

http://discover.bio-rad.com

Stone Adze Compositions and the Extent of Ancient Polynesian Voyaging and Trade Kenneth D. Collerson, *et al. Science* **317**, 1907 (2007); DOI: 10.1126/science.1147013

The following resources related to this article are available online at www.sciencemag.org (this information is current as of September 27, 2007):

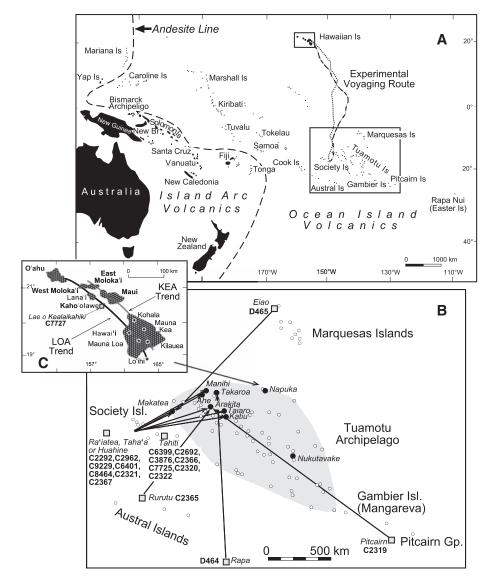
Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/cgi/content/full/317/5846/1907

Supporting Online Material can be found at: http://www.sciencemag.org/cgi/content/full/317/5846/1907/DC1

This article **cites 26 articles**, 3 of which can be accessed for free: http://www.sciencemag.org/cgi/content/full/317/5846/1907#otherarticles

This article appears in the following **subject collections**: Anthropology http://www.sciencemag.org/cgi/collection/anthro

Information about obtaining **reprints** of this article or about obtaining **permission to reproduce this article** in whole or in part can be found at: http://www.sciencemag.org/about/permissions.dtl


Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 2007 by the American Association for the Advancement of Science; all rights reserved. The title *Science* is a registered trademark of AAAS.

Stone Adze Compositions and the Extent of Ancient Polynesian Voyaging and Trade

Kenneth D. Collerson¹* and Marshall I. Weisler²

The last region on Earth settled by humans during prehistory was East Polynesia. Hawaiian oral histories mention voyaging from Hawai'i to Tahiti and back via the Tuamotus, an open ocean journey of several thousands of kilometers. The trace element and isotope chemistries of a stone adze recovered from the Tuamotu Archipelago are unlike those of sources in central Polynesia but are similar to the Kaho'olawe Island hawaiite, in the Hawaiian Islands, supporting the oral histories. Other adzes collected from the low coral islands of the northwest Tuamotus have sources in the Marquesas, Austral and Society Islands, and the Pitcairn Group, confirming that trade was widespread within East Polynesia.

The greatest maritime migration in human history culminated in the settlement of the eastern margins of the Pacific Ocean, delimited by Hawai'i, New Zealand, and Easter Island, the last region on Earth to be settled by humans. Some researchers have suggested that settlement was accidental or by drift voyages (1). However, computer simulations (2, 3), sailing experimental canoes using traditional navigational techniques (4), and review of voyaging strategies (2) indicate that East Polynesian colonization was purposeful, perhaps taking about six human generations to colonize most archipelagoes before 900 CE (5).

In the eastern Pacific, the decreasing island size and isolation of archipelagoes across Polynesia made it difficult to maintain external relations among them, and the frequency of long-distance voyaging is thought to have diminished (*6*). However, two-way postcolonization voyaging between Hawai'i and Tahiti is well supported by Hawaiian oral histories (*7*).

To evaluate the extent of trade in eastern Polynesia, we studied the trace element compositions and isotope chemistry of exotic stone adzes collected from nine coral atolls in the Tuamotus: the navigational crossroads of East Polynesia (2) (Fig. 1, A and B). These adzes are made of basalt, for which there is no local source on the coral atolls. Thus, their provenance can be used to trace Polynesian travel and trade. To evaluate sources, we developed a database containing major, trace element,

¹School of Physical Sciences–Earth Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia. ²School of Social Science–Archaeology, The University of Queensland, St. Lucia, QLD 4072, Australia.

*To whom correspondence should be addressed. E-mail: k.collerson@mailbox.uq.edu.au

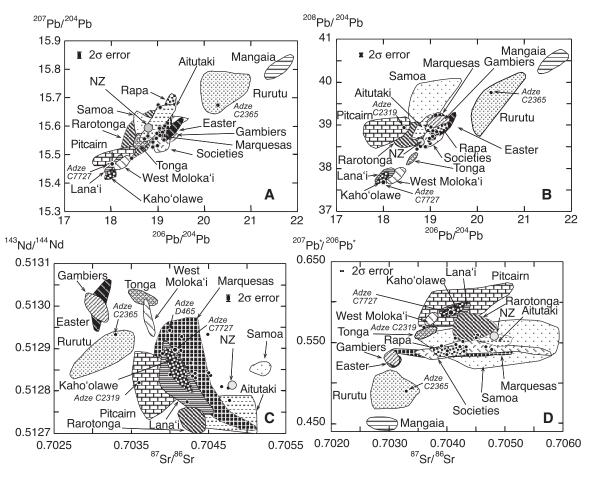
Fig. 1. (**A**) Pacific islands showing OIBs (east of the Andesite Line), IAVs, and the route between Hawai'i and Tahiti within the Society Islands established experimentally (4). (**B**) The distribution of adzes investigated in our study. Arrows link adze locations (solid circles) to their sources (gray squares) in the Marquesas, Society, Austral, Tuamotu, Gambier, and Pitcairn Island groups. (**C**) The Hawaiian Islands, with contemporary vents on Hawai'i and Lo'ihi designated with black circles. The two linear trends (Loa and Kea) define distinctive chemical and isotopic differences within the Hawaiian mantle plume (27).

Image: constraint of the		Artifact	Rurutu	A/S*	Artifact	Eiao	A/S	Artifact	Pitcairn	A/S	Artifact	Societies	C/A	Societies	A/S	Artifact	Kaho'olawe	A/S
0.95 99.85 51.27 0.97 46.53 1.12 1.05 4.63 5.03 100 12.30 11.94 1.33 12.70 12.86 0.70 4.65 3.03 112 12.33 11.94 1.33 12.70 12.86 0.71 10.3 12.70 16.87 3.06 0.71 0.70 4.65 3.03 117 7.25 7.04 10.3 3.121 12.41 10.9 0.112 10.0 10.04 4.90 4.75 10.0 4.75 4.74 4.82 117 7.25 7.04 10.3 13.21 12.41 10.9 0.112 4.74 4.82 117 1.36 11.30 12.00 12.00 0.70 0.79 0.36 0.71 4.74 4.74 1100 10.3 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.36 0.71 4.74 4.74 1100 11.4 1		C2365	KC-05-1		D465	KC-05-11		C2319	KC-05-13		C2367	Taha'a 1Ta-2VII		Ra'iatea KC-05-21		C7727	H-1440#	
0.08 2.84 2.73 1.04 3.26 3.12 1.05 0.46 0.70 4.65 3.08 1.10 1.58 1.54 1.03 1.12.70 1.296 0.93 1.147 1.03 0.13 0.147 0.65 3.08 1.11 7.25 7.04 1.03 1.12.14 1.09 1.013 1.040 0.45 3.08 1.11 7.25 7.04 1.03 1.32.1 1.097 1.013 0.149 0.47 1.11 4.62 4.57 1.01 2.62 3.66 0.79 1.147 1.09 1.014 1.14 1.36 1.30 1.05 0.060 0.11 3.22 0.79 3.11 4.74 1.14 1.36 1.160 0.106 1.12 0.050 0.101 0.100 1.060 0.106 0.126 0.106 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	SiO ₂	43.23	46.98	0.92	45.23	47.83	0.95	49.85	51.27	0.97	46.53	44.72	1.04	45.38	1.03	46.76	50.34	0.93
10.1 13.88 15.41 10.3 12.70 12.86 0.39 16.02 0.79 14.75 16.62 1.09 1.23.0 1.193 1.23.1 1.21.4 1.03 1.2.00 10.81 1.19 1.23 0.21 0.21 0.21 0.23 0.33 0.49 0.47 1.11 4.62 4.77 1.01 2.86 0.71 3.32 0.79 3.41 4,70 1.18 1.13 1.05 1.06 0.81 1.06 0.86 0.73 1.00 1.06 0.82 1.14 1.15 1.00 1.00.0 0.10 0.10 0.10 0.10 0.10 0.93 0.24 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.93 0.214 0.01 1.05 0.03 1.00 0.00 0.00 0.00 0.93 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.	TiO ₂	4.29	3.15	1.36	3.90	3.96	0.98	2.84	2.73	1.04	3.26	3.12	1.05	4.64	0.70	4.65	3.08	1.51
109 1123 1115 1115 1124 103 1200 1031 0.79 3.22 3.03 1031 1031 1031 1031 1031 1031 111 7.25 7.04 103 13.21 12.14 109 0.13 103 0.14 180 0.20 103 1.32 103 0.14 6.82 1101 4.65 1.30 1.03 1.26 0.49 0.470 6.82 1110 0.080 0.066 1.28 0.05 0.63 0.75 0.050 0.051 0.050 0.065 0.26 0.214 0.070 100.0 0.995 0.14 0.214 0.23 0.036 0.155 0.65 0.26 0.26 0.214 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	Al ₂ O ₃	14.73	16.16	0.91	15.66	15.44	1.01	15.88	15.41	1.03	12.70	12.96	0.98	16.02	0.79	14.75	16.62	0.89
128 0.21 1.01 0.13 0.23 0.17 1.08 0.18 0.17 117 7.52 7.04 1.03 8.17 9.97 0.83 2.13 1.09 0.17 117 7.52 7.04 1.03 8.17 9.97 0.13 1.124 1.00 0.19 0.19 0.19 0.13 118 1.13 1.13 1.12 1.12 0.19 0.11 3.32 0.79 3.11 4.70 118 1.13 1.05 0.19 0.10 100.0 0.19 0.00 0.14 4.74 110 0.08 0.14 1.00 0.10 100.0 100.0 0.05 0.26	FeO	15.42	13.27	1.16	13.12	12.06	1.09	12.30	11.99	1.03	11.56	11.87	0.97	11.24	1.03	12.00	10.81	1.11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MnO	0.23	0.22	1.06	0.21	0.17	1.28	0.21	0.21	1.01	0.18	0.20	0.90	0.17	1.08	0.18	0.17	1.01
117 7.25 7.04 1.03 13.21 1.2.14 1.09 1.015 1.30 10.44 6.82 1.01 4.62 4.57 1.01 2.62 3.66 0.71 3.32 0.79 3.11 4.73 1.14 1.36 1.30 1.05 1.00 100.0 100.0 0.06 3.46 0.79 3.11 4.74 1.10 0.086 1.22 0.057 0.75 0.56 0.216 0.050 0.98 0.214 0.214 1.00 0.220 0.205 0.25 0.27 0.27 0.98 0.214 0.214 0.27 0.206 0.27 0.27 0.27 0.99 0.214 0.27 0.25 0.25 0.27 0.27 0.27 0.99 0.216 0.21 0.27 0.22 0.22 0.216 0.27 0.22 0.99 0.216 0.27 <td< td=""><td>MgO</td><td>6.11</td><td>4.45</td><td>1.37</td><td>5.04</td><td>6.41</td><td>0.79</td><td>3.62</td><td>3.50</td><td>1.03</td><td>8.17</td><td>9.97</td><td>0.82</td><td>5.83</td><td>1.40</td><td>4.90</td><td>4.70</td><td>1.04</td></td<>	MgO	6.11	4.45	1.37	5.04	6.41	0.79	3.62	3.50	1.03	8.17	9.97	0.82	5.83	1.40	4.90	4.70	1.04
101 4.62 4.57 1.01 2.62 3.66 0.71 3.32 0.79 3.11 4.74 1.86 1.30 1.00 1.00 1.00 0.06 0.81 1.0 0.88 2.43 1.86 1.40 1.00 1.00 1.00 1.00 1.00 1.00 0.06 0.81 0.06 0.81 0.06 0.86 0.81 0.00 </td <td>Ca0</td> <td>8.35</td> <td>7.37</td> <td>1.13</td> <td>10.82</td> <td>9.22</td> <td>1.17</td> <td>7.25</td> <td>7.04</td> <td>1.03</td> <td>13.21</td> <td>12.14</td> <td>1.09</td> <td>10.15</td> <td>1.30</td> <td>10.44</td> <td>6.82</td> <td>1.53</td>	Ca0	8.35	7.37	1.13	10.82	9.22	1.17	7.25	7.04	1.03	13.21	12.14	1.09	10.15	1.30	10.44	6.82	1.53
180 2.07 1.99 1.04 1.28 0.76 1.68 2.22 0.58 2.43 1.86 1.44 1.36 1.00 100.0 100.0 100.0 100.0 100.0 0.065 0.86 0.876 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.826<	Na ₂ O	4.57	5.56	0.82	3.35	3.33	1.01	4.62	4.57	1.01	2.62	3.66	0.71	3.32	0.79	3.11	4.74	0.66
144 1.36 1.30 1.05 0.49 0.60 0.81 1.0 0.48 0.79 0.86 1100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.051 0.55 0.051 105.0 100.0 0.056 1.22 0.050 0.55 0.55 0.264 1.27 0.050 0.226 0.226 0.226 0.226 0.227 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.056 0.226 0.226 0.226 0.226 0.227 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.054 0.056 0.0164 0.056 0.0164 0.156 0.152896 0.1512896 0.1512896 0.1512896 0.1512896 0.1512896 0.1512896 0.1512896 0.1512896 0.1512896 0.1512896 0.1512896 0.1512896 0.1512896 0.1512896 0.1518	K ₂ 0	1.78	1.67	1.07	1.89	1.05	1.80	2.07	1.99	1.04	1.28	0.76	1.68	2.22	0.58	2.43	1.86	1.30
100.0 100.0 <t< td=""><td>P_2O_5</td><td>1.31</td><td>1.17</td><td>1.11</td><td>0.77</td><td>0.54</td><td>1.44</td><td>1.36</td><td>1.30</td><td>1.05</td><td>0.49</td><td>09.0</td><td>0.81</td><td>1.0</td><td>0.48</td><td>0.79</td><td>0.86</td><td>0.92</td></t<>	P_2O_5	1.31	1.17	1.11	0.77	0.54	1.44	1.36	1.30	1.05	0.49	09.0	0.81	1.0	0.48	0.79	0.86	0.92
1.10 0.080 0.066 1.22 0.050 0.051 0.051 0.050 0.98 0.214 0.021 1.00 0.220 0.220 0.236 1.15 0.226 0.95 0.34 0.37 0.92 0.36 0.55 0.65 0.26 1.27 0.90 0.99 73.7 7.43 0.99 106.1 105.2 0.051 103.5 113.1 0.99 16.6 1.00 1.16 10.16 10.4 108.5 15.3 1.00 44.0 42.5 1.00 1.02 0.92 42.7 43.4 0.99 16.6 1.00 1.3.4 10.5 1.28 10.2 11.9 1.00 11.6 1.01 1.3.4 10.5 1.31 11.9 11.9 0.7512870 0.7512826 0.512896 0.512894 0.512894 0.512897 0.512864 0.75488 18.455 18.765 18.765 18.765 15.477 0.500	Total	100.0	100.0		100.0	100.0		100.0	100.0		100.0	100.0		100.00		100.0	100.00	
	Rb/Sr	0.036	0.029	1.25	0.040	0.037	1.10	0.080	0.066	1.22	0.050	0.067	0.75	0.050	1.02	0.051	0.050	1.06
UPD 0.59 0.65 0.14 0.41 0.43 0.95 1.34 1.15 2.05 0.55 1.37 0.37 DMPD 5.28 0.91 1.15 1.2 0.20 0.34 0.35 0.34 0.37 0.34 0.37 0.34 0.37 0.34 0.37 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.34 0.35 0.34 0.35 0.3	Sm/Nd	0.188	0.186	1.01	0.243	0.249	0.98	0.214	0.214	1.00	0.220	0.210	1.05	0.208	1.06	0.216	0.229	0.94
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U/Pb	0.59	0.65	0.91	0.41	0.43	0.95	0.34	0.37	0.92	0.36	0.55	0.65	0.26	1.37	0.27		
Birlh 3:8 51.8 104 64.7 66.2 0.98 73.7 74.3 0.99 106.1 105.5 10.1 101.6 104 108.7 123 123. 0.87 10.8 10.0 10.6 10.4 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	Th/Pb	2.08	2.28	0.91	1.35	1.42	0.95	1.36	1.52	0.89	1.15	2.20	0.52	0.91	1.27	0.90		
$ \begin{array}{{ccccccccccccccccccccccccccccccccccc$	Ba/Th	53.8	51.8	1.04	64.7	66.2	0.98	73.7	74.3	0.99	106.1	105.5	1.01	101.6	1.04	108.5	125.1	0.87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr/Hf	47.8	46.8	1.02	42.5	42.3	1.00	44.0	42.5	1.04	41.4	43.0	0.96	45.0	0.92	42.7	43.4	0.98
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	Nb/Ta	16.9	17.4	0.97	15.7	15.8	0.99	16.6	16.6	1.00	16.2	17.4	0.94	16.9	0.96	16.2	15.8	1.02
$ \frac{9^{7}}{10} \frac{10^{7}}{10} $	Nb/Th	14.4	11.5	1.25	9.9	9.8	1.00	11.6	11.6	1.00	13.4	10.5	1.28	10.2	1.31	13.1	11.9	1.10
$ \frac{14}{6} M_{1}^{144} M_{1} $ $ \frac{1}{5} (M_{1}^{144} M_{1} $ $ \frac{1}{5} (M_{2}^{144} M_{1} M_{1} $ $ \frac{1}{5} (M_{2}^{144} M_{1} M_$	⁸⁷ ςr/ ⁸⁶ ςr+	0.70330	0.70352		0 70400	0 70394		0,70360	0 70357		0.70414	0 70374		0 70440		0 704069	0 70476	
	¹⁴³ Nd/ ¹⁴⁴ Nd‡	0.512933	0.512937		0.512943	0.512953		0.512820	0.512826		0.512896	0.512890		0.512894		0.512897	0.512864	
$ \begin{array}{{ccccccccccccccccccccccccccccccccccc$	²⁰⁶ Pb/ ²⁰⁴ Pb	20.289 ±	20.332 ±		19.133	$19.132 \pm$		$18.437 \pm$	18.455 ±		18.792 ±	18.766		$18.873 \pm$		18.060 ±	18.005	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		0.018	0.015		± 0.014	0.019		0.026	0.009		0.010			0.011		0.004		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁰⁷ Pb/ ²⁰⁴ Pb	$15.674 \pm$	15.718 ±		15.552 ±	15.576 ±		$15.488 \pm$	15.497 ±		$15.563 \pm$	15.480		15.602 ±		$15.495 \pm$	15.447	
$ ^{208} \text{Pb}^{^{204}\text{Pb}} 39.712 \pm 38.852 \pm 38.915 \pm 38.915 \pm 38.948 \pm 38.966 \pm 38.301 38.699 \pm 37.698 \pm 30.698 \pm 30.698 \pm 30.698 \pm 30.698 $		0.014	0.013		0.011	0.017		0.021	0.007		0.009			0.009		0.003		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁰⁸ Pb/ ²⁰⁴ Pb	39.760 ±	39.912 ±		38.852 ±	38.915 ±		38.948 ±	38.996 ±		38.496 ±	38.301		38.699 ±		37.698 ±	37.817	
$ \frac{^{207} \text{Pb}^{206} \text{Pb}}{^{206} \text{Pb}} 0.7726 \pm \ 0.7731 \pm \ 0.8128 \pm \ 0.8141 \pm \ 0.8141 \pm \ 0.8401 \pm \ 0.8397 \pm \ 0.8291 \pm \ 0.8291 \pm \ 0.8249 \pm \ 0.8267 \pm \ 0.8580 \pm \ 0.8580 \pm \ 0.8579 \pm \ 0.8579 \pm \ 0.8579 \pm \ 0.8575 \pm \ 2.1004 \ 0.0001 \ 0.0002 \ 0.00002 \ 0.0002 \ 0.0002 \ 0.0002 \ 0.0002 \ 0.0002 \ 0.0002 \ 0.$		0.036	0.036		0.029	0.041		0.054	0.019		0.029			0.025		0.011		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁰⁷ Pb/ ²⁰⁶ Pb	0.7726 ±	0.7731 ±		0.8128 ±	$0.8141 \pm$		$0.8401 \pm$	0.8397 ±		0.8291 ±	0.8249		0.8267 ±		0.8580 ±	0.8579	
$ \frac{^{CUB}Pb/^{CUB}Pb}{^{CUB}Pb} 1.9597 \pm 1.9630 \pm 2.0306 \pm 2.0340 \pm 2.1127 \pm 2.1130 \pm 2.0508 \pm 2.0410 2.0505 \pm 2.0675 \pm 2.1004 \\ 0.0002 0.0594 0.593 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.569 0.569 0.569 0.569 0.556 0.548 0.548 0.568 0.548 0.594 0.593 0.044 0.593 0.959 0.593 0.959 0.593 0.956 0.594 0.503 0.0594 0.593 0.959 0.593 0.5002 0.5002 0.5002 0.5002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0594 0.593 0.594 0.593 0.594 0.593 0.594 0.593 0.594 0.593 0.594 0.593 0.594 0.593 0.594 0.593 0.594 0.593 0.594 0.593 0.594 0.593 0.594 0.593 0.594 0.593 0.595 0.548 0.5092 0.5092 and 209bp/206Pb = 10.293 and 209Pp/206Pb = 20,0727 with 5-V 208Pb beam. The mean given in table 54 was determined using this data as well as two new mass spectrometer determinations using separate and progressively smaller Pb loads from the same composition (40, 41). flSingle analysis of C7727 with 5-V 208Pb beam. The mean given in table 54 was determined using this data as well as two new mass spectrometer determinations using separate and progressively smaller Pb loads from the same composition (40, 41). flSingle analysis of C7727 with 5-V 208Pb beam. The mean given in table 54 was determined using this data as well as two new mass spectrometer determinations using separate and progressively smaller Pb loads from the same composition (40, 41). flSingle analysis of C7727 with 5-V 208Pb beam. The mean given in table 54 was determined using this data as well as two new mass spectrometer determinations using separate and progressively smaller Pb loads from the same composition (40, 41). flSingle analysis of C7727 with 5-V 208Pb beam. The mean given in table 54 was determined using this data as well as two new mass spectrometer determinations using separate and progressively smaller Pb loads from the same composition (40, 41). flSingle analysi$		0.0001	0.0001		0.0001	0.0002		0.0002	0.0001		0.0001			0.0001		0.0001		
0.0003 0.0004 0.0005 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0593 0.0593 0.0593 0.0593 0.0594 0.0593 0.0593 0.0594 0.0593 0.0594 0.0593 0.0593 0.0594 0.0593 0.0593 0.0594 0.0593 0.0594 0.0593 0.0594 0.0593 0.0594 0.0594 0.0593 0.0594 0.0594 0.0593 0.0594 0.0594 0.0593 0.0594 0.0594 0.0593 0.0594 0.0593 0.0594 0.0594 0.0593 0.0594 0.0594 0.0593 0.0594 0.0593 0.0594 0.0593 0.0594 0.0594 0.0593 0.0594 0.0593 0.0594 0.0593 0.0594 0.0593 0.0594 0.0593 0.0594 0.0593 0.0594 0.0593 0.0594 0.0593 0.0594 0.0593 0.0594 0.0593 0.0594 0.0593 0.0593 0.0593 0.0593 0.0593	dd ^{ou2} /dd ^{su2}	$1.9597 \pm$	1.9630 ±		2.0306 ±	2.0340 ±		2.1127 ±	2.1130 ±		2.0508 ±	2.0410		2.0505 ±		2.0875 ±	2.1004	
²⁰⁹ Pb ^{+/²⁰⁶Pb⁺ 0.936 0.947 0.954 0.954 0.951 1.038 1.041 0.951 0.933 0.964 0.939 0.959 0.959 207Pb^{+/²⁰⁶Pb⁺ 0.936 0.996 0.569 0.569 0.569 0.569 0.556 0.548 0.572 0.575 0.594 0.593 0.593 0.959 207Pb^{+/²⁰⁶Pb⁺ and ²⁰⁸Pb^{+/²⁰⁶Pb⁺ and ²⁰⁸Pb^{+/}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>		0	0.0005		0.0004	0.0005		0.0004	0.0002		0.0003			0.0002		0.0002		
²⁰⁷ Pb*/ ²⁰⁶ Pb*\$ 0.490 0.492 0.535 0.538 0.569 0.569 0.569 0.556 0.548 0.555 0.556 0.55	3*dd ^{ou2} /*dd ⁸⁰²		0.947		0.954	0.961		1.038	1.041		0.951	0.933		0.964		0.939	0.959	
The similarity of major and trace element data is shown by dividing artifact values by source compositions (A/S). †External reproducability in ^{1/3} S/r ¹⁶⁶ SF = 0.000025 (2:0). ‡External reproducability in ^{1/3} Ald ^{1/44} Nd = 0.000016 (2:0). §The ²⁰⁷ Bb ^{+/206} Pb ⁺ and ²⁰⁸ Pb ^{+/206} Pb ⁺ = 0.000025 (2:0). External reproducability in ^{1/3} S/r ¹⁶⁶ SF = 0.000025 (2:0). External reproducability in ^{1/3} a kyress as anhydrous ²⁰⁸ Pb ^{+/206} Pb ⁺ = 0.000015 (2:0). Standard a kyress as anhydrous ²⁰⁸ Pb ^{+/206} Pb ⁺ = 0.000015 (2:0). External reproducability in ^{1/3} S/r ¹⁶⁶ SF = 0.000025 (2:0). External reproducability in ^{1/3} a kyress as anhydrous ²⁰⁸ Pb ^{+/206} Pb ⁺ = 0.000015 (2:0). IlBasanite from Taha'a expresses as anhydrous composition (40, 41). ¶Single analysis of C7727 with 5-V ²⁰⁸ Pb beam. The mean given in table S4 was determined using this data as well as two new mass spectrometer determinations using separate and progressively smaller Pb loads ²⁰⁸ Ph ⁻²⁰⁴ Pb = 10.293, and ²⁰⁸ Ph ⁻²⁰⁴ Pb = 15.940 ± 0.093 and 17.913 ± 0.043, ²⁰⁸ Ph ⁻²⁰⁴ Pb = 15.940 ± 0.003 and 17.913 ± 0.043, ²⁰⁸ Ph ⁻²⁰⁴ Pb = 15.940 ± 0.028 and 15.640 ± 0.028 and 15.640 ± 0.028 and 0.5850 ± 0.0028 and 0.2850 ± 0.0004 and 2.0918 ± 0.0045, ²⁰⁸ Pb = 18.0045, ²⁰⁸ Pb ⁺²⁰⁶ Pb = 10.293, ²⁰⁹ Ph ⁻²⁰⁴ Pb = 15.940 ± 0.028 and 0.5580 ± 0.023, ²⁰⁸ Ph ⁻²⁰⁴ Pb = 12.0213 ± 0.0453, ²⁰⁸ Ph ⁺²⁰⁴ Pb = 15.940 ± 0.023, ²⁰⁸ Ph ⁺²⁰⁴ Pb = 12.020 ± 0.009 and 17.913 ± 0.101, ²⁰¹ Ph ⁻²⁰⁴ Pb = 15.940 ± 0.023, ²⁰⁸ Ph ⁺²⁰⁴ Pb = 12.020 ± 0.009 and 27.941 ± 0.028 and 0.5451, ⁴⁰⁰ Ab = ³⁰² Ph ⁺²⁰⁴ Pb = 10.201, ²⁰¹ Ph ⁺²⁰⁴ Pb = 15.940 ± 0.0252, ²⁰⁸ Ph ⁺²⁰⁴ Pb = 12.020 ± 0.009 and 27.945 and 0.943, ²⁰⁴ Pb = 15.940 ± 0.028 and 0.5451, ⁴⁰⁰ Ab = ⁴⁰⁰ Ab ⁺¹⁰⁰ Ab	²⁰⁷ Pb/ ²⁰⁶ Pb*{		0.492		0.535	0.538		0.569	0.569		0.556	0.548		0.555		0.594	0.593	
composition (<i>40, 41</i>). ¶Single analysis of C7727 with 5-V ²⁰⁸ Pb beam. The mean given in table 54 was determined using this data as well as two new mass spectrometer determinations using separate and progressively smaller Pb loads from the same composition (<i>40, 41</i>). ¶Single analysis of C7727 with 5-V ²⁰⁸ Pb beam. The mean given in table 54 was determined using this data as well as two new mass spectrometer determinations using separate and progressively smaller Pb loads from the same channer. In mo. 2 with a 1-V beam and no. 3 with a 100-mv beam yielded the following isotopic compositions: ²⁰⁶ Pb/ ²⁰⁶ Pb = 18,020 ± 0.009 and 17,913 ± 0.048; ²⁰⁷ Pb/ ²⁰⁶ Pb = 15,540 ± 0.028 and 15,545 ± 0.0022 and 0.5858 0 ± 0.0022 cm ⁹⁹ Ph ²⁰⁶ Pb = 2.0855 ± 0.0004 and 2.0918 ± 0.0045; ²⁰⁸ Pb/ ²⁰⁶ Pb = 0.945 and 0.943; ²⁰⁷ Pb/ ²⁰⁶ Pb = 15,540 ± 0.0292 and 0.595; #Post-caldera hawaiite (24). ³¹⁷ Dr ⁴⁰ Ph ²⁰⁶ Pb = 0.507 and 0.595; #Post-caldera hawaiite (24). ³¹⁷ Dr ⁴⁰ Chun ⁴¹ ⁴¹⁰ ⁴¹	*The similarity of and ²⁰⁸ Pb*/ ²⁰⁶ Pb ³	major and trace radiogenic Pb i	element data i otopic compos	is shown by sitions were	y dividing artifa e calculated by s	ct values by so subtracting the	ource comp following	oositions (A/S). † initial Pb isotop	-External reprod	lucability i ²⁰⁴ Pb = 9.	n ⁸⁷ Sr/ ⁸⁶ Sr = 0 3066, ²⁰⁷ Pb/ ²⁰	4 Pb = 10.293,	‡External and ²⁰⁸ Pb	reproducability i / ²⁰⁴ Pb = 29.475	n ¹⁴³ Nd/ ¹⁴ (<i>39</i>). IIBas	⁴ Nd = 0.00001 sanite from Taha	6 (2σ). §The ²⁰⁷ Pb [*] a'a expresses as an	*/ ²⁰⁶ Pb* hydrous
combistry. Mass spectrometer fun fio. 2 with a 12-9 beam and no. 3 with a 12-90-mit beam yheued the propert compositions: -70° T = 12.50 ± 0.003 and 17.51 ± 0.045 ± 0.557 ± 0.0558 ± 0.00258 ± 0.0025 ^{comb} /beb = 2.0855 ± 0.0004 and 2.0918 ± 0.0045, ^{comb} /s ²⁰⁶ b ⁺ = 0.945 and 0.943; and ²⁰⁷ b ⁺ ²⁰⁶ b ⁺ = 0.597 and 0.597 and 0.597 # Post-caldera hawaiite (24). The R-M the R-M the American Structure and the American American Structure and the American Structure and t	composition (40,	41). ¶Single ana	lysis of C7727	with 5-V ²	¹⁰⁸ Pb beam. The	mean given in	table S4 v	vas determined	using this data	as well as	two new mass	spectrometer d	eterminati	ons using separa	te and pro	gressively small	er Pb loads from th	204 DE
	chemistry. Mass s	bectrometer run I	10. 2 with a 1-\ 207 ph/ ²⁰⁶ ph	V beam an	d no. 3 with a 1	00-mv beam yi	elded the i 22. ²⁰⁸ ph/é	following isotopi ²⁰⁶ ph – 2 0855	c compositions: + 0.0004 and 2	1+02/94902	$b = 18.020 \pm 0.0015 \cdot 208 \text{ ph*/}$	0.009 and 17.9 ²⁰⁶ bh* – 0 945	13 ± 0.04	8; ^{20/} Pb/ ²⁰⁴ Pb = 20 207 ph*/ ²⁰⁶	15.940 ± ph* - 0 50	0.028 and 15.4	50 ± 0.043; ²⁰⁸ Pb/ Post-caldera hawaii	204 Pb =
THE DATID TABLE TABLE TABLE TABLE TABLE TO E 2.7 μ = 30 did(VE) (421)	37.708 ± U.U28 i The Ba/Th ratios 1	nd 37.594 ± u.1 or Kaho'olawe la	01; *** PD/*** P.	b = 0.857 n 60 to 45	3 ± 0.000 × and 0. mean = 136	0.8580 ± 0.00 + 89 ($n = 36$	22; "PD/ analyses)	cc80.2 = 0.000	± 0.0004 ang 2	0918 ± נ	.0045;	c+4.0 = *04.	and 0.94.	3; and ~~ PD*/	۲۵ [*] = U.S	7 and U.542.#	Post-caldera nawan	ite (24).

Table 1. Major element compositions (in weight %), selected trace element ratios, and isotopic compositions of adzes and source basalts.

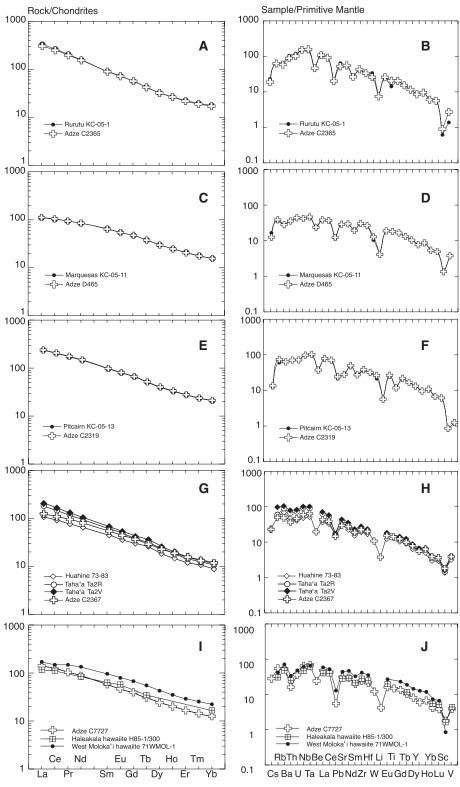
and isotopic compositions of 28 volcanic sources from all Polynesian archipelagos, augmented by data (δ) for oceanic island basalts (OIBs). Fine-grained basalt adzes and their resulting manufacturing debris occur throughout Polynesia, and this common woodworking tool has been used to identify prehistoric interaction between island groups (9, 10).

Island arc volcanics (IAVs) and OIBs are chemically distinct because of differences in mantle sources and melting processes (11). The IAVs west of the Andesite Line (Fig. 1A) comprise volcanic rocks that range with increasing silica from basalt to andesite, dacite, and rhyolite. These IAVs form by melting of the hydrated mantle wedge above subduction zones (12). The range of silica in these magmas reflects fractional crystallization within high-level magma chambers and the assimilation of overlying felsic crust (13). By contrast, tholeiitic and alkalic OIBs and associated silicaundersaturated alkaline lavas (8) (fig. S1) form by partial melting in mantle away from subduction zones (14). The movement of overlying oceanic lithospheric plates across mantle upwellings or loci of melting explains the generation of lines of OIB volcanoes, with ages increasing in the direction of plate movement away from the hot spot (15), as at Hawai'i (16). In eastern Polynesia,


Fig. 2. (A to D) Isotopic compositions of adzes (solid circles) and compositional fields for different Polynesian OIBs. Source fields are defined by data in table S5 and studies cited in (8). Variations in isotopic composition define the nature and scale of chemical heterogeneity within mantle sources of OIBs (11). Radiogenic Pb isotopic compositions of adzes shown in Fig. 3, A and B, reflect variation in U/Pb (²⁰⁶Pb/²⁰⁴Pb and ²⁰⁷Pb/²⁰⁴Pb) ratios and also in Th/Pb (²⁰⁸Pb/²⁰⁴Pb) ratios. Figure 3C shows covariation between Sr isotopic composition and Nd isotopic compositions. Figure 3D shows covariation between ²⁰⁷Pb*/²⁰⁶Pb* and ⁸⁷Sr/⁸⁶Sr ratios. Based on isotopic composition, three adzes can be assigned to their sources: C2365, Rurutu; C2319, Pitcairn; and C7727, Hawai'i [using the average of three Pb the Tuamotus, Marquesas, Society Islands, and Cook-Austral Islands, (Fig. 1B) are interpreted to have formed by this process (17).

Because of differences in mantle sources and melting processes, IAVs are chemically distinct from OIBs (18), and this difference provides a robust constraint for identifying the provenance of Polynesian basalt adzes. In addition, OIB lavas from different archipelagos exhibit different trace element and radiogenic isotope chemistries (19); such data can also be used to determine artifact sources. Major element chemistries may often not be diagnostic because similar basalt chemistries can be produced during the fractional crystallization of similar mineral phase sequences during cooling in high-level magma chambers.

OIBs are characterized by superchondritic Zr/Hf ratios (chondritic ratio 34.3 ± 0.3) and subchondritic Nb/Ta ratios [chondritic ratio 19.9 ± 0.6 (20)]. Furthermore, OIBs exhibit low and distinctive superchondritic Zr/Hf ratios of 35.5 to 43.5 [chondritic ratio 34.3 ± 0.3 (20)]. An additional method for discriminating between basalts is provided by radiogenic Sr, Nd, and Pb isotope compositions, for which there are extensive data for Polynesian volcanoes (8, 21). Initial isotopic compositions of OIBs are diverse (8). In view of the marked trace element and isotopic differences between different OIB archipelagos, sources of basalt used in adze manufacture can be determined without requiring knowledge of specific locations of sources or quarries.


We analyzed 19 adzes collected by Emory between 1929 and 1934 (8, 22) (table S1) from nine low coral atolls (Arakita, Makatea, Napuka, Takaroa, Katiu, Manihi, Ahe, Taiaroa, and Nukutavake) (Fig. 1, A and B). They are typical East Polynesian adze forms (Duff types 1A, 1E, 3A, 3B, 4A, and 5B) (23), with types 3A and 4A representing late prehistoric forms (fig. S1). These artifacts, analyzed by inductively coupled plasma mass spectrometry and with radiogenic isotope ratios analyzed by thermal ionization mass spectrometry, required <100 mg of sample (8) (table S2).

The radiogenic isotopic data (Table 1 and Fig. 2) allow three adzes to be assigned to their sources; C2365 from Rurutu, C2319 from Pitcairn, and C7727 with an isotopic composition indicating derivation from Kaho'olawe, Hawai'i. C7727 is a phenocryst-free aphanitic rock (fine-grained, where mineral phases are not discernable with the naked eye) that is typical of rocks selected for adze making. The unradiogenic Pb isotopic composition of C7727 is distinct from those of all other

isotope determinations given in Table 1 and the sixth footnote of Table 1 (designated by ¶). The unradiogenic Pb isotopic composition of C7727 is distinctive from that of all other eastern Polynesian OIBs and is similar to Loa

trend basalts (Fig. 1C). Although isotopically similar, Lana'i basalts are tholeiitic, whereas C7727, a hawaiite (fig. S1), is from Kaho'olawe. Error bars show 2σ analytical uncertainties in each diagram.

Fig. 3. Geochemical comparisons. (**A** and **B**) Similarity between C2365 and Rurutu basalts. (**C** and **D**) Similarity between D465 and the Eiao source, Marquesas. (**E** and **F**) Similarity between C2319 and Tautama basalt, Pitcairn Island. (**G** and **H**) Similarity between C2367 and basalts from Huahine and Taha'a in the Society Islands with high Ba/Th ratios. (**I** and **J**) Comparison between adze C7727 and hawaiites with similar SiO₂ composition from West Moloka'i (71WMOL-4) (*28*) and Haleakala, Maui (H85-1) (*29*). The similarity between C7727 and Haleakala hawaiite indicates that they had a common petrogenetic evolution.

eastern Polynesian OIBs but is similar to either Kaho'olawe or Lana'i (24–26). Both of these islands lie in the Hawaiian Loa trend (27) (Fig. 1C). Although Lana'i basalts are isotopically similar to those on Kaho'olawe, they are tholeiitic, whereas C7727, a hawaiite, is alkalic (fig. S2). Adze C7727 (table S4) has similar SiO₂, Al₂O₃, MgO, TiO₂, Fe₂O₃, and P₂O₅ compositions to hawaiites from West Moloka'i and Haleakala, Maui (28, 29) (table S5). Fig. S3A shows that hawaiites from Haleakala and West Moloka'i have considerable variation in CaO (5.4 to ~10 weight %).

Adze C7727 has similar CaO and TiO₂ compositions to Ca-rich hawaiites from Haleakala, confirming a common petrogenetic evolution, different from hawaiites from Mauna Kea and West Moloka'i. Adze C7727 falls within the field of covariation exhibited by other hawaiites from Hawai'i in plots of MgO with Nb, Sr, and Th (fig. S4) and with CaO/Na₂O, Nb/Th, Th/Ta, and Nb/Ta ratios (fig. S5). The adze has a similar CaO/Na₂O ratio to high-Ca hawaiites from Haleakala, Maui (fig. S5). However, its Pb isotopic composition excludes West Moloka'i (*28*) or Maui (*30*) hawaiite as a source for this adze.

In Sr/Ce versus P_2O_5 space, adze C7727 plots within the distinctive range of compositions exhibited by hawaiites from Kaho'olawe (fig. S6). Such variation reflects both shallow low-pressure fractionation of plagioclase (as in Haleakala, Maui hawaiites) and moderate-pressure fractionation of clinopyroxene (as in West Moloka'i and Mauna Kea hawaiites) (29). Furthermore, Kaho'olawe hawaiites are also characterized by higher Ni contents (range 54 to 226, 143 ± 71 µg/g) (24, 31) than hawaiites from West Moloka'i (1 to 40 µg/g) (28), Haleakala (4.5 to 51 µg/g) (29), and Mauna Kea (4 to 9 µg/g) (32). With 115 µg of Ni/g, adze C7727 is consistent with derivation from a hawaiite source on Kaho'olawe.

Further support for the idea that C7727 originated from Hawai'i is provided by trace element ratios and by Sr and Nd isotope ratios given in Table 1, tables S4 and S5, Fig. 3, and fig S7. OIBs from Hawai'i and almost all basalts from the Emperor Seamont chain, which represents Hawaiian magmatism ranging in age from 85 to 42 million years ago, have Ba/Th ratios >100 (33). In East Polynesia, basalts from Ra'iatea (table S5) and Taha'a (34) in the Society Islands, shown in Fig. 3, G and H, also have Ba/Th ratios >100; however, basalts from the Society Islands have significantly higher radiogenic Pb isotopic compositions than those from Hawai'i (Fig. 2B, Table 1, and table S5). Although the La/Yb ratio of C7727 (16.5) (table S4) is higher than published values for Kaho'olawe lavas, the rare earth elements are especially mobile because of alteration in some post-shield alkalic lavas (31). The La/Yb ratio is also affected by the degree of partial melting; thus, the higher ratio of C7727 reflects a lower degree of melting. In 87 Sr/ 86 Sr and 143 Nd/ 144 Nd space (fig. S7), adze C7727 plots within the Kaho'olawe field on a mixing trend (correlation coefficient R = 0.97) defined by hawaiites from Kaho'olawe, West Moloka'i, and Haleakala (Maui). This indicates that a common petrogenetic process was involved in hawaiite formation. This most likely involved interaction between an enriched component with a high Rb/Sr ratio and low Sm/Nd ratio and a depleted component with a lower Rb/Sr ratio and higher Sm/Nd ratio.

We used the same methodology (Table 1 and Figs. 2 and 3) to identify the sources of all 19 adzes. In addition to the adzes from Kaho'olawe, Hawai'i (n = 1); the Pitcairn Group (n = 1), and Rurutu (n = 1), adzes were also identified that were manufactured from basalt sources on Eiao in the Marquesas (n = 1); Rapa in the Australs (n = 1); the Society Islands with Ba/Th ratios >100, such as Ra'iatea, Taha'a, or Huahine (n = 7); and the Society Islands with Ba/Th ratios <100, such as Tahiti (n = 7).

Because adze C7727 was collected from Napuka, a low coral atoll in the western Tuamotus in central East Polynesia (Fig. 1B), the rock from which it was made was transported a minimum distance of 4040 km from its source on Kaho'olawe in the Hawaiian chain (Fig. 1A). The likely route between Hawai'i and Tahiti via the Tuamotus (35) (Fig. 1A) has favorable winds and currents for two-way voyages. Experimental canoes using non-instrumental navigation made such a journey in 32 days (36).

There is much traditional ceremony in preparation for long-distance voyaging, and today, as possibly in the ancient past, canoeists often stop at the westernmost tip of Kaho'olawe Island, Lae o Kealaikahiki (literally, "cape or headland of the way to Tahiti") (Fig. 1C) before beginning their voyage south. Sample C7727, a Duff type 3A adze, is made from rock that is consistent with hawaiite deposits found at only a few places along the coast of this island, one of which is close to Lae o Kealaikahiki. This adze type is unknown from Hawai'i but is common in the Tuamotus. Rock from Kaho'olawe may thus have been taken as a gift or memento (as is done today by modern traditional voyagers) or used as ballast, and fashioned into adzes in the Tuamotus.

The Tuamotus, along with the Society Islands, could be approached from all quarters and was thus probably important in Polynesian trade (2). Our data show that Tuamotu adzes originate from the Marquesas, Pitcairn, Austral, and Society Islands; that is, most of the island groups surrounding the atoll archipelago. Furthermore, because the low coral atolls of the Tuamotus emerged after 1200 CE (37), and the surrounding island groups were colonized well before then, all imported adzes recovered in the Tuamotus relate to postcolonization interaction with adjacent archipelagoes. We therefore agree with Irwin (2) that postcolonization voyaging must have been common enough for voyaging knowledge to be passed across generations and that it continued until about 1450 CE when most voyaging ceased in East Polynesia (38).

References and Notes

- A. Sharp, Ancient Voyages in Polynesia (Univ. of California Press, Berkeley, CA, 1964).
- G. Irwin, The Prehistoric Exploration and Colonisation of the Pacific (Cambridge Univ. Press, Cambridge, 1992).

- M. Levison, R. Ward, J. Webb, *The Settlement of Polynesia: A Computer Simulation* (Univ. of Minnesota Press, Minneapolis, MN, 1973).
- 4. B. R. Finney, *Science* **196**, 1277 (1977).
- P. V. Kirch, On the Road of the Winds: An Archaeological History of the Pacific Islands before European Contact (Univ. of California Press, Berkeley, CA, 2000).
- G. Irwin, J. Polynesian Soc. 107, 111 (1998).
 C. K. Cachola-Abad, N. Z. Archaeol. Assoc. Mon. 19, 13
- (1993).8. Details are found in the supporting material on *Science* Online.
- 9. S. Best, P. Sheppard, R. Green, R. Parker, J. Polynesian Soc. 101, 45 (1992).
- 10. M. I. Weisler, N. Z. Archaeol. Assoc. Mon. 21 (1997).
- 11. A. W. Hofmann, Nature 385, 219 (1997).
- T. L. Grove, N. Chatterjee, S. W. Parman, E. Medard, *Earth Planet. Sci. Lett.* 249, 74 (2006).
- 13. T. L. Grove et al., Contrib. Mineral. Petrol. 145, 515 (2003).
- Y. L. Niu, M. J. O'Hara, J. Geophys. Res. Solid Earth 108, 2209 (2003).
- W. J. Morgan, Am. Assoc. Petrol. Geol. Bull. 56, 203 (1972).
- 16. J. A. Tarduno et al., Science **301**, 1064 (2003).
- 17. A. Bonneville, L. Dosso, A. Hildenbrand, *Earth Planet. Sci. Lett.* **244**, 251 (2006).
- J. A. Pearce, J. R. Cann, *Earth Planet. Sci. Lett.* **19**, 290 (1973).
 C. Hemond, C. W. Devey, C. Chauvel, *Chem. Geol.* **115**, 7 (1994)
- J. A. Pfander, C. Munker, A. Stracke, K. Mezger, *Earth Planet. Sci. Lett.* 254, 158 (2007).
- 21. A. Zindler, S. Hart, Annu. Rev. Earth Planet. Sci. 14, 493 (1986).
- K. P. Emory, *Material Culture of the Tuamotu Archipelago* (Pacific Anthropological Records 22, Bishop Museum, Honolulu, HI, 1975).
- R. Duff, in *Anthropology in the South Seas*, J. D. Freeman, W. R. Geddes, Eds. (Thomas Avery & Sons, New Plymouth, New Zealand, 1959), pp. 121–147.
- 24. W. P. Leeman, D. C. Gerlach, M. O. Garcia, H. B. West, *Contrib. Mineral. Petrol.* **116**, 62 (1994).
- A. R. Basu, B. E. J. Faggart, in *Earth Processes: Reading the Isotopic Code*, A. Basu, S. Hart, Eds. (American Geophysical Union, Washington, DC, 1996), pp. 149–159.
- S. C. Huang *et al.*, *Geochem. Geophys. Geosyst.* 6, Q01L06 (2005).
- 27. W. Abouchami et al., Nature 434, 851 (2005).
- 28. G. Xu et al., Geochem. Geophys. Geosyst. 8, 10.1029/2006GC001554 (2007).

- C. Y. Chen, F. A. Frey, M. O. Garcia, *Contrib. Mineral.* Petrol. **105**, 197 (1990).
- H. B. West, W. P. Leeman, *Earth Planet. Sci. Lett.* 84, 211 (1987).
- R. V. Fodor, F. A. Frey, G. R. Bauer, D. A. Clague, *Contrib. Mineral. Petrol.* **110**, 442 (1992).
- 32. F. A. Frey et al., J. Geophys. Res. Solid Earth 95, 1271 (1990).
 - 33. A. W. Hofmann, K. P. Jochum, *J. Geophys. Res. Solid Earth* **101**, 11831 (1996).
 - W. M. White, R. A. Duncan, in *Earth Processes: Reading the Isotopic Code*, A. Basu, S. Hart, Eds. (American Geophysical Union, Washington, DC, 1996), pp. 183–206.
 - B. R. Finney, in *Polynesian Culture History, Essays in Honor of Kenneth P. Emory*, G. A. Highland, R. W. Force, A. Howard, M. Kelly, Y. H. Sinoto, Eds. (Bishop Museum Press, Honolulu, HI, 1967), pp. 141–166.
 - B. R. Finney, Voyage of Discovery, A Cultural Odyssey through Polynesia (Univ. of California Press, Berkeley, CA, 1994).
 - W. R. Dickinson, Palaeogeogr. Palaeoclimatol. Palaeoecol. 213, 251 (2004).
 - M. I. Weisler, in *Geochemical Evidence for Long-Distance Exchange*, M. D. Glascock, Ed. (Bergin & Garvey, London, 2002), pp. 257–273.
 - J. H. Chen, G. J. Wasserburg, Conf. Abstr. Lunar Planet. Inst. 1, 103 (1983).
 - 40. R. Brousse, T. Gisbert, C. Leotot, *C. R. Acad. Sci. Ser.* 11 303, 247 (1986).
 - 41. W. White, personal communication.
 - 42. Unpublished data are from Rice University, MPI Mainz, and Washington State University (W. P. Leeman, personal communication).
 - 43. Y. Sinoto and B. Kam gave permission to core adzes from the Bishop Museum, Hawai'i. Access to the Hawai'i Institute for Geophysics for coring the adzes was facilitated by J. Sinton and R. Bollt. Data used to locate the hawaiite source of C7727 on Kaho'olawe were provided by S. Huang and W. P. Leeman.

Supporting Online Material

www.sciencemag.org/cgi/content/full/317/5846/1907/DC1 Materials and Methods SOM Text Figs. S1 to S7 Tables S1 to S5 References

26 June 2007; accepted 28 August 2007 10.1126/science.1147013

Synchrony Dynamics During Initiation, Failure, and Rescue of the Segmentation Clock

Ingmar H. Riedel-Kruse,*† Claudia Müller, Andrew C. Oates†

The "segmentation clock" is thought to coordinate sequential segmentation of the body axis in vertebrate embryos. This clock comprises a multicellular genetic network of synchronized oscillators, coupled by intercellular Delta-Notch signaling. How this synchrony is established and how its loss determines the position of segmentation defects in Delta and Notch mutants are unknown. We analyzed the clock's synchrony dynamics by varying strength and timing of Notch coupling in zebrafish embryos with techniques for quantitative perturbation of gene function. We developed a physical theory based on coupled phase oscillators explaining the observed onset and rescue of segmentation defects, the clock's robustness against developmental noise, and a critical point beyond which synchrony decays. We conclude that synchrony among these genetic oscillators can be established by simultaneous initiation and self-organization and that the segmentation defect position is determined by the difference between coupling strength and noise.

The periodic and sequential segmentation of the vertebrate embryo along its anterior-posterior axis into blocks of cells called somites, the precursors of axial bone and muscle, is thought to be driven by the segmentation clock (Fig. 1A) (1, 2). This clock com-

Downloaded from www.sciencemag.org on September 27, 2007