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Summary

1. Presence-only data, for which there is no information on locations where the species
is absent, are common in both animal and plant studies. In many situations, these may
be the only data available on a species. We need effective ways to use these data to explore
species distribution or species use of habitat.
2. Many analytical approaches have been used to model presence-only data, some inap-
propriately. We provide a synthesis and critique of statistical methods currently in use
to both estimate and evaluate these models, and discuss the critical importance of study
design in models where only presence can be identified
3. Profile or envelope methods exist to characterize environmental covariates that
describe the locations where organisms are found. Predictions from profile approaches
are generally coarse, but may be useful when species records, environmental predictors
and biological understanding are scarce.
4. Alternatively, one can build models to contrast environmental attributes associated
with known locations with a sample of  random landscape locations, termed either
‘pseudo-absences’ or ‘available’. Great care needs to be taken when selecting random
landscape locations, because the way in which they are selected determines the modelling
techniques that can be applied.
5. Regression-based models can provide predictions of the relative likelihood of occur-
rence, and in some situations predictions of the probability of occurrence. The logistic
model is frequently applied, but can rarely be used directly to estimate these models;
instead, case–control or logistic discrimination should be used depending on the sample
design.
6. Cross-validation can be used to evaluate model performance and to assess how effec-
tively the model reflects a quantity proportional to the probability of occurrence. How-
ever, more research is needed to develop a single measure or statistic that summarizes
model performance for presence-only data.
7. Synthesis and applications. A number of statistical procedures are available to explore
patterns in presence-only data; the choice among them depends on the quality of  the
presence-only data. Presence-only records can provide insight into the vulnerability,
historical distribution and conservation status of species. Models developed using these
data can inform management. Our caveat is that researchers must be mindful of study
design and the biases inherent in presence data, and be cautious in the interpretation of
model predictions.

Key-words: case–control, distribution, habitats, logistic discrimination, logistic regression,
presence-only studies, pseudo-absences, resource selection functions, RSF, sampling 

Journal of Applied Ecology (2006) 43, 405–412
doi: 10.1111/j.1365-2664.2005.01112.x

Correspondence: Jennie Pearce, 1405 Third Line East, Sault Ste Marie, ON P6A 6J8, Canada (e-mail: jlpearce@shaw.ca).



406
J. L. Pearce & 
M. S. Boyce

© 2005 British 
Ecological Society, 
Journal of Applied 
Ecology, 43, 
405–412

Introduction

To manage a species effectively, conservation projects
may require a description of  a species’ geographical
distribution or use of habitats. Examples include reserve
design (Araújo & Williams 2000), population viability
analysis (Boyce et al. 1994; Akçakaya et al. 2004) and
species or resource management (Johnson et al. 2004).
Rarely are survey data available to describe species
presence at every location on the landscape. Thus
models are used to interpolate, or extrapolate beyond
the locations where species presence is known, by relat-
ing species presence to environmental variables. This
has been facilitated by remotely sensed data, allowing
assessment of the distribution of resources over large,
and even inaccessible, areas.

Many approaches have been used to model ‘presence–
absence’ or ‘used–unused’ data (see Guisan & Zimmermann
2000 for a review). However, there is growing interest in
making use of  ‘presence-only’ data, consisting only of
observations of the organism but with no reliable data
on where the species was not found. Sources for these
data include atlases, museum and herbarium records,
species lists, incidental observation databases and
radio-tracking studies.

Developing models of species distribution for presence-
only data is challenging (Graham et al. 2004). Several
approaches have been used; however, the choice among
them is not clear. Terminology also differs between
studies. For example, some studies refer to the ‘presence’
of  a species, whereas faunal studies on wide-ranging
species often refer to ‘used’ locations, rather than spe-
cies presence. Here, we refer to the presence of a species
for consistency. We review the various steps in model-
ling the distribution of species when we know some of
the locations where they occur on the landscape, but
have no information on where they do not occur.

We provide a synthesis and critique of statistical
methods currently in use to both estimate and evaluate
these models, and discuss the critical importance of
study design in models where only presence can be
identified. Our objective is to provide ecologists and
managers with a wide range of approaches to explore
patterns in presence-only data, and to identify analyt-
ical aspects that require further development.

Statistical model formulation

We review four approaches taken to describe the pres-
ence of a species in relation to environmental predictors
when only presence is known. These are:
1. Describing the distribution of the presence-only
records.
2. Contrasting the distribution of presence records
with that of pseudo-absences.
3. Contrasting the distributions of presence records
and available sites.
4. Modelling abundance when abundance given
presence is known.

The modelling approaches for (2) and (3) derive
from different sampling motivations. In (2), biologists
wish to contrast used or consumed resource units such
as plots of land, denning or nesting sites, prey or food
items, with characteristics of resource units that have
not been used or where use has not been recorded.
Plants provide the clearest example of this view, where
individuals are either present or truly absent at any given
point on the landscape, within a given time-frame.
Models provide predictions of the relative probability
of a resource unit being used, given its characteristics.
This differs from the motivation behind (3), where all
resource units within the sampling domain are assumed
to be available to be used, but some are used more fre-
quently than others. Radiotelemetry studies of species
such as grizzly bears Ursus arctos provide an example
of this view, where bears might potentially be recorded
at any point within their home range, but some loca-
tions are used more frequently than others. The differ-
ence between these sampling motivations is subtle,
but explains the historical development of  different
approaches for similar problems.

     
- 

This first group of modelling techniques, termed profile
techniques, seeks to characterize environmental con-
ditions associated with the presence records without
reference to other data points. Environmental envelope
techniques are the most widely applied (e.g. Busby
1986; Caughley et al. 1987; Lindenmayer et al. 1991;
Law 1994; Pearce & Lindenmayer 1998; Walther,
Wisz & Rahbek 2004). Chief among these techniques
have been  (Busby 1986, 1991) and 

(Walker & Cocks 1991). Environmental envelopes
enclose presence records into a multidimensional
envelope within environmental space. The various
techniques use different classification algorithms, but
often provide similar results. Predictions are sum-
marized typically as the degree of classification within
subenvelopes.

A recent variation on this approach has been the
development of  support vector machines () for
one-class problems (e.g. Guo et al. 2005). s seek to
identify an environmental envelope or hyperspace
containing the data points, in which the envelope is
optimized with respect to the number of  points in the
envelope and to the number of outliers. The distance
between the point and the centre of hyperspace deter-
mines membership of the hyperspace. The advantage
of this approach over , for example, is that the
 hyperspace can be any shape, whereas  uses
hyperboxes to enclose the presence data (Guo et al.
2005).  also is more flexible than , defin-
ing the environmental envelope using a convex hull and
the relative density of observations within environmental
space. , therefore, may be considered a refinement
of the  approach.
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Multivariate association methods such as 

(Carpenter, Gillison & Winter 1993) also require only
presence data.  defines the degree of similarity
among presence sites in terms of environmental condi-
tions. The method can be used to determine either environ-
mental envelopes or a continuous map of similarity.

At a finer scale, utilization distributions (UD) can be
used to characterize the distribution of animals. The
UD is a probability density function that quantifies
an individual’s or group’s relative use of  space (van
Winkle 1975). Marzluff  et al. (2004) have extended this
approach by modelling the intensity of use relative to
environmental covariates.

Profile techniques summarize environmental char-
acteristics at presence locations, and typically each
record has equal weight within the model. Because of
this, these techniques are highly dependent on biases in
the presence records. Some approaches, such as -

, can be highly sensitive to the inclusion of outliers.
Elith & Burgman (2002) provide a discussion of  the
pros and cons of geographical and climatic envelope-
based techniques. Predictions from presence-only
approaches are generally coarse, but may be useful at
meso-scales to describe poorly understood species when
species records, environmental predictors, and biological
understanding are scarce.

    
 .  -

Many studies have sought to apply presence–absence
techniques to presence-only data by generating pseudo-
absence data from background areas from which
species data are missing. These sites may be selected
without replacement from within the study region either
randomly (Stockwell & Peterson 2002), randomly with
case-weighting to reduce the effective sample size of
pseudo-absences (Ferrier & Watson 1996; Ferrier et al.
2002), or by using environmentally weighted random
sampling (Zaniewski, Lehmann & Overton 2002).
Pseudo-absences are assumed to represent true absences,
although because sites were not searched some pseudo-
absences might represent presence locations (Graham
et al. 2004). Generalized linear models and generalized
additive models have been the most widely applied
statistical methods (e.g. Ferrier et al. 2002). However,
other approaches such as tree-based methods (e.g. Ferrier
& Watson 1996) and genetic algorithms (e.g. GARP;
Stockwell & Peters 1999) also have been considered.

Regression models have generally performed better
than tree-based methods or genetic algorithms in pre-
dicting species presence (Ferrier & Watson 1996). Tree-
based methods are expected to be highly sensitive to
biases within the sample data (Hastie et al. 2001), and
the underlying model used to make predictions in
GARP is largely inaccessible and difficult to interpret
(Elith & Burgman 2002).

When using presence-only data it is generally not
possible to calculate probabilities of presence; instead

we aim to predict the relative likelihood of presence.
There are two reasons for this: (a) separate samples of
presence and pseudo-absence data have been selected
where sampling fractions are not known, and (b) the
pseudo-absence data contains an unknown number
of  presences, and is thus a contaminated sample of
absences. To understand this we examine the logistic
function and its assumptions. The logistic regression
model assumes that a sample is selected, and that this
sample contains observations of  either the presence
(y = 1) or the absence (y = 0) of a species. For each
observation there is a set of habitat measurements x.
From this the probability of occurrence [P(y = 1|)] can
be estimated:

eqn 1

This assumes that presence and absence observations
were recorded from a sample of resource units in which
the presence of the species at a resource unit was not
known prior to sampling. Thus the sample contains
presence and absence sites in approximate proportion
to their occurrence on the landscape. In the absence of
habitat information, the probability of occurrence then
can be estimated directly from the proportion of obser-
vations in the sample at which the species was present.
For example, if  in a sample of  100 observations, 20
contain the species, the probability of occurrence is 0·2
[= 20/(20 + 80)]. However, with presence-only data,
we sample the presence locations independently and
then select a sample of pseudo-absence locations, and
so the proportion of presences within the sample does
not represent the true prevalence of the species in the
population, but rather the relative proportion chosen
by the researcher. For example, we have a sample of 20
presence records and we select independently a set of 80
‘pseudo-absence’ records. In this case the probability of
occurrence is also 0·2 [= 20/(20 + 80)]. However, if  we
select 200 pseudo-absence locations, then the probabil-
ity of occurrence is 0·09 [= 20/(20 + 200)].

When samples for y = 1 and y = 0 are selected in
advance, we need to modify the logistic model to account
for the probability that a location has been sampled
to obtain probabilities of  occurrence. We do this by
correcting the model using P1 and P0, the proportion
of  occupied and unoccupied locations, respectively,
selected from the total number of  occupied and un-
occupied locations in the landscape. This also is known as
a case–control design.

eqn 2

In practice we rarely know what proportion of the used
and unused locations we have selected in our samples,
and so P0 and P1 are unknown. Model predictions using
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the uncorrected logistic function are therefore only rel-
ative predictions. Alternatively, we can interpret model
coefficients in terms of odds ratios, where the odds that
a species will be present given covariate pattern x, is
compared to a reference habitat, usually one in which
the values for x1 to xp are set to zero (Keating & Cherry
2004). Thus:

eqn 3

A further complication of this sampling scheme is that
the process of generating pseudo-absences randomly
from the landscape of interest means that these loca-
tions are actually an unknown mixture of presence and
absence locations, unless the species is very rare on the
landscape. Keating & Cherry (2004) discuss the diffi-
culties of deriving probabilities of occurrence in case–
control designs under these circumstances. However,
unless the level of  contamination (proportion of
presences within the absence sample) is very high, the
model may provide acceptable predictions of the rela-
tive likelihood of  occurrence, or odds-ratios. Based
on simulations, Lancaster & Imbens (1996) obtained
unbiased estimates of βis with contamination rates less
than 20%. Also, they provide an algorithm for dealing
with situations where greater contamination rates exist.
This approach seeks to calculate the predicted prob-
ability of species presence where presence locations are
contrasted with control sites, which are an unknown
mixture of  occupied and unoccupied locations. The
implementation of  this approach is complex, not
available in standard statistical packages, and frequently
fails to converge to a unique solution (Keating &
Cherry 2004). Barry, Elith & Pearce (unpublished data)
provide a worked example of this approach for habitat
studies.

    
    

A slightly different approach has been applied in studies
of wide-ranging animals. These studies do not refer to
the presence or absence of a species, but rather to how
well a habitat is ‘used’, usually determined through
radiotelemetry studies (Frair et al. 2004). In these stud-
ies, the landscape is considered to be available to the
species of interest and potentially used to some extent,
but some habitats are occupied more frequently than
others within a given time period. These models describe
the relative probability of  use for different resource
units (e.g. a pixel) over the study area, as described by
habitat characteristics. The distinction between this
approach and the pseudo-absence approach is subtle,
because in practice the sampling schemes are similar.
However, the underlying conceptual difference between
contrasting unoccupied-vs.-occupied locations, and
used-vs.-available locations has resulted in the

development of a wide range of alternative modelling
approaches.

Four approaches have been used to model presence-
availability. The first of these, ecological niche factor
analysis () implemented in the  package
(Hirzel, Hausser & Perrin 2004) is similar to profile
techniques.  uses factor analysis to quantify the
environmental conditions of  the presence sites by
comparing them to the environmental conditions of the
entire region of interest, and predictions are provided
as a habitat suitability index (Hirzel et al. 2002; Dettki,
Löfstrand & Edenius 2003; Reutter et al. 2003;
Brotons et al. 2004; Chefaoui, Hortal & Lobo 2005).
 considers the density of points within subenvelopes
of data and is therefore an improvement on presence-
only approaches. This technique is generally optimistic
regarding species distribution, which may be an advant-
age when a species does not occupy all suitable habitats
on the landscape (Hirzel, Helfer & Metral 2001; Brotons
et al. 2004). The two-class  model uses a similar
approach to , except that it does not assume a par-
ticular probability distribution for the data (Guo et al.
2005).

A second approach to modelling presence-availability
involves using case–control logistic regression where
used resource units are contrasted with random loca-
tions within an activity area available to individuals.
There are different sampling designs available to con-
duct this, where cases may be matched or unmatched
with controls (Collett 1991; Arthur et al. 1996; Manly
et al. 2002). Examples of  this approach include
contrasting wood turtle Clemmys insculpta locations
with paired random locations (Compton, Rhymer &
McCollough 2002) and contrasting superb parrot
Polytelis swainsonii nest trees with paired random trees
(Manning, Lindenmayer & Barry 2004). Models esti-
mated using case–control logistic regression are based
on the contrasts between used and control resource
units and can be interpreted as odds ratios or relative
likelihoods of occurrence (Keating & Cherry 2004).
The discussion in the previous section about the
contamination of controls also applies here.

A third approach proposed by Manly et al. (2002)
uses logistic regression to estimate relative likelihoods
using an exponential model:

eqn 4

This model has been used widely in resource selection
studies (e.g. Campos et al. 1997; Johnson et al. 2002;
Nielsen et al. 2002; Boyce et al. 2003), rather than the
logistic function, because it avoids the problem of dif-
ferent denominators encountered in the logistic model.
However, as Manly et al. (2002: 101–102) point out,
this approach assumes a particular sampling scheme.
In particular, this approach requires that one sample of
presence locations and one sample of available locations
be taken, and that any single location selected that
occurs in both the presence and the available samples
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be included only in the available sample. McDonald
(2003) shows that the duplicate records can be removed
from the available sample rather than the observed
sample unless the number of duplicates is high. Manly
et al. (2002) show how, with known sampling frequen-
cies of  presence and available samples, probabilities
of occurrence can be calculated, although Keating &
Cherry (2004) question this model. However, in prac-
tice sampling probabilities are unknown, and irrespec-
tive of the validity of the model formulation, model
predictions provide relative likelihoods of occurrence
(i.e. the RSF). When interpreted as relative likelihoods,
it is not necessary that the predictions are constrained
to lie below 1, a concern raised by Keating & Cherry
(2004).

A fourth approach is to use the logistic regression
algorithm to approximate a logistic discrimination model.
Here we use the logistic model to estimate a function
that discriminates between two distributions of habitat
covariates, one set associated with locations where the
species is present fy=1(x) and another set associated
with random (available) locations fy=0(x) (Keating &
Cherry 2004). We sample independently from each dis-
tribution, with probability π1 of a sampled observation
(from the joint distribution of presence and available
sites) being a presence record, and π2 of  it being an
available record. We can assume (Seber 1984: 308) that
the probability of a species being present at a location
with covariates x, given that it was sampled is:

eqn 5

We can combine the sampling constant log(π1/π2) with
the intercept term β0. Because we have no information
on the sampling proportions we can calculate the rela-
tive probability of occurrence (dropping the intercept
term). This approach is suitable for discriminating
between random sites and sites at which the species has
been observed. Naturally the discriminant function
cannot discriminate between sites at which a species
was present and sites at which it was absent (from a con-
taminated sample of occupied and unoccupied loca-
tions) (Keating & Cherry 2004). Again, predictions
need not be constrained to lie below 1, because predic-
tions are relative likelihoods rather than probabilities
of occurrence.

The logistic discrimination model is very similar to
the exponential model suggested by Manly et al. (2002),
and in practice its application differs only because
resource units that appear in the used sample also can
appear in the sample of  available units (Johnson
et al. 2006). The logistic discrimination model does not
require as many assumptions as the exponential model:
assumptions that Keating & Cherry (2004) suggest
might sometimes be violated. Seber (1984: 309) sug-
gests that the logistic discrimination model may be
relatively robust to observations occurring in both the
presence and the available sample.

     
--  

Often, estimates of  relative abundance are made at
locations where the species has been detected. Examples
are counts of  individuals, indices of  abundance such
as the Braun–Blanquet scale for plants (Kent & Coker
1992) and density measurements. Few studies have
tried to model data of  this type, even when data were
acquired through systematic surveys. Regression appro-
aches modelling abundance given only presence are
possible using a truncated Poisson or negative binomial
distribution. Alternatively, it may be possible to modify
zero-inflated Poisson or negative binomial (ZIP or
ZINB) regression models (Welsh et al. 1996; Barry
& Welsh 2002; Dirnböck & Dullinger 2004; Nielsen
et al. 2005) to model abundance given availability,
where available locations are assigned a value of zero.
This requires further investigation. We are unaware of
any application explicitly modelling abundance given
presence only.

Sampling issues

Knowledge of only the presence of a species presents a
number of data-quality issues. Central among these are
difficulties presented by choice of scale. Models of distri-
bution or abundance can be highly sensitive to the scale of
resolution (grain) as well as the extent (domain) (Soberón
& Peterson 2005). There are no obvious guidelines about
which choice of scale is appropriate, because such choice
will depend on the ecology of the organism at hand and
the objectives of the investigation (Boyce et al. 2003). If
the intent is to model the global distribution of  a
species, obviously one should be using a very different
scale than if  the objective were to model use of  habitats
within a species’ home range (Johnson 1980).

However, selection of extent can be a difficult ques-
tion when using presence-only data. Implicit in that
selection is an understanding of the sampling design by
which the presence records were obtained. In studies
where the data were obtained by survey, such as in the
study of Phytophthora ramorum (Guo et al. 2005) or
caribou Rangifer tarandus (Johnson et al. 2004), then
the geographical, temporal and environmental bound-
aries of the study are known. However, presence-only
data might be ‘found’ data − collated from multiple
sources such as herbarium or museum records and for
which there is no information on survey effort. Not
knowing the sampling extent prevents us from defining
available habitat adequately. For example, many her-
barium databases are biased towards roads. A model of
sampling effort would identify that only locations close
to roads would have a high probability of being sam-
pled, therefore only sites near roads should be included
in the available sample. Not accounting for these biases
may complicate model interpretation because the
resulting model might describe sampling effort more
than resource selection.
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Once sampling scale and extent have been identified,
the question then arises as to how to choose random
locations from a potentially large area to contrast with
the presence records. Little guidance exists in the liter-
ature; however, as Manly et al. (2002) argue, it is most
important to minimize sampling errors, selecting data
in such a way as to be fully representative of the study
area. This implies that a large number of locations be
selected randomly from the landscape to contrast with
presence locations. McDonald (2003) suggests that
several orders of magnitude more available units than
used units be employed when applying the exponential
model. Using GIS databases, such high sampling
intensity for random landscape locations is feasible.

Modern biotelemetry systems such as GPS radio-
telemetry (Frair et al. 2004) permit the collection of huge
data sets of animal locations, with short time intervals
between locations. Similarly, atlas data are usually
obtained using grid coverage of  the entire region,
and so adjacent sampling squares are not independent
(Augustin, Mugglestone & Buckland 1996). Such data
are inherently plagued with both temporal and spatial
autocorrelation because such frequent locations are
not independent in time or space (Nielsen et al. 2002).
To avoid committing a Type I error, adjustments for
autocorrelation can be achieved using post-hoc methods
of  variance inflation (Nielsen et al. 2002) such as the
Newey–West method (Newey & West 1987), or auto-
correlation can be modelled more explicitly using
mixed models (Laidre et al. 2004).

Validating presence-only models

Models based on presence-only data can be validated
with data composed of presences and absences using
existing evaluation statistics for presence–absence data
[such as the area under the receiver operator character-
istic (ROC) curve, or the kappa statistic]. However, when
validation data consist only of  presence data, model
evaluation is more difficult because of  the absence of
a truly binary statistic. These issues are discussed by
Boyce et al. (2002), who present an approach based on
use-availability data to explore model performance;
this approach has been developed further by Hirzel
(unpublished data).

In this method k-fold cross-validation is used to cor-
relate prediction ranks with area-adjusted frequencies
of predicted values. Prediction ranks are obtained by
breaking the range of predicted values into 10 (or some
arbitrary number) evenly spaced bins. Area-adjusted
frequencies of predicted values are then obtained by
counting the number of occupied sites within the pre-
dicted value bins, and dividing these values by the area
of the study area assigned the predicted values associated
with than bin. This graphical approach holds great
promise as a method to visualize predictive performance
and to assign thresholds of prediction. However, as yet
there is no suitable single measure of performance (or
statistic) available to compare and contrast models.

An important feature of this approach is being able
to examine how well model predictions are related to
the probability of occurrence. A good model is one in
which model predictions are proportional to the prob-
ability of occurrence (Manly et al. 2002). In the k-fold
cross-validation graph, this would imply linear corre-
spondence between the test-case area-adjusted fre-
quencies and model predictions. There is no guarantee
that any of the models described above will capture the
true shape of  the selection function, and thus might
not be proportional to the probability of occurrence.
Standard transformations of model predictions, e.g.
logarithmic, square root, etc., might be necessary to
scale the resource selection function appropriately.
Proportionality is important because it allows model
predictions to be used explicitly, such as when linking
habitats to populations (Boyce & McDonald 1999;
McDonald & McDonald 2001).

Conclusion

A number of statistical procedures are available for
exploring patterns in presence-only data; the choice
among them depends on the quality of the presence-
only data. Profile techniques are most useful when spe-
cies records, environmental predictors and biological
understanding are scarce. However, when data quality
is higher, regression-based techniques have generally
proved more informative than profile techniques. The
choice among regression modelling strategies depends
on the sampling scheme for the ‘absence’ or ‘control’
records. The logistic regression model should not be
used directly in most instances. Instead, either a case–
control or discrimination approach should be adopted
to contrast presence records with available resource
units.

All techniques (profile and regression-based) may
effectively rank habitats. Regression-based approaches
might also provide predictions describing the relative
likelihood of occurrence. If  information on the relative
proportions of  presence and ‘available’ locations
that were sampled is known, then predictions of  the
probabilities of occurrence are possible. k-Fold cross-
validation can be used to examine model performance
and proportionality.

Many conservation projects require a complete
description of  a species’ geographical distribution
or use of habitats to manage the species or environment
effectively. However, for rare and endangered species,
newly introduced species, or species requiring large
geographical areas to meet all their life requirements,
presence–absence data can be difficult or impossible to
collect. Presence-only records can provide insight into
the vulnerability, historical distribution and conserva-
tion status of species; models developed using these data
can inform management. Our caveat is that researchers
must be mindful of study design and the biases inherent
in the presence data and be cautious in the interpreta-
tion of model predictions.
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