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Abstract. This paper is concerned with the problems and solutions to reliable
analysis of arbitrary datasets. Our approach is to describe components of a system
called the GARP Modelling System (GMS) which we have developed for automat-
ing predictive spatial modelling of the distribution of species of plants and animals.
The essence of the system is an underlying generic spatial modelling method
which ® lters out potential sources of errors. The approach is generally applicable
however, as the statistical problems arising in arbitrary spatial data analysis
potentially apply to any domain. For ease of development, GMS is integrated
with the facilities of existing database and visualization tools, and Internet
browsers. The GMS is an example of a class of application which has been very
successful for providing spatial data analysis in a simple to use way via the Internet.

1. Introduction

Museums, environmental groups and governments provide environmental
resource information through a wide variety of media. A signi® cant proportion of
these data are records of the spatial location of species, such as their breeding sites,
or observations of their presence. These s̀pecies data’ have a very incomplete geo-
graphical coverage, particularly in the vast and sparsely populated arid regions of
continents. Prediction of distributions as probability surfaces can provide a complete
and ® ne-scale spatial coverage of potential distribution, even in areas where there
are no data available. These predicted distributions can then be used as building
blocks for further analysis: e.g. to assess the status of nature reserves, to guide more
e� cient surveys, to establish the actual distribution of rare and endangered species,
or to aid scienti® c research into biogeographical questions.

Developing maps of potential distributions on a species-by-species basis puts an
enormous load on skilled personnel. Each inquiry entails accessing the database,
using a statistical modelling package, and preparing and printing maps through a

International Journal of Geographica l Information Science
ISSN 1365-8816 print/ISSN 1362-3087 online Ñ 1999 Taylor & Francis Ltd

http://www.tandf.co.uk/JNLS/gis.htm
http://www.taylorandfrancis.com/JNLS/gis.htm

http://www.tandf.co.uk/JNLS/gis.htm
http://www.taylorandfrancis.com/JNLS/gis.htm


D. Stockwell and D. Peters144

GIS. Automation of this repetitive task would increase the availability of the data
through decreased response time and cost, and free skilled operators for more
challenging tasks. Similar views are championed by a number of authors who have
envisioned future GIS which include a complete integration of GIS with spatial
analysis and modelling facilities (Goodchild et al. 1992), intelligent processing produ-
cing end-products that meet user-speci® ed quality requirements (Burrough 1992),
and predominantly graphical and interactive user interfaces (Peters 1990).

The view motivating this work is that as well as better systems integration, GIS
require the development of robust methods of analysis that transparently and expli-
citly address a range of data handling and modelling problems which would otherwise
require substantial user intervention. We arrived at this view after comparative
modelling studies showing signi® cant di� erence in results between methods of species
distribution prediction (Stockwell et al. 1990). It was also apparent that studies
evaluating existing modelling methods by comparing the accuracy of methods on a
limited number of species, provide little guidance on selection of methods for system
users or insight into the causes of inaccuracy for system developers (Skidmore et al.
1996). The progress of the ® eld requires a better understanding of the causes and
solutions to inaccuracies in modelling real-world data.

The paper reports on experiences with the GARP Modelling System (GMS), an
integrated spatial analysis system for predicting distributions of plants and animals.
It was ® rst implemented at the Environmental Resources Information Network (ERIN)
(Boston and Stockwell 1994). The GMS inputs data from a user or a database of
species location records, analyses it with a machine learning based analytical package
called GARP (Genetic Algorithm for Rule-set Production) (Stockwell and Noble 1991,
Stockwell 1992) and displays the output in a World Wide Web browser. The most
recent implementation of GMS is as an information system for the Biodiversity Species
Workshop at the web site http://biodi.sdsc.edu (® gure 1).

The central themes of this paper are the problems in providing computational
analysis resources for the rapid and automated development of spatial models using
arbitrary spatial data points. We examine the way the GMS has addressed these
problems. The problems addressed here largely arise from the use of arbitrary or ad
hoc data collections, which are typically not the result of well designed experiments.
Where data are not the result of well designed experiments, taking multivariate
analysis methods beyond exploratory stages is regarded as unreliable due to variable
quality and characteristics of the data (James and McCulloch 1990). Strict applica-
tion of these methods potentially excludes a large number of existing collections.
For example, the majority of herbaria or museum records of the species locations
are the result of ad hoc surveys and opportunistic sampling.

The problem is not only that the assumptions of multi-variate statistics are
generally not met by data extracted directly from museum databases. The types,
distributions and correlations of the environmental data such as climate, soils and
remote sensing data used for the independent variables can also be problematic. In
a method for unsupervised, automated analysis of generic data sets based on simpli-
® ed versions of Bayes’ rule, forms of data used in the system were found to be
restrictive (Aspinall 1992). This was due to the strong assumptions of Bayes’ theorem,
particularly the need for conditional independence in the predictor variables.
Experimental analysis of a Bayesian-based system using environmental data for
automated prediction of occurrences of species found signi® cant inaccuracy due to
a range of data characteristics, such as correlation in environmental variables

http://biodi.sdsc.edu
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Figure 1. The user interface for the GMS at the Biodiversity Insight Systems site
http:/ /biodi.sdsc.edu. This site allows development and manipulation of sets of rules
developed from modelling the users own data. Shown is the predicted distribution of
a species of bird, the Eared Trogon, in Mexico.

(Stockwell 1997). Other problems were due to the structure of the analytical system,
limiting applications to prediction of mutually exclusive events (Stockwell 1993).

One possible approach to robust analysis is to try to incorporate ìntelligence’ in
the system to determine the appropriate method to apply to given data (Burrough
1992). This intelligence can take the form of an expert system for examining the
data and choosing the most appropriate method from a range of methods. There
are, however, many methods available, and di� culties in determining the appropriate
conditions for application. For example, one assumption of bioclimatic modelling
methods such as BIOCLIM, is that the abundance of the species is determined by
climatic limits (Nix 1986). As climate could potentially be a minor factor or even
irrelevant to distribution in some areas, expert systems could improve reliability by

http://biodi.sdsc.edu.
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determining the accuracy of the assumption that the species are in fact sensitive to
climate before applying the method.

The alternative approach is to implement robust analysis systems, i.e. systems that
produce reliable results under a wide range of operating conditions, or problem
domains. A fertile source of such systems are machine learning methods such as genetic
algorithms (GAs), decision trees and neural nets because they are designed for analyzing
poorly structured domains. The GARP modelling system uses a genetic algorithm, the
basic concept of which was developed by Holland (1975). GAs have been applied to
a wide range of domains, including numerical function optimization (Bethke 1981,
Brindle 1981), adaptive control system design (DeJong 1980), and arti® cial intelligence
task domains where the structure of the problem domain prohibits the use of classical
statistical methods and gradient search techniques (Goldberg, 1989).

In addition to the well documented robust performance of GAs, the genetic
algorithm in GARP has a feature which extends the capacity of GAs for generating
and testing a wide range of possible solutions Ð the capacity to simultaneously
generate and test a range of types of models, including categorical, range-type
and logistic models. One of the main purposes of this paper is to describe this
characteristic and demonstrate its utility in analysis of ad hoc data.

1.1. Overview of the GMS
Ideally a system for predicting distributions of species would take as input the

species and the area of interest and produce images, maps, documentation, and easily
comprehended models for explaining relationships in the data via the Internet. While
it is possible that GIS could provide at least some of the functions required, the use
of GIS packages in GMS implementations has been limited to preparing environ-
mental data. Some concerns with existing packages have been: automatic license
restrictions that limit the number of users that could access the system simultaneously,
long delays in completion of simple data processing tasks, ine� cient interaction of
spatial data with spatial analysis programs, and limited ¯ exibility for experimenting
with novel types of data analysis.

Thus the GMS was developed as a number of C language modules, linked by PERL
scripts. The intermediate data in GMS are propagated through sub-systems via common
® les and Unix pipes. Thus, within the range of architectures for spatial information
systems, GMS is classi® ed as a loosely coupled system (Abel et al. 1992). Loosely
coupled, or òpen’ systems, are easy to re-con® gure and therefore easy to integrate and
customize. For example, when a user requests the prediction for a particular species, the
recorded sightings are extracted from a data base in point coverage form. The ® rst two
columns contain the longitude and the latitude, and the following columns may contain
an abundance value for a species, or value of a variable. These values can originate
from any source; ® les in directory trees, databases, or GIS e.g.:

150.775 Õ 35.005 0
148.005 Õ 35.005 1
.. .

Environmental data are stored as grey-scale raster images (called layers) with
one byte value per grid cell. The raw grey-scale image format has two main advant-
ages. It provides a compact representation of environmental information, and it is
viewable by image processing tools. As each layer is a geographic grid it can
potentially be very large; a grid of 258Ö 410 cells contains 106K points, requiring
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signi® cant memory resources if stored as ¯ oating point numbers. Storing these layers
with one byte per cell reduces the amount of memory needed. Image processing
tools are optimized for these data, providing fast e� cient data manipulation.

A typical GMS implementation uses over 30 rasterized environmental data layers
of climate and topographic variables. Climate data are derived from available rasterized
surfaces of continent-wide averages of temperature and precipitation. These data were
previously derived by terrain-modi® ed interpolation for each grid cell on the land
surface from weather station data. GMS includes topographic (slope, aspect, altitude)
and substrate variables (soil types, pH, geology) in addition to the climatic variables.

The analysis system (i.e. GARP) is composed of eight programs shown in table 1,
each with a speci® c function. The central program, called explain, develops the model.
The model developed by GARP is composed of a set of rules, or if-then relationships.
Rules have been widely used for prediction in expert systems. The di� erence between
a rule and the more familiar regression model, say, is that a rule has preconditions
that determine when it can be applied; when these conditions are not met the rule is
not used. The set of rules is developed through evolutionary re® nement, testing and
selecting rules on random subsets of training data sets. Application of a rule set is
more complicated than applying a regression equation as the prediction system must
choose which rule of a number of applicable rules to apply.

The goals of the system are to maximize signi® cance and predictive accuracy of
rules without òver® tting’ or overly specializing rules. Signi® cance is established
through a x

2 test on the di� erence in the probability of the predicted value (usually
presence or absence of the species) before and after application of the rule.
Maximizing signi® cance and predictive accuracy (the proportion of data correctly
predicted) is actually a novel goal for analytical systems; most modelling methods
typically maximize signi® cance only.

The outputs of the prediction are converted into images with image processing
utilities. Scripts written in PERL format output into HTML (Hyper Text Markup
Language) documents for viewing in a Web browser, providing the user interface for
integrating images, textual output, and supplementary documentation. Thus the
GMS is integrated into the World Wide Web (WWW) (Putz 1994).

Table 1. The components of GMS in the ERIN-GMS implementation.

Program Function

Data preparation
rasteriz Converts spatial data ® les to raster layers
presampl Produces training and test sets by random sampling

Model development
initial Develops an initial approximate model
explain Re® nes model using a genetic algorithm

Model application
verify Provides predictive veri® cation information on the output rule set
predict Takes the model and predicts probability for each value

Model communication
image Takes predicted probabilities and produces a number of results in

required image format
translat Takes the model and forms natural language explanation of rules
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2. Problems and solution in the GMS

The GARP programs can be logically grouped into data preparation, model
development, model application and communication. Operations performed by the
programs usually satisfy more than one system need. The approach has been to
identify system needs by identifying the potential problems of data and modelling,
and modifying the system to address the potential problem without reducing
applicability.

The ® rst problem in developing an automated modelling system is how to
structure the components of the system. A p̀roduction line’ type architecture, with
a linear con® guration of modular components provides an e� cient, simple structure.
Production line architecture is a simpli® ed form of the work-¯ ow model for a generic
environmental information management system (Davey et al. 1995). The use of
modules with well de® ned, simple data types and simple functions provides ¯ exibility,
faster implementation times and lower maintenance costs (Black 1991).

2.1. Data preparation
Ideally an analytical technique receives a random sample of adequate size

throughout the range of values to be predicted. It should also be able to use all
available information, both categorical classes and continuous environmental vari-
ables. The ® rst GMS program, rasteriz, prepares the data to make it more amenable
to analysis by increasing uniformity and consistency of typing.

2.1.1. Problem: non-uniform population
Non-uniformity of the data is often due to a range of scale of the data. A recorded

sighting of a species will have a location associated with it, but the precision of the
measurement of locations can vary from a map sheet with a side of over 100km to
locations precise within a few metres. Some data are duplicated in the data base,
due to multiple samples or return visits to a single location. Put di� erently, the
amount of information at each point is not uniform: single outlying points have
great importance while duplicates provide little new information.

The program rasteriz maps point data into a spatial grid at a given scale. Data
redundancy due to duplicate records and records from close locations are removed
by absorption into a single cell. As expected, the redundancy in an arbitrary data
set increases with the coarseness of the base grid, as shown in a sample of bird data
analyses for North America at 0.5ß , 0.05 ß and 1 minute on table 2. By modifying the
data in this way, the potential non-uniformity is reduced by bringing all data to
the same spatial scale.

2.1.2. Problem: range of types of the data
Di� erent types of data are mapped into grid cells di� erently. rasteriz recognizes

three types of data. With species or presence/absence data, a cell takes a presence

Table 2. The e� ective number of data points as the ® neness of the base data is increased for
observations of a species of bird in North America.

Scale in degrees No. of points No. of grid cells Fraction

0.5 62 36 0.58
0.05 62 52 0.84
0.0167 62 55 0.89
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value if one or more points falls within it, otherwise it remains zero. With categorical
data a cell takes the value of the mode of the values of the points that fall within it.
With continuous data the cell takes the mean value. A cell is a single byte, its value
determined by linearly scaling the point value between minimum and maximum
values. Scaling of the environmental variables into single bytes reduces the e� ects of
di� ering magnitude between variables that can e� ect some analytical techniques.
The result is that all three types of environmental data are incorporated into the
system in a single e� cient format.

2.2. Producing the data set
The ® rst stage in predictive modelling in GMS is to map the species locations

into a grid at the same scale and extent as the environmental data. A single data
point for the subsequent programs is then the values of the coordinates of a vector
that passes vertically through the layers at the same geographical location. These
data points, though uniform, may be biased in various ways.

Sampling bias refers to any departure of the data set from a random sample of
the possible data points (or population). When a model is developed to re¯ ect the
patterns in a population, sampling bias imposes unwanted patterns on the data. A
biological data set from a herbarium or museum database will have a range of
omissions or disproportionate representations of information, such as spatial bias
and from one to very many data points.

A process called presampling reduces the e� ects of sampling biases. The program
presampl prepares a data set for analysis by controlled random sampling of the raster
data set produced by rasteriz. In this way some inherent biases can be reduced, and
a consistent, less biased data set presented to the modelling algorithm. By default,
presampl outputs a set of 2500 points, with even proportions in each of the dependent,
or predicted values, randomly selected from non-masked (e.g. non-ocean) areas. The
output of the program presampl is two sets of data points, called train and test. The
model is developed using the train data set, the test set is used for testing.

2.2.1. Problem: missing values (presence-only data)
One major form of sampling bias in ecology is in the use of presence-only data.

Most museum databases, for example, record where a species was collected, but
usually no information is available on where the species did not occur. This represents
a type of bias where the sampled set is biased completely towards a particular value
of the dependent variable. The solution provided by GARP is to generate the pseudo-
absence data called b̀ackground’ by selecting points at random from the geographical
space. The data set is then composed of two di� erent types of data: presence and
background data. Where true absence records are available, these can be included,
with or without background data. For some species or functional groups, it may be
possible to postulate a pseudo-survey region which restricts the area from which
pseudo-absences can be drawn.

2.2.2. Problem: variable prior proportions
A data set of sightings of a species from a ® eld survey will be composed of

presences and absences in varying proportions, depending on the abundance of the
species, and how much e� ort was spent in favourable habitat. While these proportions
can in some cases represent the relative scarcity or abundance of a species, they
create analytical di� culties. For instance, in rare species, if the proportion of sightings
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is very low, such as less than ® ve percent of the total, the strategy of predicting the
absence of the species everywhere will have an expected accuracy of 95%. Thus a
model using no predictor variables that predicts the species everywhere may be
output due to its high accuracy. Most measures of the quality of the model such as
signi® cance usually become more inaccurate at values close to zero or one. Also, it
is di� cult to compare the predictive accuracy of models on di� erent species when
the prior proportions are not the same. Presampling the data to even proportions,
i.e. 50% presences and 50% absences allows consistent comparison of accuracy
between species, and produces more reliable models.

2.2.3. Problem: large and small numbers of data
Many modelling methods allow arbitrarily large numbers of data points, but this

can often lead to long computation times for little gain in predictive accuracy. A
limit to data points limits the computational time required to develop the model
and typically provides su� cient information for the system. The number of points
may be varied to achieve repeatable results, depending on the species.

Small numbers of records occur with rare species or those of a very restricted range.
When this occurs sampling with even proportions cannot occur without replacement of
the record. While presampl supports the option of sampling with or without replacement,
sampling with replacement provides generality by allowing model development using
the range of possible frequencies of records, including from a single datum.

Research into the implications of these decisions is ongoing. For example, although
this generality may compromise assumptions of independence, experience has shown
that often a very small number of records are needed to correctly de® ne the distribution
of a species, once data has been sampled in this way for subsequent analysis.

2.3. Model development
The two goals of modelling are repeatable and accurate results. This is usually

the case with explicit numerical methods when the data sets are well suited to the
methods of analysis. However, in practical application to arbitrary data, many
numerical methods can fail to produce a result. This can be due to lack of convergence
of algorithms, non-invertability of matrices, or memory limitations that limit the size
and dimensionality of data sets. For problems without explicit solutions, exhaustive
search methods take a prohibitively long time as the size of the search space increases.

2.3.1. Problem: achieving repeatable results
Stochastic algorithms such as GAs incorporate random elements or stochasticity

into the strategy for searching the space of possible solutions. While stochastic
algorithms can ® nd solutions to problems in large search spaces, it can be at the
expense of repeatability because of the random search method. In some cases the
convergence on solutions can take a long time, because in the initial stages the initial
population contains no useful information. Algorithmic performance in the GARP
modelling system is considerably improved by developing good initial estimates of
the model. Initial models are generated using standard parametric statistical methods
and heuristics by the module initial. The estimates are used as a starting point for
the genetic algorithm in the following program.

2.3.2. Problem: achieving consistently accurate results
A more subtle but pervasive performance problem is the match of the class of

predictive model to the actual response type present in the data. In modelling the
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response of species to the environment the form of the response is not known prior
to the analysis. Nor is there general agreement in the literature on this issue. While
ecological theory would suggest a continuous uni-modal response modelled by
quadratic logistic equations (Austin and Smith 1989), in practice the interplay of
data artefacts and biases distorts this theoretical picture in unpredictable ways.

For example, in mapping vegetation distributions for forestry, the distribution of
forest trees in a pristine area may correlate highly with a uni-modal response curve
to soil fertility, say, representing smoothly changing quality of habitat for the species.
However, forestry operations in the area will have changed the distribution from the
pristine, through removal and replacement with other species. In a GIS, one would
model such discrete factors using overlays. There may be many overlays, correspond-
ing to di� erent types of discrete phenomena. Thus the ® nal model is a complex
combination of continuous response curves and logical spatial operations, nested in
a multi-level hierarchical structure (Lyndenmayer et al. 1991).

In an alternative approach to dealing with this problem, GMS simultaneously
uses a range of forms of model to model the range of potential relationships in the
data. The rules that contain each model di� er in type, but are evaluated with the
same criteria: statistical signi® cance and predictive accuracy. Given a set of rules
making up a GARP model, di� erent rules are selected automatically for predictions
at each cell, based on the estimated predictive accuracy of each rule.

GARP uses envelope rules, GARP rules, atomic and logit rules. The following is
an example of an envelope rule. The conjunction of ranges for all of the variables is
a climatic envelope or pro® le, indicating geographical regions where the climate is
suitable for that entity, enclosing ® xed percentiles of values for each parameter.

IF TANN=(23,29]degC AND RANN=(609,1420]mm AND GEO=(6,244]c

THEN SP=PRESENT

In natural language, this rule states that if the annual temperature (TANN) falls
between 23 and 29ß C, and the annual rainfall (RANN) falls between 609 and
1420 mm, and the value of the category of geology (GEO) falls in the range 6 to 244,
then predict that the species is present. A GARP rule is similar to an envelope rule,
except that variables can be irrelevant. An irrelevant variable is one where points
may fall within the whole range. An example of a GARP rule modi® ed from the
above is given below:

IF TANN=(23,29]degC AND GEO=(6,244]c

THEN SP=ABSENT

An atomic rule, as the name suggests, is a conjunction of categories or single
values of some variables. The natural language translation of the rule below is that
if the geology is category 128 and the elevation (TMNEL) is 300 m above sea level
then predict absent.

IF GEO=128c AND TMNEL=300masl

THEN SP=ABSENT

Logit rules are an adaptation of logistic regression models to rules. A logistic
regression is a form of regression equation where the output is transformed into a
probability. For example, logistic regression gives the output probability p that
determines if a rule should be applied where p is calculated using:
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p= 1/(1Õ e Õ y )

and y is the sum of the linear equation in the precedent of the rule: e.g.

IF 0.1Õ GEO 0.1+TMNEL 0.3

THEN SP=ABSENT

The capacity of rule sets to increase the coverage and accuracy of rules is shown
on table 3. The regions predicted by each type of rule in isolation are usually less
than the total area. The predictive accuracy of models composed of sets of di� erent
kinds of rules typically equals or exceeds the accuracy of models composed of rules
of a single type. Thus, the system makes use of high accuracy rules that apply in
di� erent areas to achieve an optimal overall coverage.

In theoretical terms, the four di� erent types of models, and, potentially, a large
number of variables, create a problem of ® nding a set of good models in a very large
search space. Theoretical studies of DeJong (1975) and Holland (1975) and experi-
mental studies (Bethke 1981, Brindle 1981, DeJong 1980) have shown that GAs are
particularly e� cient at ® nding solutions to problems which have many variables,
are noisy and contain potentially many solutions.

The rules are developed by a process of incremental re® nement by the genetic
algorithm. Each iteration is referred to as a generation, in which the set of rules are
tested, reproduced and mutated. A description of the GA procedure in the module
explain follows:

1. Initialize population of structures.
2. Select random subset of data.
3. Evaluate current population.
4. Save the best rules to a rule archive.
5. Terminate outputting the rule archive, or continue.
6. Select new population, using rule archive and random generators.
7. Apply heuristic operators to population.
8. Go to 2.

The GARP algorithm starts by inputting an initial set of rules generated by the
initial program. The ® rst step in the GARP iterative loop is to select a data set by
randomly sampling half the available data. The next step is to evaluate the rules on
the sampled data. For each of n data points the following values are incremented:

1. no Ð the number of points the rules applies to.
2. pYs Ð the number of data with the same conclusion as the rule.
3. pX Ys Ð the number of data the rule predicts correctly.

Table 3. The coverage and accuracy achieved for individual types of rules and the combined
model of all rules. Errors expressed as standard errors of the means of three repeats.

Model type Coverage s.e. Accuracy s.e.

Envelope 0.66 0.1 0.87 0.01
GARP 0.48 0.00 0.87 0.00
Logit 0.97 0.01 0.78 0.00
Atomic 0.21 0.02 0.94 0.03
All 1.00 0.01 0.81 0.01
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The following values are then calculated to evaluate the performance of a rule:

1. Coverage= no/n

2. Prior probability= pYs/n

3. Posterior probability= pX Ys/no

4. Signi® cance= (pX Ys Õ no Ö pYs/n )/ Ó no Ö pYs Ö (1 Õ pYs/n )/n

In the terminology of genetic algorithms, each rule is a member of a population.
The composition of a population changes with each generation t. The members of
the population P (t+1 ) are chosen from the population P (t) by a randomized
selection procedure. The procedure ensures that the expected number of times a
structure is chosen is proportional to that structures performance, relative to the
rest of the population. That is, if x j has twice the average performance of all the
structures in P (t ), then x j is expected to appear twice as frequently in population
P (t+1 ). At the end of the selection procedure, population P (t+1 ) contains exact
duplicates of the selected structures in population P (t ).

Variation is introduced into the new population by means of idealized genetic
recombination operators. The most important recombination operator is called cross-
over. Under the crossover operator, two structures in the new population exchange
segments. This can be implemented by choosing two points at random, and exchanging
the segments between these points. In most genetic algorithms, recombination occurs
on binary strings. In GARP however, recombination acts on values or ranges of values
of variables, depending on the type of the rule. For example two GARP rules can
exchange ranges of climatic variables in the crossover recombination.

Rule 1:

IF TANN=(23,29]degC AND RANN=(10,16]degC

THEN SP=PRESENT

Rule 2:

IF TANN=(35,38]degC AND TMNEL=(19,27]degC

THEN SP=PRESENT

Given the two rules above, suppose that the crossover point has been chosen
between the variables. The resulting structures would be:

Rule 3:

IF TANN=(23,29]degC AND TMNEL=(19,27]degC

THEN SP=PRESENT

Rule 4:

IF TANN=(35,38]degC AND RANN=(10,16]degC

THEN SP=PRESENT

The mutation operator changes the value of a variable to a new value. While
mutation produces small changes to the rules, crossover introduces representatives
of new structures, or combinations of variables, into the population. If this structure
represents a high-performance area of the search space, it will lead to further
exploration in this part of the search space.

The genetic algorithm will terminate either when a ® xed maximum number of
generations is reached, or the modi® cation or discovery of new rules is lower than
a ® xed rate. The set of rules which is statistically signi® cant, is output once the
adjustments have fallen below a ® xed percentage.
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2.4. Model application
The ® rst problem, known as the òver® tting problem’, is ubiquitous in modelling.

When models over® t, they can predict very poorly despite an apparent excellent
accuracy or ® t to the data they were developed on. This necessitates the evaluation
of predictive accuracy of habitat models using resampling methods (Verbyla and
Litvaitis 1989).

The second problem is one of model choice. Its solution is integral to GMS as
sets of models represent the relationship between the species and its environment.
Predicting with a set of rules is more complex than predicting using a single model
because there can be more than one rule that applies in a particular situation. These
di� culties include resolving con¯ ict between rules (predictions of di� erent outcomes),
and estimating probability when probability estimates of rules di� er.

2.4.1. Problem: estimating actual accuracy
Two strategies are used to control over-® tting. During model development in

explain, models are repeatedly evaluated for statistical signi® cance on randomly
sampled subsets of the training data. Empirical studies have shown that this approach
almost eliminates over® tting (Stockwell 1992). The second strategy is to use the test

set to provide a better estimate of the actual accuracy of the rules on independent
data. To do this, the verify program is run ® rst on the train data set and then on
the test data set, ® nally calibrating each individual rule to its true independent
predictive accuracy.

The accumulation of these results is shown as a confusion matrix for prediction
over the input data ® le. A c̀onfusion matrix’ shows the proportions of types of
successes and errors made by the model. In the listing below, the values on the
diagonal falling downward to the right are correct predictions of presence of a species
when present, and absent when absent. The upper right-hand corner is the proportion
predicted as present when the data records an absence, while the lower left-hand
corner is the proportion of predicted absences that are actually presences.

VERIFY Ð predictive accuracy of rules using training data

Results for all rules

Confusion Matrix: Actual

Present Absent Background

Predict Present 1113 0 43

Absent 0 0 0

Background 321 0 837

Conflicts 0 0

Unpredicted 94 0

NoMasked 0.000

Unpredicted 0.074

Predicted 0.926

Accuracy 0.843 s.d. 0.007

Overall Acc. 0.780 s.d. 0.008

verify modi® es the performance values for each of the rules according to the
performance of the rules on the given data set. Thus when verify is run on the test
set, the performance values re¯ ect the expected performance of the rules on an
independent test set, rather than on the data set used to derive the rules. This
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independent veri® cation gives a more reliable estimate of the true performance of
the rules in independent test situations.

2.4.2. Problem: resolving con¯ ict between rules
The basic strategy for selecting which rule to apply is maximizing the predictive

accuracy. Adoption of a strategy where the value predicted is supplied by the rule
with the highest expected accuracy, as indicated by the posterior probability of the
rule, maximizes the probability of success at each prediction, and maximizes the
total accuracy (Stockwell 1992). The program predict uses the rules and the environ-
mental data to generate predictions of all values at each grid cell in the environmental
data layers. The output of the predict utility has the value 254 when present and 1
when absent. The value zero is an unpredicted area where no rule applies and 255
is a masked area, outside the area of interest.

A probability surface representing the probability of occurrence of the species in
each grid cell is also output. The probability at a grid cell can be derived from the
rule set in two ways. First, using the most accurate rules that applies at a site by
the rules:

1. if predicted value is present P= posterior probability,
2. if predicted value is absent P= 1Õ posterior probability.

In practice this method was found to give sharp transitions between areas of
high predicted probability of occurrence and areas of low predicted probability of
occurrence. A method that yields a smoother probability surface takes the average
of the posterior probability of the most accurate presence rule, and the reciprocal of
the posterior probability of the most accurate absence rule. When no rule applies
the area is unpredicted.

Each rule set contains a large number of rules, but frequently a few of these
perform most of the ® nal prediction. translat outputs a list of rules ordered by
their usage in the ® nal prediction. Rules at the top of the list were applied most
frequently due to general applicability and high predictive accuracy.

2.5. Evaluation of the GMS approach
There are two main ways of evaluating predictive modelling systems. The ® rst is

to demonstrate validity of the system on a theoretical basis using mathematics and
possibly simulated data. The second is to conduct empirical trials and comparisons
with alternative systems.

The approach we have taken is to empirically test the system as widely as
possible. The GMS system has been in use continuously since 1995 with open access
to users world-wide. In addition, tests and validation trials have been conducted to
evaluate the system. The validation trials included examination of the results of the
system on prediction of distribution of a range of organisms by a number of experts
in the biology of those particular organisms.

2.5.1. Problem: novelty of the system
One trial elicited the comments of experts on predicted distributions for a range

of species (Stockwell 1995). This trial included three species each of: rare species,
endangered species, localized endemic, widespread and common, plants, mammals,
reptiles, birds, invertebrates, ® sh, as well as predictive maps for selected feral animals
and landscape phenomena (e.g. wetlands and snowline). The distribution data for
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the validation were solicited from the experts, the models developed, and predictions
sent to the experts for comment.

Based on the feedback from the experts, GMS was capable of modelling the
habitat of a wide variety of biological entities at a wide range of scales. De® ciencies
noted in the predictions appeared to be due to lack of data rather than intrinsic
limitations in the methodology. Two examples of data de® ciencies were data sets
restricted to State or Territory boundaries, and lack of hydrological and water-
quality related environmental data sets. Correcting these de® ciencies and collating
the appropriate data thus appears to be a most e� ective way of increasing the quality
of species modelling.

2.5.2. Problem: interpretation of outputs
The important and unanswered question for use of the system for management

of the environment is: which interpretations lead to valid uses? For example, the
uses of a model can range from interesting insights, a source of evidence, a vehicle
for planning surveys, or a warrant for changing the tenure of areas of land. If people
are to use the results of a system, there must be guidance as to acceptable uses.
What this guidance should be and how to provide it is a widespread problem in the
® eld of applied modelling.

3. Conclusions

The GARP modelling system provides automated analytical facilities for the
GMS application for modelling the distribution of species from data on species
locations extracted from a data base. The system has potential applications anywhere
where spatially located data occurrences need to be modelled and the distributions
predicted.

The approach of the GMS system in targeting a speci® c task like prediction of
species distributions, and providing it in an e� cient integrated system, stands in
contrast to the general-purpose toolbox approach adopted in most GIS applications.
The task-speci® c approach has been successful in providing an e� cient system that
is easy to use. Increased functionality may increase the range of uses of the GMSÐ
at the expense of greater complexity and probably increased user confusion. Perhaps
the future of automated spatial analysis lies in development of many applications
dedicated to speci® c tasks. These may or may not contain similar computational
components hidden from the users’ view. The user would ® nd and access these
applications using search tools such as those presently used in the World Wide Web.

GMS contains a number of novel solutions to automated modelling of ad hoc
data. Organizing the structure and functions of the system to anticipate and deal
with data problems is successful in producing a robust system. It also provides a
framework for assessing, and improving the system. Future research is aimed at
further quantifying the impact of the problems and solutions. By examining modelling
systems in this way, alternative solutions to problems other than those adopted
might be suggested, and possibly incorporated into future systems.
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