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    Abstract 

This study compared the ability of three presence-only techniques (Principal Component 

Analysis, Ecological Niche-Factor Analysis and Genetic Algorithm for Rule-set Prediction) 

and one presence-absence technique (Generalised Linear Modelling) to model and predict the 

distribution of harbour porpoises on the West Coast of Scotland. The application of these 

techniques for studying habitat preferences of marine mammals has great potential benefits 

yet this study is the first attempt to compare their predictive abilities for any marine species.  

 

Accurate absence data for cetaceans are not always available, for logistic reasons (expensive 

surveys at sea), and ecological reasons (cetaceans spend most of their time underwater 

remaining undetectable to visual observers until they return to the surface). Presence-only 

techniques may be advantageous over traditional presence-absence approaches because a) 

they avoid potential bias associated with absence data  (i.e. uncertainty with the separation of 

‘true’ absences, where cetaceans are actually absent from an area, from ‘false’ absences, 

where cetaceans are present but undetectable to observers on the surface, and b) they enable 

the analysis of a wider range of data sources which cannot be analysed using techniques such 

as GLM and GAM (i.e. data not collected from dedicated effort-based surveys at sea e.g. 

public sightings databases). Presence-absence data for this study were collected at a relatively 

low expense using commercial ferries to carry out small scale surveys. Model predictions 

were evaluated both individually, using the evaluation methodologies for each technique, and 

then in relation to the other techniques by applying an independent dataset, consisting of 

presence-absence data, to test the predictions of each technique. ROC plots were used to 

assess overall model accuracy. The presence-only techniques performed as well as the 

presence-absence technique in terms of predictive ability and all techniques produced maps of 

predicted occurrence that identified key areas corresponding to current knowledge of harbour 

porpoise distribution in the study area. However, a composite map combining the predictions 

of all four techniques provided the best overall representation of actual harbour porpoise 

distribution in the study area. Therefore, for future modelling, a combination of different 

techniques may be preferential for predicting species occurrence since the limitations of any 

one modelling technique can be compensated by the strengths of another model. 
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Introduction 

Background 

The distribution of cetaceans is thought to be primarily influenced by the aggregation of 

suitable prey species (Baumgartner, 1997; Davis et al., 1998; Payne, 1986). The distribution 

of prey species is often linked to a number of oceanographic variables. For example, depth 

and slope play an important role in directly limiting the distribution of benthic or demersal 

prey species (Gil de Sola, 1993). For other cetacean prey species, such as pelagic fish and 

cephalopods, oceanographic variables could influence their distribution more indirectly. For 

example, topographically induced up-welling of nutrients, or convergence of surface waters 

may locally increase primary production and aggregation of zooplankton, leading to the 

aggregation of suitable prey species for cetaceans (Rubin, 1997). Therefore, it is likely that 

the distribution of cetaceans is also related to such variables.  

 

Early whalers recognised that relationships existed and later came to realise that a greater 

understanding of any relationship between whale distribution and environmental factors 

would be greatly beneficial to them in locating whaling grounds more easily (Townsend, 

1935; Uda, 1954).  More recently, scientists have been investigating the relationship between 

cetacean distribution and oceanographic variables, but with very different objectives. By 

investigating cetacean-environment relationships, scientists can increase knowledge of 

cetacean distribution by predicting areas where cetaceans are more likely to occur. The 

availability of such information would have many potential benefits. For example, a greater 

knowledge of cetacean occurrence in an area would assist in the designation of Special Areas 

of Conservation for the protection of vulnerable cetacean species; such information would 

also be useful in the development of environmental impact assessments. 

 

Whilst in the past, whalers based their understanding of the distribution of cetaceans in 

relation to oceanography on past judgement and experience, scientists today use statistical 

models to investigate and describe them. Such models attempt to quantify species-

environment relationships by statistically relating the geographical distribution of a species 

with environmental factors, and can be used to predict species distribution by identifying 

habitat requirements. Traditionally, approaches for modelling cetacean distribution such as 

Generalised Linear Models (GLMs) and Generalised Additive Models (GAMs) have relied on 

the collection of presence-absence data. However, these methods assume that the absence data 

is accurate. Obtaining reliable absence data for cetaceans is problematic. This usually 

involves expensive surveys over long time periods involving many dedicated vessels and 
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trained observers, and even then it can not be guaranteed that absences represent ‘true’ 

absences. Due to the mobility of marine mammals and their ability to spend long periods of 

time underwater (and therefore undetectable to observers on the surface), there is always a 

degree of uncertainty associated with cetacean absence data. The separation of ‘true’ 

absences, where animals are actually absent, from ‘false’ absences, where animals are present 

but not detected, is difficult and leads to uncertainty when interpreting results. Hirzel et al. 

(2002b) suggest that inclusion of these types of ‘false’ absences in predictive modelling could 

substantially bias analysis and propose the use of alternative approaches to modelling species’ 

potential distributions when there is no reliable absence data. 

 

Modelling techniques requiring exclusively presence-only data have recently been developed, 

and provide an alternative approach to the modelling of species distributions. Presence-only 

techniques were originally created to predict fauna distributions that are especially susceptible 

to ‘false’ absences due to an animal’s ability to disperse or ‘hide’ during field surveys (Hirzel 

et al. 2002b). These techniques base their model predictions on data where a species has been 

recorded as present and therefore avoid the inclusion of potentially inaccurate absence data. 

Presence-only modelling techniques are increasingly being used to study the distribution of 

many different organisms (Robertson et al., 2001; Hirzel et al.,2001; Ortega-Huerta and 

Peterson 2004; Schweder, 2003). In addition to avoiding potential bias associated with ‘false’ 

absence data, these techniques provide scientists with the opportunity to take advantage of 

data sources that cannot be analysed using techniques such as GLM and GAM. For example, 

sightings databases or museum records, which lack associated absence/effort data, or 

similarly, datasets that are assembled from a variety of different sources, which have 

inconsistent sampling methodologies. 

 

The application of these techniques for studying habitat preferences of marine mammals has 

great potential benefits allowing a wider range of ‘opportunistic data’ to be included in 

statistical analysis, thus maximising the use of available data resources. Furthermore, 

opportunistic sightings are often the only source of information for a species in an area. 

Opportunistic data may be collected from many different vessels, for example fishing vessels, 

commercial ships or whale-watching boats. Collecting data from such vessels can be a cost-

effective way of obtaining sightings data from many areas where coverage from dedicated 

surveys has not been possible.  
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Despite the problems associated with collecting accurate absence data, very few studies have 

used presence-only techniques to study cetaceans (Schweder, 2003; Mendes, 2004). It would 

therefore be beneficial to compare the performance of presence-only techniques to presence-

absence approaches to gain a greater understanding of their ability to predict the occurrence of 

cetaceans. This study aims to investigate the ability of three presence-only modelling 

techniques and one presence-absence technique (GLM) to predict the distribution of harbour 

porpoises (Phocoena phocoena) in relation to oceanographic variables on the West Coast of 

Scotland. Whilst previous studies have compared the predictive abilities of presence-only 

techniques with presence-absence approaches, they have focussed on modelling terrestrial 

species (Zaniewski et al. 2002; Brotons et al, 2004). The present study is the first attempt to 

compare modelling techniques for any marine species.  

 

The three presence-only techniques are Ecological Niche Factor Analysis (ENFA), Genetic 

Algorithm for Rule-set Prediction (GARP) and a PCA-based approach. All three techniques 

are based on the ecological niche theory (Hutchinson, 1957) and use the environmental 

variables of locations where animals have been recorded as present to identify the niche 

occupied by a species. This niche can then be used to predict species distribution within the 

area under investigation. Both ENFA and the PCA-based approach compare the spatial 

distribution of the ecogeographic variables for localities where the species has been recorded 

as present with the variable distribution of the whole study area. These variables are then 

summarised into a few uncorrelated factors retaining most of the information. Both 

approaches account for most of the information in the first few factors from which probability 

values for habitat suitability for the whole area are then derived. Whilst in PCA the 

components are purely statistical, in ENFA these components have an ecological meaning: 

the first factor is a measure of the marginality of the species. Marginality is defined as the 

ecological distance between the species mean and the mean habitat in the study area. 

Therefore a high marginality value (close to one) indicates that the species occupies a niche 

that is very different from the overall study area. Marginality plus the remaining factors 

represent the specialisation of the species. Specialisation is a ratio comparing the range of 

variables over the whole study area to the range that the species occupies. A high 

specialisation (value over 1) indicates that the species occupies a narrow range of variables 

compared to the overall range of variables within the study area.  

 

GARP differs from ENFA and PCA in that it is a machine-learning approach to modelling 

ecological niches of species. GARP develops a set of rules through an evolutionary 
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refinement procedure by generating and testing a diverse range of possible solutions based on 

various rules from different statistical approaches including categorical and logistic regression 

models. It does this until a ‘best set’ of rules is selected. The difference between a rule and the 

more familiar regression model is that a rule has pre-conditions that determine when it can be 

applied; when these conditions are not met, the rule is not used. In this way, GARP reduces 

error in predicted distributions by maximising significance and predictive accuracy of the 

rules (Stockwell and Peters, 1999). The optimal model is selected (Anderson et al. 2003) and 

can be projected onto a map of the study region showing the species potential geographic 

distribution.  

 

Comparison of predictive ability between modelling techniques 

In order to have confidence in any predictive model, or in the approach used to build it, the 

model’s predictions should be assessed by some objective means. There are many different 

approaches for evaluating model performance. A common strategy for evaluating model 

quality has been to divide the available data into a training dataset to construct the model and 

an independent testing dataset to evaluate model quality. The predictive ability of a model can 

then be assessed by applying the test dataset to the model’s predictions. Two types of 

prediction error are possible: false positives (model has predicted presence where species has 

been observed as absent) and false negatives (model has predicted absence where the species 

was observed as present). The relative proportions of these errors are typically summarised in 

a confusion or error matrix (Fielding and Bell, 1997). Four elements are present in a 

confusion matrix (Table 1). Element a represents the cells correctly predicted as present. 

Likewise d reflects areas where the species has not been observed and that are classified by 

the model as absent. Thus a and d are considered correct classifications; in contrast, c and b 

are usually interpreted as errors. Element c denotes a false negative and b denotes a false 

positive.  

 
  Observed 

  + - 
 

      Predicted + a 
 

b 

 - c d 
 

    

Table 1 Elements of a confusion matrix with element d representing both ‘true’ and ‘apparent’ 

absence 
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Once the misclassification errors of the predictions have been calculated, there are a number 

of measures available to assess prediction accuracy. The simplest and most widely used 

measure of prediction accuracy is the number of correctly classified cases (Fielding and Bell, 

1997). However, this measure is dependent on the specification of an arbitrary threshold of 

misclassification error, which can lead to bias when interpreting results (Altman et al. 1994). 

A more powerful approach to assessing model performance is derived from a Receiver 

Operated Characteristic, or ROC plot (Fielding and Bell, 1997). Unlike many assessment 

measures, a ROC plot is independent of any threshold of misclassification error. This is 

advantageous because it avoids the arbitrary judgement of thresholds, which often lack 

ecological justification. A ROC plot is obtained by plotting all sensitivity values (true positive 

fraction : a / a+c) on the y-axis, against their equivalent 1- specificity values (false positive 

fraction : d / b+d), for all available thresholds on the x-axis (Figure 1). The area under the 

ROC function (AUC) provides a single measure of overall accuracy for a range of 

misclassification thresholds. The value of the AUC ranges between 0.5 and 1, where 0.5 

indicates randomness and 1 a perfect fit (no overlap in the distribution of the group scores). 

For example, an AUC of 0.8 means that for 80% of the time, a random selection from the 

sensitivity (positive) group will have a greater score than a random selection from the 1-

specificity (negative) group (Deleo, 1993). 
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Figure 1 Example of a ROC plot (figures in parentheses are the AUC values and straight line indicates 
randomness). 
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‘False’ Absences 

Due to uncertainty associated with recorded absences for cetaceans, harbour porpoises in 

particular (Palka, 1996), there is the potential for inclusion of ‘false’ absences in the testing 

dataset. ‘False’ absences would have a negative impact on the accuracy of the evaluation 

procedure, if present in the testing dataset, by apparently increasing the proportion of false 

positives, element b from the confusion matrix. For example, a test point of observed absence, 

falling into an area of predicted presence could be interpreted, either as a ‘true’ prediction 

error of the model, or an ‘apparent’ prediction error, due to the inaccurate sampling of 

absence data. In order to try and minimise ‘apparent’ prediction errors due to ‘false’ absences 

in the testing dataset, stricter criteria were applied to the testing datset before establishing 

absence.  

 
Study Area 

This study was conducted off the West Coast of Scotland. The study area included the Inner 

Hebridean Islands of Mull, Coll, Tiree, Colonsay, Kerrera, the Small Isles (Rum, Eigg, Muck, 

Canna) and also the outer Hebridean Island of Barra (Figure 2). The area encompasses a 

variety of possible cetacean habitats: shallow, inshore areas (e.g. the Sound of Mull), coastal 

areas (e.g. the Garvallach islands), offshore islands (e.g. Barra) and deeper, open water (e.g. 

the Sea of Hebrides). The oceanographic features of the West Coast of Scotland are complex 

and are largely determined by the properties and movements of waters of three main systems: 

the North Atlantic, the Irish Sea and freshwater inputs from neighbouring sea-lochs. The 

predominant current flowing through the waters of the west coast is the Coastal Current, 

which is formed by the mixing of water leaving the Irish Sea, through the North Channel, 

with Clyde water to form a low-salinity stream. The Coastal Current travels north along the 

Scottish coast, past the Inner Hebrides into the Little Minch. (Ellett, 1979). Strong tidal 

streams and currents induce the complex mixing of waters, especially around headlands and 

islands, making the West Coast of Scotland an area of high biological productivity with a rich 

species biodiversity. This is evident in the high numbers of cetaceans recorded in the region. 

The most commonly sighted species in the study area are, the harbour porpoise (Phocoena 

phocoena), bottlenose dolphin (Tursiops truncatus), common dolphin (Delphinus delphis), 

minke whale (Balaenoptera acutorostrata), Risso’s dolphin (Grampus griseus), white-beaked 

dolphin (Lagenorhynchus albirostris), long-finned pilot whale Globicephla melaena, and the 

killer whale Orcinus orca (Shrimpton and Parsons, 2000). 
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Figure 2 Map of the study area and survey routes 
 

Harbour Porpoise (Phocoena phocoena) 

Harbour porpoises are common and widely distributed in most coastal wasters of the study 

area (Shrimpton & Parsons 2000). Areas where harbour porpoises are regularly observed 

include the Outer Hebrides; Sea of Hebrides; North Minch; Sounds of Sleat and Raasay; the 

Small Isles and the coastal waters of Skye; (Evans, 1997b). The Sound of Mull; the coastal 

waters of the Firth of Lorn; the Sound of Jura; Kilbrannan Sound; Kyles of Bute; Coll; Tiree; 

the Treshnish Isles; Colonsay; Oronsay; Islay and Arran (Evans, 1997a). They also occur in 

many of the mainland lochs.  

 

Despite being the most frequently encountered cetacean off the West Coast of Scotland, 

harbour porpoises are not easy to detect during surveys. This is partly due to their small body 

size (typically less than 2m in length), small group sizes (average group size of two; Pollock 

et al. 2000) and often ‘cryptic’ behaviour at the surface. Furthermore, increasing sea state can 

have a negative effect on ‘detectability’ of harbour porpoises at the surface and it is 

recommended that surveys of harbour porpoises are not carried out in sea states greater than 

Beaufort three (Palka, 1996) 
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Materials and Methods  

Data collection 

The data used for the model analysis were collected from commercial passenger ferries (run 

by Caledonian MacBrayne). The ferries make regular crossings throughout the study area 

(Figure 2) along set routes enabling an area to be consistently surveyed on multiple occasions 

at a relatively low cost. Cetacean sightings data were collected during two consecutive 

summer periods: From the 5th of May to 9th of July 2003 as part of a previous MSc project 

(Schweder, 2003), and from the 7th of May to 25th of July 2004, specifically for the present 

study. Three different vessels were used for the surveys: MV Clansman (99m length, eye 

height for surveying: 14.7m) was used to survey the routes to Coll, Tiree and Barra, and MV 

Lord of the Isles (85m length; eye height: 16.6m) was used to survey the Colonsay route. A 

third, smaller ferry, MV Loch Nevis (49m length; eye height: 11m) was used to survey the 

Small Isles area. The survey technique used was specifically developed for conducting 

surveys from passenger ferries on the West Coast of Scotland by Bannon (2003) and requires 

an observer to be situated on one side of the ship’s bridge. These platforms allowed a 135º 

view of the surrounding area from the side where the observer was situated, round to 20º from 

the ship’s bow. 

 

The following data were recorded every 15 minutes throughout the duration each survey: 

date, time, position of ship (latitude and longitude from GPS), direction of travel (bearing) 

and speed (km/h). Environmental variables were also recorded: sea state (Beaufort Scale), 

swell height (m), visibility (km), cloud cover (octaves) and precipitation (nil, slight, moderate, 

heavy). The area was scanned constantly with the naked eye and with 7 x 50mm range-finder 

binoculars. The binoculars had a reticulated scale that was used to estimate distances to 

cetaceans and a compass rose for measuring relative bearings. Each time a group of cetaceans 

was sighted, the following information was recorded: time, ship’s position (latitude and 

longitude from GPS), direction of travel (bearing), relative bearing of cetacean from ship’s 

bow (degrees 90º, 270º etc) and number of reticules vertically from cetacean(s) either to land 

or horizon. Cetaceans were identified to lowest taxonomic group possible. Approximate 

group size and presence or absence of seabirds was also recorded.  
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Estimating position of sightings 

In order to calculate the actual position of each sighting, the following information was 

required:  

1) Position of the observer 

The position of the observer is effectively the position of the ship at the time of sighting 

(latitude and longitude from GPS).  

2) Distance to the group of animals 

The distance to the group can be calculated from the angle from the horizon or land to the 

group (measured in reticules from the binoculars), and was calculated using the formulae 

from Lerczak and Hobbs, 1998 (Figure 3).  

3) Bearing to the animals 

The true bearing to a sighting was calculated by adding the relative bearing (compass rose) to 

the ship’s course (subtracting 360 if the total exceeded 360).  

Once all three measurements had been calculated, the position of each group of cetaceans was 

then estimated using the waypoint editor function of Garmin PCX5 software (version 2.09). 

 

 

To horizon

Cetacean

Direction of travel
Bearing to animal

D0

A
Dh

 
 

Figure 3 Survey platform and measurements used to calculate estimated position of a sighting. D0 is 

the line-of sight distance to the cetacean, D is the distance to the cetacean along the surface of the 

water, A is the angular drop from the horizon (or land) to the cetacean, h is the height of the observer 

above sea level (see Lerczak and Hobbs, 1998). 

 

Track and surveyed grid cells 

A base grid was created in MapInfo® and imported into Arcview® 3.2. This enabled the 

entire study area to be divided into 1km x 1km grid cells (15520). The ship’s position, 

recorded at 15 minute intervals for each survey, was plotted and the points were connected as 

a straight line course. The sea state at the start of each line was assigned to that segment. 
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Segments were then joined together for each trip, removing those segments that were 

recorded in sea states three or more. This was to minimise missed sightings due to lower 

detectability of harbour porpoises in poor conditions (Palka, 1996). In order to determine the 

grid cells that had been covered by the surveys, buffer zones were plotted on either side of 

each track line using the buffer function. The buffer limit was 750m on the side where the 

observer was situated and 250m from the ship’s bow due to the restricted angle of vision, 

giving a total buffer width of 1000m. (Figure 4a). These distances were considered the 

maximum distances within which all porpoises present at the surface could be detected with a 

high certainty.  

 

A grid cell was defined as ‘surveyed’ if more than half of the buffer edge fell within a grid 

cell (Figure 4b). Cells falling outside the buffer zones were classed as ‘un-surveyed’ cells. If 

less than 500m of buffer edge fell within a grid cell, it was classed as ‘un-surveyed’ (Figure 

4b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Presence and Absence cells 

Surveyed grid cells were then assigned to one of two categories:  

Presence - where the species was recorded at least once in a ‘surveyed’ grid cell 

Absence – where the species was not recorded in a ‘surveyed’ grid cell on any occasion 

Any sightings that fell within ‘un-surveyed’ grid cells were removed from the dataset. 

 

Figure 4a Buffer zones used to determine 
surveyed grid cells. 

Figure 4b Schematic of track with buffer zone 
and grid cell 

750 m 

 

250 m 
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m 

Buffer 
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250 m 

20° 

Buffer Zone 

Direction of travel 
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Data partitioning 

The dataset was randomly divided into two subsets: a training dataset to construct each of the 

models, and a testing dataset for independent evaluation of the models’s predictions (Figure 

5). This was achieved by assigning each grid cell in the study area a random number using the 

random grid function in Arcview®. The lowest third of the random numbers were set aside 

for the testing datset and the remaining two-thirds were used for the training dataset. In this 

way, both the ‘surveyed’ grid cells and the presence cells could be randomly partitioned into 

the testing and training datasets simultaneously.  

surveyed
grid cells
n = 1626

n =10347

n = 5173

surveyed cells
n = 1097

surveyed cells
n = 529

testing dataset

training dataset

1029

496

68

33

Presence cells Absence cells

2/ 32/ 3

1/ 31/ 3

Total cells in
study area

15520

+

+

ROC plots

PCA

ENFA

GARP

GLM

 
Figure 5 A summary of the random data partitioning procedure 

 

Ecogeographic Data 

The central depths for each grid cell in the study area were interpolated from the ETOP02 

Global 2’ elevation dataset (ETOP02 2001). The depth values were then used to calculate 

slope. Standard deviation of slope was calculated by comparing the central value of each 

square with the surrounding 24 grid squares (i.e. 5km x 5 km area) using the neighbourhood 

statistic. Distances to nearest coastline and latitude from the centre of each grid cell were 

calculated using the spatial analyst function in Arcview®. Aspect of the seabed was converted 

from a circular variable (i.e. degrees) into two linear components. Since aspect is measured in 

degrees from north, circular variables would give misleading results. For example, a cell with 

an aspect of 359º would give a very different value to a cell with an aspect of 1º even though 

in reality the two cells would be facing in a very similar direction. Therefore, aspect was 

separated into an easting and a northing, defined as sine (easting) or cosine (northing) of the 

original aspect value. Both eastings and northings ranged from –1 to 1, with a positive value 
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indicating a tendency to face east or north and a negative value indicating a tendency to face 

west or south respectively. This gave seven separate grids of ecogeographic variables (EGV) 

matching exactly the dimensions of the cells in the base grid (15520 1km x 1km grid cells). 

 

 

 

1) PCA-based technique 

 

                     
                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 A summary of the steps involved in Principal Component Analysis (see Appendix 1 for 

description of steps 1-8).  The full methodology for constructing PCA-based predictive models was followed 

as described by Robertson et al. (2001). 

 
Ideally, all combinations of variables would have been compared to determine the 

combination that produced the most accurate model. However, due to time constraints for this 

study, it was only possible to carry out PCA on nine different combinations of ecogeographic 

variables (Table 2). The combinations of variables were chosen partly based on those used by 

Schweder (2003) and partly based on consideration of which variables might play an 

ecological role in influencing distribution. 
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PCA Intra-Model Evaluation 

PCA models were evaluated using the testing dataset which was reserved for overall model 

evaluation. AUC values from the ROC plots were compared to determine the model with the 

highest predictive ability. To investigate whether false positives were resulting in an ‘under-

assessment’ of model accuracy, further ROC plots were created using cells that had been 

surveyed more than three times and five times respectively. A map using probability of 

occurrence values was created in Arcview® for the best performing model.  

 

Model Variables 

1 depth, latitude, distance to coast 

2 all variables – no latitude 

3 all variables – no latitude, no aspect (north) 

4 depth, slope, distance to coast 

5 latitude, distance to coast, depth, slope 

6 all variables 

7 all variables – no aspect (north or east) 

8 distance to coast, depth, slope, standard deviation of slope 

9 distance to coast, depth, standard deviation of slope 

 

Table 2 Variables used in the construction of PCA models 

 

2) Ecological Niche-Factor Analysis (ENFA) 

Occurrence data and grids for all seven ecogeographic variables were imported into 

BIOMAPPER 3 software in IDRISI raster format. Ecological niche-factor analysis was 

performed and McArthur’s ‘broken stick’ method was used to determine how many factors to 

include in the calculation of a habitat suitability map (Hirzel et al.2002). A habitat suitability 

map was created automatically in the BIOMAPPER 3 software, which assigns to each grid 

cell in the study area a habitat suitability index (HSI). The HSI ranges from zero to 100, and is 

a re-scaled version of the initial probabilities of occurrence calculated from the ENFA factors. 

Cells with low HSI scores indicate low habitat suitability, whilst high HSI scores indicate 

high suitability. A second ENFA was performed using all the variables except for latitude 

since it was suspected that this variable was causing bias in predictions due to most survey 

effort being concentrated in the central part of the study area (Figure 10).  
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Figure 7  Summary of the steps involved in Ecological Niche-factor Analysis 

 

ENFA Intra-Model Evaluation 

The predictive accuracy of the two habitat suitability maps was evaluated using the cross-

validation ‘jack-knife’ function in the software. The presence cells (68) were randomly 

partitioned into 5 subsets and a model was re-constructed five times. On each occasion, one of 

the subsets was left aside to serve as an independent set to validate the data. For each jack-

knife run the resulting HSI values were then grouped into one of four bins (Table 3).  

 

HSI value 0-24 25-49 50-74 75-100 

Classification unsuitable poor suitable core 

 

Table 3 Classification of ENFA cross-validation bins  

 

Each bin covers a proportion of the study area and a proportion of the validation points. In 

order to take into account of uneven representation of variable classes in the study area, each 

bin class was standardised as follows by calculating its area adjusted frequency: 

Fi = Ni / Ai 

Ni = the proportion of validation points falling in the ith bin class compared to the whole 

study area 

Ai = the proportion of cells falling in the ith bin class compared to the whole study area 

The means and standard deviations of each jack-knife run were calculated and plotted as a 

histogram. If the HS map is completely random, one expects the area adjusted frequency 

value to equal 1 for all the bins (Figure 8a). However, if the model is good, low habitat 
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suitability should have a low value (below 1), and high habitat suitability, a high value (above 

1) (Figure 8b). 
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Figure 8 ENFA area-adjusted frequency histograms a) example of even distribution of points in each 

bin indicating species has a random distribution in terms of HSI within the study area and b) majority 

of validation cells are classed in HSI > 50 indicating species has a different distribution in terms of 

HSI from the all of the cells in the study area (the global distribution). 

 

3) Genetic Algorithm for Rule-set Prediction – GARP Modelling System 

The occurrence data and the seven ecogeographic variables were imported into the GARP 

software. The percentage of points to be used for ‘training’ i.e. model construction was 

specified as 67%. These points were randomly selected by GARP leaving the remaining test 

points for subsequent model evaluation. Test points (33%) were withheld completely from 

GARP’s model building process and were only used for the internal evaluation process. Due 

to time constraints, it was not possible to test for all possible combinations of the variables; 

therefore, all possible combinations of three variables were tested. This created models for 

thirty five different combinations of variables, with twenty runs for each model. Each model 

was run twenty times, to reduce the impact of a chance relationship. The model with the 

highest mean predictive accuracy out of the thirty-five models was selected using the 

evaluation procedure described below. Another model was constructed using all of the 

variables to investigate whether including all seven variables produced a more accurate 

model. A final model was constructed using all variables except latitude, since it was 

suspected that latitude was causing bias in predictions due to most survey effort being 

concentrated in the central part of the study area (Figure 10).   
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GARP Intra-model evaluation 

The presence data points set aside for model evaluation (33%) were used to test the model 

predictions automatically in the GARP software. To assess model performance, the model 

with the lowest omission error was selected. Omission error is the proportion of test points 

falling outside the predicted area (outtest/ntest), where outtest = the number of test points 

falling outside predicted areas and ntest = the number of test points. The commission index is 

the proportion of the study area predicted presence. The mean omission error and mean 

commission indices were plotted for all 35 combinations of variables and the combination of 

variables with the lowest mean omission error, was selected as the best model. The mean 

omission error was also calculated for the models constructed using all variables, and all 

variables except for latitude. A map of predicted occurrence was produced for the model with 

the lowest omission error. A composite map was produced by summing all twenty runs for 

each model, using a value of 1 for grid cells with predicted presence, and 0 for predicted 

absence. The resulting map of occurrence contained grid cells with values ranging from 0-20, 

representing the number of runs predicting harbour porpoise presence (20 in cells where all 

runs of the model predicted occurrence and zero where no runs predicted occurrence). 

 

4) Generalised Linear Modelling (GLM)  

In order to analyse presence/absence (binary) data, a binomial regression was applied 

(presence: n = 68 and absence: n = 1029). All linear and quadratic terms were included as 

potential predictors in the building of the model. This excluded latitude as preliminary 

analysis of the variables using GAM showed latitude to have a complex, non-linear 

relationship with species occurrence. To select the model that explained the most variation 

using the fewest number of variables, a ‘backwards stepwise’ procedure was used using the 

BRODGAR software (Highland Statistics Ltd).  A stepwise model builds a model by 

eliminating different variables and investigates how much they improve the fit. In this way 

variables that do not reduce the fit by a significant amount are ‘dropped’ from the model. The 

statistic used to select the final linear model was the Akaike Information Criterion (AIC, 

Chambers and Hastie 1997). 

In order to maximise the quality of the absence data, a second model was constructed using 

only cells that had been surveyed on three or more occasions (presence cells: n = 64 and 

absence cells: n = 679). The same method was used as the first model to select the variables 

producing the best ‘fitted model’. The AIC from this model was compared with the AIC 
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calculated from the first model and a map of predicted occurrence was produced for the model 

with the lowest AIC value.  

Probabilities of occurrence were calculated for all grid cells in the study area by substituting 

the intercept value and the coefficients for each of the variable into the following equation: 

Y = e  g ( xi ) 

Where 
g ( xi ) 

is the equation of a straight line (y = m x + c).  

 

Inter-model evaluation 

The testing dataset was used to assess the relative performance of all modelling techniques.  

In order to minimise potential ‘false’ absences in the testing dataset, the model’s predictions 

were evaluated first, using all of the surveyed grid cells in the study area, and then to grid 

cells that had been surveyed more than three and five times respectively. ROC plots were 

created for all models using the Analyse-it Laboratory Software Ltd and Area Under the 

Curve (AUC) values for each technique were compared to determine the ‘best’ model. 

 

Presence-absence thresholds 

In order to make direct comparisons between the models and their predictions of occurrence 

within the study area, a method for setting the threshold between predicted presence and 

absence was required. This was achieved by finding the point on the ROC plot which 

maximised both sensitivity and 1-specificity i.e. the point at which the true positive fraction 

ceased to increase at a greater rate than the rate of increase in 1-specificity (false positive 

fraction). This point was found by applying a line with the same slope as a random model (i.e. 

AUC of 0.5) to the top left of the ROC graph and moving this line until it touched the ROC 

curve. The point at which the line first touched the ROC curve identified a particular 

sensitivity/1-specificity pair, the value for which gave the desired presence/absence threshold 

(Figure 9). Thus predictive maps were produced that enabled the predictions of presence and 

absence produced by each technique to be directly compared. Finally, the predictions of 

presence-absence for all four models were summed together to produce a composite map so 

that areas where all four models predicted harbour porpoise presence could be identified. 

Values for this map ranged from 0 – 4. Zero indicating areas where none of the models 

predicted occurrence and four indicating areas where all models predicted occurrence. 
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Figure 9 Method used to set the presence-absence threshold for each technique. Threshold derived 

from ROC curve as the point at which the straight line (with same slope as line indicating chance 

performance i.e. AUC = 0.5) first touches the ROC curve.  
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Results 

Sightings 
Between the 5th of  May and 9th of July 2003 and 7th of May and 25th July 2004, an area of 

1626 km2 was surveyed over 61 days and a total of 159 harbour porpoises were recorded in 

Beaufort scale 3 or less within the study area (86 in 2003, 73 in 2004). 

Survey tracks passed through a total of 1626 different grid cells. Many of these grid cells 

were surveyed multiple times, with some grid cells being surveyed on 83 occasions (Figure 

10). After random data partitioning of the surveyed cells, the training dataset contained 68 

presence cells (surveyed cells in which harbour porpoises were recorded) and 496 absence 

cells (surveyed cells in which no harbour porpoises were seen), and the test dataset contained 

33 presence cells and 1029 absence cells (Figure 5). 

Figure 10 Map showing number of surveyed grid cells within the study area (grid cells that were 

surveyed at least once and covered by a buffer zone of at least 500m). Colour scale indicates number 

of times grid cells were surveyed. 
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Figure 11a Harbour porpoise sightings recorded in Beaufort scale 3 or less within the study area (n = 

159: 86 in 2003, 73 in 2004). 

 

 
 
Figure 11b Map showing total track lines covered by ferry surveys during two consecutive summer 
periods (2003 & 2004) 
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1) PCA-based technique 
 
AUC values for the PCA models ranged from 0.676 to 0.799. The two models with the 

highest AUC values, and therefore the best overall models in terms of predictive accuracy, 

were constructed using depth, latitude and distance from coast, and all variables except 

latitude and aspect (north). Table 5 & Figure 12 

 

 

AUC Model 

0.799 depth, latitude, distance from coast 

0.676 all variables – no latitude 

0.787 all variables – no latitude, no aspect (north) 

0.722 depth, slope, distance from coast 

0.760 latitude, distance from coast, depth, slope 

0.735 all variables 

0.776 all variables – no aspect (north or east) 

0.733 distance from coast, depth, slope, standard deviation of 

slope 

0.726 distance from coast, depth, standard deviation of slope 

 

Table 4 AUC values for all nine PCA models  
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Figure 12 ROC plots for all nine PCA models 
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Although statistically the model constructed, using depth latitude and distance from coast, 

performed the best in terms of predictive ability, its predictions of harbour porpoise 

occurrence were limited to the central region of the study area (Figure 13a). The model failed 

to predict occurrence in higher or lower latitudes, for example around the Small Isles area or 

around the Garvallach Islands, where harbour porpoises are often sighted (Shrimpton & 

Parsons 2000). However, the second most accurate model (constructed using five variables; 

depth, distance from coast, slope, standard deviation of slope and aspect-east), produced a 

map which predicted harbour porpoises to occur in all areas where they would be expected to 

occur within the study area (Shrimpton & Parsons 2000; Evans, 1997b; Pollock et al. 2000) 

(Figure 13b). The ‘under-prediction’ of occurrence in the first model was suspected to be due 

to the inclusion of latitude, a variable where there was an obvious bias towards middle 

latitudes during data collection. As a result this model, despite its high AUC value, was 

rejected as biologically invalid. However, the model with the second highest AUC was 

identified as the most biologically sensible and was selected as the better model for inter-

model testing. 
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Figure 13 PCA models showing probabilities of occurrence for the Harbour porpoise (Phoecena 

phocoena) a) constructed using three variables; depth, latitude and distance from coast and b) 

constructed using five variables; depth, distance from coast, slope, standard deviation of slope and 

aspect (east) 
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2) Ecological Niche-Factor Analysis (ENFA)  

The model that used all seven variables had an overall marginality value of 0.907 indicating 

that the niche occupied by harbour porpoises is quite different from the average within the 

study area. Specialisation was calculated at 1.674 indicating that harbour porpoises are 

somewhat restricted in the habitats they utilise within the study area. Three factors were 

retained from the seven calculated, and these three factors accounted for 100% of the 

marginality and 81.4% of the overall specialisation. The marginality alone accounted for 

33.8% of this overall specialisation. The eigenscores from the marginality factor (the first 

factor) were weighted in the following order of importance: distance from the coast (-0.598), 

standard deviation of slope (0.575) and depth (0.522). The eigenvalue (6.628) indicated that 

randomly chosen cells were over six times more dispersed along this factor’s axis than cells 

where harbour porpoises were present (Table 5). 

 

The model that used all variables except latitude had an overall marginality value of 0.984 

indicating a high marginality. Specialisation was calculated at 1.499, a slightly lower value 

than the previous model. Four factors were retained from the six calculated and these four 

factors accounted for 100% of the marginality and 88.4% of the overall specialisation. The 

marginality alone accounted for 50.5% of this overall specialisation. The eigenscores from the 

marginality factor were weighted in the same order of importance as the previous model: 

distance from the coast (-0.599), standard deviation of slope (0.576) and depth (0.523). The 

eigenvalue (6.805) indicated that randomly chosen cells were nearly seven times more 

dispersed along this factor’s axis than cells where harbour porpoises were present (Table 5). 

 

 

Model Marginality 
 
 
 

Specialisation % of 
Marginality 
explained 

Eigenvalue for 
Marginality 

All variables 
 

0.985         1.674        33.8     6.628 

All variables – 
no latitude 

0.984    1.499   50.5     6.805 

 
 
Table 5 ENFA predictions of marginality and specialisation for both ENFA models 
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ENFA Model Evaluation 

The majority of test points were re-classified into the bin representing core habitat (HSI: 75-

100) for both models (Figures 14a and b) and were very different from a random distribution 

(Fi = 1). Both models grouped the highest area-adjusted frequency values (Fi) into the bin 

representing core habitat and the lowest Fi values into the unsuitable habitat bin indicating 

that they are good models.  
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Figure 14 Graphs showing the classification of test points into habitat suitability bins for both ENFA 
models (a) using all variables and (b) all variables except latitude. (Fi value of one indicates random 
distribution of test points) 
 

The habitat suitability map which did not include latitude as a variable successfully identified 

areas of high habitat suitability in areas where harbour porpoises usually occur (Shrimpton & 

Parsons 2000; Evans, 1997b; Pollock et al. 2000) (Figure 15b). Whereas the model which 

included latitude, only identified areas of high habitat suitability in the central part of the 

study area (Figure 15a). Therefore the model excluding latitude was selected as the better 

model for inter-model testing.  

 

 

 

 

 

 

(a) (b) 



 31 

 

 

91-100
81-90
71-80
61-70
51-60
41-50
31-40
21-30
11-20
0-10

81-90
71-80
61-70
51-60
41-50
31-40
21-30
11-20
0-10

91-100

 
 

Figure 15 Habitat suitability maps for ENFA models a) constructed using all seven variables and b) 

constructed using all variables except latitude  
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3) Genetic Algorithm for Rule-set Prediction (GARP)   

Out of the thirty five possible combinations of three variables, distance from coast, slope and 

standard deviation of slope had the lowest mean omission error (Figure 16). 

The other two GARP models (using all variables and all variables except latitude) did not 

exceed the performance of the model GARP selected from all possible combinations of three 

variables in terms of omission error. These two models both had a higher mean omission error 

(Table 6 & Figure 17). The map of predicted occurrence for the model with the lowest mean 

omission error, highlighted all areas where harbour porpoises are expected to occur. Summing 

all twenty runs from this model produced a composite map which revealed consistent patterns 

of harbour porpoise presence, with a high agreement between the suite runs (>18) in most 

areas. (Figure18). 
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Figure 18 GARP model showing predictions of harbour porpoise occurrence (constructed using 

distance from coast, slope and SD slope) 

 



 33 

 

0

10

20

30

40

50

0 10 20 30 40 50
Omission error

C
om

m
is

si
on

 e
rr

or

 
Figure 16 Mean omission/commission values for all thirty-five possible combinations of three 

variables. The combination with the lowest mean omission error is highlighted in red. 
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Figure 17 Mean omission/commission values for all three models 

 

Model Mean omission error Mean commission error 

distance from coast, slope, SD slope 7.89 24.99 

all variables 8.83 25.19 

all variables (no latitude) 14.6 18.82 

 

Table 6 Mean omission/commission values for all three GARP models 
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4) Generalised Linear Modelling (GLM) 

Using all available presence-absence cells from the training dataset, the model with the best 

‘fit’ from the ‘stepwise’ procedure used the five variables: distance from coast (p = 0.00532), 

depth, aspect (north) and standard deviation of slope (p = 0.00107). Depth and aspect (north) 

were not significant, but including them created a better ‘fit’ i.e. lower AIC value (432.4), 

which justified including them in the model.  

 

Using the dataset with the stricter absence criteria, i.e. with grid cells surveyed on three or 

more occasions, the model with the best ‘fit’ used three variables: distance from coast, 

standard deviation of slope and aspect (north). The AIC value was lower for this model than 

for the first GLM (363.6) suggesting that the full dataset does indeed contain a proportion of 

false absences. Distance from coast (p = 0.004) and standard deviation of slope (p = 0.002) 

were highly significant. The model with the lowest AIC value (i.e. the restricted dataset) was 

used to produce a map of probabilities of harbour porpoise occurrence. The map produced for 

this model was successful in identifying most of the key areas where harbour porpoises occur 

are known to occur within the study area (Figure 19). 

 

Overall Inter-model evaluation  

The test dataset was used to evaluate and compare the predictive ability of each of the four 

modelling techniques and to determine the best, biologically sensible model. ROC plots were 

created to assess the overall model success.  

 

GLM had highest AUC value followed by PCA, GARP and ENFA (Table 7). Overall model 

accuracy estimated with the ROC method indicated that the models predicted significantly 

better than a random model in every case (P < 0.05). No significant difference was found 

between the techniques (P> 0.05) (Table 8). For each model, the test dataset restricted to grid 

cells surveyed on three or more occasions gave the highest AUC value (Figure 20a-d). 

 

 

 

 

 

 



 35 

 

 

 

 

 

 

0.9-1

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

0.4-0.5

0.3-0.4

0.2-0.3

0.1-0.2

0-0.1

 
 

Figure 19 Probabilities of occurrence predicted by GLM technique three variables: distance from 

coast, standard deviation of slope and aspect (north) and grid cells surveyed three times or more. 
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 Variables AUC P value S.E. 

PCA All variables – no latitude, no aspect (north) 0.803 0 0.03 

ENFA All variables – no latitude 0.745 3.82E-10 0.04 

GARP Distance from coast, slope, SD slope 0.793 5 E-15 0.04 

GLM Distance from coast, SD slope, aspect (north) 0.828 0 0.03 

 

Table 7 Relative performance of each modelling technique in terms of AUC (calculated from ROC 

plots) and significance plus standard error values (S.E) of models predicting better than random 

 

 

 

 

Model vs. Model P value 
GLM v GARP 0.313 

GLM v ENFA 0.081 

GARP v ENFA 0.137 

GARP v PCA 0.783 

ENFA v PCA 0.166 

GLM v PCA 0.504 

 

 

Table 8 Statistical comparison between AUC values of the models (P >0.05 = no significant 

difference) 
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Figure 20 ROC plots for each modelling technique using testing dataset using all cells (RED), cells 

surveyed three times or more (BLUE) and five times or more (GREEN) a) PCA b) ENFA c) GARP 

d) GLM. In all cases the AUC value increased when testing dataset is restricted to cells surveyed three 

or more times. 

 

Presence/Absence thresholds 

The presence-absence thresholds derived from the ROC plots (Figure 21) produced four 

directly comparable maps of predicted harbour porpoise presence and absence within the 

study area (Figure 22 a-d). The PCA model predicted the widest area of harbour porpoise 

occurrence, whereas the other three models predicted presence over smaller areas. All models 

successfully predicted harbour porpoises to occur in very similar areas and identified key 

areas where harbour porpoises are usually seen (Shrimpton & Parsons 2000; Evans, 1997b; 

Pollock et al. 2000). The only area where predictions of all four models did not agree was 

around the coastal waters of the Outer Hebrides; all models except PCA predicted harbour 

porpoise presence in this area  

 

(a) (b) 

(c) (d) 
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Figure 21 Resulting presence-absence thresholds set for each technique. Circled areas indicate the  

1-specificity/sensitivity threshold pairs derived from ROC curves a) PCA b) ENFA c) GARP d) GLM 

 

 

   Model Sensitivity 1-Specificity Presence/absence threshold 

PCA 0.458 0 0.047 

ENFA 0.545 0.182 43 

GARP 0.485 0.104 19 

GLM 0.485 0.066 0.201 

 

Table 9 Sensitivity and 1-specificity pairs defining presence/absence thresholds for each modelling 

technique 

(a) (b) 

(c) (d) 
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Figure 22 Presence-absence maps for a) PCA b) ENFA c) GARP d) GLM (Red areas indicate 

predicted occurrence) 

 

Composite map 

All models predicted occurrence in the same general areas. Values for this map ranged from 0 

to 4. Zero indicating areas where none of the models predicted occurrence and four indicating 

areas where all models predicted occurrence (Figure 23). Values were highest off the north-

west coast of Jura, along the West Coast of Mull, in the Sound of Mull, Loch Linnhe, along 

the coast from the Point of Ardnamuchan to the Sound of Arisaig, around the Small Isles 

(Rum and Eigg), in the Sound of Sleat and off the south-west coast of Skye. These areas 

(a) (b) 

(c) (d) 
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correspond to areas where harbour porpoises are known to occur from previous studies in the 

study area (Shrimpton & Parsons 2000; Evans, 1997b; Pollock et al. 2000).  
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Figure 23 Composite map combining predictions of harbour porpoise occurrence for all four 

modelling techniques. A value of zero indicates areas where none of the models predicted harbour 

porpoise occurrence and a four indicates areas where all models predicted occurrence. 
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    Discussion 

Few studies have investigated the performance of two or more statistical methods when 

applied to the same dataset (Guisan and Zimmerman, 2000). Even fewer studies have 

compared the predictive performance of the newer presence-only techniques to the more 

traditional approaches, such as GLM, which rely on presence-absence data for constructing 

models to predict species distributions in a given area (Hirzel et al. 2001; Zaniewski et al. 

2002; Williams, 2003; Brotons et al. 2004). Comparative studies of this kind are essential if 

we are to fully understand how the different techniques compare in their predictive abilities 

and this is the first study to do so for any marine species.  

 

This study compared the ability of three presence-only techniques (Principal Component 

Analysis, Ecological Niche-Factor Analysis and Genetic Algorithm for Rule-set Prediction) 

and one presence-absence technique (Generalised Linear Modelling) to model and predict the 

distribution of harbour porpoises on the West Coast of Scotland. Principal Component 

Analysis (PCA), Ecological Niche Factor Analysis (ENFA), Genetic Algorithm for Rule-set 

Prediction (GARP) and Generalised Linear Modelling (GLM) were all successful in 

identifying key areas corresponding to current knowledge of harbour porpoise distribution in 

the study area. In addition, they were consistent in predicting the same areas of high 

occurrence (e.g. Sound of Mull and the Small Isles) and low occurrence (e.g. Sea of 

Hebrides). Differences were found between the modelling techniques in their predictive 

abilities, as indicated by the AUC values. However when the AUC values were compared 

statistically, no significant difference was found between them. This is in contrast to previous 

studies; Hirzel et al. (2001) used a modelling approach based on a virtual species with 

predetermined habitat preferences and found GLM predictions to be generally more accurate 

than those obtained with ENFA. Brotons et al. (2004) supported these results and found GLM 

predictions of the distribution of a forest bird species to be more accurate than those obtained 

using ENFA.  

 

Absence Data 

GLM relies on accurate absence data; if absence data are accurate and reflect low habitat 

suitability, inclusion of absence data can improve model quality (Hirzel et al. 2001). In 

contrast, if detectability of a species is low, the likelihood that the absence data contain ‘false’ 

absences is greater, which can cause a decrease in predictive power. The reliability of absence 

data is dependent on the probability of detecting the species. Cetaceans spend long periods of 

time underwater and therefore remain undetectable to visual observers until they surface for 
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air. Harbour porpoises are especially difficult to detect due to their small body size, small 

group sizes and often ‘cryptic behaviour when at the surface. Moreover, detectability 

decreases further still in higher sea states. For example, it has been shown that including data 

collected in Beaufort sea states greater than one causes negative bias abundance estimates 

(Palka, 1996). Williams (2004) recently investigated the sensitivity of habitat models to 

detectability. Presence-absence models were found to be more sensitive to those species with 

a low probability of detection thus presence-only techniques were recommended for the 

modelling of species that are difficult to detect during surveys. Presence-only techniques in 

the present study performed as well as the presence-absence technique, GLM. Presence-only 

approaches for the modelling of cetacean species therefore provide valuable alternatives to the 

more traditional presence-absence techniques, particularly if the quality of absence data is 

poor, or if an area has not been surveyed on multiple occasions.  

 

Low detectability of cetaceans and subsequent ‘false’ absences in the dataset may have 

limited the predictive ability of GLM in the present study explaining why it did not perform 

significantly better than the presence-only techniques as expected from previous studies. The 

GLM constructed using tougher absence criteria produced a better model (lower AIC value) 

than the model constructed using all surveyed grid cells, suggesting the occurrence of ‘false 

absences’. Inclusion of ‘false’ absences in model construction may explain why the 

probability map for GLM predicted occurrence in fewer areas.  

 

Similarly for model evaluation, the testing dataset was improved. When the testing dataset 

was restricted only to grid cells that had been surveyed on multiple occasions, the apparent 

predictive ability of the models was improved (AUC values of the ROC plots increased). 

Therefore, this indicates that a testing data with stricter absence criteria is more accurate for a 

‘hard to detect’ species such as the harbour porpoise. In this case, a more accurate dataset was 

achieved by not assigning a grid cell to the absence category unless it had been surveyed at 

least three times. However, as the survey threshold was further increased to five surveys per 

grid cell, models showed a decrease in accuracy. This is attributable to a reduction in the 

number of grid cells in the testing dataset. These results are consistent with those of Schweder 

(2003) who found PCA models of harbour porpoise distribution peaked in accuracy when 

cells had been surveyed at least three times. A larger dataset would be needed to investigate if 

only including cells surveyed five and ten times or more still further increased predictive 

accuracy. 
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Impact of input of variables 

The choice of variables is very important for presence-only models. Variables to be included 

in presence-only ecological modelling of a species must be representative of the niche 

occupied by the species to reduce any possible bias in model predictions. In terms of this 

study, the vast majority of surveyed grid cells fell within a narrow range of latitudes in 

comparison to the rest of the study area (Figure 10) despite the fact that harbour porpoises are 

known to occur at all latitudes within the study area (Shrimpton & Parsons 2000; Evans, 

1997b; Pollock et al. 2000). Subsequent inclusion of latitude as one of the variables resulted 

in the production of biologically erroneous, but statistically valid models. For example, the 

PCA model, despite having the highest AUC value, produced a biologically insensible model, 

which only predicted harbour porpoises to occur in the central region of the study area. This 

distribution pattern does not correspond with previous studies in the area, which have found 

harbour porpoise distribution to stretch over a wider proportion of the study area. In 

particular, harbour porpoises are frequently sighted around the Small Isles (Jeewoonarian et 

al. 2000), an area where the PCA model including latitude failed to predict any occurrence. 

This example not only illustrates the importance of including only well-sampled variables in 

predictive models, but also emphasises that a model with a high predictive accuracy does not 

necessarily produce a biologically sensible prediction of occurrence.  

 

In a comparative study of this kind, ideally models should be produced for all possible 

combinations of variables, enabling the best model to be constructed from the best 

combination of variables for each technique. Each model differs in how it selects and 

incorporates the ecogeographic variables to fit the model. For example, GLM selects variables 

that are significant in a stepwise procedure, eliminating less important variables from the 

analysis, whereas ENFA weights all input variables, so that less important variables are given 

a lower weighting and contribute less to the final model. In PCA however, the user must 

select different combinations of variables and the choice of input variables can dramatically 

influence the predictions. This was a limitation of this study as producing models for all 

possible combinations of variables would have been time consuming and in the time allowed 

it was only possible to construct nine models using different combinations of variables. 

Time constraints also limited the full implementation of the ‘environmental layer jack-

knifing’ function in GARP, which automatically selects the variables that influence 

occurrence the most from all possible combinations. Although this would have been an 

optimal approach for this study, it was only feasible to instruct GARP to run models for all 

possible combinations of three variables. Nevertheless, this allowed the best possible 
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combination of three variables to be determined which resulted in subsequent production of a 

model higher in predictive accuracy than the model that was constructed using all of the 

variables (except latitude).  

 

Interpreting the models 

It is important to note that the different models do not report the same type or scale of 

predictions (e.g. probability of occurrence in PCA versus habitat suitability in ENFA) and 

therefore are not directly comparable with one another. For example, a GLM model predicting 

a probability of occurrence of 0.4 is not directly comparable with 0.4 probability of 

occurrence in a PCA model. In order to make direct comparisons between the predictions of 

the different techniques, it was necessary to set a threshold level to determine presence and 

absence using the same criteria in each case. By definition, the ROC plot does not provide an 

inherent rule for the classification threshold of separating predicted presence-absence, as it is 

independent of any threshold measure. However, there are strategies that may be used to 

develop decision rules for defining presence/absence (Zwieg & Campbell, 1993). In this 

study, the threshold for presence/absence was defined by finding the point on the ROC plot 

which maximised sensitivity and 1-specificity. Although a subjective measure, in this context 

it was justified as being the point at which the highest level of sensitivity (true positives 

fraction) could be attained without too much loss of specificity (true negative fraction). The 

resulting presence/absence maps (Figure 22) gave a clear comparison between the predictions 

of each modelling technique. All of the maps predicted harbour porpoise presence in the same 

key areas, however the PCA model was the only model that did not predict any occurrence in 

the Outer Hebrides. It is not clear why there were differences in predictions between the 

models in this particular area. However, survey effort was low in this area, and more survey 

effort would be needed to determine whether the models were accurate in their predictions in 

this area. 

 

For effective implementation of a predictive model, the user must define at which point on the 

probability threshold to define species presence and absence i.e. a ‘cut-off’ point. The 

threshold level at which this limit is set is critical to the model’s predictions of occurrence as 

it can dramatically change the resulting predictions (Figure 24). The defined threshold limit 

will also depend on what the predictive model is to be used for. For example, if the objective 

were to designate a special area of conservation to protect an endangered species, 

overestimating areas of potential occurrence might be preferable than underestimating their 

existence; in which case a lower threshold level of presence/absence would be defined (Figure 



 45 

24a). However, if the objective were to outline areas of species occurrence for the purposes of 

ecotourism, then only the highest probabilities of presence might be desired, in which case a 

higher threshold limit of presence/absence would be applied to highlight only those areas 

where the animals are most likely to occur (Figure 24b). 

 

 
 

Figure 24 Habitat suitability maps with different presence-absence thresholds a) Habitat Suitability 

Index (HSI) < 20 indicates absence and > 20 indicates presence and b) HSI <60 indicates absence and 

>60 presence 

 

 

 

a) 

b) 
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Conclusions 

The results of this study show that all of these techniques can be used to predict the likelihood 

of occurrence of cetaceans in relation to ecogeographic variables with similar levels of 

predictive ability. The ability of a model to accurately predict areas of high species occurrence 

has several beneficial implementations for conservation and species-habitat management.  

Not only can the models assist in identifying core areas that are important to a species, but 

they can also tell us more about why those particular areas are important.  

 

For the predictive modelling of cetacean species, the choice between techniques very much 

depends on the data available to construct a model. Presence/absence models such as GLM 

can produce models of high predictive accuracy providing the absence data are reliable and 

bias due to ‘false’ absences has been minimised. However, the collection of presence-absence 

data for cetaceans can be expensive and involves the running of complex, effort-based 

surveys at sea, often requiring many dedicated vessels and observers. ‘Platforms of 

opportunity’ surveys such as the present study can allow presence-absence effort-based data 

to be reliably collected for relatively little cost. The PCA approach to modelling cetacean 

distribution requires absence data only to build a testing dataset, which may permit two 

different sampling methodologies to be combined. For example, an existing database 

containing presence-only data (i.e. public sightings database) can be used to construct the 

models, and only small-scale dedicated surveys need to be carried out to build the testing 

dataset (Schweder, 2003). To collect these data for cetaceans, ferries can be used as 

‘platforms of opportunity’ at a relatively low cost. If no absence data are available, or if there 

is uncertainty associated with the absence data, ENFA and GARP can be successfully applied 

to produce models of a similar quality to the other two techniques.  

 

The choice of technique also depends on the objectives of the model predictions. If the 

objective is to protect rare or endangered species, overestimating areas of potential occurrence 

might be more preferable then underestimating their existence (Fielding and Bell, 1997). 

Zaniewski et al. (2002) found that when comparing ENFA with presence-absence techniques, 

ENFA was more suitable for identifying areas of high conservation concern than the 

presence-absence techniques, which tended to ‘under-predict’ areas of potential biodiversity. 

In this study GLM may have underestimated harbour porpoise occurrence as it predicted the 

smallest area occurrence in comparison to the other techniques (Figure 22d). This ‘under-

prediction’ may be a result of the inclusion of ‘false’ absences in model construction and in 
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this case, would not be the appropriate technique for an environmental risk assessment, where 

all areas of potential occurrence would be desired.  

 

Different modelling techniques have different limitations and no model is perfect. 

Interestingly, a composite map combining the predictions of all of the modelling techniques 

provided a predictive distribution map that intuitively appears to be the best representation of 

actual harbour porpoise distribution based on previous studies in the area (Shrimpton & 

Parsons 2000; Evans, 1997b; Pollock et al. 2000) (Figure 23). Combining the predictions of 

different techniques may provide a clear understanding of actual distribution as the limitations 

of any one technique can be compensated for by the strengths of another model.   

Therefore, perhaps the best and non-discriminate way to model species occurrence is not to 

use a single technique but instead a combination of techniques to maximise predictive 

accuracy. 
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Glossary 
 

 
 
Training dataset 
 

  
Data points used to construct the model 

Testing dataset 
 
 

 Data points used to evaluate the model’s 
predictions 

False absence 
 
 

 Uncertainty associated with a recorded 
absence 

Confusion matrix (Fielding & Bell,  
1997) 
 

 A summary of the relative proportions 
of prediction errors  

True positive 
(correct classification) 
 

a Areas of known occurrence correctly 
predicted as present by model 

True negative 
(correct classification) 
 
 

d Areas where the species has not been 
found that are classified by the model as 
absent  

False positive  
 
 

b Areas of known occurrence predicted 
absent by the model 

False negative  
 
 
 

c Areas where the species has not been 
found that are classified present by the 
model 

Commission or ‘overprediction’ 
(presence-only models) 
 

(b) A measure of areas of absence 
incorrectly predicted present 

Omission or 
‘underprediction’(presence-only  
models) 
 

(c) Areas of known distribution predicted 
absent by the model 

Sensitivity  
 

a/(a+c) True positive fraction 

Specificity 
 

d/(d+b) True negative fraction 

1-sensitivity  
 

b/(b+d) False positive fraction 

ROC plot 
 
 

 Threshold independent method of 
assessing model accuracy 

AUC (Area Under Curve) 
 

 Index derived from ROC curve 
measuring overall model accuracy 
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Appendix I 

The methodology for constructing the PCA models follows that of Robertson et al. (2001) 
A summary of the steps involved is described below: 
 

 
1) All presence cells in the ‘training’ set were selected for constructing the model. Values for 

the environmental variables of the presence cells were standardised by subtracting the mean 

and dividing by the standard deviations of each variable. This removes the effects of 

differing units (Matrix U). 

2) PCA was then performed using different combinations of variables.  

3) Means and standard deviations used in step 1 were used again, but this time to standardise 

the values of all remaining grid cells in the dataset i.e. the absence cells (Matrix W). 

4) The principal components explaining a minimum of 90% of total variance were used for 

model construction (Schweder, 2003).  

5) These values were then multiplied by the component loadings obtained from the PCA to 

produce a matrix of component scores for all map localities in the model (V x W). 

6) In order to standardise the variance of each component axis, scores of each component were 

divided by their respective eigenvalues to produce a matrix of standardised component 

scores (Matrix Z). 

7) The probability associated with each observation was obtained by summing the squares of 

the standardised component scores. 

8) This value was substituted into the chi-square probability distribution function 

9) The probability values for each grid cell were mapped back into Arcview® to their 

associated original geographical co-ordinates in IDRISI format. 

 

 

 

 
 

 

 


