program. Here is an example of an XML representation of PDB author data:  

<!-- Simple PDB citation DTD --> 
<!ELEMENT citation (author)+> 
<!ELEMENT author (first-name, last-name)> 
<!ELEMENT first-name (#PCDATA)> 
<!ELEMENT last-name (#PCDATA)> 
 
<!DOCTYPE pdbcite SYSTEM "pdbcite.dtd"> 
<citation> 
   <author> 
     <name>Fermi, G.</name> 
     <citation_id>primary</citation_id> 
   </author> 
   <author> 
     <name></name> 
     <citation_id></citation_id> 
   </author> 
 ... 
</citation> 

A number of XML parsers are available for the programming languages commonly used in 
bioinformatics research, including Perl, Java, Python, and C++. There are two basic types of XML 
parser: nonvalidating and validating. Nonvalidating parsers read the XML file and ensure its overall 
syntactic correctness. Validating parsers, on the other hand, can guard against missing or incorrect 
values. By comparing the XML document against its DTD, a validating parser ensures that the markup 
of the data isn't only syntactically correct but that each tag or attribute is associated with appropriate 
values.  
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13.6.2.1 XML applications 

Thanks to its flexibility and success in other domains, XML has been adopted as a data description 
language for some bioinformatics projects. XML has caught on particularly well in genome annotation: 
the Genome Annotation Markup Element (GAME-XML) DTD was developed by Suzanne Lewis and 
coworkers at the Berkeley Drosophila Genome Project to represent sequence features in genomes. 
XML is also the basis for the markup scheme proposed by Lincoln Stein, Sean Eddy, and Robin 
Dowell for the distributed annotation system, DAS. Some other example applications of XML include 
the Biopolymer Markup Language (BioML) sequence description format developed at Proteometrics, 
the Taxonomic Markup Language developed by Ronald Gilmour of the University at Albany for 
representing the topology of taxonomic trees, and the Chemical Markup Language (CML) for 
representing small molecule structures.  

Information about these and other applications of XML in bioinformatics are available at the web page 
of the Bioxml group, the XML-specific arm of the Bioperl Project (http://www.bioxml.org). Additional 
information about XML and its associated technologies are available from the WWW Consortium 
(http://www.w3c.org).  

13.6.3 PHP 

PHP is a hypertext preprocessor module for your web server that allows it to read and interpret PHP 
code embedded in web pages. PHP code resembles, but isn't identical to, familiar programming 
languages such as Perl and C.  

PHP runs on most web servers; see http://www.php.net for more information. Unlike some other 
dynamic content technologies out there (for instance, Microsoft's ASP), PHP is an open source project 
that is supported on multiple operating systems. PHP also has built-in support for interacting with 
MySQL, PostgreSQL, and Oracle databases.  

When a web page that incorporates PHP code is requested from a web server, the server processes the 
PHP instructions in the page before passing it to the client. The page source appears to the client as 
standard HTML; the PHP code remains invisible to machines beyond the web server.  

PHP commands can be interspersed with HTML code in just about any order that seems useful to the 
page designer, and the resulting HTML will appear at that point after the PHP code is processed. PHP 
also has the capacity to include external files, so you can write the code that controls the appearance of 
the web page in the main PHP file and place subroutines in separate files to be included. PHP pages are 
distinguished from standard HTML files by a .php extension.  

13.6.3.1 Accessing MySQL databases with PHP 

Accessing a MySQL database with PHP doesn't take much work. You need one line of code to connect 
to the database, another line to select which database to use, a query statement, and a statement that 
sends the data as HTML to the client's web browser. A simple example might look like this:  

<?php 
$link =@mysql_pconnect ("myhost.biotech.vt.edu","cgibas","password") or 
exit (  ); 
mysql_select_db ("resourcedb") or exit (  ); 
$result = mysql_query ("SELECT program, url, institution FROM software 
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WHERE program = "BLAST") or exit (  ); 
while ($row = mysql_fetch_row ($result)) 
{ 
    print("<br>\n"); 
    for ($i = 0; $i < mysql_num_fields ($result); $i++) 
    { 
       print ($row[$i]); 
    }  
}  
mysql_free_result ($result);         
?> 

The first line of code (< ? php) signals the start of a chunk of PHP code. The next step is to connect to 
the MySQL server with the specified name and password, or terminate the script if the connection is 
unsuccessful:  

$link =@mysql_pconnect ("myhost.biotech.vt.edu","cgibas","password") or  
exit (  ); 

Now you request the database called resourcedb: 

mysql_select_db ("resourcedb") or exit (  );  

Next, issue a MySQL query that selects values from the program, URL, and institution fields in the 
software table when the program name is equal to "BLAST":  

$result = mysql_query ("SELECT program, url, institution FROM software  
WHERE program = "BLAST") or exit (  );  

Every time a row is read from the database, you break that row down into fields and assign them to the 
$row variable, then step through each of the fields in the row and print out the value of that field:[6]  

[6] The way we've done this, it will be a rather ugly plain-text printout. Adding HTML table tags at various points in the command sequence results in much prettier 
output. 

while ($row = mysql_fetch_row ($result))  
{ 
    print("<br>\n"); 
    for ($i = 0; $i < mysql_num_fields ($result); $i++) 
    { 
       print ($row[$i]); 
    } 
} 

Finally, release the results from memory when the query is completed: 

mysql_free_result ($result); 

The last line of code (? >) terminates the PHP portion of the web page.  

13.6.3.2 Collecting information from a form with PHP 

Obviously, this code would be more useful if you substituted a variable name for the word "BLAST," 
and created a little form that would let the user input a word to be assigned to that variable name. All of 
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a sudden, instead of a little bit of PHP code that searches the database for BLAST servers, you have a 
crude search engine to find a user-specified program in the resourcedb database.  

Forms are created in PHP using PHP print statements to produce the HTML code for the form. For 
example, to produce a pair of radio buttons, the PHP code looks like this:  

print("<INPUT TYPE=\"radio\" NAME=\"type\" VALUE=\"Yes\" CHECKED>Yes\n"); 
print("<INPUT TYPE=\"radio\" NAME=\"type\" VALUE=\"No\">No\n");  

Other form features are implemented analogously. For more information about forms, collecting data 
using forms, and detailed examples of how to produce a PHP form, see the MySQL references in the 
Bibliography.  

Web database programming isn't something you can learn in a few pages, but we hope we've convinced 
you that creating a MySQL database is something that you can do if needed, and that writing the PHP 
code to access it won't be that much harder than working with HTML and Perl. Rather than showing 
the full PHP code for the MySQL database example, we'll walk you through the important things the 
PHP code will need to do.  

To interact with our example database, you want a PHP script that does several major tasks:  

1. Present a welcome page to the user. The page should allow the user the option of searching the 
database or adding a new entry to the database. Behind the scenes, that selection needs to be 
processed by the PHP script so that it subsequently presents the correct page.  

2. Present a query submission form to the user. The PHP code needs to build a useful form, then 
grab the data the user enters in the form and use it to build SQL SELECT statements.  

3. Present query results to the user. As matching records are found in the database, the program 
will have to format each one into a reasonably nice-looking piece of HTML code so that it 
displays in the user's web browser in a readable format.  

4. Present a form for adding a new entry. This assumes you have granted permissions for adding 
entries to the database to outside users and will require you to collect username and password 
information.  

5. Add the new entry to the database. This routine needs to take the information from the add form 
and actually use a SQL INSERT command to add it to the database.  
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Chapter 14. Visualization and Data Mining 

Any result in bioinformatics, whether it is a sequence alignment, a structure prediction, or an analysis 
of gene expression patterns, should answer a biological question. For this reason, it is up to the 
investigators to interpret their results in the context of a clear question, and to make those results 
accessible to their colleagues. This interpretation step is the most important part of the scientific 
process. For your results to be useful, they must be interpretable. We'll say it again: if your results can't 
be interpreted, they won't help anybody, not even you. 

In this chapter, we present computational tools that help you to make sense of your results. To this end, 
the chapter is organized so that it roughly parallels the data-analysis process. In the first part of this 
chapter, we introduce a number of programs that are used to visualize the sort of data arising from 
bioinformatics research. These programs range from general-purpose plotting and statistical packages 
for numerical data to programs dedicated to presenting sequence and structural information in an 
interpretable form. The second part of this chapter covers some tools for data mining—the process of 
finding, interpreting, and evaluating patterns in large sets of data—in the context of some 
bioinformatics applications. 

The topics covered in this chapter are basically subdisciplines of the larger area of computational 
statistics. As you have seen in previous chapters, statistical methods are important because they provide 
a check on the significance of the researcher's discoveries. The human nervous system is very good at 
finding patterns; a little too good, in fact. If you scrutinize a protein sequence for long enough, you will 
begin to see patterns, whether they're biologically significant (like part of a family signature sequence, 
such as P.YTVF in chloramphenicol acetyltransferase) or not (words or names, such as PER ) amidst 
the amino acids.[1] Thus, we use visualization to exploit the abilities of the eye and brain to find patterns 
that may be interesting. We use statistics and data mining to keep our intuition in check and to restrict 
our searches to those patterns that can be quantitatively and repeatedly shown to be significant. 

[1] When you start to see sequence motifs in words or people's names, it's time to take a break. 

14.1 Preparing Your Data 

Preparing your data (also known as preprocessing or data cleansing) is the most important part of data 
mining. It's also the least glamorous and one of the least-discussed parts. Preprocessing can be as 
simple as making sure your data is in the right format for the program that reads it, or it can involve 
extensive calculations. 

As a bioinformatics researcher, you must be especially careful of your data. Your results and reputation 
are based on data that have been provided by other researchers. Consequently, you must be scrupulous 
in collecting and using that data. The following is a list of some general questions about data integrity 
to answer when you work on a project (this list isn't exhaustive; you will probably come up with other 
things to check that are specific to the project at hand): 

• Is your data what you expect it to be? For example, DNA sequences should only contain As, Ts, 
Cs, and Gs (unless your program understands the additional IUPAC symbols). Protein 
sequences should contain only the 20 amino acids. You can use grep  to quickly check if your 
file contains lines with bad characters. 
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• Are your datafiles correctly formatted for the programs you plan to use? Be wary of more 
flexible formats. For example, some programs apply a length limit to the comment line in 
FASTA files, while other programs don't. 

• Be aware of sequence variants. Splice variants, mutations, deletions, sequencing errors, and 
inadvertent truncations of the sequence file all can result in a different sequence than you'd 
expect. It is up to you to track which differences in sequences or structures are biologically 
relevant and which are artifacts of the experimental process. 

• Unless the sequences you are working with have been given to you by a collaborator who has 
not yet deposited them in a sequence database, make sure that you can find each of your 
sequences in GenBank or another database.  

• When working with large tabular data, make sure that every field in the table has an appropriate 
value. Using a program such as XGobi is a good way to check this, since it complains if not 
every field has a value. A visualization tool such as XGobi is also useful if the values are out of 
register, since the resulting points will be outliers. 

• Does the program produce meaningful results on test data? When you use a new program, you 
should have some data for which you know the results, so you can test the program and make 
sure it gives the right answer and behaves in a reasonable fashion (these tests are sometimes 
called sanity checks). For example, if a program compares two sequences or structures, does it 
give the same result regardless of which order you pass the data to it? 

• Check for side effects produced by the programs you use. Does a program change any of its 
input? Changes can be as subtle as adding spaces between every 10 residues in a sequence file, 
normalizing numerical values, or changing the coordinate values of structural data.  

• For microarray data, have the values been normalized? If the programs you are using perform 
any kind of normalization, it is important that you determine how the normalization was 
achieved. 

• For protein structure data, are all the atom numbers and residue numbers sequential? Is the 
structure intact, or does it contain chain breaks or other anomalies? Are all residues labeled with 
the standard amino acid three-letter codes, and are all atoms labeled with the appropriate PDB 
atom codes? 

Finally, make sure you understand all the programs being used, at least as far as knowing the format 
and meaning of their input and output. 

14.2 Viewing Graphics 

If you are going to be working with images, you need some basic tools for viewing graphics files under 
Linux and Unix. There are many graphics programs available; the three that we describe next are 
commonly available, easy to use, and free. 

14.2.1 xzgv 

xzgv is a program for viewing graphics files under the X Window System. It can display the more 
popular graphics formats (GIF, PNG, JPEG), as well as a variety of others. For a simple graphics 
viewer, it has some handy features. For example, it creates thumbnails (small versions of a picture that 
preview the file) and can step through images one at a time, as a slideshow. 

14.2.2 Ghostview and gv 
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Ghostview and gv are viewers for PostScript and Portable Document Format (PDF) files. PostScript 
and PDF are page-description languages developed at Adobe Systems, Inc.[2] Both programs allow you 
to page through a document, jump to specific pages, print whole documents or selected pages, and 
perform other simple document-navigation tasks. More and more journals are distributing their articles 
electronically as PDF files, so a document viewer such as gv is very useful for keeping up with 
literature. 

[2] Adobe makes a PDF reader as well, named Acrobat Reader, which is available at no cost for Windows, Mac OS, Linux, and a handful of Unix systems. 

Because it produces more compact files and cooperates with Windows applications, PDF seems to be 
overtaking PostScript as the more common format. Many documents are still distributed over the Net in 
PostScript, including preprints (particularly those written by people who use the LaTEX document 
formatting language) and the output of some web-based services (such as the BMERC secondary 
structure prediction server). 

14.2.3 The GIMP 

The GIMP (short for "GNU Image Manipulation Program") is an image processing package with 
similar functionality and features to Adobe Photoshop. While the GIMP can open and view graphics 
files, it is probably overkill to do so. However, when it comes to reformatting or modifying graphics to 
use in a presentation or paper, having image-manipulation software on hand is invaluable. 

14.3 Sequence Data Visualization 

Tools for viewing sequence data, particularly multiple sequence alignments, were discussed in Chapter 
8. As we mentioned in that chapter, one of the best ways to rapidly summarize information from a 
sequence alignment is to use a sequence logo. In this section, we discuss a geometric approach to 
visualizing sequence relationships and introduce TEXshade, a program for creating publication-quality 
sequence alignment figures. 

14.3.1 Making Publication-Quality Alignmentswith T EXshade 

TEXshade (http://homepages.uni-tuebingen.de/beitz/tse.html) is a package for marking up sequence 
alignments written using LaTEX, a document markup language invented for mathematicians and 
computer scientists. This package is remarkably flexible, allowing you to color and label aligned 
residues according to conservation and chemical characteristics. In addition, TEXshade can incorporate 
secondary structure and accessibility information output from the DSSP program (described in Chapter 
6), as well as predictions of secondary structure generated by the PHD prediction server. Finally, 
TEXshade can automatically create "fingerprints" that provide a bird's-eye view of an alignment, in 
which columns of conserved residues are represented by vertical lines. Like sequence logos, 
fingerprints can rapidly summarize alignment data and find clusters of neighboring conserved residues. 

TEXshade is called from within a LaTEX document. If you have a sequence alignment stored in MSF 
format (the GCG multiple sequence alignment format) in the file alignment.msf, the following LaTEX 
document produces an alignment formatted according to TEXshade's defaults: 

\documentclass{report} 
\usepackage{texshade} 
\begin{document}  
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\begin{texshade}{alignment.msf} 
\end{texshade}  
 
\end{document} 

LaTEX is a document markup language similar to HTML. In the preceding code example, the output of 
which is shown in Figure 14-1, you are telling the TEX interpreter that this document has a beginning 
and an end, and that it contains only a TEXshade alignment of the sequences in alignment.msf. You 
need to mark up the resulting alignment by hand. If this sounds painful, the SDSC Biology Workbench 
provides a graphical interface to TEXshade and can automatically render TEXshade-formatted sequence 
alignments as GIF or PostScript images. 

Figure 14-1. A TEXshade alignment and its corresponding fingerprint  

 

14.3.2 Viewing Sequence Distances Geometrically 

Multiple sequence alignments and sequence logos represent similarities at every position of a group of 
aligned sequences. However, even with coloring of conserved residues, it isn't always easy to tell how 
the sequences are related. Sometimes, it's useful to look at an even higher level of abstraction to see 
how the sequences cluster. Phylogenetic trees represent one way to visualize relatedness. 

DGEOM, a set of programs by Mark J. Forster and coworkers, takes a set of aligned sequences (either 
a multiple sequence alignment in GCG's MSF format, or a set of pairwise alignments) and represents 
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them as points in a 3D space, where the distances between the points represent the evolutionary 
distances between the sequences. The points are written to a PDB file and can be viewed with your 
choice of protein structure viewers. Some may flinch at the idea of storing a representation of a 
sequence alignment in a file format intended to store structural data, but the program works well, and 
since high-quality structure visualization packages are easy to find, this approach avoids the need for a 
standalone graphics system. The programs are written in Perl and C, making them fairly easy to 
modify. 

Another implementation of the geometric approach to viewing sequence relationships is the SeqSpace 
package developed by Chris Dodge and Chris Sander at the EBI. This package includes C++ programs 
for computing the sequence distances, and it uses Java viewers to render the points in 3D. 

14.4 Networks and Pathway Visualization 

As of this writing, there is no standard package for visualizing interactions between molecules in a 
pathway or network. The most common way to represent molecular interactions schematically is in the 
form of a graph. [3] Graphs can also be useful for illustrating other data that represents interactions, 
including the output of cluster analyses and interacting residues in protein structures. Biological 
networks, such as metabolisms and signaling pathways, tend to be very densely connected, and creating 
readable, highly connected graphs isn't an easy task. Fortunately, AT&T Research distributes GraphViz 
(http://www.research.att.com/sw/tools/graphviz/), a freely available suite of programs that allow you to 
draw and edit graphs. This package has three features that make it particularly attractive: it runs 
quickly, it has excellent documentation, and it uses a flexible and intuitive syntax to describe graphs. 

[3] Here we are talking about the graph theory kind of graph, in which a set of dots (nodes) are connected by a set of lines (edges). Directed graphs are those in which 
the edge connecting two nodes has a direction. Edges in directed graphs are usually represented using arrows pointing in the direction of a connection. In an 
undirected graph, the edges have no direction. 

The GraphViz package consists of five programs: 

dot  

Draws directed graphs 

neato   

Draws undirected graphs 

dotty  

A graphical interface for editing graphs 

lefty  

A language for editing graphs and other diagrams; used to write dotty 

tcldot  

A graphical interface to dot written in the Tcl language 
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To draw a directed graph of a small set of interactions, you can type the following code into a text 
editor and save it to a file named morphopath.dot: 

digraph G { 
size="3, 3"; 
    SHH -> "Early gene expression"; 
    "FGF-4" -> "Early gene expression"; 
    SHH -> "BMP-2"; 
    "BMP-2" -> "FGF-4"; 
    "FGF-4" -> SHH; 
    "BMP-2" -> "Late gene expression"; 
    "FGF-4" -> "Late gene expression"; } 

The dot program is invoked using the following command at the shell prompt: 

% dot -Tps morphopath.dot -o morphopath.ps \end 

This command tells the dot program in the GraphViz suite to produce a PostScript image of the graph 
described by morphopath.dot and to put the image in the file morphopath.ps (see Figure 14-2). 

Figure 14-2. morphopath pathway output 

 

If you have some experience with the C programming language, you might recognize the similarity of 
the graph description format to a struck in C. This structured approach to describing the graph's layout 
makes it possible to define graphs within graphs, and also makes it straightforward to generate 
GraphViz files from Perl scripts. In addition to specifying connectivity, graphs produced by the 
GraphViz programs can be annotated with labels, different arrow types, and highlighted boxes. 

14.5 Working with Numerical Data 

Numerical data can always be fed into a spreadsheet program such as Microsoft Excel or StarOffice 
Calc and plotted using the program's built-in graphing functions. Often, this is the best way to make 
plots quickly. However, you will encounter situations in which you need more control over the plotting 
process than the spreadsheet provides. Two common examples of this kind of situation are in 
formatting your plots for publication and in dealing with high-dimensional data sets. If you do have to 
create figures from your data, we encourage you to take a look at Edward Tufte's books on visual 
explanations (see the Bibliography). They are full of examples and tips on making clean figures that 
clearly say what you mean. 
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In this section, we describe some programs that can create plots. In addition, we introduce two special-
purpose programming languages that include good facilities for visualization as well as data analysis: 
the statistics language R (and its commercial cousin, S-plus) and the numerical programming language 
Matlab (and its free counterpart, Octave). 

14.5.1 gnuplot and xgfe 

gnuplot (http://www.gnuplot.org) is one of the more widely used programs for producing plots of 
scientific data. Because of its flexibility, longevity, and open source nature, gnuplot is loaded with 
features, including scripting and facilities for including plots in documents. The dark side of this 
flexibility and longevity, though, is a fairly intimidating command syntax. Fortunately, a graphical 
interface to gnuplot called xg fe exists. xg fe is good for quickly plotting either data or a function, as 
shown in Figure 14-3. You can find out more about xg fe at 
http://home.flash.net/~dmishee/xgfe/xgfe.html. 

Figure 14-3. Output from xg fe/gnuplot 

 

If you need to exert more control over the format of the output, though, it behooves you to read through 
the gnuplot documentation and see what it can do. Additionally, if you need to aumotically generate 
many plots from data, you may want to figure out how to control gnuplot 's behavior using Perl or 
another scripting language. 

14.5.2 Grace: The Pocketknife of Data Visualization 

Grace (http://plasma-gate.weizmann.ac.il/Grace/)and its predecessor, xmgr, are alternatives to gnuplot 
as a fairly powerful tool for plotting 2D data. Grace uses a simple graphical interface under the X 
Window System, which allows a fair amount of menu-driven customization of plots. Like xg fe, Grace 
provides the fairly simple 20% functionality you need 80% of the time. In addition to its current main 
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distribution site at the Weizmann Institute of Science in Israel (which always has the latest version), 
there are a number of mirror sites from which Grace can be acquired. The home site also has a useful 
FAQ and tutorial introduction to working with Grace. 

14.5.3 Multidimensional Analysis: XGobi and XGvis 

Plotting programs such as Grace and gnuplot work well if your data has two or three variables that can 
be assigned to the plot axes. Unfortunately, most interesting data in biology has a much higher 
dimensionality. The science of investigating high-dimensional data is known as multivariate or 
multidimensional analysis. One significant problem in dealing with multidimensional data is 
visualization. For those who can't envision an 18-dimensional space, there is XGobi 
(http://www.research.att.com/areas/stat/xgobi/). XGobi and XGvis are a set of programs freely 
available from AT&T Labs. XGobi allows you to view data with many variables three dimensions at a 
time as a constellation of points you can rotate using a mouse. XGvis performs multidimensional 
scaling, the intelligent squashing of high-dimensional data into a space you can visualize (usually a 2D 
plot or a rotatable 3D plot). Figure 14-4 shows output from XGobi. 

Figure 14-4. Screenshot from XGobi 

 

XGobi has a huge number of features; here is a brief explanation to get you started. XGobi takes as 
input a text file containing columns of data. If you have a datafile named xgdemo.dat, it can be viewed 
in XGobi by typing the following command at the shell prompt: 

% xgobi xgdemo.dat & 

XGobi initially presents the points in a 2D scatterplot. Selecting Rotation from the View menu at the 
top of the window shows a moving 3D plot of the points that you can control with the mouse by 
clicking within the data points and moving the mouse. Selecting Grand Tour or Correlation Tour from 
the View menu rotates the points in an automated tour of the data space. 
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The variable widgets (the circles along the right side of the XGobi interface) represent each of the 
variables in the data. The line in each widget represents the orientation of that variable's axis in the 
plot. If the data contains more than three variables, you can select the variables to be represented by 
clicking first within the widget of the variable you want to dismiss, and then within the widget of the 
variable to be displayed. Finally, clicking on the name of the corresponding variable displays a menu of 
transformations for that axis (e.g., natural logarithms, common logs, squares, and square roots). Like 
the GraphViz graph drawing programs, XGobi and XGvis are superbly documented and easy to install 
on Linux systems if you follow the instructions on the XGobi home page. Some Linux distributions 
(such as SuSE) even include XGobi.  

14.5.4 Programming for Data Analysis 

In this section, we introduce two new programming languages that are well adapted for data analysis. 
The proposition of learning more languages after just learning Perl may seem a little perverse. Who 
would want to learn a whole language just to do data analysis? If your statistics requirements can be 
satisfied with a spreadsheet and calculator, these packages may not be for you. Also, as we saw in the 
last chapter, there are facilities for creating numerically sophisticated applications using Perl, 
particularly the PDL. 

However, many problems in bioinformatics require the use of involved numerical or statistical 
calculations. The time required to develop and debug such software is considerable, and it may not be 
worth your time to work on such code if it's used only once or twice. Fortunately, in the same way that 
Perl makes developing data-handling programs easy, data analysis languages (for lack of a better term) 
ease the prototyping and rapid development of data analysis programs. In the next sections, we 
introduce R (and its commercial cousin, S-plus), a language for doing statistics; and Matlab (and its 
free cousin, Octave), a language for doing numerical mathematics. 

14.5.4.1 R and S-plus 

R is a free implementation of the S statistics programming language developed at AT&T Bell 
Laboratories. R was developed by Ross Ihaka and Robert Gentleman at the University of Auckland. 
Both R and its commercial cousins (S-plus 3.x, 4.x, and 2000) are available for the Unix and Win32 
platforms, and both have a syntax that has been described as "not dissimilar," so we use R to refer to 
both languages. 

R is usually run within an interpreted environment. Instead of writing whole programs that are 
executed from the command line, R provides its own interactive environment in which statements can 
be run one at a time or as whole programs. To start the R environment, type in R at the command 
prompt and hit the Enter key. You should see something like this: 

R : Copyright 2000, The R Development Core Team  
Version 1.1.1  (August 15, 2000)  
 
R is free software and comes with ABSOLUTELY NO WARRANTY.  
You are welcome to redistribute it under certain conditions.  
Type    "?license" or "?licence" for distribution details.  
 
R is a collaborative project with many contributors.  
Type    "?contributors" for a list.  
 
Type    "demo(  )" for some demos, "help(  )" for on-line help, or  
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        "help.start(  )" for a HTML browser interface to help.  
Type    "q(  )" to quit R. 

The angle bracket (>) at the bottom of this screen is the R prompt, similar to the shell prompt in Unix. 
In the following examples, we write the R prompt before the things that the user (that's you) is 
supposed to type. 

Before anything else, you should know two commands. Arguably, the most important command in any 
interactive environment is the one that lets you exit back out to the operating system. In R, the 
command to quit is: 

> q(  ) 

The second most useful command is the one that provides access to R's online help system, help( ). The 
default help( ) command, with no arguments, returns an explanation of how to use help( ). If you want 
help on a specific R function, put the name of the function in the parentheses following help. So, for 
example, if you want to learn how the source( )function works, you can type: 

> help(source) 

You can also use ? as shorthand for help( ). So, instead of typing help (source) in the example, you can 
just enter ?source. 

As mentioned earlier, the R environment is interactive. If you type the following: 

> 2 + 2 

R tells you that two plus two does, in fact, equal four: 

> 2 + 2  
[1] 4 

The R response (4 ) is preceded by a bracketed number ([1] ), which indicates the position of the 
answer in the output vector. Unlike Perl, R has no scalar variables. Instead, single numbers like the 
previous answer are stored in a vector of length one. Also, note that the first element in the vector is 
numbered 1 instead of 0. [4]  

[4] Actually, R vectors do have a zero element, but it doesn't accept values assigned to it, and it returns numeric(0), which is an empty vector. 

The <- operator is used as the assignment operator. Its function is similar to the = operator in Perl. 
Typing: 

> a <- 2 + 2 

produces no output, since the result of the calculation is stored in the variable on the left side of the 
assignment operator. In order to see what value a variable contains, enter its name at the R prompt: 

> a <- 2 + 2  
> a  
[1] 4 
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Just as Perl has basic datatypes that are useful for working with text, R has datatypes that are useful for 
doing statistics. We have already seen the vector; R also has matrices, arrays (which are a 
multid imensional generalization of matrices), and factors (lists of strings that label vectors of the same 
length). 

14.5.4.2 Online resources for R 

The place to go for more information on R is the Comprehensive R Archive Network (CRAN). You 
can find the CRAN site nearest to you either by using your favorite search engine or off a link from the 
R Project home page (http://www.R-project.org). CRAN has a number of packages for specific 
statistical applications implemented in R and available as RPM files (for information on installing 
RPMs, see Chapter 3). If your project requires sampling, clustering, regression, or factor analysis, R 
can be a lifesaver. R can even be made to directly access XGobi as an output system, so that the results 
of your computations can be plotted in two or more dimensions. 

You can try R without having to install it, thanks to Rweb (http://www.math.montana.edu/Rweb/), a 
service provided by the Montana State University Mathematics Department. Rweb accepts your R 
code, runs it, and returns a page with the results of the calculation. If you want to use R for anything 
beyond simple demonstrations, though, it's faster to download the RPM files and run R on a local 
computer. 

If you find that R is useful in your work, we vigorously recommend you supplement the R tutorial, An 
Introduction to R, and the R FAQ (http://cran.r-project.org/) with the third edition of Modern Applied 
Statistics with S-Plus (see the Bibliography). Both Venables and Ripley are now part of the R 
development core team, and although their text is primarily an S-plus book, supplements are available 
from Ripley's web site (http://www.stats.ox.ac.uk/~ripley/)that make the examples in book more easily 
used under R. 

14.5.4.3 Matlab and Octave 

GNU Octave (http://www.gnu.org/software/octave/octave.html) is a freely available programming 
language whose syntax and functions are similar to Matlab, a commercial programming environment 
from The MathWorks, Inc. (http://www.mathworks.com/products/matlab/). Matlab is popular among 
engineers for quickly writing programs that perform large numbers of numerical computations. Octave 
(or Matlab) is worth a look if you want to write quick prototypes of number-crunching programs, 
particularly for data analysis or simulation. Both Octave and Matlab are available for Unix and 
Windows systems. Octave source code, binaries, and documentation are all available online; they are 
also distributed as part of an increasing number of Linux distributions. 

Octave produces graphical output using the gnuplot package mentioned previously. While this 
arrangement works well enough, it is rather spartan compared to the plotting capabilities of Matlab. In 
fact, if you are a student, we will take off our open source hats and strongly encourage you to take 
advantage of the academic pricing on Matlab; it will add years to your life. As a further incentive, a 
number of the data mining and machine learning tools discussed in the next section are available as 
Matlab packages. 

14.6 Visualization: Summary 
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This section has described solutions to data presentation problems that arise frequently in 
bioinformatics. For some of the most current work on visualization in bioinformatics, see the European 
Bioinformatics Institute's visualization information off the Projects link on their industrial relations 
page (http://industry.ebi.ac.uk). Links to more online visualization and data mining resources are 
available off the web page for this book. Table 14-1 shows the tools and techniques that are used for 
data visualization. 

Table 14-1. Data Visualization Tools and Techniques  
What you do Why you do it What you use to do it 

View graphics files To view results and check figures xzgv 

View PDF or PostScript files To read articles in electronic form gv, Adobe Acrobat 
Reader 

Manipulate graphics files  For preparation of figures The GIMP 
Plot data in two or three dimensions To summarize data for presentations  Grace, gnuplot 
Multidimensionalvisualization To explore data with more than three variables XGobi 
Multidimensional scaling To view high-dimensional data in2D or 3D XGvis 
Plot graphical structures To draw networks and pathways GraphViz programs 
Print sequence alignment clearly To format sequence alignment for publication TEXshade 

Statistics-heavy programming for data analysis For rapid prototyping of statistical data-analysis 
tools R (or S-plus) 

Numerically intensive programming for data 
analysis 

For rapid prototyping of tools that make heavy use 
of matrices 

GNU Octave (or 
Matlab) 

14.7 Data Mining and Biological Information 

One of the most exciting areas of modern biology is the application of data mining methods to 
biological databases. Many of these methods can equally well fall into the category of machine 
learning, the name used in the artificial intelligence community for the larger family of programs that 
adapt their behavior with experience. We present here a summary of some techniques that have 
appeared in recent work in bioinformatics. The list isn't comprehensive but will hopefully provide a 
starting point for learning about this growing area.  

A word of caution: anthropomorphisms have a tendency to creep into discussions of data mining and 
machine learning, but there is nothing magical about them. Programs are said to "learn" or be "trained," 
but they are always just following well-defined sets of instructions. As with any of the tools we've 
described in this book, data mining tools are supplements, rather than substitutes, for human knowledge 
and intuition. No program is smart enough to take a pile of raw data and generate interesting results, 
much less a publication-quality article ready for submission to the journal of your choice. As we've 
stressed before, the creation of a meaningful question, the experimental design, and the meaningful 
interpretation of results are your responsibility and yours alone. 

14.7.1 Problems in Data Mining and Machine Learning 

The topics addressed by data mining are ones that statisticians and applied mathematicians have 
worked on for decades. Consequently, the division between statistics and data mining is blurry at best. 
If you do work with data mining or machine learning techniques, you will want to have more than a 
passing familiarity with traditional statistical techniques. If your problem can be solved by the latest 
data-mining algorithm or a straightforward statistical calculation, you would do well to choose the 
simple calculation. By the same token, please avoid the temptation to devise your own scoring method 
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without first consulting a statistics book to see if an appropriate measure already exists. In both cases, it 
will be easier to debug and easier to explain your choice of a standard method over a nonstandard one 
to your colleagues. 

14.7.1.1 Supervised and unsupervised learning 

Machine learning methods can be broadly divided into supervised and unsupervised learning. Learning 
is said to be supervised when a learning algorithm is given a set of labeled examples from which to 
learn (the training set) and is then tested on a set of unlabeled examples (the test set). Unsupervised 
learning is performed when data is available, but the correct labels for each example aren't known. The 
objective of running the learning algorithm on the data is to find some patterns or trends that will aid in 
understanding the data. For example, the MEME program introduced in Chapter 8, performs 
unsupervised learning in order to find sequence motifs in a set of unaligned sequences. It isn't known 
ahead of time whether each sequence contains the pattern, where the pattern is, or what the pattern 
looks like. 

Cluster analysis is another kind of unsupervised learning that has received some attention in the 
analysis of microarray data. Clustering, as shown in Figure 14-5, is the procedure of classifying data 
such that similar items end up in the same class while dissimilar items don't, when the actual classes 
aren't known ahead of time. It is a standard technique for working with multidimensional data. Figure 
14-5 shows two panels with unadorned dots on the left and dots surrounded by cluster boundaries on 
the right. 

Figure 14-5. Clustering  

 

14.7.2 A Collection of Data Mining Techniques 

In this section, we describe some data mining methods commonly reported in the bioinformatics 
literature. The purpose of this section is to provide an executive summary of the complex tric ks for data 
analysis. You aren't expected to be able to implement these algorithms in your programming language 
of choice. However, if you see any of these methods used to analyze data in a paper, you should be able 
to recognize the method and, if necessary, evaluate the way in which it was applied. Like any technique 
in experimental biology, it is important to have an understanding of the machine learning methods used 
in computational biology to know whether or not they have been used appropriately and correctly. 

14.7.2.1 Decision trees 
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In its simplest form, a decision tree is a list of questions with yes or no answers, hierarchically 
arranged, that lead to a decision. For instance, to determine whether a stretch of DNA is a gene, we 
might have a tree like the one shown in Figure 14-6. 

Figure 14-6. Simple gene decision tree 

 

A tree like this one is easy to work through, since it has a finite number of possibilities at each branch, 
and any path through the tree leads to a decision. The structure of the tree and the rules at each of the 
branches are determined from the data by a learning algorithm. Techniques for learning decision trees 
were described by Leo Breiman and coworkers in the early 1980s, and were later popularized in the 
machine learning community by J. R. Quinlan, whose freely available C4.5 decision tree software and 
its commercial successor, C5, are standards in the field. 

One major advantage of decision trees over other machine learning techniques is that they produce 
models that can be interpreted by humans. This is an important feature, because a human expert can 
look at a set of rules learned by a decision tree and determine whether the learned model is plausible 
given real-world constraints.[5] In biology, tree classifiers tend to be used in pattern recognition 
problems, such as finding gene splice sites or identifying new occurrences of a protein family member. 
The MORGAN genefinder developed by Steven Salzberg and coworkers is an example of a decision 
tree approach to genefinding. 

[5] The canonical decision -tree urban legend comes from an application of trees by a long -distance telephone company that wanted to learn about churn, the process 
of losing customers to other long -distance companies. They discovered that an abnormally large number of their customers over the age of 70 were subject to churn. 
A human recognized something the program did not: humans can die of old age. So, being able to interpret your results can be useful. 

14.7.2.2 Neural networks 

Neural networks are statistical models used in pattern recognition and classification. Originally 
developed in the 1940s as a mathematical model of memory, neural networks are sometimes also called 
connectionist models because of their representation as nodes (which are usually variables) connected 
by weighted functions. Figure 14-7 shows the process by which a neural network is constructed. Please 
note, though, that there is nothing particularly "neural" about these models, nor are there actually 
physical nodes and connections involved. The idea behind neural networks is that, by working in 
concert, these simple processing elements can perform more complex computations. 
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Figure 14-7. Neural network diagram 

 

A neural network is composed of a set of nodes that are connected in a defined topology, where each 
node has input and output connections to other nodes. In general, a neural network will receive an input 
pattern (for example, an amino acid sequence whose secondary structure is to be predicted), which sets 
the values of the nodes on the first layer (the input layer). These values are propagated according to 
transfer functions (the connections) to the next layer of nodes, which propagate their values to the next 
layer, until the output layer is reached. The pattern of activation of the output layer is the output of the 
network. Neural networks are used extensively in bioinformatics problems; examples include the PHD 
(http://www.embl-heidelberg.de/predictprotein/predictprotein.html) and PSIPRED 
(http://insulin.brunel.ac.uk/psipred/) secondary structure predictors described in Chapter 9, and the 
GRAIL genefinder (http://compbio.ornl.gov/grailexp/) mentioned in Chapter 7. 

14.7.2.3 Genetic algorithms 

Genetic algorithms are optimization algorithms. They search a large number of possible solutions for 
the best one, where "best" is determined by a cost function or fitness function . Like neural networks, 
these models were inspired by biological ideas (in this case, population genetics), but there is nothing 
inherently biological about them. In a genetic algorithm, a number of candidate solutions are generated 
at random. These candidate solutions are encoded as chromosomes. Parts of each chromosome are then 
exchanged à la homologous recombination between real chromosomes. The resulting recombined 
strategies are then evaluated according to the fitness function, and the highest scoring chromosomes are 
propagated to the next generation. This recombination and propagation loop continues until a suitably 
good solution is found. Genetic algorithms are frequently used in molecular simulations, such as 
docking and folding of proteins. 

14.7.2.4 Support vector machines 

In late 1998, a machine learning tool called the support vector machine (SVM) began to attract a great 
deal of attention in bioinformatics. Support vector machines were developed by Vladimir Vapnik of 
Bell Laboratories, an early pioneer of machine learning methods. They have been applied to a wide 
range of problems, from optical character recognition to financial time series analysis and recognizing 
spam (the email variety, not the lunch meat). SVMs were first applied to biological problems by 
Tommi Jaakola (now at MIT), David Haussler, and coworkers at UC Santa Cruz, who used them for 
protein sequence classification. They have since been applied to many of the standard computational 
biology challenge problems (function prediction, structure prediction, and genefinding) but have gained 
the most attention for their use in microarray analysis. 

Support vector machines are supervised classifiers that try to find a linear separation between different 
classes of points in a high-dimensional space. In a 2D space, this separator is a line; in 3D, it's a plane. 
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In general, this separating surface is called a hyperplane. Support vector machines have two special 
features. First, instead of just finding any separating hyperplane, they are guaranteed to find the optimal 
one, or the one whose placement yields the largest separation between the two classes. The data points 
nearest the frontier between the two classes are called the support vectors.[6] Second, although SVMs 
are linear classifiers, they can classify nonlinearly separable sets of points by transforming the original 
data points into a higher dimensional space in which they can be separated by a linear surface. 

[6] Vectors, in this case, refer to the coordinates of t he data points. For example, on a 2D map, you might have pairs of (x,y) coordinates representing the location of 
the data points. These ordered pairs are the vectors. 

Table 14-2 shows some of the most popular data-mining tools and techniques. 

Table 14-2. Data Mining Tools and Techniques  
What you do Why you do it What you use to do it 

Clustering To find similar items when a classification scheme isn't 
known ahead of time Clustering algorithms, self-organizing maps 

Classification To label each piece of data according to a classification 
scheme Decision trees, neural networks, SVMs 

Regression To extrapolate a trend from a few examples Regression algorithms, neural networks, 
SVMs, decision trees 

Combining 
estimators To improve reliability of prediction Voting methods, mixture methods 
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Running Linux.  M. Welsh and L. Kaufman. O'Reilly & Associates. A relatively comprehensive how-to 
guide for setting up a Linux system.  

Unix for the Impatient. P. Abrahams and B. Larson. Addison Wesley. A detailed yet user-friendly 
presentation of everything a Unix user needs to know. (My first and still favorite Unix guide. CJG)  

Unix in a Nutshell. A. Robbins. O'Reilly & Associates. A no-nonsense quick-reference guide to Unix 
commands.  

Biblio.2 SysAdmin 

Essential System Administration. A. Frisch. O'Reilly & Associates. A detailed guide to administration 
of Unix systems.  

Using csh & tcsh. P. DuBois. O'Reilly & Associates. A detailed guide to using two of the most 
common shell environments.  

Biblio.3 Perl 

Elements of Programming in Perl. A. L. Johnson. Manning Publications. Good introduction to Perl as a 
first programming language  

Learning Perl. R. Schwartz and T. Christiansen. O'Reilly & Associates. Introduction to Perl but 
assumes prior experience with another programming language.  

For a more detailed, biology-oriented Perl tutorial, we recommend the one available online at Lincoln 
Stein's laboratory page at Cold Spring Harbor Labs, http://stein.cshl.org.  

Mastering Algorithms in Perl. J. Orwant, J. Hietaniemi, and J. Macdonald. O'Reilly & Associates. Both 
this book and the next cover interesting things that can be done with Perl.  

Perl Cookbook. T. Christiansen and N. Torkington. O'Reilly & Associates.  

Programming Perl. L. Wall, T. Christiansen, and J. Orwant. O'Reilly & Associates. The bible of Perl.  
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Biblio.4 General Reference 

Finding Out About: Search Engine Technology from a Cognitive Perspective. R. Belew. Cambridge 
University Press. A fascinating discussion of information retrieval and the process of web-based 
research from a cognitive science perspective. Both practical and philosophical aspects are covered.  

All three of the following books cover general programming techniques: 

Code Complete.  S. McConnell. Microsoft Press. 

The Practice of Programming. B. W. Kernighan and R. Pike. Addison Wesley  

Programming Pearls. J. Bentley. Addison Wesley 

Biblio.5 Bioinformatics Reference 

Bioinformatics: A Machine Learning Approach. P. Baldi and S. Brunak. MIT Press. The authors have 
firsthand experience with applying neural networks and hidden Markov models to sequence analysis, 
including genefinding, DNA feature detection, and protein family modeling.  

Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. A. D. Baxevanis and B. F. F. 
Ouellette. John Wiley & Sons. A gentle introduction to biological information and bioinformatics tools 
on the Web, focused on NCBI tools.  

Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. R. Durbin, S. Eddy, 
A. Krogh, and G. Mitchison. Cambridge University Press. A rigorous presentation of the statistical and 
algorithmic basis of sequence analysis methods, including pairwise and multiple sequence analysis, 
motif discovery, and phylogenetic analysis.  

Molecular Systematics. D. M. Hillis, C. Moritz, and B. K. Mable, Eds. Sinauer and Associates. 
Although the first two -thirds of the book are devoted to experimental methods, the chapters on the 
methods for inferring and applying phylogenies provide a rigorous and comprehensive follow-up to the 
Graur and Li book.  

Biblio.6 Molecular Biology/Biology Reference 

Fundamentals of Molecular Evolution. D. Graur, W-H. Li. Sinauer and Associates. A readable 
explanation of the mechanisms by which genomes change over time, with a discussion of phylogenetic 
inference based on molecular data.  

Molecular Systematics. D. M. Hillis, C. Moritz, and B. K. Mable, eds. Sinauer and Associates. 
Although the first two -thirds of the book are devoted to experimental methods, the chapters on the 
methods for inferring and applying phylogenies provide a rigorous and comprehensive follow-up to the 
Graur and Li book.  

Biblio.7 Protein Structure and Biophysics 
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Intermolecular and Surface Forces.  J. Israelachvili. Academic Press. A must-have book for any serious 
student of macromolecular structure and molecular biophysics. This book details the physical 
chemistry of interactions among molecules and between molecules and surfaces.  

Introduction to Protein Structure. C-I. Branden and J. Tooze. Garland Publishing. An illustrated guide 
to the basic principles of protein structure and modeling.  

Biblio.8 Genomics 

Genomes. T. A. Brown. Wiley-Liss. A thorough presentation of molecular genetics from the genomics 
perspective.  

Genomics: The Science and Technology Behind the Human Genome Project. C. R. Cantor and C. L. 
Smith. John Wiley & Sons. If you want to understand, in detail, how genomic sequence data is 
obtained, this is the book to have. It exhaustively details experimental protocols for sequencing and 
mapping and explores the future of sequencing technology.  

Biblio.9 Biotechnology 

DNA Microarrays: A Practical Approach. M. Schena, ed. Oxford University Press. An introduction to 
the basics of DNA microarray technology and its applications.  

Proteome Research: New Frontiers in Functional Genomics.  M. R. Wilkins, K. L. Williams, R. D. 
Appel, and D. F. Hochstrasser, eds. Springer. An introduction to new techniques for protein 
identification and analysis, from 2D-PAGE to MALDI-TOF and beyond.  

Biblio.10 Databases 

CGI Programming with Perl. S. Guelich, S. Gundavaram, and G. Birznieks. O'Reilly & Associates. An 
introduction to the CGI protocol for generating active-content web pages. If you are interested in web 
software development, this book is an essential starting point.  

Joe Celko's Data and Databases: Concepts in Practice.  J. Celko. Morgan Kaufman. A good 
introduction to relational database concepts and the use of SQL.  

MySQL. P. DuBois. New Riders. A detailed guide to using MySQL. Detailed coverage of 
administration and security issues.  

MySQL & mSQL. R. J. Yarger, G. Reese, and T. King. O'Reilly & Associates. An introduction to using 
MySQL and mSQL; also contains an introduction to RDB concepts and database normalization. 
O'Reilly also publishes a collection of reference books about Oracle, if you prefer to start using Oracle 
from the beginning.  

Biblio.11 Visualization 

Understanding Robust and Exploratory Data Analysis. D. C. Hoaglin, et al. eds. John Wiley & Sons. A 
classic book on visualization techniques. Don't be put off by the fact that the focus of the book is on 
techniques for doing analysis by hand rather than the latest computational tricks: the methods described 
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are implemented in many visualization packages and are easily applicable to the latest bioinformatics 
problems.  

The Visual Display of Quantitative Information, Envisioning Information, and Visual Explanations. E 
Tufte. Graphics Press. In each book, Tufte illustrates good and bad practices in visual data analysis 
using examples from newspapers, advertising campaigns, and train schedules (to name a few).  

The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics. W. Schroeder, K. Martin, 
and B. Lorensen. Prentice Hall Computer Books. For those readers who want a more active role in 
designing visualization tools, this book combines introductions to computer graphics and visualization 
practices with a description of a working implementation of a complete visualization system, the 
Visualization Toolkit (VTK). VTK is an object-oriented, scriptable framework for building 
visualization tools. It is available from http://www.kitware.com.  

Biblio.12 Data Mining 

Data Mining: Practical Machine Learning. I. Witten and E. Frank. Morgan Kaufman. A clearly written 
introduction to data mining methods. It comes with documentation for the authors' WEKA program 
suite, a set of data mining tools written in Java that can be freely downloaded from their web site.  

Data Preparation for Data Mining. D. Pyle. Morgan Kaufman. For readers looking for more insight 
into the data-preparation process.  

Machine Learning. T. Mitchell. McGraw-Hill. Provides a complementary treatment of the same 
methods as the previous book and is more formal but no less practical.  

Modern Applied Statistics with S-Plus. Brian D. Ripley and William N. Venables. Springer Verlag.  

Numerical Recipes in C. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 
Cambridge University Press. A comprehensive introduction to the techniques that underlie all 
nontrivial methods for data analysis. Combines mathematical explanations with efficient C 
implementations. In addition to the hardcopy form, the entire book and all its source code are available 
online at no charge from http://www.nr.com.  
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Colophon 

Our look is the result of reader comments, our own experimentation, and feedback from distribution 
channels. Distinctive covers complement our distinctive approach to technical topics, breathing 
personality and life into potentially dry subjects. 

The animal on the cover of Developing Bioinformatics Computer Skills is Caenorhabditis elegans, a 
small nematode worm. Unlike many of its nastier parasitic cousins, C. elegans lives in the soil where it 
feeds on microbes and bacteria. It grows to about 1 mm in length.  

In spite of its status as a "primitive" organism, C. elegans shares with H. sapiens many essential 
biological characteristics. C. elegans begins life as a single cell that divides and grows to form a 
multicellular adult. It has a nervous system and a brain (more properly known as the circumpharyngeal 
ring) and a muscular system that supports locomotion. It exhibits behavior and is capable of 
rudimentary learning. Like humans, it comes in two sexes, but in C. elegans those sexes consist of a 
male and a self-fertilizing hermaphrodite. C. elegans is easily grown in large numbers in the laboratory, 
has a short (2-3 week) lifespan, and can be manipulated in sophisticated experiments. These 
characteristics make it an ideal organism for scientific research. 

The C. elegans hermaphrodite has 959 cells, 300 of which are neurons, and 81 of which are muscle 
cells. The entire cell lineage has been traced through development. The adult has a number of sensory 
organs in the head region which respond to taste, smell, touch, and temperature. Although it has no 
eyes, it does react slightly to light. C. elegans has approximately 17,800 distinct genes, and its genome 
has been completely sequenced. Along with the fruit fly, the mouse, and the weed Arabidopsis, C. 
elegans has become one of the most studied model organisms in biology since Sydney Brenner first 
focused his attention on it decades ago. 
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