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Oscillating Populations and
Biodiversity Maintenance

JOHN VANDERMEER

Species persistence in the face of competitive or predatory pressure has long been assumed to be a consequence of either dynamic equilibrium or
stochastic longevity. More recently, however, the complex intersection of nonlinear dynamics with elementary ecological interactions has provided a
distinct platform for conceptualizing the problem of species coexistence. One well-known result from nonlinear dynamics is that oscillating systems
will tend to coordinate with one another when coupled, even if the coupling is extremely weak. This elementary result yields remarkable insights in
many fields of study. Here I summarize recent results showing that a particular structure emerging from a nonlinear analysis of the classic equations
of ecology can be merged with more qualitative ideas to form a possible general framework for analyzing species diversity. As a specific example,
examine the case of two consumer—resource systems that, when coupled, inevitably produce some kind of phase coordination. Understanding the
nature of that phase coordination provides a qualitative viewpoint for understanding exclusion and coexistence in this example. Finally, I discuss

possible applications to other classical ecological questions.
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The nature of biodiversity has long been a central
focus in biology. This may not seem the case any longer,
since the most visible and spectacular advances in biology have
been with a very restricted set of organisms—the house
mouse (Mus musculus), the fruit fly (Drosophila spp.), the
nematode Caenorhabditis elegans, the plant Arabidopsis, the
bacterium Escherichia coli, and a few others. Basic mechanisms
of physiology, development, and genetics have been elucidated
for these few species at many levels of organization, and an
unprecedented cooperation among laboratories has restruc-
tured the science of biology such that a practitioner from
Darwin’s time would not recognize a biology lab today for
what it is. Yet many biologists and paleontologists remain per-
plexed by questions that would not seem at all unusual for their
19th-century counterparts. Where do all the species come
from? How is it that some localities have a great deal of bio-
diversity while others have little? What causes extinctions, and
are they more or less balanced with speciation events?
Darwin’s “tangled bank” and Wallace’s “plan of the mighty
maze” are still alive and enigmatic, and still motivate a large
number of biologists.

Darwin himself set out a dual approach to the problem:
variation and the “force of selection.” Selection acting on
variation to produce adaptation has been the biologist’s
equivalent of Newton’s laws ever since the widespread scien-
tific acceptance of Darwin’s theory. As Lewontin so percep-
tively described it in The Triple Helix (2000), a complete
theory of diversity is, in a sense, provided by “adaptation” to
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an “ecological niche.” Adaptation results from the force of
selection acting on variation. The problem of variation—
potentially Darwin’s Achilles’ heel, given what he thought he
understood about genetics—was solved by Mendel. But no
Mendel came to clarify the force of selection; and the notion
of the ecological niche, to which the organism adapts, remains
obscure and poorly defined.

In modern terms, Darwin’s force of selection has become
identified with the field of ecology, but the specific problem
of the ecological niche has never been resolved. And that
problem has become considerably more complex than
Darwin, Wallace, or other 19th-century biologists may have
anticipated. Later biologists have gleaned significant insight
by formulating the problem as one of the “construction” of
niches by organisms, rather than adaptation into niches
(Lewontin 2000, Odling-Smee et al. 2003 ). However, there is
a far more important way in which niches relate to diversity:
through their influence on species’ interactions.

For example, a speciation event in which only reproduc-
tive function is altered would seem not to be sustainable in
principle. That is, the two new species, even though they are
true species in the sense that they are incapable of inter-
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breeding, continue occupying the same niche. Classical eco-
logical theory suggests that these two species could not coexist
in the same environment. However, a closer look at the the-
ory that leads to that conclusion (Levins 1979, Armstrong and
McGehee 1980) reveals that something more complicated may
happen. Under certain circumstances, species can indeed oc-
cupy the same niche. And those circumstances are related to
the oscillations that inevitably arise from patterns of con-
sumption, which is to say the relationship between an or-
ganism and its natural enemies (predators, parasites, diseases,
etc.). Could it be that such a conclusion represents a more gen-
eral rule?

At the famous 1944 meeting of the British Ecological So-
ciety, the great geneticist J. B. S. Haldane was reported to
query the assembled sages regarding the likelihood that com-
petitors would, to some extent, share natural enemies. How
might that affect the competitive exclusion principle, for ex-
ample? We have only a short summary of that meeting
(Anonymous 1944) and will never know for sure what Hal-
dane actually said. But it appears that he had, to some extent,
anticipated the problems associated with competitors oscil-
lating as a consequence of trophic structure. It is those oscil-
lations that cast a shadow of complexity on the issue of
diversity (Armstrong and McGehee 1980). However, per-
haps those oscillations, once investigated further, may shed
light on the issue as well.

When can a third species invade?
I take as an example the standard textbook case of two species
on a simple environmental gradient (figure 1). In a major in-
sight into the science of biodiversity, MacArthur and Levins
(1967) noted that if the niches of the two species overlapped
too much, one species or the other would be excluded from
the environment, and, more important, selection would op-
erate most strongly on those individuals located in the zone
of overlap. While these assumptions are complex and ques-
tionable, the basic idea is clear. Suppose there is heritable
variation in niche use, where “use” is stipulated as a particu-
lar position on the gradient. If individuals in the population
occupy only restricted positions along the gradient, selection
would indeed favor the individuals not located in the in-
tensely competitive zone where the niches overlap (figure
1a). The consequence would be a reduction in the breadth of
the two niches (figure 1b). But this generates a new condition.
The overlap of the niches becomes so small that a part of the
niche space now becomes available for some other species to
invade the system (figure 1c). The overall consequence is
clear. With a new species inserted, niche overlap will again be
large, and again selection will favor reduction in that overlap,
which will provide a space for an invading species. But there
must be some limit to the number that can squeeze into this
niche space—the number of species that can be “packed” into
an ecosystem—which leads to the idea of species packing, one
of the central ideas, historically, in biodiversity science.

A contentious complication of this framework is that niche
overlap is poorly defined, and thus its articulation with com-
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Figure 1. Elementary form of the Levins and MacArthur
limiting similarity argument. The x-axis represents an
arbitrary environmental gradient, and the y-axis repre-
sents some measure of fitness (W) for each of two species.
The intersections (shaded areas) represent the areas of in-
tense competition between neighboring species. (a) Selec-
tion favors the individuals that are not located in the
intensely competitive zone where the niches overlap.

(b) The result is a reduction in the breadth of the two
niches. (c) As the overlap between the two niches shrinks,
enough niche space becomes available to allow a third
species to invade the system.

petition is questionable in the first place. But the basic prob-
lem can be formulated without this complication with a sim-
ple extension of Lotka—Volterra principles (MacArthur 1970).
MacArthur’s original formulation can be shown in a graph,
as in figure 2a. The two consumers are generalist in their
eating habits but tend toward specialization. The degree of gen-
eralization is correlated with the intensity of competition
between them. Since the joint use of resources is the mech-
anism of competition, this approach is appropriately referred
to as a “mechanistic” approach, in contrast with the “phe-
nomenological” approach in which the phenomenon of com-
petition is simply written into the equations as a constant,
usually referred to as the competition coefficient. The posi-
tion on the resource gradient in the phenomenological sense
is simply a connection between the two species (see box 1).
However, adding Haldane’s effect, we note that all species have
their natural enemies, hence the phenomenological formu-
lation becomes similar to the mechanistic formulation (fig-
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ure 2b). Thus, in either the mechanistic
or the phenomenological approach, we a
have two consumer—resource (predator—

prey, parasite—host) systems that are cou- I >< I I I
pled (either through consumption by X

the predators, as in figure 2a, or through
competition between the prey, as in
figure 2b).

This formulation brings us face-to- c
face with the ideas of nonlinear dynam-
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ics and complexity theory. Recently

published research suggests that this sort
of quantitative theory, when applied to
elementary ecological interactions, pro-
vides a distinct platform for conceptu-
alizing the problem of species coexistence
(Vandermeer 1989, 2004, Abrams et al.
1998, Huisman and Weissing 1999,2001,
Abrams and Holt 2002, Vandermeer et al.
2002, 2006, Koelle and Vandermeer 2005,
Vandermeer and Pascual 2006). In par-
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ticular, when the underlying biological ~ Figure 2. The elementary coupling of consumer—resource systems and the qualita-
force is consumption, as it is in the tive outcomes. (a, b) Two predators (consumers), P, and P, eat two resources
current example, the expected dynami-  (prey), X, and X, with arrowheads indicating a positive effect and small circles a
cal behavior is oscillatory. Thus a  negative effect. The form of coupling is (a) that the predators eat each other’s prey
consumer—resource system (which in-  (and thus become competitors with one another) or (b) that the prey items compete
cludes herbivore—plant, predator—prey, ~ With one another. (c) Physical metaphor of coupled pendulums, with metaphorical
and parasite—host) is oscillatory—per- ~ Springs connecting them in two different ways, one corresponding to the predators
haps controlled to the point where the ~— consuming one another’s resource (left-hand pair) and the other corresponding to
oscillations damp out over time, or  the prey in competition with one another (right-hand pair). The scale at the bottom
perhaps permanently oscillating in a illustrates how the metaphorical pendulums oscillate between numerical domi-
limit cycle, but in one way or another ~ nance of predator and numerical dominance of prey. The two forms of coupling

an oscillating system. Consequently, in generally result in either in-phase (bottom left) or antiphase (bottom right) coordi-

figure 2a and 2b, the system P, X, is nation of the oscillators.

oscillatory, as is the system P, X..

A well-known result from nonlinear dynamics is that os-
cillating systems will tend to coordinate with one another when
coupled, even if the coupling is extremely weak. This ele-
mentary result yields remarkable insights in many fields at vast
scales of organization, from biochemical pathways to the dy-
namics of galaxies, as summarized in Stephen Strogatz’s pop-
ular book Sync (2000). One might even generalize that “it can
be argued, such is the norm of nature and its importance can-
not be over-emphasized” (Criminale et al. 2004). What might
this general result from nonlinear dynamics have to do with
the problem of species diversity? Specifically, when two
consumer—resource systems are coupled, as they are in the ele-
mentary formulation of two species with overlapping niches
on a resource gradient, some kind of phase coordination is
inevitably produced. I contend that understanding the nature
of that phase coordination could provide a new qualitative
viewpoint for understanding exclusion and coexistence.

For example, simply asking whether two oscillatory systems
are correlated positively or negatively—that is, whether their
oscillatory coordination is in phase or out of phase—could
have obvious biological meaning. If two consumer—resource

www.biosciencemag.org

oscillators are coordinated in phase with one another, might
this not provide a periodic opportunity for another species
to enter the system, parallel to the case of the niche gradient
with two species sufficiently spaced on the gradient to per-
mit entry of a third species in the classic limiting similarity
scenario (MacArthur and Levins 1967)? For example, if the
lion and leopard populations are simultaneously at low val-
ues (which they would be repeatedly if they were coordi-
nated in phase), might the cheetah population be able to
invade at that point? So obvious is this point that it is hardly
recognizable as something to be noted. For instance, since di-
urnal cycles coordinate the daily activities of many animals,
having a “night niche” or “day niche” can be thought of as
avoiding competition or predation. The same could be said
for seasonal cycles, and there are many other examples. Co-
ordination of the oscillations of some species may represent
an opportunity for other species to invade their niche space.

However, the dynamic coordination of a species invading
the environment of two consumer—resource oscillators rep-
resents a special situation. The invading species is, by defin-
ition, coupled to the two original oscillators and thus is
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Box 1. Derivation of the model system.

The model system follows the classical equations of Lotka and
Volterra as follows:

dX, /dt = X,(1- X, - c,oX,) — aX,(Pf, + ¢,P,fy),
dX,/dt = X,(1 - X, - ¢,aX;) — aX,(P,f, + ¢,P,fy),
dX,/dt = X, [1- X, - (X, + X,)],

dP /dt = aP f X —mP,,

dP,/dt = aP,f,X, — mP,,

dP,/dt = c,aP,f,(X, + X,) — mP,,
fi =1/(1 + bin.) fori=1,2,and
f,=U[1+¢b(X, + X)),

where X is the population density or biomass of the ith
resource species, P, is the population density or biomass of
the ith consumer species, a is the consumption coefficient, m
is the mortality rate of the consumers, ¢, is the coupling
through resource competition (figure 2a), ¢, is the coupling
through predation (figure 2b), a is the competition
coefficient, and b is the parameter of the functional response.
Unless indicated otherwise, for all examples in this article,
a=1.1, m=0.8,and b = 2. When =0 and ¢, >0, coupling
is through predation (figure 2b); when =0 and ¢ >0,
coupling is through resource competition (figure 2a).

For the example of weakly coupled resources with P, as an
invader (figure 5), the resource equations are

dX,/dt= X (1 - X, - X, — oX,) — aX (P f, + ¢,P,f,) and
dX,Jdt = X,(1 - X, — BX, — ,aX,) — aX,(P,f, + ¢,P,f),

where f is the coupling/competition coefficient connecting the
two resources.

implicated in the nature of their coordination. So the dilemma
is that, while oscillations between two consumer—resource sys-
tems may make conditions ripe for the invasion of a third
species, the third species is necessarily implicated in the mak-
ing or breaking of those ripe conditions. Sorting out this
dilemma could be important for understanding the conse-
quences of particular patterns of connections in food webs
more generally.

However, for the example of two consumer—resource sys-
tems coupled through either consumption or competition
(figure 2a, 2b, box 1), it has been shown (Vandermeer 1989,
2004) that if there is weak coupling through consumption (fig-
ure 2a), the two systems will come into complete synchrony,
with peaks in the oscillations of P, occurring at close to the
same time as peaks in the oscillations of P,. However, if cou-
pling is mainly through competition between the resource
species (figure 1b), an antiphase coordination will be ef-
fected. A useful metaphor for this phenomenon is the cou-
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pled oscillating pendulum model, in which it is easy to see how
either in-phase or antiphase coordination is driven by the spe-
cific nature of the coupling (figure 2¢).

The form of phase coordination will, to some extent, de-
termine whether other species can invade an ecosystem, and
as such could be a major force in determining species diver-
sity. Here I consider the most elementary case, formally
equivalent to the limiting similarity argument: that of a third
species invading a system composed of two consumer—
resource systems. There are two interesting ways in which the
problem can be conceptualized (figure 3). On the one hand,
there may be a third resource species acting as a competitor
with the other resource species (X, in figure 3a). On the
other hand, there may be a third consumer species (P, in fig-
ure 3b), acting as a predator on the two resource species and
consequently a competitor with the other two predators.
Either of these invasions represents the underlying ecologi-
cal structure of one subordinate and two dominant com-
petitors, the difference being in the phenomenological versus
mechanistic approach to the competitive process. In the phe-
nomenological approach (figure 3a), a third species (X;,) en-
ters through the phenomenon of competition, without
stipulating the underlying details of that competition. In the
mechanistic approach (figure 3b), a third species (P,) enters
through the phenomenon of consumption and becomes an
indirect competitor with the other two consumer species (P,
and P,). Thus, in either the phenomenological or the mech-
anistic case, the third species is a subdominant competitor, in
the sense that it must compete with two other competitors.
(Of course, if the new species is an extremely good competi-
tor it could simply eliminate one or both of its competitors;
this obvious result is not considered further here.)

P, P,
. ! !
P, P, X XX
I Lo
Xo—oXe— X,

P2 P Pz
b VAN
Pop P X, X,
Pt
X, X,

Figure 3. The two ways in which a third species can enter
the ecosystem of two independent oscillators such that
they are coupled through the third species. (a) The in-
vading species (X,) is a competitor with the two other re-
source species. (b) The invading species (P ) is a predator
on the prey of the other two species, and thus indirectly a
competitor with them.
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Mechanistic coupling

Consider first the mechanistic case (figure 3b). Phase coor-
dination will normally be in the direction of in-phase coor-
dination with systems 1 and 2, thus producing an especially
strong competitive effect, since both P, and P, reach their peak
values together and simultaneously with P, as a result of the
inevitable phase coordination with P,. If we take the perfectly
symmetrical case (all parameters identical for the indepen-
dent subsystems, P, X and P,,X,), the overall five-dimensional
system reduces mathematically to a three-dimensional one
with the three variables 2P, 2X, and P, (or, equivalently, 2P,
2X,, and P,, since the two subsystems are identical and in
phase). The dynamics of that three-dimensional system are
well known (Armstrong and McGehee 1980). So, for exam-
ple, if the uncoupled systems 1 and 2 are set in antiphase mo-
tion and later P, is added, the effect is first to push systems 1
and 2 into in-phase coordination, probably driving P, to ex-
tinction (figure 4). Paradoxically, even though systems 1 and
2 are completely independent of one another, together they
are resistant to the invasion of P, because of the latter’s ten-
dency to push them into an in-phase coordinated state. Al-
though these are not the only dynamics possible, the tendency
for P, to act as a coordinating force to push the two parent
subsystems toward in-phase coordination is general.

We might think of this system as representing ecosystem
resistance to an invasive species (with the two uncoupled
oscillators as the base ecosystem and P, as the invading
species). The phenomenon of synchrony, then, explains one
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way in which a community can resist an invasive species
(i.e., first the invasive acts to synchronize the oscillations of
the previously independent oscillators, and subsequently the
coordinated behavior of those oscillators drives the invader
to extinction). If the original system, after the extinction of
the invader, went back to its original state of antiphase coor-
dination, then the invader could again colonize. And if there
is the slightest connection between the two resources, say
through very weak competition, the system would be driven
back into its antiphase-coordinated state (Vandermeer 2004).
Adding the weak connection between the resources to the ba-
sic equations (the coupling/competition coefficient, (3; see box
1) generates an attractor, which in this case is chaotic, with very
predictable long-term behavior (figure 5). As expected, the in-
vader first acts to synchronize the two parent oscillators, the
result of which is to drive the invader to very low levels. This
generates an antiphase coordination, which allows the invader
to invade once again, but that new invasion again results in
synchronization, and the cycle repeats itself (figure 5).

Phenomenological coupling

Turning to the phenomenological case (figure 3a), the qual-
itative nature of the system is such that X, and X, have a net
indirect positive effect on one another (on the principle that
“the enemy of my enemy is my friend”). Thus systems 1 and
2 are coupled through the resource species, but not in the com-
petitive way shown in figure 2b. Rather, the indirect positive
coupling between X, and X, (by coupling through X,) should

0.5

0.4 —

03- (\

0.2 —

0.1

Consumer population density

Consumer 3
introduced here

0 / 2I0 40 60

80 100 120 140

Time

Figure 4. Population density of all three predators (P, P, P,) under the situation of consumer coupling (c, = 0; figure 2b),
and small predatory effect from P .. Black and green curves are P, and P ,, and red curve is P ;. Note how the main oscillators
begin antiphase but rapidly are pushed into an in-phase coordination by the presence of P ,. P then is excluded (asymptoti-
cally approaches zero) as a result of the coordinated competitive pressure from P, and P ,. Parameters area = 8, c, = 0.45,

¢,=0,a=15b,=b,=b,=2,m=0.8.
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Figure 5. Chaotic control of an invasive species through an alternation of in-phase and antiphase coordination of the two
predators. Time series shows long-term effects of invasive (red) and permanent (black and green) residents. Even though the
system is chaotic, an obvious pattern with an obvious underlying biological mechanism is apparent. Parameters area = 8,

¢,=045,c,=0,a=15b,=b,=b,=2,m=0.8,p=0.1

cause the two underlying systems to become in-phase coor-
dinated. There is no inherent reason why X, needs to be ei-
ther in-phase or antiphase coordinated with either X, or X,
which leads to the possibility that the two main systems could
be in-phase coordinated, thus leaving a space for the third
species to invade. A particularly interesting case of this pat-
tern is illustrated in figure 6. The two independent subsystems
are set in antiphase motion to begin with, and then X; is in-
troduced at about repetition 35 of the cycle. Coupling through
X, causes in-phase coordination, as expected. However, the
coupling also causes the two subsystems to be chaotic (figure
6). Because of the coupling, the chaos is in phase, leading to
synchronized chaos (Winful and Rahman 1990, Vandermeer
and Kaufmann 1998).

The curious form of synchronized chaos provides the in-
vading species with unpredictable windows of opportunity
to invade: It effectively takes advantage of the periodic and si-
multaneous lowering of the predator density, thus permitting
the species to enter the system (figure 6). Thus, even though
the two main competitors (X, and X,) are very strong com-
petitors against X, (competition coefficients = 1.1), all three
coexist with the combination of the chaotic in-phase coor-
dination of the dominants and the antiphase coordination of
the subdominant. This case is quite complicated and is ex-
plored in detail elsewhere (Vandermeer et al. 2006).

Community structure through coupled oscillators

The coordination of oscillatory consumer—resource systems
can have an important impact on the persistence of species,
and consequently on the general problem of species diversity.
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Despite the fact that underlying standard parameters such as
competition coefficients and predation coefficients may in-
dicate instability through traditional stability analysis, in-
phase and antiphase coordination may allow for persistence
stemming from the behavior of coupled oscillators. Thus, an-
alyzing the balance between different forms of phase coor-
dination, in addition to standard methods of stability analysis,
may on the one hand be a useful tool, yet on the other hand
provide a cautionary tale. Knowing how the coupling be-
tween two oscillators occurs may allow researchers to predict
the general form of coherence and thus suggest biological in-
terpretations of what that coherence means. However, know-
ing that two species are connected to one another, absent the
details of that connection, may turn out to be of limited util-
ity. Examining recent research on ecological networks in the
light of the complex behavior of coupled oscillators, one
must wonder whether knowing only the number of connec-
tions a species has with other species can illuminate under-
standing.

While the overall thrust of this article is a general exami-
nation of ecological interactions as coupled oscillators, the spe-
cific example used is that of competitive interactions along a
gradient, the classical MacArthur—Levins formulation. When
the study of ecological interactions as coupled oscillators is
expanded to larger systems, a number of interesting questions
emerge (or sometimes reemerge, with a modified tone
owing to the frequently surprising dynamics associated with
coupled oscillators). An example is the “paradox of the plank-
ton.” Even before Levins and MacArthur presented their ele-
gant theory, MacArthur’s mentor, G. E. Hutchinson (1961),
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had recognized a problem. Assuming
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o .. 1.00
Gause’s principle of competitive exclu- \

sion, Hutchinson noted that many com-
munities contain species that would be
difficult to characterize as having dis-
tinct niches. The phytoplankton com-
munity in a given lake or a given section
of ocean will contain many species, all of
which more or less passively float, pho-
tosynthesize, and use, for all practical
purposes, the same nutrients. That is,
plankton all seem to do the same thing, 0

0.75 |
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which is to say they all occupy the same 0
niche. According to the classical theory,
this means that they cannot coexist. Yet

T
20

Resource 3
introduced here

T T T T
/ 40 60 80 100 120 140 160

Time

many of them do.

A variety of explanations for the para-
dox have been offered, but the hypoth-
esis that seems to have gained the most
currency is that of “intermediate dis-
turbance,” proposed more or less simul-
taneously (although in slightly different
forms) by Connell (1978) and Huston
(1979). They assumed that, indeed, the
competitive interaction among species
would result in all but one species being
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eliminated from an area, as the classical
theory would have it, except that some
outside event continually delays this oth-
erwise inevitable outcome. So, for ex-
ample, in the mowed fields of Darwin—it
might be argued that Darwin was the
actual originator of the hypothesis—the
plants that were competing with one an-
other would eventually have resulted in
a single plant species competitively dis-
placing all others, but the periodic dis-
turbance of mowing reduced all the
species to the same level of competition. Thus, competition
would proceed to the elimination of all but the best com-
petitor, but some sort of external disturbance periodically re-
duces the community to the point where the competitive
process starts all over again. It is not an exceptionally long
stretch to conceptualize this problem as one of periodic im-
position of noncompetitive conditions resulting from par-
ticular patterns of coupling of consumer-resource oscillators,
thus creating endogenous rhythms that act as if they were pe-
riodic disturbances.

The intermediate disturbance hypothesis brings up an
issue closely related to coupled oscillators, that of forced
oscillations. An oscillating pendulum will normally come to
rest as a result of friction. However, if every time the low point
in the oscillation is reached, a force is applied to push the
pendulum back into its oscillations, the gradual damping of
the oscillations will not occur and the pendulum will oscil-
late forever. If we conceive of an oscillating biological popu-

T
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Figure 6. Population density of all three consumers (X, X, X,) in the situation of
resource competition (c, = 0; figure 2a). Black and green curves represent X, and
X, respectively; red curve represents X ;. Note how the main oscillators begin anti-
phase but rapidly are pushed into in-phase oscillations (this time chaotic), and how
the subdominant competitor (X, red curve) is able to persist by effectively occupy-
ing the space when the other two competitors are at a low point. Parameters are
a=43m=08b,=b,=b,=2,a=11Lc,=1c,=0.

lation subject to some sort of regular disturbance, we can think
of the whole system as a forced oscillator, which is to say the
regular disturbance periodically resets the system. Biological
populations that oscillate synchronously are frequently
thought to do so because of this mechanism, sometimes
called the “Moran effect” (Hudson and Cattadori 1999).
However, it is not the case that periodic forcing of biological
oscillators always leads to coordination of the oscillations.
Sometimes complicated and enigmatic oscillatory behavior
is the result (Rinaldi and Muratori 1993, Rinaldi et al. 1993,
Vandermeer 1996, King and Schaffer 1999, Vandermeer et al.
2001), a fact that cries out for further investigation.

The general line of reasoning that gave rise to the inter-
mediate disturbance hypothesis (the paradox of the plankton)
has been referred to as the “non-niche” approach, while that
based on the underlying assumptions of the competitive
exclusion principle has been referred to as the “niche” ap-
proach. This debate has been most active among researchers
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working in tropical rainforests, one of the most speciose sys-
tems in the world. From the important paper by Hubbell and
Foster (1986) through the influential book by Hubbell (2001),
the “non-niche” or “neutral” theory of community structure
has gained many adherents, even as it has generated much con-
troversy (Wills et al. 1997).

The two schools of thought become intimately intercon-
nected when the non-niche idea is coupled with the so-called
Janzen—Connell hypothesis (Janzen 1970, Connell 1971).
The fundamental idea originally focused on seed dispersal and
seed predation (although herbivory or pathogens easily sub-
stitute for seed predation). One of the key forces driving ter-
restrial ecosystems is the dispersal of seeds. If there were no
mechanisms for getting seeds away from the canopy of a
tree, all seedlings would be clumped around the adult tree.
Janzen and Connell noted that the probability of being at-
tacked by a seed predator, or, in the case of seedlings, an her-
bivore, would be highest where the seeds were most
concentrated, which would be mainly near the base of the
mother tree. And the reason they would be so concentrated
would be that they had not been dispersed. Thus, they sug-
gested that the importance of dispersal was avoidance of
these seed predators, or, more generally, avoidance of the
natural enemies of the seeds and seedlings. Since the publi-
cation of this idea, there have been many studies confirming
the existence of this phenomenon in nature, and it has become
a part of the standard lore of tropical rainforest ecology that
the Janzen—Connell hypothesis is true, at least for some
species at least some of the time. While this idea has been enor-
mously influential in discussions of rainforest dynamics, re-
cent manifestations have actually placed it into a slightly
different context than its original intent, and perhaps conse-
quently elevated its importance even further.

In its more recent manifestation, the hypothesis has been
recognized as a subcomponent of an extensive literature on
the control over competition by natural enemies. This liter-
ature is very large, probably originating with Darwin’s famous
experiment with a mowed field, but essentially says that as one
species begins to dominate in a non-niche community, its nat-
ural enemies tend to build up and effectively cancel its com-
petitive dominance. This effect turns out to be more
complicated than one might expect. It is a more complex ver-
sion of the simple five-dimensional system in the examples
offered in this article. That is, rather than ask how a single
species can invade a system of two oscillators, the funda-
mental question is how a species can invade a system com-
posed of a large number of oscillators that are already coupled
in complex ways. Initial forays into this question have yielded
interesting, albeit complicated, results (Vandermeer et al.
2002, Vandermeer and Pascual 2006).

The literature deriving from the paradox of the plankton,
the intermediate disturbance hypothesis, and the Janzen—
Connell effect constitutes, in effect, a multidimensional ex-
tension of the basic idea of two species on a gradient (figure
1), an extension that would appear open to a great deal of the-
oretical and empirical research. However, an alternative view
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is also evident and relevant to the coupled-oscillator ap-
proach—a focus on higher-level trophic structures. An im-
portant example is the demonstration of complex chaotic
cycles evolving from the formulation of a simple tritrophic
system with the classical equations (Hastings and Powell
1991). Hastings and Powell identified the resulting chaotic at-
tractor as a complex combination of two cycles, effectively the
cycle involving the carnivore and the herbivore coupled with
the cycle involving the herbivore and the plant.

This basic idea has an antecedent in the classic work of Hair-
ston, Smith, and Slobodkin (1960) in which they noted that
the effects of predators on herbivores would be such that
plants would have to be controlled from below. That is, if
predators control the population densities of herbivores, the
latter could not possibly control the population densities of
the plants, which means that the plants must be controlled
through their own overutilization of their resources (com-
monly called “control from below”). A large literature on
trophic cascades subsequently evolved (Pace et al. 1999,
Schmitz et al. 2004). However, here, as in the case of com-
petitive communities, most attention is focused on the effective
linear connections among species (who eats whom), rather
than the underlying oscillatory nature of consumer—resource
connections. Here, too, a reformulation of the problems from
the point of view of coupled oscillators, as pioneered by
Hastings and Powell, may provide important insights.

Casting the tritrophic problem as one of coupled oscilla-
tors automatically brings up the question of omnivory (Mc-
Cann and Hastings 1997, Vandermeer 2006), and ties trophic
structure naturally to the fundamental structure of compe-
tition. Consider, for example, a system of herbivore, carnivore,
top carnivore (H-C-T). One might imagine, for example, flies,
spiders, and spider-eating birds. As long as the birds are strict
top carnivores (eat only spiders), this is a tritrophic system.
However, one might also imagine a system of flies, spiders, and
fly-eating birds, in which case the basic competitive structure
of fly-eating birds in competition with spiders corresponds
to the examples analyzed in this article. The question of
whether the birds can eat both spiders and flies naturally
arises, in which case we have omnivory as an intermediate sit-
uation between tritrophic and competititive systems, be-
tween the two oscillators {T,C}, {C,H} and the two oscillators
{T,H}, {C,H}. This implies that the coupling may be at both
levels and raises the question of whether the insights afforded
by the tritrophic case (e.g., Hastings and Powell 1991) can be
combined with the insights afforded by the competitive case
(Vandermeer 1989, 2004) to provide insight through looking
at the system as a complex of coupled oscillators. This theme
is complicated and is discussed more fully elsewhere (Van-
dermeer 2006).

The transfer of energy from one population to another has
long been regarded as an elementary part of ecology, the
closest thing ecologists have to an atomic theory. Yet the bulk
of the literature seems to sidestep a fundamental feature of this
elementary structure—our “atoms” (consumer and resource
organisms) are inherently oscillatory. In seeking to understand
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the complexity of nature, it does not seem wise to ignore this
fundamental property—that we are working with coupled os-
cillators. In this article I use the classical example of the in-
vasion of a species into an environment in which two other
species have overlapping niches. The expected long-term be-
havior of the system is not straightforward when even the most
elementary nonlinearities are introduced. Yet casting the
problem in terms of coupled oscillators makes it possible to
interpret that behavior in terms of various forms of coher-
ence for the oscillators. I suggest that other classical phe-
nomena in ecology, such as species packing, intermediate
disturbance, the Janzen—Connell effect, trophic cascades, and
omnivory, might also benefit from being cast in this frame-
work.
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