Overview:

- Introduction to safflower
- Recent interest by biotechnology sector
- Introduction to SemBioSys Genetics Inc.
- Future safflower genomics plans
Safflower: *Carthamus tinctorius* L.

- Traditionally grown for dyes and medicinal properties
- Currently grown mainly for seed
 - Birdseed
 - Animal feed
 - Industrial oil
 - Edible oil
Safflower: *Carthamus tinctorius L.*

- High oil content seeds
- High oleic and linoleic acid varieties (mono/polyunsaturated)
- Very low sat. fatty acid levels
- High vitamin E content (400ug/mL)
Safflower: Renewed interest for molecular farming in N.A.

- Low risk production platform for recombinant proteins:
 - Easily transformable using Agro
 - Recombinant protein levels in seeds are high
 - Very amenable to large scale production and purification

Technology:
- Easily transformable using Agro
- Recombinant protein levels in seeds are high
- Very amenable to large scale production and purification

Containment (regulatory):
- Low tendency to weediness
- High degree of self pollination (>90%)
- Low acreages grown in N. America
- No weedy relatives
- GRAS status
SemBioSys Genetics Inc.

State-of-the-art lab facilities for molecular biology, biochemistry, and plant genetic transformation

Approx 26 R&D staff including 12 Ph.D level scientists

Integrated capacity from gene constructs to field level production

Symbol SBS on TSX

www.sembiosys.com
SemBioSys Oil Seed Systems

Proof-of-Concept
Arabidopsis thaliana

Commercial Production Species
Safflower (Carthamus tinctorius)
Stratosome™ Biologics System
Seed Oilbodies

Cross-section of Oil Seed
The process of flotation-centrifugation results in substantial purification of the oil body fraction.
Production of Oleosin Fusions
Recovery of proteinX on Oilbodies

Protein Gel

ProteinX – Oleosin

Oleosins
Products of interest

- Insulin
- Apolipoprotein A1
- Growth hormones
- Healthy fatty acids
- Antibody production and capture

- Safflower oilbodies for use in cosmetic ingredients
Safflower Genomics platform

- NSERC CRD Grant submitted

 Modest budget

 Short term goals:

 • Generate safflower BAC genomic library and seed EST library

 • Use MAGPIE (www.visualgenomics.ca/) to annotate genes expressed in lettuce and sunflower

 • Isolate and characterize oleosin genes (RNAi), other seed storage protein genes

 • Identify high expressing seed specific promoters

 • Isolate genes involved in lipid metabolism (nutraceutical fatty acids)
Safflower Genomics platform

Long term goals:

• Expand EST library to include other tissues
 - microarrays

• Mapping effort and BAC fingerprinting effort

• Larger scale genomic sequencing effort (i.e. Orion Genomics™)
 - using reduced representation techniques
Collaborations

• SemBioSys Genetics Inc.
• Randy Weselake (Univ. of Alberta)
• Christoph Sensen (Sun Center of Excellence for Visual Genomics)
• Allen Good (Univ. of Alberta)
• Steven Knapp (Univ. of Georgia)
• Richard Michelmore (UofC Davis)
Contact Information

• CEO – Andrew Baum
 bauma@sembiosys.com

• CSO – Maurice Moloney
 moloneym@sembiosys.com

www.sembiosys.com

Symbol SBS on TSX