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Abstract: Maps generated from bird survey data are used for a variety of 
scientific purposes, but little is known about their bias and precision. We 
review methods for preparing maps from point count data and appropriate 
sampling methods for maps based on point counts. Maps based on point 
counts can be affected by bias associated with incomplete counts, primarily 
due to changes in proportion counted as a function of observer or habitat 
differences. Large-scale surveys also generally suffer from regional and 
temporal variation in sampling intensity. A simulated surface is used to 
demonstrate sampling principles for maps. 

Bird distributions are of great interest to both amateur 
birdwatchers and professional ornithologists. Range maps 
published in field guides and other sources provide a large-scale 
view of approximate range and relative abundance that have 
obvious uses for determining if species are likely to be seen    
in an area (Robbins and others 1986, Root 1988). They are  
also used to evaluate more subtle questions about ecological 
aspects of bird distributions (Repasky 1991). Because of the 
importance of assessing changes in bird ranges in association 
with global climate change and other large-scale environmental 
changes, existing range maps take on added importance as 
standards from which we can evaluate future changes in ranges. 
But range maps published in field guides generally contain many 
biases associated with the anecdotal nature of the observations. 

Maps generated from extensive bird survey data sets 
such as the North American Breeding Bird Survey (BBS) 
(Droege 1990) and the Audubon Christmas Bird Count    
(CBC) (Butcher 1990) provide a reasonable source of sys-
tematically-collected information on bird distributions, and 
several recent publications have used these data to generate 
distribution maps (Robbins and others 1986, Root 1988,   
Sauer and Droege 1990). Because information from these 
surveys is now used in Geographic Information Systems   
(GIS) to address many management-oriented questions (e.g., 
analysis of the potential for bird-aircraft collisions or evalua-
tion of bird species presence in existing patches of forest for 
county planning), it is of interest to evaluate the potential for 
error in these maps and review how sampling procedures can 
bias our maps of bird distribution. 

Home-range estimation methods provide another exam-
ple of spatial mapping procedures. In this case, the map must 
be formed on the basis of density of points because only pres-
ence data exist for each point. In bird surveys, these data can 
result from presence-absence counts, such as those obtained 
from miniroute stations or atlas blocks. These methods require 
uniform sampling density to avoid distortion in the map. 
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A fundamental problem with creating and assessing the 
efficiency of maps estimated from any sample data is that we  
do not have complete information on the number of birds at    
all points in the region (the actual surface of the map) for 
comparison with the estimated map surface. It is, therefore, 
difficult to assess error in the interpolated portion of the map.   
A much greater difficulty exists with maps generated using 
point count samples. For these data, we do not even have    
point estimates of the number of birds at any location on the  
real surface. The maps are based upon counts, which are   
related to the actual numbers of birds by an unknown proba-
bility of detection p (Barker and Sauer in this volume). In this 
paper, we review methods for developing contour maps of    
bird distributions from data collected at discrete points and 
discuss how sampling constraints associated with point     
counts can bias and create error in the maps. We develop a 
measure of bias and efficiency for maps and use simulation to 
show how different sampling strategies can change the 
efficiency of maps from point count data. 

Procedures for Mapping 
Early maps from BBS data were prepared by a skilled 

ornithologist using average counts at each survey location. 
Using his knowledge of bird distributions and bias in the 
coverage of the survey, the observer drew contours that used 
both the existing data and "expert opinion" for areas where 
survey data did not exist (D. Bystrak, personal communication). 
Examples of these maps appear in Robbins and others (1986). 

Recently, use of statistical methods for smoothing data 
has become popular for bird survey mapping. Let mi be the 
location of point i in two dimensions (e.g., mi = {Xi, Yi}), and let 
Z(mi) be the count at point i. These procedures take the counts 
at points at known locations mi and estimate counts at all points 
that were not sampled in the region. In practice, many programs 
(e.g., SURFER [Golden Software 1987]) use a smoothing 
procedure to estimate the predicted counts for a uniform grid of 
points spaced over the area to be mapped. They then either plot 
out the counts at these grid points or use some algorithm to 
estimate a contour map based on the uniform grid points. 

We illustrate this process using a square region, which 
we call point count land (PCL), with a simulated surface with 
height Z ' = a(X + Y), where X and Y are locations of the point   
in the X, Y plane and a is a scaling factor to make the   
maximum value of Z ' = 20. The actual surface (which is not 
observed in real life) can be thought of as an actual bird 
distribution map (fig. 1a). The counts at randomly located 
sampling points are shown in figure 1b. The gridding process 
based on the Z values at the randomly selected points is      
shown in figure 1c, and the smoothed topographic map from 
the sample is shown in figure 1d. This simulated surface will 
be used later in the paper to demonstrate certain aspects of 
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points are available. Most mapping methods were developed 
for geological applications, where they are used to estimate 
the shape of underground strata from a series of samples  
taken at specified locations (Isaaks and Srivastava 1989). An 
extensive literature has developed on smoothing methods  
such as kriging (Isaaks and Srivastava 1989), variants of 

sampling for distribution maps. We use program SURFER 
(Golden Software 1987) to estimate maps from point data.  
 
Mapping Methods 

Several methods of estimating the values at the system-
atically-located grid nodes from data collected at random 

Figure 1--(a) A hypothetical surface that varies in height from 0 at the 0,0 point to 20 at the 3000,3000 point. (b) A sample of 100 randomly select- 
ed points, listed with counts. (c) A grid of counts estimated from the counts at the 100 randomly selected points. (d) A contour map based on the  
grid illustrated in figure 1c. 
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which have become quite popular. We briefly discuss two of 
these methods, inverse distancing and kriging. 

Inverse Distancing 
In this procedure, the count at a point at location mi is 

estimated as a weighted average of points within a neighbor-
hood of the point of interest, or 
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In this average, the j is an index for all sample points which     
fall within a preselected neighborhood (or circle) of the location 
mi, and the weights are the Euclidean distances between mi   
and mj or hi,j, defined as: 
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Often, a function of h such as h2 is used as the weighting factor, 
and it is clear that the choice of both the size of the neighborhood 
and the choice of the function h can influence the estimated 
count z(mi). We present an example of a bird relative  
abundance map produced from BBS data using inverse 
distancing (fig. 2a). 

Kriging 
Kriging is a well-known statistical procedure that fits a 

best linear unbiased estimator to sample data. A kriging 
estimate of z(mi) is also a weighted linear combination of the 
existing sample data points, or 
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The weights wj. must sum to 1.0 and minimize the error vari-
ance. In practice, the weights are estimated from the  
covariance structure of known sample points. To do this, we 
must estimate the covariance among the sample points (cj,k)  
and define a matrix C: 

In practice, the kriging system is often defined in terms 
of variograms, which are easier to estimate than covariances.   
A variogram is defined as: 

( ) ( ) ( )( )jiji mzmzmm −= Var,2γ . 

γ(mi,mj) is called the semivariogram. The variogram is similar 
to a covariance function, but is inverse (a large covariance 
implies a small variogram). Furthermore, simplifying 
assumptions about the underlying distribution of counts     
must be made to estimate components of C and D. A major 
assumption is that the value of the covariance (and vari-  
ogram) between points depends only on the distance     
between the points (h). Consequently, we can plot the value     
of the variogram as a function of h (fig. 2b), and we can    
model this relationship using a variety of linear, exponential, 
Gaussian, logarithmic, or other functions. Using this model,   
we can estimate the value of the variogram for any value h, 
which means that we can construct C and D from knowledge  
of the model and the distances between points, A contour     
map based upon an estimated variogram is presented in     
figure 2c. 

The estimation of the variogram is a critical component 
of spatial analyses and has received a great deal of attention     
in the geostatistical literature (Armstrong 1989). Variogram 
analyses assume a constant covariance structure, and if this 
does not exist, the kriging estimates will be inappropriate.     
One common departure from the required consistency occurs 
when the covariance structure differs depending on direction  
as well as distance. 

How Do We Evaluate the Quality of a Map? 
There has been no research into the validity of applying 

kriging and other smoothing methods to bird survey data.  
When an automated procedure is used in mapping, there is a 
tendency to treat the analysis as a black box in which we vary 
the input parameters in an attempt to get a good picture. 
Unfortunately, to judge a "good picture," we use both other 
knowledge (often anecdotal) of what the map should look     
like and information from the data. Both of these sources are 
often flawed. All surveys are judged by how well they display 
people's "common knowledge" of populations. Is this an 
appropriate criterion? All maps are conditional on the existing 
data, but the information from the survey data contains many 
possible biases and errors, many of which are difficult to 
evaluate using the data. 

Two statistical attributes, bias and variance, can be     
used to evaluate how good a map is or, in fact, how good any 
survey is. 

Bias 
Bias is a measure of how different the expected value     

of an estimator is from the underlying (true) parameter value.  
In point counts, the parameter is population size, but     
the estimate is the count. In a map, bias is E(z(mi) – Z(mi)):  
the distance from a point on the expected surface developed 
from the counts to the "real" surface of the bird distribution. 
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Also, the vectors w'= {w1, w2, ..., wnµ} and D' = {cl,i, c 2,i,..., 
cn,i, 1} must be defined where i represents the point to be 
estimated. Note that the additional parameter µ is included as  
a mean term, which corresponds to the 1 and 0 values in the 
other matrices. The vector of weights w is estimated using 
Lagrange multipliers as C w = D, hence w = C-1D, which is 
called the ordinary kriging system (Isaaks and Srivastava 1989). 
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Figure 2--(a) BBS data on Black-billed Magpie (Pica pica), used as examples of mapping procedures. Data are averages of counts from the inter-     
val 1981 to 1990 from BBS routes. (a) A relative abundance map produced by using inverse distancing to estimate counts at nodes of a 100 x 100     
grid over the map, and then contouring over the grid. (b) A sample variogram estimated for the Black-billed Magpie data.     
The smooth line represents a model fit to the variogram. 
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Figure 2 (cont.)--(c) A contour map developed from a kriging function using the sample variogram presented in figure 2b. 

As with other analyses of point count data, the statistical 
properties of the proportion of birds sampled at a point (p, the 
ratio of the number of birds counted to the number of birds 
present at a point) are a major determinant of bias in mapping 
bird distributions. In our PCL example, this means that due to 
this p our point estimates of Z, that is z, are not unbiased. We 
can never observe the actual abundance of birds at any point 
with point count data. However, other attributes associated 
with sampling such as the roadside nature of counts and 
distortions due to topographic features can also bias   
smoothed maps of bird distributions. 

Variance 

Because we never measure the actual abundance of birds, 
the counts we derive from point counts are measured with error. 
A map made with point count data captures both error associated 
with incomplete counts and real variation in populations. 

One reasonable measure of efficiency of a map is the mean 
square error, or MSE, which combines bias and variance as:  

MSE = Bias2+  variance. 

How Can We Evaluate Bias and Precision in Maps? 
We present two approaches to assessing possible difficult-

ties with developing relative density maps from bird survey data. 
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First, we try to decipher some of these issues from 
existing data. Unfortunately, evaluation of bias in estimates 
from point count data is difficult because we infrequently 
know the real values. Validation of bird surveys generally 
involves comparison with alternative data sets that often 
contain similar bias in their estimates, and agreement or 
differences in estimates between surveys do not provide 
sufficient information to judge which is less biased. There are 
several examples, however, where we can reasonably assume 
that the estimates from comparative data are less biased 
(generally through collection using less biased methods), 
which can provide us with insights into bias associated with 
point count data. 

Second, we can simulate maps and look at effects of our 
sampling methods on the mapping process. The advantage of 
this approach is that it allows us to evaluate the exact extent of 
bias for various sampling schemes. We, therefore, can    
avoid the conceptual problems that arise in comparing two 
surveys, each of which is of uncertain validity. Unfortunately, 
simulations are never completely representative of       
the vagaries of sampling and tend to provide idealized       
views of the world. We will use simulations to provide       
some insight into the effects of several sampling decisions       
on resulting maps. 
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Looking for Biases in Existing Data 
There are many potential biases associated with large-

scale surveys such as the BBS. Some of the biases are directly 
related to the vagaries of point counts, but others are a conse-
quence of the constraints imposed by the necessity of collecting 
counts along roadsides using volunteers. The challenge in   
using large-scale survey data is in documenting the existence    
of potential biases and, if possible, modifying the analysis to 
accommodate them. In this section, we review some of the 
possible biases in surveys that could influence maps pro-   
duced from survey data and, if possible, document their exis-
tence using survey data. 

 
Point Count Biases 

Point count methods are the only feasible way of moni-
toring birds on a large geographic scale. Unfortunately, by    
not explicitly modeling p at each site, changes in the count    
data among sites are confounded with factors that affect p. 
Therefore, changes in counts at points can be a function of 
changes in (1) observer efficiency, (2) regional or local habi- 
tat, and (3) population density. 
 
Observer Efficiency 

All observers count birds differently and differ in their 
ability to perceive birds. These differences are evident both from 
field studies (Bart and Schoultz 1984) and from analysis of 
survey data (Sauer and Bortner 1991, Sauer and others, 1994). 
 
Regional or Local Habitat 

It is also easy to document habitat effects on observability 
of birds. Birds are less observable in dense vegetation. An 
example of this occurs in the USDI Fish and Wildlife Service 
Mourning Dove (Zenaida macroura) call-count survey, in 
which data for birds seen are recorded separately from    
number of birds heard. As expected, distinct regional    
variation occurs in the relative size of these indices. In the 
Eastern United States, more birds are heard than seen, but in  
the Central and Western United States more birds are seen    
than heard. This suggests that the proportion of birds detected  
is changing for both variables. Furthermore, there is no    
reason to expect that variation in detectability between the    
two indices is consistent, so even their sum may not be a    
valid index of abundance. Unfortunately, with bird species 
composition and abundance and detection probabilities all 
varying among habitats and regions, associations among count 
data and habitats may not be accurate reflections of actual bird 
use of habitats. 
 
Biases Associated with Population Density 

It has been documented that a smaller proportion of  
birds are counted as the total number of birds at a stop  
increases (Bart and Schoultz 1984). This tends to lower p in 
regions with many birds. It has also been observed, however, 
that some bird species call more frequently at high population 
densities (Gates 1966). This increase in p with population    
size also would invalidate the index. 
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Other Survey Biases 
In addition to the biases associated with the point 

counting technique discussed above, many other aspects of 
survey design can also bias maps from survey data. Any   
large-scale survey is constrained by logistical details such as 
availability of surveyors and ability to reach locations of 
sampling sites. These details include (1) variable sampling 
intensity, (2) temporal change, (3) roadside biases, and (4) 
appropriate analysis scale. 

 
Regional Differences in Sampling Intensity 

It is well known that all large-scale surveys for 
passerine birds contain extensive regional differences in sam-
pling intensity. The BBS, for example, has a disproportionate 
number of routes in the Eastern United States and has few 
samples in northern and intermountain west regions. This bias 
is also obvious in surveys such as the Audubon Christmas  
Bird Count, and the Breeding Bird Censuses (Sauer and 
Droege 1990). This suggests that the validity of maps will 
differ depending on the region of interest. If maps are used to 
evaluate year-to-year changes in bird populations, these 
differences in precision will cause a perception of more 
predicted shifts in distributions and regional changes in   
counts in regions with lower sampling intensity. 
 

Temporal Biases 
Large-scale surveys tend to sample larger or smaller 

areas over time in response to changes in participation by 
volunteers. In particular, both the Audubon Christmas Bird 
Counts and the BBS have increased in range and participation 
over time, leading to both more consistent coverage of routes 
within regions and more routes established on the periphery   
of the survey. These changes in effort lead to extreme biases  
in trend estimators based upon regional average counts 
(Geissler and Noon 1981) and have led to the development of 
trend estimation procedures that model trends on consistently 
surveyed areas (Geissler and Sauer 1990). It is also evident 
that in the BBS, number of species and total counts tend to 
increase over time, suggesting increases in observer quality 
and participation (B.G. Peterjohn, personal communication). 
Maps based upon counts will display these biases. 
 

Roadside Biases 
It has been suggested that surveys such as the BBS, in 

which observers count birds along roadsides, provide a biased 
view of bird populations because many species are either 
attracted or repelled by roads (Droege 1990). Also, habitats 
that do not occur along roads are not sampled. It is clear that 
habitats are often missed along BBS routes and, therefore, 
marginal populations of birds near the edges of their ranges  
are not well sampled by the BBS. If habitats not sampled by 
surveys do contain population densities that differ from sampled 
habitats, maps can be distorted. 
 
Bias and Scale of Analysis 

The biases discussed above do not necessarily invalidate 
maps made from point count data. In fact, maps made from 
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for maps, a model is defined for the covariance structure of   
the surface, and additional samples (e.g., count locations) are 
selected to better define attributes of the model. Because the 
sampling is model-based, optimal sampling for models will 
introduce bias in the sample if it is used to estimate other 
attributes that are not model-based (such as population    
means), which are unbiased only if all locations have an    
equal chance of occurring in the sample. de Gruijter and ter 
Braak (1990) review this distinction between design-based    
and model-based sampling and suggest that design-based 
sampling is more likely to provide robust estimates of statistical 
attributes of the population. Because mapping of bird 
distribution is probably not the principal goal of most    
surveys, we suggest that model-based sampling procedures 
such as those suggested by Barnes (1989) not be used for 
allocation of additional samples in bird surveys. Steps can    
be taken to minimize error in mapping, however, that do    
not bias standard sampling. 

How Can Point Count Surveys Be Designed to Provide 
Acceptable Information for Mapping Procedures? 

In this section, we demonstrate some of the basic 
principles of sampling for maps. To give some insights into 
how sampling affects maps, we will use the simulated surface 
(PCL) presented in figure 1. The actual surface is a tilted   
plane that has height 0 at X,Y coordinates of (0,0) and has 
height 20(X + Y)/6000 at point (X,Y). The constant 20 is the 
maximum height at the coordinates (3000,3000). To illustrate 
how sampling can affect maps, we conducted a simulation in 
which we (1) sampled from the surface by taking counts at 
(X,Y) locations under various conditions, (2) used mapping 
procedures to estimate a systematic grid and topographic map 
from the sampled counts, and (3) plotted the maps to provide    
a visual comparison of the consistency of the estimated maps.  

 

Examples of Effects of Sampling Design on Map Error  
Systematic versus Random Sampling 

Random sampling is a traditional method of ensuring   
an unbiased sample. Systematic sampling ensures consistent 
coverage over a region that may not occur by chance in  
random sampling with small sample sizes. We illustrate this    
by simulating 900 sample points on PCL, using both a sys-
tematic grid and random points (fig. 3). Under these condi-
tions, it is clear that a more consistent map is produced by 
systematic sampling. Exceptions to this are noted below. 

Sample Points 
The number of points sampled has an obvious effect on 

the estimation of any statistical attribute of a population. 
Comparison of the maps presented in figure 3 with a map 
prepared with only 100 points (fig. 1d) illustrates the effects    
of decreased sample sizes on the efficiency of maps.  
Detection Probabilities 

Point counts do not provide unbiased estimates of the 
actual number of birds present at a point, because only a 
proportion of the birds are sampled. We evaluated the effects 
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BBS data appear to provide a reasonable view of regional 
abundances of many species (Robbins and others 1986). We 
believe that many large-scale geographic questions can be 
addressed using BBS data. We suggest consideration of the fol-
lowing guidelines, however, for analysis of maps from surveys: 

(1) Extrapolations of counts between data points should 
be viewed with caution. Because p can differ between survey 
locations, differences in counts between routes may not accurately 
reflect changes in population size, and smoothed values may 
reflect sampling error rather than real regional variation. 

(2) Regional variation in sampling intensity can create 
the appearance of greater variability in bird populations.   
Maps created from different time intervals may indicate more 
variation in bird populations in certain regions as a 
consequence of fewer samples or poor quality data. 

(3) Phenomena that occur at scales smaller than the survey 
cannot be accurately modeled using survey data. Rare species    
or species sampled at the edge of their ranges will be poorly 
mapped. Because of the emphasis on marginal populations in 
evaluations of changes in ranges, edges of distributions receive 
special emphasis in biogeographic analysis. Unfortunately, 
sampling in many extensive surveys is coarse-grained, and   
the local patches of acceptable habitat in which marginal 
populations occur are often poorly sampled or missed 
completely. Edges of range as estimated from surveys are 
extremely variable, reflecting the poor sampling characteristics 
of low-density populations. 

(4) Bird population "surfaces" are a composite of real 
populations and differences in sampling attributes of the pop-
ulation. By treating the discrete survey points as continuous 
functions and modeling a density surface for a species, all of 
the sampling problems discussed above are incorporated into 
the estimation. Trend analysis procedures that are structured   
to accommodate spatial variation in sampling intensity 
(through area weightings), changes in observers (through 
covariables), and missing data (by estimating changes over 
time at individual points) may provide a more reliable view    
of bird population changes within regions. Maps are condi-
tional on counts, or mean counts, and methods to adjust for 
these biases do not exist. 

Sampling for Maps 
In designing any survey to estimate parameters of bird 

populations, choices must be made about the number of points 
to be sampled and the dispersion of points. Other papers in 
these Proceedings have examined allocation of the number of 
samples (e.g., Barker and Sauer, in this volume), but the 
dispersion of sampling locations becomes important for 
sampling for mapping. Geostatisticians have addressed the 
issue of allocating additional samples to minimize map error 
when pilot data have been used to define a preliminary   
kriging model (Barnes 1989). It is clear from this work that    
it is difficult to make generalizations about sampling for   
maps, as additional sample locations are dependent upon the 
model used for the pilot data. 

A basic distinction exists between sampling for maps 
and sampling for other population attributes. When sampling 
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Obviously, the more complex the distribution, the larger a 
sample is needed to describe it adequately. We demonstrate  
the effects of scale of measurement using PCL with an addi-
tional surface feature, a small area with much higher counts 
than the region around it (fig. 7a). Widely spaced sample 
points might not detect this feature (fig. 7b). One solution is  
to increase the sample size. If a systematic sample is used,   
and the spacing between sample points is less than the short- 
est axis of the area of interest, at least one sample point will   
be within the feature. Alternatively, if small features (fig. 7a) 
are known to exist, stratified sampling can be used and these 
small areas can be sampled with a higher density of sample 
points (fig. 7c). 

Conclusions 
Because of the incomplete nature of count data and 

deficiencies in the design of large-scale bird surveys, it is  
likely that maps from survey data contain significant biases. 
These biases should be considered in analyses of ecological 
attributes of the ranges of birds, and are most likely to be 
important at small geographic scales. 

Maps are useful descriptions, and we believe that    
they should be produced from survey data. They have    
great potential for evaluation of large-scale changes in    
bird distributions over time. However, their deficiencies    
must always be made explicit. We suggest that maps of    
bird distributions be treated in the same way that Isaaks    
and Srivastava (1989:42) treat contour maps of geological  
data, "as helpful qualitative displays with questionable 
quantitative significance." 

of this by considering the counts at a point (Z ' ) to be a 
binomial random variable, with parameters Z, the predicted 
height at point (X, Y), and p, the detection probability. To 
illustrate this, we set p at two levels: 0.8 and 0.5 (fig. 4). 
Compare these results with figure 1d, which has the same 
sampling intensity, but with p = 1. As expected, the surface 
becomes more biased (i.e., differs more from the true surface) 
and more variable as p gets smaller (fig. 4). Variation in 
detection probabilities over a surface can create serious bias- 
es in a map (fig. 5). 

Replication 
When p < 1.0, the counts are no longer measured without 

error at a point. In this case, there may be some advantage to 
replication at the point, as the mean of several counts is a 
"better" (i.e., more precise) estimate of Z '  than is a single 
count. We demonstrate by averaging 20 independent 
"replicates" of Z '  at each point (fig. 6) for comparison with 
figure 4a. Replication does not eliminate bias, in that the 
surface based on replicated counts never reaches the height of 
the real surface. In addition, if p varies within the area of 
interest, the observed surface is not only proportionately  
lower than the true surface, but is also distorted. 

Sampling Must Occur at the Appropriate Scale for 
Detection of the Phenomena of Interest 

In nature, no surface is smoothly increasing or declin-
ing as is modeled by our PCL surface. Instead, areas of large 
populations are intermixed with areas of small populations as  
a function of both biological and geographic features. 

Figure 3--The effects of systematic versus random sampling on maps. (a) A sample contour map based on a systematic sample of 900 points. 
(b) A sample contour map based on a random sample of 900 points.   
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a b 

Figure 4--The effects of varying detection probabilities on maps. Both maps were generated from the same 100 randomly located points,     
but differed in p. (a) p = 0.8. (b) p = 0.5. Compare the surface of these maps with figure 1d. 

Figure 6--A map based upon similar conditions as in figure 4a,       
but the counts at each point are the average of 20 independent 
replicates. 
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Figure 5--PCL with a systematic sample of 100 points, and p = 0.8     
on the portion of the map below 2000 on the y-axis. Above 2000,     
p = 0.4. 
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Figure 7--PCL with a raised region that is 3 times the height of the 
surface. (a) Detail of the surface, as shown by a 900-point systematic 
sample. (b) A surface produced by a low intensity sample (a 49-point 
sample), which misses the feature entirely. (c) An example of a     
stratified sample in which the surface, excluding the raised area, is 
sampled with 25 points uniformly located, but an additional sample of         
20 points are uniformly located around the raised area. 
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