
format (Vieglais et al., 2000). Museum data are high
quality because voucher specimens can be examined if
identification is questionable. However, like all point
data, museum specimens provide only a limited view
of the actual species’ range (Krohn, 1996), hence the
need for predictive approaches. A limited number of
ecological data sets are also available, worldwide,
including physio-chemical parameters (NOAA, 1999)
and bathymetry (Smith and Sandwell, 1997). 

Ecological niche modeling uses the primary point
data and the ecological data to build a partial niche
model for the species (Stockwell, 1999; Stockwell and
Noble, 1992; Stockwell and Peters, 1999). The niche
model is defined in ecological space by ecological
parameters. It can be projected into geographic space
by dividing the area of interest into rows and columns
to create a grid, and then identifying the grid cells
where the ecological parameters match those of the
niche model. The landscape for this study is the Central
Western Atlantic, roughly bounded by the definitions
of the Food and Agricultural Organizations definition
of Fishing Area 31, approximately the area of the
Atlantic Ocean, Caribbean Sea, and the Gulf of Mexico
between 35°N and 5°N Latitude and west of 40°W
Longitude.

Many tools have been used to develop models of
ecological niches. Among the simplest is BIOCLIM
(Nix, 1986), which involves intersecting the ranges
(slightly trimmed) inhabited by the species along each
environmental axis (e.g. 0–50 m depth x annual surface
temperature average of 20–22°C, etc.). Other approach-
es include general linear models, distance-based algo-
rithms, and regression-tree analyses (Austin et al., 1996;
Carpenter et al., 1993; Malanson et al., 1992). These rel-
atively straightforward algorithms, however, suffer
from their focus on a search for a single decision rule,
or a small set of decision rules. The reality of species’
ranges is that many factors affect them, and indeed dif-
ferent decision rules may govern distributional limits
in different sectors of a species’ distribution

Biological communities are changing drastically in
response to global climate change (Walther et al., 2002),
changes in use by human populations (Krishtalka et
al., 2002), and introduction of exotic species (Carlton,
1996; Enserink, 1999). To study the impact of such
changes in the marine environment, biologists require
a detailed understanding of the diversity and distribu-
tions of marine organisms on macroscopic scales, such
as across entire ocean basins, in order to improve
understanding of the actual distributions of species,
and gain an overall impression of the potential com-
munity structures that exist in particular habitats. A
major obstacle to such an improved understanding is
the fact that existing biodiversity records are both
incomplete and idiosyncratic, consisting of museum
collection and fisheries survey data covering only a
small, and usually biased, fraction of the marine bios-
phere. The ability to predict distributions of species
based on existing specimen records would allow inves-
tigators to predict the presence or absence of species in
previously unsampled waters. If such predictions
prove robust, then responses of species to global cli-
mate change could be predicted (Peterson et al., 2002b),
potential impacts of introductions of exotic species on
native faunas could be anticipated proactively
(Peterson and Vieglais, 2001), and assessment of poten-
tial future conservation areas could be performed
(Peterson et al., 2000). In this paper, we extend the
application of one tool, the Genetic Algorithm for Rule-
set Prediction (GARP) to the marine realm, and
demonstrate its potential usefulness in predicting geo-
graphic distributions of littoral and benthic fishes
across a major and heterogeneous ocean region.

Two components are critical to such studies: local-
ity records of specimens for species (primary occur-
rence data, presence data, or more simply “point
data”), and electronic maps (coverages) of relevant eco-
logical parameters (Peterson, 2001). For fishes, it is now
possible to gather point data from national history
museums, worldwide, in real time, and in a common
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sidering presence data only (Stockwell and Peterson,
2002a). GARP models provide an efficient means of
modeling species’ ecological niches, and for projecting
those models onto geography in the form of maps,
which are testable hypotheses of distributional poten-
tial. Numerous such tests (Anderson et al., 2002a;
Anderson et al., 2002b; Feria and Peterson, 2002;
Peterson, 2001; Peterson et al., 2002a; Peterson and
Cohoon, 1999; Peterson et al., 2002c; Peterson and
Vieglais, 2001; Stockwell and Peterson, 2002a, b) con-
firm the predictive nature of these ecological niche

models. GARP-modeled species’ niches
indeed delineate the habitable environ-
mental conditions for a species, and they
can be used to predict new data sets
(those withheld from the modeling
process in this study) with precision.

Materials and Methods
Eighteen marine fish species occur-

ring in FAO Fishing Area 31 were select-
ed for analysis (Table 1): 12 are primari-
ly continental shelf species, and six are
primarily continental slope species.
Species were selected to represent a
range of taxonomic groups and habitat
diversity. Specimen locality records
(point data) were accumulated from
museum collections held by FishNet

partner institutions via The Species Analyst (Vieglais et
al., 2000). Longitude and latitude values were checked
against textual locality information and against pub-
lished range descriptions of each species. Point data
were visualized in ESRI ArcView 3.2 (ESRI, 1999) and
each point was matched against bathymetry. Points
that obviously were mismatched with known depth
ranges of species (as reported in species accounts in
Fisher, 1978, or McEachran and Fechhelm, 1998) were
eliminated. Records identified as larvae or that consti-
tuted duplicate longitude-latitude combinations for a
species were also eliminated. 

Ecological coverages were drawn from the World
Ocean Atlas (WOA) 1998 dataset (NOAA, 1999) and
the Smith and Sandwell (1997) bathymetric database
(Table 2). A subset of WOA 98 data was processed com-
prising annual analyzed means for each of nine vari-
ables (temperature, salinity, dissolved oxygen, percent
oxygen saturation, apparent oxygen utilization, phos-
phate, nitrate, silicate, chlorophyll) at all depths.
Chlorophyll data included seven depths ranging from
surface to 100 m, and all other variables included 33
depths ranging from surface to 5500 m. WOA 98 data
were converted to raster grids and resampled from 1°
to 2' resolution to match the bathymetric data resolu-
tion. The edges of each depth grid were smoothed by
extending values of pixels of that depth to the bathym-
etry (i.e., values at depth 100 were extended towards
shorelines and cut off at depths shallower than 100

(MacArthur, 1972). For example, in the tropical western
Atlantic a common distributional pattern emerges sep-
arating insular and continental fish species.
Continental fishes further separate into northern and
southern components (Robins 1971, 1991). Epinephelus
mystacinus, a large and very wide-ranging tropical
grouper is restricted to the insular region in the west-
ern Atlantic except for very rare vagrants. It is replaced
ecologically by the very large Epinephelus nigritus (not
closely related) in continental waters. The coastal
pelagic mackerel Scomberomorus maculatus is northern
continental. In southern continental
waters it is replaced by S. brasiliensis,
which is not regarded as a sister species.
Although S. regalis occurs widely in the
insular region, it also is common in conti-
nental waters. Temperature would seem
to be the limiting factor in the northward
distribution of tropical continental
species, which often extend their ranges
northward during the summer (Robins
and Ray, 1986). Temperature in surface
waters may limit larval recruitment of
deepwater bottom fishes such as
Synaphobranchus kaupi (a northern
species) and S. oregoni (a southern
species) even though the adults live in
waters of similar temperature (C. H.
Robins and C. R. Robins, unpubl. data).
Of course, one must be careful in observing common
distributional patterns not to infer common causality.
Hence, more complex, multiple-criterion approaches
appear to be desirable. Herein, we focus on a heteroge-
neous-rule machine-learning approach that has proven
particularly useful, as described below.

The Genetic Algorithm for Rule-set Prediction (GARP)
includes several inferential tools in an artificial-intelli-
gence-based approach to modeling (Stockwell, 1999;
Stockwell and Noble, 1992; Stockwell and Peters, 1999).
In each round of modeling, occurrence points for a
species are resampled randomly to create internal
training and test data sets (1250 points in each set).
GARP works in an iterative process of rule selection,
evaluation, testing, and incorporation or rejection.
First, an inferential tool is chosen from a set of possi-
bilities (e.g., logistic regression, range rules), is applied
to the training data, and a rule developed. Rules are
evolved by a number of means (e.g., truncation, point
changes, crossing-over among rules) to maximize pre-
dictivity. Predictive accuracy is evaluated using the test
data and an equivalent number of points sampled ran-
domly from the study region as a whole. The change in
predictive accuracy from one iteration to the next is
used to evaluate whether a particular rule should be
incorporated into the model, and the algorithm runs
either 1000 iterations or until convergence. 

GARP has been shown to be robust in the face of
various kinds of bias, including bias produced by con-

The ability to predict
distributions of species

based on existing 
specimen records would

allow investigators to
predict the presence or
absence of species in
previously unsampled

waters.
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Table 1.
Species used in the study, with a summary of modeling results. Abbreviations: S, Surface coverage dataset; B, benthic
coverage data set; Train, number of point occurrences used in the Training dataset; Test, number of point occurrences
used in the Test dataset; AUC Area Under the Curve; AUCmax, one measure of the maximum possible AUC score; SE,
standard error; Z, z-score. 

Taxon Coverage Train Test AUC AUCmax SE Z

Barbulifer ceuthoecus S 28 14 0.948 0.948 0.04 9.73*
Centropomus undecimalis S 18 18 0.952 0.987 0.04 13.25*
Coryphaena hippurus S 29 38 0.746 0.796 0.05 10.14*
Gempylus serpens S 64 39 0.613 0.687 0.04 11.97*
Monacanthus ciliatus S 89 39 0.971 0.997 0.02 23.38*
M. hispidus S 34 38 0.982 0.983 0.02 20.91*
M. tuckeri S 19 21 0.746 0.916 0.06 6.60*
Pomatomus saltatrix S 27 20 0.946 0.980 0.04 13.92*
Porichthys plectrodon S 58 107 0.960 0.961 0.01 33.39*
Scomberomorus cavalla S 38 16 0.898 0.963 0.05 11.21*
S. maculatus S 28 23 0.980 0.989 0.02 14.57*
Sphoeroides nephelus S 27 11 0.897 0.997 0.06 12.07*
Androvandia gracilis B 11 17 0.907 0.917 0.05 12.76*
Bathygadus macrops B 17 26 0.991 0.991 0.01 30.14*
Etmopterus schultzi B 28 28 0.970 0.988 0.02 31.53*
Neobythites marginatus B 15 11 0.964 0.988 0.03 25.98*
Polymixia lowei B 61 52 0.944 0.982 0.02 34.59*
Urophycis cirrata B 36 29 0.945 0.967 0.03 14.48*

*p < 0.01

Table 2.
Environmental Coverages used in this study. 

Coverage Source 
Bathymetry Smith and Sandwell 

(1997)
Temperature WOA 98
Salinity WOA 98
Dissolved oxygen WOA 98
Percent oxygen saturation WOA 98
Apparent oxygen utilization WOA 98
Phosphate WOA 98
Nitrate WOA 98
Silicate WOA 98
Chlorophyll WOA 98

meters). This was deemed necessary because some
near-shore data points fell in areas not covered by the
large 1° pixels. After resampling to 2' resolution, the
shoreline could be more closely approximated. Finally,
the data were clipped to FAO Area 31 (Central Western
Atlantic and Caribbean). Because of the depth stratifi-

cation, we prepared two sets of raster grids, “Surface”
and “Benthic.” The Surface coverage set included
bathymetry plus the nine WOA 98 variables at the sur-
face. The Benthic coverage set included bathymetry
and the nine WOA 98 variables projected onto bathym-
etry, producing a three-dimensional picture of condi-
tions on the bottom at depth; i.e., if the ocean floor is at
100 m, then conditions at 100 m were represented in
the coverage.

We wished to provide a severe test of GARP’s pre-
dictive ability. The most difficult tests involve coarse
stratification of point data for model building and test-
ing (Fielding and Bell, 1997), so that spatial autocorre-
lation between data upon which models are built and
those used for testing are minimal. We partitioned the
point data into two sets by randomly sorting grid cells
from a 1º resolution grid containing point occurrence
data into “Training” and “Test” data sets. Examples of
partitioned point data are shown in Figures 1–3, with
training points shown as yellow circles and testing
point shown as green circles. Because the number of
points in grid cells varied, the number of points in the
two datasets varied among species (Table 1).

For each species, we applied Desktop GARP
(Scachetti-Pereira, 2001) to the training dataset to pro-
duce 200 models for each species, using a convergence
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by the test dataset. The test
dataset provides a ‘gold
standard” and each model
set is scored on its ability to
predict these new data cor-
rectly. These scores are
graphed on an axis of sen-
sitivity (true positive rate
of accumulation) and 1-
specificity (true negative
rate of accumulation). We
used the trapezoidal rule to
calculate AUC (Hanley and
McNiel, 1982). AUC meas-
ures how well the 10-
model set predicted the test
data points. A perfect result
is AUC = 1.0, whereas a test
that performs no better
than random yields an
AUC = 0.5. We evaluated
the results using a z-test
(Centor, 1991). During the
course of our investigation,
we noted that ROC analy-
sis produces an area effect,
such that the maximum
AUC score received for a
particular species is a func-
tion of the total area (total
number of pixels) predict-
ed “present” relative to the
total area of the landscape

studied. Therefore, we calculated a measure of the max-
imum possible AUC score for each species by moving
all test data points to the maximum value of the inter-
section of all 10-best models. We consider the difference
between the actual AUC obtained relative to the maxi-
mum possible AUC (AUCmax) to be a better measure of
the predictive ability of the 10-best model set than the
raw AUC score; however, the raw AUC score remains a
valid test of the ability of the 10-best model set to pre-
dict non-random patterns. We used an Excel spread
sheet for all calculations. 

Environmental coverages, point data used for both
training and testing, and specimen museum numbers for
all species used in this study can be downloaded though
the Internet at http://www.speciesanalyst.net/fishnet/.
This page also provides a link for accessing desktop
GARP.

Results
Results in general indicated excellent predictivity

for all species (Table 1; Figures 1–3). AUCs in ROC
analyses (Table 1) varied between 0.991 (Bathygadus
macrops) and 0.613 (Gempylus serpens). All of these pre-
dictions were significantly different from a line of no
information (p < 0.01) and many were highly signifi-

limit of 0.01 and a maximum of 1000 iterations per
model. From the 200 models, we selected ten models
that comprise the “best-subsets models” (Anderson et
al., 2003). Customary GARP implementation involves
specification of a certain number or percentage of
points to be reserved internally for testing model qual-
ity. We used all training points in generating models
because we had set aside data from half of the 1° grid
cells containing points as independent testing data.
Thus, we used intrinsic measures (based on the train-
ing data) for calculating omission and commission
error statistics (Anderson et al., 2003). We calculated a
median commission error for all models with less than
5% intrinsic omission error. The absolute difference
between the median commission error and the com-
mission index for each model was calculated, and the
10 models showing the least deviation with the medi-
an score were selected as the 10-best model set.

We evaluated the ability of models to predict inde-
pendent test points accurately using a Receiver
Operating Characteristics (ROC) analysis (Zweig and
Campbell, 1993; Fielding and Bell, 1977). This statistic
evaluates the specificity (absence of commission error)
and sensitivity (absence of omission error) of a diag-
nostic test in the face of the independent data provided

Figure 1. Prediction of geographic distribution of the teleost fish Monacanthus ciliatus
in the Central Atlantic, Caribbean, and Gulf of Mexico using GARP. Triangles are point
localities used by GARP in concert with nine WOA 98 environmental surface coverages
and bathymetry. Circles are point localities withheld from modeling and used to test the
prediction. Blue denotes bottom depth, with lighter blue indicating relatively shallow
waters. Pink to rust brown shading denotes number of model intersections: pink, 5-6; red,
7-9; rust brown, 10 intersections respectively. The inset shows details off Florida and parts
of the Bahamas.

81832_Ocean  8/28/03  7:42 PM  Page 123



124
Oceanography • Vol. 16 • No. 3/2003

ranges restrict the species to the northern Gulf of
Mexico (Compagno, 1984), the records used herein
reflect a larger range that is considered valid (G.
Burgess, Florida Museum of Natural History, pers.
comm.). The coincidence between prediction and test
points for this species was excellent.

Although highly significantly different from ran-
dom, the AUCs from ROC analysis appeared weak for
two widely distributed species, Gempylus serpens and
Coryphaena hippurus. Both species are predicted “pres-
ent” over large percentages of the total landscape,
depressing the maximum possible AUC (AUCmax,
Table 1). Gempylus serpens is predicted to occupy some
63% of the total landscape; its AUC = 0.613 but the
AUCmax is only 0.687. Similarly depressed results were
obtained for Coryphaena hippurus, predicted present
over 41% of the landscape. Its AUC is 0.714, but
AUCmax is only 0.796. In contrast, a similar AUC was
found for Monacanthus tuckeri (AUC = 0.746), but the
AUCmax for this species is much higher (AUCmax =

cant (p << 0.001). The average AUC score across all taxa
was 0.911. Correlations between number of test points
and AUC score, and between number of training data
points and AUC score, were not significantly different
from zero (r = 0.031, p < 0.05; r = -0.106, p < 0.05, respec-
tively).

Results for Monacanthus ciliatus, the fringed file-
fish, provide an example of modeling with surface cov-
erages (Figure 1). This teleost species is distributed ver-
tically from depths of 0- 50 m throughout Area 31, and
ranges north to Newfoundland and south to Argentina
(Tyler, 1978). General coincidence of predictions with
test data points and known distributional patterns was
excellent. Indeed, although no training points fell in
Bermuda, one Bermuda testing point was present and
all 10-best models successfully predicted the species’
presence there. Results for Etmopterus schultzi, the
fringefin lantern shark (Figure 2), provide an example
of results of modeling with benthic coverages. This
benthic shark is distributed vertically from depths of
384–732 m over soft mud bottoms. Although published

Figure 2. Prediction of geographic distribution of the chondrichthyan fish Etmopterus schultzi in the Central Atlantic,
Caribbean, and Gulf of Mexico using GARP. Triangles are point localities used by GARP in concert with nine WOA 98 envi-
ronmental surface coverages and bathymetry. Circles are point localities withheld from modeling and used to test the predic-
tion. Blue denotes bottom depth, with lighter blue indicating relatively shallow waters. Pink to rust brown shading denotes
number of model intersections: pink, 5-6; red, 7-9; rust brown, 10 intersections respectively. The inset shows details from off
Louisiana.
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Picking the best 10-model
set requires some discussion
(Anderson et al., 2003). The
reason for running 200 models
per analysis is due to the fact
that GARP models are devel-
oped by a random walk
through the available data.
Some models that result are
much better than others.
Omission error is serious,
because it signals a failure of
the model to predict a data
point used in model building.
Thus, only those models with
low omission error are candi-
dates for further considera-
tion. Commission “error”,
however, may represent true
error (over-prediction), or it
may represent a correct pre-
diction that the species would
be present if the area was sam-
pled, or that the species might
be present except for historical
reasons or species interactions
(Peterson et al., 1999). The
median of the calculated com-
mission error has been shown
empirically to provide a best
estimate of the area of correct
prediction (Anderson et al,
2003). Thus, those models that
show the smallest derivation

from the median commission error are candidates for
the best-model set. We selected 10 models for the best-
model set because 10 models are the minimum neces-
sary for ROC analysis, and addition of more models
does not improve the resulting statistics significantly 

Investigators using ROC methods for assessing
model accuracy should be aware that a complication
exists in interpretation of raw AUC scores. This effect
exists because the maximum value of the area under
the curve is affected by the total number of pixels pre-
dicted present relative to the total number of pixels in
the landscape analyzed. This landscape effect prevents
direct comparison of the predictive models between
species, although AUCs can be standardized to the
maximum possible value (AUCmax). We are presently
investigating characteristics of this effect.

We designed this study as a severe test of GARP’s
ability to model marine fish distributions through
niche modeling and projection of models into geo-
graphic space. At least for benthic and continental shelf
species, GARP has succeeded admirably. We note that
no correlations exist between the numbers of training
or testing points used in our analyses and the ROC
AUC scores obtained. These results suggest that num-

0.916), suggesting that more point data would improve
ecological models for this species. 

Discussion
Ecological niche modeling and the geographic pre-

dictions that result are only as good as the environmen-
tal coverages and the point data employed. In our pre-
liminary analyses, not reported here, we found that
critical examination of the specimen data was necessary
to insure data quality. Three factors were important:
accurate identification of the specimens, accuracy of
georeferencing, and life stage of the specimens. Since
we were interested in modeling adult distributions, age
was critical: larvae and juveniles are found frequently
outside normal adult ranges and inclusion of such spec-
imen records can skew results. Of course, comparative
analysis of different life stages is of great interest, but
that awaits future investigation. Likewise, specimen
records outside the known range (geographic or verti-
cal) of a species are suspect, and often are simply erro-
neous. For example, museum records of the spotted
mackerel, Scomberomorus maculatus, in waters south of
the Yucatan Peninsula (Figure 3) are actually records of
a close relative, S. brasiliensis (Collette and Russo, 1984). 

Figure 3. Prediction of geographic distribution of the teleost fish Scomberomorus
maculatus in the Central Atlantic, Caribbean, and Gulf of Mexico using GARP.
Triangles are point localities used by GARP in concert with nine WOA 98 environ-
mental surface coverages and bathymetry. Circles are point localities withheld from
modeling and used to test the prediction. Blue denotes bottom depth, with lighter blue
indicating relatively shallow waters. Pink to rust brown shading denotes number of
model intersections: pink, 5-6; red, 7-9; rust brown, 10 intersections respectively. The
inset shows details from off Louisiana.
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bers of training points can be as low as 11 point occur-
rences and still predict species’ distributions powerful-
ly, at least for relatively stenotropic benthic species.
However, we have not yet conducted formal sensitivi-
ty studies for marine fishes (cf., Stockwell and
Peterson, 2002b) designed to evaluate formally sample
size requirements for accurate predictions. 

Ecological niche modeling is limited to predictions
in ecological dimensions that can be included as elec-
tronic coverages. Hence, our models could be better
termed partial niche models: addition of more ecologi-
cal dimensions could improve model quality marked-
ly. For example, our coverages did not include bottom
sediment characteristics. In the case of our benthic
shark (Etmopterus schultzi) analysis, this omission prob-
ably does not affect our range prediction. However, it
undoubtedly results in lack of precision of predictions
of where this shark might be found within its range:
this species is associated with soft sediments (George
Burgess, Florida Mus. Nat. Hist., pers. comm.) and the
entire slope is not covered with this type of bottom. 

We have demonstrated that projection of ecological
models into geographic space provides robust predic-
tions of independent point occurrence datasets. We
have demonstrated this usefulness on a large geo-
graphic landscape using relatively coarse environmen-
tal and bathymetric parameters. However, GARP is
scalable, and its usefulness is limited only by the rela-
tively fine- or coarse-scale nature of the environmental
data and the availability of appropriate point data 
for species. At present, GARP cannot model volumes 
of water and thus is limited to benthic or benthic-
oriented species and to species of the littoral and
epipelagic zones. Future modifications of GARP are
planned that will result in views of marine species’ dis-
tributions throughout the water column. 

We suggest that GARP modeling has a number of
applications of interest to the community of marine
biologists. GARP models of species’ distributions visu-
alized in geographic space provide a guide for future
sampling. The presence of entire benthic or littoral
communities can be inferred by examining the inter-
sections of series of interspecific models (Feria and
Peterson, 2002). Modeling of species rare in collections
can provide a guide for further sampling of the species.
We are currently using GARP to model several Indo-
Pacific fish species (e.g. Pterois volitans, a species that
has recently invaded the western Atlantic; Whitfield et
al., 2002), on their native ranges, and to project the
niche models onto the western Atlantic. Finally, inte-
grated with general circulation models that summarize
expectations of climate change, GARP modeling can be
used to study the effects of global climate change on
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