Immunoglobulin M Enzyme-Linked Immunosorbent Assay Using Recombinant Polypeptides for Diagnosis of Dengue

Elsa Vide,

Maria Josefin Coloma,

Flavia Barreto dos Santos,

Angel Balmaseda,

and Eva Harris

Virology Laboratory, Centro Nacional de Diagnostico y Referencia, Ministry of Health, Managua, Nicaragua;
Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California;
and Flavivirus Laboratory, Department of Virology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil

Received 19 January 2005/Returned for modification 4 April 2005/Accepted 19 April 2005

We demonstrate that a mixture of four recombinant dengue virus E polypeptides corresponding to the N-terminal region of the envelope protein from all serotypes substitutes for standard antigens in two immunoglobulin M enzyme-linked immunosorbent assay formats with 100% concordance, making these polypeptides a useful and accessible reagent for serological diagnosis of dengue in endemic countries.

Dengue is a major global public health problem with increasing numbers of cases and expanded geographic distribution (5). The four serotypes of the dengue flavivirus (DENV1 through DENV4) have a positive-sense RNA genome that is translated as a single polyprotein and posttranslationally cleaved into three structural proteins and seven nonstructural proteins (8). The envelope protein (E) is considered to be the immunodominant protein (10).

Large-scale dengue diagnosis relies on serological testing. While analysis of the change in immunoglobulin M (IgM) or IgG antibody titer in paired acute- and convalescent-phase sera is considered the “gold standard,” in practice, the most commonly used diagnostic test is the IgM capture enzyme-linked immunosorbent assay (MAC-ELISA) (13) with a single serum sample negative for anti-DENV IgM were tested. The specificity of the polypeptides was tested by Western blot analysis as described before (3) with minor modifications, using sera from Nicaraguan dengue patients and polyclonal anti-E antibodies. Two acute-phase sera (with high and low titers of anti-DENV IgM), one convalescent-phase serum sample (high anti-DENV IgG titer), rabbit anti-E antibodies, and a serum sample negative for anti-DENV IgM were tested. The positive sera (Fig. 1B) and the polyclonal antibodies recognized all the recombinant polypeptides, while the negative control did not (data not shown). The sensitivities of the individual polypeptides were compared to that of a mixture of the four by dot blot using serial dilutions of each antigen. Serum known to contain anti-DENV IgM recognized the mixture of the four recombinant antigens at a dilution of 1:15 (66 ng/ml), whereas the thresholds of detection of single polypeptides ranged from 100 to 200 ng/ml (Fig. 1C).

The performance of the novel tetravalent polypeptides was compared to that of antigen prepared from infected cell lysates (cellular antigen) in a modified in-house MAC-ELISA (1). Briefly, plates coated with anti-human IgM (Sigma Chemical Co., St. Louis, MO) were incubated with 1:20 dilutions of

* Corresponding author. Mailing address: Division of Infectious Diseases, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720-7360. Phone: (510) 642-4845. Fax: (510) 642-6350. E-mail: charris@socrates.berkeley.edu.
serum samples, followed by the tetravalent recombinant polypeptides (30 μg/ml) and then the secondary antibody (anti-DENV IgG-peroxidase conjugate prepared from hyperimmune sera) diluted 1:5,000. The reaction with substrate tetramethylbenzidine (Sigma) was stopped with 2.5% sulfuric acid after 30 min. Negative controls consisted of sera from healthy donors confirmed as being negative for DENV-specific antibodies by ELISAs using cellular antigen (6), while positive controls were sera from patients serologically confirmed as being positive for anti-DENV IgM by MAC-ELISA (6). These sera were collected during a period when DENV2, DENV3, and DENV4 were circulating in Nicaragua. Fifteen acute-phase sera, 15 convalescent-phase sera, 11 sera from yellow fever (YF) vaccinees, and 10 sera positive for anti-rubella IgM were tested. An excellent correlation between the two assays was found ($R^2 = 0.98$), with 14 of the 15 acute-phase sera defined as positive and 1 as negative by both assays. Likewise, 11 convalescent-phase serum samples were positive and 4 were negative by ELISA with either antigen. None of the YF-vaccinated or rubella-positive sera were positive by either assay (Fig. 2A).

An indirect IgM ELISA (6) with antigen bound to the polystyrene plate was evaluated by using four sources of antigen (the four recombinant E polypeptides, DENV2 recombinant E protein, cellular antigen [DENV1 through DENV4] [1], and mouse brain antigen [DENV1 through DENV4] [Instituto de Medicina Tropical Pedro Kouri, Havana, Cuba]). Recombinant E protein was expressed from baculovirus AcD2EΔH in Sf9 cells and purified as described previously (12). Human rheumatoid factors (anti-IgG IgM antibodies) were removed from all serum specimens (previously diluted 1:20) by pretreatment with a 1:5 dilution of anti-human IgG (Sigma). For the
ELISA, plates were coated with 2.5 μg/ml of each antigen and blocked with 3% nonfat dry milk. Serum samples were incubated for 1 h at 37°C, followed by incubation with a goat anti-human IgM-horseradish peroxidase conjugate (Sigma) diluted 1:5,000 in blocking buffer, and detected with tetramethylbenzidine as described above. Three washes with phosphate-buffered saline–Tween followed each step. Twelve acute-phase sera previously confirmed as positive for DEN-specific IgM antibodies, 6 sera from YF vaccinees, and 10 rubella-positive sera were tested in all assays in triplicate. The acute-phase sera were positive for IgM antibodies with all three antigens, whereas the convalescent-phase, YF-vaccinated, and rubella-positive control sera were negative in all ELISAs (Fig. 2B and data not shown). Correlations (R²) of 0.91, 0.90, and 0.84 were obtained by comparing the four E polypeptides with recombinant E protein, mouse brain antigen, and cellular antigen, respectively. The polypeptides and standard cellular antigen discriminated between positive and negative samples with 100% concordance (Fig. 2B). Both the DENV polypeptides and cellular antigen were more specific than recombinant E or mouse brain antigen, each of which detected one low false positive from YF-vaccinated serum samples (Fig. 2B).

Routine diagnosis of dengue is performed predominantly by IgM capture ELISA, which requires large amounts of DENV antigen produced in mouse brain or cell culture, often unavailable in laboratories across the developing world. We have produced an alternate source of DENV antigen by expressing in E. coli a recombinant fragment of the E protein from all four DENV serotypes that, according to our calculations, costs approximately one-half as much to prepare as does cellular antigen. Our data suggest that a tetravalent preparation of the recombinant DENV E polypeptides can be used as a substitute for the traditional DENV antigens in a MAC-ELISA and indirect ELISA format.

We thank Vincent Deubel (Institut Pasteur, Paris, France) for baculovirus AcD2EΔH, Sujan Shresta (School of Public Health, University of California, Berkeley, Calif.) for recombinant E protein, Ximena Aguilar (Universidad Mayor de San Andrés, La Paz, Bolivia) for the yellow fever vaccinee serum specimens from Bolivia, and Yoryelyn Rodriguez (Ministry of Health, Nicaragua) for her help with the expression and purification of the polypeptides.

This research was supported by Fogarty International Center grant TW-00905.

REFERENCES