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Introduction

In their recent paper Fredericksen and Putz (2003) (henceforth F & P) rec-
ognize the necessity to minimize unnecessary logging perturbations, but claim
that reduced impact logging (RIL) techniques create insufficient disturbance to
permit regeneration of some commercially valuable timber species. They argue
that in tropical forests where a valuable species requires substantial disturbance
for seedling establishment, intensive silviculture, consisting mainly in increas-
ing canopy gaps, is necessary in order to maintain a sustainable flow of timber.
We argue that tropical forest silviculture for the sustainable management of its
resources is much more complex than the manipulation of gap size. We take
issue with a number of claims made by F & P.

Most tropical forests are not shaped by substantial disturbances

F & P appear to have confused a simple model of forest regeneration dynamics
with the claim made by some environmental groups that natural forests are
fragile, pristine environments that should be protected from any disturbance.
Aubréville’s (1938) mosaic theory of regeneration proposed that rather than
consisting of stable plant associations, tropical rainforest was composed of a
patchwork of seral stages. This patchwork is created by a sequence of distur-
bances that vary in their magnitude. The resultant gaps of different sizes and
stages of regrowth are an important source of species diversity of tropical
rainforests (Brokaw 1985). F & P’s claim that this paradigm has recently been
superseded by a type of ecological catastrophism is fallacious. Large distur-
bances are known to play an important part in structuring forests in the
Caribbean, parts of Central America and Pacific islands (Whitmore 1989;
Brokaw and Walker 1991; Tanner et al. 1991). Furthermore, there is evidence
that many (if not most) tropical rainforests experience infrequent large
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disturbances (Whitmore and Burslem 1998). However, it is wrong to imply that
this is the predominant scale of disturbance determining the structure and
composition of most tropical rainforests. Their low frequency and rapid forest
recovery (e.g. Nelson et al. 1994) mean that their impact is transitory (Burslem
et al. 2000).

RIL creates adequate disturbance for the regeneration of many valuable timber

species

RIL techniques do not mimic natural disturbance regimes: they are imposed on
top of them. The proportion of trees killed by harvesting operations under RIL
techniques vary between 7% in the Amazon to 15% of the original stand in
southeast Asia (Sist 2000). Logged forests also suffer a much higher natural
mortality during the 2–5 years following RIL than primary forest (5% p.a.
versus 1% p.a.; Sist and Nguyen-Thé 2002). In southeast Asian dipterocarp
forest the disturbance created by RIL (8 harvested trees/ha but 75–80% of the
original basal area remaining) was enough to stimulate rapid dipterocarp
seedling growth for several years after logging (Sist and Nguyen-Thé 2002). In
contrast, in intensively logged and damaged stands (33% of the original tree
population killed and less than 75% of the original basal area remaining),
dipterocarp regeneration was much poorer (Sist and Nguyen-Thé 2002). Forest
dynamics modelling suggested that RIL of moderate intensity would also
permit a sustainable harvesting rotation of 40 years (volume of about 60 m3/ha
at each harvest) while with RIL under higher extraction rates and damage,
rotation increased to more than 60 years with a substantial risk of favouring
pioneer species (Sist and Nguyen-Thé 2002; Sist et al. 2003c).

Regeneration is about more than just gap size

One important development that Fredericksen and Putz (2003) have ignored is
the recognition that gap size is only one of many influences on patterns of
rainforest regeneration. The gap-phase regeneration paradigm assumed that
the most competitive plant was the one that had the greatest relative growth
rate in response to the ambient light environment (Denslow 1980). Field
experiments have shown that tall plants are able to capture more light and
consequently grow faster and cast shade on the shorter plants beneath them.
As a consequence, regeneration is often dominated by the tallest plants in a
gap, regardless of their species (Brown and Whitmore 1992). When the seedling
bank and all advance regeneration is destroyed by a disturbance, the first
plants to re-colonise a gap will often pre-empt the light and delay or inhibit
further colonisation by other species. In large gaps these are typically pioneer
species that have widely dispersed seeds and a persistent soil seed bank. For
silvicultural systems that depend on natural regeneration it is therefore crucial
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that the forest is already well stocked with abundant seedlings and advance
regeneration of desirable species prior to logging. It is also important that
logging does not destroy those seedlings. F & P argue that many important
commercial species such as Swietenia macrophylla, Entandrophragma spp. and
Shorea leprosula require big gaps or even catastrophic disturbance to re-
generate. However, a number of experimental studies have shown that these
species have poorer germination and establishment in very open conditions
than in partial shade (Nicholson 1960; Nussbaum et al. 1995; Kyereh et al.
1999; Morris et al. 2000; Hall et al. 2003), making it difficult for them to
establish naturally in large felling gaps. In mixed dipterocarp forests, experi-
ments have also shown that gaps should be limited to £ 500–650 m2 to favour
dipterocarp regeneration and to limit pioneer invasion (see Sist et al. 2003b).

Past experience suggests that substantial opening of the forest canopy typ-
ically triggers vine and pioneer infestations while they fail to stimulate the
regeneration of valuable commercial light-demanding species (Lancaster 1961;
Britwum 1976; Lowe 1978; Wyatt-Smith 1988; Bruenig 1996). Moreover, large
canopy openings significantly increase forest flammability, particularly during
long periods of drought such as those that occur in southeast Asia during El
Niño events (Dennis 1999). Another factor which F & P have failed to take
account of is that commercially valuable timber species occur in forests across
a range of climate types and their responses to disturbance vary accordingly.
For example, Entandrophragma utile regenerates in large gaps in high forest in
the south of Ghana, but in the drier north is restricted to moist shaded areas
away from direct sunlight (W. Hawthorne, personal communication). Swiete-
nia macrophylla is a species that regenerates profusely in the more open con-
ditions found in the transition zone from open deciduous forest to evergreen
rainforest (Brown et al. 2003). In the deciduous forests, small-scale distur-
bances created by controlled logging will be enough to stimulate natural
regeneration (Brown et al. 2003). In high forests where S. macrophylla persists
as relic populations typically represented by very few adults and rare seedlings
and saplings (Grogan et al. 2002; Brown et al. 2003), large disturbances may be
necessary for natural regeneration. However, in this type of population, it is
also absolutely essential to leave sufficient adult trees to ensure reproduction
and therefore seed production (Jennings et al. 2001). Indeed, the creation of a
favourable microclimate for regeneration is useless if reproduction processes
are not preserved, an essential point that F & P did not address at all.

Conclusions

Whilst there is evidence that many humid tropical forests have experienced
large disturbances in the past, very few commercially important species require
cataclysmic disturbance for regeneration. Recent research has shown that RIL
techniques are necessary for sustainable harvesting but not sufficient on their
own to guarantee that it occurs (especially when based solely on minimum
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diameter cutting limits) (Sist et al. 2003a, b). Intensive silviculture (meaning the
rigorous application of skilled forest management as opposed to substantial
opening of the forest canopy) is urgently needed to stimulate the regeneration
and growth of many valuable commercial species, not just the most light-
demanding ones. This is a complex task which cannot be reduced simply to the
manipulation of felling gap sizes. Large gaps may promote fast growth by a
small number of light-demanding species, but they have other ecological
ramifications which may not be beneficial for sustainable production.
Threshold levels of damage that can be sustained in the long term have only
been quantified for a small number of tropical forests (e.g. a harvesting
threshold of 8 trees/ha, and maximum gap size of 600 m2 for mixed diptero-
carp forest, Sist et al. 2003a, b; or one third of the original basal area in French
Guiana, Gourlet-Fleury, personal communication). But without a good
understanding of these thresholds, general recommendations such as F & P’s
proposal to increase gap sizes in order to favour a few light-demanding timber
species, may have disastrous and irreversible effects on forest recovery after
logging.

Most experiences over the last century in tropical rainforests around the
World show that intensive silviculture was neither effective nor sustainable.
Tropical forestry has been dominated by western silvicultural concepts that
mainly aimed to favour a limited number of species while eliminating non-
commercial ones. In contrast, we believe that modern silviculture should
maintain and promote the extremely high diversity of tropical forest, as it rep-
resents an important biological and potential economical value for the future.
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