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Abstract

A criterion is proposed to compare systematic hypotheses based on multiple sources of information under a diverse set of
interpretive assumptions (i.e., sensitivity analysis of Wheeler, 1995). This metric, the Meta-Retention Index (MRI), is the retention
index (RI) of Farris calculated over the set of conventional homologous qualitative characters (ordered, unordered, Sankoff, etc.)
and molecular fragment characters sensu Wheeler (1996, 1999). The superiority of this measure to other similar measures (e.g.,
incongruence length difference test) comes from its independence from partition information. The only values that participate in its
calculation are the minimum, maximum and observed cost (¼ cladogram cost) of each character. The partition (morphology, gene
locus) from which the variant may have come is irrelevant. In the special cases where there is only a single data partition, this
measure is equivalent to the conventional RI; and in the case where there are single fragment characters per partition (contiguous
molecular loci as data sets) the measure is identical to the complement of the Rescaled Incongruence Length Difference (RILD) of
Wheeler and Hayashi (1998). The MRI can serve as an optimality criterion for deciding among systematic hypotheses based on the
same data, but different sets of analysis assumptions (e.g., character weights, indel costs). The MRI may lose discriminatory power
in situations where a minority of highly congruent characters is given high weight. This situation can be detected and seems unlikely
to occur frequently in real data sets.
� The Willi Hennig Society 2006.

Congruence is the core of phylogenetic analysis.
Congruence may come in the form of agreement among
characters in a combined analysis, or among the results
of several independent analyses derived from varying
sources of information as some vague or precise
notion of topological consensus. Hierarchical pattern
is thought to be reinforcing while non-hierarchical
(i.e., homoplasy) is not. While it is clear for many that
the most appropriate measure of congruence given a
particular set of assumptions is parsimony, it is less clear
how we are to compare results of different assumption
sets. This point was raised by Wheeler (1995) in
proposing phylogenetic sensitivity analysis. All data
analyses posit weighting schemes (equal or otherwise)

and character transformation costs (ordered, unordered,
or more elaborate schemes) and offer parsimonious
results.

The problem, then, is how to distinguish among this
abundance of parsimonious solutions. Wheeler (1995)
proposed two paths. The first is to accept only those
groups that are generally present over the space of
assumption sets. This approach was deemed ‘‘robust’’
choice and allowed the investigator to cling to those
groups that offer consensual support over some large
fraction of parameter space. This is a highly operational
approach in that the resulting scheme does not attempt to
optimize anything in particular. The second approach is
based on explicit calculations of character [incongruence
length difference test (ILD) of Mickevich and Farris,
1981; Farris et al., 1995] or topological congruence
(Present Shared Groups/Present Common Groups
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(PSG ⁄PCG) of Wheeler, 1995). As topological methods
(in general) make no allowance for relative levels of
support, Wheeler (1995) favored the character-based
ILD as a meta-optimality criterion to compare the
suite of parsimonious results generated by sensitivity
analysis.

It was obvious almost immediately that some adjust-
ments were needed in the ILD as it could favor highly
homoplastic solutions, which was clearly undesirable.
Goloboff (pers. comm.) pointed to the situation in which
partitioned analyses (in a total evidence or simultaneous
analysis framework) were highly homoplastic under a
certain assumption set. When combined, there would be
little extra homoplasy that could occur from the
combination of partitions; hence the ILD measure
would be low. This is not a failure of the ILD itself as
it is doing exactly what it was designed for—to measure
the fraction of homoplasy caused by the combination of
data sets. The problem lies in its application (Swofford,
1991; Farris et al., 1995). A modification of the ILD that
adjusted for the ‘‘potential’’ homoplasy levels (RILD,
‘‘Rescaled ILD’’) was proposed by Wheeler and
Hayashi (1998) to avoid this problem.

Two other problems remain, however. The first is
epistemological and the second more operational. The
calculation of the ILD (or RILD) is based explicitly on
the independent and collective behavior of data parti-
tions. This is acceptable when discussing partitioned
analysis, but in the context of total or simultaneous
analysis, it is somewhat antithetical to the enterprise.
The fundamental tenet of such analyses is the evidential
equality of characters, irrespective of origin. In order to
avoid this problem, we propose a new metric based on
Farris’ retention index (RI; Farris, 1989), the calculation
of which is accomplished entirely within the simulta-
neous analysis framework, hence independent of parti-
tion information. The second problem concerns the
asymptotic behavior of the proposed metric in situations
were small cliques of consistent characters are assigned
high weight, yielding trivial optima. The analytical and
empirical discussions of the ‘‘limit’’ effect are presented
below and should ameliorate these concerns.

The metric

The ILD is, in many ways, an outgrowth of the
Consistency Index (CI) of Kluge and Farris (1969). The
ILD is calculated as the sum of the minimum costs of
the component partitions subtracted from the minimum
cost of the combined data set, which is then divided by
the combined data set cost:

ILD ¼ðcost Combined Data Set

� Rcost of Component Partitions)

=cost Combined Data Set

The ensemble consistency index is the sum of the
minimum costs of each of the characters divided by the
combined data set cost:

CI ¼ R Minimal cost of Characters

=cost Combined Data Set

Hence, the ILD is basically the complement of the CI
at the data set level.

When Wheeler and Hayashi (1998) modified the ILD,
it was to make it more like the ensemble RI (Farris,
1989) that adjusted for the maximum costs (worst case)
of characters. The RI is defined as:

RI ¼ ðRMaximum cost of Characters

� cost Combined Data SetÞ=
ðR Maximum cost of Characters

� R Minimum cost of CharactersÞ

Accordingly, the RILD was defined as:

RILD ¼ ðcost Combined Data Set

� R cost of Component PartitionsÞ=
ðR Maximum cost of Component Partitions

� R cost of Component PartitionsÞ

I-RILD ¼ ðR Maximum cost of Component Partitions

� cost Combined Data SetÞ=
ðR Maximum cost of Component Partitions

� R cost of Component PartitionsÞ

Both the calculations of the ILD and RILD require
the comparison of the combined data cladogram cost to
those of each of the component partitions. In order to
have a congruence measure for a partition-free simul-
taneous analysis, this dependence must be removed.

Here, we propose the Meta-Retention Index (MRI)
which is simply Farris’ RI (Farris, 1989) calculated over
all characters, but with the sequence characters defined
not as single nucleotide positions, but as contiguous,
sequence fragment or locus-based entities as in Wheeler
(1999; stretches of nucleotides delimited by primer
positions, locus boundaries, or other criteria that do
not have primary homologies). The use of fragment-
based characters has been discussed earlier (Wheeler,
2001) and has the advantage of treating sequence data as
the dependent strings of nucleotides they are. The term
‘‘fragment’’ will be used here to refer to these sequence
characters of arbitrary extent.

MRI ¼ ðR Maximum cost of Fragments

� cost combined FragmentsÞ=
ðR Maximum cost of Fragments

� R Minimum cost of FragmentsÞ
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where Fragment ¼ Character for fixed homology
statements (i.e., one morphological character or a
contiguous string of nucleotides).

The maximum character costs are the character costs
on a bush. A point worth noting here is that the
differential fragment lengths contribute to the MRI

Morphological Partition 

Molecular Partition 1 Fragment 1 
TAX_A 

1 AA 

TAX_B 
1 AG 

TAX_C 
1 AAG 

TAX_D 
1 A 

TAX_E 
1 AGG 

Molecular Partition 1 Fragment 2 
TAX_A 

1 GG 

TAX_B 
1 GG 

TAX_C 
1 AG 

TAX_D 
1 AA 

TAX_E 
1 AA 

Molecular Partition 2 
TAX_A 

1 CG

TAX_B 
1 CG

TAX_C 
1 CGC 

TAX_D 
1 AC

TAX_E 
1 GCC 

Fig. 1. Example data for MRI calculations. The test data consist of four binary characters and two molecular partitions, the first of which contains
two sequence fragments.
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differently—that is, a long fragment is likely to have
more impact on the MRI than a short fragment or single
morphological character.

The character definitions and RI calculations of
standard qualitative characters (i.e., non-additive, addit-
ive, etc.) are unchanged. If a particular combination of
loci (e.g., 18S rDNA and 28S rDNA) were to be treated
as a series of sequence fragments, then each of these
fragments would be treated homogeneously without
respect to its origin. For qualitative characters, the
maximum and minimum costs can be calculated
directly. The situation is somewhat more complex for
the sequence fragment characters where searches may be
required to estimate the minimum, and other calcula-
tions for maximum character costs due to the diversity
of potential character states. In the limiting situations
where an analysis consisted of a single data set, the MRI
would be identical to the RI over the nucleotide
characters. If there were only single (fragment) charac-
ters in each partition, then the MRI would converge on
(1 ) RILD).

A synthetic example

Consider a synthetic data set with five taxa (‘‘Tax_A’’
through ‘‘Tax_E’’), and three sources of data (partitions):
a morphological data set with four binary characters and
two molecular sequences data sets, the first comprised of
two fragments (perhaps exons) and the secondwith only a
single (Fig. 1). Analyzed under two parameter regimes,
one with all transformations (morphological, indel and
base substitutions) equal to 1 and a second where indels
cost two, yields two trees (Fig. 2). The MRI of the
cladogram derived with a completely homogeneous
parameter set yielded an MRI of 0.833 and that with
indels twice all other transformations, 0.714 (Table 1).
The MRI therefore favors the scheme based on a
homogeneous assumption set. In this case, the ILD and
(1 ) RILD) do not distinguish between these alterna-
tives; this is because the ensemble behavior of the
partitions hides the character disagreement within. All
analyses here and below were performed using POY
ver. 2.7 (Gladstein and Wheeler, 1997) using Direct
Optimization (¼ Optimization Alignment; Wheeler,
1996) to analyze the molecular fragments.

Real examples

To illustrate the behavior of the MRI and its
performance relative to other measures, two data sets
were examined. The first is an arthropod data set
(Wheeler et al., 1993) and the second from a study of
chelicerates (Wheeler and Hayashi, 1998). The arthro-
pod data set contains 26 taxa (including a single extinct
lineage) and 100 morphological characters and sequence
data from the 18S rDNA, 28S rDNA and Polyubiquitin.

The 18S rDNA was split into three fragments (based on
primer locations), the 28S rDNA into eight (based on
structural considerations), and the Polyubiquitin left
intact. The total number of characters then for this
analysis was 112. Similarly, the chelicerate data set was
based on the analysis of 34 taxa, morphology (93
characters); and small and large subunit sequences each
with six fragments for a total of 105 characters. In both
cases, the cost of each character was determined by a
search for the best (minimum cost) cladogram (as there
is no way at present to directly calculate this value for
fragment data). The maximum cost of each fragment
character was determined by calculating the cost of a
bush with each fragment as the root state (sum of costs
from the root state to each of the terminal states). The
minimum cost of the bush over all fragments was taken
as the maximum character cost (this somewhat awkward
procedure will work for binary characters as well).
Maximum and minimum costs were then compared with
the ensemble cladogram costs to determine the MRI
values. Partition searches were also performed for
comparative purposes (Tables 2 and 3). Not surpris-
ingly, the MRI and (1 ) RILD) on one hand, and the
CI and ILD on the other, behave in very similar ways.
The cladograms resulting from the analyses where these
metrics achieve optimal values (0.8805 at indels ¼ 4 and
tv ¼ ti ¼ 1 for arthropods, and 0.7796 at indels ¼ 2 and

Gap = 1

TAX A

TAX B

TAX C

TAX I

TAX I

Gap = 2 

TAX A

TAX B

TAX C

TAX E

TAX D

Fig. 2. Most parsimonious cladograms for the combined example data
of Fig. 1. Gap ¼ 1 is the resultant cladogram where all transforma-
tions are accorded equal weight (cost ¼ 20), and Gap ¼ 2 that which
results when indels are up weighted to 2 (cost ¼ 15). Cladogram drawn
using CLADOS ver. 10.9 (Nixon, 1992).
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tv ¼ ti ¼ 1 for chelicerates) are shown in Figs 3 and 4.
The ILD, CI and 1 ) RILD (for chelicerates) seem to
show trivial best and worst values at their limits,
whereas the MRI and (1 ) RILD for arthropods) shows
intermediate optima (Tables 2 and 3).

Limiting problems

One potential criticism of MRI as an optimality
criterion is that under certain circumstances it may
have a trivial optimum. Consider the synthetic test

Table 1
Test data values

Indel
cost Morphology

Partition 1
fragment 1

Partition 1
fragment 2 Partition 2 Total cost MRI

2 a b c d
Min cost 1 1 1 1 6 2 6
Max cost 1 2 2 2 7 4 7 20 0.714
Min cost 1 1 1 1 4 2 4
Max cost 1 2 2 2 4 4 5 15 0.833

Indel cost Morphology Partition 1 Partition 2 Total cost ILD 1 ) RILD

2
Min cost 5 9 6
Max cost 7 11 7 20 0 1

1
Min cost 5 6 4
Max cost 7 7 5 15 0 1

Table 2
Congruence values for the arthropod data set

InDel &
Morph TV:TI MRI CI ILD 1 ) RILD

1 1 0.8619 0.9008 0.0482 0.9279
1 2 0.8536 0.8902 0.0586 0.9162
1 4 0.8414 0.8748 0.0671 0.9083
1 8 0.8257 0.8577 0.0770 0.8974
1 ¥ 0.8095 0.8359 0.0900 0.8857
2 1 0.8725 0.8897 0.0559 0.9311
2 2 0.8710 0.8796 0.0638 0.9272
2 4 0.8589 0.8604 0.0808 0.9132
2 8 0.8524 0.8481 0.0883 0.9085
2 ¥ 0.8373 0.8247 0.0984 0.9016
4 1 0.8805 0.8722 0.0651 0.9354

4 2 0.8721 0.8517 0.0760 0.9301
4 4 0.8654 0.8349 0.0874 0.9240
4 8 0.8607 0.8232 0.0948 0.9201
4 ¥ 0.8568 0.8113 0.1020 0.9171
8 1 0.8776 0.8402 0.0875 0.9290
8 2 0.8721 0.8219 0.1032 0.9217
8 4 0.8686 0.8087 0.1129 0.9180
8 8 0.8663 0.8006 0.1184 0.9161
8 ¥ 0.8643 0.7921 0.1245 0.9141
16 1 0.8746 0.8098 0.1165 0.9192
16 2 0.8761 0.8044 0.1242 0.9176
16 4 0.8696 0.7869 0.1309 0.9156
16 8 0.8685 0.7818 0.1344 0.9147
16 ¥ 0.8678 0.7771 0.1389 0.9133
32 1 0.8695 0.7820 0.1408 0.9116
64 1 0.8677 0.7652 0.1530 0.9096
100 1 0.8670 0.7584 0.1578 0.9089
1000 1 0.8654 0.7466 0.1663 0.9074
5000 1 0.8652 0.7455 0.1671 0.9072
10 000 1 0.8652 0.7454 0.1672 0.9072

Table 3
Congruence values for the chelicerate data

InDel &
Morph TV:TI MRI CI ILD 1 ) RILD

1 1 0.7513 0.8261 0.0769 0.8723

1 2 0.7579 0.8194 0.0859 0.8680
1 4 0.7642 0.8089 0.0956 0.8662
1 8 0.7541 0.7919 0.1070 0.8564
1 8 0.7449 0.7716 0.1138 0.8543
2 1 0.7796 0.8167 0.1006 0.8658
2 2 0.7773 0.7988 0.1107 0.8638
2 4 0.7755 0.7826 0.1239 0.8584
2 8 0.7689 0.7679 0.1370 0.8492
2 ¥ 0.7571 0.7494 0.1506 0.8383
4 1 0.7701 0.7666 0.1405 0.8477
4 2 0.7688 0.7464 0.1589 0.8414
4 4 0.7615 0.7267 0. 1754 0.8326
4 8 0.7563 0.7150 0. 1809 0.8302
4 ¥ 0.7509 0.7009 0. 1876 0.8277
8 1 0.7606 0.7083 0. 1889 0.8306
8 2 0.7521 0.6853 0.2109 0.8191
8 4 0.7456 0.6684 0.2273 0.8104
8 8 0.7444 0.6608 0.2319 0.8098
8 ¥ 0.7421 0.6513 0.2383 0.8081
16 1 0.7441 0.6511 0.2407 0.8082
16 2 0.7385 0.6340 0.2557 0.8017
16 4 0.7382 0.6260 0.2633 0.8002
16 8 0.7368 0.6203 0.2679 0.7987
16 ¥ 0.7354 0.6143 0.2722 0.7975
32 1 0.6625 0.5988 0.2876 0.7325
64 1 0.6537 0.5734 0.3092 0.7226
100 1 0.6511 0.5638 0.3156 0.7206
1000 1 0.6467 0.5475 0.3308 0.7145
5000 1 0.6459 0.5460 0.3323 0.7137
10 000 1 0.6459 0.5458 0.3324 0.7136
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data used above and in Fig. 1 and Table 1. If the
weight of indels (w) is increased without bound, the
MRI will converge to 1 (lim (2w + 3) ⁄ (2w + 5) as
w fi ¥ [min 3w + 12; max 5w + 17; combined
3w + 14]). This will occur where there is a clique, in
essence, of congruent transformations whose potential
weight is unlimited (such as indels and transversions,
but not transitions). Not all transformation types are
subject to this, as the triangle inequality limits the
range of cost differentials (Wheeler, 1993). Giribet and
Wheeler (1999) touch on this as do Faith and
Trueman (2001).

This situation can be demonstrated in a simple
analytical cartoon. Consider a scenario with four binary
characters, distributed as in Fig. 5. Where ni ¼ the
number of characters of type i, there are
n1 + n2 + n3 + n4 characters, and n1 > n2, n3 > n4,
and n1 + n4 > n2 + n3 Furthermore, let there be two
weights, a and b, attached to the characters where n1
and n2 receive weight a and n3 + n4 receive weight b.
This situation describes two groups of characters each of
which conflicts with each other and internally. The cost
of the shortest tree would then be:

Ccombined ¼ a n1 þ b n4 þ 2a n2 þ 2b n3

The sum of minimum and maximum possible char-
acter costs would be:

R Cminimum ¼ a n1 þ b n4 þ a n2 þ b n3

R Cmaximum ¼ 2a n1 þ 2b n4 þ 2a n2 þ 2b n3

The MRI (or RI in this case) would be:

MRI¼ðRCmaximum�Ccombined=ðRCmaximum�RCminimumÞ

Or

MRI ¼ ða n1 þ b n4Þ=ða n1 þ b n4 þ a n2 þ b n3Þ

Hence

limMRI ¼ n1=ðn1 þ n2Þ as a ! 1:

As n1 > n2, MRI must vary between 0.5 and 1.0. The
only case in which the MRI will limit to 1 would be
when n2 is effectively zero (¼ no homoplasy). Any
conflict among characters with weight a will decrease the
limiting MRI.

Returning to the real data sets discussed above, it is
clear that this effect does not cloud the sensitivity

Lepidochiton
Loligo

Peripatoides
Peripatus

Trilobita
Anoplodactylus

Limulus
Centruroides

Mastigoproctus
Peucetia
Nephila

Callinectes
Balanus

Scutigera
Spirobolus

Thermobius

Dorocordulia
Libellula

Papilio
Drosophila

Heptagenia
Tibicen

Mantis

Glycera
Lumbricus
Haemopis

Fig. 3. Cladograms reconstructed from combined arthropod data, where indels are weighted 4, transversions 1 and transitions 1. Cladograms drawn
using CLADOS ver. 10.9 (Nixon, 1992).
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analysis of the arthropod or chelicerate data. As indel
costs are increased from 1 to 10 000 times the cost of
base transformations, the MRI does settle down to a
limiting value, but this is not the global optimum for
these data. In both cases, intermediate (neither mini-
mum nor maximum) indel costs achieve optimal MRI
values. Clearly, this is due to the presence of homoplasy
in the optimization of cost variation. If there had been

complete agreement, the MRI would have tended
towards unity (Fig. 6).

Discussion

There are several points about the MRI that should
be made clear. First is that the delineation of fragment
characters will affect the MRI measure. There are many
unambiguous sorts of delineation that can be made,
such as coding regions, exon ⁄ intron boundaries, primer
locations or chromosomal location. Others may be less
obvious (e.g., secondary structure). In cases where these
delineations are not obvious, it would seem wise to
examine this effect on the MRI values calculated.
Secondly, the distinctions among parameter sets made
by MRI values may be small (< 1%). Given that the
MRI is an optimality criterion, this is not an issue per se,
optimal is optimal after all, as with cladogram search

Indel = 2, TV = 1, TI = 1 

Peripatopsis
Balanus

Callinectes
Artemia

Spirobolus
Scutigera

Colosendeis
Aportus
Alentus

Limulus

Hadrurus
Paruroctonus

Androctonus
Centruroides

Americhernes
Chanbria

Vonones
Leiobunum

Gea
Hypochilus

Eurypelma
Thelechoris

Heptathela
Liphistius

Amblypygid
Mastigoproctus
Trithyreus

Palpigrade
Ricinuleid

Amblyomma
Rhiphicephalus

Tetranychus

Monobia
Calopteryx

Fig. 4. Cladograms reconstructed from combined chelicerate data; indels are weighted 2, transversions 1 and transitions 1. Cladograms drawn using
CLADOS ver. 10.9 (Nixon, 1992).

weight aabb
One 
Two 
Three 0110
Four  1111
Five  1001

1234

0000
0000

Fig. 5. Example data.
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procedures. Some notion of robustness, however, may
be in order. In situations where many widely divergent
hypotheses are supported in different areas of parameter
space, and MRI distinctions are small, the stability of
the result to the addition of new data may be slight. On
the other hand, there may be small, but consistent
favoring of a hypothesis, which would yield stable
solutions. As discussed in Wheeler (1995), these situa-
tions are worthy of examination. Robustness arguments
can also come into play with the heuristic cladogram
cost calculations of Direct Optimization. Given that
these costs are upper bounds, small differences in MRI
values may suffer additional variability based on the
aggressiveness of searches and cost heuristics.

Conclusions

A partition-free metric can be constructed to distin-
guish among most parsimonious solutions of a given
data set based on different parameter assumptions. The
metric proposed here (MRI), may in some circum-
stances offer trivial optima, but these cases are likely to
be infrequent and can be detected. Hence, the MRI has
the potential to be a useful optimality criterion for
phylogenetic sensitivity analysis.
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(a) Arthropod Congruence Measures
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Fig. 6. MRI, ILD, 1-CI and 1 ) RILD values as a function of
increasing Indel cost for (a) arthropod data and (b) chelicerate data.
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