Phylogenetic analysis of Geotrupidae (Coleoptera, Scarabaeoidea) based on larvae

JOSÉ R. VERDÚ 1, EDUARDO GALANTE 1, JEAN-PIERRE LUMARET 2 and FRANCISCO J. CABRERO-SAÑUDO 3

1Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, Spain; 2CEFE, UMR 5175, Département Ecologie des Arthropodes, Université Paul Valéry, Montpellier, France; and 3Departamento Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain

Abstract. Thirty-eight characters derived from the larvae of Geotrupidae (Scarabaeoidea, Coleoptera) were analysed using parsimony and Bayesian inference. Trees were rooted with two Trogidae species and one species of Pleocomidae as outgroups. The monophyly of Geotrupidae (including Bolboceratinae) is supported by four autapomorphies: abdominal segments 3–7 with two dorsal annulets, chaetoparia and acanthoparia of the epipharynx not prominent, glossa and hypopharynx fused and without sclerome, trochanter and femur without fossorial setae. Bolboceratinae showed notable differences with Pleocomidae, being more related to Geotrupinae than to other groups. Odonteus species (Bolboceratinae s.str.) appear to constitute the closest sister group to Geotrupinae. Polyphyly of Bolboceratinae is implied by the following apomorphic characters observed in the ‘Odonteus lineage’: anterior and posterior epitormae of epipharynx developed, tormae of epipharynx fused, oncyli of hypopharynx developed, tarsal claws reduced or absent, plectrum and pars stridens of legs well developed and apex of antennal segment 2 with a unique sensorium. A ‘Bolbelasmus lineage’ is supported by the autapomorphic presence of various sensoria on the apex of the antennal segment, and the subtriangular labrum (except Eucanthus). This group constituted by Bolbelasmus, Bolbocerosoma and Eucanthus is the first evidence for a close relationship among genera, but more characters should be analysed to test the support for the clade. A preliminary classification at tribe level of Geotrupinae is suggested as follows: Chromogeotrupini (type genus Chromogeotrupes), Lethrini (type genus Lethrus), Taurocerastini (type genus Taurocerastes) and Geotrupini (type genus Geotrupes). Some ecological facts of Geotrupidae evolution could also be explained by the present results, such as those related to diet and nesting behaviour. Both coprophagy and male–female co-operation in nesting appear as derived traits.

Introduction

Geotrupidae include sixty-eight genera and about 620 species distributed in temperate, subtropical and Asian-tropical regions. It is classified into three subfamilies (sensu Lawrence & Newton, 1995). The Geotrupinae are distributed mainly in the Holarctic region. The Lethrini are distributed predominantly in Eastern Europe and Asia. The Bolboceratinae (= Bolboceratidae sensu Scholtz & Browne, 1996; including Bolboceratini and Athyreini) occur in Australia, Africa, Europe and South America. Some authors (e.g. Zunino, 1984a, b) include the southern South American Taurocerastinae at subfamily level. Many authors have considered Geotrupidae to be monophyletic (e.g. Crowson, 1954, 1960, 1981; Paulian, 1959; Balthasar, 1963; Howden, 1964; Medvedev, 1976; Iablokoff-Khnzorian, 1977; Scholtz, 1990; Lawrence & Newton, 1995). Nevertheless, Scholtz & Browne (1996) described the family Bolboceratidae as an independent lineage more
closely related to Pleocomidae. Morphological studies on immature stages have suggested a probable polyphyly in the Bolboceratinae group (Verdú et al., 1998), as Bolbemasus and Odontea features differ considerably. Some authors (Davis, 1935; Paulian, 1941; Ritcher, 1947) have included the genus Pleocoma in the Geotrupidae, although Pleocoma species differ from the geotrupids on many adult and larval characters (e.g. Browne & Scholtz, 1999). On the basis of morphological and biological characters, Howden (1982) hypothesized that the Geotrupinae (including Geotrupini, Athyreini, Bolboceratini, and Lethrini) form a monophyletic lineage closely related to the Pleocomidae (= Pleocominae sensu Howden, 1982). Conversely, other authors (Browne & Scholtz, 1995, 1999; Scholtz & Chown, 1995; Scholtz & Browne, 1996) suggested that geotrupids constitute a polyphyletic group with Bolboceratidae being a part of a lineage which includes Pleocomidae, Trogidae, Glaphyridae, Passalidae, Lucanidae, and Diphyllostomatidae, whereas Geotrupidae (including Geotrupinae, Taurocerasti- ne, and Lethrinae) are part of a different lineage which includes Ochodidae, Ceratocanthidae and Hybosoridae.

Crowson (1954) suggested that speculation on the systematic placement of Taurocerastes and Frickius should be delayed until the larvae were known, inferring that adult characters were not sufficient. Nevertheless the systematic position of these genera has been discussed by taxonomists, with allocation to either Geotrupinae (Geotrupini sensu Howden, 1982) at tribe level (Ritcher, 1968, 1969; Howden, 1982) or with Taurocerastinae at subfamily level (e.g. Zunino, 1984a, b).

In most papers dealing with the phylogeny of Coleoptera, adult characters are the rule, mainly because larval material is mostly missing or has been very poorly compared with adult character sets. In the previous classifications dealing with adults in Geotrupidae (Zunino, 1984a; Browne & Scholtz, 1995, 1999), polytomies and inconsistency between phylogenetic trees were obtained. On the other hand, in the previous analyses which combined adult and larval charac- ters (Howden, 1982; Browne & Scholtz, 1999), the set of larval characters was too reduced to provide significant effects on the results. Moreover, in these studies, several mistakes have been noticed in the structure of larval respiratory spiracles and the morphology of endoskeletal figure (nomenclature sensu Ritcher, 1966) of anal lobes (see the reinterpretation in the present paper).

In Coleoptera, many apomorphic larval characters were crucial to elucidate phylogenetic relationships at the highest taxonomic levels in spite of the conservative nature of some characters (e.g. Crowson, 1954; Ritcher, 1966; Chown & Scholtz, 1990; Scholtz & Peck, 1990; Ashe & Newton, 1993; Beutel, 1993, 1999; Pinto et al., 1996; Archangelsky, 1998; Beutel et al., 1999; Beutel & Hörnschemeyer, 2002). For example, in Hydrophiloidea, a combined analysis at the family level showed that larvae were most informative deeper in the phylogeny, compared with adults which were more informative at the apex of the tree (Archangelsky, 1998). Also, in several larval studies of Scarabaeoidea, as expected, larval characters appeared to be more conserva-

tive than those of adults, but allowed elucidation of small monogenic or paucigenic groups (Hayes, 1949; Ritcher, 1966; Paulian & Lumaret, 1974, 1982; Verdú et al., 1998; Verdú & Galante, 2001). In the present study, we hypothesize that the use of larval characters may provide powerful information to enlighten the phylogenetic history of Geotrupidae. All geotrupid larvae develop subterranean nests, a buffered system (stability of microclimatic conditions) protected from competition for food and space (individual brood masses). Conversely to larvae, the adults have to compete for reproduction and for food (both for themselves and the provisioning of the nest) against other geotrupids and all dung beetles present inside dung pats. In some species, adults have developed thoracic horns in males (e.g. Typhaeus, Taurocerastes) which could have orientated selection in the mating system, as observed in males of Onthophagus with cephalic horns (Moczek & Emlen, 2000; Emlen, 2001). In dung beetles, larvae have primitive mandibles compared with adults, whose mandibles differ according to the food regime or behaviour (Cambefort, 1991). Mouthparts of larvae of Anomalinini (Scarabaeidae: Rutelini) are very uniform in contrast to those observed in adults (Murayama, 1931; Ritcher, 1966). Adult beetles associated with rabbit pellets as food show morphological convergence of the epipharynx, as in several species of Aphodius and Onthophagus (Verdú & Galante, 2004). The specialization on dry excrements (such as rabbit pellets) also led to modifications in the shape of the hypopharynx and the mandibles of Thorectes adults (Verdú & Galante, 2004). In Lethrinae, adults are equipped with very large, chisel-shaped mandibles with which they cut young leaves. Afterwards, cut leaves are chewed by the female and packed into burrows in the shape of a sausage, similar to those of Geotrupinae (Popovic-Baznosanu, 1932; Nikolaiev, 1966). More generally, particular trophic habits and morphological adaptations in adults are more frequent and recent than in larvae.

Using only larval characters, we expect that in geotrupids these characters could be more informative than adult ones deeper in the phylogeny, with less background noise than for adult characters.

Our contribution presents a study of the larval morphology of representatives of all families, subfamilies and tribes classified historically into Geotrupidae (sensu lato); only the Athyr- eini are excluded here because their larvae are unknown.

Four main questions will be considered: (1) the monophyly or polyphyly of the Geotrupidae; (2) the phylogenetic relationships between the Bolboceratinae (or Bolboceratidi- ne, sensu Scholtz & Browne, 1996) and the Pleocomidae; (3) the possible polyphyly of the Bolboceratine group; and (4) the systematic position of the Taurocerastinae.

Materials and methods

Taxa studied

For this study, larvae were obtained either by breeding adults in the laboratory or by collecting larvae in the field.

© 2004 The Royal Entomological Society, Systematic Entomology, 29, 509–523
Field-caught larvae were kept in the laboratory throughout their larval development in order to obtain the final instar and adults for identification. This material has been deposited at the Entomological Collections of the Universidad de Alicante, Spain and the Université Paul Valéry, Montpellier, France. Other taxa were obtained from museum collections: Oregon State University; the Canadian Museum of Nature, Instituto de Ecología de Xalapa, México; or borrowed from Dr V. Grebennikov. A list of taxa studied is shown in Table 1.

Data on the larvae of Odontes liebecki (Wallis, 1928), O. simi (Wallis, 1928), Bolbocerosoma tumefactum (Palisot de Beauvois, 1805), Anoplotrupes stercorosus (Scriba, 1790), Ceratophyus gopherinus Cartwright, 1966, and C. polyceros Pallas, 1771, were taken from the literature (van Emden, 1941; Ritcher, 1947, 1966; Howden, 1955; Ritcher & Duff, 1971; Nikolaiev, 1975).

Nomenclatural note: After the controversial comments about the precedence of Bolboceros Kirby, or Odontes Samouelle made by Jameson & Howden (2002) and Krell et al. (2003), we considered more appropriate the precedence of Odontes over Bolboceros according to arguments of Krell et al. (2003).

Specimen preparation and study

Dissections of larval skins were made with a stereomicroscope (magnification up to 40×), and separated parts were studied on temporary slides under a microscope using magnifications of 100 and 200×. Drawings were made using a FSA 25 PE tube (Leica®). Light micrographs of respiratory spiracles were recorded on Ektachrome 64T (Kodak®) film using interference contrast. Scanning electron microscopy of spiracles were first cleaned with ether–alcohol (1:1) and ultrasound and then coated with gold for 4 min. Anatomical nomenclature follows Jerath (1960) and Ritcher (1966). Specimen preparation and study

Characters and character states used in the analysis

1. General body shape: (0) broadly C-shaped (Figs 1, 2); (1) strongly curved at the level of fourth or fifth abdominal segments (Fig. 3).
2. Last abdominal segment: (0) rounded and narrowed apically (Fig. 1); (1) obliquely flattened (Figs 2, 3).
3. Sclerotized plate of prothorax: (0) strongly sclerotized; (1) slightly sclerotized.
4. Abdominal segments 3–7: (0) with four dorsal annules (Fig. 4); (1) with three dorsal annules (Fig. 5); (2) with two dorsal annules (Figs 1–3).
5. Clypeo-frontal suture: (0) present (Fig. 6); (1) absent (Figs 7, 8).
6. Epieranal suture: (0) not extending between frontal suture (Figs 8, 8a); (1) extending between frontal suture (Fig. 7).
7. Frontal suture: (0) V-shaped (Figs 6, 8a); (1) U-shaped (Fig. 7).
8. Clypeus: (0) symmetric (Figs 6, 8a); (1) asymmetric (Fig. 7).
9. Stemmata: (0) present (Fig. 8b); (1) absent.
10. Antenna: (0) with three segments (Figs 9–11); (1) with two segments (Fig. 12).
11. Apex of antennal segment 2: (0) with various sensoria (Fig. 9); (1) with a unique sensorium (Figs 10–12).

Based on more than 100 species of Scarabaeoidea studied, we have observed in several taxa (e.g. Aphodiidae and Geotrupidae) that only the number of larval sensoria shows phylogenetic information at the high taxa level. The shape of sensoria is very variable (e.g. conical, disklike, flattened) at the specific level, as observed between species of Aphodius subgenera (Verdú & Galante, 1997) and also in Geotrupes genus (unpublished data).

12. Labrum shape: (0) subspherical (Figs 13, 15); (1) subtriangular not trilobed (Fig. 14); (2) trilobed (Figs 16–18).
13. Anterior epitorma of epipharynx: (0) absent (Figs 13–15); (1) slightly developed (Fig. 16); (2) well developed (Figs 17, 18).
14. Posterior epitorma of epipharynx: (0) absent (Figs 13–15); (1) slightly developed (Figs 16, 17); (2) well developed (Fig. 18).
15. Sclerotized plates of epipharynx: (0) present (Fig. 15); (1) absent.
16. Torae of epipharynx: (0) not fused in middle (Figs 13, 14); (1) fused (Figs 15–18).
17. Crepis of epipharynx: (0) posterior to the torae (Fig. 13); (1) inserted and aligned to the torae (Figs 15–18).
18. Macrosensillae of epipharynx: (0) not aligned with protophoba (Figs 13–16); (1) aligned (Figs 17, 18).
19. Pegmatia of epipharynx: (0) present (Fig. 13); (1) absent.
20. Hapteromerum of epipharynx: (0) with heli (Fig. 13); (1) without heli.
21. Chaetoparia and acanthoparia of epipharynx: (0) prominent; (1) not prominent.
22. Oncyli of hypopharynx: (0) absent (Fig. 19); (1) with symmetric oncyli (Fig. 20); (2) with asymmetric oncyli (Figs 21, 22).
23. Glossa and hypopharynx: (0) separated by a transverse sclerome (Fig. 19); (1) fused, without sclerome (Figs 20–22).
24. Lacinia of maxillae: (0) with bidentate apex; (1) with tridentate apex.
25. Retinaculum of mandibles: (0) absent (Figs 23, 26); (1) slightly developed (Figs 24, 25); (2) well developed (Fig. 27).
26. Molar region of mandibles: (0) poorly developed, molar surface simple (Figs 24, 25); (1) well developed, molar surface asperate or ridged (Figs 23, 26, 27).
27. Respiratory spiracles: (0) biforous (Fig. 28); (1) cribiform oligofoorous (Figs 29–31); (2) cribiform multi-foorous (Figs 32–34).
<table>
<thead>
<tr>
<th>Taxa</th>
<th>Material studied</th>
<th>Collections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleocomidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleocoma Le Conte, 1856</td>
<td>Penultimate-instar larva</td>
<td>XAL</td>
</tr>
<tr>
<td>Pleocoma lineyi Hovore, 1971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trogidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polynoncus Burmeister, 1876</td>
<td>Four final-instar, two second-instar larvae</td>
<td>CEUA</td>
</tr>
<tr>
<td>Polynoncus aeger (Guérin, 1844)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trox Fabricius, 1775</td>
<td>Seven final-instar larvae</td>
<td>CEUA</td>
</tr>
<tr>
<td>Trox cricetulus Adám, 1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotrupidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anoplotrupes Jekel, 1866</td>
<td>One final-instar larva</td>
<td>CMN</td>
</tr>
<tr>
<td>Anoplotrupes horni (Blanchard, 1888)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolbolasmus Boucomont, 1910</td>
<td>One final-instar larva</td>
<td>CEUA</td>
</tr>
<tr>
<td>Bolbolasmus bocchi (Erichson, 1841)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolbolasmus gallucis (Mulsant, 1842)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratophyus Fischer de Waldheim, 1823</td>
<td>Three final-instar, two final-instar larvae</td>
<td>UPV</td>
</tr>
<tr>
<td>Ceratophyus hoffmannseggii Fairmaire, 1856</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratophyus Jekel, 1865</td>
<td>One final-instar larva</td>
<td>CMN</td>
</tr>
<tr>
<td>Ceratotrupes bolivari Halffter & Martinez, 1962</td>
<td>Three final-instar larva</td>
<td>Ore</td>
</tr>
<tr>
<td>Cnemotrupes Jekel, 1865</td>
<td>One final-instar larva</td>
<td>CMN</td>
</tr>
<tr>
<td>Cnemotrupes blackburnii (Fabricius, 1781)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cnemotrupes semiopacus (Jekel, 1866)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cnemotrupes splendidulus (Fabricius, 1775)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cnemotrupes ulkei (Blanchard, 1888)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucanthis Westwood, 1852</td>
<td>One final-instar larva</td>
<td>Ore</td>
</tr>
<tr>
<td>Eucanthis lazarus (Fabricius, 1775)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frickius Germain, 1897</td>
<td>One final-instar larva</td>
<td>CMN</td>
</tr>
<tr>
<td>Frickius variolosus Germain, 1897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geohowdenius Zunino, 1984</td>
<td>One final-instar larva</td>
<td>CMN</td>
</tr>
<tr>
<td>Geohowdenius egeriei (Germar, 1824)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geohowdenius opacus (Haldeman, 1853)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotrupes Jekel, 1865</td>
<td>Three final-instar larvae</td>
<td>Ore</td>
</tr>
<tr>
<td>Geotrupes latremille, 1796</td>
<td>One final-instar larva</td>
<td>CMN</td>
</tr>
<tr>
<td>Geotrupes mutator (Marshall, 1802)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotrupes puncticollis (Malinowsky, 1811)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotrupes stercorarius (Linnaeus, 1758)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lethrus Scopoli, 1777</td>
<td>One final-instar larva</td>
<td>CMN</td>
</tr>
<tr>
<td>Lethrus (Abrognathus) tuberculifrons Ballion, 1870</td>
<td>Three second-instar larvae</td>
<td>Ore</td>
</tr>
<tr>
<td>Lethrus (Lethrus) apterus Laxman, 1870</td>
<td>One final-instar larva</td>
<td>V. Grebennikov</td>
</tr>
<tr>
<td>Mysodotrupes Le Conte, 1866</td>
<td>One final-instar larva</td>
<td>CMN</td>
</tr>
<tr>
<td>Mycotrupes gaugei Olson & Hubbell, 1954</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontes Samouelle, 1819</td>
<td>One final-instar larva</td>
<td>V. Grebennikov</td>
</tr>
<tr>
<td>Odontes armiger (Scopoli, 1772)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontes darlingtoni (Wallis, 1926)</td>
<td>One second-instar larva</td>
<td>Ore</td>
</tr>
<tr>
<td>Odontes obsesus (Le Conte, 1859)</td>
<td>One final-instar larva</td>
<td>Ore</td>
</tr>
<tr>
<td>Peliotrupes Blanchard, 1888</td>
<td>Three final-instar larvae</td>
<td>Ore</td>
</tr>
<tr>
<td>Peliotrupes youngi Howden, 1955</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sericodotrupes Zunino, 1984</td>
<td>Ten final-instar larvae</td>
<td>UPV</td>
</tr>
<tr>
<td>Sericodotrupes niger (Marsham, 1802)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taurocerastes Philippi, 1866</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

34. **Pars stridens of mesothoracic leg:** (0) absent (Figs 38a–40a); (1) well developed (Figs 38b–40b).

35. **Trochanter and femur:** (0) without fossorial setae; (1) with fossorial setae.

36. **Metathoracic leg:** (0) four-segmented (Fig. 35); (1) three-segmented (Figs 36–40).

37. **Tarsal claws:** (0) well developed (Figs 35–37); (1) reduced or absent (Figs 38–40).

38. **Lateral anal lobe:** (0) absent (Figs 41–42); (1) well developed (Figs 43–49).

39. **Ventral anal lobes:** (0) without dorso-exterior indentation (e.g. Fig. 45); (1) with deep dorso-exterior indentation (Fig. 46).

40. **Ventral anal lobes:** (0) without dorso-exterior indentation (e.g. Fig. 45); (1) with deep dorso-exterior indentation (Fig. 46).

41. **Tarsal claws:** (0) well developed (Figs 35–37); (1) reduced or absent (Figs 38–40).

42. **Tarsal claws:** (0) well developed (Figs 35–37); (1) reduced or absent (Figs 38–40).

43. **Metathoracic leg:** (0) four-segmented (Fig. 35); (1) three-segmented (Figs 36–40).

44. **Pars stridens of metathoracic leg:** (0) absent (Figs 38a–40a); (1) well developed (Figs 38b–40b).

45. **Pars stridens of metathoracic leg:** (0) absent (Figs 38a–40a); (1) well developed (Figs 38b–40b).

46. **Pars stridens of metathoracic leg:** (0) absent (Figs 38a–40a); (1) well developed (Figs 38b–40b).

47. **Pars stridens of metathoracic leg:** (0) absent (Figs 38a–40a); (1) well developed (Figs 38b–40b).

Cladistic analysis

The phylogenetic analyses of the Geotrupidae included thirty-eight larval characters and twenty-two genera (forty-four species in total). Trox cricetulus, Polynoncusa aeger and Pleocoma linsleyi were used as outgroup taxa. The data matrix used in the analysis is shown in Table 2.

Three analyses are presented here; first, a heuristic parsimony analysis was performed with 1000 random stepwise additions of taxa (TBR branch swapping, MulTrees option in effect). These phylogenetic analyses were performed in PAUP* version 4.0 (Swofford, 1998), under the Fitch criterion (Fitch, 1971). Characters were of equal weight. A heuristic search was then performed with TBR. All characters were unordered. Bootstrap values for clades were calculated in 500 replicates using a single heuristic search.

The second analysis, a ratchet parsimony analysis (Nixon, 1999), was carried out with WINCLADA 1.00.08 (Nixon, 2002), in order to find the most parsimonious tree.

© 2004 The Royal Entomological Society, Systematic Entomology, 29, 509–523
Figs 1–12. General body shape: 1, Bolbelasmus bocchus (from Verdú et al., 1998); 2, Typhaeus typhoeus; 3, Thorectes valencianus. Abdominal segments: 4, Pleocoma linsleyi; 5, Polynoncus aeger. Head: 6, Frickius variolosus; 7, Thorectes punctatolineatus; 8, Trox cricetulus. Antennae: 9, Bolbelasmus gallicus; 10, Odonteus armiger; 11, Thorectes punctatolineatus; 12, Ceratophythus hoffmanseggi. PRSC = prescutum; SCU = scutum; SCL = scutellum; PSCL = postscutellum; FS = frontal suture; CFS = clypeo-frontal suture; CS = coronal suture; ST = stemmata.

© 2004 The Royal Entomological Society, Systematic Entomology, 29, 509–523
The robustness of the resulting MP tree was tested by means of bootstrapping with 1000 pseudoreplications, as implemented in WINCLADA.

The third analysis, a Bayesian inference of phylogeny (Huelsenbeck & Ronquist, 2001), was performed with MRBAYES 3.0 (Huelsenbeck & Ronquist, 2002) by Metropolis coupled Markov chain Monte Carlo (MC3) sampling for 1 000 000 generations (four simultaneous MC chains, sample frequency 100, burnin = 0) under the Mkv model.
Figs 23–34. Scanning electron micrographs of mandibles: 23, Pleocoma linsleyi; 24, Bolbelasmus gallicus; 25, Eucanthus lazarus; 26, Lethrus tuberculifrons; 27, Geotrupes ibericus. Light (a) and scanning electron (b) micrographs of respiratory spiracles: 28, Trox cicetulus; 29, Eucanthus lazarus; 30, Bolbelasmus gallicus; 31, Odontus darlingtoni; 32, Frickius variolosus; 33, Lethrus tuberculifrons; 34, Thorectes punctatolineatus (respiratory holes are indicated by arrows). R = retinaculum; M = molar area; RSP = respiratory plate; SS = spiracular slit.
with a default gamma correction for rate heterogeneity ($\alpha = 0.075$).

Results and discussion

Parsimony analysis

The heuristic analysis resulted in three MP trees (length = 65, consistency index (CI) = 0.69, retention index (RI) = 0.86; Fig. 50). The ratchet parsimony inference also resulted in three MP trees (length = 66, CI = 0.68, RI = 0.84; Fig. 50). These MP trees are only differentiated by the position of *Eucanthus* and the relationship between *Bolbelasmus* and *Bolbocerosoma*. So, *Eucanthus* could be closely related to the clade composed of *Bolbelasmus* and *Bolbocerosoma*, or at the base of the remaining Geotrupidae genera. On the other hand, *Bolbelasmus* and *Bolbocerosoma* could constitute a monophyletic clade or a polytomy together with the group composed of the other Geotrupidae genera.

Figs 35–40. Meso- and metathoracic legs: 35, *Bolbelasmus gallicus*; 36, *Lethrus tuberculifrons*; 37, *Typhaeus typhoeus*; 38, *Odonteus armiger*, general view (a); metathoracic leg, anterior view (b); 39, *Ceratophyus hoffmannseggii*, general view (a); metathoracic leg, anterior view (b). CX = coxa; TR = trochanter; FE = femur; TT = tibiotarsus; CL = claw; PL = plectrum; PS = pars stridens.
The strict consensus tree for the three MPs of each analysis is shown in Fig. 51; bootstrapping values over 50% are also represented for both analyses. *Bolbelasmus*, *Bolbocerosoma* and *Eucanthus* genera appear close to the outgroup and their distinction from the rest is relatively well supported. Other supported groups within the remaining Geotrupidae are *Odonteus* and the clade composed of *Frickius* and *Taurocerastes*. Although there seems to be some kind of topological structure within the tree, as shown by strict consensus, most terminal taxa have negligible support or are not supported at all.

Bayesian inference

A Bayesian inference based on the morphological dataset arrived at a similar and congruent consensus tree (Fig. 52). This analysis recovered the clade of *Bolbelasmus* and *Bolbocerosoma* as sister to the remaining Geotrupidae. The next clade might be *Eucanthus*, but this clade and its position are not sufficiently supported. Again, *Odonteus* and the group constituted by *Frickius* and *Taurocerastes* are also significantly differentiated, as well as the *Ceratophyus* and *Peltoetrupes* clade. However, the relationships between the
remaining taxa are not specified or must be taken with caution as nodes are supported by posterior probabilities below 95%. Nevertheless, phylogenetic relationships within Geotrupidae appear slightly better resolved and supported in the Bayesian tree than in the MP strict consensus.

Monophyly of Geotrupidae

Monophyly of Geotrupidae is well supported in both parsimony and Bayesian analyses (Figs 50–52). Bolboceratinae (*sensu lato*) show notable differences from Pleocomidae, and are the sister group to the rest of Geotrupidae. The close phylogenetic relationship between Pleocomidae and Bolboceratinae (-idae) proposed by Browne & Scholtz (1999) is not supported; the following larval apomorphies reject their hypothesis: abdominal segments 3–7 with two dorsal annules (nonhomoplasious character; character 4), clypeo-frontal suture absent (except for *Taurocerastes* and *Frickius*; character 5), labrum subtriangular or trilobed (character 12), chaetoparia and acanthoparia of the epi-pharynx not prominent (nonhomoplasious character; character 21), glossa and hypopharynx fused, without sclerome (nonhomoplasious character; character 23), trochanter and femur without fossorial setae (character 29) and metathoracic legs three-segmented (except for *Bolbelasmus* and *Bolbocerosoma*; character 30).

From a biological viewpoint, adults of most species of Geotrupinae provision larvae in earthen burrows with decaying organic matter (dead leaves, fungus, dung, or humus) (e.g. Howden, 1955). Larvae of the ‘*Odonteus* lineage’ can be characterized as decaying vegetable matter consumers, concretely humus. Adults of *Odonteus darlingtoni* and *O. liebecki* were found to provide finely divided surface humus for their larvae, which they pack into the bottom of their burrows (Howden, 1955). ‘*Bolbelasmus* lineage’ species have been characterized as fungus and humus consumers, concretely for the larval stages (Howden, 1955; González-Peña, 1979; Verdú et al., 1998). However, adults of Pleocomidae do not feed and larvae are phytophagous, concretely root feeders (Ritcher, 1966) (summarized in Fig. 50).
Polyphyly of the Bolboceratina group

Bolboceratinae (-idae; s.l.) is clearly not monophyletic. Our results show that the Bolboceratinae group is divided into two lineages. The closest group to Geotrupinae is constituted by *Odonteus* species (‘*Odonteus* lineage’) and the second group by *Bolbelasmus*, *Bolbocerosoma*, and *Eucanthus* (‘*Bolbelasmus* lineage’).

The apomorphic character states supporting the ‘*Odonteus* lineage’ are: apex of antennal segment 2 with a unique sensorium (character 11), anterior and posterior epitorvae of epipharynx developed (characters 13, 14), torvae of epipharynx fused (character 16), onculi of hypopharynx developed (character 22), tarsal claws reduced or absent (character 33), and plectrum and pars stridens of legs well developed (characters 31, 32). The ‘*Bolbelasmus* lineage’ is supported by two apomorphies: apex of antennal segment with various sensoria (autapomorphy; character 11), and labrum subtriangular (excluding *Eucanthus*; character 12).

Phylogenetic relationships within Geotrupinae

The following apomorphic characters support the monophyly of Geotrupinae: last abdominal segment obliquely flattened (unique within Geotrupidae; character 2), anterior epitorvae of epipharynx well developed (unique within Geotrupidae; character 13), macrosetae of epipharynx forming an alignment with protophoeba (unique within Geotrupidae; character 18), molar region of mandibles well developed and respiratory spiracles cribiform multiforous (character 26).

Within Geotrupinae, four groups are included: Chromogeotrupini (type genus *Chromogeotrupes*; represented by *Typhaeus* in the analysis) characterized by the presence of the posterior epitorvae of the epipharynx slightly developed (character 14) and lateral anal lobes with a deep dorso-exterior indentation (character 36); Lethrini (type genus *Lethrus*) characterized by the presence of tarsal claws well developed (character 33) and the absence of plectrum of mesothoracic legs and pars stridens of metathoracic legs (characters 31, 32, including *Typhaeus*); Taurocerastini (type genus *Taurocerastes*) are included within Geotrupinae, which was also suggested by Howden (1982: fig. 15), and characterized by some apomorphies such as the reduction of the metathoracic legs (character 28) and the presence of well-developed stridulatory organs (character 32); Geotrupini (type genus *Geotrupes*) are characterized by a strongly curved body shape at the level of the fourth or fifth abdominal segment (nonhomoplasious character; character 1; excluding *Ceratophyus* and *Peltotrupes*); and the presence of a well-developed retinaculum of the mandibles (character 25; including *Typhaeus*). Moreover, the results suggested closer phylogenetic relationships between Ceratophyus and Peltotrupes, supported by some apomorphies such as the reduction of antennal segments (nonhomoplasious character; character 10) and the subtriangular not trilobed labrum shape (character 12), but to confirm this possible group as a new tribe, more characters should be analysed.

Evolutionary specialization: the quality of food and the nesting behaviour

A tendency to coprophagy is evident in several Scarabaeoidea families associated with dung, and in Geotrupidae in particular. The diet of the larvae of the most primitive geotrupids, such as the ‘*Odonteus* lineage’ and the ‘*Bolbelasmus* lineage’, is based on humus and fungi, whereas many Geotrupinae show coprophagous habits, with modification of mouthparts, particularly in adults (Halffter & Matthews, 1966; Cambefort, 1991). A similar evolutionary polarity regarding nesting behaviour can be seen. Primitive geotrupids construct simple burrows; adults pack surface humus and divide it into fine pieces to fill the nest. A single egg is laid in a small cavity just beyond the packed humus (Howden, 1955). In ‘intermediate’ geotrupids, such as Lethrini and Chromogeotrupini, adults construct burrows...
with compact ‘sausages’ of dead leaves and dung. The eggs are still deposited singly in a small cell in the sand outside the food (Howden, 1955; Brussaard, 1983). In ‘modern’ geotrupids, such as Geotrupini, dung is generally used as food. In some cases, dead leaves can be used, as in some Cnemotrupes Jekel, 1865 species (Howden, 1955). In this group, male–female co-operation is frequent and the egg is laid in a small cell in the food mass, as also occurs in modern Scarabaeinae (Howden, 1955; Halffter & Matthews, 1966; Klemperer, 1979; personal observations). The high diversity of the nesting architecture observed in this group has been considered a possible taxonomic character at generic and subgeneric levels (Howden, 1955).

Taxonomic arrangements

The present results have confirmed the existence of two different lineages within Bolboceratinæ s.l. The Odontœus lineage constitutes the sister group to Geotrupinae. The second lineage is constituted by Bolbelasmus, Bolbocerosoma, and Eucanthus; this is the first evidence of the close relationship among these genera, but to confirm this group as a well-supported clade, more characters should be analysed. Within Geotrupinae, the analysis of the larval morphology suggests a preliminary classification at tribal level into Lethrini, Chromogeotrupini, Geotrupini and Taurocerastini.

Acknowledgements

For the loan of material we thank Dr D. D. Judd (Oregon State University, Corvallis), Dr F. Génier (Canadian Museum of Nature, Ottawa), Dr V. V. Grebennikov (University of Pretoria) and Dr M. A. Morón (Instituto de Ecología A. C. Xalapa). We are particularly indebted to Dr H. F. Howden (Canadian Museum of Nature, Ottawa), Dr C. H. Scholtz (University of Pretoria), Dr G. E. Rotheray (National Museums of Scotland), Dr M. B. Crespo (CIBIO, Universidad de Alicante), Dr C. J. Marshall (Cornell University) and Dr F.-T. Krell (The Natural History Museum, London) for extensively reviewing and improving the manuscript.

References

Table 2. Data matrix showing the characters and character states used for the cladistic analysis.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleocoma</td>
<td>00100</td>
<td>00010</td>
<td>10001</td>
<td>00000</td>
<td>00010</td>
<td>12000</td>
</tr>
<tr>
<td>Polyodonus</td>
<td>00010</td>
<td>00000</td>
<td>10000</td>
<td>11011</td>
<td>01001</td>
<td>12000</td>
</tr>
<tr>
<td>Trox</td>
<td>00011</td>
<td>00000</td>
<td>10000</td>
<td>11011</td>
<td>01001</td>
<td>12000</td>
</tr>
<tr>
<td>Anoplotrupes</td>
<td>11121</td>
<td>10110</td>
<td>12221</td>
<td>11111</td>
<td>12112</td>
<td>12111</td>
</tr>
<tr>
<td>Bolbelasmus</td>
<td>00121</td>
<td>00010</td>
<td>01001</td>
<td>01011</td>
<td>11111</td>
<td>01010</td>
</tr>
<tr>
<td>Bolbocerosoma</td>
<td>00121</td>
<td>00010</td>
<td>01001</td>
<td>01011</td>
<td>11111</td>
<td>01000</td>
</tr>
<tr>
<td>Ceratophyso</td>
<td>01121</td>
<td>11111</td>
<td>11221</td>
<td>11111</td>
<td>12112</td>
<td>12011</td>
</tr>
<tr>
<td>Ceratotrupes</td>
<td>11121</td>
<td>10110</td>
<td>12221</td>
<td>11111</td>
<td>12112</td>
<td>12111</td>
</tr>
<tr>
<td>Cnemotrupes</td>
<td>11121</td>
<td>10110</td>
<td>12221</td>
<td>11111</td>
<td>12112</td>
<td>12111</td>
</tr>
<tr>
<td>Eucanthus</td>
<td>00121</td>
<td>00010</td>
<td>02001</td>
<td>01011</td>
<td>11111</td>
<td>01001</td>
</tr>
<tr>
<td>Frickius</td>
<td>01120</td>
<td>00010</td>
<td>12221</td>
<td>11111</td>
<td>12112</td>
<td>12111</td>
</tr>
<tr>
<td>Geohowdenius</td>
<td>11121</td>
<td>10110</td>
<td>12221</td>
<td>11111</td>
<td>12112</td>
<td>12111</td>
</tr>
<tr>
<td>Geotrupes</td>
<td>11121</td>
<td>11110</td>
<td>12221</td>
<td>11111</td>
<td>12112</td>
<td>12111</td>
</tr>
<tr>
<td>Lethrus</td>
<td>01121</td>
<td>10010</td>
<td>12221</td>
<td>11111</td>
<td>12110</td>
<td>12011</td>
</tr>
<tr>
<td>Mycotrupes</td>
<td>11121</td>
<td>10110</td>
<td>12221</td>
<td>11111</td>
<td>12112</td>
<td>12111</td>
</tr>
<tr>
<td>Odontoeus</td>
<td>00121</td>
<td>10010</td>
<td>12311</td>
<td>11011</td>
<td>12111</td>
<td>01001</td>
</tr>
<tr>
<td>Pelotrupes</td>
<td>01121</td>
<td>10111</td>
<td>11221</td>
<td>11111</td>
<td>12112</td>
<td>12111</td>
</tr>
<tr>
<td>Sericotrupes</td>
<td>11121</td>
<td>10110</td>
<td>12221</td>
<td>11111</td>
<td>12112</td>
<td>12111</td>
</tr>
<tr>
<td>Taurocerastes</td>
<td>01120</td>
<td>00010</td>
<td>12221</td>
<td>11111</td>
<td>12110</td>
<td>12111</td>
</tr>
<tr>
<td>Thorectes</td>
<td>11121</td>
<td>10110</td>
<td>12221</td>
<td>11111</td>
<td>12112</td>
<td>12111</td>
</tr>
<tr>
<td>Trypocopris</td>
<td>11121</td>
<td>10110</td>
<td>12221</td>
<td>11111</td>
<td>12112</td>
<td>12111</td>
</tr>
</tbody>
</table>
| Typhaeus | 01121 | 10110 | 12221 | 11111 | 12112 | 12011 | 00110 | 100

Murayama, J. (1931) A revision of the morphological and taxonomic study of larvae of certain may-beetles which occur in the nurseries of the peninsula of Korea. Bulletin of the Forest Experiment Station (Chosen, Japan), 11, 1–108.

Ritcher, P.O. (1947) Larvae of Geotrupinae, with keys to tribes and genera (Coleoptera: Scarabaeidae). *Bulletin of the Kentucky Agricultural Experiment Station*, 506, 1–27.

Accepted 27 January 2004