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ABSTRACT

We developed an automated tree crown analysis algorithm using 1-m panchromatic IKONOS satellite images to examine forest canopy structure in the Brazilian
Amazon. The algorithm was calibrated on the landscape level with tree geometry and forest stand data at the Fazenda Cauaxi (3.75◦ S, 48.37◦ W) in the eastern
Amazon, and then compared with forest stand data at Tapajos National Forest (3.08◦ S, 54.94◦ W) in the central Amazon. The average remotely sensed crown width
(mean ± SE) was 12.7 ± 0.1 m (range: 2.0–34.0 m) and frequency of trees was 76.6 trees/ha at Cauaxi. At Tapajos, remotely sensed crown width was 13.1 ± 0.1 m
(range: 2.0–38.0 m) and frequency of trees was 76.4 trees/ha. At both Cauaxi and Tapajos, the remotely sensed average crown widths were within 3 percent of the
crown widths derived from field measurements, although crown distributions showed significant differences between field-measured and automated methods. We
used the remote sensing algorithm to estimate crown dimensions and forest structural properties in 51 forest stands (1 km2) throughout the Brazilian Amazon. The
estimated crown widths, tree diameters (dbh), and stem frequencies differed widely among sites, while estimated biomass was similar among most sites. Sources of
observed errors included an inability to detect understory crowns and to separate adjacent, intermingled crowns. Nonetheless, our technique can serve to provide
information about structural characteristics of large areas of unsurveyed forest throughout Amazonia.
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TROPICAL FORESTS ARE STRUCTURALLY COMPLEX ECOSYSTEMS

(Whitmore 1982). Components of forest structure include canopy
geometry, tree architecture, size distributions of trees, areal tree
density, and biomass (Spies 1998). Tropical forests are marked by
high biological diversity and complex vegetation dynamics that re-
sult in a spatially diverse array of forest structures (Richards 1952,
Denslow 1980, Salati & Vose 1984, Terborgh 1992, Terborgh et
al. 1996, Ozanne et al. 2003). Knowledge of the forest structure
in tropical forests in general and in the Amazon region in particu-
lar is vital for the estimation of carbon stocks and fluxes in global
budgets (Houghton et al. 2000, 2001), habitat and faunal distribu-
tions (Schwarzkopt & Rylands 1989), and interactions between the
biosphere and atmosphere (Keller et al. 2004).

The height and architectural complexity of the canopy, along
with the logistical challenges of tropical field research and method-
ologies, limit studies of tropical forest structure. In some areas, such
as the Amazon Basin, permanent plots that can be used for quan-
tification of forest structure are relatively few and poorly distributed
spatially (Malhi et al. 2006). Remote sensing can supplement tra-
ditional ecological studies by providing observations of large areas
(Roughgarden et al. 1991, Shugart et al. 2001).

A series of Landsat sensors have provided the data most often
used in remote sensing studies of vegetation cover in the humid
tropics (Roberts et al. 2003). The spatial resolution (∼30 m) and
spectral coverage (seven bands) of Landsat data allow identification
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of broad land-cover features and changes such as deforestation (e.g.,
Skole & Tucker 1993). More subtle changes resulting from logging
can be discerned in spectral mixture model analysis of Landsat
and similar data (Souza et al. 2003, Asner et al. 2005). However,
extraction of tropical forest structural properties from Landsat data
is challenging because the image resolution is comparable to the
size of the largest tree crowns (Moran et al. 1994; Steininger 1996,
Scarth & Phinn 2000).

An alternative approach to the remote sensing of forest struc-
ture is the delineation of individual crowns using high spatial reso-
lution data smaller then the average crown width (Culvenor 2002,
Pouliot et al. 2002, Read et al. 2003, Leckie et al. 2003b). Photo-
graphic imagery has been used for the estimation of stand density
and crown widths (Dawkins 1962, Larsen & Rudemo 1998, Bolduc
et al. 1999, Fensham et al. 2002, Popescu et al. 2003, Falkowski
et al. 2006). Videography has also been used along transects to
analyze forest structural components, including individual crowns
(Culvenor 2002, Brown et al. 2005). Lidar (light detection and rang-
ing data) sensors flown on aircraft have also been used in the crown
delineation (Popescu et al. 2003, Leckie et al. 2003a, Falkowski
et al. 2006).

Satellite imagery has been used for crown delineation using
visual interpretation or automated methods (Gougeon 1995a,b;
Wulder et al. 2000; Culvenor 2002; Pouliot et al. 2002; Leckie et al.
2005a,b). Visual interpretation approaches are resource intensive
and difficult to implement consistently (Asner et al. 2002), whereas
existing automated routines can be readily replicated but also may
be inaccurate (Culvenor 2002). Newer satellite instruments, such
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as IKONOS and Quickbird, provide relatively inexpensive high
spatial resolution images for remote areas. These high spatial reso-
lution satellite image data have been used to estimate the number
of trees per area, individual crowns widths, and gap structure in
tropical forests (Asner et al. 2002, Read et al. 2003, Clark et al.
2004). Previous studies have covered small geographic areas (< 10
km2) because of the labor involved in manual methods of image
analysis.

There are a variety of automated pattern recognition methods
that are used to isolate individual trees and vegetation structure from
high spatial resolution data, including semi-variograms, wavelet
analysis, image segmentation, local maxima finding and filtering,
template matching, valley finding, 3D modeling, and space-scale
theory (Gougeon 1995a, Brandtberg & Walter 1998, Quackenbush
et al. 2000, Stiteler & Hopkins 2000, Wulder et al. 2000, Shugart
et al. 2001, Gong et al. 2002, Pouliot et al. 2002, Weinacker et al.
2004, Popescu et al. 2003, Leckie et al. 2003a,b, Caelli et al. 2005,
Chen et al. 2006, Cheng et al. 2006, Chubey et al. 2006, Falkowski
et al. 2006, Jensen & Sanchez Azofeifa 2006). The two more com-
monly used algorithms for automated analysis of canopies using
high spatial resolution panchromatic passive optical data are: (1)
local maximum filtering, and (2) local minima value finding. Local
maximum filtering has proven accurate in estimation of the number
of trees per unit area (Wulder et al. 2000). This method assumes
that the area surrounding the brightest local value can be associated
with the location of a single tree crown or the crown apex (Wulder
et al. 2000, Culvenor 2002). Local minima value finding has been
used to detect the separation between two crowns, assuming that
the darker image values are created by shadows between crowns and
valleys between canopy apexes (Pouliot et al. 2002, Leckie et al.
2003b). Automated crown detection algorithms using a combina-
tion of local maximum filtering and local minima value finding have
been developed (Pouliot et al. 2002, Leckie et al. 2003b) but they
have not yet been applied to tropical forests.

In addition to panchromatic data, high spatial resolution multi-
spectral and lidar data have been used for crown delineation and are
often collected and analyzed in conjunction. These methods also
primarily rely on local maximum and local minima value finding
methods, with additional filtering or enhancement methods, such as
wavelet-based segmentation (Gougeon 1995a, Popescu et al. 2003,
Leckie et al. 2003b, Falkowski et al. 2006). Currently, high spatial
resolution multi-spectral and lidar imagery collected from airplanes
is scarce and expensive.

Current work involving crown geometry and high-resolution
imagery has focused on analysis of temperate forests, boreal forests,
and plantations (Larsen & Rudemo 1998, Culvenor 2002, Pouliot
et al. 2002, Popescu et al. 2003, Leckie et al. 2003a,b, Falkowski
et al. 2006). There is a strong bias toward systems with low species
diversity and relatively regular geometric crown shapes (especially
conifer forests) facilitating automated crown detection. In contrast,
tropical broadleaf forests have high species diversity and highly
diverse and irregular crown geometries. We present an automated
crown delineation algorithm based on existing pattern recognition
concepts, to perform the first automated crown delineation from
IKONOS satellite images collected over tropical forests in Brazil.

Because accurate geolocation is extremely difficult in the dense
understory of tropical forests, we did not examine crown location
on a tree-by-tree basis. Instead, we compared the remotely sensed
measurements of stem frequency and canopy width to field surveys
at two forest sites in the central and eastern Amazon on a stand basis,
and we also used allometric equations to extend the remote sensing
estimates to distributions of diameter at breast height (dbh) and
biomass. We applied the detection algorithm and allometric equa-
tions to 51 forest stands from IKONOS images spread throughout
the Brazilian Amazon to estimate crown dimensions and biomass
across a range of mature forest conditions.

METHODS

SATELLITE IMAGERY.—We used seven IKONOS satellite images
(Space Imaging Inc., Thorton, CO, U.S.A.) collected through-
out the Brazilian Amazon. The 1-m panchromatic data were
acquired through the Large-Scale Biosphere-Atmosphere Experi-
ment in Amazonia (LBA) project (Hurtt et al. 2003, Keller et al.
2004; http://eos-webster.sr.unh.edu/home.jsp). The IKONOS im-
ages were subset to 53 1-km2 areas containing intact, closed-canopy
forest for subsequent analysis using our crown detection and analysis
algorithm (Table S1). Two of these areas, Cauaxi and Tapajos, were
used to develop our automated crown detection algorithm, through
comparisons with field data. We characterized forest canopy prop-
erties on the remaining 51 areas, and the results were compared for
differences in forest structure. Geographical coordinates for these 51
areas are presented in Table S1. No cross-validation was conducted
because we only measured crown widths in the field at Cauaxi.

CROWN DETECTION AND ANALYSIS.—Our automated crown detec-
tion algorithm was designed using existing pattern recognition con-
cepts with high spatial resolution remote sensing data, such as from
IKONOS and similar spaceborne sensors. The algorithm is based
on spatial analysis of the brightness patterns in the image (visible
reflectance, digital number (DN)). This algorithm, developed using
Matlab and Visual Basic, combines local maximum filtering and lo-
cal minima value-finding methods, with analysis of ordinal transect
data radiating outward from a crown apex (local maximum) (Cul-
venor 2002, Pouliot et al. 2002). There are two preprocessing steps.
First, the modal, maximum, and minimum brightness value of each
IKONOS image is calculated. These statistics are used to set the
dynamic range of an iterative, local-maximum finding step, as ex-
plained later. The overall image contrast and brightness affects how
the algorithm processes iterative local maxima. We set the limit to
half the dynamic range based on our calibration of the Cauaxi image.
During that calibration we found that the smallest local maximum
value was nearly equal to the modal brightness value for the entire
image. Since our intention is to develop a fully automated crown
characterization algorithm, we used the modal brightness value of
the image to set the limit for the lowest iterative local maximum.

Our second preprocessing step involves a 3 × 3 pixel mov-
ing window averaging filter used to smooth the image, a method
commonly used in pattern recognition. Based on preliminary work
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we found more consistent results when such an averaging filter was
applied. The moving window filter retains information on a 1 ×
1 m pixel resolution by averaging the value of each pixel and its
eight adjacent neighbors. After application of the filter, each pixel
still retains a unique value and the 1-m image resolution is retained.
The moving window averaging filter was applied because the large
dynamic range of IKONOS image data (11-bit) resolution results
in high levels of pixel-to-pixel variability.

After preprocessing, local maximum brightness values are iden-
tified by searching the entire image for the highest brightness value.
The local maximum seeds an ordinal transect analysis described
later. Once all local maxima of a specific brightness value are an-
alyzed throughout the image, the algorithm proceeds to the next
lower brightness value and iterates the local maximum finding and
crown delineation process. This iterative process continues until the
local maximum reaches the limit of the modal brightness value of
the image, determined in the preprocessing stage of analysis.

After a local maximum is selected, image brightness values are
analyzed in 360 directions (ordinates) from each local maximum or
nodal pixel as a transect (linear series of pixels). Use of the ordinal
transect analyzes an area around the local maximum allowing for
a variable size window in the analysis of the crown dimensions.
Though 360 directions are not needed in smaller crown analysis,
we found it was useful for larger crowns. With a one degree separa-
tion of ordinal transects, adjacent ordinal transects begin to analyze
different pixels at 29 pixels from the local maximum. Use of 360
ordinal directions also makes this algorithm directly applicable to
images with higher spatial resolution such as airborne lidar and
aerial photography.

An individual ordinal transect is terminated when the observed
digital number (DN) value between the current pixel and the adja-
cent pixel on the transect increases by more than a threshold value
that we call the derivative threshold (Fig. 1). The ordinate length
is limited to 40 m based on maximum crown dimensions observed
in the field. The derivative threshold was fixed based on a sensitiv-
ity analysis described below. We recognize that any given ordinal
transect may end prematurely because of shadows. Or alternatively,
a given ordinal transect may extend beyond an individual crown
because of merged crowns or because lianas bridge adjacent crowns.

Although our algorithm does not have a variable window size
for each local maximum, our iterative approach to the search for
local maxima effectively implements variable window sizes. During
the first iteration of the search, the highest DN values are selected.
Because the ordinal transect continues in 360 directions and up
to 40 pixels in any direction, the initial window size is a 40-pixel
radius. After the identification of crowns at a specific DN value,
pixels identified as crowns are removed from future searches for
local maximum and are also removed from the searches along ordinal
transects. Therefore, following the highest DN values, window size
tends to shrink. This approach is adaptive because it responds to
image characteristics and forest structure and does not require site-
based parameterization necessary for most variable window size
methods.

In the development of our algorithm we examined whether the
ordinal transect length was biased in any one direction. To examine

FIGURE 1. Digital number data used for termination of an ordinate for two

selected ordinal transects at Cauxi. (A) The crown edge is estimated to be 8

pixels from the local maxima. (B) The crown edge is estimated to be 20 pixels

from local maxima.

such a bias we binned ordinal transect into eight groups of 45 degrees
and applied an ANOVA. We performed multiple comparisons using
Tukey’s HSD tests for both the Cauaxi and Tapajos images. At
Cauaxi, ordinal transect directions were significantly different from
one another (F = 1106) except direction 46–90◦ and 136–180◦,
which were indistinguishable (Fig. 2A). At Tapajos, the ANOVA
also indicated differences among ordinal transect directions overall
(F = 800, P <0.0001); however, the bias in largest ordinal length
directions were different than at Cauxi. Using data sets that included
the IKONOS images we examine here, Asner and Warner (2003)
found that view geometry and solar zenith and azimuth angles had
no apparent influence on the shadow fraction in IKONOS imagery.
These findings suggest no strong effect of a directional bias.

For simplicity, tree crowns were approximated as circles cen-
tered on the local maximum, based on the assumption that an un-
damaged tree has branches that radiate evenly out from the central
stem or trunk (Brandtberg & Walker 1998). The crown is repre-
sented by a circle with a radius that is half the sum of the longest
pair of opposing ordinal transects (Fig. 2B). After a crown is located
and delineated, the pixels within the crown area are removed from
further analysis. No new ordinal transects are extended into an ex-
isting crown, and remaining local maxima within delineated crowns
are not analyzed. Crowns may overlap when ordinal transects from
a neighboring tree generate a sufficiently large crown width for two
circular canopies to overlap.

FIELD DATA AND ALLOMETRIC EQUATIONS.—We did not attempt to
compare locations of individual trees between field and image data.
In a previous study at La Selva, Costa Rica, Read et al. (2003) found
that it was extremely difficult to acquire submeter locations using a
Global Positioning System (GPS) receiver even for large emergent
trees. Location of individual canopies is complicated because of
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FIGURE 2. (A) Mean and standard deviation binned ordinal transects (N =
484,200) from crowns analyzed at Cauaxi. Distances in meters with directions

in degrees relative to true north. The original 360 ordinal transect were binned

into eight directions. (B) An example of ordinal transects used in automated

crown detection showing 64 ordinal transects. Ordinal lengths are connected by

lines purely for presentational purposes. The dotted circle is the estimated crown

using a radius of half the sum of the two longest opposing ordinal transects. The

solid gray circle is the average of all transects. A 10 m radius circle is depicted by

the largest circle.

geo-rectification errors related to topography and ground-truthed
reference points. More importantly, the dense vegetation of the trop-
ical forest makes it difficult to acquire GPS signals with sufficient
accuracy for meter-scale location. We focus on a statistical represen-
tation of the canopy as opposed to a crown-by-crown identification.

Field data on crown dimensions are extremely scarce for Ama-
zon forests. We collected measurements of crown width, depth, tree
height, and dbh for ∼300 trees in a 50-ha stand on the Fazenda
Cauaxi in the eastern Brazilian Amazon (Asner et al. 2002). Crown
position (understory or canopy) and dbh were also measured for
> 2700 trees using a stratified sampling methodology (Asner et al.
2002). We relied on these measurements to test and calibrate our
remote sensing algorithm. Additional stand data for the Tapajos
National Forest in the central Brazilian Amazon were provided by
Keller et al. (2001) (392 ha) and Rice et al. (2004) (20 ha) to test
the algorithm in a second forest stand.

For the estimation of aboveground biomass and carbon stocks
in tropical forests, allometric equations for trees utilize dbh, tree
height, or both (e.g., Brown 1997, Chave et al. 2005). However, op-
tical remotely sensing data from IKONOS cannot be used to directly
measure either height or dbh for trees in closed canopies. Therefore,
allometric equations based on crown diameter were needed. We de-
veloped a relation (R2 = 0.57, P < 0.0001) between crown width
(m) and dbh (cm) from 300 individual trees as discussed above:

dbh = 0.0381 × (crown width)2 + 2.33 × (crown width) + 15.5.

(1)

A commonly used allometric equation for tropical forests devel-
oped by Brown (1997) was then used to extend the remote sensing
observations of crown width to biomass (kg dry matter) via dbh:

Biomass = (42.69 − 12.80 × dbh + 1.242 × dbh2)/1000. (2)

FIGURE 3. IKONOS image of the 64-ha area on the Fazenda Cauaxi used

for calibration of the crown detection algorithm.



Amazon Forest Structure 5

FIGURE 4. Sample output from crown detection algorithm. White circles

represent crown edges. This is the same area as Figure 3.

CALIBRATION AT CAUAXI.—A calibration of the algorithm was per-
formed on the parameters: (1) the derivative threshold and (2) the
local maximum analysis range using data from 64 ha (800 × 800 m)
of undisturbed forest at Cauaxi (Figs. 3 and 4). Crown size distribu-
tions (binned in 2-m classes) from our automated crown delineation
algorithm were compared with field measurements from Asner et al.
(2002). We measured goodness of fit using the root mean squared
error of crown width distribution to identify algorithm parameters
that best simulated Cauaxi field data.

ANALYSIS AT TAPAJOS AND 51 OTHER LOCATIONS.—Following the
calibration using data from Cauaxi, we analyzed an IKONOS im-
age taken of the Tapajos National Forest in the central Brazilian
Amazon. The local maximum analysis range is reset for each image
analyzed, using the maximum and modal DN values determined
in image preprocessing. The derivative threshold was unchanged
through all analyses following the original calibration. We then
compared the results from the Tapajos image analysis to field data
(Keller et al. 2001).

STATISTICAL ANALYSIS.—Crown width and dbh variables from both
field and automated estimates had significantly different variances
as determined by F-tests (Sokal & Rolff 1995). Because of the
differences in variances we tested for difference between means using
Welch’s approximate t-test of equality of the means of two samples
whose variances are assumed to be unequal (Sokal & Rolff 1995).
We also compared distributions of crown widths and dbh’s using a
Kolmogorov–Sminov two-sample test for testing the differences in
distributions of two samples of continuous observations (Sokal &

Rolff 1995). This nonparametric test with the null hypothesis that
two distributions do not differ is sensitive to differences in central
location, dispersion, and skewness. To estimate differences in forest
structure among a variety of forest sites, we examined 51 IKONOS
image subsets listed in Table S1. Comparisons of the results from
geographic sites were done using an ANOVA with Tukey–Kramer
HSD comparison (α = 0.05).

RESULTS

CALIBRATION (CAUAXI).—Forest structural variables from the
Cauaxi image analysis are presented in Table 1. The average es-
timated crown width was 12.7 ± 0.1 m (mean ± SE), with a
minimum of 2 m and a maximum of 34 m. No significant differ-
ences were found between mean field-estimated crown widths (for
both all trees and no understory) and our automated mean crown
estimate using a Welch’s approximate t-test, although the difference
between distributions of crown widths for automated analysis versus
field data (Fig. 5) was significant (Kolmogorov-Smirnov test; P <

0.01) regardless of whether we tested against all tree data or data for
which the understory trees are excluded.

The frequency of trees detected at Cauaxi by the automated
algorithm was 76.6/ha. Using the allometric relation between
crown width and dbh (equation (1)), the mean dbh estimate
from IKONOS was 54.0 ± 0.3 cm. Biomass estimated from the
algorithm dbh and equation (2) was 262 Mg/ha. The tree areal
frequency and biomass estimates compared well with field data
(Tables 2 and 3). Using Welch’s approximate t-test, we found no
significant difference between mean field-estimated dbh for both
the set of all trees (t ′ = 0.86) and the set with understory excluded
(t ′ = 0.57). The automated algorithm provided better estimates of
the mean crown width and mean dbh than that of manual crown
delineation from Asner et al. (2002) (Table 1).

COMPARISON WITH TAPAJOS.—Although we lack actual field esti-
mates of crown width at Tapajos, using field-estimated dbh we esti-
mated crown width using data from Keller et al. (2001) and equa-
tion (1) of this paper. The automated algorithm estimated a mean
crown width at Tapajos of 13.1 ± 0.1 m, with a minimum of 2 m
and a maximum of 38 m (Table 1). No significant difference was
identified between mean field-estimated crown width and our auto-
mated mean crown estimate (t ′ = 0.04), using Welch’s approximate
t-test (Table 1). Crown width distributions showed a significant dif-
ference between automated estimates and crown width estimates
derived from field-measured dbh (Kolmogorov-Smirnov test; P <

0.01). The automated algorithm estimated the frequency of trees as
76.4 trees/ha, and the mean dbh as 55.8 ± 0.4 cm. The mean dbh
estimate based on the automated analysis was also not significantly
different from the field-measured values (Welch’s approximate t-
test; t ′ = 0.14). The automated estimate for aboveground biomass
was 290 Mg/ha at Tapajos.

MULTI-SITE ANALYSIS.—Estimates of the mean (± SE) crown width,
frequency of trees, dbh, and biomass derived from the automated
crown detection algorithm on 51 IKONOS image subsets are
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TABLE 1. Crown characteristics derived from the automated crown detection algorithm for the Cauaxi and Tapajos forest stands. dbh estimates from automated crown

detection algorithm and allometric equation (1).

Cauaxi Tapajos

Crown width (m) IKONOS IKONOS Field Data Field Data Crown Width (m) IKONOS Field Data

Quantiles Automated Manual∗ No Understory∗ All∗ Quantiles Automated Derived from∗∗∗

Maximum 34 40 41 41 Maximum 38 30

Upper quartile 16 20 15 13 Upper quartile 18 15

Median 12 16 11 9 Median 12 13

Lower quartile 8 10 8 7 Lower quartile 8 11

Minimum 2 3 1 1 Minimum 2 6

Crown Width IKONOS IKONOS Field data Field data Crown width IKONOS Field data

Moments Automated Manual∗ No Understory∗ All∗ Moments Automated All

Mean 13 16 12 11 Mean 13 13

Std Dev 6 8 2 2 SD 6 3

N 3972 1675 1370 2127 N 3963 5869

Cauaxi Tapajos

dbh (cm) IKONOS Field Data Field Data dbh (cm) IKONOS Field Data

Quantiles Automated No Understory∗ All∗ Quantiles Automated All∗∗

Maximum 138.7 172.0 172 Maximum 159.0 190.0

Upper quartile 66.1 53.0 44 Upper quartile 69.7 59.6

Median 52.3 37.0 30 Median 52.2 47.0

Lower quartile 39.6 26.0 23.8 Lower quartile 39.6 39.6

Minimum 22.9 20.0 20 Minimum 22.9 15.0

dbh IKONOS Field Data Field Data dbh IKONOS Field Data

Moments Automated No Understory All Moments Automated All

Mean 54.0 43.1 37.4 Mean 55.8 51.9

SD 19.0 3.6 3.4 SD 22.1 16.9

N 3972 1370 2127 N 3963 5869

∗Cauaxi field data and manual interpretation are from Asner et al. (2002a).
∗∗Tapajos field data is from Keller et al. (2001).
∗∗∗Tapajos crown width derived from Tapajos field data for dbh from Keller et al. (2001) and equation (1) from this paper.

presented in Table 3. The Jaru image had the largest estimated
average crown width and dbh (15.6 ± 0.2 m and 65.0 ± 0.5 cm,
respectively), whereas Manaus had the smallest of these two esti-
mates (11.3 ± 0.1 m and 49.3 ± 0.5 cm, respectively). Manaus had
the highest tree frequency (99 ± 3 trees/ha) and Jaru had the lowest
(53 ± 2 trees/ha). Aboveground biomass was estimated to be lowest
at Tapajos km 67 (258 ± 3 Mg/ha), whereas Caxiuana (281 mg/ha)
and Jaru (281 ± 5 Mg/ha) were remarkably similar. Santarem
km 83 (275 ± 5 Mg/ha) and Alta Floresta (275 ± 3 Mg/ha)
also had similar biomass estimates. Biomass estimates showed
less variation among sites than crown width, tree frequency, and
dbh.

Overall, there was an inverse relationship between mean crown
width and tree frequency. Manaus and Jaru had markedly different
structural characteristics compared to all other sites (Table S2). Alta
Floresta showed a significant difference in estimated crown width
and average dbh from Jaru and the two Tapajos sites. Biomass was
found to be significantly different only between Santarem km 67

and Manaus, and Santarem km 67 and Alta Floresta (ANOVA; F
= 8.0, P < 0.001).

DISCUSSION

Our algorithm for automated characterization of tropical forest
canopy properties combines local maximum filtering and local
minima value-finding methods, with analysis of ordinal transect
data radiating outward from a crown apex (local maximum). Our
method differs from an earlier approach to canopy delineation de-
veloped for coniferous forests (Pouliot et al. 2002) because we use
a derivative threshold to end ordinal transect length instead of a
regression analysis. Using the derivative threshold allowed us to
analyze varied crown shapes, sizes, and spacing inherent in old-
growth tropical forests. Iterative local maximum filtering allows for
more of the canopy trees in an image to be examined, since some
canopy trees with variation in color and brightness (due to leaf
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FIGURE 5. Cumulative frequency distribution for field-observed canopy di-

ameters and automated crown estimate at Cauaxi.

phenology and flowering) might overwhelm a single local maximum
analysis.

Our algorithm directly estimated crown widths and areal fre-
quency (trees/ha) from the IKONOS satellite imagery. At both
Cauaxi and Tapajos, the remotely sensed average crown widths were
about 3 percent smaller than crown widths measured in the field
(Table 1), and the differences between the means were not signif-
icant. Mean field-estimated crown width that excludes understory
trees, matched even more closely with automated crown detection
algorithm (Table 1). Although means were indistinguishable, sig-
nificant differences in distributions were detected by the powerful
Kolmogorov–Smirnov test. Comparison of our automated analysis
with field data suggests that our algorithm tends to merge crowns
leading to an excess of large trees. Lianas may lead to merged crowns
as detected by our automated crown detection algorithm if they ex-
tend across more than one tree canopy (Avalos & Mulkey 1999). We
have observed lianas extending over multiple smaller canopies from
our own observations from towers above the canopy at the Tapajos
forest. Interestingly, our automated algorithm provided better esti-
mates of the mean crown width and mean dbh than that of manual

TABLE 2. Remotely sensed estimates and field data of stand density and biomass from Cauaxi and Tapajos in the Brazilian Amazon.

Source Site Size of survey (ha) Density (trees/ha) Biomass (mg/ha)

Keller et al. (2001) Tapajos km 83 (1997) 392 55 > 35 cm dbh 177 > 35 cm dbh

168 > 15 cm dbh1 224 > 15 cm dbh 1

Rice et al. (2004) Tapajos km 67 (2001) 4 496 > 10 cm dbh 311.0 > 10 cm dbh

Tapajos km 67 (2001) 20 43.8 > 35 cm dbh 193.3 > 35 cm dbh

Field Data 2 Cauaxi (2000) 15.8 137.27 >20 cm dbh 248.97 > 20 cm dbh

Cauaxi (2000) 15.8 55.1 > 35 cm dbh 202.8 > 35 cm dbh

Automated estimate Cauaxi 51.8 76.6 262

Automated estimate Tapajos 51.8 76.4 290.4

1Trees < 35 cm dbh were not measured by Keller et al. (2001) but were modeled using the de Liocourt quotient.
2Based on data presented in Asner et al. (2002).

crown delineation from Asner et al. (2002) (Table 1). Possibly, hu-
man observers are more prone to merge crowns than the automated
algorithm. Considering the complexity of tropical forest structure
and the inability to view understory trees in IKONOS image data,
our algorithm compared well with field crown width data (Table 2).

At Cauaxi, field-measured stem frequency was 55 trees/ha for
trees > 35 cm dbh and 137 trees/ha for trees > 20 cm dbh. Our
detection algorithm identified 77 trees/ha, whereas manual inter-
pretation of the same IKONOS image (Asner et al. 2002) yielded
47 trees/ha. Field-measured stem frequency at Tapajos ranged from
44 to 55 trees/ha for trees > 35 cm dbh to 168 trees/ha for trees
> 15 cm dbh (Table 1), whereas the automated crown detection
algorithm counted 76 trees/ha at that site. Clearly, the automated
crown detection algorithm is unable to count understory trees; the
algorithm measured stem frequency with an apparent cut-off di-
ameter near 28 cm, based on the number of trees (76) per hectare
found through filtering field data. Aboveground biomass was esti-
mated via two allometric equations: (1) crown width to dbh from
fieldwork done at Cauaxi; and (2) dbh to biomass (Brown 1997),
and is thus subject to compounded errors. Field-estimated above-
ground biomass at Cauaxi was 249 Mg/ha for trees greater then
20 cm dbh, whereas biomass estimated using automated crown
detection algorithm was only 5 percent higher (Table 1). Greater
biomass estimates from the automated processing routine may be
biased high because of the tendency for the algorithm to merge
crowns.

An examination of 51 (1 km2) areas from seven LBA sites
located throughout the Amazon showed considerable variation in
crown width, dbh distribution, and stem frequency although es-
timates of biomass were relatively constant. Analysis of variance
showed that crown widths at Jaru and Manaus differed from all
other sites as well as with each other. Forest stands converged to
similar biomass despite differences in structural parameters such as
tree frequency and crown width (Table 2). The similarity of biomass
across sites results from a trade-off of stem frequency and maximum
tree sizes. We note that we made no attempt to adjust our biomass
estimates for wood density as has been suggested by recent studies
(Baker et al. 2004), and we acknowledge the preliminary nature of
our estimates. In addition, if we had selected alternative allometries
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TABLE 3. Results from automated algorithm run on IKONOS image data at different LBA sites throughout the Brazilian Amazon.

Average crown Average Biomass Areal frequency

width (m) dbh (cm) (Mg/ha) (number/ha)
IKONOS

Site name Tiles Mean SE Mean SE Mean SE Mean SE

Cauaxi 14 13.3 0.1 56.4 0.4 266 2 70 1

Caxiuana 1 12.3 53.1 281 83

Jaru 2 15.6 0.2 65.0 0.5 281 5 53 2

Manaus 9 11.3 0.1 49.3 0.5 279 2 99 3

Alta Floresta 10 13.0 0.2 55.2 1.0 275 2 76 2

Santarem 67 10 13.8 0.1 57.9 0.5 258 3 65 2

Santarem 83 5 13.7 0.3 58.0 0.8 275 5 68 3

specific to the Central Amazon (e.g., Chambers et al. 2001) or ap-
plicable across tropical moist forests (Chave et al. 2005), we would
get slightly different estimates (Keller et al. 2001), but the general
pattern of similar biomass across sites would remain.

Comprehensive validation data do not exist for most of the
sites that we analyzed because forest structure data are rare across
the Amazon. However, we note that our estimates for Tapajos and
Manaus show trends that are similar to field data collected by Vieira
et al. (2004), who found 164 trees/ha > 25 cm dbh in plots outside
of Manaus and only 104 trees/ha > 25 cm dbh in plots at the
Tapajos National Forest. These findings, while not proof, are a
positive indication that our technique may be useful for diagnosing
structural properties of large areas of remote tropical forests where
ground-based data are scarce.

Crown width is an important variable that we examined us-
ing high spatial resolution satellite imagery, and the distributions
of crown widths may be a useful indicator for forest disturbance
regimes or successional state. The frequency of gap-phase distur-
bance is a key regulator of forest dynamics in the lowland tropics
(West et al. 1981; Brokaw 1985, 1987; Denslow 1987; Svenning
2000). Forests structure is directly tied to various types of distur-
bance, which function on different spatial and temporal scales. For
example, the presence of very large crown diameters may indicate
long periods between catastrophic disturbances. Forests experienc-
ing small-scale disturbances from the deaths of individual trees are
likely to have different crown width distributions than forests that
have experienced large-scale disturbances, such as blow-downs.

It is difficult to estimate Amazonian biomass mainly because
of the limited areas sampled and potential biases in ground surveys
(Houghton et al. 2000; Keller et al. 2001). Knowledge of Amazo-
nian biomass is vital to estimates of carbon stocks and fluxes for
this globally important forest region. Our automated crown char-
acterization program could be used in coordination with ground
surveys and other data to randomly sample large areas and develop
estimates of biomass and other aspects of forest structure for remote
areas of Amazonia.

CONCLUSIONS.—We developed and tested an automated algorithm
that uses high spatial resolution imagery with a combination of

techniques for characterization of landscape-level canopy proper-
ties. This remote sensing method is a first step toward automated
analysis of crown width distributions and stem frequency using
high spatial resolution panchromatic imagery from IKONOS over
remote tropical forest ecosystems. Remotely sensed average crown
widths were within 3 percent of the crown widths derived from
field measurements and were not significantly different from field-
measured means. Using allometric relations, we have estimated dbh
distributions and biomass of these forests. We found that the re-
motely sensed crown width and dbh distributions were incapable of
detecting small understory trees and overestimated the size and fre-
quency of large trees. These errors are probably caused by an inability
to view smaller understory trees, merging of smaller tree crowns, and
lianas bridging tree crowns. High spatial resolution satellite data are
increasingly available and should be available in the future because
of commercial and government demands for these products. With
such data, it is now possible to randomly sample large areas and
develop estimates of forest structure for regions such as the Amazon
basin. Furthermore, the commercial market for high spatial reso-
lution satellite image products will facilitate data access providing
temporal and spatial coverage for further analysis and survey work.
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