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Summary

We explore simultaneous modeling of several covariance matrices across groups using the
spectral (eigenvalue) decomposition and modified Cholesky decomposition. We introduce
several models for covariance matrices under different assumptions about the mean struc-
ture. We consider ’dependence’ matrices, which tend to have many parameters, as constant
across groups and/or parsimoniously modeled via a regression formulation. For ’variances’,
we consider both unrestricted across groups and more parsimoniously modeled via log-linear
models. In all these models, we explore the propriety of the posterior when improper priors
are used on the mean and ’variance’ parameters (and in some cases, on components of the
’dependence’ matrices). The models examined include several common Bayesian regression
models, whose propriety has not been previously explored, as special cases. We propose
a simple approach to weaken the assumption of constant dependence matrices in an auto-
mated fashion and describe how to compute Bayes Factors to test the hypothesis of constant
’dependence’ across groups. The models are applied to data from two longitudinal clinical
studies.

Key Words: Cholesky decomposition; Spectral decomposition; Variance-Correlation
decomposition; Markov Chain Monte Carlo; Bayes Factor; Improper
priors

1 Introduction

Consider the setting of modeling multivariate responses across several groups. Let Yij be a

p−dimensional response vector for each of j = 1, . . . , ni individuals in i = 1, . . . , C groups.

Now, consider the following normal model,
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Yij ∼ N(µij,Σi), (1)

where µij = µi or µij = Xijα with Xij a p× q covariate design matrix and α a q × 1 vector

of regression parameters. Pourahmadi, Daniels, and Park [26] discuss modeling covariance

matrices across groups using several parameterizations of the matrix, Σi and likelihood

methods. They also detail many settings where such models are useful including model-

based clustering [2], analysis of financial data [5], quality control [18], and longitudinal

clinical trials (studies). We will illustrate the latter application in this paper.

Simultaneous modeling of covariance matrices across groups has been addressed by nu-

merous authors. Flury considers a spectral decomposition [14, 15, 16] and allows ’common-

ality’ of the eigenvectors (and variations) across groups, while the eigenvalues are allowed to

differ. Boik [4] generalized some of this work allowing finer models for the eigenvectors and

structured models for the eigenvalues. Manly and Rayner [21], using a variance/correlation

decomposition of the covariance matrix, develop a hierarchy of models for covariance ma-

trices across groups, including proportional covariance matrices and a common correlation

matrix across the groups. Barnard, McCulloch, and Meng [3] generalize Manly and Rayner’s

approach by modeling the variance using log-linear regressions and hierarchical priors in a

Bayesian setting.

In this paper, we will examine Bayesian formulations of some of the models in Pourah-

madi et al. [26] for the spectral decomposition and the generalized autoregressive pa-

rameter/innovation variance (GARP/IV) decomposition (also, sometimes called Modified

Choleski) which have not been given a full examination. In addition, we consider several

extensions of these models which can be formulated and dealt with easily in the Bayesian

framework.

We will quickly review some features of these two parameterizations/decompositions. The

spectral decomposition of a matrix Σc is given by Σc = PcΛcP
′
c, where Pc is an orthogonal
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matrix of eigenvectors and Λc is a diagonal matrix of eigenvalues. In the case of distinct

eigenvalues, Pc can be expressed as Pc = Gc,12Gc,13Gc,23 · · ·Gc,p−1,p where Gc,ij is a p × p

matrix with cos(θc,tl) in the tth and lth diagonal elements, ±sin(θc,tl) in the (t,l)th and (l,t)th

elements, zeros on the rest of the off-diagonal elements and 1’s on the rest of the diagonal.

These p(p−1)/2 angles, θc,tl, are called Givens angles [23, 10] and clearly represent rotations

in the planes spanned by tth and lth component of the response vector Y . These can be

useful for developing parsimonious models for Pc across groups as θc,tl are only restricted

to lie in the interval (−π/2, π/2) for uniqueness and positive definiteness of Σc. We also

consider the GARP/IV decomposition, Σ−1
c = TcD

−1
c T ′

c, where Dc is a diagonal matrix of

(innovation) variances (IV) and Tc is a lower triangular matrix with a unit diagonal and

regression coefficients (GARP) below the diagonal, −φc,tl, l = 1, . . . , t − 1, t = 2, . . . , p.

These parameters are the negative of the regression coefficients in the following conditional

means, E[Yijk|Yij1, . . . , Yijk−1] = µijk +
∑k−1

l=1 φi,kl(yijl − µijl). The innovation variances are

given by the conditional variances, V ar[Yijk|Yij1, . . . , Yijk−1] = σ2
ik.

Under these two decompositions, we will consider several models which allow specific com-

ponents to be shared across groups and/or modeled with group-specific covariates. Under

sensible (improper) priors, we will then examine the propriety of the posterior distribution.

The models we examine contain as special cases Bayesian regression models with indepen-

dent, heterogeneous errors, including having the error variances depend on covariates [31]

and regression models with correlated errors. We will show that these models allow the use of

improper priors on both regression coefficients and ’variance components’ under reasonable

conditions.

We remind the reader that in all of the following, we assume the p×1 vector of responses

follow a multivariate normal distribution, as given in (1). In addition, the models based on a

GARP/IV decomposition of Σc make the most sense when the components of Yij are ordered

(as in longitudinal data) and the Givens angles decomposition of the orthogonal matrix Pc
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is only unique if the p eigenvalues are distinct.

The outline of the paper follows. Section 2 will examine the posterior distribution when

using improper priors under various assumptions about the mean and covariance matrix

across groups for the model given in (1). Sections 3 and 4 propose some extensions of these

models by shrinking components towards commonality using hierarchical priors. This avoids,

to some extent, searching through a large space of models which correspond to individual

components of the covariance matrix being shared or not shared across (a subset of) the

groups [26]. In section 5, we present two examples of these models in longitudinal clinical

trials/studies. Section 6 proposes some additional extensions for models on the ’variances’.

We conclude and discuss open problems in Section 7.

2 Bayesian analogues

Among other models proposed in [26] were models that assumed common principal compo-

nents, often abbreviated as CPC (Pc = P for c = 1, . . . , C), common GARP (Tc = T or

equivalently, φc,tj = φtj for c = 1, . . . , C), or common correlation (Rc = R, for c = 1, . . . , C),

while allowing the ’variance’ parameters, i.e., the eigenvalues, innovation variances, and

marginal variances respectively, to vary across groups. We first explore some Bayesian ana-

logues of these models. Simple ’default’ priors for such models would be to place priors on

the mean regression coefficients and (innovation) variances of the form p(α, σ2; a) ∝ 1
(σ2)a

or on the mean regression coefficients and eigenvalues, p(α, λ; a) ∝ 1
(λ)a [with the additional

constraint that orders the eigenvalues]. Ignorance on the matrices P/T might be expressed

as uniform priors over the appropriate space, i.e., for P , uniform on the (bounded) space

of orthogonal matrices; for T , p(φtj) ∝ 1 (recall, these are unconstrained regression coef-

ficients). Similar priors have been specified for correlation matrices (R) [3]; they assume

p(R) ∝ 1, i.e., a uniform prior on the compact subspace of the p(p− 1)/2 dimensional cubic

[−1, 1]p(p−1)/2 such that R is positive definite. In addition, the reference prior derived in Yang
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and Berger [33] implies a uniform prior on P and flat improper priors on the logarithm of

the eigenvalues, i.e., p(λ) ∝ 1
λ
. In Daniels [8], a flat prior distribution on the φtj is proposed.

A recent paper by Sun and Ni [30] chose a constant prior on the (auto)-regressive coefficients

in VAR models (equivalent to GARP here) and showed this prior to have good frequentist

properties. The literature supports the use of these improper priors for these models and

they are the typical default choices when no prior information is available.

We consider some extensions by including (structural or group specific) covariates in

the covariance matrix (for details on structural covariates, see [24]). In particular, for the

’variances’, log(σ2
ik) = Gikη, for i = 1, . . . , C and k = 1, . . . , p (for the spectral decomposition,

replace σ2
ik with λik) with p(η) ∝ 1. We consider similar models for the ’dependence’,

specifically, the GARP, φi,tj = Gi,tjγ, for i = 1, . . . , C, t = 2, . . . , p and j = 1, . . . , t− 1 with

p(γ) ∝ 1 (cf. [25]).

With the specification of improper priors on the regression parameters and variance

’components’, the posterior needs to be checked to determine whether it is a proper density.

In the following, we present a theorem which gives sufficient conditions for the propriety

of the posterior. Note that the models considered contain as special cases linear regression

models with correlated and/or heterogeneous errors (that can depend on covariates). Thus,

the propriety results will also hold for these models.

In the following, we provide conditions under which the posterior is proper for the

below-specified structures for the mean, variance, and dependence under two decomposi-

tions/parameterizations of Σi, spectral and GARP/IV, which we will denote as P.I and P.II,

respectively.

• mean

M.I. E[Yij] = µi

M.II. E[Yij] = Xijα

• variance

V.I. λik under P.I; σ2
ik under P.II
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V.II. log(λik) = Gikη under P.I; log(σ2
ik) = Gikη under P.II

• dependence (P/T )

D.I. common across group, Pi = P i = 1, . . . , C under P.I; Ti = T , i = 1, . . . , C under
P.II

D.II. general, φi,tj = Gi,tjγ (only for P.II)

Theorem I: The posterior distribution of (Σi, µij) for model (1), under each of the

mean/variance/dependence assumptions given above and under the priors as described in

this Section, will be proper under the following (sufficient) conditions.

• M.I/V.I: (ni − 1)/2 + a > 0 for all i.

– D.I (under P.I): Si =
∑

j(yij − ȳi)(yij − ȳi)
T is positive definite for all i

– D.I (under P.II): Using the first approach discussed in the appendix, we need
ni > p − 1 for at least one i, say i′, and

∑

i6=i′ ni > p − 1; also, ni−p
2

+ a > 0 for

at least one i and ni−1
2

+ a > 0 for the remaining i. Under the second approach
∑

i ni > p− 1 and ni−p
2

+ a > 0 for all i.

– D.II (under P.II): ni−1−dim(γ)
2

+ a > 0 for all i;
∑

i Z
T
ijZij (Zij is defined in (13)) is

positive definite.

• M.II/V.I: (ni − q)/2 + a > 0 for all i;
∑

i

∑

j X
T
ijXij is positive definite

– D.I (under P.I): Si =
∑

j(yij −Xijα̂)(yij −Xijα̂)T is positive definite for all i (α̂

is the generalized least squares estimator).

– D.I (under P.II): same as M.I. except ni−p−(q−1)
2

+ a > 0 for at least one i, and
ni−q

2
+ a > 0 for the remaining i for the first approach and ni−p−(q−1)

2
+ a > 0 for

all i for the second approach.

– D.II (under P.II): ni−q−dim(γ)
2

+ a > 0 for all i;
∑

i Z
T
ijZij (Zij is defined in (13)) is

positive definite.

• V.II: in addition to relevant conditions above for M.* and D.*,
∑

i

∑

k G
T
ikGik is positive

definite and ni−1
2

+ 1 > 0 for a subset of i (for details, see the appendix).

This theorem implies that improper priors on the ’regression’ parameters and variances lead

to proper posteriors under the conditions specified above; in fact, most of these conditions are

quite intuitive. Details of the proof can be found in the appendix. The models considered

in Theorem I include the following heterogeneous variance regression model [31], Yij ∼

N(Xijα, σ
2
i I) where log(σ2

i ) = Giη with improper priors on α and η as a special case. Thus,

the Theorem also provides conditions for a proper posterior for this model.
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3 Bayesian extensions

In the previous section, we gave conditions on prior distributions and the data in these co-

variance models to ensure the posterior is proper. As a next step, we will extend these models

in several ways. Specifically, we will append to these models a prior on the ’dependence’

parameters, which shrinks the ’dependence’ matrices, Pc/Tc for group c, toward a common

matrix. Such an approach will offer robustness to assuming equality across groups, but

still borrow strength from a ’common matrix’, which is important when some groups have

small sample sizes. In addition, this can be viewed as an alternative to searching through a

large class of models composed of only a subset of parameters being common across groups.

This approach to parsimoniously model dependence is similar to the approach of hierarchical

modeling often used on means. For each approach, we discuss a ’simple to compute’ test for

equality of the dependence matrices across groups.

3.1 Shrinking toward constant ’dependence’ (P/T)

Within the Bayesian framework, it is natural to offer a compromise between common P/T

and having them differ by group. We propose a hierarchical prior that shrinks the group-

specific P/T to a common matrix. Consider the T matrix of GARP parameters, φ. We

specify independent priors for these parameters of the form,

φi,tj ∼ N(φtj, τ
2), i = 1, . . . , C. (2)

These priors shrink the group-specific GARP parameters toward a common value, φtj.

Clearly, the degenerate case, τ 2 = 0, corresponds to common GARP. This approach provides

some weakening of the common GARP assumption, but still shrinks (or borrows strength)

from a common set of GARP parameters. Similar (in spirit) priors for the single group case

have been proposed in Daniels and Pourahmadi [12].
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The orthogonal matrix, P can be decomposed into Givens angles [10, 23] which all lie in

(−π/2, π/2). Using a logit transformation of these parameters (h(a) = log(π/2−a)
log(π/2+a)

), we now

have a set of unconstrained parameters that can be modeled similarly to GARP using a

normal prior,

h(θi,tj) ∼ N(h(θtj), τ
2), i = 1, . . . , C. (3)

Daniels and Kass [10] considered a variation of this prior in the single group case, but set

θtj = 0 (independence). We could develop similar priors for an appropriate transformation

of the correlations as in Daniels and Kass [11]. However, these are highly constrained for

the matrix to be positive definite so we will not discuss such priors here.

For both the GARP and Givens angle shrinkage priors, we place an improper flat prior

on φtj and h(θtj) respectively. Details on the priors for τ 2 are left for the next section.

Computations in the GARP case are straightforward [12] while they are more difficult

for the Givens angles [10]. We provide details in Section 4.3.

3.2 Testing constant ’dependence’ (P/T)

Given the models proposed in Section 3.1, either (2) or (3), the hypothesis of constancy of

P/T across groups, e.g., H0 : P1 = P2 · · · = PC , is equivalent to H0 : τ 2 = 0. A Bayes factor,

B, for testing this hypothesis has the following form:

B =

∫ ∫
∏

i

∏

j p(yij|α,Σi)p(Σi|τ
2 = 0)p(α)dΣidα

∫ ∫ ∫
∏

i

∏

j p(yij|α,Σi)p(Σi|τ 2)p(τ 2)p(α)dΣidτ 2dα
. (4)

It turns out this can be computed with little difficulty by using the Savage-Dickey density

ratio [13, 32]. In the next section, we will review this result and show that the required

condition is satisfied for our prior specification.
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3.2.1 Savage-Dickey Density Ratio

Consider a model with parameters (ω, ψ) and the following hypothesis test:

H0 : ω = ω0

Ha : ω 6= ω0

where the prior under Ha is p(ω, ψ) and under H0, po(ψ). The Bayes factor, B for comparing

these hypotheses is

B =

∫

L(ω0, ψ)po(ψ)dψ
∫ ∫

L(ω, ψ)p(ω, ψ)dωdψ
.

where L(·) is the likelihood. Dickey [13] showed that if p(ψ|ω0) = p0(ψ), then

B =
p(ω0|y)

p(ω0)
. (5)

Verdinelli and Wasserman [32] coined (5) the ’Savage-Dickey density ratio’. In our models,

ω = τ 2, ω0 = 0 and ψ = (θi, θ, α, λ) (or ψ = (φi, φ, α, σ
2)). We specify the joint prior for

ψ and τ 2 as p(ψ, τ 2) = p(ψ)p(τ 2), where the prior on ψ is as specified in Section 2 and 3.1.

The prior on τ 2, p(τ 2), is assumed to take the form c
(c+τ2)2

, which gives positive probability

to the common matrix case and has been shown to have good operating characteristics [7].

This specification satisfies the condition given by Dickey. We will evaluate the sensitivity of

the Bayes factor to the constant c, the prior median, in the example.

So, the Bayes factor for testing H0 : τ 2 = 0 vs. Ha : τ 2 6= 0 can be written as

BF (H0 : Ha) =
pτ2(0|y)

pτ2(0)

where pτ2(·|y) is the marginal posterior distribution for τ 2 and pτ2(·) is the marginal prior dis-

tribution. To compute this ratio, we only need to estimate the ordinate of a one-dimensional

9



posterior, pτ2(0|y), from the posterior sample. We use standard density estimation techniques

to evaluate this ordinate [27].

An alternative to the Bayes Factor here, would be to compute P (τ 2 > a|y) for some

constant a. a would be chosen as the smallest value corresponding to a ’practically non-zero’

value of τ 2.

4 A more flexible shrinkage paradigm

As discussed in the introduction, searching through all models in terms of commonality of

the φ or θ across the groups can be burdensome. We propose an extension of the shrinkage

methods of the previous section that allows more flexibility. We will illustrate the following

with the GARP parameters, though it will follow identically for the logit of the Givens

angles. Consider the model

φi,tj ∼ N(φtj, τ
2
tj), i = 1, . . . , C. (6)

In (6), we have generalized (2) by allowing a separate shrinkage parameter for each φtj.

This allows each parameter to be shrunk individually. However, there may not be much

information to estimate these variance components individually, especially if C is small. So,

we now place a shrinkage prior on the τ 2
tj as follows

1/τ 2
tj ∼ Gamma(δ/τ 2, δ). (7)

Now, we borrow strength on these shrinkage parameters across the p(p − 1)/2 GARPs. A

more parsimonious formulation of (6) and (7), which would be more practical and feasible

for smaller C, and is natural in the case of GARP parameterization, would be to replace the

separate τ 2
tj for each φtj to one for each set of GARP, i.e., a τ 2

t . This indicates a separate

shrinkage parameter for each set of regression coefficients for the regression of yijk on its
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predecessors, yij1, . . . , yijk−1. We point out that there is not a similar such grouping of

Givens angles.

4.1 Bayes Factor

We can again use a Bayes Factor to test for commonality of GARP (Givens angles). First,

we determine what values of δ and τ 2 correspond to the null hypothesis of common matrices,

i.e., H0 : T1 = · · · = TC . From (7), E[1/τ 2
tj] = 1

τ2 and V ar[1/τ 2
tj] = 1

δ
1
τ2 . So as 1/δ → 0,

this prior is degenerate at 1/τ 2. In addition, as τ 2 → 0, E[1/τ 2
tj] → ∞. Thus, the null

hypothesis of common GARP here would correspond to H0 : {τ 2 = 0 and 1/δ = 0}. Similar

to the single τ 2 model in Section 3, we place uniform shrinkage priors on these parameters,

specifically, τ 2 and 1/δ, with the constant c chosen to represent a prior guess at the value of

each of the parameters. The Bayes factor for testing common GARP (Givens) will take the

form:

B =

∫ ∫
∏

i

∏

j p(yij|α,Σi)p(Σi|τ
2 = 0, 1/δ = 0)p(α)dΣidα

∫ ∫ ∫ ∫
∏

i

∏

j p(yij|α,Σi)p(Σi|τ 2, δ)p(τ 2)p(δ)p(α)dΣidτ 2dδdα
. (8)

We can compute a BF using a modification of the approach in Section 3.2. Here, we would

need to compute pτ2,1/δ(0, 0|y). As it is difficult to estimate multi-dimensional densities non-

parametrically, we will factor the joint density into a marginal and conditional distribution.

Thus, the Bayes factor will be able to be computed by just dealing with two one-dimensional

estimation problems; this is similar in spirit to Chib’s approach for computing Bayes factors

based on marginal distributions [6]. The details follow. First, using univariate density

estimation techniques, we estimate p1/δ(0|y) by running a Gibbs sampler on the full model.

We then do a second run of the Gibbs sampler conditional on 1/δ = 0. This corresponds

to the prior on 1/τ 2
tj being degenerate at 1/τ 2. Thus, we are re-running the Gibbs sampler

under the model/prior in (2) or (3). From this sample, we estimate pτ2(0|1/δ = 0, y). We

can then multiply these together to estimate pτ2,1/δ(0, 0|y). We also point out that the Bayes
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factor for comparing (2) and (6)-(7), given by p1/δ(0|y)/p1/δ(0), which is computed in the

process of computing the Bayes factor in (8), is just the ratio of the Bayes factors from the

two models, i.e., (8) and (4).

As previously, an alternative to Bayes factors would be to compute a posterior probability

such as P (τ 2 < ε and δ > K) for suitably chosen small ε and large K.

4.2 Propriety of the Posterior

We now extend the propriety results from Section 2 to models for Σi using the shrinkage

priors given by (2), (3), or (6)-(7).

Theorem II: The posterior distribution under the shrinkage priors will be proper given

the conditions in Theorem I. However, the propriety conditions for the GARP shrinkage

priors ((2) or (6)-(7)) can be weakened. See the appendix for details.

Proof: See appendix.

4.3 Computations

To sample from the posterior, we use Gibbs sampling with Metropolis-Hastings steps [28].

This involves sampling sequentially from the full conditional distributions of all the param-

eters in the specified model. We will also include details for missing data that is MAR;

for this, we partition the complete data vector y into (yobs, ymis), the observed and missing

responses. First, we will specify the forms of the full conditional distributions that hold

for all the models: ymis is (multivariate) normal, µi(α) is normal, and 1/σ2(1/λ) is (trun-

cated) Gamma. In the single τ 2 models (Section 3), we sample from τ 2 using a random walk

Metropolis-Hastings as the full conditional is not available in closed form. In the multiple

τ 2’s models (Section 4), 1/τ 2
tj is Gamma and we need a random walk Metropolis-Hastings

for (τ 2, δ). Further details to derive the exact forms of the full conditionals can be found in

the Appendix.
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4.3.1 GARP shrinkage priors

In the GARP setting, the full conditionals of the φi,tj are normally distributed. In particular,

for the unrestricted GARP models, the covariance matrix of the GARP parameters will be

block diagonal as described in [26]. The full conditional for the ’common’ GARP’s (φtj), will

also be normally distributed.

4.3.2 Givens angles shrinkage priors

Computations are more difficult in the Givens angles models. The full conditional of the

logit (h) transformation of the common angles, h(θtj) will be normally distributed, but the

transformation of the group-specific angles, θi,tj , will not. We use random walk Metropolis-

Hastings to sample from these parameters (cf. [10]). For computational efficiency, we also

exploit the form of the orthogonal matrix P , with respect to the Givens angles, as described

in the introduction, P = G12G13G23 · · ·Gp−1,p and also use the fact that GtjG
T
tj = Ip.

5 Examples

We illustrate these models on two datasets, one a longitudinal growth hormone trial [9] and

the other, a longitudinal depression study [25]. For each, we had C = 4 groups; in the

growth hormone trial, p = 3 and in the depression studies, p = 8. For the latter, if we

just consider common or uncommon for each individual φtj, there would be over 200 million

possible models (for the former, there are only 8 possible models). We will only fit the GARP

models to these applications.

Both examples contained a lot of missing data. We assume the data are missing at

random. Carefully modeling the covariance structure is especially important in making

inferences in the presence of missing data (Daniels and Hogan, working paper).

Growth Hormone trial

Since there were only three time points in this trial, 0, 6 and 12 months, we only con-
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sidered models with one τ 2 as specified in (2). The four ’groups’ corresponded to the four

treatments given to the subjects in the trials (the sample sizes per group were 41, 41, 40,

and 38 respectively). As there was no apparent structure in the means over time, we allowed

a separate mean for each time and group (i.e., µi). Table 1 contains the GARP for the four

groups. In general, across all the parameters, there seem to only be a few major differences

in the parameters.

Groups T

1 1 0 0
-0.97 1 0
-0.45 -0.65 1

T

2 1 0 0
-0.90 1 0
-0.26 -0.61 1

T

3 1 0 0
-0.88 1 0
-0.21 -0.59 1

T

4 1 0 0
-0.73 1 0
0.01 -0.78 1

Table 1: The Tc, c = 1, . . . , 4 matrices for the growth hormone data fitting a distinct Σ for
each of the four treatment groups. Recall, the components in the lower triangle of the Tc

matrix are −φc,tj, the negative of the GARP.

For the prior on τ 2, we set c = .01. The posterior mean of τ 2 was .0059 (.00028,.0225).

The Bayes factor for testing τ 2 = 0 vs τ 2 > 0 was .57. Thus there was very little evidence

against common GARP across the treatment groups. The posterior density of τ 2 evaluated
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at 0 was not very sensitive to the prior. Increasing c to .1 would give a BF of about 5.7 in

favor of τ 2 = 0 and decreasing it to .001 would give a BF of about 15 in favor of τ 2 > 0; not

overwhelming evidence in either direction. (Note, the prior evaluated at τ 2 = 0 is 1/c.) The

conclusions here are similar to the likelihood analysis in Pourahmadi et al. (2003).

Table 2 contains the posterior means at month 12 with lengths of 95% credible interval

and change from baseline with lengths of 95% credible interval for three models: shrinkage

model (2), common GARP model (φc,tj = φtj), and distinct (uncommon) GARP model

(φc,tj). The largest differences between the models is seen in Grp I (in terms of posterior

means). In terms of the length of the credible intervals, we see in the change from baseline

for Grp IV, there was a 14% increase going to the uncommon GARP model while there was

a 10% increase in the month 12 intervals for the same group. These changes are intermediate

to those found when comparing common versus uncommon GARP in which we see increases

as large as 20%.

Month 12 mean and length of CI
Model Grp I Grp II Grp III Grp IV
τ 2 > 0 81.1 (34.9) 65.3 (22.7) 72.7 (26.6) 62.7 (26.8)
uncommon 78.9 (37.9) 65.3 (24.6) 72.6 (27.6) 63.1 (29.8)
common 81.2 (32.9) 65.0 (21.7) 72.7 (24.9) 62.6 (23.8)

Month 12 - Month 0 mean and length of CI
Model Grp I Grp II Grp III Grp IV
τ 2 > 0 11.8 (31.9) -3.1 (20.7) 6.8 (23.3) -2.5 (25.3)
uncommon 9.6 (33.4) -3.2 (22.0) 6.7 (25.9) -2.1 (29.5)
common 11.7 (30.4) -3.3 (19.5) 6.8 (22.2) -2.6 (23.8)

Table 2: Month 12 means and 95% credible interval lengths

Given the value of the Bayes factor here, we would recommend choosing the shrinkage

model with τ 2 (which offers a nice compromise between the common and uncommon GARP

models).

Depression trial

This trial was composed of a baseline + 16 weeks of ’active’ treatment. Here, we focus
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on the baseline week and the first 7 weeks of active treatment for illustration. As the trend

over time appeared fairly linear over the first 7 weeks (however, it looked quadratic over the

whole 16 week period), we assumed a linear trend for the mean structure. Previous analyses

suggested major differences in dependence across four groups formed from combining the

binary indicators for drug and for initial severity [25]; here, the sample sizes per group were

much larger than the previous example, ranging from 98 to 250.

We set c1/δ = .01 and cτ2 = .01 for the priors. Since C was only four, but we had p = 8

times, we consider models that allowed the shrinkage parameter, τ 2 to vary across sets of

GARP coefficients, τ 2
t , as specified in (6)-(7). The Bayes factor against common GARP

in this model was > 2700. Again, the joint posterior density for δ and τ 2 was relatively

insensitive to the priors. In order to get a BF that was close to 1, we would have needed

to set cτ2 to 25, which is a ridiculous value (especially, since the GARP tend to vary only

between ±1). So clearly, the data did not support common GARP for this data. Earlier

work explored parsimonious GARP models for this data [25].

Models
τ 2 > 0 common uncommon

int 17.24 (1.0) 17.27 (1.0) 17.24 (.99)
slope -1.02 (.40) -1.03 (.44) -1.00 (.40)
int*Gp2 5.83 (1.50) 5.85 (1.51) 5.84 (1.49)
slope*Gp2 -.51 (.70) -.50 (.71) -.57 (.77)
int*Gp3 .17 (1.20) .14 (1.18) .18 (1.17)
slope*Gp3 -.15 (.59) -.13 (.60) -.13 (.62)
int*Gp4 6.83 (1.28) 6.78 (1.27) 6.86 (1.29)
slope*Gp4 -.95 (.52) -.93 (.54) -.99 (.56)

Table 3: Posterior means and lengths of 95% credible intervals for α.

Posterior means and lengths of 95% credible intervals for the mean regression coefficients,

α appear in Table 3. The posterior means, relative to the lengths of the credible intervals are

fairly similar across models. However, there was some variability in the lengths of the credible

intervals across models. For example, for the coefficient for slope*Gp2, the credible interval

was 10% longer in the shrinkage model versus the uncommon GARP model; the credible

16



interval for the ’baseline’ slope increased by 10% as well when comparing the shrinkage

model to the common GARP model. As in the growth hormone trial example, we would

recommend inferences based on the shrinkage model over the common GARP model (based

on Bayes factor results) and over the uncommon GARP model (based on parsimony as this

model contains 112 dependence parameters).

6 Extension: Shrinking the ’variances’

Clearly, we can also shrink across groups for the ’variances’. However, this is of less concern

than for ’dependence’ parameters as there are Cp(p − 1)/2 (on order of Cp2) dependence

parameters and only Cp variance parameters. Considering equal or not equal across groups

corresponds to 2p(p−1)/2 possible models for the dependence parameters, but only 2p for the

variance parameters; for p = 5, that implies 215 = 32678 vs 25 = 32. However, we will still

discuss how this might be done below.

An approach for shrinking across groups with the marginal variances was proposed in [3]

using log-normal priors on the variances, centered at values determined by group-specific co-

variates. An alternative approach to shrinking, particularly attractive from a computational

perspective for the innovation variances and eigenvalues, would be to place Gamma priors

on these ’variances’. For the diagonal elements of Di, consider

1/σ2
ij ∼ Gamma(δ/σ2

j , δ), j = 1, . . . , p, i = 1, . . . , C

where 1/σ2
j is the expectation of 1/σ2

ij; this is a similar parameterization to that used on

the τ 2’s in Section 4 (cf. (7)). Similar models have recently been proposed by Lin, Raz and

Harlow [20] and Daniels [8]. By specifying Gamma priors, the full conditional distributions

of 1/σ2
ij will be Gamma which facilitates Gibbs sampling approaches for sampling from the

posterior.
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Similar to the previous sections, we can test for the equality of the ’variances’ across

groups using Bayes factors. As in Section 4, 1/δ = 0 corresponds to equality. Assuming

proper priors on δ and 1/σ2
j , the propriety of the posterior for these models follows from

Theorem I.

7 Discussion

We have shown, that under certain reasonable conditions, use of improper priors on means,

variance, and dependence parameters in many correlated and heterogeneous error regression

models results in proper posteriors. We have also proposed a simple, parsimonious way

to model covariance matrices across groups and showed how a Bayes Factor to test for

commonality can easily be computed.

Additional application areas for this methodology include pattern mixture models for

non-ignorable missing data [19]; here, the patterns of missing data could be considered as

’groups’. Further issues arise in this setting due to non-identifiable parameters. This will be

explored in future work.

Bayes factors were proposed to test for commonality of the ’dependence’ matrices in the

shrinkage models. Alternatives to Bayes Factors include the DIC [29] and posterior predictive

loss [17]. Using heavier tailed distributions than the normal distribution for the priors (cf:

(2)) will result in less overall shrinkage; for example, a straightforward extension could be

developed using the representation of t-distributions as a gamma mixture of normals [1].

Future work will explore the propriety of the posterior in the common correlation model

with and without restrictions on the marginal variances and in models with the Givens angles

a function of group-specific covariates as in the GARP models. In addition, we will attempt

to weaken the conditions for propriety in the models explored here as some of the current

conditions are sufficient, but not necessary. Finally, we will explore approaches to search

through the space of GARP models to facilitate determining which parameters vary across
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groups and/or are equal across only a subset of the groups. This will allow more flexibility

than the shrinkage approaches proposed here, but at a computational cost.

Appendix: Proof of Theorems I and II

Details for Theorems I and II

In the following, we will refer to the models for the covariance matrix under the GARP/IV

decomposition as GARP models and under the spectral decomposition as PC (principal

components) models. We remind the reader that to prove the propriety of the posterior

distributions, it is sufficient to show that the marginal density of y is finite.

We first present a lemma which will be used in the proofs:

Lemma I: For two positive definite matrices, A1 and A2, |A1 + A2| ≥ |A1| ≥ λp(A1)
p,

where λ1(A) ≥ λ2(A) ≥ · · ·λp(A), are the ordered eigenvalues of a p× p matrix A.

Proof:
|A1 + A2| ≥

∏p
i=1[λi(A1) + λi(A2)]

≥
∏

i[λp(A1) + λi(A2)]
≥ λp(A1)

p

The first inequality appears in Marshall and Olkin [22].

We recall the priors on the ’variance’ parameters, p(λik; a) ∝ 1
(λik)a , k = 1, . . . , p and

p(σ2
ik; a) ∝ 1

(σ2
ik)a , k = 1, . . . , p, i = 1, . . . , C. We first integrate out the mean parameters

(two cases).

Case I: E[Yij] = µi. Assume p(µi) ∝ 1.

∏

i

∫

1

|Σi|ni/2
exp(−

1

2

∑

j

(yij − µi)
T Σ−1

i (yij − µi))dµi

∝
∏

i

1

|Σi|(ni−1)/2
exp(−

1

2

∑

j

(yij − ȳi)
T Σ−1

i (yij − ȳi))

=
∏

i

1

|Σi|(ni−1)/2
exp(−

1

2

∑

j

(y?
ij)

T Σ−1
i (y?

ij)) (9)

where y?
ij = yij − ȳi.
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Case II: E[Yij] = Xijα. Assume p(α) ∝ 1.

Define α̂ = (
∑

i

∑

j X
T
ijΣ

−1
i Xij)

−1
∑

i

∑

j X
T
ijΣ

−1
i Yij and λmax = maxiλi1. Define Pk to

be the kth column of the orthogonal matrix P .

∫

1
Q

i |Σi|ni/2 exp(−1
2

∑

i

∑

j(yij −Xijα)T Σ−1
i (yij −Xijα))dα

∝ 1
Q

i |Σi|ni/2|
P

i

P

j XT
ijΣ

−1
i Xij |1/2 exp(−1

2

∑

i

∑

j(yij −Xijα̂)T Σ−1
i (yij −Xijα̂))

= 1
Q

i |Σi|ni/2|
P

i

Pp
k=1

1
λik

P

j XT
ijPkP T

k Xij |1/2 exp(−1
2

∑

i

∑

j(yij −Xijα̂)T Σ−1
i (yij −Xijα̂))

= 1
Q

i |Σi|ni/2(1/λmax)q/2|
P

i

P

k
λmax
λik

P

j XT
ijPkP T

k Xij |1/2
exp(−1

2

∑

i

∑

j(yij −Xijα̂)T Σ−1
i (yij −Xijα̂))

If we assume that
∑

i

∑

j X
T
ijXij is positive definite, a standard assumption that can be

checked for any dataset. then |
∑

i

∑

k
λmax

λik

∑

j X
T
ijPkP

T
k Xij| is positive. We use this fact to

place an upper bound on the square root of its inverse, say M ?. Thus,

≤ M? 1
Q

i |Σi|ni/2(1/λmax)q/2 exp(−1
2

∑

i

∑

j(yij −Xijα̂)T Σ−1
i (yij −Xijα̂))

∝ 1
Q

i |Σi|ni/2(1/λmax)q/2 exp(−1
2

∑

i

∑

j(yij −Xijα̂)T Σ−1
i (yij −Xijα̂))

We remind the reader that only the result for Case I was exact.

To use the above result for the GARP models, just replace Pk with Tk (Tik) where Tk is

the kth column of the T matrix, and λik with σ2
ik. The same argument follows as was used

for the spectral decomposition.

1
Q

i |Σi|ni/2|
P

i

P

j XT
ijΣ

−1
i Xij |1/2 exp(−1

2

∑

i

∑

j(yij −Xijα̂)T Σ−1
i (yij −Xijα̂))

≤ M? 1
Q

i |Σi|ni/2(1/σ2
max)q/2 exp(−1

2

∑

i

∑

j(yij −Xijα̂)T Σ−1
i (yij −Xijα̂))

∝ 1
Q

i |Σi|ni/2(1/σ2
max)q/2 exp(−1

2

∑

i

∑

j(yij −Xijα̂)T Σ−1
i (yij −Xijα̂))

One final issue is that α̂ is a function of Σi. Define Si(α̂) =
∑

j(yij −Xijα̂)(yij −Xijα̂))T ,

which is guaranteed to be positive definite under the previous conditions. We will remove

the dependence of Si(α̂) on Σi by bounding the exponential term. Re-write the exponential

term in the above expression as
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tr[Σ−1
i Si(α̂)] ≥

p
∑

k=1

λk(Σ
−1
i )λp−k+1(Si(α̂))

≥

p
∑

k=1

λk(Σ
−1
i )λp(Si(α̂))

where λk(·) is defined as in Lemma I. The first inequality is from Ingram and Olkin [22].

Now define λmin,i = minΣi
λp(Si(α̂)) > 0. Then,

tr[Σ−1
i Si(α̂)] ≥

p
∑

k=1

λk(Σ
−1
i )λmin,i

= tr[Σ−1
i λmin,iIp]

Finally, for each i, simulate a ’new’ set of data, y?
ij, from a normal distribution under the

constraint that
∑

j y
?
ijy

?T
ij = λmin,iIp. So,

1
∏

i |Σi|ni/2(1/σ2
max)

q/2
exp(−

1

2

∑

i

∑

j

(yij −Xijα̂)T Σ−1
i (yij −Xijα̂))

≤
1

∏

i |Σi|ni/2(1/σ2
max)

q/2
exp(−

1

2

∑

i

∑

j

(y?
ij)

T Σ−1
i (y?

ij))

The rest of the proof is given under mean case I, but will also follow with mean case II

(appropriate conditions for this case appear in the statement of the Theorem I in Section 2).

Theorem I details

Common GARP

For common GARP models, re-write Σ−1
i as TD−1

i T T , note that |Σi| = |Di|, and rewrite

(9) as

∏

i

1

|Di|(ni−1)/2
exp(−

1

2

∑

j

(y?
ij − Zijφ)TD−1

i (y?
ij − Zijφ))
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where φ is the vector of common GARP parameters and Zij is the p × p(p − 1)/2 matrix

defined below:

Zij =















0 0 0 · · · 0
y?

ij1 0 0 · · · 0
0 y?

ij1 y?
ij2 · · · 0

...
0 · · · y?

ij1 · · · y?
ij,p−1















. (10)

We now integrate out φ under p(φ) ∝ 1. Define φ̂ = (
∑

i

∑

j Z
T
ijD

−1
i Zij)

−1
∑

i

∑

j Z
T
ijD

−1
i y?

ij

and SSEi =
∑

j(y
?
ij − Zijφ̂)(y?

ij − Zijφ̂)T .

∏

i

∫

1

|Di|(ni−1)/2
exp(−

1

2

∑

j

(y?
ij − Zijφ)TD−1

i (y?
ij − Zijφ))dφ

∝
1

|
∑

i

∑

j Z
T
ijD

−1
i Zij|1/2

∏

i |Di|(ni−1)/2
exp(−

1

2

∑

i

∑

j

(y?
ij − Zijφ̂)TD−1

i (y?
ij − Zijφ̂))

=
1

|
∑

i

∑

j Z
T
ijD

−1
i Zij|1/2

∏

i |Di|(ni−1)/2
exp(−

1

2

∑

i

tr[D−1
i SSEi])

=
1

|
∑

i

∑

j Z
T
ijD

−1
i Zij|1/2

∏

i |Di|(ni−1)/2
exp(−

1

2

∑

i

p
∑

k=1

1

σ2
ik

SSEik) (11)

where SSEik is the kth diagonal element of SSEi. If
∑

i ni ≥ p(p − 1)/2 = dim(φ) and

∑

i

∑

j Z
T
ijZij positive definite, then SSE ∗k (Di) > 0. However, we can weaken these con-

ditions by recognizing that the terms ZT
ijD

−1
i Zij are block diagonal with blocks of the form

1
σ2

ik

∑

j Z
?T
ijkZ

?
ijk, for k = 2, . . . , p each of dimension (k − 1). Since the largest block is of di-

mension, p−1, only need the condition that
∑

i ni > p−1. We also note that |Di| =
∏

k σ
2
ik.

To proceed, we have two choices: 1) apply Lemma I or 2) follow a similar argument to

dealing with mean case II. First, we go through the application of Lemma I, (11) is equal to

1
Q

k |
P

i
1

σ2
ik

P

j Z?T
ijkZ?

ijk|
1/2

Q

i

Q

k σ2
ik

(ni−1)/2 exp(−1
2

∑

i

∑p
k=1

1
σ2

ik
SSEik)

≤ 1
Q

k |
P

j Z?T
i′jk

Z?
i′jk

|1/2
1

Qp
k=2 σ2

i′k

(n
i′
−k)/2 Q

i6=i′
Q

k σ2
ik

(ni−1)/2
exp(−1

2

∑

i

∑p
k=1

1
σ2

ik
SSEik)

To apply Lemma 1 above to create the upper bound, we need, for at least one i, say i′,

the following two matrices to be full rank
∑

j Z
?T
i′jpZ

?
i′jp and

∑

i6=i′

∑

j Z
?T
ijpZ

?
ijp (a sufficient
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condition for these two matrices to be full rank is for ni′ > p− 1 and
∑

i6=i′ ni > p− 1). If we

use the second approach, an alternative set of conditions can be constructed. Following this

approach, the conditions are
∑

i ni > p− 1, which implies that
∑

i

∑

j Z
?T
ijpZ

?
ijp is full rank.

Common Principal Components (CPC)

For CPC (i.e., Pi = P , for i = 1, . . . , C), (9) is equal to

1
∏

i

∏

k λ
(ni−1)/2
ik

exp(−
1

2

∑

i

∑

j

(y?
ij)

TP T Λ−1
i P (y?

ij))

=
1

∏

i

∏

k λ
(ni−1)/2
ik

exp(−
1

2

∑

i

tr[Λ−1
i

∑

j

P (y?
ij)(y

?
ij)

TP T ])

=
1

∏

i

∏

k λ
(ni−1)/2
ik

exp(−
1

2

∑

i

∑

k

1

λik
P ?

ik) (12)

where P ?
ik = P T

k SiPk, with Pk the kth column of P and Si =
∑

j(y
?
ij)(y

?
ij)

T .

General GARP models

For general GARP models, φi,tl = Gi,tlγ. The proof will be similar to common GARP

(though we no longer have block diagonality in this case). Define the kth column of the

matrix Zij to be

Zijk =
k−1
∑

l=1

Gi,kly
?
ijl (13)

Note that,

|
∑

i

∑

j Z
T
ijD

−1
i Zij|

= |
∑

i

∑

k
1

σ2
ik

∑

j ZijkZ
T
ijk|

= (1/σ2
max)

dim(γ)|
∑

i

∑

k
σ2

max

σ2
ik

∑

j ZijkZ
T
ijk|

We can then proceed as with mean Case II under the condition that
∑

i

∑

j Z
T
ijZij is positive

definite, so
∑

i

∑

k
σ2

max

σ2
ik

∑

j ZijkZ
T
ijk will be positive definite and we can use a finite upper

bound for the reciprocal of its determinant. We use this result after integrating out α and
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then γ(φ) (see common GARP case for details). We also point out that specific choices for

Gi,tl can result in even weaker conditions than those given above (for example, recall the

conditions specific to the common GARP which are much weaker than those given here).

Unrestricted variance (σ2
ik/λik)

For common GARP model and mean case I, the result, after integrating out the mean

and GARP parameters, looks like the product of independent inverse gamma distributions

for each σ2
ik. So sufficient conditions under the first approach described earlier (Lemma I)

for propriety are ni−p
2

+ a > 0 for at least one i and ni−1
2

+ a > 0 for the other i. For mean

case II, the latter two conditions are replaced with ni−p−(q−1)
2

+ a > 0 for at least one i and

ni−q
2

+ a > 0 for the other i. Using the latter approach (analogy to dealing with mean case

II), the conditions are ni−p
2

+ a > 0 for all i for mean case I and ni−p−(q−1)
2

+ a > 0 for all i

for mean case II.

For CPC, we need Si full rank for all i, which implies P ?
ik > 0. We can then bound

exp(−1
2

∑

i

∑

k
1

λik
P ?

ik) by exp(−1
2

∑

i

∑

k
1

λik
εik), where εik > 0 is the lower bound on P ?

ik.

For mean case I, we need in addition ni−1
2

+ a > 0; for mean case II, ni−q
2

+ a > 0 for all i.

Using these conditions and the previous results, the posterior will be finite for the GARP

models since the integral is just a mixture over finite, integrable densities over σ2, with

degrees of freedom of the inverse gamma distribution varying as specified above. For the

models based on the spectral decomposition, the posterior will be integrable since
∫

dP <∞

and the integral over the eigenvalues will be bounded by these inverse gamma distributions

since the eigenvalues are ordered.

General case of log(σ2
ik) = Gikγ, log(λik) = Gikγ

First, assume dim(γ) = qg. For ease, we will do the proof for E[Yij] = µi (mean Case I)

and CPC. Other models follow similarly. Continuing from the CPC model with the mean

integrated out, (12) is equal to
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∏

i

[
1

∏

k λ
(ni−1)/2
ik

] exp(−
1

2

∑

i

∑

k

1

λik
P ?

ik)

=
∏

i

[
1

∏

k exp(Gikγ)(ni−1)/2
] exp(−

1

2

∑

i

∑

k

1

exp(Gikγ)
P ?

ik) (14)

Choose qg vectors from the set {Gik : k = 1, . . . , p; i = 1, . . . , C}, which we will denote as

the set Q, such that
∑

i,k∈QG
T
ikGik is of full rank, qg. Without loss of generality, assume

Gikj ≥ 0. Then, (14) is equal to

1
∏

i,k∈Q exp(Gikγ)(ni−1)/2
exp(−

1

2

∑

i,k∈Q

1

exp(Gikγ)
P ?

ik) (15)

×
1

∏

i,k∈Qc exp(Gikγ)(ni−1)/2
exp(−

1

2

∑

i,k∈Qc

1

exp(Gikγ)
P ?

ik) (16)

We will first show the product over the terms not in Q is bounded. Rewrite (16) as

∏

i,k∈Qc

exp(− 1
2

P?
ik

exp(Gikγ)
)

exp(Gikγ)(ni−1)/2

Clearly, these terms are all bounded. Call the product of the upper bounds of all these

terms M?. We now go back to the terms corresponding to the set Q. We do a linear

transformation from γ to Gikγ for (i, k) in set Q. Since
∑

i,k∈QG
T
ikGik is of full rank, this is a

full rank transformation with Jacobian, J1, a function of the components of the Gik vectors

of Q. Denoting the previous linear transformation as Aγ, we now do another transformation

to exp(Aγ) = τ , (where we define the exponential of a vector as the vector of exponentials)

which will have Jacobian J(τ) = 1
Qqg

l=1 τl
. Define the set n′

l to be the set of qq ni corresponding

to the Gik in Q. Then, (14) is equal to
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1
Q

i,k∈Q exp(Gikγ)(ni−1)/2 exp(−1
2

∑

i,k∈Q
1

exp(Gikγ)
P ?

ik)

× 1
Q

i,k∈Qc exp(Gikγ)(ni−1)/2 exp(−1
2

∑

i,k∈Qc
1

exp(Gikγ)
P ?

ik)

≤ M? 1
Q

i,k∈Q exp(Gikγ)(ni−1)/2 exp(−1
2

∑

i,k∈Q
1

exp(Gikγ)
P ?

ik)

∝ 1
Qqg

l=1 τ
(n′

l
−1)/2

l

exp(−1
2

∑qg

l=1
1
τl
P ?

l )J(τ)J1

∝ 1
Q

l τ
(n′

l
−1)/2+1

l

exp(−1
2

∑

l
1
τl
P ?

l )

As previously, we put a lower bound on P ?
l (which under the current conditions is strictly

greater than zero), εl > 0. This looks like the product of gamma distributions in 1
τl

. This

will be integrable as long as (n′
l −1)/2+1 > 0 for all l and the integrated result will be finite

with respect to the integral over P since
∫

dP <∞.

Theorem II Details

Shrinkage prior on Givens angles

If the joint prior p(θi, τ
2, δ) is proper, then previous conditions for PC models are suffi-

cient. We assume proper priors on parameters (τ 2, δ2) as given in Sections 3 and 4 and a

flat prior on h(θ) (where h is the ’logit’ function specified in Section 3). If C > 1, then the

prior p(θi, τ
2, δ) is proper.

Shrinkage prior on GARP

As in the Givens angle case, the joint prior p(φi, τ
2, δ) is proper, if C > 1 (Note: if C

was not greater than 1, we would not even consider these models). If we ignore the proper

prior on φi, then having a separate φi for each group can be expressed in term of the general

GARP model with γT = (φT
1 , . . . , φ

T
C), where φi is the p(p− 1)/2 dimensional set of GARP

parameter for group i. But the sufficient condition that ni−1−dim(γ)
2

+ a > 0 is too strong

(here, dim(γ) = Cp(p − 1)/2). So we will weaken this condition below. After integrating

out the mean (under Mean Case I, but this easily generalizes to Mean Case II), we re-write

(9) as the following and then, integrate over φi,
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∏

i

∫

1
|Di|(ni−1)/2 exp(−1

2

∑

j(y
?
ij − Zijφi)

TD−1
i (y?

ij − Zijφi))dφi

=
∏

i
1

|Di|(ni−1)/2|
P

j ZT
ijD−1

i Zij |1/2 exp(−1
2

∑

j(y
?
ij − Zijφ̂i)

TD−1
i (y?

ij − Zijφ̂i))

where φ̂i = (
∑

j Z
T
ijD

−1
i Zij)

−1
∑

j Z
T
ijD

−1
i y?

ij and Zij is given in (10). If we use the fact that

Zij is block diagonal, as in the common GARP case, then we get the following condition:

ni > p − 1 (which implies
∑

j Z
?T
ijkZ

?
ijk is full rank for all i and k). If this integral is finite,

then it will also be finite with a proper prior on φi.

Appendix: Computational details

Forms of the Normal likelihood

For deriving the full conditional distributions for α and for ymis, under MAR, we use the

following expression for the likelihood,

1
∏

i |Σi|ni/2
exp(−

1

2

∑

i

∑

j

(yij −Xijα)TΣ−1
i (yij −Xijα)).

For deriving the full conditional distributions for covariance parameters in the GARP

models, we re-express the likelihood as

1
∏

i

∏p
k=1 σ

2
ik

ni/2
exp(−

1

2

∑

i

∑

j

((yij −Xijα) − Zijφi)
TD−1

i ((yij −Xijα) − Zijφi)).

For deriving the full conditional distributions for covariance parameters in the spectral

decomposition models, we re-express the likelihood as

1
∏

i

∏p
k=1 λ

ni/2
ik

exp(−
1

2

∑

i

Λ−1
i

∑

j

Pi(yij −Xijα)(Pi(yij −Xijα))T ).

where Pi = Gi,12(θi,12)Gi,13(θi,13)Gi,23(θi,23) · · ·Gi,p−1,p(θi,p−1,p)

Also, the shrinkage prior in Section 3.1 (for GARP) is proportional to

[
∏

i

p
∏

t=2

t−1
∏

j=1

(
1

τ 2
)1/2 exp(−

1

2τ 2
(φi,tj − φtj)

2)]
c

(c+ τ 2)2
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and for Section 3.2,

p
∏

t=2

t−1
∏

j=1

∏

i

[(
1

τ 2
tj

)1/2 exp(−
1

2τ 2
tj

(φi,tj − φtj)
2)]

( 1
τ2
tj

)δ/τ2−1 exp(−δ/τ 2
tj)

Γ(δ)δδ/τ2 .

For the Givens angles, replace φ with h(θ).

The form of the full conditionals for all models are easily derived from these forms for

the likelihood and priors.
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