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Abstract. Species that build the physical structure of ecosystems often reproduce clonally,
both in terrestrial (e.g., grasses, trees) and marine (e.g., corals, seagrasses) environments. The
degree of clonality may vary over a species’ range in accordance with the relative success of
sexual and asexual recruitment. High genotypic (clonal) diversity of structural species may
promote the species diversity and resilience of ecosystems in the face of environmental
extremes. Conversely, low genotypic diversity may indicate an asexual strategy to maintain
resources and genetic variation during population decline. Here, we use microsatellite markers
to assess geographic variation in clonality in the coral Acropora palmata sampled from 26 reefs
in eight regions spanning its tropical western Atlantic range (n¼751). Caribbean-wide, the ratio
(6SD) of genets (Ng) to sampled ramets (N) was 0.51 6 0.28. Within reefs (30–70 m) and among
reefs (10–100 km) within regions, clonal structure varied from being predominantly asexual
(Ng/N approaching 0) to purely sexual (Ng/N¼ 1). However, two genetically isolated regions
(western and eastern Caribbean) differed in clonal structure: genotypically depauperate
populations (Ng/N¼ 0.43 6 0.31) with lower densities (0.13 6 0.08 colonies/m2) characterized
the western region, while denser (0.30 6 0.21 colonies/m2), genotypically rich stands (Ng/N¼
0.64 6 0.17) typified the eastern Caribbean. Genotypic richness (standardized to sample size;
Ng/N) and genotypic diversity (Go/Ge) were negatively related to colony density within each
province (r2¼ 0.49–0.66, P , 0.001), indicating that dense stands have higher rates of asexual
recruitment than less dense populations. Asexual recruitment was not correlated with large-
scale disturbance history or abundance of large colonies (potential fragment sources) but was
negatively correlated with shelf area (r2¼ 0.57, P , 0.01). We argue that sexual recruitment is
more prevalent in the eastern range of A. palmata than the west, and that these geographic
differences in the contribution of reproductive modes to population structure may be related to
habitat characteristics. The two populations of the threatened A. palmata differ fundamentally
in reproductive character and may respond differently to environmental change.
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INTRODUCTION

Structural species (sensu Connell et al. 1997) build the

three-dimensional architecture of ecosystems. Stable

population sizes of structural species are therefore

beneficial for the demographic persistence and function

of entire ecosystems. While this ultimately involves

completing the sexual life cycle, many structural species

are capable of extensive clonal reproduction, including

redwoods (Douhovnikoff et al. 2004), sea grasses

(Reusch 2001), and reef corals (Ayre and Hughes

2000). Such clonal growth may allow for population

persistence and preservation of genetic diversity through

periods of poor sexual recruitment (Lasker and Coffroth

1999). Clonal reproduction may also lead to reduced

genotypic diversity and, as a result, higher susceptibility

to environmental volatility (Reusch et al. 2005). Knowl-

edge of genetic and genotypic diversity patterns is thus

critical for a complete understanding of population

structure and function of clonally reproducing structural

species.

The consequences of clonal growth for genotypic

diversity depend largely on how frequently sexual

recruits replenish local populations and how long genets

live (Eriksson 1993). Genotypic richness is directly

proportional to frequency of sexual recruitment while

genotypic evenness is more influenced by genet longev-

ity, a consequence of the size dependency of genet

survival (Coffroth and Lasker 1998b). Both empirical

(Ayre 1985, Hartnett and Bazzaz 1985, Hunter 1993,

Travis and Hester 2005) and theoretical studies (Sebens

and Thorne 1985) have suggested that genotypic

diversity at a local scale might decrease over time
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through elimination of genets by intraspecific competi-

tion or stochastic effects. In contrast, genotypic diversity

might remain high if sexual recruits, however rare, have

a long life span after successful establishment (Burnett et

al. 1995, McFadden 1997) and have similar competitive

abilities (Ferrell 2005). As a consequence of the complex

interplay between the frequency of sexual recruitment,

genet longevity, and stochastic effects, the ratio of clonal

to sexual recruitment is expected to vary over the

geographic range of a species.

For sessile organisms with external fertilization,

asexual reproduction may be the only local means of

proliferation if population densities decline to a point

that dilution of gametes is too great for fertilization to

occur (Allee effect; Pennington 1985, Knowlton 1992,

Levitan 1992). Such remnant populations may become

sexually extinct after prolonged clonal growth and the

absence of immigration from other populations (eco-

logically driven sexual extinction; Honnay and Bossuyt

2005). Sexual extinction becomes more likely in frag-

mented populations and in populations at the extremes

of the species’ range due to decreases in the frequency of

immigration (Ellstrand and Roose 1987, Eckert 2002,

Honnay and Bossuyt 2005). Persistence of clonally

reproducing structural species is thus a function of both

sexual and asexual reproduction.

Populations of structural species with high genotypic

diversity may be able to better cope with extreme

climatic events (Reusch et al. 2005) and enhance species

diversity in their communities (Booth and Grime 2003).

Populations with low clonal diversity are more vulner-

able to pathogens and parasites (Lively et al. 1990,

Schmid 1994, Zhu et al. 2000, Booth and Grime 2003).

Pathogens in coral reef ecosystems may be increasing in

both frequency and virulence as sea-surface temperature

rises (Ben-Haim et al. 2003, Jones et al. 2004, Rosenberg

and Falkovitz 2004). The decline of reef-building

acroporids in the Caribbean that began in the 1980s

was largely the result of a disease outbreak (white band

disease; Gladfelter 1982, Aronson and Precht 2001), with

bleaching and hurricanes being additional contributing

factors (Knowlton et al. 1981, Woodley et al. 1981). Bak

(1983) previously suggested that high asexual reproduc-

tion rates might have led to low genotypic diversity and,

hence, high disease susceptibility in Caribbean acropor-

ids. Differential sensitivity of genets to environmental

extremes has also been suggested for several cnidarians

(Shick and Lamb 1977, Lasker et al. 1984, Ayre 1985,

Glynn 1990, Lasker 1990, Gleason 1993).

In this study, we investigate the clonal structure of a

threatened structural species of Caribbean reefs, the

elkhorn coral Acropora palmata (Plate 1; also see

Appendix A). Prior to major population declines in the

1980s, Acropora palmata was the primary constructor of

reef framework in many locales such as the Florida Keys

(Shinn 1963) and a dominant occupier of space on

Caribbean reefs (Shinn 1963). The high cover was likely

the result of proliferation via branch breakage by

physical disturbance (fragmentation; Highsmith 1982)

and high growth rates (Shinn 1966, Gilmore and Hall
1976, Tunnicliffe 1981, Highsmith 1982). The relative

importance of clonal structure as it relates to population
growth is not clear however, because no studies have

examined clonal structure in A. palmata. Analyses of
clonal structure in A. palmata’s congener, A. cervicornis,
suggested single clones sometimes dominated areas of

10 m2 in Jamaica and St. Croix (Neigel and Avise 1983),
although the genetic basis of tissue compatibility assays

underlying this study have been questioned (Heyward
and Stoddart 1985, Resing and Ayre 1985).

Clonal reproduction in some corals, including A.
palmata, is initiated by extrinsic factors similar to some

terrestrial plant species (aspen; Gom and Rood 1999)
rather than by intrinsic processes (stolon formation,

production of asexual larvae). Physical disturbance is
the most commonly invoked mechanism responsible for

fragmentation leading to clonal proliferation in corals
(Hunter 1993, McFadden 1997, Coffroth and Lasker

1998b) and large-scale disturbances such as hurricanes
occur in somewhat predictable spatial patterns, with

higher frequency and intensity in the northwest of the
Caribbean (Gardner et al. 2005). Furthermore, acrop-

orid populations should have the chance to adapt to
regionally varying disturbance regimes. The externally
fertilized larvae of Acropora palmata disperse for about

one to two weeks in the plankton (Szmant 1986), and
multi-locus genotyping suggests larval exchange occurs

within, but rarely between, eastern and western phylo-
geographic provinces (split along a northeast–southwest

boundary running between the Mona Passage to the
Guajira Peninsula, Colombia, with some mixing in

Puerto Rico [Baums et al. 2005b, Baums et al. 2006]).
We hypothesized that clonal structure would vary over

the geographic range of A. palmata under the influence
of several intrinsic and extrinsic factors affecting sexual

and asexual reproductive potential, including the distinct
genetic makeup of the western and eastern phylogeo-

graphic provinces of A. palmata. Because the geographic
scale of variation in clonal structure of A. palmata was

not known, we employed a hierarchical sampling design:
clonal structure and population parameters (such as

colony size frequency distribution) were assessed within
reefs (30–70 m), between reefs (10–100 km), regions

(1000 km), and provinces in the Caribbean. The goals of
the study were to (1) assess the geographic scale of
variation in clonal structure in A. palmata using high

resolution microsatellite markers and (2) test whether
factors previously proposed to cause variation in clonal

structure, such as size distribution of populations,
disturbance frequency, or habitat characteristics, explain

the patterns we observe.

MATERIALS AND METHODS

Sampling

A total of 751 Acropora palmata Lamarck colonies

was sampled and genotyped from 32 stands representing
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26 reefs in eight regions of the Caribbean and western

North Atlantic (Fig. 1, Tables 1 and 2; see Table 1 in

Baums et al. 2005b for GPS coordinates of sampling

sites). The eight regions fall into two phylogeographic

provinces: populations in Florida, Bahamas, Navassa,

Panama, and Mexico belong to the western province;

populations in the U.S. Virgin Islands, St. Vincent and

the Grenadines, Bonaire, and Curaçao belong to the

eastern province (Baums et al. 2005b). The term reef is

used when referring to duplicate sets of samples

(¼stands) from the same site. Colonies were sampled

on three spatial scales using a random sampling

procedure (described in Baums et al. 2005a) to detect

both common and rare genets. Random numbers were

generated by the random number generating function in

Microsoft Excel (Microsoft Corporation, Redmond,

Washington, USA) as coordinates for locations within

each of three nested circles with radii of 15 m, 10 m, and

5 m. These coordinates were generated with a precision

of 58 of arc and of 50 cm along strike. Coordinates were

FIG. 1. Geographic localities in the Caribbean from which colonies of Acropora palmata were sampled.

November 2006 505GEOGRAPHIC VARIATION IN CLONAL STRUCTURE



located using a compass and a measuring tape attached

to a stake placed in the center of the stand. The colony
underneath each coordinate was sampled until eight

samples per circle were obtained. If there was no colony

at a particular random coordinate, that coordinate was
crossed out and the next random number was sampled.

No colony was sampled twice. By design, this approach

results in higher sampling effort on the 5-m scale

compared to the 10- and 15-m scales. All colonies
within the 15 m radius circle were counted so that colony

density (no. colonies/m2) at each site could be estimated.

A colony (ramet) is defined as a continuous, upright
entity of skeleton with a stalk that attaches it to the

bottom. Where the size of the Acropora palmata stand

TABLE 1. Characteristics of Acropora palmata sampled randomly for analysis of clonal structure.

Region
Reef
code

Reef
name

Num.
col.

Col.
dens.

Genet
dens.

Prop.
sampled N Ng Ng/N Go Go/Ge Go/Ng 1 � D E Gr

Bahamas Ba1 Great Iguana 61 0.09 0.010 0.38 23 7 0.30 3.33 0.14 0.48 0.89 0.53 2
Ba5 Bock Cay 105 0.15 0.011 0.22 23 8 0.35 4.10 0.18 0.51 0.79 0.68 3
Ba7 Middle Beach 62 0.09 0.014 0.37 23 10 0.43 4.85 0.21 0.49 0.83 0.63 2

Bonaire Bo1a Taylors Made I 92 0.13 0.020 0.23 21 14 0.67 10.26 0.49 0.73 0.95 0.75 3
Bo1b Taylors Made II 52 0.07 0.025 0.42 22 18 0.82 13.44 0.61 0.75 0.97 0.40 3

Curaçao Cu1a Blue Bay I 131 0.19 0.018 0.16 21 13 0.62 4.74 0.23 0.36 0.83 0.00 2
Cu1b Blue Bay II 78 0.11 0.027 0.26 20 19 0.95 18.18 0.91 0.96 0.99 0.00 4
Cu2a Sea Aquarium I 560 0.79 0.018 0.04 22 13 0.59 8.07 0.37 0.62 0.80 0.41 3
Cu2b Sea Aquarium II 370 0.52 0.017 0.07 25 12 0.48 4.06 0.17 0.34 0.90 0.81 2
Cu3a Awa Blanca I 160 0.23 0.023 0.13 21 16 0.76 11.92 0.57 0.74 0.96 0.60 3
Cu3b Awa Blanca II 200 0.28 0.017 0.11 22 12 0.55 8.64 0.39 0.72 0.93 0.83 3

Florida Fl4 Horseshoe 175 0.25 0.001 0.11 20 1 0.05 1.00 0.05 1.00 0 0 1
Fl5 Little Grecian 131 0.19 0.001 0.15 20 1 0.05 1.00 0.05 1.00 0 0 1

Panama Pa1 Bocas Del Drago 156 0.22 0.013 0.14 22 9 0.41 3.06 0.14 0.34 0.71 0.31 2
Pa3a Bastimentos I 102 0.14 0.007 0.21 21 5 0.24 1.68 0.08 0.34 0.42 0.15 2
Pa3b Bastimentos II 107 0.15 0.018 0.19 20 13 0.65 10.00 0.50 0.77 0.95 0.80 3

USVI Vi1 Johnson’s Reef 204 0.29 0.023 0.11 23 16 0.70 11.76 0.51 0.73 0.96 0.74 3
Vi2a Hawksnest Bay I 264 0.37 0.011 0.08 22 8 0.36 3.32 0.15 0.41 0.73 0.50 2
Vi2b Hawksnest Bay II 212 0.30 0.013 0.11 24 9 0.38 3.06 0.13 0.34 0.70 0.38 2

Navassa Na3 Lulu Bay NA 15 15 1.00 15 1 1 1.00 ND 4

Total 14 reefs
(20 populations)

3222 430 219

Mean 169.6 0.24 0.02 0.18 21.5 11.0 0.52 7.07 0.34 0.63 0.77 0.45
SD 123.1 0.17 0.01 0.11 2.1 5.0 0.26 5.06 0.28 0.24 0.30 0.30

Notes: Duplicate sets of circles were collected at some reefs (indicated by the ‘‘a’’ or ‘‘b’’ ending of the reef code). Total area
sampled was always 707 m2. Key to abbreviations: Num. col., number of colonies within each set of circles; N, number of colonies
that were sampled; Prop. sampled, proportion of colonies of those present that were sampled; Col. dens., colony density (no./m2);
Genet dens., genet density (no./m2); Ng, number of genets; Go, observed genotypic diversity; Ge, expected genotypic diversity;
Go/Ge, genotypic diversity (assesses the relative importance of sexual reproduction in a population); Go/Ng, genotypic evenness
(number of ramets per genet); 1� D, complement of Simpson’s diversity index; E, Fager’s evenness; NA, data not available; ND,
not defined. Populations were classified into groups (Gr) based on their combination of Ng/N and Go/Ge values as asexual (1),
mostly asexual (2), mostly sexual (3), and sexual (4) (Fig. 3).

TABLE 2. Characteristics of A. palmata stands sampled haphazardly for analysis of clonal structure.

Region
Reef
code

Reef
name

Colonies
present

Max. dist.
sampled (m)

Prop.
sampled N Ng Ng/N Go Go/Ge Go/Ng 1 � D E Gr

Bahamas Ba6 Black Buoy NA 14.4 NA 21 11 0.52 7.23 0.34 0.66 0.90 0.77 3
Ba2 Halls Pond 23 67.3 0.83 19 12 0.63 9.76 0.51 0.81 0.95 0.85 3
Ba4 Little Darby NA 21.6 NA 25 10 0.40 3.81 0.15 0.38 0.77 0.49 2
Ba3 Rocky Dundas NA 55.2 NA 17 4 0.24 2.43 0.14 0.61 0.63 0.63 2

Curaçao Cu4 Boka Patrick NA 72.0 NA 21 15 0.71 12.60 0.60 0.84 0.97 0.83 3
Florida Fl9 Marker 3 NA 49.0 NA 40 2 0.05 1.05 0.03 0.53 0.05 0.00 2

Fl3 Sand Island 75 87.1 0.75 39 12 0.21 3.25 0.06 0.27 0.71 0.60 3
Mexico Me1 Chinchorro NA 60.0 NA 56 7 0.20 2.58 0.07 0.37 0.63 0.55 2
Navassa Na1 N Shelf 19 44.1 0.95 35 18 1.00 18.00 1.00 1.00 1.00 ND 4

Na2 NW Point 37 96.2 0.95 18 35 1.00 35.00 1.00 1.00 1.00 ND 4
Panama Pa2 Cayo Wild

Cayne
21 34.2 0.81 35 7 0.41 3.11 0.18 0.44 0.72 0.40 4

SVG Sv4 Canouan NA 86.3 NA 17 12 0.71 8.26 0.49 0.69 0.97 0.79 3

Total 12 reefs 321 145
Mean 78.9 26.8 12.08 0.51 8.92 0.38 0.64 0.77 0.59
SD 89.4 12.3 8.49 0.31 9.61 0.35 0.25 0.27 0.26

Notes: When available, the total number of colonies present is given. Max. dist. sampled is the maximum distance between
samples (not genets) collected and indicates the sampling scale. See Table 1 legend for explanation of other abbreviations. Colony
densities were 0.012 and 0.005 colonies/m2 for N Shelf and NW Point Reef, respectively.
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allowed, two nonoverlapping, duplicate sets of circles

were sampled (noted by the lowercase letters a and b as

part of the reef code in Table 1). Distances between

center points of duplicate sets of circles ranged from 35 m

to 70 m.

This random approach was not always feasible,

especially when colony density was low. In these cases,

either all or a large proportion of the colonies present at

a site were sampled haphazardly (Table 2). When

feasible, the total number of colonies present at the site

was counted (Table 2). The sampling scale for haphaz-

ardly sampled sites was estimated by calculating the

maximum pair-wise distance between samples. In the

following discussion, we define a population as all

samples originating from one set of nested circles or

from one haphazardly sampled reef. For randomly and

haphazardly sampled sites, maps were prepared identi-

fying the location of each colony in relation to the center

point. Colony size was measured as two diameters and

the height to the nearest 10 cm. Active disease

occurrence (‘‘white diseases,’’ apparent as a sharp front

between live tissue and bright white dead skeleton) and

the number of coral-eating snails (Coralliophila abbre-

viata) were recorded at time of sampling at most sites.

One 1 cm long tip was snipped off from each identified

colony using a bolt cutter and placed in a labeled zip

bag. Coral samples were transferred into 70% ethanol

upon returning to shore and stored at �808C until

genotyping.

Genotyping

We refer to an assemblage of genetically identical

colonies (clones) that are descendants of a single zygote

as a ‘‘genet’’ (Harper 1977, Hughes 1989, Carvalho

1994). Physiologically distinct colonies that can function

and survive on their own but belong to the same genet

are termed ‘‘ramets’’ (Kays and Harper 1974) or clone

mates.

We used five newly developed microsatellite loci for

Acropora palmata (Baums et al. 2005a) to distinguish

genets. Because these markers are highly heterozygous

(mean observed heterozygosity ¼ 0.88), there is a low

probability of identifying two colonies as clone mates

when in fact they are distinct genets (this is called the

probability of identity (PI) and equals 13 10�7) (Baums

et al. 2005b). Microsatellites were shown to be Mende-

lian and coral specific by controlled crosses (Baums et al.

2005a).

Tissue samples were extracted and genotyped as

described in (Baums et al. 2005a). Briefly, two multiplex

polymerase chain reactions (PCR) were performed per

sample using fluorescently labeled primers to assay five

microsatellite loci containing AAT repeats. PCR prod-

ucts were visualized with an automated sequencer (ABI

3730; Applied Biosystems, Foster City, California,

PLATE 1. Colony morphology of Caribbean elkhorn coral (Acropora palmata) varies from plating to branching to encrusting.
Shown is an example of branching morphology from Blue Bay II, Curacao, 155 3 120 3 105 cm. A color version of Plate 1 is
provided in Appendix A. Photo credit: I. Baums.
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USA). An internal size standard (Gene Scan 500-Liz;

Applied Biosystems) ensured accurate sizing. Electro-

pherograms were analyzed with GeneMapper Software

3.0 (Applied Biosystems). Alleles were scored based on

amplicon size. Samples with identical alleles at all five

loci were regarded as ramets belonging to the same

genet.

Analyses

Genotypic vs. genetic diversity.—Genotypic and genet-

ic diversity describe fundamentally different processes

that are at the heart of this study. Genetic diversity

refers to the amount of variation on the level of

individual genes in a population. In contrast, genotypic

diversity is defined as the number of unique multilocus

genotypes present in a population and varies on the level

of whole organisms. A multilocus genotype (genet) may

occur several times (ramets) in a population only as a

result of asexual replication (identity by descent).

1. Adequacy of sampling approach.—Unless one genet

completely dominates a population, the number of

genets detected increases with sample size, sampling

intensity (i.e., proportion of the population sampled),

and the spatial scale of sampling. To standardize data

sets from different populations sampled at different

intensities and spatial scales (Tables 1 and 2), rarefaction

curves were calculated (Gotelli and Colwell 2001). By

repeatedly resampling the pool of N colonies, the

average number of genets represented by 1 to N

individuals is obtained and plotted. Biases are likely to

differ between randomly and haphazardly sampled reefs

(see Materials and Methods: Sampling) and so only

samples collected using similar protocols can be

compared in this manner (Gotelli and Colwell 2001).

Rarefaction analysis was carried out using Analytic

Rarefaction, version 1.3, based on the formulation of

Tipper (1979; software available online).5

2. Clonal structure parameters.—Clonal population

structure was expressed as genotypic richness (stan-

dardized to sample size Ng/N), genotypic diversity (Go/

Ge), or genotypic evenness (Go/Ng; sensu Coffroth and

Lasker 1998b). Genotypic richness is given as the

number of unique genotypes (genets, Ng) identified over

the total number of colonies sampled (N). Observed

genotypic diversity, Go, as defined by Stoddart and

Taylor (1988) was calculated as

Go ¼
1Xk

i

g2
i

where gi is the relative frequency of the ith of k

genotypes. An expected level of genotypic diversity

equal to N can be posed for a sexually reproducing

population. The multilocus genotypes produced by the

five microsatellite markers in this study were unique to

each genet (see Materials and Methods: Genotyping), so

that the genotypic diversity expected in solely sexually

reproducing population (Ge) equals the number of

colonies genotyped (n). Previous studies using less

polymorphic allozyme markers had to estimate Ge

(Stoddart and Taylor 1988). The ratio Go/Ge attempts

to measure the relative contribution of asexual and

sexual reproduction in a population and is a measure of

the populations’ genotypic diversity. Go/Ge has a

maximum of 1 in a solely sexual population and

approaches 0 in a population dominated by a single

genet.

The ratio Go/Ng measures genotypic evenness. In a

population with one or a few dominant clones, the

evenness approaches 0, whereas, in a population where

each genet is represented by equal numbers of ramets,

the ratio approaches 1. A peculiarity of this statistic is

that populations with only one genotype also have an

evenness of 1 although, arguably, evenness has no

meaning in a population with a single genet. A wide

range of combinations of genotypic diversity and

evenness values are possible in a given population and

are in fact observed in clonal plants (e.g., Sole et al.

2004). Thus, based on the combination of genotypic

diversity (Go/Ge) and evenness (Go/Ng), populations

were classified into four groups (sexual, mostly sexual,

asexual, and mostly asexual) to facilitate discussion and

further analysis.

For comparison with the plant literature (Ellstrand

and Roose 1987), two additional measures of dominance

and evenness are presented. The complement of the

Simpson index corrected for finite samples, D (Pielou

1969), was calculated as

D ¼ 1�
X

niðni � 1Þ
NðN � 1Þ

" #

where ni is the number of colonies of genotype i and N is

the total sample size. D is 0 in a population with only

one genet and 1 in a population comprised of genets

with only one member. The evenness measure of Fager

(1972), was calculated as

E ¼ Dobs � Dmin

Dmax � Dmin

where Dmin ¼ (Ng � 1)(2N � Ng)/N(N � 1) and Dmax ¼
N(Ng � 1)/Ng(N � 1). E is 0 in a population where all

colonies represent different genets or where all colonies

belong to the same genet. E is undefined when all genets

of a population have the same number of ramets.

3. Ecological parameters and their relationship to clonal

structure among populations.—Several ecological char-

acteristics of the sampled populations were recorded at

the time the tissue samples were collected. Colony

density was expressed as the number of colonies counted

within the sample area (see Materials and Methods:

Sampling). Data on colony density was available for 19

populations (Table 1). Size histograms for the sampled5 hhttp://www.uga.edu/strata/software/Software.htmli
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colonies based on estimated colony volume (product of

two orthogonal diameters and one height) were pre-

pared for each population (data not shown). The

distribution of size classes was skewed toward small

colonies. Hence, size estimates were log transformed and

then mean size of colonies was compared among groups

(via ANOVA described in Materials and Methods:

Analyses: Potential factors influencing clonal structure).

In addition, the coefficient of variation (CV) of log-

transformed size estimates for each reef was calculated.

The CV provided estimates of the skewness of size

frequency distributions in the different populations.

The spread of ramets was expressed as the average

distance between clone mates (m). First, radial sampling

coordinates were converted to X�Y distances. Then,

pairwise comparisons of distance (in m) were made

between all ramets of a genet and averaged. Note that

this average can be based on very different numbers of n

(Fig. 2). The maximum extent of genets on a reef was

measured as the maximum distance (in m) between any

two ramets of a genet in that population.

We used one-way ANOVAs followed by Tukey’s post

hoc tests to examine significant differences between

populations of different clonal structure groups (asex-

ual, mostly asexual, mostly sexual and sexual, see above)

in colony density, size structure, and clonal spread.

Variances were homogenous for all comparisons (Lev-

ene’s test, P . 0.05).

To assess the spatial scale at which clonal structure

varies predictably, population values of genetic and

ecological parameters were averaged by sampling region

(n ¼ 8) and by province (n ¼ 2 with four regions each).

Regression analysis was performed to test for significant

correlation between ecological parameters and clonal

structure within each province. We tested for significant

differences in clonal structure and ecological parameters

between provinces using an independent t test after

homogeneity of variances was ascertained (Levene’s

test).

4. Potential factors influencing clonal structure.—In

previous studies (Hunter 1993, Lirman 2000a), physical

disturbance, habitat availability, and size structure of

the population were identified as important factors in

determining the degree of clonality in local populations

of scleractinian corals. Existing data sets (for physical

disturbance and habitat availability) and the ecological

data collected in the present sampling (for size structure)

were used to estimate these parameters for each of the

randomly sampled populations. A stepwise regression

assessed the capacity of these independent factors to

explain spatial patterns in clonal structure.

We quantified the number of hurricanes experienced

by each of the randomly surveyed sampling sites

between 1863 and 2003 (Table 1) using GIS (geo-

graphical information system, ArcView version 3.2;

ESRI, Redlands, California, USA). Standard buffer

zones around each reef location were defined (Stoddart

et al. 1985, Done 1992, Gardner et al. 2005) according to

storm strength: 35-km buffer for tropical storms (TS)

and category 1 and 2 hurricanes (HS 1 and HS 2); 60 km

buffer for category 3 hurricanes (HS 3); 100 km buffer

for category 4 and 5 hurricanes (HS 4 and HS 5).

Spatially explicit data on hurricane occurrence and

strength for the Caribbean basin are available online.6

Using this data set, each storm was counted once when it

entered its strength-specific buffer zone.

Caribbean reefs occur on and around land masses of

diverse geological origin such as continental shelves

(e.g., reefs off Florida and Panama), volcanic islands

(e.g., St. Vincent and the Grenadines), and banks (e.g.,

the Bahamas). These habitats are characterized by

differences in reef slope and thus total habitat area

available above 30 m. Habitat area was measured by

calculating the amount of area contained in each of 30 1-

m depth increments from 0 to �30 m using bathymetry

with 1-km resolution in a 35 km area around the

randomly sampled reefs (using Arc View 3.2; bathy-

metry data available online).7 This measure gives an

indication of how steep the slope is surrounding the

sampled locations.

Fragmentation processes are related to colony size in

Acropora palmata (Lirman 2000a). Large colonies are

likely the greatest source of fragments (asexual repro-

duction) because they have large numbers of branches

(potential fragments) and their size enhances chances of

successful recovery from injuries associated with frag-

mentation (Lirman 2000b). Colony volumes were log-

transformed and binned. The number of large colonies

in each randomly sampled population was determined

by counting the number of colonies that had a log

transformed volume index �6. This represents the upper
third of the log size classes observed among the reefs

(bins ranged from 2 to 8 in 0.5 increments).

FIG. 2. Frequency of genet size (no. sampled ramets in a
genet) in Caribbean A. palmata. In total, n ¼ 364 genets were
observed, containing a total of n¼ 751 ramets.

6 hhttp://hurricane.csc.noaa.gov/hurricanes/i
7 hwww.reefsatrisk.comi
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Measures of habitat availability, physical disturbance,

and abundance of large colonies were entered into a

multiple linear regression analysis with Ng/N (genotypic

richness) as the dependent variable (SPSS version 9.0;

SPSS, Inc., Chicago, Illinois, USA). We confirmed with

correlation analysis that the three independent factors

were not correlated. The model was run twice, once with

backward and once with forward addition of factors.

Similar regression coefficients were obtained in both

cases.

RESULTS

Among the 751 Acropora palmata colonies sampled

from throughout the Caribbean, there were 364 unique

genotypes. Most genets were represented by a single

ramet (Fig. 2). One genet from Horseshoe Reef, Florida,

however, was composed of 20 sampled ramets over an

area of 707 m2 (Table 1).

Adequacy of sampling approach

Rarefaction curves (not shown) were compared for

the set of randomly sampled populations, and for the set

of haphazardly sampled populations. The number of

genets present clearly differed between populations, even

when comparing them at the level of the smallest sample

size (n ¼ 17 from Rocky Dundas for haphazardly

sampled reefs and n ¼ 15 from Lulu Bay for randomly

sampled reefs; Tables 1 and 2). The ranking of

populations in terms of the number of genets present

remained the same at these reduced sample sizes as for at

their full sample size. Thus, in the following, raw non-

standardized data are used to describe clonal structure

patterns to prevent the loss of information associated

with rarefaction curves (Gotelli and Colwell 2001).

Second, to test whether genotyping 24 samples on a

15-m (or smaller) scale is adequate for estimating the

total number of genotypes at a site, we compared the

number of genets identified in the nested, randomly

sampled circles. Most of the clonal richness of a

population was captured by the eight samples collected

on the smallest (5 m) radius plot (mean 6 SD of 3.8 6 2

genets detected, n ¼ 73). Widening the radius from 5 m

to 10 m (4.9 6 2, n¼ 93) and then again to 15 m (5.1 6

2, n ¼ 97) resulted in small, nonsignificant gains in the

number of genets identified (one-way ANOVA, P .

0.1).

Variation in population structure within and among reefs

Clonal population structure.—Genotypic richness (Ng/

N) ranged from 1 (each sample representing a unique

genotype) on all three Navassa reefs (Fig. 3A) to nearly

0 (only one genet present) on two Florida reefs (Fig 3B;

also see the Supplement). The Caribbean-wide average

of Ng/N was 0.51 6 0.28. At the 14 reefs randomly

sampled using the nested circle approach, genotypic

richness averaged 0.52 6 0.26. This value was virtually

identical to that for haphazardly sampled reefs (0.51 6

0.31), despite the potential bias toward detecting a larger

number of genets when sampling a larger proportion of

the population with the haphazard sampling approach.

Genotypic diversity, richness, and evenness of

sampled A. palmata populations show a continuum

between 0 and 1 for all measures (Tables 1 and 2).

Inspection of the relationship between genotypic diver-

sity and evenness values distinguishes four groupings of

population structures (Fig. 4, Tables 1 and 2). Four

populations (all three Navassa reefs and one population

from Blue Bay, Curaçao) were classified as sexual with

an average genotypic diversity of 0.98 6 0.05, indicating

that asexual reproduction is nearly absent. This results

in high genotypic evenness values (1.00 6 0.03). The

‘‘mostly sexual’’ group was characterized by moderate

genotypic diversity (0.44 6 0.14) and evenness (0.69 6

0.11) values. While some asexual reproduction occurs,

no one genet dominates these populations. This group

consisted of 12 populations. ‘‘Mostly asexual’’ popula-

tions (n¼ 13) had low genotypic diversity (0.13 6 0.06)

and evenness (0.40 6 0.09). Here, one or a few clones

dominated the population. In two populations, Horse-

shoe and Little Grecian reefs in Florida, only one genet

was identified (see Figs. 3 and 4 in Baums et al. 2005a).

Both stands are linear in shape (I. B. Baums, personal

observation) and additional samples (n ¼ 4 and 5,

respectively, Fig. 3B) collected from the edges of the

stands (27.5 6 11.8 m and 58.2 6 8.4 m distance to

center point, respectively) confirmed that each was

monoclonal. At Little Grecian reef, the maximum extent

of the genet we sampled was 75.3 m. At Horseshoe reef,

the maximum distance we sampled was 69.7 m. The

relationship between Go/Ng and Go/Ge is a power

function (f ¼ 0.99x0.42, r2 ¼ 0.86, P , 0.001, excluding

the asexual group, see Materials and Methods). The

addition of just one genet to a mostly asexual population

results in a relatively higher gain in evenness than the

addition of one genet to a mostly sexual population.

Similar patterns of clonal diversity and evenness were

evident when using Simpson’s diversity index (1 � D)

and Fager’s evenness measure (E, Tables 1 and 2) to

obtain the groupings in Fig. 4.

In three cases, duplicate sets of circles sampled on the

same reef within 50–75 m of one another resulted in such

different estimates of clonal diversity and evenness that

duplicates were placed in different population structure

groups (Table 1, Fig. 4). One duplicate set from Sea

Aquarium, Curaçao, was placed into the mostly asexual

group, whereas the other was placed into the mostly

sexual group. The same was true for the duplicate sets

from Bastimentos, Panama. Duplicate sets from Blue

Bay, Curaçao, showed such different patterns of clonal

structure as to warrant classification for one as mostly

asexual whereas the other was sexual (Table 1, Fig. 4).

At the scale of reefs, similar variation was observed.

In the Florida Keys, Horseshoe and Little Grecian Reefs

are separated from Sand Island by only 15 km, and have

similar depth and exposure but contrasting clonal

structure. Johnson’s Reef and Hawksnest Bay Reef in
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the USVI, separated by just 2 km, also had markedly

different degrees of asexual reproduction (Table 1).

Ecological parameters and their relationship to clonal

structure.—Colony density varied considerably among

the sampled stands, from 0.09 to 0.79 colonies/m2,

however, there was no significant difference in colony

density among the populations in the four clonal

structure groups (one-way ANOVA, F3,15 ¼ 1.20, P ¼
0.34). Similarly, neither mean colony size nor the

variation in size structure (data not shown) differed

FIG. 3. Representative polar plot maps of genotypic diversity within populations of A. palmata. Each colored symbol represents
a sampled ramet. Ramets of the same genet are indicated by a common symbol and color. The radial axis shows the distance (m);
the angular axis shows the angle in degrees. (A) At NW Point reef, Navassa, every colony represents a unique genet. (B) At
Horseshoe Reef, Florida, each point represents a ramet of the same genet. At Bastimentos Reef in Panama, clonal structure varies
between (C) stand I and (D) stand II, even though these are only 31.5 m apart (distance between center points at 3108). One genet
(red with black outline) occurred at both reefs. The plots are arranged graphically as they were laid out on the reef. See Tables 1 and
2 for sample sizes.
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significantly among the different clonal structure groups

(one-way ANOVAs, F3,27¼ 0.812, P¼ 0.499 and F3,27¼
2.33, P ¼ 0.096). The sexual group did have less

variation in size structure than the mostly sexual group,

probably due to the smaller n.

As is apparent from radial plots (Fig. 3 and Appendix

B), clone mates tend to be clumped. Nevertheless, some

ramet-rich clones were spread over large areas. Because

estimates of clonal spread are sensitive to the area

sampled, only stands sampled over similar areas (Table

1) are considered here. Note also that the spatial scale of

our sampling appears to be smaller than that of some of

the largest clones (e.g., at the monoclonal sites), so our

estimates of clonal spread should be biased downward.

Populations dominated by one or a few clones (the

mostly asexual group) showed significantly larger

average clonal spread than populations with fewer

ramets per genet (the mostly sexual group; one-way

ANOVA, F3,28 ¼ 10.40, P , 0.001). Average clonal

spread (6SD) for each of the four groups was 6.8 6 2.2

m (asexual), 4.7 6 1.6 m (mostly asexual), 3.2 6 1.8 m

(mostly sexual), and 2.8 6 4.8 m (sexual, not zero due to

one genet with two ramets in the Blue Bay II

population). Maximum distance between ramets de-

creased with increasing sexuality (data not shown).

Disease prevalence was at such low levels that a

further statistical analysis was not feasible. Out of 545

colonies surveyed, 35 showed signs of disease (Taylors

Made n¼ 4, Blue Bay n¼ 5, Sea Aquarium n¼ 6, Awa

Blanca n ¼ 4, Sand Island n ¼ 7, Little Grecian n ¼ 1,

Horseshoe n ¼ 3, Chinchorro n ¼ 3, Lulu Bay n ¼ 1).

Variation in clonal structure within and among regions

and provinces

Within the western province (populations in Florida,

Bahamas, Navassa, Panama, and Mexico), both purely

sexual (n ¼ 3 in Navassa) and purely asexual (n ¼ 2 in

Florida) populations were observed (Tables 1 and 2).

Overall, genotypic richness (Ng/N) was 0.43 6 0.31 in

this province (Table 3). The large variation of this

estimate is due to the entirely sexual populations in

Navassa. When excluding Navassa (because it is the

only region with entirely sexual populations, which may

be due to its exceptionally small shelf area; see

Discussion, Fig. 6B), mean Ng/N for the western

province equaled 0.32 6 0.19 (Table 3). Genotypic

richness was greater and more homogeneous (mean Ng/

N¼ 0.64 6 0.17) in the eastern (U.S. Virgin Islands, St.

Vincent and the Grenadines, Bonaire, and Curaçao;

Table 3) than the western province. Excluding Navassa,

the western populations also have lower genotypic

diversity than populations in the eastern Caribbean

(Go/Ge¼ 0.18 6 0.15 vs. 0.43 6 0.23, P , 0.001; Table

3). This pattern holds when using the complement of

Simpson’s diversity index instead of Go/Ge (P , 0.01,

Table 3). Acropora palmata populations within the

sampled areas in the western Caribbean are also less

dense (0.13 6 0.08 vs. 0.30 6 0.21 colonies/m2, P ,

0.05, including Navassa) than in the eastern Caribbean

(Table 3). Genotypic evenness, spread of clones, and

colony size were similar in both provinces (Table 3).

Within each province, genotypic richness (Ng/N; east,

r2 ¼ 0.55; west, r2 ¼ 0.65; P , 0.001) and genotypic

FIG. 4. Clonal structure of A. palmata stands (n ¼ 32) in the Caribbean. Based on the combination of genotypic evenness
(Go/Ng) and genotypic diversity (Go/Ge), stands are divided into four groups ranging from asexual to sexual to facilitate further
analysis. The power function shown was fitted excluding the asexual Florida populations (Fl4 and Fl5) because the statistic Go/Ng

approaches zero with low evenness, but becomes 1 when Go equals Ng. Some of the population names are overlapping because these
populations share the same combination of Go/Ng and Go/Ge (e.g., the two monotypic populations from Florida, F14 and F15).
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diversity (Go/Ge; east, r
2 ¼ 0.49; west, r2 ¼ 0.66; P ,

0.001) were negatively related to colony density (Fig. 5),

indicating that within provinces, denser populations

maybe the result of asexual recruitment and that they

have lower diversity than less dense populations. Within
provinces, clonal spread and mean colony size did not

vary with genotypic richness (Ng/N) or genotypic

diversity (Go/Ge) (data not shown).

Factors influencing clonal structure

Multiple linear regressions with the factors shelf area,

hurricane incidence, and abundance of large colonies

(Fig. 6) againstNg/N explained a maximum of 69% of the

variation in genotypic richness and were significant (P ,

0.01, Table 4). Shelf area explained the most variation

(57%), while abundance of large colonies and hurricane

incidence were not significant (Table 4, coefficients).

However, shelf area does not differ in a predictable

manner between the east and the west (Fig. 6A–C).

DISCUSSION

Clonal structure in Acropora palmata varied widely

among populations, from nearly monoclonal popula-

tions in Florida to highly genotypically diverse pop-
ulations (e.g., Blue Bay II in Curaçao) where each ramet

was genetically unique. Reusch et al (2000) found similar

extremes in clonal structure among populations of the

sea grass Zostera marina, but their most genotypically

depauperate populations were restricted to geographical
extremes (the eastern Pacific and the Baltic) of that

species’ range. The pattern we found in A. palmata was

predictable at large geographical scales that coincided

with previously identified genetically isolated provinces
in the Caribbean. The western province was character-

ized by genotypically depauperate populations with low

colony densities (with one exception), while dense

genotypically diverse stands typified the east. We think

that variable success of sexual recruitment is driving the
observed differences in clonal structure. However, local

variation in rates of fragmentation, history of hurricane

damage, and size structure of the population may be

additional factors influencing the degree of asexuality

within provinces, regions, and reefs.

Patterns of clonal structure in Acropora palmata

The scale at which the contribution of asexual

reproduction varied can be quite small. A. palmata

stands separated by only tens of meters within reefs to a

few kilometers between reefs showed markedly different

patterns in asexual reproduction (Table 1, Fig. 3C, D).

Neither colony size, variation in colony size, nor spread

FIG. 5. Relationship between colony density and (A) degree
of sexual reproduction (Ng/N) and (B) genotypic diversity (Go/
Ge) in A. palmata populations from the two phylogeographic
provinces (east and west) of the Caribbean. Higher colony
density is associated with (A) a lower degree of sexual
reproduction and (B) a lower genotypic diversity within each
of the two provinces. P values are for linear least-squares
regression; n ¼ 10 populations in each province.

TABLE 3. Clonal structure of A. palmata in each province. Values are means with SD in parentheses.

Province Col. dens. Ng/N Go/Ge Go/Ng 1 � D E
Colony
size

Genet
spread

West 0.13* (0.08) 0.43* (0.31) 0.31 (0.34) 0.63 (0.27) 0.68* (0.33) 0.50� (0.26) 5.16 (0.74) 7.10 (5.12)
West without
Navassa

0.17� (0.06) 0.32*** (0.19) 0.18*** (0.15) 0.57 (0.23) 0.60** (0.33) 0.50� (0.26) 4.98 (0.76) 8.11 (4.58)

East 0.3 (0.21) 0.64 (0.17) 0.43 (0.23) 0.63 (0.2) 0.9 (0.1) 0.54 (0.29) 5.17 (0.54) 6.65 (2.94)

Notes: See legend of Table 1 for abbreviations. Colony size is expressed as the mean of log(length 3 width 3 height). Genet
spread is the mean distance (m) between clone mates, and was calculated based on randomly sampled stands only (Table 1). West
without Navassa values are for the western province excluding Navassa (see Results: Variation in clonal structures within and among
regions and provinces for explanation). Clonal structure statistics were tested for significant differences between the eastern and
western provinces (with and without Navassa) with t tests.

* P , 0.05; **P , 0.01; ***P , 0.001; �P¼ 0.056.
� Because E is not defined for populations with only one genet (all Navassa stands), averages of E for the western province with

and without Navassa are identical.
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TABLE 4. Stepwise linear regressions between Ng/N (the contribution of asexual reproduction to the reef) and several explanatory
variables: shelf area above 30 m, hurricane incidence, and abundance of large colonies in each population (see Materials and
Methods: Analyses: Potential factors influencing clonal structure for an explanation of how these were estimated).

A) Regression analysis

Model df F P r r2 Adjusted r2 SE

1 3, 10 7.52 ,0.01 0.83 0.69 0.60 0.17
2 2, 11 10.22 ,0.01 0.81 0.65 0.59 0.17
3 1, 12 15.91 ,0.01 0.76 0.57 0.53 0.18

B) Coefficient analysis

Model Predictors
Standardized
coefficient (b) t P

1 constant 8.47 ,0.001
shelf area �0.64 �3.34 ,0.01
hurricane incidence �0.23 �1.18 .0.05

2 size class �0.35 �1.90 .0.05
constant 8.55 ,0.001
shelf area �0.73 �4.05 ,0.01

3 size class �0.28 �1.59 .0.05
constant 8.64 ,0.001
shelf area �0.76 �3.40 ,0.01

Notes: Independent variables were entered backward. Results remained the same when independent variables were entered
forward (Model 1 predictors: constant, size, shelf area, hurricanes. Model 2 predictors: constant, size, shelf area. Model 3
predictors: constant, shelf area). The dependent variable is Ng/N.

FIG. 6. Relationship between clonal structure of A. palmata population and factors potentially influencing clonal structure.
Potential factors include (A–C) shelf area above 30 m, (D–F) hurricane incidence, and (G–I) the number of colonies in large size
classes that may act as fragment sources. Clonal structure parameters were clonal diversity, Go/Ge (A, D, G); richness, Ng/N (B, E,
H); and evenness, Go/Ng (C, F, I). When two stands were sampled per reef (stands designated as a or b in Table 1), values describing
the clonal population structure were averaged. Circles represent stands from the western province; triangles represent stands from
the eastern province. Stands with extremely high (Navassa, circle with center dot) and extremely low (Florida, circles with gray fill)
clonal diversity are indicated. Hurricane incidence is the number of hurricanes normalized by storm strength.
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of clones was correlated with the degree of clonal

propagation at the scale of individual reefs. Hence, on

the within- and between-reef scale, clonal structure

patterns were not predictable by any of the parameters

that we assessed. Similar observations of highly variable

contribution to asexual reproduction on fairly small

spatial scales have been made for the dwarf eelgrass in

the Black Sea (Coyer et al. 2004) and Californian

sequoias (Douhovnikoff et al. 2004), although other

studies have found uniform genotyptic richness over far

larger spatial scales (e.g., Alberto et al. 2005).

Patterns in sexual contribution and genotypic diver-

sity emerged on the scale of the two phylogeographic

provinces. Acropora palmata populations in the western

Caribbean appeared to have higher asexual recruitment

rates, leading to lower genotypic diversity there than in

the east (Table 3). The notable exception was Navassa,

with its solely sexual populations and associated high

genotypic diversities. This lack of clonal reproduction at

Navassa is likely related to its exceptionally small shelf

area (see Discussion: Factors influencing asexual repro-

duction of populations).

Despite the prevalence of asexual reproduction in the

western Caribbean, overall colony density within sur-

veyed areas was lower than in the eastern Caribbean

(Table 3). Achieving higher population densities in the

east with less asexual reproduction is unexpected

because A. palmata is thought to have low rates of

(sexual) larval settlement (Dustan 1977, Bak and Engel

1979, Hughes and Jackson 1980, 1985, Rylaarsdam

1983, Rosesmyth 1984). This suggests that sexual

recruitment success in the eastern province has been

quite high; perhaps even higher than for asexual

recruitment in the west.

Factors influencing asexual reproduction of populations

Small-scale patterns of clonal variation within cni-

darian species have been attributed to disturbance

(Hunter 1993, Karlson et al. 1996, Coffroth and Lasker

1998b). Small-scale disturbance events such as waves

generated from local storms may play an important role

in influencing clonal structure. However, no Caribbean-

wide datasets exist that would allow us to evaluate their

influence on Acropora palmata stands. Hurricanes have

frequent impacts on some reefs in both regions, while

other localities like Curaçao, Bonaire, and Panama

rarely lie in the path of destruction (Goldenberg et al.

2001). If hurricane frequency were the main cause

underlying observed variation in clonal structure, then

regions with low hurricane frequency should exhibit

similarly low levels of asexual reproduction. This was

not the case. Overall, our stepwise regression analysis

indicated hurricane incidence explained little of the

variation in clonal structure (Table 4, Fig. 6).

Theoretical work shows that hurricanes do not always

lead to increased population sizes through fragment

generation. Lirman’s (2003) stage model of Acropora

palmata predicted that when storm frequency increases

over a certain threshold (once every two years),

fragmentation may come at considerable cost to the

colonies, leading to overall population decline especially

when sexual input is limited. Apart from having a

negative effect on growth rates and survivorship

potential, sexual reproduction is depressed in both the

surviving fragments and the source colony (Lirman

2000a). Similar results were observed for pacific

acroporids in field manipulations (Smith and Hughes

1999).

Other studies show that both the magnitude and

recency of disturbance affect genotypic diversity (Dou-

hovnikoff et al. 2005, Travis and Hester 2005). In corals,

highly asexual populations of Porites compressa in

Hawaii had experienced recent severe disturbance, while

populations dominated by sexual reproduction had been

undisturbed for longer periods (Hunter 1993). A

correlation between the clonal diversity (measured as

Go/Ge) and disturbance was also found for the

Caribbean gorgonian Plexaura kuna (Coffroth and

Lasker 1998b). However, in this case, intermediate levels

of disturbance were correlated with the highest clonal

diversity (see also Reusch 2006 for an example in

seagrasses). Our data show neither a linear response to

large-scale disturbance incidence nor an increase in

clonal diversity (or richness or evenness) at intermediate

levels of large-scale disturbance (Fig. 6).

Abiotic disturbance is a necessary but not sufficient

condition for successful fragmentation (Coffroth and

Lasker 1998b). Other requirements include the presence

of large colonies in the population to provide the source

of fragments and, depending on the severity of the

disturbance, a topography that will retain the fragments

within that population. Stepwise regression (Table 4,

Fig. 6) supported the importance of habitat area and, to

a much lesser extent, the size structure of the population.

The narrow shelf surrounding Navassa may help explain

the lack of successful clonal reproduction seen there

relative to other populations in the western Caribbean

(Fig. 6). Acropora fragments are likely generated by the

high wave energy characteristic of this island, but its

narrow shelf offers poor retention potential. Con-

gruently, lower survival of artificially produced frag-

ments of Pacific acroporids was evident on reef slopes

compared to reef flats (Smith and Hughes 1999). Habitat

area measured as slope may also be an index of other

influential habitat characteristics such as the geomor-

phology of the area (volcanic, bank, shelf) and,

consequently, sedimentation, freshwater influence, and

other related factors.

Sexual recruitment may drive geographic patterns

of clonal population structure

Factors influencing sexual rather then asexual recruit-

ment may drive geographic patterns of clonal popula-

tion structure in Acropora palmata. Note that here,

sexual recruitment refers to when individuals have

become part of the adult population (and we can
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measure them), not to just the recruitment of larvae to

the substrate (albeit the latter is a necessary first step).

Genotypic richness was significantly higher in the

eastern than in the western Caribbean, likely indicating

higher sexual recruitment rates in the east (Coffroth and

Lasker 1998b). For example, the Florida reefs domi-

nated by only one clone have apparently had no sexual

recruitment over the past few years. Studies of flowering

plants have likewise found reliance on asexual repro-

duction at the geographic periphery of species’ ranges

(see Dorken and Eckert 2001).

Direct quantification of sexual recruitment in A.

palmata over a large geographical scale is clearly needed

but is difficult to do. Despite the large potential number

of larvae produced each year, larval settlers of A.

palmata have rarely been observed (Dustan 1977, Bak

and Engel 1979, Hughes and Jackson 1980, 1985,

Rylaarsdam 1983, Rosesmyth 1984). Similarly, success-

ful recruitment of sexually produced seedlings is rare in

riparian cottonwood species that mostly maintain their

populations by asexual reproduction (Bradley and

Smith 1986). Field assessments of sexual recruitment

based solely on counts of small (,5 cm) A. palmata

colonies of certain morphology are insufficient, because

neither colony size nor morphology does reliably

indicate sexual origin (M. W. Miller, I. B. Baums, and

D. E. Willimas, unpublished manuscript).

Support for the hypothesis of sexual recruitment as

the driving factor of clonal structure in acroporid corals

comes from other studies. Along the Great Barrier Reef

(GBR), Acropora valida and A. millepora show similar

variation in values of Ng/N and Go/Ge among sites

within a reef (hundreds of meters [Ayre and Hughes

2000]) as observed here for A. palmata in the Caribbean.

Levels of sexual larval input might be an important

structuring force in reef communities: Connell et al.

(1997) showed that over 30 years, coral larval recruit-

ment patterns varied 7.5-fold among sites within one of

Ayre and Hughes’s study reefs. In addition, a regional

pattern in clonal structure emerged for A. valida that

was attributed to gradients in larval recruitment along

the GBR (Hughes et al. 2000). Interestingly, this

variation in acroporid larval recruitment was ascribed

largely to differences in fecundity of adults, not their

abundance (Hughes et al. 2000).

Consequences of variation in clonal structure

For clonal species, the number of breeding genets (not

ramets) will set an upper bound on the effective

population size. In A. palmata, approximately half of

the individual colonies sampled represented distinct

genets, although this average proportion was smaller

in the western than the eastern phylogeographic

province (Table 3). Large clones might contribute

disproportionately to a population’s reproductive out-

put (Hammerli and Reusch 2003), but extensive cover by

a single clone could also limit the output of larvae in an

obligately outcrossing species like A. palmata (Davis et

al. 2004, Baums et al. 2005a). Populations with small

effective population sizes are more prone to extinction

due to demographic stochasticity, reduction in gene

diversity, or accumulation of deleterious mutations

(Ellstrand and Elam 1993, Grosberg and Cunningham

2000).

In asexually reproducing species, population main-

tenance via clonal propagation can allow for persistence

of populations during times of reduced sexual recruit-

ment (i.e., a buffer to demographic stochasticity [Lasker

and Coffroth 1999]). In Florida, asexual proliferation of

clones has allowed populations to thrive at reefs with

only one genet each. One additional stand in Biscayne

National Park, Florida (Boomerang Reef, 25821010 00 N,

80810041 00 W) was subsequently found to be monoclonal

over similar spatial scales (data not shown, n¼ 12). For

external fertilizers, once the densities of individuals,

specifically that of non-clone-mates, becomes so low that

dilution of gametes is too great for fertilization to occur

(Allee effect; see Pennington 1985, Knowlton 1992,

Levitan 1992, Coffroth and Lasker 1998a, Davis et al.

2004), sexual reproductive success is decreased even

further. Such remnant populations may become sexually

extinct after prolonged clonal growth and absence of

immigration from other populations (ecologically driven

extinction, Honnay and Bossuyt 2005). Sexual extinc-

tion becomes more likely in fragmented populations and

in populations at the extremes of the species’ range due

to decreases in the frequency of immigration (Ellstrand

and Roose 1987, Eckert 2002, Honnay and Bossuyt

2005). Data consistent with this pattern was presented

for corals from the Great Barrier Reef (Ayre and

Hughes 2004). Thus, while monoclonal populations,

such as some of the Florida A. palmata stands, enable

the persistence of the species in a particular patch and

thereby preserve some of the genetic diversity of the

species, these populations exhibit an extinction debt

(sensu Honnay and Bossuyt 2005).

There is mounting evidence that genotypic diversity of

structural species may fulfill a similar role as species

diversity in whole ecosystems, conferring resilience to

disturbance (Reusch et al. 2005). An important factor

that led to the decline of Acropora palmata populations

in the Caribbean was the outbreak of the acroporid-

specific White Band Disease. Different genets may show

differential susceptibility to the disease. Genets of

another reef-building coral, Montastraea franksi, have

been shown to be differentially susceptible to bleaching

(Edmunds et al. 2003). Thus, A. palmata populations

with high genet diversity, as in the eastern Caribbean,

are more likely to withstand future threats such as

emerging diseases or global change (Lasker and

Coffroth 1999) than populations with low genet

diversity, like most of those in the western Caribbean.

Conversely, massive regional disease impacts in the

recent past may have influenced the genotypic structure

observed in the present study, but this is impossible to

quantify.
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Despite dramatic decline in A. palmata abundance, no

genetic signature of a bottleneck was evident in our data

set. Formal analysis with the program BOTTLENECK

(Piry et al. 1999) did not detect excess gene diversity over

expected gene diversity under mutation-drift equilibrium

when assuming an infinite allele model (IAM) or a

stepwise mutation model (SMM) for our microsatellite

markers regardless of the test statistic used (data not

shown). The long life spans of genets in this species may

buffer against loss of genetic diversity for some time

after severe population reductions (Appendix C). In

general, genetic diversity in asexually reproducing

species is expected to be comparable to solely sexually

reproducing species as long as sexual reproduction

occurs at least occasionally in the former (Bengtsson

2003, Halkett et al. 2005).

The depressed status of acroporid populations in the

Caribbean has led to their impending listing as

threatened under the U.S. Endangered Species Act.

Because the eastern and western Acropora palmata

populations appear to differ in their genotypic diversity

and may differ demographically (i.e., vary in the relative

importance of sexual and asexual recruitment), con-

servation strategies need to be tailored to local

conditions. Due to self-incompatibility, only stands

where neighboring spawners are of distinct genotypes

(assuming gamete dispersal distances are modest relative

to the spatial extent of large clones, Coffroth and Lasker

1998a) can serve as effective larval sources for surround-

ing populations. These diverse stands are more likely to

harbor genotypes that may be resistant against future

disease outbreaks. Hence, the substantial geographic

variation in genotypic diversity demonstrated here

implies large variation in the expected capacity of

individual populations to persist and recover.
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APPENDIX A

Photographs depicting the varying morphology of Acropora palmata colonies, from plating to branching to encrusting
(Ecological Archives M076-019-A1).

APPENDIX B

Representative polar plot maps of genotypic diversity within populations of Acropora palmata (Ecological Archives M076-019-
A2).

APPENDIX C

Gene diversity of Acropora palmata estimated based on two data sets: one including only unique multilocus genotypes (genets)
and one including all samples (all genotypes) (Ecological Archives M076-019-A3).
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