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Preface

I wish to begin by acknowledging the wealth of advice and feedback I
received following the publication of Ecological Diversity and its
Measurement. Although Measuring Biological Diversity is not formally
a second edition it has been shaped by the suggestions, advice, ideas,
and reprints considerately provided in the 15 years since its predecessor
appeared. The new book inevitably reflects the increasing complexity
of the field in that time. None the less I hope that it might continue to
meet my original goal of providing a practical guide to the myriad
measures of biological diversity.

Colleagues and friends who have helped in diverse ways during the
writing of this book include: Mary Alkins-Koo, Anette Becher, Gary
Carvalho, Gianna Celli, Anne Chao, Steven Chown, Andrew Clarke,
Bob Clarke, Jonathan Coddington, Liva Coe, Robert Colwell, Jerry
Coyne, Kari Ellingsen, Bland Finlay, Kevin Gaston, Jaboury Ghazoul,
Charles Godfrey, Nick Gotelli, Jeff Graves, John Gray, Bill Hamilton,
Paul Harvey, John Harwood, Peter Henderson, Ian Johnston, Jake Kenny,
Russ Lande, Anna Ludlow, Tino Macias Garcia, “Haggis” Magurran,
Rajindra Mahabir, Bob May, Charles Paxton, Owen Petchey, William
Penrice, Lars Pettersson, Joe Phelan, Dawn Phillip, Helder Lima de
Queiroz, Indar Ramnarine, Sue Ratner, Mike Ritchie, Michael
Rosenzweig, Ben Seghers, Dick Southwood, Chris Todd, and Richard
Warwick. The St Andrews University Junior Honours Biodiversity
class tested some of the methods reviewed in this book and my re-
search group cheerfully kept our projects on fish ecology and behavior
moving forward while I was thinking about biological diversity. Peter
Henderson, Dawn Phillip, William Penrice, and Fife Nature kindly
allowed me to use unpublished data. Luiz Claudio Marigo provided the
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cover picture of Lago Mamiraud. I also wish to thank Peter Henderson for
introducing me to the flooded forests of Mamirau4, and Helder Lima de
Queiroz for welcoming me back there. I am equally grateful to my
colleagues in Trinidad (particularly Dawn Phillip and Indar Ramnarine)
and Mexico (Tino Macias Garcia) for their insights into neotropical
biodiversity.

Iremain indebted to Palmer Newbould for his prescience in recogniz-
ing that biological diversity would be an important research theme, and
tothe ecologists at the University of Ulster for their encouragement dur-
ing the early stages of my research career. The Leverhulme Trust, Rock-
efeller Foundation, Royal Society, and University of St Andrews
supported me while I was writing this book. By taking over my teaching
for a year Iain Matthews enabled me to finish it. Andrew Clarke, Robert
Colwell, and an anonymous reviewer read the entire manuscript and
made generous, constructive, and incisive comments; I am in their debt.
Any errors that remain are, of course, entirely my own responsibility. My
editors at Blackwell Publishing were invariably helpful and supportive;
Ian Sherman and Sarah Shannon deserve special gratitude. Finally, Jerry
Coyne helped in innumerable ways. Thank you all.

Anne Magurran
St Andrews



chapter one

Introduction: measurement of
(biological) diversity'

Tbegin this book on a personal note. Most ecologists and taxonomists are
based in Europe and North America [Golley 1984; Gaston & May 1992).1
am no exception. Thus, like many others, my initial insights into the di-
versity and relative abundance of species were shaped by my experience
of working in temperate landscapes. Indeed, the first iteration of this
book grew out of my doctoral research on the diversity of Irish woodlands
{Magurran 1988). We are all aware that species are distributed unevenly
across the earth’s surface but the magnitude of the difference between
the diversity of tropical and temperate systems is something that is diffi-
cult to comprehend from written accounts alone. Few places have illus-
trated this contrast more vividly for me than the Mamirau4 Sustainable
Development Reserve in the Brazilian Amazon? (Bannerman 2001). The
reserve, which is located at the confluence of the Solimées and Japura
Rivers near the town on Tefé in Amazonas, Brazil, covers 1,124,000 ha
(approximately one-third the size of Belgium| and is devoted to the con-
servation of varzeahabitat. Varzea is lowland forest that experiences sea-
sonal flooding. In Mamirau4 forests can be flooded for more than 4
months a year, during which time water levels rise by up to 12m. The
challenge of producing an inventory of the animals and plants that in-
habit this reserve is formidable. It covers a vast area, much of which is
difficult to access. The expanse of water impedes sampling. Even fishing
can be difficult at high water since the fish move out from the river chan-
nels to swim amongst the leaves and branches of the flooded trees.

1 After Simpson (1949).
2 http://www.mamiraua.org.br.
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Figure 1.1 A species accumulation curve for fish found in the floating meadow habitat at
the Mamiraud Sustainable Development Reserve in the Brazilian Amazon. The number
of species encountered is plotted against the area sampled. Data points reflect the order in
which samples were taken. These data were kindly supplied by P. A. Henderson and the
sampling methodologies are described in Henderson and Hamilton {1995} and Henderson
and Crampton (1997).

Not unexpectedly some groups of animals and plants in the reserve are
much better recorded than others. As elsewhere it is the charismatic
species, the birds and the mammals, that are most thoroughly enumer-
ated. Mamiraud supports at least 45 species of mammals including two
species of river dolphin (Inia geoffrensis and Sotalia fluviatilis), the
Amazon manatee (Trichechus inuguis) and two endemic monkeys (the
white uacari Cacajao calvus and the black-headed squirrel monkey
Saimiri vanzolinii). In addition there are more than 600 species of vascu-
lar plants, approximately 400 species of birds and well over 300 species of
fish. But even here there are gaps and omissions. Bats, for example, have
not yet been formally surveyed. As Figure 1.1 reveals, the species accu-
mulation curve for fish species associated with a single aquatic habitat—
the floating meadow —shows no sign of reaching an asymptote, despite
intensive sampling (Henderson & Hamilton 1995; Henderson & Cramp-
ton 1997]. Estimates of the final total of fish species in the reserve remain
extremely speculative. The invertebrate fauna is even less well docu-
mented and many new species undoubtedly await discovery and descrip-
tion. With the exception of a few key organisms, such as the pirarucuy,
Arapaima gigas, a bony-tongued fish now threatened as a result of over-
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exploitation (Queiroz 2000), abundance data exist for very few species.
Visiting Mamiraud gave me a new perspective on the diversity of life on
earth. It also provokedsobering reflections on the challenges of recording
that diversity. ,

This is not to say, of course, that diversity measurement in other, less
richly tapestried, habitats is problem free. I teach a course on biodiver-
sity to third-year students in Scotland’s St Andrews University. One of
the class assignments is to estimate the number of species in each of 40
taxa in the county of Fife. Data are presented as species presence in 5 x
5km grid squares, standard estimation techniques are applied (these are
described in Chapter 3] and the students are asked to present a report on
the diversity of their chosen plant or animal group. Here too, it is the ap-
pealing taxa, the birds and the butterflies, that are most comprehensive-
ly recorded and for which the most robust estimates of richness can be
obtained. Organisms that are difficult to identify or less popular with the
public are much more patchily covered. The class invariably identifies a
hotspot of mollusk diversity located in the grid square in which the Fife
expert on the taxon happens to live and can hazard only a rough guess at
the number of beetles and bugs that the county contains (see Chapter 3
for further discussion of these points|. They find this uncertainty frus-
trating and recommend an increase in sampling effort. Yet, the data set
holds more than 5,500 species and Fife is one of the most thoroughly sur-
veyed counties in Britain, which in turn has one of the best species in-
ventories in the world. It would clearly be desirable to fill all the gaps in
the Fife data base, but the resources required to do this must be traded off
against societal needs such as housing, education, and support for the
disadvantaged. Taxpayers rarely find such arguments compelling.

These examples crystalize the challenges that biodiversity measure-
ment must meet. Few surveys tally all species. Time, money, and experts
with appropriate identification skills are invariably in short supply.
Samplingis often patchy. In many casesitis even hard tojudge the extent
to which data sets are deficient. These problems are magnified as the
scale of the investigation, the inaccessibility of habitat, and the richness
and unfamiliarity of the biota increase. The practical difficulties of sam-
pling are compounded when abundance data are collected. Yet, the need
to produce accurate and rapid assessments of biodiversity has neverbeen
more pressing. It is against this backdrop that Thave written this book.In
the remainder of the chapterIreflect on changes in the fieldin the last 15
years {following Magurran 1988] and outline the book’s goals and limita-
tions. I also set the scene by discussing my usage of the terms "biodiver-
sity” and “biological diversity” and present some thoughts on how the
nature of an investigation is molded by its geographic scale, as well as by
the ecological arena in which it is conducted.
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What has changed in the last 15 years?

Ecologists have always been intrigued by patterns of species abundance
and diversity (Rosenzweig 1995; Hawkins 2001). Some questions raised
by these patterns, such as the diversity of island assemblages, have
proved amenable to study (MacArthur & Wilson 1967). Others, includ-
ing latitudinal gradients of diversity, or the distribution of commonness
and rarity in ecological communities, continue to challenge investiga-
tors (Brown 2001). The 1992 Rio Earth Summit marked a sea change in
emphasis. Biological diversity was no longer the sole concern of ecolo-
gists and environmental activists. Instead, it became a matter of public
preoccupation and political debate. Many people outside the scientific
community are now conscious that biodiversity is being eroded at an ac-
celeratingrate even if few fully comprehend the magnitude of the loss. It
has been estimated that around 50% of all species in a range of mammal,
bird, and reptile groups will be lost in the next 300-400 years (Mace
1995). And while, on average, only a handful of species evolve each year
(Sepkoski 1999 used the fossil record to estimate that the canonical spe-
ciation rate is three species per year) extinction rates may be as great as
three species per hour (Wilson 1992, p. 268). No single catalogue of
global biodiversity is yet available and estimates of the total number of
species on earth vary by an order of magnitude (May 1990a, 1992, 1994b;
and see Chapter 3). The Earth Summit also led national and local author-
ities to devise biodiversity action plans and to improve biodiversity
monitoring. Probably the most significant change in the last 15 years
therefore is the increased awareness of biodiversity issues. With this has
come a broadening of the concept of (biological) diversity. This point is
discussed in more depth below.

Heightened interest in biodiversity has led to the development of im-
portant new measurement techniques. Notable advances include innov-
ative niche apportionment models (Chapter 2) along with improved
methods of species richness estimation (Chapter 3) and new techniques
for measuring taxonomic diversity (Chapter 4). Increased attention has
also been devoted to sampling issues (Chapter 5) while methods of mea-
suring B diversity (Chapter 6} have been refined. This is set against a
deeper understanding of species abundance distributions and more em-
pirical tests of traditional approaches. The fundamentals of biodiversity
measurement may not have changed in the last 15 years but better tools
are now available.

The third significant change in the last decade and a half is the near
universal access to powerful computers and the advent of the internet.
This technology has revolutionized the measurement of diversity.
Greater computing power has also made the use of null models and ran-
domization techniques more tractable. A growinglist of computer pack-
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Table 1.1 Biodiversity measurement software. A selection of web sites are listed that
provide access to downloadable software or information on where this software can be
obtained. The list is not exhaustive but does include those sites that have been used in the
preparation of this book. All sites follow the normal convention of beginning http://. The
table also indicates whether the software is written for a Macintosh ora PC [Windows|
platform.

Web sites Software details

viceroy.eeb.uconn.edu/EstimateS EstimateS package for species richness
estimation. Also calculates a range of o
diversity statistics and complementarity (B)
measures. Mac and PC

homepages.together.net/~gentsmin/ Ecosim. Focuses on null models in ecology.
ecosim.htm Computes rarefaction curves and some
diversity indices. PC

www.irchouse.demon.co.uk/ Species Diversity and Richness. Calculates a
range of diversity measures (with
bootstrapping), richness estimators, rarefaction
curves, and B diversity measures. PC

www.exetersoftware.com ; Programs to accompany Krebs's (1999)
Ecological Methodology. Good range of
richness, diversity, and evenness measures plus
log normal and log series models. PC

www.biology.ualberta.ca/jbzustp/ Provides software for some of the diversity
krebswin.html measures (ond other techniques) described in
Krebs's (1999) Ecological Methodology. PC

www.entu.cas.cz/png/PowerNiche/ PowerNiche package provides expected values
for certain niche apportionment models. PC

www.pml.ac.uk/primer/ PRIMER software. Multivariate techniques for
community analysis. Includes diversity
measures, dominance curves, and Clarke and
Warwick’s taxonomic distinctness statistics
(Chapter 4). PC

ages is now available and standard spreadsheets can be used to perform
hitherto daunting calculations. Table 1.1 lists the computer packages
mentioned elsewhere in the text. [ have made no attempt to produce a
comprehensive list but simply wish to draw the reader’s attention to the
packages I have found useful. Some of these are freeware or shareware
while others are commercially produced. Web site addresses are correct
at the time of writing but there is no guarantee that they will still exist at
the time of reading. I would be grateful to learn about other packages re-
lating to methods outlined in the book.
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Biodiversity, biological diversity, and ecological diversity

It is often assumed that the term “biological diversity” was coined in the
early 1980s. Izsik and Papp (2000), for example, credit it to Lovejoy
(1980a). Harper and Hawksworth (1995) note that the term is of older
provenance but also date its renaissance to 1980 (Lovejoy 1980a, 1980b;
Norse & McManus 1980). However, I first came across the concept in
1976 when discussing potential PhD topics with my supervisor, Palmer
Newbould, soI can testify that the term biological diversity was already
in current usage then (and that it had acquired much of its modern mean-
ing). The earliest reference I can locate is by Gerbilskii and Petrunke-
vitch (1955, p. 86) who mention biological diversity in the context of
intraspecific variation in behavior and life history. Undoubtedly there
are even earlier examples. By the 1960s the term began to be used more
widely. For example, Whiteside and Harmsworth {1967, p. 666)include it
in a discussion of the species diversity of cladoceran communities while
Sanders (1968, p. 244} suggests that diversity measurement, notably rar-
efaction, will help elucidate the factors that affect biological diversity.
Harper and Hawksworth {1995] point out that Norse et al. (1986) were
first to explicitly dissect biological diversity into three components: ge-
netic diversity (within-species diversity), species diversity (number of
species), and ecological diversity [diversity of communities).

The word “biodiversity,” on the other hand, is indisputably of more re-
cent origin. This contraction of “biological diversity” can be traced to a
single event. It was apparently proposed in 1985 by Walter G. Rosen
during the planning of the 1986 National Forum on BioDiversity
(Harper & Hawksworth 1995). The subsequent publication of these pro-
ceedings in a book entitled Biodiversity, under the editorship of E. O.
Wilson (1988), introduced the term to a wider audience. In fact the word
caught the mood of the moment so well that it soon overtook biological
diversity in popularity (Figure 1.2). Like most other users (see also
Harper & Hawksworth 1995), Tuse “biodiversity” and “biological diver-
sity” interchangeably. The United Nations Environment Programme
(UNEP) definition (Heywood 1995, p. 8] is widely cited:

“Biological diversity” means the variability among living organisms
from all sources including, inter alia, terrestrial, marine and other
aquatic systems and the ecological complexes of which they are part; this
includes diversity within species, between species and of ecosystems.

Harper and Hawksworth (1995) take exception to the reference to
ecosystem, an entity that includes the physical environment (which by
definition does not have biodiversity). They suggest “community” as a
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Figure 1.2 The number of papers per annum {between 1986 and 2001} that mention
“biodiversity,” “biological diversity,” or “ecological diversity” in their titles, abstracts, or
keywords. Note log scale on y axis. (Data from Web of Science (http://wos.mimas.ac.uk/).}

substitute. While it does not matter greatly whether “biodiversity” or
“biological diversity” is the chosen term, the fact that the concept spans
a range of organizational levels means that it is important to specify
how it is being used. Harper and Hawksworth (1995) propose the ad-
jectives “genetic,” “organismal,” and “ecological” to match the three
levels embodied in the UNEP definition.

Hubbell (2001, p. 3) offers amore focused definition that is closer to the
subject matter of this book. He defines biodiversity to be “synonymous
with species richness and relative species abundance in space and time.”

There is an important distinction between the concept of biodiversity
and the notion of a “biodiversity movement.” The biodiversity move-
ment is concerned with political and ethical issues as well as biological
ones. Issues such as pesticide use, environmental economics, the fate of
endangered species and land use fall within its domain. Indeed, as Smith
(2000, p. x) has pointed out “it has more to do with human aspirations
than it does with biological focus.” I do not consider the biodiversity
movement further except to observe that the discussions and decisions
it entails must be underpinned by accurate biodiversity assessment.

“Ecological diversity” is a term that has come to have several overlap-
ping meanings. Pielou (1975, p. v) defined it as “the richness and variety
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... of natural ecological communities.” In essence, in its original formu-
lation ecological diversity was something that could be measured by a di-
versity index. It was for that reason that I used it in the title of my first
book (Magurran 1988). Norse and McManus (1980) treated ecological di-
versity as equivalent to species richness —a more restrictive definition
than Pielou’s. At present, where it is used at all, ecological diversity is
synonymous with biological diversity in its broadest sense (Harper &
Hawksworth 1995). It is now associated with the diversity of communi-
ties (or ecosystems) and covers matters such as the number of trophic
levels, the range of life cycles, and the diversity of biological resources as
well as the variety and abundance of species. This evolving terminology
is one reason for reverting to the most enduring term of all, “biological
diversity,” for the title of this book. The fact that “ecological diversity”
islittle used these days is another (Figure 1.2).

The definition of biological diversity I have adopted for the book is
simply “the variety and abundance of species in a defined unit of study.”
My goal is to evaluate the methods used to describe this diversity. I
focus on species because they are the common currency of diversity. The
first question that people ask is usually something like “how many
species of trees are found in Costa Rica?” or “how many beetles are
there in England’s New Forest?” or even “how many species are there
on the earth?” This focus does not preclude measures that involve
phylogentic information, which must in any case be weighted by
species richness. I include abundance because the relative importance of
species is a significant topic in its own right, and also because relative
abundance is implicitly, if not explicitly, involved in the estimation of
species richness.

Izsik and Papp (2000) make a distinction between measures of eco-
logical diversity and measures of biodiversity. Measures of ecological
diversity traditionally, but not invariably (see, for example, Pielou 1975;
Magurran 1988], take account of the relative abundance of species. A
familiar example is the Shannon index, discussed in depth in Chapter 4.
This class of measures treats all species as equal (see the section below
on the assumptions of biodiversity measurement]. Newer measures
typically ignore abundance differences between species, focusing in-
stead on taxonomic differences. However, I find Izsak and Papp’s {2000)
distinction artificial, not least because Pielou {1975), in her pioneering
text on ecological diversity, considered ways of incorporating phy-
logenetic information into diversity measures. It is also of note that
Warwick and Clarke’s (2001} taxonomic distinctness measure—one
of the most promising new approaches—is a form of the Simpson index,
and can be adapted to incorporate abundance data. I have therefore used
the term “diversity measure” to cover all the methods reviewed in this
book.
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Biological diversity, in the sense [ am using it in this book, can be par-
titioned into two components: species richness and evenness (Simpson
1949). The term “species richness” was coined by McIntosh (1967} and
represents the oldest and most intuitive measure of biological diversity.
Species richness is simply the number of species in the unit of study.
When I say simply,  mean that the concept is simple to define; its mea-
surement is not always so straightforward (Chapter 3). I use “species
richness measure” when referring to techniques that focus on this com-
ponent of diversity. “Evenness” describes the variability in species abun-
dances. A community in which all species have approximately equal
numbers of individuals {or similar biomasses) would be rated as ex-
tremely even. Conversely, a large disparity in the relative abundances of
species would result in the descriptor “uneven.” The nature of evenness
isfurtherexploredin Chapters 2 and 3. Rao ({1982}, cited in Baczkowski et
al.[1998]) equates richness and evenness with community size and shape
respectively. A “diversity index” is a single statistic that incorporates in-
formation on richness and evenness. This blend is often referred to as
"heterogeneity” (Good 1953; Hurlbert 1971) and for the same reason di-
versity measures that incorporate the two concepts may be termed "het-
erogeneity” measures. The weighting placed on one component relative
to the other can have a significant influence on the value of diversity
recorded and the way in which sites or assemblages are ranked. A large
number of such measures have been devised and much of the book is de-
voted to assessing their relative merits. I follow the convention of using
the term ”diversity measure” or “diversity index” to refer to measures
that take species abundances (as well as or in place of species richness]
into account.

What this book is about. . .

The primary goal of this book is to provide an overview of the key
approaches to diversity measurement. It covers both o diversity (the
diversity of spatially defined units) and B diversity (differences in the
compositional diversity of areas of o diversity). Species abundance
models, species richness estimation techniques, and synoptic diversity
statistics are reviewed. No specialist mathematical or statistical knowl-
edge is assumed. Worked examples are included for those methods that
are reasonably tractable and that require only a calculator, spreadsheet,
or readily obtainable software. Pointers to relevant literature and com-
puter packages are provided for other techniques. I offer guidance on
when to use certain methods and on how to interpret the outcome. The
limitations of the various procedures are also considered. Most of all I
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stress the importance of having clearly defined aims or a testable
hypothesis [Yoccoz et al. 2001).

... and what it is not about

Ecologists typically make the distinction between pattern and process
(following Watt 1947). This book focuses on the description of pattern
and has relatively little to say about process. For example, I explain how
to quantify the differences between diverse and impoverished habitats
without necessarily making inferences about the reasons for those dif-
ferences. However, pattern cannot be entirely divorced from process.
Niche apportionment models are one manifestation of that linkage
(Tokeshi 1999; see also Chapter2). The use of null models to explain em-
pirical species abundance patterns is another (see, for instance, Hubbell
2001). These aspects of biodiversity measurement are dealt with as they
arise. Readers searching for a more detailed analysis of process will find
the following books of interest: Huston (1994), Rosenzweig (1995,
Tokeshi (1999), Gaston and Blackburn (2000}, and Hubbell {2001).

Investigations that seek to explain spatial or temporal shifts in diver-
sity treat process as the independent variable and diversity as the
dependent variable. The relationship between diversity and ecosystem
function is also receiving a great deal of attention (Kinzig et al. 2002;
Loreau et al. 2002), but here the axes are reversed (Purvis & Hector 2000).
Diversity and function may be linked, at least as richness increases from
low to moderate levels (see, for example, Hector et al. 1999; Chapin et al.
2000). Moreover, diversity can be positively correlated with a system'’s
ability to withstand disturbance (McCann 2000). As with so much else in
ecology and evolution these ideas were first aired by Darwin (1859} who
discussed a pioneering experiment conducted by George Sinclair before
1816 [Hector & Hooper2002). The reasons for the covariance between di-
versity and function, and the consequences of it, lie beyond the scope of
this book. However, the methods that this book reviews are relevant to
the debate since the outcome of these investigations will depend on how
diversity is measured. For example, experiments and simulations that
construct perfectly even assemblages are likely to overestimate the
strength of the natural relationship between diversity and function.
More realistically assembled communities can lead to different but
more representative conclusions (Nijs & Roy 2000; Wilsey & Potvin
2000).

A third contemporary preoccupation is the conservation of biological
diversity. The book recognizes that this is a vitally important endeavor
but does not seek to offer advice on how it might be achieved beyond not-
ing that the techniques described form an important part of the conser-
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vation biologist’s tool kit. There is an extensive literature on the subject;
Margules and Pressey (2000} and Pullin (2002) provide an entry point.

Finally, because my focus is on species I have not attempted to discuss
the measurement of diversity in taxa where species (or theirequivalents)
are not readily identifiable entities. For example, the concept of species
diversity can break down where microorganisms are concerned
(O’Donnell et al. 1995}, though see Finlay (2002 for a fascinating analysis
of global dispersal patterns amongst free-living microbial eukaryote
species. Molecular techniques are increasingly used to measure micro-
bial diversity (Fuhrman & Campbell 1998; Copley 2002] and emerging
technologies, such as DNA microarrays—"gene chips” —appear to hold
great potential (Brown & Botstein 1999). Neither have I tried to address
the measurement of genetic diversity within species [Templeton 1995).
Thatisthesubjectofalargeand growingliteratureinitsownright|see, for
example, Hillis et al. 1996; Brettschneider 1998; Goldstein & Schlotterer
1999; Schmidtke 2000; Sharbel 2000), and although there are some paral-
lels in approach there are also significant differences in emphasis.

Assumptions of biodiversity measurement

Diversity measurement is based on three assumptions (Peet 1974). First,
all species are equal. This means that species of notable conservation
value or species that make a disproportionate contribution to commu-
nity function do not receive special weighting. The relative abundance of
a species in an assemblage is the only factor that determines its impor-
tance in a diversity measure. Richness measures make no distinctions
amongst species at all and treat the species that are exceptionally abun-
dant in the same manner as those that are extremely rare. Exceptions can
be made to this however. An investigator may decide to focus on end-
emic species for example, and compare the diversity of these at different
localities. Taxonomic distinctness is a special case. These measures de-
scribe the average relatedness of species in a sample —an assemblage in
which species are distributed amongst several families will be more di-
verse than another with identical richness and relative abundance, but
where the species are clustered in a single genus (Warwick & Clarke
2001; see also Chapter 4). Furthermore, abundance may covary with
other species characteristics such as body size (Gaston & Blackburn
2000}. Although these considerations are not explicitly addressed in bio-
diversity measurement the patterns that emerge shed light on the
processes such as niche apportionment and energy allocation that struc-
ture communities.

The second assumption of biodiversity measurement is that all indi-
viduals are equal. In principle, as far as these measures are concerned,
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there is no distinction between the General Sherman (the world’s largest
tree in terms of volume) in California’s Sequoia National Park and a
small seedling Sequoiadendron giganteum. In practice, however, sam-
pling tends to be selective. Surveys of woody vegetation typically enu-
merate all individuals in classes bounded by increments in tree diameter
[see, for example, Whittaker 1960). Seine nets and plankton nets capture
only those individuals that are too large to escape through the mesh.
Moth trapping samples adult lepidoptera; caterpillars must be surveyed
using different techniques. Sampling issues are considered further in
Chapter 5.

Finally, biodiversity measures assume that species abundance has
been recorded using appropriate and comparable units (Chapter 5).
Abundance must be in the form of number of individuals when the log
series model is used (though the model can be adapted to accommodate
other discrete measures such as occurrence data—see Chapter 2). It is
clearly unwise to include different types of abundance measure, such as
number of individuals and biomass, in the same investigation. Less obvi-
ously, diversity estimates based on different units are not directly com-
parable. Rankings of assemblages, based on the same diversity statistic,
may differ if different forms of abundance have been used.

Spatial scale and biodiversity measurement

Biodiversity is, in essence, a comparative science. The investigator typi-
cally wants to know if one domain is more diverse than another, or
whether diversity has changed over time due to processes such as suc-
cession or enrichment. But which entities should be compared, and over
what scales can they be studied? The community seems the natural unit
(Harper & Hawksworth 1995]. Ever since Forbes (1844 first identified
“provinces of depth” in the Aegean Sea, ecologists have recognized that
species form the characteristic groupings we now term communities.
Communities are also associated with particular geographic localities.
As Pethybridge and Praeger {1905) remarked,

Different conditions of climate, soil, water-supply and the various other
environmental factors are evidenced by the existence of different associ-
ations, so that the distribution of vegetation from this—the “ecologi-
cal” —point of view, is closely bound up with the geography of the area in
its widest sense (my italics).

In addition to their boundaries in space and time, communities are fur-
ther identified by the presence of ecological interactions amongst the
constituent species. A community is the arena within which competi-
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tion, predation, parasitism, and mutualism are played out. Indeed, the re-
lationship between resources, species interactions, and species abun-
dance is the key to explaining the characteristic patterns of diversity
highlighted in Chapter 2. .

However, while the community is a fundamental ecological concept,
it is also, as Fauth et al. {1996) observe, an inexact one. Major ecological
textbooks offer conflicting definitions of the term. Some investigators
add a phylogenetic dimension and speak of plant or animal communi-
ties. In part this arises from the practical difficulties of addressing the full
breadth of diversity in a single study; there are few investigators with the
taxonomic expertise to identify the range of vertebrate and invertebrate
animals, and plants, let alone microbes, at a given locality ([see Lawton et
al. 1998 for a discussion of the effort required to compile an inventory of
one forest). Furthermore, the inclusion of taxa with abundances span-
ning many orders of magnitude, raises potential statistical problems.
Odum (1968), for instance, notes that the approximate density of organ-
isms per square meter is 10%! for soil bacteria, 10 for grasshoppers
(Orchelimum sp.), 1072 for mice (Microtus sp.), and 105 for deer
(Odocoileus sp.).

When investigations are restricted to subsets of taxa, the term assem-
blage is often substituted for community. But even this can lead to con-
tusion because, as Fauth et al. (1996) note, community and assemblage
are often used synonymously with each other, as well as with guild and
ensemble. Fauth et al.’s(1996) solution, which has particular application
to the measurement of biological diversity, is to view associations of
organisms in the context of three overlapping sets delineated by phy-
logeny, geography, and resources (Figure 1.3).

The first of these, phylogeny (set A), encompasses species of common
descent. Communities, which belong to set B, are defined as collections
of species occurring at a specified place and time. To meet this opera-
tional definition it is necessary to identify the geographic boundary of
the community. This boundary may either be natural —for example, all
organisms in a pond—or arbitrary —for instance, all organisms in a 1 m?2
plot of grassland. Ecological interactions are thus less a condition of the
community than a consequence of it. The crucial point, according to
Fauth et al. (1996) is that communities are not delimited either by phy-
logeny (set A) or resource use (set C). Guilds belong to the third set and
define groups of organisms that exploit the same resources, in a similar
manner ([Root 1967).

The intersections of the sets offer clarification of other widely used
terms and concepts. Assemblages consist of phylogenetically related
members of a community. Local guilds embrace species that share re-
sources and belong to the same community. There is no single term in
common use to describe the intersection of sets A and C, but organisms
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Figure 1.3 Fauth et al. (1996) used a Venn diagram to assign groups of organisms to three
ecological sets defined by geography, resources, and phylogeny. Under their definition,
communities consist of species found at a given place and time. Communities in which
species are taxonomically related are termed assemblages, and assemblages whose
members exploit a common resource are known as ensembles. These are the entities
most often studied in biological diversity. {Redrawn with permission from Fauth et al.
1996.)

that reside there are often given functional descriptors, such as “pelagic
cichlids.” Finally, ensembles comprise interacting species that share an-
cestry as well as resources.

The diversity of any of these groupings of species could in principle be
examined. Most investigators, however, for all the logistic and statistical
reasons alluded to above, will focus on either assemblages or ensembles.
By clearly distinguishing the domains within which diversity may be ex-
plored Fauth et al.’s (1996) framework clarifies previously imprecise con-
cepts and facilitates comparative analyses of diversity.

Not all ecologists are persuaded that communities are discrete and
meaningful units with distinct boundaries, however. The fossil record
indicates that as the ice age eased, taxa migrated individually and assem-
blages were constructed seemingly at random. It is arguable that com-
munities have no temporal validity, and possibly no ecological validity
either. Furthermore, ecological entities may be considered self-similar,
thatisthat the same pattern of heterogeneity is found at all spatial scales.
Self-similarity models can be used to make predictions about relative
species abundance and produce outcomes that are consistent with some
natural patterns (Harte & Kinzig 1997; Harte et al. 1999a; see also dis-
cussion in Chapter 2}. Wilson and Chiarucci {2000) used species—area
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curves based on forest stands in Tuscany to test these alternatives. They
conclude that “there is no evidence for a special level in the spatial con-
tinuum that we can label ‘community’.” None the less, Wilson and
Chiarucci (2000} concede that the term community is a convenient label
and s likely to remain in common usage.

Irrespective of the final resolution of this debate the spatial scale of the
investigation has some practical implications for investigators. As noted
above, the geographic boundaries of communities, assemblages, and en-
sembles are defined by the investigator. Given the invariably positive as-
sociation between species richness and area, special care is needed when
contrasting the diversity of assemblages that differ markedly in spatial
scale, or when extrapolating from local assemblages to regional ones.
These points are revisited and developed in Chapter 6, which further
points out that scale has implications for measures of B as well as a. di-
versity. Practical considerations mean that abundance data become
more challenging to collect as the geographic coverage of the investiga-
tion increases (though range size can be used as a surrogate of abundance
for certain well-recorded taxa (Blackburn et al. 1997)). Speciesrichness is
thus the usual metric of diversity when large areas are scrutinized
({though even here, as Chapter 3 will reveal, the relative abundances of
species cannot be entirely ignored). Less obviously, it may not always be
meaningful to employ niche-based models to explore the diversity of
large-scale, species-rich assemblages, nor to use certain statistical mod-
els, such as the log normal, to describe the diversity of localized or im-
poverished ones. The relationship between assemblage size and the
distribution of species abundance is considered in depth in the next
chapter. An additional consideration is that the relationship between a
and B diversity will shift with scale. Finally, it is important to be aware
that local communities are embedded in landscapes. Species composi-
tion, along with species richness and abundance, is shaped by regional
processes (Gaston & Blackburn 2000; Hubbell 2001). The isolation of an
assemblage influences immigration rate. This in turn has implications
for community structure. Null models are an effective means of evaluat-
ingobserved patterns of species composition and diversity but they need
to be constructed usinga realistic species pool (Chapter 7). Even the most
narrowly focused investigations cannot entirely ignore these wider
considerations.

Plan of the book

The distribution of species abundance contains the maximum amount
of information about a community’s diversity. Chapter 2 therefore sets
the scene by reviewing the ever-expanding range of species abundance
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models. These can be divided into two categories: statistical models en-
deavor to describe observed patterns while biological models attempt to
explain them. The split between biological and statistical also mirrors,
toa large extent, the division between stochastic and deterministic mod-
els. This distinction has important implications for model fitting. Two
well-known statistical models, the lognormal and log series, continue to
stand the test of time. Biological models have had a mixed history
but new formulations by Mutsunori Tokeshi represent an exciting
development.

Species richness is the iconic measure of biological diversity. Unfortu-
nately, species inventories can be both costly and challenging to compile
and are subject to sample size biases. Chapter 3 investigates methods of
estimating species richness. Some of these make inferences based on the
underlying pattern of species abundances. However, a new class of non-
parametric estimators, devised by Anne Chao and her colleagues, has
revolutionized the field.

Species diversity, or heterogeneity, measures are the traditional way
of quantifying biological diversity. Some old favorites, such as the
“Shannon index” remain popular and new indices continue to be
invented. Chapter 4 discusses these measures and evaluates their
performance. Guidelines for the selection of diversity measures are
provided.

The goal of biodiversity measurement is usually to compare or
rank communities. Meaningful comparisons, however, demand good
data. Chapter 5 explores important problems and pitfalls in data
collection. The issues addressed include sampling protocols and
methods of measuring abundance. The chapter also shows how to make
statistical comparisons of diversity estimates and explains what to
do when different methods yield different rankings. Finally, it con-
siders one important application of diversity measures—environmental
assessment.

Up to this point the book focuses on o diversity —the diversity of spa-
tially defined units. However, B diversity, the difference in species com-
position (and sometimes species abundance), or turnover, between two
or more localities is an important part of biological diversity. Indeed, the
diversity of a landscape is determined by the levels of both ocand B diver-
sity. Similarly, turnover through time sheds light on the temporal dy-
namics of an assemblage. Chapter 6 examines methods of assessing B
diversity. New techniques for estimating the number of shared speciesin
two assemblages are also reviewed.

The book concludes with a brief overview of the current status
of diversity measurement and sets out key challenges for the
future.
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Summary

1 There are considerable challenges in measuring biological diversity,
not only in species-rich tropical systems but also in more intensively
studied temperate localities.

2 Fortunately, there have been a number of positive developments in the
last 15 years. These include increased awareness of biodiversity issues,
the development of new techniques, and vastly improved computing
power.

3 The terms “biological diversity,” “biodiversity,” and “ecological di-
versity” are discussed. I follow common practice in treating “biological
diversity” and “biodiversity” as synonyms.

4 The definition of biological diversity I have adopted is simply “the va-
riety and abundance of species in a defined unit of study.” Biological di-
versity (in this sense) can be partitioned into two components: species
richness and evenness. Diversity measures, of which there are a large
number, weight these components in different ways.

5 The major assumptions of diversity measurement are noted. These are
that all species are equal, that all individuals are equal, and that abun-
dance has been measured in appropriate and comparable units.

6 Delineating the unit of study is an important part of biodiversity mea-
surement. Fauth et al.’s (1996) definition of communities, assemblages,
and ensembles provide a useful framework. The significance of spatial
scale is also considered.



chapter two

The commonness, and rarity,
of species’

In no environment, whether tropical or temperate, terrestrial or aquatic,
are all species equally common. Instead, it is universally the case that
some are very abundant, others only moderately common, and the
remainder—often the majority —rare. This pattern is repeated across
taxonomic groups (Figure 2.1). Indeed, the adoption, by early phytogeog-
raphers such as Tansley, of characteristic species to classify plant associ-
ations (Harper 1982), implicitly recognizes that certain members of an
assemblage, by virtue of their abundance, help define its identity.

Many people, as Chapter 1 observed, treat biological diversity, or bio-
diversity, as synonymous with species richness. However, the fact that
species abundances differ means that the additional dimension of even-
ness can be used to help define and discriminate ecological communities
(Figure 2.2). Evenness? is simply a measure of how similar species are in
their abundances. Thus, an assemblage in which most species are equal-
ly abundant is one that has high evenness. The obverse of evenness is
dominance, which, as the name implies, is the extent to which one or a
few species dominate the community. It is conventional to equate high
diversity with high evenness (equivalent to low dominance) and a vari-
ety of measures have been devised to encapsulate these concepts (see
Chapter 4 for details].

The observation that species vary in abundance also prompted the de-
velopment of species abundance models. Motomura’s (1932) geometric

1 After Preston (1948). ‘

2 Lloyd and Ghelardi (1964) introduced the term “equitability” to mean the degree to which the rela-
tive abundance distribution approaches the broken stick distribution. It is not a synonym for evenness.
Cotgreave and Harvey (1994) point out that the usual meaning of equitability is “resonableness.”
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Marsh rabbit Placabdella omata
Spotted skunk Macrobdella decora ‘
Red fox Dina dubia
House cat Haemopis marmorata 4 |
Fox squirrel ) -
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Cottontail rabbit Glassiphonia camplanata
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Figure 2.1 Variation in the relative abundance of species in three natural assemblages.
{a] Relative abundance of larger mammals in 11 counties of southwestern Georgia and
northwestern Florida [from table 1, McKeever 1959]. A total of 2,688 individuals were
collected during 31,145 trap nights. (b) Relative abundance (number of individuals) of
leeches collected from 87 lotic habitats in Colorado (from table 1, Herrmann 1970). (c)
Relative abundance of trees and shrubs found between 1,680 and 1,920 m in the central
Siskiyou Mountains in Oregon and California. Abundance represents the number of
stems (>1 cmdiameter} in 5ha. (Data from table 12, Whittaker 1960.]

series and Fisher’s (Fisher et al. 1943) logarithmic series represented the
first attempts to mathematically describe the relationship between the
number of species and the number of individuals in those species. Since
then a variety of distributions have been devised or borrowed from other
sources. Some of these models (discussed in detail below| are more suc-
cessful than others at describing species abundance distributions, but
none are universally applicable to all ecological assemblages. This is
because both species richness, and the degree of inequality in species
abundances, vary amongst assemblages. In some cases one or two species
dominate, with the remainder being infrequent or rare. In other situa-
tions species abundances are rather more equal, though never totally
uniform. A further complication arises from the fact that sampling may
provide an incomplete picture of the underlying species abundance dis-
tribution in the assemblage under investigation (see discussion below
and in Chapter 4). Yet, even with these constraints, species abundance
distributions have the power to shed light on the processes that deter-
mine the biological diversity of an assemblage. This stems from the
assumption that the abundance of a species, to some extent at least,
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Figure2.2 A survey of fish diversity in Trinidad revealed two assemblages with equal
species richness but different evenness. (a) The abundance of the eight species of fish in
the Innis River and Cat’s Hill River in Trinidad is shown using a linear scale. (b) The same
data are expressed as relative abundance and presented in the form of a rank/abundance
plot. Note the logarithmic scale. The greater evenness of the Cat’s Hill River assemblage
is evident from the shallower slope in the rank/abundance plot. In this assemblage the
most dominant species (Astyanax bimaculatus) comprised 28 % of the total catch. This
contrasts with the less even Innis River in which the most dominant species
(Hypostomus robinii) represented 76 % of the sample. (Data from study described by
Phillip 1998.)

reflects its success at competing for limited resources (Figure 2.3). No as-
semblage has infinite resources. Rather, there are always one or more fac-
tors that set the upper limit to the number of individuals, and ultimately
species, that can be supported. Classic examples of limited resources are
the light reaching the floor of a tropical rain forest (Bazzaz & Pickett
1980), nutrients in the soil (Grime 1973, 1979), and the space available
for sessile organisms on rocky shores (Connell 1961). (The relationship
between productivity and patterns of abundance can be complex—
a point well articulated elsewhere {Huston 1994; Rosenzweig 1995;
Gaston & Blackburn 2000; Godfray & Lawton 2001).) In one of the most
comprehensive reviews of the subject to date, Tokeshi [1993) strongly
advocates the study of species abundance relationships. He argues that
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Figure 2.3 The relationship between niche apportionment and relative abundance. (a)
Niche space (represented as a pie diagram) being successively carved up by five species
each of which takes 0.6 of the remaining resources. Thus, species 1 pre-empts 0.6 of all
resources, species 2 takes 0.6 of what is left (i.e., 0.6 of the remaining 0.4 which equals
0.24] and so on until all have been accommodated. (b] An illustration of the assumption
that this niche apportionment is reflected in the relative abundances of the five species.
This outcome is consistent with the geometric series when k=0.6.

if biodiversity is accepted as something worth studying (Chapter 1}, it
follows that species abundance patterns deserve equal and possibly even
greater attention. The goal of this chapter is to review the models pro-
posed to account for the distribution of species abundances in ecological
assemblages. It provides guidelines on the presentation and analysis of
species abundance data and concludes by discussing the concept of rar-
ity in the context of species abundance distributions. Some (though not
all) of the methods assume that abundance comes in discrete units called
individuals. In other cases abundance is assumed to be continuous (bio-
mass is an example). I touch on these matters as they arise and explore
the issue of different types of abundance measure further in Chapter 5.

Methods of plotting species abundance data

Comparative studies of diversity are often impeded by the variety of
methods used to display species abundance data. Different investigators
have visualized the species abundance distribution in different ways.
One of the best known and most informative methods is the rank/abun-
dance plot or dominance/diversity curve (Figure 2.4). In this species are
plotted in sequence from most to least abundant along the horizontal (or
x) axis. Their abundances are typically displayed in a log,, format {on the
y axis}—so that species whose abundances span several orders of magni-
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Figure 2.4 An example of a rank/abundance or Whittaker plot. The y axis shows the
relative abundance of species (plotted using a log, , scale) while the x axis ranks each
species in order from most to least abundant. The three lines show the densities of trees,
in relation to elevation, on quartz diorite in the central Siskiyou Mountains in California
and Oregon. Species richness decreases, and assemblages become less even (as indicated
by increasingly steeper slopes) at higher altitudes. (Data from table 12, Whittaker 1960.}

tude can be easily accommodated on the same graph. In addition, and in
order to facilitate comparison between different data sets or assem-
blages, proportional or percentage abundances are often used. This sim-
ply means that the abundance of all species together is designated as 1.0
or 100% and that the relative abundance of the each species is given as a
proportion or percentage of the total. Krebs (1999) recommends that
these plots be termed Whittaker plots in celebration of their inventor
(Whittaker 1965).

One advantage of arank/abundance plot is that contrasting patterns of
species richness are clearly displayed. Another is that when there are rel-
atively few species all the information concerning their relative abun-
dances is clearly visible, whereas it would be inefficiently displayedina
histogram format (Wilson 1991). Furthermore, rank/abundance plots
highlight differences in evenness amongst assemblages (Nee et al. 1992;
Tokeshi 1993; Smith & Wilson 1996) (Figure 2.5). However, if S (the num-
ber of species)is moderately large the logarithmic transformation of pro-
portional abundances can have the effect of de-emphasizing differences
in evenness. Rank/abundance plots are a particularly effective method of
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Figure 2.5 (a) Rank/abundance plots illustrating the typical shape of three well-known
species abundance models: geometric series, log normal, and broken stick. (b) Empirical
rank/abundance plots (after Whittaker 1970). The three assemblages are nesting birds in a
deciduous forest, West Virginia, vascular plants in a deciduous cove forest in the Great
Smoky Mountains, Tennessee, and vascular plant species from subalpine fir forest, also in
the Great Smoky Mountains. Comparison with (a] suggests that the best descriptors of
these three assemblages are the broken stick, log normal, and geometric series,
respectively —but see text for further discussion of this point. (Redrawn with kind
permission of Kluwer Academic Publishers from fig. 2.4, Magurran 1988.)

illustrating changes through succession or following an environmental
impact. Indeed, it is often recommended (see, for example, Krebs 1999)
that the first thing an investigator should do with species abundance
datais to plot them as a rank/abundance graph.

The shape of the rank/abundance plot is often used to infer which
species abundance model best describes the data. Steep plots signify
assemblages with high dominance, such as might be found in a geomet-
ric or log series distribution, while shallower slopes imply the higher
evenness consistent with alog normal or even a broken stick mode] (Fig-
ure 2.5; see also below for further discussion of species abundance mod-
els). However, as Wilson (1991] notes, the curves of the different models
have rarely been formally fitted to empirical data. Even Whittaker’s
(1970) well-known and widely reproduced log normal curve may have
been fitted by eye (Wilson 1991]. Wilson (1991) provides methods for fit-
ting this and other models to rank/abundance (dominance/diversity]
curves. These are discussed in the section (p. 43} on goodness of fit tests
below.
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Figure 2.6 k-dominance plots for breeding birds at “Neotoma” (table I, Preston 1960).
Censuses from 1923 and 1940 are compared. The latter plot is the more elevated,
indicating that this assemblage is less diverse.

There are further ways of presenting species abundance data in a
ranked format. For instance, the k-dominance plot (Lambshead et al.
1983; Platt et al. 1984) shows percentage cumulative abundance (y axis)
in relation to species rank or log species rank (x axis] (Figure 2.6). Under
this plotting method more elevated curves represent the less diverse as-
semblages. Abundance/biomass comparison or ABC curves (Figure 2.7},
introduced by Warwick (1986], are a variant of the method. Here k-
dominance plots are constructed separately using two measures of abun-
dance: the number of individuals and biomass. The relationship between
the resulting curves is then used to make inferences about the level of
disturbance, pollution-induced or otherwise, affecting the assemblage
(see Figure 5.8). The method was developed for benthic macrofauna and
continues to be a useful technique in this context (see, for example,
Kaiser et al. 2000), though it has been relatively little explored in others.
ABC curves are revisited in Chapter 5 where their application in the
measurement of ecological diversity will be considered. The Q statistic
(Kempton & Taylor 1978; see also Chapter 4 and Figure 4.2) plots the
cumulative number of species (y axis) against log abundance (x axis).
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Figure 2.7 ABC curves showing expected k-dominance curves comparing biomass and
number of individuals or abundance in (a} “unpolluted,” (b) “moderately polluted,” and (c)
“grossly polluted” conditions. Species are ranked from most to least important (in terms
of either number of individuals or biomass] along the (logged] x axis. They y axis displays
the cumulative abundance (as a percentage} of these species. In undisturbed assemblages
one or two species are dominant in terms of biomass. This has the effect of elevating the
biomass curve relative to the abundance (individuals) curve. In contrast, highly disturbed
assemblages are expected to have a few species with very large numbers of individuals,
but because these species are small bodied they do not dominate the biomass. In such
circumstances the abundance curve lies above the biomass curve. Intermediate
conditions are characterized by curves that overlap and may cross several times. See
Warwick [1986) for details, and Figure 5.8 which compares ABC curves for disturbed and
undisturbed fish assemblages in Trinidad. [Redrawn with permission from Clarke &
Warwick 2001a.)

Investigators of the broken stick model [for example, King 1964) often
show relative abundance of species, in a linear scale, on the y axis and
logged species sequences, in order from most abundant to least abun-
dant, on the x axis. In this format a broken stick distribution is manifest-
ed as astraight line.

Other plotting methods are also popular. Advocates of the log series
model, for example, have conventionally favored a frequency distribu-
tion in which the number of species (y axis)is displayed in relation to the
number of individuals per species (Figure 2.8). A variant of this plot is
typically employed when the log normal is chosen. Here the abundance
classes on the x axis are presented on a log scale (Figure 2.9). This type of
graph is sometimes dubbed a “Preston plot” (Hubbell 2001) in recogni-
tion of Preston’s (1948) pioneering use of the log normal model. Each
plotting method emphasizes a different characteristic of the species
abundance data. In the conventional log series plot the eye is drawn to
the many rare species and to the fact that the mode of the graph falls
in the lowest abundance class (represented by a single individual). In
contrast, the log transformation of the x axis often has the effect of
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Figure 2.8 Frequency of species in relation to abundance. These graphs show the
relationship between the number of species and the number of individuals in two
assemblages: (a} freshwater algae in small ponds in northeastern Spain and (b) beetles
found in the River Thames, UK. In both cases the mode falls in the smallest class
(represented by a single individual). These graphs may be referred to as “Fisher” plots
following R. A. Fisher’s pioneering use of the log series model. (Redrawn with kind
permission of Kluwer Academic Publishers from fig. 2.3, Magurran 1988; based on data
from Williams 1964.)

shifting the mode to the right, thereby revealing a log normal pattern of
species abundance.

In 1975 May argued that plotting methods needed to be standardized to
facilitate the comparison of different data sets. In 1988 I concluded that
there had been little progress towards that goal (Magurran 1988). None
the less since that time the rank/abundance plot has gained in
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Figure 2.9 Frequency of species in relation to abundance. A “normal” bell-shaped curve of
species frequencies may be achieved by logging species abundances. Three log bases (2, 3,
and 10} have been used for this purpose. The choice of base is largely a matter of scale - it is
clearly inappropriate to use log, , if the abundance of the most abundant species is <102 or
toadopt log, if it is >10°. Less obviously, the selection of one base in preference to another
can determine whether a mode is present. This is a crucial consideration since the
presence of a mode is often used to infer “log normality” in a distribution. The position of
the class boundaries can also affect the likelihood of detecting a mode, see text for further
details.} The figure illustrates three assemblages, each plotted using a different log base.

(a] Log,: diversity of ground vegetation in a deciduous woodland at Banagher, Northern
Ireland. This usage follows Preston (1948). Species abundances are expressed in terms

of doublings of the number of individuals. For example, successive classes could be <2
individuals, 34 individuals, 5-8 individuals, 9-16 individuals, and so on. It is
conventional to refer to these classes as octaves. (b) Log,: snakes in Panama. In this
example the upper bounds of the classes are 1, 4, 13, 40, 121, 364, and 1,093 individuals. (c}
Log,: British birds. Classes in log, , represent increases in order of magnitude: 1, 10, 100,
1,000, and so on. In all cases the y axis shows the number of species per class. These graphs
may be referred to as “Preston” plots. (Data in (b} and (c) from Williams 1964; redrawn
with kind permission of Kluwer Academic Publishers from fig. 2.7, Magurran 1988.)

popularity (Krebs 1999). Perhaps standardization of methods is at last on
the horizon.

Species abundance models

It is not simply plotting methods that have proliferated. A diverse range
of models has also been developed to describe species abundance data. In
essence there are two types. On one hand are the so-called statistical
models, such as the log series (Fisher et al. 1943), that were initially de-
vised as an empirical fit to observed data. The advantage of this type of
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model is that it enables the investigator to objectively compare different
assemblages. In some cases a parameter of the distribution, such as o in
the case of the log series, can be used as an index of diversity. Alterna-
tively, the goal may be to explain, rather than merely describe, the rela-
tive abundances of species in an assemblage. To do this it is necessary to
predict how available niche space might be divided amongst the con-
stituent species and then ask whether the observed species abundances
match this expectation. Of course, there are many different ways in
which resources might be subdivided amongst species and these biologi-
cal or theoretical models represent different scenarios of niche appor-
tionment. For example, Tokeshi’s {1990, 1993} dominance pre-emption
model envisages a situation where the niche space of the least abundant
species in an assemblage is invariably invaded by a colonizing species.
This contrasts with his dominance decay model in which the niche of
the most dominant (that is the most abundant) species is targeted. The
dominance pre-emption process generates a very uneven community in
which the status of the most abundant species is preserved while the
least abundant species lose resources and become progressively rarer
over time. In contrast, Tokeshi’s dominance decay model produces a
community more even than the well-known broken stick model. These
models are discussed in more detail below (see p. 50).

Although it is convenient to classify species abundance models as sta-
tistical or biological, in reality the distinction can be blurred (Table 2.1).
Several of the statistical models, notably the log series and log normal
(see below and p. 32), have acquired biological explanations since their
original formulation. It is also important to remember that the fact that
a natural community displays a species abundance relationship in line
with the one predicted by a specific model does not in itself vindicate the
assumptions on which the model is based. The conclusion that must be
drawn in such cases is simply that the model cannot be rejected and that
additional investigation, possibly including experimental manipula-
tion, will be necessary for a fuller understanding of niche apportion-
ment. Sampling may mask the true form of the species abundance
distribution (Chapter 5). A further complication is that more than one
biological or statistical model may describe the assemblage in question.
This point is considered in detail on p. 43.

Statistical models

Log series

Fisher’s logarithmic series model (Fisher et al. 1943) represented one of
the first attempts to describe mathematically the relationship between
the number of species and the number of individuals in those species.
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Table 2.1 The classification of species abundance models (after Tokeshi 1993, 1999).

Type of model Model Reference
Statistical Log series Fisher etal. 1934
Log normol Preston 1948
Negative binomial Anscombe 1950
Bliss & Fisher 1953
Zipt—Mandelbrot Zipf 1949
Mandelbrot 1977
Mandelbrot 1982
Biological
Niche based Geometric series Motomura 1932
Particulate niche MacArthur 1957
Overlapping niche MacArthur 1957
Broken stick MacArthur 1957
MacArthur fraction Tokeshi 1990
Dominance pre-emption Takeshi 1990

Non-niche based

Other

Random fraction

Sugihara’s sequential breakage
Dominance decay

Random assortment
Composite

Power fraction

Dynamic model

Neutral model
Neutral model

Tokeshi 1990
Sugihara 1980
Takeshi 1990
Tokeshi 1990
Tokeshi 1990
Tokeshi 1996
Hughes 1984, 1986

Caswell 1976
Hubbell 2001

Although originally used as a convenient fit to empirical data, its wide
application, especially in entomological research, has led to a thorough
examination of its properties (Taylor 1978), as well as speculation about
its biological meaning (see below). The log series model is straight-
forward to fit [Worked example 1). One of its parameters, o, has proved
an informative and robust diversity measure (Chapter 4).

The log series takes the form:

ox? ox3 ox

ox, —— e
2" 3 n

with ax being the number of species predicted to have one individual,
ox?/2 those with two, and so on (Fisher et al. 1943; Poole 1974). Since 0<
x <1, and both cand x are constants (for the purposes of fitting the model
to a specified data set), the expected number of species will be greatest in
the smallest abundance class (of one individual) and decline thereafter. It
should also be noted that the log series distribution, in contrast to many
other models, expects that species abundance data will come in the form
of numbers of individuals. The log series is therefore inappropriate if
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Figure 2.10 Values of x in relation to N/S. See text for details.

biomass or some other noninteger measures of abundance is used.
Hayek and Buzas (1997) explain how to fit the model using occurrence
(frequency) data.

x is estimated from the iterative solution of:

$/N =[(1-x)/x]- [-n{1- )]

where N is the total number of individuals.

In practice x is almost always >0.9 and never >1.0. If the ratio N/S >20
then x>0.99 (Poole 1974). Krebs (1999, p. 426) lists values of x for various
values of N/S. Thisrelationship is illustrated in Figure 2.10.

Two parameters, o, the log series index, and N, summarize the distrib-
ution completely, and are related by:

S=aln(l+N/a)

where o is an index of diversity. Indeed, since x often approximates to 1,
o represents the number of extremely rare species, where only a single
individual is expected.

ohas been widely used, and remains popular (Taylor 1978) despite the
vagaries of index fashion. It is also a robust measure, as well as one that
can be used even when the data do not conform to a log series distribu-
tion (see Chapter 4 for a discussion of o as a diversity measure).

The index may be obtained from the equation:

N(l—x)

o=
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with confidence limits set by:

0.693147a
ar(a)

" [in(x/1-x) -1

as proposed by Anscombe (1950). Note that 0.693147 =1n 2. Both Hayek
and Buzas (1997) and Krebs (1999) provide more details. Hayek and Buzas
(1997) advise that this formula should not be used when N/S < 1.44 or
when x <0.50. However, as such values are atypical, this restriction is
unlikely to be burdensome.

Asvalues of a.are normally distributed, attaching confidence limits to
an estimate of a is simple (Hayek & Buzas 1997). The first step is to ob-
tain the standard error of o by taking the square root of the variance.
(Hayek and Buzas (1997) remind us that because we are dealing with the
sampling variance of a population value, taking the square root of the
variance produces the standard error rather than the standard deviation.)
This standard error can then be multiplied by 1.96 to yield 95% confi-
dence limits.

Alternatively, o can be deduced from values of S and N using the
nomograph provided by Southwood and Henderson (2000), following
Williams {1964).

To fit the log series model itself one simply calculates the number of
species expected in each abundance class and, using a goodness of fit test
(see p. 43), compares this with the number of species actually observed
{see Worked example 1).

It should also be noted that the log series can arise as a sampling distrib-
ution. This will occur if sampling has been insufficient to fully unveil an
underlying log normal distribution (see Figure 2.14 for more explanation).

Although the log series was initially proposed as a statistical model,
that is one making no assumptions about the manner in which speciesin
an assemblage share resources, its wide application prompted biologists
to consider the ecological processes that might underpin it. These are
most easily reviewed in relation to the geometric series (discussed below
in the context of niche apportionment models), to which the log series is
closely related (May 1975). A geometric series distribution of species
abundances is predicted to occur when species arrive at an unsaturated
habitat at regular intervals of time, and occupy fractions of remaining
niche space. A log series pattern, by contrast, will result if the intervals
between the arrival of these species are random rather than regular
(Boswell & Patil 1971; May 1975). The log series produces a slightly more
even distribution of species abundances than the geometric series,
though one less even than the log normal distribution (see below). The
small number of abundant species and the large proportion of “rare”
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species predicted by the log series imply that, as is the case with the geo-
metric series, it will be most applicable in situations where one or a few
factors dominate the ecology of an assemblage. For instance, I found that
the species abundances of ground flora in an Irish conifer woodland,
where light is limited, followed a log series distribution (Magurran 1988)
(Figure 2.11). In can be hard to distinguish between these models in
terms of their fit to empirical data. Thomas and Shattock (1986, for ex-
ample, showed that both the geometric series and the log series models
adequately described the species abundance patterns of filamentous
fungi on the grass Lolium perenne.

Log normal

Distribution

The log normal distribution was first applied to abundance data by Pre-
stonin 1948 in his classic paper on the commonness and rarity of species.
Preston plotted species abundances using log, and termed the resulting
classes “octaves.” These octaves represent doublings in species abun-
dance (see, for example, Figure 2.9). It is not, however, necessary to use
log,; any log base is valid and log, and log, , are two common alternatives
(Figure 2.9). May (1975) provides a thorough and lucid discussion of the
model.
The distribution is traditionally written in the form:

S(R) = S, exp(-aR?)

where S(R) = the number of species in the Rth octave (i.e., class] to the
right, and to theleft, of the symmetric curve; S;=the number of speciesin
the modal octave; and a=(262%)"1/2=the inverse width of the distribution.

Empirical studies show that a is usually =0.2 (Whittaker 1972; May
1975). A further parameter of the log normal, y, emerges when a curve of
the number of individuals in each octave, the so-called individuals
curve, is superimposed on the species curve of the log normal (Figure
2.12). It is defined as:

Y=R, [ Rae =n2/[22 (1ns)"*]

where R, = the modal octave of the individuals curve; and R_,, = the
octave in the species curve containing the most abundant species
(May 1975).

In many cases the crest (or mode) of the individuals curve (R, coin-

cides with the upper tail of the species curve (R__ ] to give y= 1. (This

max
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Figure 2.11 Rank/abundance plot of ground vegetation in an Irish conifer plantation. The
slope of the graph is indicative of a log series distribution. The inset shows the cumulative
observed [solid line) and expected [dotted line) number of species in relation to abundance
class (in octaves] for the same data set. The congruence between the observed and
expected distributions confirms that the data do indeed follow a log series (D=0.06,
P>0.05, Kolmogorov-Smirnow test; see Worked example 1).
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Figure 2.12 Features of the log normal distribution. The striped curve {species curve)
shows the distribution of species amongst classes. If these classes are in log, — that is
doublings in numbers of individuals - they are referred to as octaves [see Figure 2.9). Since
the distribution is symmetric, classes in the same position on either side of the mode are
expected to have equal numbers of species. For this reason it is conventional to term the
modal class 0 and to refer to classes to the right of the mode as 1, 2, 3, etc. and those on

its left hand side as -1, -2, -3, etc. R, marks the position of the least abundant species
while R, shows the expected position of the most abundant species. [R,,,, =-R,;..) The
number of species in each class is $(R|. In this example the number of species in the modal
class (Sy) would be 18. The species curve can be superimposed by the individuals curve
(hatched) representing the number of individuals present in each class. The class with the
most individuals (in other words the one in which the mode of the individuals curve
occurs) is termed R . A log normal distribution is described as canonical when Ry and

R, .x coincide to give the value y=1 {where y=R\/R ,,.). [Redrawn with kind permission
of Kluwer Academic Publishers from fig. 2.12, Magurran 1988; after May 1975.)

simply means that there are more individuals in class R, than in any
other class; it is an empirical rule that holds true for many different data
sets.) In such log normals, described by Preston (1962] as “canonical”
(Preston’s canonical hypothesis), the standard deviation is constrained
between narrow limits (resulting in a =0.2). In other words, the standard
deviation (s.d.) of species abundances in reasonably large assemblages
(S >100], when these abundances are expressed in a log, scale, is around
4. Nee et al. (1992, 1993) show why this makes biological sense. They
note that, given a log normal distribution, 99% of species would be ex-
pected to occur within+3 s.d. of the mean. Thus, should the standard de-
viation be 4, the range of abundances will be 22%. This can be illustrated
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as follows. The 6 s.d. needed to encompass 99 % of species are multiplied
by the value of the standard deviation (4) to give 24, and because a log,
scale is being used to measure abundance, the range of these abundances
is 224, Since the abundance of the least abundant species is 1, the most
abundant will have 16,777,216 individuals. This number is plausible for
many taxa. On the other hand, larger standard deviations generate upper
limits of abundance that are unlikely to be met. If, for example, the stan-
dard deviationis 7.5, the most abundant species would have 3.5 10'3 in-
dividuals, an improbable tally for most vertebrates at least. If high levels
of abundance can genuinely be achieved, as seems to be the case for taxa
such as diatoms (Hutchinson 1967; Nee et al. 1992), and the standard de-
viation remains around 4 (Sugihara 1980), the implication is that the
abundance of the least abundant species is also considerable. It is rela-
tively easy to explain why the standard deviation will rarely be much
greater than 4, but what prevents it from being considerably less? Why
are the most abundant species not just twice, or even 10 times as abun-
dant as the rarer ones? Nee et al.’s (1992) answer is that basic differences
in biology between species, including niche requirements and trophic
level, inevitably generate substantial differences in abundance.

Statistical and biological explanations for the log normal

The majority of large assemblages studied by ecologists appear to follow
a log normal pattern of species abundance (May 1975; Sugihara 1980;
Gaston & Blackburn 2000; Longino et al. 2002} and many of these log
normal distributions can be described as canonical. Such pervasive pat-
terns invariably prompt a search forecological explanations. May (1975,
however, notes that many other large data sets, such as the distribution
of human populations in the world, as well as of wealth within countries
such as the USA, are log normal in character. He attributes the near
ubiquity of the log normal, and the prevalence of its canonical form, to
the mathematical properties of large data sets. May (1975) points out that
the log normal is a consequence of the central limit theorem, which
states that when a large number of factors act to determine the amount of
a variable, random variation in those factors will result in the variable
being normally distributed. This effect becomes more pronounced as
the number of determining factors increases. In the case of log normal
distributions of species abundance data, the variable is the number of
individuals per species (standardized by a log transformation) and the de-
termining factors are all the processes that govern community ecology
(but see also Pielou 1975; Gaston & Blackburn 2000). Speciose assem-
blages (with S > 200) are particularly likely to be canonical {Ugland &
Gray 1982). Ugland and Gray (1982) have also argued that ecological
processes need not be invoked to explain the canonical log normal.
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Others have none the less advocated a stronger biological underpin-
ning. Sugihara (1980) argued that many natural assemblages, including
those of birds, moths, gastropods, plants, and diatoms, fit the canonical
hypothesis too well for it to be a statistical artifact. Following Pielou
(1975), Sugihara (1980) developed a model in which niche space is se-
quentially split into S pieces. A split occurs each time a new species in-
vades the assemblage and competes for existing resources. During each
invasion an existing niche is targeted at random. This means that all
niches, irrespective of their size, are equally likely to be selected for divi-
sion (in other niche-based models such as MacArthur’s broken stick and
Tokeshi’s power fraction the probability that a niche will be selected for
splitting is some function of its size; see p. 55). If a niche is broken at ran-
dom the larger of the two fragments will represent between 50% and
100% of its original size. On average, then (after many such divisions),
the larger of the new niches will be 75% of the old one. Sugihara repre-
sented this by assuminga 75% :25% split at each division. The outcome
resembles a canonical log normal distribution.

This approach treats the log normal distribution as one of niche appor-
tionment —that is a biological model —rather than the statistical model
it was initially conceived as. Indeed Tokeshi (1999 notes that Sugihara’s
model can be viewed as a special case of the random fraction model
(described below), albeit with some important distinctions (see Tokeshi
(1996, 1999] for details, and a critique of some of Sugihara’s assump-
tions). Drozd and Novotny’s {2000) PowerNiche program can be used to
calculate expected species abundances.

Unveiling the distribution

In addition to the conceptual difficulty of deciding whether, and to what
extent, the log normal might encapsulate biological processes, investi-
gators face practical problems in fitting it to empirical data. Like its nor-
mal sibling, the log normal distribution is a symmetric, bell-shaped
curve. If, however, the data to which the curve is to be fitted derive from
a sample, the left-hand portion of the curve, representing the rare and
harder to sample species, may be obscured. Preston (1948) termed the
truncation point of the curve the veil line and argued that the smaller the
sample the further this veil line will be from the origin of the curve
(Figure 2.13). In many data sets only the portion of the curve to the right
of the mode is visible. It is only in large data collections, such as those
covering wide biogeographic areas or derived from long periods of inten-
sive sampling, that the full curve is likely to be revealed. Longino et al.’s
(2002} investigation of ant species at La Selva in Costa Rica provides
a good example. Some 1,904 samples were collected using various
methods. When these are plotted to represent successive doublings of
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Figure 2.13 The veil line. (a) In small samples, only the portion of the distribution to the
right of the mode may be apparent. However, as sample size increases the veil line is
predicted to move to the left revealing first the mode and eventually the entire
distribution. This effect is evident in (b). b] Fish diversity in the Arabian Gulf. Samples of
fish were collected in an area of the Gulf adjacent to Bahrain. Abundance - the mean
number of individuals caught in 45 min trawling - is shown in log, classes (octaves). In
single samples, for instance one caught in May, only the right hand portion of the log
normal distribution is evident. Once the samples taken throughout May and June are
included the mode becomes apparent. The full log normal distribution is revealed when
data collected for the entire year are used. A similar effect can be seen in Figure 2.14.
{Redrawn with kind permission of Kluwer Academic Publishers from fig. 2.10, Magurran
1988.)
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sampling effort a log normal distribution is progressively unveiled (their
figure 4). Immense samples are no guarantee of an unveiled log normal,
however. Preston (1948) described two long-term data collections in his
original paper. The first of these, a sample of moths collected at Saska-
toon in Canada over 22 years, numbered 277 species and more than
87,000 individuals. Preston used the position of the veil line to predict
that it was only 72% complete. His second example, another collection
of moths, again spanning 22 years and consisting of 291 species and over
300,000 individuals, also had a veil line and was estimated to be 88%
complete. It is sometimes argued that such broadly based collections of
data contain such a multiplicity of assemblages as to render them eco-
logically uninterpretable. Wilson (1991] believes that because plant bio-
mass is so plastic, there is no lower limit to the abundance of a species in
acommunity and accordingly that the veil line is inapplicable to plants.

A fully unveiled distribution can be fitted, without complications,
using standard procedures. Partly veiled distributions are more problem-
atic. It is sensible not to attempt to fit a log normal to a truncated distrib-
ution unless the mode of this distribution is apparent. This seems
obvious advice until one realizes that a mode can be revealed or obscured
depending on which log base is used to construct the abundance classes
(Hughes 1986), or even by the precise manner in which boundaries
between the abundance classes are assigned (as noted by Colwell &
Coddington 1994). Providing the investigator is convinced that it is pru-
dent to proceed, a truncated log normal can be fitted using the approach
outlined by Pielou (1975}, following Cohen {1959, 1961}. The species
abundances are logged (x =log,,n,] and a normal curve fitted, disregard-
ing the area to the left of the truncation point. The truncation point is as-
sumed tofall at—0.30103 orlog, ,0.5, this being the lower boundary of the
class containing species for which only one individual was observed.
Table 1 in Cohen (1961){reproduced in Magurran (1988) and Krebs (1999))
provides 0, the function needed to estimate the mean and variance of the
truncated distribution. Once these values are calculated, the expected
frequencies of species in each abundance class can be obtained and com-
pared with observed frequencies using a goodness of fit test [see p. 43).
Krebs (1999) has written a PC Windows-based computer program? that
fits a truncated log normal according to Pielou’s (1975) method. How-
ever, it can also be fitted using a spreadsheet {see Worked example 2 for
an example).

The area under the curve provides an estimate of S*, the total number
of species in the assemblage. (These estimates of S* should be treated
with extreme caution. More effective methods of estimating species

3 This program, and others relating to the methods described in Krebs (1999), can be obtained from
www.exetersoftware.com.
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richness are described in the next chapter.) Further discussion of the
truncated log normal is provided by Slocomb et al. [1977).

Strictly speaking, the continuous log normal described here (whether
truncated or not) should only be applied to continuous abundance data,
such as biomass or cover measures, rather than to discrete data, includ-
ing numbers of individuals. In practice, however, most people use the
continuous log normal when abundances have been measured as num-
bers of individuals since, for large sample sizes especially, these data are
effectively continuous. ;

An alternative method of fitting a log normal distribution to sample
datahasbeen discussed by Bulmer {1974) and Kempton and Taylor (1974)
and is referred to as either the Poisson log normal or the discrete log nor-
mal. It is assumed that the continuous log normal is represented by a se-
ries of discrete abundance classes which behave as compound Poisson
variates. The Poisson parameter A is distributed log normally. Although
the Poisson log normal presents greater computational difficulties than
the continuous log normal, the greater availability of computer packages
capable of fitting it mean that, for many, this is not a serious impedi-
ment. The Poisson log normal also provides an estimate of S*, to which,
in contrast with the estimate generated by Pielou’s method, confidence
limits can be attached. Given the omnipresence of the log normal dis-
tribution this estimate of S* appears to offer a promising method of
deducing overall species richness in incompletely sampled assemblages.
Unfortunately, as the next chapter shows, the confidence limits are often
so large that such estimates are meaningless.

One might also expect that o, the standard deviation, of the log normal
distribution would be a useful measure of diversity. Although ¢ can
be treated as a measure of evenness it is an ineffective discriminator of
samples, and cannot be estimated accurately when sample size is small
(Kempton & Taylor 1974). These criticisms do not, however, apply tothe
ratio S*:o, referred to as A. There is a marked correlation between
the values of A and o calculated for the same data and both are good at
discriminating amongst samples and assemblages (Kempton & Taylor
1974; Taylor 1978). Further details are provided in Chapter 4.

In addition to statistical fits there are, of course, graphic methods for
deciding whether data are log normally distributed. The simplest of
these, already noted, is to examine a graph in which the species frequen-
cy is plotted against log abundance classes. (See, for example, Figures 2.9
and 2.13.) Alternatively, a “probability plot” (Gray 1979, 1981; Gray &
Mirza 1979)—in which abundance (in log, classes] is shown on the x axis
and cumulative frequency of species on the y axis —can be used to detect
the presence of a log normal distribution, as well as departures from it.
Log normal distributions appear as straight lines on such a graph and
the method has been used to assess the effects of pollution on marine
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Figure 2.14 The relationship between log series and log normal distributions. These three
graphs show: (a} the abundance of moths summed across 225 sites through Britain, (b}a
typical annual sample from a single rural site, and (c) a sample from an impoverished
urban site. The dashed lines represent log normal distributions fitted to the data. Log
series distributions are indicated by continuous lines. These graphs demonstrate how
small samples [in which the full log normal distribution is apparently veiled) are
described equally well by both the log series and (truncated) log normal. When the
complete log normal distribution is revealed the log series ceases to be a good fit.
(Redrawn with permission from Taylor 1978.)

benthic communities (Gray 1979). Since large natural assemblages are
typically log normal in character any departures from a log normal dis-
tribution ought to be indicative of disturbance. However, Tokeshi [1993)
has criticized the method as being insensitive to changes in species rich-
ness, and rather poor at discriminating species abundance distributions.
Indeed, he notes that a geometric series distribution, the pattern typical-
ly associated with a polluted or perturbed assemblage, also appears as a
straight line of this type of graph.

Overlapping distributions

Many datasets are described equally well by both the log series and (trun-
cated) log normal making it impossible to decide which model is more
appropriate. Figure 2.14 illustrates why the log series is sometimes
regarded as a sampling distribution, which could, with greater effort, be
extended to reveal the underlying [unveiled] log normal. Since the log
normal describes more data sets than the log series, and may encapsulate

L
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the many processes at work in ecology, it is arguably the most suitable
vehicle for comparing assemblages (May 1975). On the other hand,
Kempton and Taylor (1978) and Taylor (1978] favor the log series distrib-
ution because it accentuates the “median range” of commonness. This
property helps insure that a is a robust diversity index (see also Chapter
4).

The contention that the log normal is the default distribution for large
and unperturbed communities has not gone unchallenged. Lambshead
and Platt (1985) argue that many classic data sets are not true samples,
but rather collections or amalgamations of nonreplicate samples. Fur-
thermore, they assert that the shape of the log normal distribution is in-
dependent of sample size, and conclude that “the log normal . . . isnever
found in genuine ecological samples” and advocate the adoption of the
log series model instead. Tokeshi (1999] also questions the generality of
the log normal. Following Nee et al. (1991), he notes that many species-
rich assemblages are characterized by a high proportion of rare species.
These produce plots that are skewed to the left {(Hubbell & Foster 1986;
Gaston & Blackburn 2000; see also Figure 2.9). Tokeshi postulates that
such truncated distributions are in fact true representations of the un-
derlying pattern of species abundance in diverse assemblages and that a
symmetric log normal pattern will never emerge, irrespective of the in-
tensity with which the assemblage is sampled. Indeed, Tokeshi (1999}
suggests that in future it may be necessary to turn to niche apportion-
ment models in order to explain abundance patterns in these and other
communities. Gaston and Blackburn (2000) also assert that large-scale
assemblages, including those that have been thoroughly surveyed (such
as British birds), are often log left-skewed. They note that Tokeshi’s
(1996) power fraction model and Hubbell’s (2001) neutral theory (both
discussed in more detail later in this chapter), along with Harte et al.’s
(Harte & Kinzig 1997; Harte et al. 1999a) self-similarity model, produce
distributions with more rare species than the log normal would predict.
Sugihara’s (1980) model also generates a log left-skewed distribution
(Neeetal. 1991).

Peter Henderson and I (Magurran & Henderson 2003) offer a different
solution to this problem. We note that communities can be dissected
into two components: permanent members versus occasional species.
This partition requires either a long-term data series or good biological
knowledge of the species themselves. The distribution of permanent
species typically resembles alog normal whereas occasional species tend
tofollow a log series distribution of species abundance (Figure 2.15). The
prominence of this log series distribution reflects the importance of
the migratory or infrequent component of the assemblage. Interestingly,
the assumptions that Fisher et al. {1943) made when they firstapplied the
log series distribution to species abundance data anticipate this out-
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Figure 2.15 The pattern of abundance and persistence in a estuarine fish assemblage
(Bristol Channel, UK]. The data are for a 21-year time series of monthly samples. (a|

The number of years in which each fish was observed, plotted against the maximum
abundance in any one year. A discontinuity (indicated by the vertical arrow) allows the
resident and migrant species to be defined as those present in >10 years and <10 years. (b}
The abundance distribution for all species. (c} The abundance distribution of the resident
species. The frequency of each abundance class predicted by the log normal model is
shown as adot (x2[6] =0.88, P=0.99). (d] The abundance of the occasional species; the
frequency of each abundance class predicted by a log series model is shown by a dot

(x2[6] =4.24, P=0.39). (Redrawn with permission from Magurran & Henderson 2003.)
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come. When these distributions are superimposed, a log left-skewed dis-
tribution is the result. Like Hubbell (2001} —but through a different line
of reasoning —we conclude that level of migration is the key to explain-
ing the characteristic left skew of log-transformed species abundance
distributions.

Other statistical models

The negative binomial model has many applications in ecology (South-
wood & Henderson 2000), including species richness estimation
(Coddington et al. 1991) but, as Pielou (1975) remarked, it is only rarely
fitted to species abundance data (one exception being Brian (1953]).
Given the plethora of competing models this alone seems sufficient rea-
son not to revive it. Yet, the negative binomial is of potential interest
since it comes from the same stable of models as the log series. (The log
series is in fact a limiting form of the negative binomial.) Pielou (1975)
provides more details, including a method of fitting the negative biono-
mial to observed data.

The Zipf-Mandelbrot model (Zipf 1949, 1965; Mandelbrot 1977, 1982;
Gray 1987), on the other hand, has attracted more interest. Like the
Shannon diversity index (Chapter 4), this approach has its roots in lin-
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guistics and information theory. It has been interpreted as reflecting a
successional process in which later colonists have more specific require-
ments and hence are rarer than the first species to arrive (Frontier 1985).
The model postulates a rigid sequence of colonists, with the same
species always present at the same point in the succession in similar
habitats. This prediction is patently not followed in the real world and
Tokeshi (1993) considers the model no more biological than the log nor-
mal or log series. None the less, the model has been successfully applied
in a number of studies (Reichelt & Bradbury 1984; Frontier 1985; Gray
1987; Barange & Campos 1991}, and continues to have application in
both terrestrial (Watkins & Wilson 1994; Wilson et al. 1996; Mouillot &
Lepetre 2000) and aquatic (Juhos & Voros 1998 systems. It has also been
used to test the performance of various diversity estimators {(Mouillot &
Lepetre 1999).

Goodness of fit tests

The conventional method of fitting a deterministic model is to assign
the observed data to abundance classes. Classes based on log, are often
used. These represent doublings of abundance—2, 4, 8, 16, 32, etc., indi-
viduals —are intuitively meaningful, and typically produce a manage-
able number of classes. If abundance data are in the form of numbers of
individuals, adding 0.5 to the class boundaries means that species can be
allocated to abundance classes without ambiguity. The number of
species expected in each abundance class is calculated according to the
model used. (The model takes the observed values of S (number of
species) and N (total abundance) and then determines how these N indi-
viduals should be distributed amongst the S species.) A goodness of fit
test, often x2 but sometimes G (Sokal & Rohlf 1995), is used to evaluate
the relationship between the observed and expected frequencies of
species in each abundance class. If P<0.05 the model can be rejected, that
is it not does adequately describe the pattern of species abundances. If P
>0.05, or ideally P>>0.05, then a fit can be assumed.

There are drawbacks associated with using goodness of fit tests in this
way. Tests of empirical data typically involve a small number of abun-
dance classes, perhaps 10 or fewer. This restricts the degrees of freedom
(d.f.) available. These must then be reduced (by 1 in the case of the geo-
metric series and log series and by 3 for the truncated log normal] to allow
for the parameters required by the model. The number of classes, and
thus the degrees of freedom, may need to be pruned further if the number
of species expected in a given class is small (<1). Recall that the formula
for x2 is [(observed — expected)?/expected] and that this calculation is
summed across the classes. If expected frequencies fall below 1, x2 will
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return an unrealistically high value. To circumvent this problem the
user can sum the expected values in adjacent classes (and their observed
equivalents] and adjust the degrees of freedom as appropriate (see
Magurran (1988) for some examples). The more the degrees of freedom
are eroded, the harder it becomes to reject a model. This difficulty is
compounded by the fact that the differences between the models can lie
in the way they allocate species to two or three abundance classes.

One solution might be to use the whole %2 distribution when compar-
ing fits of various models. For example, if goodness of fit tests gave values
of x*=10.5 (with 6 d.f.) for the truncated log normal, and y2=2.8 (with 8
d.f.)for the log series, it would be possible to make the statement that the
probability of the expected log normal being different from the observed
data is <90%, while the probability of the log series being different is
<10%. Both values are below the conventional level of 95% but the log
series clearly provides a better description of the data. However, Wilson
(1991) cautions that unless the models can be viewed as subsets of one
another, it would be invalid to conclude that one was a significantly bet-
ter fit. In principle it is possible to use a power test to determine whether
the sample size is sufficient to allow a particular species abundance
model to be rejected, but in practice this approach has been little used.

Tokeshi (1993) also notes that goodness of fit tests work most effec-
tively with large assemblages (S > 100), but is concerned that such as-
semblages might not be ecologically coherent units. Instead of 2 he
recommends the Kolmogorov—-Smirnov goodness of fit (GOF| test (Siegel
1956; Sokal & Rohlf 1995]. Like the y? test it can be used to assess the
congruence between observed data and a theoretical expectation, and, in
contrast to the x? test, it may be applied to very small samples. Indeed,
Tokeshi {1993) advocates adopting the Kolmogorov-Smirnov GOF test
(Sokal & Rohlf 1995) as the standard method of assessing the goodness of
fit of deterministic models. (He also suggests the Kolmogorov-Smirnov
two-sample test can be used to compare two data sets directly, indepen-
dently of any attempt to formally describe their abundance patterns—
see Worked example 3 and general recommendations below. )

Wilson (1991) provides methods for fitting rank/abundance data to
the log normal, geometric series, broken stick, and Zipf-Mandlebrot
models. These involve minimizing the deviance between the observed
and fitted rank/abundance plots. Once again the issue of goodness of fit
arises. Wilson (1991] reinforces the earlier observation (Frontier 1985;
Lambshead & Platt 1985; Hughes 1986; Magurran 1988] that a single
data set will often be equally well described by several models. Further-
more, he notes that if one model fits the data, and another does not, it is
not possible to conclude that the fit of the two is significantly different.
His solution is to use replicated observations, since these increase the
probability that the assemblage has been adequately described. {The
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same advice comes from Tokeshi (1993).) Wilson then recommends that
an objective test would be analysis of variance on the abundance model x
replicate table of deviances, with the model x replicate interaction
providing the error term. The deviances can be log transformed, if neces-
sary, to achieve normality. A multiple comparison test, for example
Duncan’s new multiple range test (see Sokal and Rohlf (1995] for further
examples], can then be used to infer which models are significantly
different from one another.

Biological (or theoretical) models

The search for biologically based models has a venerable tradition. Al-
though Motomura’s (1932) geometric series was initially proposed as a
statistical model, later investigators [see Tokeshi 1993, 1999 for a dis-
cussion) realized that it is a metaphor for the way colonists in an ecolog-
ical community might divide the available niche space between them.
R.H. MacArthur (1957) was the first to explicitly challenge the use of sta-
tistically based models and devised three niche apportionment models.
Two of these, the particulate niche and the overlapping niche, were con-
sidered unsatisfactory by MacArthur himself, but his third model, the
broken stick, has played a significant role in shaping the way ecologists
think about the diversity of ecological communities. The broken stick
model continues to have application today, often as a null hypothesis
against which other patterns of niche division can be tested. That was es-
sentially how things stood until Tokeski (1990, 1993, 1999) took another
look at niche apportionment models and devised a number of new ones,
including some that appear to offer considerable potential.

Biological models are based on the assumption that an ecological com-
munity has a property called niche space that is divided amongst the
species that live there. Although niche space is most easily visualized
in one or two dimensions, niches, as Hutchinson {(1957) recognized, are
multidimensional. This need not, in itself, present a difficulty since
multidimensional space can be simplified to one dimension for the pur-
poses of modeling. Nor is it a problem that the components of niche
space {temperature, pH, food availability, etc.] will vary from one com-
munity to another. However, as Tokeshi (1993) notes, the distinction
between the fundamental and the realized niche (sensu Hutchinson) is
rarely made in investigations of biological diversity. Indeed, as he ob-
serves, most niche apportionment models are framed in terms of the fun-
damental niche even though the relative abundances of species will be
much more dependent on the magnitude of the realized niche. Since the
relative abundance of species, usually measured as either number of in-
dividuals or biomass (see p. 138); is used as a surrogate of niche size when
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testing the models, a potential difficulty arises. None the less, Tokeshi
suggests that this problem will not be too serious if the models are
viewed as pertaining to realized niches, or a combination of realized and
fundamental niches, rather than simply to fundamental ones.

A further concern is that niche-based models are too simplistic to de-
scribe the biological world we know. For instance, a new species arriving
in a community may affect the resources that a whole group of species
depend on rather than invading the niche of an individual species. A clas-
sic, and topical example, is the impact that the invasive water hyacinth
is having on the biodiversity of Lake Victoria.

There is another consequence of this preoccupation with the niche.
Since their inception, species abundance distributions have been used to
describe a variety of assemblages ranging from small, well-defined en-
sembles tolarge, heterogeneous groupings of species. Realized niches are
shaped by ecological interactions within a community and the relative
abundance of a species will reflect, to a greater or lesser extent, its suc-
cess in dealing with competitors, predators, and parasites. If the assem-
blage under study represents a functional ecological unit, that is one
where the component species interact with one another, then it is logi-
cally appropriate to apply a niche-based model to it. Tokeshi’s (1993]
view, that such models are most relevant to small ensembles of related
species sharing similar resources, narrows the definition of assemblage
further (see p. 14 for a discussion of the unit of study in investigations of
ecological diversity). It also implies that competition is the most signifi-
cant ecological interaction in these tightly defined domains.

The corollary of this is that the niche-based models may lose their
application in larger assemblages spanning a variety of trophic levels, or
where the species concerned no longer interact with one another, or
where they are subject to a range of abiotic conditions. In such cases sta-
tistical models may be required. This is not to say that such statistical
models are necessarily less valuable than the biological ones. A statisti-
cal model can provide an excellent description of the diversity of an as-
semblage and has many applications, for example in monitoring changes
in community structure following a perturbation. Nor are biological
models invariably inappropriate in species-rich assemblages. Tokeshi’s
(1996] power fraction model (see below] appears to have considerable
application in such contexts.

Ecological and evolutionary processes

Biological models are mechanistic, that is they attempt to relate the way
in which total niche space is divided amongst the species in an assem-
blage to the abundances of the species in question. Traditionally, niche
apportionment models have assumed a process of niche fragmentation
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{Tokeshi 1990}, that is the subdivision of already occupied niches. How-
ever, niche filling is another mechanism by which additional species can
be accommodated. For example, a newly formed habitat such as an
island or lake will provide empty niche space for colonizing species
{(MacArthur & Wilson 1967). As the diversity of an assemblage increases,
the distinction between niche fragmentation and niche filling may blur.
Moreover, evolutionary processes can mirror and reinforce ecological
ones. Witness the >500 species of cichlid fish that have evolved in Lake
Victoria in the last 100,000 years {Turner 1999; Verheyen et al. 2003).
Although the distinction between, and relative importance of, niche
filling and fragmentation warrants further investigation, Tokeshi
(1999) points out that niche apportionment models can be applied
to both processes.

Distinctions between deterministic and stochastic models

An important distinction needs to be made between deterministic and
stochastic models. Deterministic models assume that Nindividuals will
be distributed amongst the S species in the assemblage in a predeter-
mined way. For example, the log series model will always assign 12.96
species to the smallest abundance class (of one individual) in an assem-
blage with 52 species and 663 individuals overall. The geometric series is
the only deterministic niche apportionment model. Stochastic models,
on the other hand, recognize that replicate communities structured
accordingto the same set of rules will inevitably vary somewhat in terms
of the relative abundances of species found there. This makes biological
sense. For instance, 10 new islands, of identical size and distance
from the mainland and formed at the same time, would be predicted, on
the basis of MacArthur and Wilson’s (1967) theory of island biogeogra-
phy, to be colonized by similar numbers of species. None the less, the
relative abundances of those species would undoubtedly differ from
island to island. Stochastic models try to capture the random elements
inherent in natural processes (see also Figure 2.18). Perhaps not surpris-
ingly, they can be more challenging to fit than their deterministic
counterparts. From a practical standpoint it is necessary to know
whether a model is deterministic or stochastic to fit it to empirical data
(see below].

The variety of niche-based models can seem bewildering. Different
assumptions, in terms of the precise nature of niche apportionment,
produce subtly different models. For example, MacArthur’s broken stick
assumes that total niche space is divided simultaneously, whereas nich-
es in Tokeshi’s MacArthur fraction model are partitioned sequentially —
a more realistic ecological and evolutionary scenario. However, both
models predict the same species abundance distribution. The require-
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ment of replicated data adds further complexity to the testing of stochas-
tic models (see below). These complications may explain why niche
apportionment models, and in particular Tokeshi’s refinements of
them, have received relatively little attention over the past decade. Nev-
ertheless, these models are an important ecological tool and their poten-
tial in elucidating empirical patterns of diversity has only just begun to
be realized.

From a practical perspective it may be helpful to think of niche appor-
tionment models as being arranged along a continuum from low to high
evenness. The geometric series and dominance pre-emption models rep-
resent assemblages in which evenness is very low, that is onesin which a
few dominant species control most of the resources. The random assort-
ment, random fraction, power fraction, MacArthur fraction, and domi-
nance decay models apply to progressively more even assemblages
(Tokeshi 1999; see also p. 51 below].

Geometric series

Visualize a situation in which the dominant species “pre-empts” propor-
tion k of some limiting resource, the second most dominant species pre-
empting the same proportion k of the remainder, the third species taking
k of what is left and so on until all species (S) have been accommodated.
If this assumption is fulfilled and if the abundances of the species are
proportional to the amount of the resource they utilize, the resulting
pattern of species abundances will follow the geometric series (or niche
pre-emption hypothesis) (see Figure 2.3). In a geometric series the
abundances of species ranked from the most to least abundant will be
(Motomura 1932; May 1975): .

n, = NC k(1- k)™

Where n;=the total number of individualsin the ith species; N=the total
number of individuals; k = the proportion of the remaining niche space
occupied by each successively colonizing species (k is a constant); and
Ci=[1-(1-k)5]"1and is a constant that insures that n,= N.

Because the ratio of the abundance of each species to the abundance of
its predecessor is constant through the ranked list of species, the series
will appear as a straight line when plotted on a log abundance/species
rank graph (see Figure 2.4). Drawing this type of plot is one way of decid-
ingwhether adata setis consistent with the geometric series. Worked ex-
ample 4 explains how to fit the series as well as offering some suggestions
about what to doif the points do not all fall on a straight line. A full math-
ematical treatment of the geometric series can be found in May (1975),
who also presents the species abundance distribution corresponding to
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Figure 2.16 Changes in the relative abundance of plant species in the Rothamsted Park
Grass Experiment over time. The grass has been subjected to continuous application of
nitrogen fertilizer since 1856. (Redrawn with permission from Tokeshi 1993.)
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the rank/abundance series. As noted above (see also Tokeshi 1993), the
geometric series is the only deterministic member of the group of niche-
based models.

Field data have shown that the geometric series pattern of species
abundance is found primarily in species-poor (and often harsh) environ-
ments, or in the very early stages of a succession (Whittaker 1965, 1972).
As succession proceeds, or as conditions ameliorate, other models may
provide a better description of the community. However, Tokeshi (1993)
observes that it is possible to relax the need for a very tight association
between the data and the model —in the way that would be required if
one were to formally fit the series—and to view it primarily as a descrip-
tive statistic. This means that the series can be fitted approximately
(using linear regression) and the slope of the regression adopted as a mea-
sure of evenness and used to track changes in community structure.
(This approach was independently suggested by Nee et al. (1992); see also
Chapter 4 for an assessment of its utility as an evenness measure.
Tokeshi (1993) illustrates this method in the context of the classic Park
Grass Experiment at Rothamsted (Brenchley 1958) and shows how effec-
tive it is in encapsulating changes in diversity (Figure 2.16). This method
also overcomes the problem, so often encountered in comparative stud-
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ies of diversity, where no single model fits a range of communities.* It ob-
viates the need to estimate goodness of fit, a procedure fraught with diffi-
culties (see p. 43) or to make comparisons between deterministic
models, such as the geometric series, and stochastic ones, such as the
broken stick.

MacArthur’s broken stick model

The broken stick model, sometimes known as the random niche bound-
ary hypothesis, was proposed by MacArthur in 1957. He likened the sub-
division of niche space within a community to a stick broken randomly
and simultaneously into S pieces. It is a very uniform distribution—
perhaps the most uniform ever found in natural communities. A major
criticism of the model is that it may be derived from more than one hy-
pothesis (Pielou 1975). Nevertheless, since the existence of a broken
stick distribution provides evidence that an important ecological factor
is being shared more or less evenly between species, it has served to
shape ecological thinking on the processes that might underlie the
patterns observed (May 1975). The model may also be viewed as repre-
senting a group of S species of equal competitive ability jostling for
niche space [Tokeshi 1993).

Like the geometric series the broken stick model is conventionally
written in terms of rank order abundance. The number of individuals in
the ith most important species (n,] is obtained from the term (May 1975]:

N

Where n, = the abundance of the ith species; N = the total number of
individuals; and S = the total number of species.

Wilson [1991) provides a method of fitting a broken stick model to
rank/abundance data. Drozd and Novotny’s {2000) program can be used
to estimate the species abundances associated with the broken stick.

May (1975), after Webb (1974), expresses the model in the form of a
conventional species abundance distribution:

S(n)=[$($-1)/N]-(1-n/N)*">

The broken stick, like other niche apportionment models, predicts the
average species abundance distribution. Pielou (1975} likens this to

4 Likewise, it is often advocated that a parameter of the log series model, o, can be used as a measure of
diversity, even if the log series model does not perfectly describe the assemblage in question (Kempton
& Taylor 1976; see also Chapter 4).
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Table 2.2 A summary of Tokeshi’s models.

Model Selection of niche for division

Dominance pre-emption Smallest niche always chosen

Random fraction Niche chosen at random

Power fraction Niche chosen at weighted random

MacArthur fraction Probability that niche is chosen is proportional to its size
Dominance decay Largest niche always chosen

Random assortment No conventional niche apportionment assumed
Composite model Niches of the abundant species are apportioned according

to the dominance pre-emption, random/power fraction,
MacArthur fraction, or dominance decay models while
niches of rare species follow the random assortment model

drawing a card from a well-shuffled deck. If the cards are assigned values
ranging from 1 for an ace and 13 for a king, the average denomination of a

.randomly chosen card will be 7. However, a single draw is no more likely
to produce a 7 than any other card. It is only after many repeated draws
that the “expected” average of 7 will be obtained. In a similar fashion the
equation on p. 50 is predicting the distribution of species abundances
across a number of replicate assemblages.

It is therefore inappropriate to fit the model to a single data set, even,
as I'suggested previously (Magurran 1988) as a statistical as opposed to a
biological descriptor. Indeed, the broken stick can be tricky to fit to em-
pirical data(Tokeshi 1993). There are, none the less, a few tests of the bro-
ken stick in the literature. Wilson et al. (1996}, for example, found that
the evenness of species abundances in plant assemblages increased over
time. This was reflected in a relatively better fit by the broken stick
model to older assemblages, though the fit was still poor in absolute
terms.

Tokeshi’s models

Tokeshi (1990, 1996) developed several new niche apportionment -
models: the dominance pre-emption, random fraction, power fraction,
MacArthur fraction, and dominance decay models (Table 2.2). Each of
these makes the assumption that the fraction of niche space occupied by
a species is proportional to its abundance. Niche space is sequentially
divided amongst the species as they join the assemblage. In all cases
the models assume that the target niche —the one selected for division —
is divided at random. The differences between the models lie in the way
in which the target niche is selected. And the larger this niche s, relative
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to the others in the assemblage, the more even the resulting distribution
of species abundances will be. Evenness is thus lowest in the dominance
pre-emption model, and increases progressively with the random frac-
tion, power fraction, MacArthur fraction, and dominance decay models.
Tokeshi contrasted these niche apportionment models with two other
scenarios. The random assortment model represents a random collec-
tion of niches of arbitrary sizes (Tokeshi 1990). Finally, the composite
model assumes that more than one rule is required to account for the
structure of the assemblage —the abundances of common species are set
by niche apportionment whereas the abundances of the rare ones are de-
termined by random assortment. These models are reviewed below. In
some cases the distinctions between them are quite subtle and several
are probably impossible to separate in the field. I therefore draw the
reader’s attention to the random fraction model and (the related) power
fraction models as these have, in my opinion, the greatest application
to empirical data. The other models will, I suspect, be used primarily in
theoretical analyses of niche apportionment, or to create benchmark as-
semblages of high or low evenness against which natural assemblages
can be compared.

Dominance pre-emption model

Tokeshi’s dominance pre-emption model assumes that each species in
turn pre-empts more than half of the remaining niche space and is thus
dominant over all remaining species combined (Tokeshi 1990). The pro-
portion of available niche space occupied by each successively coloniz-
ing species is randomly assigned between 0.5 and 1. This model is
conceptually similar to the geometric series and will produce, over many
replications, a similar distribution of species abundances when k =0.75
(see the discussion of geometric series above). Although initially formu-
lated to describe a process of niche filling (Tokeshi 1990), this model can
also be applied to niche fragmentation (Tokeshi 1993, 1999). In the latter
case new colonists subdivide the niche of the least abundant species. The
geometric series and dominance pre-emption model depict the least
even communities likely to be found in nature. Figure 2.17 illustrates
the pattern of relative abundance produced by this and some of Tokeshi’s
other models.

Random fraction

Tokeshi’s random fraction model is an innovative model which has the
potential for wide application. It was conceived (Tokeshi 1990] as a se-
quential breakage model in which the available niche space is initially
divided, at random, into two pieces. One of these pieces is then selected
at random for the second division and this process continues until all
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Figure 2.17 Pattern of relative abundance exhibited by a selection of Tokeshi’s niche
apportionment models. (Redrawn with permission from Tokeshi 1999.)
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species are accommodated (Figure 2.18). The model represents a situa-
tion in which a new colonist competes for the niche of a species already
in the community, and takes over a random proportion of this previ-
ously existing niche. Tokeshi {1999) subsequently pointed out that the
model can be extended to cover speciation events. This presupposes that
the probability of speciation is independent of the size of a species’ niche.
There are conflicting opinions on how the abundance of a species, or
indeed the extent its range (both measures being surrogates for niche
size), affects the likelihood of speciation. Intuitively it might seem that
species with large range sizes are more likely to speciate than those with
small ones. Darwin (1859) was the first to make this prediction and, as
Gaston and Chown (1999} note, the idea continues to attract support
(see, for example, Rosenzweig 1995; Tokeshi 1999]. This is because
larger ranges appear to offer more opportunities for fragmentation or sub-
division by a barrier, thus facilitating allopatric speciation. However, it
has recently been argued (Gaston & Chown 1999] that it is in fact the
species with small to intermediate range sizes that are more likely to
speciate. Widely distributed species have good dispersal abilities (Mayr
1963) which enhance gene flow (Rice & Hostert 1993, whereas species
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Figure 2.18 Illustration of Tokeshi’s random fraction model. In this model niche space
[represented as a pie digram) is initially split at random into two pieces to form (a). [Niches
that have been formed by the split are indicated by stippling.} One of these pieces
(outlined in bold) is chosen at random and then split at random (indicated by an arrow) to
form {b). The process is repeated {c and d} until S species have been accommodated. Every
time the model is rerun a slightly different pattern of niche allocation emerges. The one
illustrated here represents the average result (for $=5 species) after 250 runs.
Rank/abundance plots illustrate the relative species abundances produced following each
successive division.

with poor dispersal abilities will tend to form patchy populations and
thus have higher speciation rates (Gaston & Chown 1999). Although the
random fraction model is conceptually simple, Tokeshi (1990) and Fesl
(2002) found that it provided a good fit for a small community of fresh-
water chironomids.

Drozd and Novotny (2000) have created a freeware Microsoft Excel-
based program® that can be used to model the distribution of species
abundances associated with the random fraction, power fraction, broken
stick, and other niche division processes.

Power fraction model

As noted above, the majority of niche apportionment models are logi-
cally appropriate for small assemblages of related and/or ecologically in-
teracting species. Tokeshi’s power fraction model {1996] is an exception
that is applicable to species-rich assemblages. Like the random fraction
model it envisages that niche space is initially subdivided at random.

5 http://www.entu.cas.cz/png/PowerNiche/.
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Box 2.1 The power fraction model

In Tokeshi’s power fraction model, the
probability that a niche will be targeted by an
invading species is a function of its size when
that size has been raised ta the power K. K ranges
between 0 and 1. Three scenarios are illustrated
below (Figure B2.1).

Imagine an assemblage of three species which
have abundances of 50, 25, and 25 units. Niche
size is assumed to reflect the abundance of a
species. Abundances (x) here are expressed as
percentages but they could equally well be
represented as proportions. These abundances
are first raised to the power K. When K=0, the
abundance of each of the species becomes 1.
This means that every species has an equal
probability of being selected for niche
subdivision. In this scenario, the power fraction
and the random fraction are identical, since the
(random) choice of a niche for subdivision is
made without regard to the size of that niche. A
value of K=0.5, on the other hand, is equivalent
to a square root transformation of abundance. In
other words, species A is now 1.41 times as likely
to be selected as either species B or C. In the final
scenario, K= 1 and the initial abundances are

unaffected and the niche of species A has double
the probability of being split as either B or C. This
is the same as the MacArthur fraction model.
The randomization process is illustrated for
scenario 2 (K=0.5)in Figure B2.1. The
transformed abundances are now presented as
cumulative precentages and a random number
(between 0 and 100) drawn. If this random
number happened to be 48, species B would
be chosen (B occupies the slot of 241.4% and
<70.7% in the cumulative abundance
distribution). B’s niche is then divided at
random into two pieces. These new niches will
have a summed abundance of 25 units since it is
the true (untransformed) niche space that is
being divided — the weighting simply changes
the probability with which a niche of a particular
size is chosen. This continues until the
assemblage reaches its designated richness.
Since each run of the model produces a
slightly different outcome the whole process is
repeated a large number of times so that the
mean pattern of relative abundance is generated.
This can then be compared with empirical
data.

where K= 0 where K=0.5 where K= 1
Species X xK 5% xk 5% xk
A 50 1 A 50 7.07 A 50 50
B 25 1 B 25 5 B 25 25
Cc 25 ] Cc 25 5 C 25 25
= random fraction = MacArthur fraction
Weighted niches A ¥ niche sizes (%)
41.4%
7.07 units
41.4%
B
5 units 29.3%
70.7%
C
5 units 29.3%
100%

Figure B2.1
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One of the resulting niches is then selected and again split at random.
The process continues until all species have been accounted for. How-
ever, the name of the model, power fraction, highlights a subtle differ-
ence between it and the random fraction model. In the random fraction
model the choice of niche to be split is strictly random. By contrast, in
the power fraction model, the probability that aniche will be split is pos-
itively, though rather weakly, related to its size (x) through a power func-
tion K (that is xX where K ranges from 0 to 1). The closer K approaches 1,
the more likely it is that the largest niche will be selected for fragmenta-
tion. Indeed, when K = 1 the power fraction model resembles the
MacArthur fraction model (in which larger niches have a greater proba-
bility of fragmenting). On the other hand when K =0, a completely ran-
dom choice of niche fragment is restored, and the model corresponds to
the random fraction. (See Box 2.1 foran illustration of the power fraction
model.) o

Tokeshi [1996) showed that when the parameter K was set at 0.05 the
power fraction model provided a good description of a range of species-
rich assemblages. In fact virtually all the assemblages he investigated
could be accounted for by a value of K <0.2. He interprets this finding as
evidence that larger niches have a slightly greater chance of being frag-
mented. Such fragmentation could occur either ecologically (when a
new species colonizes an assemblage) or evolutionarily (when speciation
takes place) (Gaston & Chown 1999].

As already observed, a reduction in the value of K increases the resem-
blance between the power fraction and random fraction models. Since K
is apparently low in natural assemblages there may be many instances in
which both models describe observed patterns of species abundance
equally well (Tokeshi 1999).

One of the frustrations of diversity measurement has always been the
necessary recourse to different models to account for contrasting pat-
terns of species abundance. The fact that the value of the parameter K can
be adjusted to depict different forms of niche apportionment means that
a more integrated approach to the investigation of ecological diversity
may at last be possible. This benefit is enhanced by the ability of the
power fraction model to account for patterns of species abundance in
large as well as small assemblages and at scales ranging from ensemble to
geographic region (Tokeshi 1999). This flexibility can be viewed as a
weakness rather than a strength (Gaston & Blackburn 2000).

MacArthur fraction model

One longstanding concern about the broken stick model is the unrealis-
tic manner in which niches are split simultaneously. Tokeshi (1990,
1993) thus recast the process of niche fragmentation in a sequential, and
therefore ecologically (and evolutionarily) more plausible, form. The
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emphasis on sequential niche division also highlights the relationship
between this model and other niche apportionment models. Both the
MacArthur fraction and the broken stick models lead to the same result,
in terms of the predicted species abundance distribution. This acts as a
useful reminder that observation of a given pattern of species abundance
does not necessarily validate the precise mechanisms assumed by a
model predicting the same pattern. Further investigation is always
warranted.

In the MacArthur fraction model the probability of a niche being
fragmented is related to its size. Thus, larger niches are more likely to be
subdivided by an invading species or through speciation. This process
generates a very uniform distribution of species abundances and is only
plausible in small communities of taxonomically related species. As
already noted, the MacArthur fraction is a special case of the power frac-
tion model, albeit one unlikely to pertain in species-rich assemblages.

Dominance decay model

An even more uniform pattern of species abundance is envisaged by
Tokeshi’s dominance decay model. In it the largest niche is invariably
split. The sizes of the resulting fragments are chosen at random. (If the
largest niche was always split in a fixed way this model would be the
inverse of the geometric series and thus deterministic. Since the way
in which the largest niche is split is decided randomly the model is sto-
chastic, and therefore the mirror image of the dominance pre-emption
model.) To date there are no empirical data indicating that communities
aspredicted by Tokeshi’s dominance decay model can be found in nature.
This may, of course, be because insufficient investigations have been
conducted or because such an even distribution is genuinely not achiev-
able under natural conditions. In any case the model performs the useful
role of setting the upper level of evenness that might potentially be
achieved by a niche apportionment process.

Random assortment model

Tokeshi realized that there may be situations where the abundances of
species in a community vary independently of one another. This might
arise if there is no relationship, or only a very weak one, between niche
apportionment and species abundances, or if the community is in a state
of flux, perhaps because it is subject to major environmental changes,
and competitionis not setting the limits on species abundances. Tokeshi
(1993] notes that this model behaves as a stochastic analog of the geo-
metric series model in which k = 0.5, and that it is similar in spirit to
Caswell’s (1976) neutral model {see below), which also assumes that the
abundances of different species are independent of one another.
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Composite model

The preceding models have each assumed that niche apportionment can
be explained by a single rule. This may represent an oversimplification
since two or more processes could equally well be involved. Tokeshi
(1990] thus formulated his composite model. It assumes that competi-
tion is more likely to occur amongst abundant species and that these
would therefore divide available niche space according to one of the
niche apportionment models —dominance pre-emption, random/power
fraction, MacArthur fraction, or dominance decay. The remaining rare
species might be predicted to achieve their niches on the basis of random
assortment. One potential complication is knowing where to set the
boundary between the more abundant and less abundant species.
(Gaston's (1994] quartile criterion of rarity (reviewed below) is one solu-
tion.) Another is deciding which niche apportionment scenarios to test.
It is also possible to extend the model to accommodate more than two
processes of niche subdivision (Tokeshi 1999). The composite model has
not yet been comprehensively explored but its attempt to encapsulate
ecological realism should prompt further investigation.

Hughes’ dynamic model

Hughes’ (1984, 1986) concern about the log normal model led him to
devise his own dynamic model. It invokes competition as the structuring
mechanism and was developed to explain the patterns of species abun-
dance that characteristically arise in marinebenthic communities. These
assemblages often have more abundant species than predicted by the log
series distribution but too few rare species to produce the mode that de-
fines the log normal distribution. By visually inspecting rank/abundance
plots from 222 animal and plant communities, Hughes concluded that his
dynamics model predicted species abundance patterns more effectively
than either the log normal or log series models. Barange and Campos
(1991], however, preferred the Zipf-Mandelbrot model and felt it to be
more appropriate in the light of the hierarchical organization of natural
systems. Hubbell’s (2001) neutral model (discussed below) makes a num-
ber of parallel assumptions. Both approaches, for example, incorporate
birth and death processes. However, Hughes’ model is more complex and
specific than Hubbell’s and to date has received relatively little attention.

Other approaches

Caswell’s neutral model

Caswell’s (1976} neutral model is rightly celebrated for its innovative
approach to the analysis of community structure. In essence the model
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asks what the species abundance patterns in a community would be if all
biological interactions were removed. Intriguingly, both species rich-
nessand evenness in real world communities tend to be lower thanin the
neutral landscape of Caswell’s model. The deviation statistic, V, can be
used to compare observed diversity (H’] with the predicted neutral diver-
sity (E(H’)).

L 6)
SD(H’)

(H’ is the Shannon diversity index. It is examined in detail in Chapter 4.}
Values of V> 2 or V < -2 denote a significant departure from neutrality
(Clarke & Warwick 2001a). Goldman and Lambshead (1989] provide a
computer program for calculating V; this is implemented in PrRimMER.® Al-
though V is sometimes treated as a measure of environmental stress
(Platt & Lambshead 1985; Lambshead & Platt 1988) it needs to be applied
with caution. Given the complex relationships between richness and
evenness in nature, Vis probably only useful as a measure of disturbance
when data from control unperturbed assemblages are available as a
benchmark. Other more promising methods of assessing environmental
stress are explored in Chapter 4. Moreover, Hayek and Buzas ({1997) note
that for reasonably large values of S and N the expected values of H' gen-
erated by the neutral model resemble those predicted by the log series
model. The congruence in the outcome of different models has been
noted already in this chapter and provides a further reminder that the
biological interpretation of results is not always straightforward.

Hubbell’s neutral theory of biodiversity and biogeography

Hubbell (2001} has developed an ambitious new neutral model that ex-
tends MacArthur and Wilson’s equilibrium theory of island biogeogra-
phy toaccount for regional as well as local patterns of biodiversity. In this
approach metacommunities are defined as large-scale assemblages of
trophically similar organisms that occur across evolutionary timescales.
Each metacommunity is comprised of a set of local communities.
Hubbell’s model makes the assumption that communities are always
saturated with individuals, and that there is a fixed relationship between
N and area (A). No new individuals can be added through birth or immi-
gration until N has been reduced by death. The relative abundance of
eachspeciesinalocal community isrelated toitsabundance in the meta-
community; species abundances in the metacommunity are in turn
shaped by speciation. Hubbell’s theory can be encapsulated in a single di-

6 www.pml.ac.uk/primer/index.htm.
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mensionless biodiversity mumber 8, which is equal to twice the
speciation rate multiplied by the metacommunity size. It is this bio-
diversity number that predicts the relative abundance of species. If, for
instance, metacommunity size (N}is held constant, while speciationrate
is increased, more rare species will result. Alternatively, the speciation
rate (v) may be held constant and the consequences of varying metacom-
munity size explored. Different models of speciation lead to different
species abundance distributions in the metacommunity. For example, if
point mutation, whereby new species arise as a single individual, is the
dominant form of speciation, species abundances in the metacommun-
ity will follow a log series distribution. In contrast, the random fission
model of speciation, which produces two approximately equally abun-
dant daughter species, results in a zero-sum multinomial distribution of
species abundances. {See Hubbell 2001 for a full description.)

When immigration is unlimited the pattern of species abundance in
a local community will be identical to that in the metacommunity
(though species richness will be reduced as the spatial dimensions of the
local community, and therefore the number of individuals it can support,
will also be smaller). It will thus follow a log series or a zero-sum multi-
nomial distribution, depending on the mode of speciation. Alterna-
tively, if immigration is severely limited, perhaps because the local
community is remote and there are barriers to dispersal, species abun-
dances will resemble a log normal distribution. This is explained by the
relationship between N and A. Extinctions must be compensated by in-
creases in the abundance of existing species since there are few colonists
to contribute new, but generally rarer, species to the community. At in-
termediate immigration rates the distribution of (logged) species abun-
dances becomes skewed to the left—the pattern often observed in
natural assemblages (Gaston & Blackburn 2000). Under such dispersal
limitation the distribution of species abundances in local communities
follows the zero-sum multinomial distribution, irrespective of the shape
of the distribution in the metacommunity.

Hubbell’s model is remarkable for its ability to account for a wide
range of empirical species abundance distributions.” None the less the
assumption of neutrality —defined by Hubbell (2001, p. 6) as the “per
capita ecological equivalence of all individuals of all species in a tropi-
cally defined community” —runs against the grain for many ecologists
familiar with the functional diversity of ecological systems (Brown
2001). It seems unlikely that the identity of the dominant species in a
community is purely a matter of chance. Gaston and Blackburn {2000)
also take issue with the assumption that assemblages are saturated with
respect to the number of individuals they support. Magurran and Hen-

7 McGill (2003), however, finds that the log normal distribution fits empirical data better than Hubbell’s
zero-sum multinomial.
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derson (2003} have independently shown that dispersal limitation can
account for the characteristic left skew in the species abundance distrib-
ution of local communities. In contrast to Hubbell’s approach, biological
interactions are assumed to play an important role. We use a mixture of
the log series and log normal models to account for empirical patterns.
Hubbell’s model has already stimulated a great deal of interest and will
undoubtedly give rise to many new studies. One complication is that
simulations are required to estimate the fundamental biodiversity num-
ber and dispersal rate for empirical data sets. Hubbell (2001} provides an
algorithm for computing the expected relative abundance distribution
of a metacommunity assuming point mutation speciation. A fitting
routine is promised for the zero-sum multinomial (see also McGill 2003).

Fitting niche apportionment models to empirical data

How does an investigator establish whether an assemblage conforms to
one (or more) niche apportionment models? Clearly the best approach is
to have an expectation of possible modes of niche subdivision based on
an understanding of the ecology of the assemblage in question. For ex-
ample, if competition is known to be important it is logical to apply a
model that emphasizes this process. Beyond this, the size of an assem-
blage and the degree of evenness in the observed pattern of species abun-
dance may indicate a starting point.

In statistical (and deterministic) models, as noted earlier, the usual
procedure is to compare the observed pattern of species abundance with
the patterns predicted by a particular model. Stochastic models present a
different challenge. Rather than assuming (as deterministic models do}
that N individuals are distributed amongst S species in a fixed manner,
stochastic models recognize that random variation in the natural world
will produce a slightly different outcome every time a community is as-
sembled according to a given set of rules. As a consequence the investi-
gator needs to be able to predict the mean abundances of each of the
species in an assemblage, and to assign confidence intervals to these
mean values. This necessitates a simulation procedure in which the
community is repeatedly reconstructed. Strictly speaking, comparisons
between these expected abundances and a real assemblage should only
be made when replicated observations of the latter are used (Tokeshi
1990, 1993). This clearly places greater demands on the investigation,
particularly if Tokeshi’s (1993) advice to take more than 10 samples per
assemblage (over space or time) is followed. In fact, since studies of niche
apportionment tend to be small scale and intensive this requirement
may not be as onerous as it initially appears. Furthermore, there are good
reasons why replication should become standard practice in investiga-
tions of diversity. Replication means that variation in diversity, over
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space and time, is amenable to statistical analysis (Chapter 4) and that
estimates of total species richness are feasible (Chapter 3).

Tokeshi (1990) pioneered anew way of testing these stochastic models
(see also Worked example 5). To summarize, n > 10 samples are taken.
Species (S) are ranked from most abundant to least abundant. The mean
abundance of the most abundant species (x,_,) is calculated. This is re-
peated for the next most abundant species (x,_,) and so on until the least
abundant species (x,_g) has been included. (In most cases, particularly
those where the processes underlying niche fragmentation are of pri-
mary interest, it is not necessary to know the identities of the species in
each replicate and the mean value of x,_ ; may be calculated regardless of
the actual taxonomic species involved. In certain other circumstances,
however, it may be important to know which species is which; see
Tokeshi (1999} for a discussion.) These mean abundances constitute the
observed distribution. The expected abundances are then estimated for
an assemblage of the same number of species (S). To do this a model is
chosen and then simulated a large number of times (say N = 1,000} using
S species. {The randomness built into the models means that each simu-
lation will lead to a slightly different outcome.] The mean (p,) and
standard deviation (o,) of the abundance of each rank, i=1toi=S, are cal-
culated. This allows the user to assign confidence limits to the expected
abundance of each rank. These confidence limits are set in the usual way,
with the important consideration that the sample size is n (that is the
number of replicated samples of the assemblage) rather than N ({the num-
ber of times the model was simulated).

R(x;)=p, t10,/vn

where r defines the breadth of the confidence limit. It is 1.96 for 2 95%
limit and 1.65 for a 90% limit. If the mean observed abundances fall
within the confidence limits of the expected abundances (see Worked
example 5), the model can be said to fit the assemblage. Comparison
between the observed and expected distributions is simplified if abun-
dances are treated as proportional, that is the sum of the abundances (x;)
across all S species is Zx, = 1. Graphic presentation of the result is further
clarified if these proportional abundances are plotted on a log,, scale. An
advantage of this simulation approach is that it makes subtle distinc-
tions between the possible distributions and spares the user the frustra-
tion that often accompanies the application of deterministic models,
several of which may apparently fit the same data set.

A potential problem arises if the number of species (S) varies from sam-
ple to sample (Tokeshi 1993). This should not matter if the variation is
slight. Alternatively, the difficulty may be overcome by adjusting S to a
common value, provided that such a value of S accounts for most of the
abundance (>95%) in the replicated samples.
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Figure 2.19 Testing the fit of a number of assemblages to a single model. Here a power
fraction model with k=0.05 is fitted to a series of species-rich assemblages. The solid line
is the standard deviation of log, abundance predicted by the model. Broken lines represent
+2 5.d. of this standard deviation. Theoretical values are derived from a large number of
simulations. The graph reveals that miscellaneous assemblages conform to the power
fraction model with k=0.05. {Redrawn with permission from Tokeshi 1999.)

What happens if it has not been possible to replicate the sampling?
Tokeshi (1999) notes that it may be legitimate to compare unreplicated
ranked abundance data with the mean (+2 s.d. or £95% confidence lim-
its) simulated values of a model. Alternatively, the standard deviation of
the log, observed abundances of species can be plotted on a graph show-
ing the mean (12 s.d.) of the log, expected abundances. This method
is useful if the goal is to determine whether a number of species-rich
assemblages share a common abundance distribution (Figure 2.19).
Tokeshi also reminds us that unreplicated data are not appropriate for
use with either the broken stick or MacArthur fraction models.

Bersier and Sugihara (1997) recognized that Tokeshi‘s method of relat-
ing stochastic species abundance models to field data represented an
important first step but highlighted some shortcomings in the method.
They observed that the test does not permit the rejection of data sets in
which the variance is greater than that predicted by the model. Addi-
tionally, since the mean observed abundances of all species must lie
within the expected confidence intervals, rich assemblages are more
prone to rejection than species-poor ones. Distributions may be skewed,
rendering symmetric confidence limits inappropriate and species ranks
nonindependent. Bersier and Sugihara’s (1997) solution was to propose a
Monte Carlo test. One drawback to their approach is that it is computa-
tionally intensive. Cassey and King (2001) offer some important clarifi-
cations of Bersier and Sugihara’s (1997) method and provide a test that
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makes it computationally more efficient. Moreover, the algorithm that
Cassey and King (2001) developed to implement the test, which is writ-
ten for sas, is freely available from the authors on request.

General recommendations on investigating patterns
of species abundance

Previously, I (Magurran 1988) suggested that it would be informative to
explore empirical data in relation to four species abundance models: the
geometric series, log series, log normal, and broken stick distributions.
These represent situations of increasing evenness. The expectation was
that most assemblages would be described by a log normal distribution
and that any departure from this pattern warranted further investiga-
tion. An obvious drawback of this approach is that it treated the models
primarily as statistical descriptors of patterns rather than using them to
infer biological processes. Interpretation could be impeded if the data
were described by more than one model, or even by none at all.

Tokeshi’s (1990, 1993, 1996, 1999) revaluation of species abundance
distributions, his innovative niche apportionment models, and other
advances in the field mean that this advice must now be updated.
1 It is important at the outset to know what the precise aims of the in-
vestigation are, and which hypothesis, if any, is being tested. This may
sound obvious but it is a point that is often overlooked.
2 If the purpose of the investigation is to describe species abundance
patterns, or quantify changes over time or space, for example through
succession or following pollution, then replication of sampling, though
strongly recommended, is not strictly necessary. However, it is essential
that sampling be sufficiently thorough to reveal the true species abun-
dance distribution {see Chapter 5 for a further discussion of sampling).
On the other hand, should the study aim to relate the observed patterns
to the ways in which the ecological niches have been carved up by the
constituent species, replicated sampling increases the power of the
investigation immeasurably.
3 The aims of the project will also help delineate the boundary of the as-
semblage under investigation. For example, an investigator interested in
the biological basis of abundance patterns will often focus on a small
assemblage of closely related organisms, since ecological interactions,
particularly competition, are more likely to be discernible there (but see
discussion of the power fraction model above). Tokeshi’s niche appor-
tionment models are fitted most easily to samples with the same species
richness. Comparison of communities is also facilitated if they are
equally speciose.

Studies involving the description of pattern are less constrained by
size and can extend from small ensembles to large heterogeneous assem-
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blages. However, comparisons between assemblages are again more
straightforward, and probably also more meaningful, if species richness
does not vary excessively.

4 In almost all investigations the most useful next step is to graph the
data using a rank/abundance (Whittaker) plot. These plots are often
the best way of illustrating differences in evenness and species richness.
Wilson (1991} provides a method for fitting several key species abun-
dance models to these plots (see also point 6 below).

5 If understanding niche apportionment is the goal, the investigator
should fit one or more of Tokeshi’s models. In some cases it may be use-
ful to examine a range of models, but in others, particularly where it has
been possible, from a priori knowledge of the system, to arrive at a
hypothesis of niche apportionment, it will be obvious which model or
models totest. Although there have been relatively few tests of Tokeshi’s
models to date, the random fraction model appears to be most generally
applicable to small assemblages and the power fraction to larger ones
(these models being, of course, closely related). It may not always be fea-
sible, butideally the next step would be to conduct experimental manip-
ulations to confirm the niche apportionment mechanisms implied by
the analysis.

6 Alternatively, when the objective is to describe the distribution of
species abundances, an investigator has two options {(which need not be
mutually exclusive). The first is to examine the rank/abundance plot and
compare communities using either k (the parameter of the geometric se-
ries) or the slope of a linear regression. This method neatly and intuitive-
ly encapsulates differences between the assemblages. It does not require
the user to assess goodness of fit but simply equates the diversity of the
assemblage with the slope of the regression. Analysis of covariance
[ANCOVA) can be used to test for differences in slopes. The second op-
tionisto fit one or more models to the data. Depending on the outcome it
may be possible to draw biologically interesting conclusions. For exam-
ple, alogseries distribution highlights the preponderance of rare species,
and produces a robust diversity measure. A log normal distribution may
be a useful gauge of pollution stress. The geometric series is often indica-
tive of a species-poor assemblage and could imply that resources are
being apportioned according to simple rules. The difficulty, of course, is
that several different distributions may equally well describe the same
data set. Moreover, the truncated log normal distribution is so versatile
that it is a poor discriminator of communities. However, this problem
can be largely overcome if the assemblages in question are reasonably
speciose —with at least 30, but ideally 50 or more, species and where the
presence of a mode in the distribution of {logged] species abundances in-
dicates that a log normal distribution is plausible. Given the continuing
debate, evidence that “natural” assemblages, as opposed to large hetero-
geneous collections of samples, follow a fully unveiled log normal distri-
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bution would be an interesting, and undoubtedly publishable, result.
The presence of log left-skew will also stimulate further investigation
and analysis.

7 It may not be necessary to rely on species abundance distributions
to distinguish between assemblages. Tokeshi (1993) notes that the
Kolmogorov-Smirnov two-sample test can be used to determine
whether two data sets have the same pattern of abundance. However, it
is essential to make sure that the data have been collected in a standard
way (see Worked example 3).

Rarity

This chapter has concentrated on species abundances. But if some
species are common, then others, by definition, must be rare. Rarity, like
abundance, is a relative concept; it will depend on the scale of the inves-
tigation and the manner in which the assemblage has been delineated.
Different authors emphasize different aspects of abundance —endemici-
ty, local population size, habitat specialization, and so on—when defin-
ingrarity. Gaston (1994} reviews these approaches and provides a unified
definition of rarity. His method is particularly relevant to biodiversity
measurement.

In the preceding discussion in this chapter, and in line with common
practice, rare species were classed as those falling at the lower end of the
distribution of species abundance. The boundary between rare species
and the rest was not specified. Where this is desired, Gaston’s (1994)
advice is to place the cut-off point at the first quartile in terms of pro-
portions of species. Thus, in an assemblage of 40 species, the 10 with the
lowest abundance would be defined as rare (Figure 2.20). Likewise, the
upper quartile can be used to identify common species. One potential
drawback to this approach is that it de-emphasizes the proportion of low
abundance species in an assemblage (Maina & Howe 2000). For instance,
Robinson et al. (2000) noted that 33 % of forest birds in Amazonian sites
had densities of less than, or equal to, one pair per 100ha, while Pitman
et al.(1999] found that 88 % of Amazonian tress had densities of less than
one individual per hectare over a network of forest plots in Manu Na-
tional Park, Peru. A small number of species will often account for 90%
or more of the total abundance (see Figure 2.4 for an example) and one
might legitimately consider the remaining majority to be rare. In addi-
tion, a rigid definition, such as the quartile criterion, may mask differ-
ences in the preponderance of rare species in different assemblages. -
When Robinson et al. {2000) examined the diversity of forest birds com-
munities in Panama they found that only 17% of species were rare in
contrast to 33% of species in Amazonia.
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Figure 2.20 Rarity amongst freshwater fish in Trinidad and Tobago according to Gaston'’s
quartile criterion. Fish abundance was measured in two ways — either as numbers of
individuals or as biomass. Data were collected by Phillip (1998). The quartiles in the two
distributions are shown as broken lines; fish species that fall to the left of the individuals
line or below the biomass line are classified as rare. While there is substantial agreement
about the nonrare species, only five {rather than the expected 10} out of the 41 species
recorded are unequivocally rare according to both measures of abundance.

Abundance can be measured in different ways (see Chapter 5 for a full
discussion). Different abundance measures may generate different sets
of rare species; the degree of overlap will vary with taxon. In the fresh-
water fish example in Figure 2.20 there is some consistency between
those species identified as rare on the basis of numbers of individuals,
and those designated as rare using biomass data. As the variance in the
biomass of individuals increases, agreement regarding the identities of
rare species will diminish.

In addition, it is possible to apply absolute definitions of rarity. For in-
stance, in an investigation of insect herbivores in New Guinea (Novotny
& Basset 2000, rare species were classified as those represented by a sin-
gle individual (otherwise known as a singleton). The same number of
species from the upper end of the species abundance distribution were
then defined as common, and the remainder designated “intermediate.”
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Singleton species are prevalent in insect assemblages and often consti-
tute the largest abundance class. Indeed, this is why the log series distri-
bution appears to have particular application in such contexts. Novotny
and Basset (2000) found that when the assemblage was defined as the
group of species associated with a single plant species, on average 45%
of leaf-chewing and sap-sucking insects were singletons. A somewhat
smaller proportion, 278 of the 1,050 species recorded, were represented
by asingle individual (unique singletons). While still an impressive total,
this illustrates how even absolute definitions of rarity are contingent on
the sampling universe and are in a sense relative. The investigation rep-
resented 950 person days of sampling. None the less, Novotny and Basset
{2000) speculate that the unique singletons may belong to species that
feed on plants other than those studied. The alternative explanation,
that these species are genuinely sparsely distributed, would require
them to persist at population densities below one individual per hectare
of forest.

Longino et al. (2002) point out that sampling methodology can have a
large impact on the perception of rarity. Their investigation of ants in
Costa Rica employed eight different sampling methods. Rare species
were defined as being locally unique (that is found in one sample only).
The proportion of unique species varied from 0.13 to 0.47 (average 0.33)
when data sets, collected using the different sampling techniques, were
examined separately. However, when all data were combined the pro-
portion of unique species dropped to 0.12 (51 out of 437). This may in part
be a numerical effect—as more individual samples are collated the
chances of identifying new species diminishes. But more importantly
the different sampling methods insured that a wide range of ant niches
were searched [see also Chapter 5). Longino et al. (2002) then went on to
examine the status of their 51 locally unique species. The rarity of 20 of
these species could be attributed to “edge effects,” that is species likely
to be abundant at the La Selva Biological Station but hard to sample, or
species known to be common elsewhere but rare in this particular geo-
graphic locality. Only six species —the “global uniques” —were found in
a single sample, and nowhere else on earth.

An "absolute” definition of rarity is also generally adopted when the
abundance-based coverage estimator is used to deduce the species rich-
ness of an assemblage (Chazdon et al. 1998; Colwell 2000). In this case
species having 10 or fewer species are typically defined as “rare.” Chap-
ter 3 provides more details.

As the scale of the investigation broadens, abundance data become
harder to compile. With the exception of particularly well-studied taxa
such as British birds, good abundance data are lacking for geographic
regions. An alternative, and often more practical, approach is to look in-
stead at the distribution of species’ range sizes and use this as a surrogate
of abundance. Gaston (1994 assesses various methods of quantifying
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Table 2.3 The distribution of seven forms of rarity in the British flora using 160 species
(after Rabinowitz et al. 1986, with permission).

]

Gegraphic

distribution: Wide Narrow

Habitat specificity: Broad Restricted Broad Restricted
Local population size: 36% 44% 4% 9%

somewhere large

Local population size: 1% 4% 0% 2%
everywhere small

Table 2.4 Seven forms of rarity amongst freshwater fish in Trinidad and Tobago using 40
species (after Phillip 1998, with permission).

Gegraphic ‘
distribution: Wide Narrow

Habitat specificity: Broad Restricted Broad Restricted

Local population size: 29% 13% 3% 16%
somewhere large

Local population size: 13% 13% 0% 13%
everywhere small

range size. He also notes that species that are categorized as rare on the
basis of abundance, will also generally be identified as rare on the basis of
their range size.

There are exceptions, however. Some species inevitably fall within
the quartile criterion of distribution but not abundance (and vice versa).
Gaston [1994] resists the temptation to treat these as different forms of
rarity. Other authors have argued that rarity is a multifaceted concept.
Rabinowitz and her colleagues (Rabinowitz 1981; Rabinowitz et al.
1986), for example, argue that a species’ rarity statusisa function of three
characteristics —geographic distribution, habitat specificity, and local
population size. The authors (Rabinowitz et al. 1986) categorized British
flora in this way and found that only some 36 % of species were unequiv-
ocally common (Table 2.3). One category of rarity —narrow geographic
distribution, broad habitat specificity, and an invariably small local pop-
ulation size —contained no species at all. A similar result was obtained
when the freshwater fish in Trinidad and Tobago were classified in the
same way Phillip 1998)[Table 2.4}, although when Thomas and Mallorie
(1985) investigated patterns of rarity in butterflies of the Atlas Moun-
tains in Morocco they did find a single species (out of 39] that matched
these criteria. Evidently, this form of rarity is biologically hard to
achieve.
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This approach has considerable potential in conservation biology. In-
deed, the International Union for Conservation of Nature and Natural
Resources’ “red data book” definition of rarity (Gaston 1994 incorpo-
rates the same variables:

Taxa with small world populations that are not at present Endangered or
Vulnerable but are at risk. These taxa are usually localised within re-
stricted geographical areas or habitats or are thinly scattered over a more
extensive range.

However, in the context of biodiversity measurement, rarity is best
viewed as a continuous, as opposed to a categorical, variable. This is be-
cause we are generally engaged in providing quantitative comparisons
between assemblages and it is easier to achieve these if rarity is measured
using a single metric. Categories of rarity are potentially less objective.
They demand detailed information on the ecology of all the species in an
assemblage. In addition, Rabinowitz’s seven forms of rarity tend to be as-
signed at the level of the geographic region whereas many investigations
of biological diversity take place at more local scales (but see also Chap-
ter 6). Deciding where the rarity boundary falls on the continuum of rare
to abundant species remains a difficult challenge. Gaston’s {1994} quar-
tile criterion provides a useful starting point but because assemblages
vary in their evenness, and because the proportion of low abundance
species will change according to the intensity of sampling and the scale
of the investigation (the veil line again), it is not universally applicable. If
the quartile method seems inappropriate, the usual alternative is to
identify the species with the lowest abundance or incidence as rare—
as Novotny and Basset (2000), Pitman et al. (1999), and Robinson
et al. (2000) have done. The extent to which perceptions of rarity are
governed by sample size will be considered further in Chapter 5 and the
relationship between rarity and B diversity in Chapter 6.

This chapter has come full circle. It began by noting that assemblages
can vary considerably in species richness but all are characterized by un-
even distributions of abundance. The precise shape of the distribution of
species abundances is of considerable fundamental and applied interest.
It can shed light on niche apportionment in communities, help explain
why particular levels of richness can be sustained, and monitor the
effects of pollution stress ([Chapter 5). Species abundance distributions
may be used to estimate species richness —the topic of Chapter 3. Alter-
natively, statistics can be employed to summarize the diversity or even-
ness of an assemblage, but even though these are sometimes called
“nonparametric” measures, their performance is mediated by the under-
lying pattern of species abundances. These statistics will be examined in
Chapter 4.
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Summary

1 Different plotting methods can be used to display the distribution of
species abundances. Of these the rank/abundance plot (or Whittaker
plot) and log(x) frequency distribution (or Preston plot) are most widely
used.

2 Species abundance distributions can be classified as statistical or bio-
logical. Statistical models describe observed patterns whereas biological
models attempt to explain them. Most statistical models are determinis-
tic and most biological models stochastic.

3 The log series and log normal models are the widely used statistical
models. There is still debate over whether the log normal is the expected
distribution for large, unperturbed ecological assemblages. Empirical
log normal distributions tend to log left-skewed. Reasons for this are
explored.

4 Motomura’s geometric series and MacArthur’s broken stick model are
two early examples of biological models. Tokeshi has proposed a series of
new models reflecting different scenarios of niche apportionment. Of
these the random fraction model and the related power fraction model
appear to have greatest application to small and large assemblages,
respectively. Methods of fitting niche apportionment models are
discussed. ,

5 Null models of species abundance, including Caswell’s and Hubbell’s
neutral models are reviewed.

6 General recommendations on investigating patterns of species abun-
dance are given. The goals of an investigation will determine whether a
biological or statistical model is appropriate. This in turn will guide the
sampling strategy. Since species abundance distributions can be com-
pared directly it may not be necessary to fit a model.

7 Rarity is discussed. Relative and absolute definitions of rarity are pre-
sented. From the perspective of biodiversity measurement, rarity should
be treated as a continuous variable. Gaston’s definition—that rare
species are those that fall in the lower quartile of the species abundance
distribution —provides a useful working definition.



chapter three
How many species?’

Describing the species abundance distribution of an assemblage is one
thing; providing a synoptic measure of its diversity represents a rather
different challenge. Considerable effort, particularly in the 1950s and
1960s, was devoted to finding a single measure that would perfectly en-
capsulate the diversity of the sample or community under study. This
quest was ill fated from the beginning as biodiversity is not reducible to a
single index (see Chapters 2 and 4 for further discussion of this point).
Rather, it is necessary to decide which component of diversity one as-
pires to measure and then choose the index that performs this task most
effectively.

At first sight, species richness seems to be the simplest, and most in-
tuitively satisfying, measure of diversity. Species richness can be defined
as the number of species of a given taxon in the chosen assemblage. Yet
such simplicity is illusory. There is considerable debate about which
species concept should be adopted. Most biologists adhere to Mayr’s
(1942 biological species concept (Coyne & Orr 1998; Futuyma 1998) but
alternatives, for example the phylogenetic species concept (Cracraft
1989) and the cohesion concept ([Templeton 1989) are also used. Added to
this is the issue of species discrimination (Gaston 1996b). Taxonomists
are often classified as “lumpers” or “splitters.” The former approach has
the result of decreasing species richness, the latter of inflating it. Greater
investment in taxonomy may also boost estimates as new species are de-
scribed and cryptic species distinguished —although the identification

1 After May (1990a).
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of synonymies, where two or more scientific names have been applied to
a single species, can actually reduce the total (Gaston & Mound 1993;
Gaston et al. 1995). Inevitably, some groups are much less well known
than others. Perhaps as many as 75% of species remain to be formally de-
scribed {May 1990a). Morphotypes or morphospecies —taxa that are dis-
tinguishable on the basis of the morphology {Oliver & Beattie 1996a,
1996b)—provide a practical solution in circumstances where previously
unrecorded or unidentifiable organisms are encountered (see Hammond
1994 for a more detailed discussion of this point]. Morphospecies are
usually treated as equivalent to species in richness estimates. Clearly,
morphospecies will be more indispensable for some taxa than others:
Lawton et al. [1998) conducted an inventory of a semideciduous humid
forest in southern Cameroon in which over 90% of recorded soil nema-
todes—but no birds—had to be assigned to morphospecies. It is par-
ticularly important that morphospecies are classified and identified
consistently when comparisons between localities are being made as
inconsistencies can produce significant errors in richness estimates
(Hammond 1994).

Sampling brings further complications. Even when species can be un-
ambiguously identified it is rarely cost effective to record every species
in an assemblage. If larger areas are examined more species will be re-
vealed (Figure 3.1a). Estimates will increase as sites are explored more
thoroughly, or surveyed over longer periods so that diurnal and seasonal
activityrhythmsare accounted for (Figure 3.1b). And, since assemblages,
includingisolated ones such asislands (Rose & Polis 2000), are not closed
systems, the cumulative list of species will creep ever upwards as new
colonists arrive (MacArthur & Wilson 1967; Holloway 1977; see also
Chapter 5).

Effective sampling must also take heed of the underlying species abun-
dance distribution and greater effort will be required in situations where
evenness is low (Lande et al. 2000; Yoccoz et al. 2001). Imagine, for in-
stance, that there are two assemblages, each with the same number of
species and individuals, but whose species differ in their relative abun-
dances. In the assemblage where all species are more or less equally com-
mon, sampling will soon provide an accurate estimate of its richness. On
the other hand, samples taken from the assemblage where one species
dominates and the others are rare will tend to underestimate richness
(May 1975) (Figure 3.2). A further problem is detectability —not
all species or individuals are equally easy to sample {Southwood &
Henderson 2000} and this can be a potential source of error (Yoccoz et al.
2001). Methodological edge effects arise when the probability of species
capture is not directly related to species abundance (Longino et al. 2002).
With these caveats in mind this chapter considers methods of measuring
species richness and evaluates their effectiveness.
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Figure 3.1 (a) Spatial effects and species richness. The graph illustrates the relationship
between area surveyed and number of species recorded in a wet, old-growth forest in
Malaysia [Pasoh| and a moist, old-growth forest in central Panama. Datarelate to plants
with stems >10mm dbh (from Condit et al. 1996). (b] Temporal effects and species
richness. The graph shows the number of bird species observed on the Isle of May (off
Scotland’s east coast) during 1985. Data are presented as the number of species per month,
and cumulative total number of species recorded over the year. The influx of spring and
autumn migrants in May and October, respectively, is clearly visible. (Data courtesy of
Fife Nature.}

Measures of species richness

In circumstances where the fauna or flora are well known and not too spe-
ciose it may be possible to record, with a fair degree of accuracy, absolute
species richness. In practice this usually means temperate and often
terrestrial or freshwater assemblages of vertebrates, such as North
American land mammals (Brown & Nicoletto 1991] and British fresh-
water fish (Maitland & Campbell 1992), or assemblages of higher plants,
forexample the vegetation of the Siskiyou Mountains in Oregon and Cal-
ifornia (Whittaker 1960). However, the real challenges in biodiversity as-
sessment concern poorly documented (usually invertebrate) taxa in
tropical or deep-sea assemblages. Here, high diversity combined with a
relatively poorly documented biotaand invariably limited funding, mean
that an estimate of species richness is usually the best that can be
achieved. Yet it is in these localities that the need for rapid, accurate, and
cost-effective biodiversity inventories is most pressing. Lawton et al.
(1998] estimated that up to 20% of the world’s 7,000 systematists would
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Figure 3.2 The effect of abundance distribution on richness estimation. Each assemblage
consists of five species and 50 individuals. In the even assemblage each of these five
species has 10 individuals; four of the species in the uneven assemblage are singletons
while the remaining one has 46 individuals. The graph shows the estimate of species
richness obtained by successively sampling (at random, and without replacement} an
individual from each assemblage. This estimate isaveraged over 50 randomizations. True
species richness (S = 5] emerges much more quickly in the even assemblage than in the
uneven one.

be required to produce an all-taxa biological inventory of a single “repre-
sentative hectare” of forest in a reasonable time period. This calculation
was based on their investigation of eight animal taxa in Cameroon where
the equivalent of five “scientist years” was needed to sample, sort, and
catalog the 2,000 species in the inventory. One consequence of the re-
newed interest in biological diversity in recent years is that ecologists
have placed considerable emphasis on improved methods of estimating
species richness. Fortunately, the news is good. Excellent progress has
been made and there are now a number of robust and efficient estimators
available.

There are two main methods of expressing estimates of species rich-
ness —as numerical species richness, which is the number of species per
specified number of individuals or biomass, or species density, which is
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the number of species per specified collection area or unit. Species den-
sity, for example the number of species per metre squared, is especially
favored in botanical studies. The classic Park Grass Experiment, begun
atRothamstedin England well over a century ago (Lawes & Gilbert 1880;
Lawes et al. 1882; Tilman 1982), typifies this approach. It continues to be
used today, for example in investigations of the relationship between di-
versity and function (Hector et al. 1999). Numerical species richness, on
the other hand, lends itself to animal taxa where individuals are readily
identifiable and where the investigator has the option of continuingsam-
pling until a certain minimum number of individuals are reached. For
instance, micropaleontologists typically identify 300 individuals to
species (Buzas 1990; Hayek & Buzas 1997; see also Chapter 5).

Gotelli and Colwell (2001) make the parallel distinction between
individual-based assessment protocols, where individuals are sampled
sequentially, and sample-based assessment protocols, in which sampl-
ing units, such as quadrats, are identified, and all the individuals that
lie within them are enumerated. These sampling approaches have
important implications for richness estimation (Gotelli & Colwell
2001; Longino et al. 2002; see also discussion in Chapter 5]. Incidence
{or occurrence) data offer a further method of deducing species richness.
Incidences represent the number of sampling units in which a species
is present. These sampling units can be grid squares, quadrats, pitfall
traps, zooplankton hauls, or indeed anything that is collected in a sys-
tematic way. In effect incidences are species density data in another
form.

A major problem with species richness gstimates is their dependence
on sampling effort (Gaston 1996b) (Figure 3.3]. Sampling effort is rarely
documented (Gaston 1996b). This presents a major problem to those
who try to deduce the absolute richness of a taxonomic group or geo-
graphic area since the rate at which new species are recorded is an impor-
tant variable in such estimates (Simon 1983; May 1990a; and see below).
Lack of information on sampling effort also impedes the comparison of
the richness of different localities {Gaston 1996b). None the less, the
application of the new estimators —which encourage the user to expli-
citly state sampling methodology and size—may do much to remedy
the situation.

Species richness indices

There are several simple species richness indices that attempt to
compensate for sampling effects by dividing richness, S, the number of
species recorded, by N, the total number of individuals in the sample.
Two of the best known of these are Margalef’s diversity index (Clifford &
Stephenson 1975) Dy,
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Figure 3.3 Observed richness isrelated to sampling intensity. This graph shows the
relationship between the number of vascular plant species recorded and sampling effort,
in walk surveys and quadrat surveys carried out in a broadleaved woodland in April. Each
quadrat took approximately 45 min to complete. (Redrawn with kind permission of
Kluwer Academic Publishers from fig. 3.3, Magurran 1988; after Kirby et al. 1986.)
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and Menhinick’s index (Whittaken1977) Dy, :

Pun =T ,

Ease of calculation is one great advantage of the Margalef and
Menhinick indices. For instance, in a sample of 23 species of birds, re-
presented by a total of 312 individuals, diversity would be estimated as
Dy, = 3.83 using Margalef’s index and D,y = 1.20 using Menhinick’s
index. Convention dictates that the Margalef index is calculated using
S -1 species and the Menhinick with S species.

Despite the attempt to correct for sample size, both measures remain
strongly influenced by sampling effort. None the less they are intuitive-
ly meaningful indices and can play a useful role in investigations of
biological diversity. The Margalef index is evaluated further in the fol-
lowing chapter.

Estimating species richness

As Colwell and Coddington {1994} and Chazdon et al. [1998) note, there
are three approaches to estimating species richness from samples. The
first of these depends on the extrapolation of species accumulation or
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Figure 3.4 Species accumulation curves of moths and birds in Fife, Scotland. Graphs are
based on species occurrence in 125, 5 x 5 km grid squares. Average species richness [based
on 50 randomizations; see Colwell {2000}) is shown. The accumulation curve for birds —
an extremely well-recorded group —is beginning to reach an asymptote. In contrast, the
curve for moths, a much less intensively sampled taxon, shows no signs of leveling off.
[Data courtesy of Fife Irlature.]

species—area curlfes. Alternatively, it is possible to use the shape of
the species abundance distribution to deduce total species richness. The
final, and potentially most powerful, approach is to use a nonparametric
estimator.

Species accumulation curves

When ecologists set out to determine the diversity of a locality they
almost always take a series of samples. These might be quadrats, plank-
ton hauls, light traps, or Malaise traps [Southwood & Henderson 2000).
The rate at which new species are added to the inventory provides im-
portant clues about the species richness, and indeed the species abun-
dance distribution, of the assemblage asa whole. Recently there hasbeen
renewed interest in species accumulation curves as a means of estimat-
ing species richness. Species accumulation curves, which are sometimes
called collectors curves, plot the cumulative number of species recorded
(8) as a function of sampling effort (n) (Colwell & Coddington 1994] (Fig-
ures 1.1 and 3.4). Effort can be the number of individuals collected, or a
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surrogate measure such as the cumulative number of samples or sam-
pling time (Colwell & Coddington 1994). Species-area curves, widely
used in botanical research (Arrhenius 1921, Goldsmith & Harrison
1976), are one form of species accumulation curves. It is important to
note that there are two different forms of species-area curve —those that
plot S versus A for different areas (such asislands) and those that examine
increasingly larger parcels of the same region. Only the latter should be
regarded as species accumulation curves since these depict the same uni-
verse sampled at different intensities.

The order in which samples (or individuals) are included in a species
accumulation curve influences its overall shape. An especially speciose
sample will, for example, have a much greater influence on the shape of
the curve if it is encountered earlier rather than later in the sequence. A
smooth curve can be produced by randomizing the procedure. To achieve
this, samples (or individuals) are randomly added to the species accumu-
lation curve and this procedure is repeated, say 50 times (Figure 3.4). The
mean and standard deviation of species richness at each value of n can
also be calculated. Gotelli and Colwell (2001) note that such resampling
curves are closely related to rarefaction curves (Sanders 1968). Species
accumulation curves are viewed as moving from left to right, as new
species are added (Figure 3.5). They can be extrapolated to provide an es-
timate of the total richness of the assemblage. The following sections of
this chapter explain how this is done. Rarefaction curves, in contrast,
move from right to left. Here the goal is to deduce what the species rich-
ness of thsgissemblage would be if the sampling effort had been reduced
by a specified amount. The purpose of rarefaction is to make direct com-
parisons amongst communities on the basis of number of individuals
in the smallest sample. Rarefaction is discussed further in Chapter 5.
Gotelli and Colwell (2001} note that Pielou’s (1975) pooled quadrat
method, devised to provide improved estimates of diversity indices, is
analogous to the randomized ([smoothed) species accumulation curve.
Many investigators plot species accumulation curves using a linear
scale on both axes. I have done this for the figures in this chapter.
However Longino et al. (2002} recommend that the x axis should be
log transformed since these semilog plots make it easier to distinguish
asymptotic curves from logarithmic curves.

Species accumulation curves illustrate the rate at which new
species are found. But unless sampling has been exhaustive, these
curves do not directly reveal total species richness. More effort will
uncover yet more species leading accumulation curves to creep ever
upwards. One solution, first identified by Holdridge et al. (1971] (see
Colwell & Coddington 1994} is to extrapolate from species accumula-
tion curves to estimate total species richness. There are now a number
of papers addressing the subject, though as yet no firm consensus on
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Figure 3.5 The distinction between species accumulation curves and rarefaction curves.
Species accumulation curves are viewed as moving from left toright, rarefaction curves
from right to left. A rarefaction curve can be regarded as the statistical expectation of the
corresponding accumulation curve. Rarefaction curves represent the mean of repeated
resampling of all pooled individuals or samples and are used to compare the species
richness of two or more assemblages at acommon lower abundance level. Species
accumulation curves in contrast approach the total species richness of the assemblage.
Rarefaction curves and species accumulation curves constructed using data on

duals typically lie above those based on sample data. This point is discussed further
in the text. (Redrawn with permission from Gotelli & Cowell 2001.)

thebest approach (Palmer 1991; Baltanés 1992; Soberén & Llorente 1993;
Colwell & Coddington 1994; Chazdon et al. 1998; Keating & Quinn
1998).

Colwell and Coddington (1994, p. 106) argue that extrapolation be-
comes at least logically possible when a species accumulation curve rep-
resents a “uniform sampling process for a reasonably stable universe.”
This means, in effect, that samples should be taken in a systematic way,
as opposed to the ad hoc collecting sometimes practiced by those wish-
ing to maximize the number of new species recorded per unit time. Col-
well and Coddington (1994) also advise that such extrapolations should
be restricted to areas of reasonably homogenous habitat rather than
being based on wide-ranging species—area curves, especially those that
encompass large-scale biogeographic zones.

Functions used in this type of extrapolation may be either asymptotic
or nonasymptotic. In both cases their most useful role is to allow the user
to predict the increase in species richness for additional sampling effort
rather than to estimate total species richness per se.
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There are two main methods of generating an asymptotic curve. The
first, based on the negative exponential model, was used by Holdridge et
al. (1971) to compare the species richness of trees across climatic zones
in Costa Rica, as well as by Soberén and Llorente (1993} and Miller and
Wiegert (1989). The Michaelis-Menten equation, originally devised to
model enzyme kinetics (Michaelis & Menten 1913) is the second. This
approach has been used extensively in species richness estimation (de
Caprariis et al. 1976; Clench 1979; Soberon & Llorente 1993; Colwell &
Coddington 1994; Denslow 1995; Chazdon et al. 1998; Keating & Quinn
1998). In a novel application of the approach, Paxton {1998} estimated
that 47 “sea monsters” (open-water marine fauna >2m total length)
remained to be discovered. _

The usual form of the equation is:

S_..n

S(n) =hax

B+n

where S(n)=the number of species observed in nsamples; S, , =the total
number of species in the assemblage; and B=the sampling effort required
todetect 50% of S

A variety of methods can be used to estimate the fitted constants, S,
and B, and their variances. Colwell and Coddington (1994} discuss the al-
ternatives, advocate Raaijmakers’ (1987) approach, and provide details of
the methodology. When used with their rain forest seed bank data, the
Michaelis-Menten approach underestimated species richness at small
sample sizes. A subsequent study (Chazdon et al. 1998) found that it had
a tendency to “blow up” early on, due to its sensitivity to sudden in-
creases in observed species richness as samples are accumulated (Figure
3.6). Silva and Coddington {1996} used the Michaelis-Menten model to
estimate the species richness of spiders at Pakitza in Peru and found that
although the fit to a species accumulation curve was good overall, the

number of species was underestimated for large numbers of samples, as

well as for small ones. This led them to express concern that (extrapolat-
ed) species richness estimates would be deflated.

Colwell and Coddington (1994) were concerned that the shape of the
species abundance distribution, which will be influenced by the taxon
and environment under study, might constrain the effectiveness of the
Michaelis-Menten and other models. This prediction was confirmed by
Keating and Quinn {1998) who showed that the performance of the
Michaelis-Menten model did indeed vary with assemblage structure. In
their study they simulated assemblages whose species abundance distri-
butions followed either MacArthur’s broken stick model or Tokeshi’s
(1990, 1993) random fraction model (see Chapter 2 for further details).
Assemblages consisted of 10, 100, or 1,000 species. Estimates of S, and
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Figure 3.6 Performance of six richness estimators in relation to a known universe —the
freshwater fish of Trinidad and Tobago. In each case the observed species accumulation
curve (dotted line) is plotted alongside the estimated accumulation curve {solid line).
Note that the y axis is scaled to accommodate the estimated curve; in all cases the
observed curve is identical. There were 114 samples. Abundance data (number of
individuals) were collected. See text and Phillip (1998) and Magurran and Phillip (2001a,
2001b) for further details. It is probable that the true species richness of the fauna is in the
region of 40.
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B for the two larger broken stick assemblages were unbiased but both pa-
rameters were overestimated in the small, 10-species assemblage. Even
larger, and highly significant, deviations were observed with the random
fraction model. S_,, was underestimated by between 7% and 37% {(all
three assemblages, P < 0.00]1) and B by between 67% and 80% (assem-
blages of 100 and 1,000 species, P < 0.001]. A similar level of underesti-
mation was observed when the method was applied to a natural
assemblage of vascular plants in Glacier National Park in Montana.
Keating and Quinn (1998) argue that the Michaelis—Menten approach is
thus of limited utility, especially since most assemblages would be bet-
ter described by the random fraction than the broken stick model. None
theless, Toti et al. {2000) concluded that it was the most useful estimator
in a study of a spider assemblage in the Great Smoky Mountains while
Chazdon et al. (1998) found that the model performed well in their in-
vestigation of woody regeneration in Costa Rica.

Irrespective of the method used, the estimates of the asymptote will be
improved if the order in which samples are accumulated is randomized
many times {Palmer 1991). Colwell and Coddington {1994) used 100
randomizations of sample order in their study and Chazdon et al. (1998)
recommend that the minimum number of randomizations required
needs to be assessed separately for each investigation.

Nonasymptotic curves can also be used to estimate species richness.
These curves are familiar territory for every ecologist versed in the na-
ture of species—area relationships. Gleason (1922) proposed that the rela-
tionship between species and area was best described by a log linear
model, that is one in which the number of species increments increase
arithmetically as the area increases logarithmically. MacArthur and
Wilson (1967) advocated a log-log relationship, and recognized that area
(A) was a surrogate for N, the total number of individuals across all
species. [The assumption that this relationship between § and A is ulti-
mately underpinned by a log normal distribution can be used to explain
the range of “z” values typically observed in island biogeography (May
1975; Diamond & May 1981).) Palmer (1990) tested these models and
found that the log-log relationship substantially overestimated true
species richness. Although Palmer concluded that the log linear model
was more effective, Colwell and Coddington {1994) argue that nonpara-
metric methods {seebelow)are superior. Baltanas (1992), following Stout
and Vandermeer (1975), imposed an asymptote on the log-log species—
area curve to avoid the extremely high estimates of species richness
generated when the curve is extrapolated to larger areas. However, al-
though this method offered an improvement on the previous approach
the results were not encouraging and the log-log model’s performance
was strongly affected by patchiness and overall species richness. Fur-
thermore, it was less effective than two other methods applied to the
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same data set: a parametric one based on the log normal distributién and
the nonparametric first-order jackknife (Heltshe & Forrestor 1983).
These methods are described in the next section.

Parametric methods

If the shape of a species abundance distribution can be satisfactorily
described, it is theoretically possible to estimate overall species
richness, or at the very least, the increase in S expected for an additional
sampling of N. This approach is intuitively appealing. After all, once
the parameters of a distribution have been established the rest ought
to be straightforward. Unfortunately, problems in fitting distributions,
and issues such as the veil line (Chapter 2), seriously hamper the
endeavor.

The two species abundance models with the greatest potential in
this context are the log series and log normal distributions (Colwell &
Coddington 1994). Of these the log series distribution is the easiest to
fit and the simplest to apply. However, since the log series distribution
always predicts that the largest class will be the one represented by a
single individual [Chapter 2), the estimate of species richness is nonas-
ymptotic, that is, it will rise as the number of individuals sampled
increases. None the less, Colwell and Coddington (1994) point out that it
is possible to accurately predict the number of new species that will be
encountered if the sample is increased. They also suggest that if the
total number of individuals in a target area can be estimated, a good esti-
mate of total species richness is possible. Hayek and Buzas (1997) de-
scribe the method and call the procedure “abundification.” It begins by
noting that a log series distribution of individuals amongst species as-
sumes the following relationship between § (total number of species), N
(total number of individuals), and o (the log series diversity index):

S= qln(l +N/a)

(seep. 30).
. e can use this equation to calculate the number of species that a
community would be expected to have for any specified number of indi-
viduals. o is calculated using the observed number of species (S) and the
observed number of individuals {N) and is then used to deduce the num-
ber of species that would be found for a larger N. To do this the new high-
ervalue of Nis substituted in the equation. The method works best if the
data conform to a log series distribution; S will be underestimated where
they do not. This approach can also be used during rarefaction (Chapter
5). Rarefaction asks how many species would be found if sampling effort
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(usually number of individuals) is reduced to a specified level. This per-
mits comparisons amongst communities where sampling effort has
been unequal.

The log normal distribution opens a much larger can of ecological
worms. Few natural distributions are perfectly symmetric, beinginstead
truncated or log left-skewed (Chapter 2). If the mode of the distribution is
evident it is at least possible to fit the distribution, but, as was apparent
in Chapter 2, there is no consensus on how best to do this. Most people
adopt the pragmatic approach of fitting a continuous log normal (see, for
example, Worked example 2; Silva & Coddington 1996), although, strict-
ly speaking, this is inappropriate since the observed data are in a discrete
form (Pielou 1975; Colwell & Coddington 1994). Choosing the abun-
dance classes is also problematic because the estimated parameters, and
overall species richness, will vary depending upon whether log,, log,,, or
another log base is used. Knowing what to do with singletons is another
challenge [Colwell & Coddington 1994). Following Pielou (1975), I
(Magurran 1988] set the class boundaries at x + 0.5 because this insures
that abundance data, which are integer values (at least in the case where
abundance is measured as numbers of individuals), can be unambigu-
ously assigned to classes. Ludwig and Reynolds (1988), by contrast, di-
vide singletons between the first two classes, and doubletons between
the second and third. As Coddington et al. (1991} note, this procedure has
the effect of creating a mode in the second or third class and thus giving
the appearance of a log normal distribution, even where one might not
genuinely exist. Once again, the choice of class boundaries will influ-
ence the estimate of the mean and variance of the distribution as well as
of total species richness. A final concern, and perhaps the most serious of
all, is that there is still no method of generating a confidence interval
on any estimate of species richness achieved via a continuous log
normal distribution (Pielou 1975; Coddington et al. 1991; Colwell &
Coddington 1994; Silva & Coddington 1996). The alternative, and more
appropriate, Poisson log normal (Bulmer 1974) is harder to fit and
thus rarely utilized. Colwell and Coddington [1994) noted that the
Poisson log normal produced the highest estimates of species richness
of any of the methods they tested.

Despite these caveats a number of investigators have used the log nor-
mal to estimate the species richness of an assemblage. Coddington et al.
[1996], for example, wished to know the species richness of spiders in an
Appalachian cove hardwood forest. A total of 89 species were observed
across all samples. The Poisson log normal gave by far the highest esti-
mate of richness at 182 species. Unfortunately, large confidence inter-
vals (+126) rendered the estimate almost meaningless. The continuous
log normal produced an estimate of 114 species, the second lowest after
the Michaelis—-Menten. Although this seems a plausible figure, the ab-
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sence of a variance measure seriously limited its usefulness. Coddington
et al. (1996) encountered problems when fitting the continuous (trun-
cated) log normal distribution to their data. Other measures, such as the
Chao and jackknife estimators (see below) performed more effectively
and presented fewer computational challenges although it appeared that
species richness was underestimated. And while the abundance distri-
bution of Costa Rican ants surveyed by Longino et al. (2002) was clearly
log normal, other estimates of richness estimation were more effective.
One problem with nonparametric estimators such as the Chao and jack-
knife ones is that they are sensitive to sample size. If the assemblage is
undersampled then its diversity will be underestimated. In theory, the
log normal approach ought to avoid this problem, so long as it is possible
to achieve a reasonably accurate estimate of the parameters. In practice,
of course, it does not. Silva and Coddington [1996) observed that it is
necessary to continue collecting common species in order to generate
sufficient classes for a goodness of fit test. This is especially onerous
and inefficient when tropical communities are under investigation.
Slocomb and Dickson {1978) concluded that sample size needs to be
large (N > 1,00Q) and to include 280% of species in the community
before accurate estimates of species richness can be achieved by this
approach. .

Baltands (1992] simulated log normally distributed communities that
varied in richness, evenness, density, and aggregation. He then sampled
these communities, estimated their richness, and concluded that
his “Cohen” estimator (based on the parameters of the log normal dis-
tribution; see Chapter 2) performed better than the jackknife. It seems
unlikely that this conclusion will hold for communities whose distribu-
tion deviates from the lognormal distribution, or even for ones that fit it,
but where the parameters cannot be accurately estimated.

Nonparametric estimators

There are, however, different —and more effective —means to the same
end. Colwell and Coddington (1994) observe that the problem of esti-
mating the number of unsampled cases is one that statisticians have
been working on, in a variety of contexts, over many years. It is not only
ecologists who need to predict the size of their universe; archeologists,
epidemiologists, and even astronomers face parallel challenges (Bunge &
Fitzpatrick 1993). In ecology, estimates of population size based on
mark-recapture are subject to many of the same biases as their species
richness counterparts. Colwell and Coddington (1994) and Chazdon et
al. (1998} consider a number of nonparametric methods for the estima-
tion of species richness, including some that have been adapted from
mark-recapture analyses. These are termed nonparametric methods be-
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cause they are not based on the parameter of a species abundance model
that has previously been fitted to the data (see above), though, of course,
asin virtually every other branch of diversity measurement, their perfor-
mance depends on the underlying distribution. Many of the methods
were devised by Anne Chao and her colleagues. They are both elegant
and efficient and offer probably the most significant advance in diversity
measurement in more than a decade. The measures are intuitively easy
to understand and to use, even for a field ecologist with limited compu-
tational facilites. Their accessibility is further increased by Robert
Colwell’s [2001) EstimateS program.? This program was used to generate
the examples that follow, and it is strongly recommended to anyone
who wishes to estimate species richness in ecological assemblages.

The first method is Chao’s (1984) simple estimator of the absolute
number of species in an assemblage. It is based on the number of rare
species in a sample. Colwell and Coddington (1994) call this measure
Chao 1. The notation follows Chazdon et al. [1998):

F?
SChao 1= Sobs + —QE

e

where S, = the number of species in the sample; F, = the number of ob-
served species represented by a single individual (singletons); and F, =the
number of observed species represented by two individuals (doubletons).
The variance of the estimate may also be calculated (Chao 1987; Colwell
2000).

The estimate of species richness produced by Chao 1 is a function of
the ratio of singletons and doubletons and will exceed observed species
richness by ever greater margins as the relative frequency of singletons
increases. No further increase in the estimate is achieved once every
species is represented by at least two individuals and at this point {one
that is rarely reached during sampling) the inventory can be considered
complete (Coddington et al. 1996). An obvious disadvantage of the Chao
1 method is that it requires abundance data (at least to the extent of
knowing which species are singletons or doubletons] rather than
presence/absence —often called incidence or occurrence —data. Colwell
and Coddington [1994], however, note that, following the suggestion of
Anne Chao, the same approach can be modified for use with presence/ab-
sence data by taking account of the distribution of species amongst sam-
ples. In this caseitis necessary only to know the number of species found
in just one sample and the number of species found in exactly two. They
term this variant of the method Chao 2:

2 http://viceroy.ceb.uconn.edu/EstimateS. The EstimateS online user’s guide provides more details
on the methods.
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QZ
SChao 2= Sobs + 2(21
2

where, Q, =the number of species that occur in one sample only (unique
species); and Q, = the number of species that occur in two samples.

Colwell and Coddington {1994} also reviewed another category of
estimators devised by Chao and Lee (1992}, termed coverage estimators.
This first generation of coverage estimators consistently overesti-
mated species richness, especially at small sample sizes (Colwell &
Coddington 1994]. Chao and her collaborators have now developed new
coverage estimators (Chao et al. 1993; Lee & Chao 1994) that appear to
offer great potential (Chazdon et al. 1998). Coverage estimators are based
on the recognition that species that are widespread or abundant are like-
ly to be included in any sample and thus contain very little information
about the overall size of the assemblage (Chao et al. 2000). In contrast it
is the rare species that are most useful in deducing overall richness. The
abundance-based coverage estimator, known as ACE, is based on the
abundances of species with between one and 10 individuals. This cut-off
was selected on the basis of empirical data (Chao et al. 1993). The esti-
mate is completed by adding on the number of abundant species, that is
those represented by >10 individuals. The partner incidence-based cov-
erage estimator, ICE, focuses on species found in <10 sampling units. A
related technique can be used to estimate the true number of species that
two communities have in common (Chapter 6).

Following Chazdon et al. (1998), the abundance-based coverage
estimate (ACE)is:

S F -
— rare 1 2
Sace =Sabuna t 5t 5 —Vace
ACE “ACE )
[ N -
where S, = the number of rare species (<10 individuals); S ,,q = the

number of abundant species (>10 individuals); N, . = the total number of
individuals in rare species; F, = the number of species with i individuals
(F, = the number of singletons); Cycg =1 - F,/N,,,; and

rare’/

¥4 estimates the coefficient of variation of the F/’s.
The incidence-based coverage estimate (ICE) is:
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o S.. Q
_ infr 1
SICE - Sfreq + +

C'ICE CICE

2
Yice

where S, ¢ = the number of infrequent species (found in <10 samples);
Streq = the number of common species (found in >10 samples); m, ; =the
number of samples with at least one infrequent species; N, = the total
number of occurrences of infrequent species; Q; = the number of species
that occur in j samples (Q, = the number of uniques); C;cg=1-Q,/Nj ¢

and

2i(i-1F,

Sinfr Ming i=1 -10
Cice (M =1 (N, )

2
Yicg = max

It is essential to remember that Chao’s estimators provide minimum
estimates of richness and that they assume homogeneity amongst
samples (Chao, in press). For this reason it is inappropriate to attempt
to estimate richness across sites where there are large compositional dif-
ferences, for example along ecological gradients or mosaics.

Other species richness estimators were also initially developed to
fulfil different functions. Burnham and Overton (1978, 1979] used jack-
knife statistics to estimate population size during mark-recapture.
These methods were subsequently applied, with some success, to
species richness estimation. They are called Jackknife 1, a first-order
jackknife estimator that employs the number of species that occur only
in a single sample (Burnham & Overton 1978, 1979; Heltshe & Forrestor
1983), and Jackknife 2, a second-order estimator, which, like the Chao 2
equation, takes both the number of species found in one sample only (Q, )
and in precisely two samples (Q,] into account (Smith & van Belle 1984].
Both require incidence data. In the following equations m is the number
of samples:

m-1
Sjack 1= Sobs + Ql[T)

o [Q@m—@_Qﬂm—ﬂq

S]acl; 2= Sobs + m m(m _ 1)
The variances of both estimators can be calculated. See Heltshe and

Forrestor (1983) for details of the variance of Jackknife 1 and Burnham
and Overton {1978) for Jackknife 2.
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Finally, itis possible to apply the bootstrap estimator derived by Smith
and van Belle (1984). It too requires only incidence data. Burnham and
Overton (1978] explain how to estimate the variance.

S

obs

Sboot = Sobs + kzl(l — Dg )m

Figures 3.6 and 3.7 examine the performance of a range of nonparame-
tric estimators and the Michaelis—-Menten estimator in relation to two
assemblages. The first assemblage is the freshwater fish of Trinidad and
Tobago (Figure 3.6), which were the focus of an intensive survey [Phillip
1998; Magurran & Phillip 2001a, 2001b) where every drainage system
was examined. A total of 114 samples were taken and both species rich-
ness and abundance ([number of individuals] data were collected. It is
likely that the true species richness of the fauna is close to 40 (Kenny
1995; Phillip & Ramnarine 2001 ). All of the measures tested, with the ex-
ception of Chao 2, produced results broadly consistent with this expec-
tation. Interestingly, the Michaelis—-Menten and ICE measures produced
stable and broadly accurate estimates at small numbers of samples.
However, it is also apparent that the Chao 1 and ACE estimators do not
tell us anything that S ;. does not. A comparison of Chao 1 with Chao 2
and ACE with ICE reveals that the fish samples are heterogenous. This
pattern arises because there are many more uniques than singletons and
itis why Chao 1 and ACE fail (R. K. Colwell, personal communication;
Chazdon et al. 1998).

What is the outcome when the size of the universe is unknown? Figure
3.7 uses occurrence data on beetle species in 125 5 x 5 km grid squares in
Fife, Scotland. A total of 612 species have been recorded but this is likely
to be a considerable underestimate. Only two of the measures tested —
the Chao 2 and the ICE —produce estimates that are no longer incre-
menting when all the samples have been accumulated, although the
Jackknife 2 and Michaelis-Menten graphs also show some signs of level-
ing off. What is intriguing is that these four approaches generate esti-
mates that are not only markedly larger than the observed richness, but
that are also broadly similar (Chao 2 = 1,137, Jackknife 2 = 1,239,
Michaelis—-Menten = 1,197, ICE = 1,295). How many beetle species are
likely to occur in Fife? We know that the land area of Fife is 1,305 km?2.
(This apparent discrepancy in size arises because Fifeisbounded on three
sides by the sea and many of the grid squares in the above analysis were
coastal ones.) This means that Fife covers approximately 0.5% of the
total land area of mainland Britain (224,424 km?). Chinery (1973) gives
the number of recorded beetle species in Britain as >4,000. If we assume
that area and species form a log-log relationship in which the slope, z, is
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Figure 3.7 Performance of richness estimators in relation to an unknown universe—
beetle species in Fife, Scotland. The observed species accumulation curve is shown as
adotted line and the estimated one as a solid line. There were 125, 5x 5 km samples.
Occurrence data are used. See text for further details. Note that the y axis is scaled to
accommodate the estimated curve; in all cases the observed curve is identical. [Data
courtesy of Fife Nature.)

0.25, the number of beetle species in Fife will be in the order 20% of the
British total —in other words at least 800 species. (Reducing zto<0.21, in
line with values more typically associated with mainland species-area
curves (Diamond & May 1981; Rosenzweig 1995), will have the effect of



92 Chapter 3

increasing this estimate.) The results provided by the estimators are
plausible.

To date there have been relatively few comparative tests of these mea-
sures though it is already clear that they represent a powerful tool for
ecologists. Colwell and Coddington {1994) tested the performance of
these approaches (excluding ACE and ICE, which did not exist then).
Their measure of success was the ability of the various estimators to
predict the total species richness of a Costa Rican seed bank. Two of the
estimators, Chao 2 and Jackknife 2, performed particularly well and pro-
duced remarkably accurate predictions of species richness from small
numbers of samples. Walther and Martin (2001) used data from bird as-
semblages in Canada’s Queen Charlotte Islands to test seven nonpara-
metric and 12 accumulation curve methods. They concluded that the
Chao estimators (followed by the jackknife estimators) were the least bi-
ased and most precise. Palmer (1990, 1991] (who could not examine the
Chao estimators as they were not then available to him) found that the
jackknife approach produced better estimates than bootstrapping.
Poulin {1998) showed that both the Chao and jackknife methods were
imprecise, relative to bootstrapping, if the assemblage contained many
rare species. Condit et al. (1996) also observed that both the Chao and
jackknife estimators substantially underestimated the true species rich-
ness of woody plants in fully censused 50ha plots in three tropical
forests. However, since Condit et al.’s study used local samples to deduce
the richness of a heterogenous universe an underestimate was probably
inevitable. In their neotropical spider study, Silva and Coddington (1996)
observed that Chao 1 and Chao 2 provided higher, and likely more realis-
tic, estimates in cases of undersampling, than the jackknife method, but
concluded that since the jackknife was a conservative estimator agree-
ment between it and other estimators might signify a robust result. A
similar ranking of measures occurred in an investigation of a temperate
spider community in which Coddington et al. (1996] found the Chao 1
and Chao 2 estimates exceeded the jackknifed one.

Chazdon et al. (1998) recognized that estimators must be evaluated
using a range of criteria. They identified sample size, patchiness, and
overall abundance (i.e., total number of individuals in the sample) as
being important and assessed the performance of the nonparametric es-
timators (as well as the Michaelis-Menten model] using data collected
during a census of woody regeneration (seedlings and saplings) in prima-
ry and secondary forest in Costa Rica. The Michaelis—-Menten estimator
emerged as being most stable across all sample sizes, whereas Chao 2,
ICE, andJackknife 2 increased steadily with sample size. Patchiness® had

3 Colwell’s EstimateS program contains an option for simulating patchiness.
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animportant influence on the outcome. Chazdon et al. (1998) found that
the rate at which new species were encountered with increasing sample
size was reduced as the distribution of species changed from being ran-
dom to being progressively more patchy. The Chao 1 and ACE measures
were especially sensitive to patchiness, and were effective only in cases
where species were randomly distributed. On the other hand, the Chao 2
and ICE estimators performed well at moderate levels of patchiness,
though not at high ones. This contrast is rooted in the differences be-
tween the abundance and incidence measures. When species are distri-
buted randomly the number of singletons and uniques are identical, as
are the number of doubletons and duplicates for the same set of samples.
However, as patchiness increases, progressively more species are de-
tected in one sample only. The Michaelis-Menten measure increased
with degree of patchiness and the jackknife and bootstrap estimators be-
came more dependent on sample size as patchiness intensified. Total
abundance of individuals also had an effect. In the three primary forests
in the study, abundance (N] was highly correlated with species richness
and Chazdon et al. (1998) were concerned that this relationship might
obscure genuine richness differences between sites. Although none of
the estimators completely satisfied all criteria in terms of their particu-
lar data set they concluded that the ICE was most promising while the
Chao 2 estimator also performed well at small sample sizes. The Jack-
knife 2 and Michaelis-Menten were also viewed as useful estimators and
together these four were identified as worthy of further exploration.
Most tests of estimator performance involve either small, well-
inventoried assemblages or large, but incompletely, studied areas of un-
known richness. An important contribution has been provided by Longi-
no et al. {2002) who conducted an intensive investigation of ant species
in Costa Rica’s La Selva Biological Station. This 1,500 ha site is excep-
tionally well studied and is known to contain at least 437 resident ant
species. Eight different categories of sampling method were employed,
and nearly 2,000 samples collected. These samples contained just under
8,000 species occurrences. Three richness estimators—the area under
the log normal curve, the Michaelis-Menten method, and ICE—were
evaluated in the context of a smoothed species accumulation curve.
None of the methods produced a stable asymptote though they all tend-
ed to converge on observed species richness at large sample size. How-
ever, the Michaelis-Menten and ICE estimators outperformed the log
normal-derived estimates on almost all occasions. Longino et al. (2002)
conclude that rarity is one factor that causes estimators to fail. Impor-
tantly, the authors point out that levels of rarity are exaggerated (in sur-
veys of insect assemblages) when a single sampling technique is
employed. This issue is revisited in Chapter 5. Moreover, Longino and
his colleagues stress the need for the continued evaluation of estimators.
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Sampling considerations and stopping rules

Asthepreceding examples have illustrated, the performance of nonpara-
metric estimators is often assessed in relation to an empirical species
accumulation curve. Unless the assemblage has been sampled exhaus-
tively, this curve will underestimate species richness to an unknown de-
gree. Collectors vary in their efficiencies (Coddington et al. 1991) and
sampling is usually more challenging in some habitats and weather con-
ditions than in others. Organisms, especially mobile ones, can be ardu-
ous to sample at certain times of day, or may show seasonal variation in
abundance.

This uncertainty leads to a classic “catch 22" situation. An investiga-
tor needs to be relatively confident that the sample is big enough to pro-
vide an accurate estimate of the size of the assemblage without knowing
in advance how large the assemblage actually is. This means that empir-
ical “stopping rules” are invaluable. A “stopping rule,” as the name
implies, is an indication of the point beyond which further sampling
isnolonger necessary or at which it is too costly.

The asymptotic nature of the Michaelis—-Menten estimator means
that it has potential application as a stopping rule. One rule of thumb is
to continue sampling until the empirical species accumulation curve
crosses the one generated by the Michaelis-Menten model and then to
use a nonparametric method [discussed above) to estimate total richness
(P. A. Henderson & A. E. Magurran, unpublished study).# Another sug-
gestion is provided by Colwell and Coddington (1994). They note that a
census can be treated as complete if all species have an abundance of two
or greater (if relative abundance data are being collected) or if they all
occur in at least two samples (when occurrence data are used). This
method is sound but may be unduly onerous when there are many sin-
gletons (Chapter2).

A useful check is to subdivide the total sample into two parts (at ran-
dom| and estimate the richness of these separately. If they give answers
that are consistent with the one obtained for the combined sample
the investigator can be confident that ample data have already been
collected. Krebs (1999] provides general advice on the use of stopping
rules in ecology and the next two chapters address the issue of sample
size in diversity measurement in more detail.

Estimators that are unstable or still rising when all samples have been
included do not provide a reliable estimate of species richness. However,
Longino et al. (2002) note that in such circumstances Chao estimators
can be used to derive a valid minimum estimate of richness.

4 This method is included in Species Diversity and Richness [http://www.irchouse.demon.co.uk/].

-
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Overview of estimators

What then, in summary, do we, as ecologists, require from such richness
estimators? Since time and money are almost always in short supply we
need to accurately predict the total species richness of an assemblage,
using as small a sample size as possible. Indeed a key attribute of estima-
tors is independence from sample size above some minimum size of
sample (Longino et al. 2002). Ideally, we should be able to independently
check the accuracy of the estimate. Stopping rules need to be tested and
refined. The measure should be robust against slight variations in sam-
pling protocol. An estimate of variance should be possible, and the confi-
dence limits should not be so wide as to render the estimate meaningless.
The estimators should not be biased by variation in the underlying
species abundance distribution. They should also be computationally
efficient, though this requirement becomes ever less important as
computers improve and packages such as EstimateS become available.

In view of their performance and relative simplicity, richness estima-
tors hold great promise for the future. By adopting both species accumu-
lation curves and jackknife or Chao methods it is possible to obtain not
only a meaningful “picture” of the species diversity of the assemblage,
but also a good estimate of its total richness. A related question, estimat-
ing the number of shared species in two assemblages (Chao et al. 2000), is
explored in Chapter 6.

Other considerations

Lande et al. (2000) have reported a potential weakness in species accu-
mulation curves. They note that estimates of species are unreliable
when species richness curves intersect, as they will do if one assemblage
has more species overall but lower Simpson diversity (equivalent to re-
duced evenness| (Figure 3.8). Such an effect could arise as a consequence
of disturbance, which, at an intermediate level, may increase both the
richness of an assemblage, and the variance of the species abundance dis-
tribution [i.e., lower evenness) (Connell 1978). (High levels of distur-
bance tend to further amplify the variance in species abundances but
may ultimately reduce richness.) Investigations that set out to contrast
disturbed sites with their pristine equivalents may thus be especially
prone to this shortcoming.

Lande et al. (2000} illustrate the problem with reference to two
neotropical rain forest butterfly communities, one of which they classi-
fy as “intact,” and the other as “disturbed.” At small or even moderate
sample sizes the observed species abundance curves are less effective
than a random guess at ranking the assemblages accurately. It is only at
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Figure 3.8 Expected species accumulation curves in two lowland Amazonian butterfly
assemblages. The curve with the initial lower slope and higher asymptote represents a
disturbed assemblage, the other curve an intact one. Expected accumulation curves were
derived from fitted log normal distributions of species abundance. [Redrawn with
permission from Lande et al. 2000; further details are provided in their paper.]

points above the intersection of the curves that the probability of rank-
ing the communities in the correct manner exceeds 50%. By contrast,
the Simpson index correctly ranks communities at a sample size over 20
times smaller (81 individuals as opposed to 1,801 individuals). Of course
the Simpson index has the drawback of requiring abundance data, but
this disadvantage could well be traded off against the requirement of a
smaller sample size. It is also worth noting that Lande et al. {2000) fitted
a log normal to empirical data and then used the parameters of that
(perfect) log normal to demonstrate that the unbiased estimator of the
Simpson index is independent of sample size (because the estimator does
not include NJ. The Simpson index calculated directly from empirical
data sets, including those that are not log normal, may produce less sat-
isfying results. Furthermore, as May (1975) points out, Simpson’s index
will increase with S, once S > 10, if the data follow a log normal distribu-
tion (but not if they are described by the log series). The underlying
species abundance distribution thus affects even this method.

As Lande et al. (2000) recognize, the difficulty with species accumula-
tion curves, and extrapolations based thereon, is that in order tojudge the
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validity of the estimates they generate one needs either an independent
evaluation of overall species richness or a knowledge of the under-
lying species abundance distribution. The user must be sensitive to their
shortcomings and alert to the possibility of intersecting accumulation
curves. Lande et al. (2000) offer the wise advice that ecologists and
conservationists should employ a measure of Simpson diversity as well
as species richness when comparing communities. At the very least,
and in the absence of abundance data, users of species richness measures
ought to be vigilant for marked discontinuities in evenness amongst
assemblages.

The problems encountered when comparing the diversity of
communities, along with some solutions, are discussed further in
Chapter 5.

Surrogates of species

It is not always possible to sample intensively enough to produce even a
rough estimate of species number. Ecologists have therefore searched for
other means of identifying areas with high species richness and of rank-
ing sites along a rich-poor axis, often for conservation purposes. There
are three main types of surrogacy: cross-taxon, where high species rich-
ness in one taxon is used to infer high richness in others (Mortiz et al.
2001); within-taxon, where generic or familial richness is treated as a
surrogate of species richness (Balmford et al. 1996); and environmental,
where parameters such as temperature or topograpical diversity are as-
sumed to track species richness. Gaston (1996b) provides an overview.
Surrogacy approaches are becoming increasingly popular and can in
some instances successfully map richness gradients. For example,
macrolichens emerged as a good indicator of the species richness of
mosses, liverworts, woody plants, and ants in the Indian Garwhal
Himalaya (Negi & Gadgil 2002), while certain higher-taxon clusters, for
instance families of British butterflies and Australian birds (Williams &
Gaston 1994) proved efficient predictors of species richness. Lee (1997)
reports that family- and genus-level diversities are very good indicators
of underlying species diversities. The increasing use of remote sensing
holds open the promise of rapid biodiversity assessment (Gould 2000,
but the complex nature of the relationship between environmental
variation and biological diversity means that interpretation can be
difficult. One simple and widely used application is to deduce species
number from the area of particular habitat types, mostly famously
Amazonian rain forest (see, for example, Brown & Albrecht 2001)
although edge effects and other variables must be taken into account
{Laurance et al. 2002).
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There are some obvious disadvantages to surrogacy methods. Each
taxon and system must be dealt with on a case by case basis. The fact that
macrolichen diversity predicts ant diversity in the Indian Himalaya is no
guarantee that it will be a good predictor elsewhere and the distribution
of species amongst higher taxa can change from place to place (Gaston
1996b). Moreover, since these approaches do not measure species rich-
ness but simply identify sites where it may be high, the outputs are not
directly comparable with those obtained using conventional estimates
and measures. By the same token, sites where species richness has been
measured using surrogate or direct methods cannot be ranked on the
same axis.

How many species are there on earth?

The intellectual goal of deducing how many species there are on earth
has received recent impetus in the light of the growing concerns about
global speciesloss. In the paper that gave its name to the title of this chap-
ter, May (1990 set out a variety of approaches for estimating the species
richness of the planet. Many of these focus on insects, the taxon that con-
tributes disproportionately to life on earth. These methods, which fall
outside the scope of this book, are described in May (1988, 1990a, 1992,
1994b, 1999), Grassle and Maciolek {1992}, Poore and Wilson [1993], and
Hammond (1994). In summary, a variety of approaches, including pro-
jecting the rate at which new species are recorded (May 1990a), elucidat-
ing the relationship between body size and taxon richness, particularly
for small organisms (Finlay 2002), and scaling up from the number of
insect species per tree to reach a global total (Novotny et al. 2002}, typi-
cally produce figures in the 5-10 million species range. This contrasts
with the <2 million species that have been formally recorded. However,
the confidence limits around the projected species totals remain high
and a much deeper understanding of key habitats and species groups,
such as tropical insect faunas and deep-sea macrobenthos, is urgently
needed. Since the extent of global diversity is often inferred from the
richness levels at local scales, methods for estimating species richness
through extrapolation (described in this chapter) can help answer the
question: “How many species are there on earth?” {May 1988). This
point is revisited in the concluding chapter. ,

Summary

1 Species richness is often treated as the iconic measure of biological di-
versity, though it is by no means the only measure of biological diversity.
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Its appealing simplicity masks a number of problems. Of these, the
dependence of richness estimates on sampling intensity is the most
onerous.

2 A number of nonparametric estimators, notably those developed by
Anne Chao and her colleagues and popularized by Robert Colwell and
his colleagues, provide a promising method of deducing total species
richness using tractable sample sizes. They represent one of the mostim-
portant advances in diversity measurement in recent years.

3 These approaches are evaluated in relation to methods based on
the extrapolation of species accumulation curves and species abundance
distributions.

4 While more tests are needed, especially in species-rich assemblages,
richness estimators are an effective means of producing a valid mini-
mum estimate of richness.

5 When species accumulation curves intersect ranking of assemblages
is problematic. In such circumstances Lande and his colleagues recom-
mend the use of the Simpson index since this consistently ranks assem-
blages (though it also necessitates the collection of abundance data).



chapter four

An index of diversity . . .!

Chapter 2 revealed how species abundance distributions can be used to
describe the structure of communities and shed light on the ecological
processes that underlie that structure. Chapter 3 reviewed methods of
estimating species richness. Despite the recent progress on both these
fronts thereisstillaperceived need for “indices” of diversity that capture
both the richness and evenness characteristics of an assemblage. As
there are endless ways of emphasizing different aspects of the species
abundance relationship, the number of candidate diversity indices is
infinite (Molinari 1996). However, because all measures must empha-
size one or other component of diversity [richness or evenness), no per-
fectly unified diversity index is possible.2 None the less, as the literature
testifies, the challenge of devising ever better measures has been taken
up by many ecologists over the years. As a result, there are a plethora of
indices from which to choose and this diversity of diversity measures
can make it difficult to select the best approach. The matter is compli-
cated by the fact that the most popular indices are not necessarily the
best.

My aim in this chapter is to provide a user’s guide to diversity mea-
sures. It is not intended to be an exhaustive list. Instead, I review
methods that are in common use as well as ones, that are, in my opinion,
particularly effective. I describe potential applications, compare the per-
formance of key measures with other competing methods, and highlight

1 After McIntosh {1967).

2 Clarke and Warwich (2001a) note that if many different diversity measures are calculated for a single
set of samples and the outcome is ordinated using principal components analysis, the first two axes —
which represent richness and evenness — will account for most of the variation.
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Box 4.1 How to choose a diversity index

1 Itis very tempting to calculate a range of
diversity measures, especially if one is using a
package that will do this automatically. This
temptation must be resisted! It is important to
know in advance which aspect of biodiversity
is being investigated — and why —since this
will have implications for the sampling
design, etc., and not simply to choose the
measure that provides the most attractive
answer.

2 Sample size must be adequate to meet the
objectives of the investigation. Advice on how
to achieve this is given in the next chapter.

3 Replication is strongly recommended. All
other things being equal it is almost always
better to have many small samples rather
than a single large one. Replication means
that statistical analysis is possible and allows
confidence limits to be constructed. Repeated
sampling is also the key to species richness
estimation (Chapter 3) and means that
jackknifing and bootstrapping (Chapter 5) are
feasible.

4 Consider whether a “heterogeneity”
measure is really necessary. Since biological
diversity is so often equated with species
richness, a demonstrably robust estimate of
the number of species may be the most useful
outcome (Chapter 3).

5 If a heterogeneity measure is justified,
consider using either 0. or Simpson’s index.
The performance of both is well understood
and they are intuitively meaningful. o is
relatively unaffected by sample size once

N> 1,000. There is no need to confirm that
species abundances follow a log series
distribution. Simpson'’s index provides a good
estimate of diversity at relatively small
sample sizes and will rank assemblages
consistently, even when species
accumulation curves intersect. Confidence
limits can be attached to both measures
(Chapter 5).

6 Despite its popularity, use of the Shannon
index needs much stronger justification.
Given its sensitivity to sample size there
appear to be few reasons for choosing it over
species richness. Interpretation can alsobe
difficult. Opting forexp H’ (or Hill's N,
measure; Chopter 5) does not overcome the
fundamentol problems associated with this
measure. However, the Shannon index seems
likely to persist, since many long-term
investigations hove chosen it as their
benchmark measure of biological diversity.

7 The Berger—Parker index provides o simple
and eosily interpretable meosure of
dominonce.

8 Likewise, there are advantages in using the
Simpson evenness measure, particularly if the
Simpson index has been used to describe
diversity. Smith and Wilson (1996) provide
sound odvice if other evenness measures are
sought (see also above).

9 Taxonomic distinctness measures are
informative ond easily interpretable and have
the added advontage of being robust against
variation in sampling effort.

potential advantages or limitations. Worked examples are provided to
assist the user. Box 4.1 gives advice on how to select an appropriate
measure.

Since even the most elegant methodology cannot redeem an ill-
conceived investigation, the single most important consideration in
the measurement of diversity is that the user has a clear idea of the objec-
tives of the study. Is it intended to estimate the species richness of
potential nature reserves? Is a measure of pollution stress required?
Does the user need to assess the effects of disturbance? Are confidence
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limits on the diversity estimate essential? Once the objectives have been
clearly delineated it is relatively straightforward to select a diversity
measure. Sampling must also be adequate for the purposes of the study
{Chapter 5).

Diversity measures

As noted in Chapter 1, diversity statistics are conventionally clas-
sified as either species richness measures (McIntosh 1967) or hetero-
geneity measures (Good 1953). Heterogeneity measures are those that
combine the richness and evenness components of diversity.? Evenness
measures were later developed (by Lloyd and Ghelardi (1964) and subse-
quent workers} in an attempt to distil the evenness component of diver-
sity into a single number. Evenness measures assess the departure of
the observed pattern from the expected pattern in a hypothetical assem-
blage. This assemblage may either be completely uniform (all species
equally abundant] or represent some biologically achievable pattern of
evenness [such as the broken stick distribution; see Lloyd and Ghelardi
(1964)). :

Species richness measures and estimators were dealt with in Chapter
3. Heterogeneity (and evenness) measures, the focus of this chapter, fall
into two categories —either a parameter of a species abundance model,
for example log series o, or a measure, such as Simpson’s diversity index
D (Simpson 1949), that makes no assumption about the underlying
species abundance distribution. For this reason such measures are some-
times described as nonparametric diversity indices. This does not mean,
however, that they are necessarily robust against shifts in the pattern of
species abundances.

“Parametric” measures of diversity

Log series a

The diversity index o is a parameter of the log series model. Its cal-
culation is a necessary prelude to fitting the distribution (Chapter 2).
However, when S [the number of species) and N (the total number of
individuals) are known, o may be read directly from Williams’s [1964)
nomograph (duplicated in Southwood and Henderson {2000)) or from the

3 Following Hurlbert (1971), many ecologists adopted the practice of restricting the term “diversity”
to heterogeneity measures, that is those that combine richness and evenness. This convention appears
tohave weakened in the last decade, as popular interest in biological diversity, which is often treated as
synonymous with species richness, has heightened.

N
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table in Hayek and Buzas (1997, appendix 4). A series of studies (Kempton
& Taylor 1974, 1976; Taylor 1978) investigating the properties of o have
come out strongly in favor of its use, even when the log series distribu-
tion is not the best descriptor of the underlying species abundance pat-
tern. Hayek and Buzas (1997) concur with this, as longas x>0.5 (in other
words if the ratio N/S>1.44)and as long as S>a. In fact x is almost always
>0.9 (and often close to 1; see Figure 2.10 and the first equation on p. 30)
and S > o in natural assemblages. Recall that the first term of the log se-
ries, which predicts the number of species, is ox. Thus, o is approximate-
ly equal to the number of species represented by a single individual.
Moreover, as Chapter 2 showed, it is possible to attach confidence limits
to o. ais relatively unaffected by variation in sample size, and complete-
ly independent of it if N> 1,000 (Taylor 1978).

Log normal A

It might be expected that the standard deviation (6) of a log normal distri-
bution would be a good measure of diversity. Although ¢ can be used
as an evenness measure it is a poor index for discriminating amongst
samples and cannot be estimated accurately when sample size is small
(Kempton & Taylor 1974). Nor is S* a good predictor of total species
richness [Chapters 2 and 3). Unexpectedly, however, the ratio of these
parameters {S* /o) turns out to be an effective diversity measure (A). A dis-
criminates assemblages well (Taylor 1978). Itsranking of sites (from high
to low diversity) tends to accord well with o [Figure 4.1].

The Q statistic

The Q statistic, proposed by Kempton and Taylor (1976, 1978] is an in-
teresting and innovative approach to diversity measurement. This mea-
sure is based on the distribution of species abundances but does not
require the user to fitamodel tothe empirical data. Instead, acumulative
speciesabundance curve (of the empirical data) is constructed and the in-
terquartile slope of this curve is used to measure diversity (Figure 4.2). In
theory, as in an earlier index suggested by Whittaker {1972), the whole
curve could be used to describe diversity, but the practice of restricting
the measure to the interquartile region means that neither very abun-
dant, nor very rare, species bias the outcome.
The following equation is estimated from empirical data:
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Figure 4.1 (a] Values of the log series index o and the log normal index A tend to be
strongly correlated. In this example depicting moth trap samples from an Irish woodland,
r=0.98. |b) Relationship between the Q statistic and the log series index a for the same
dataset{r=0.92). The line Q= is also shown.
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Figure 4.2 Illustration of the Q statistic. The x axis shows species abundance of a fish
assemblage caught in Sulaibikhat Bay, Kuwait on a logarithmic (log, ;] scale while the
cumulative number of species is displayed on the y axis. R, the lower quartile, is the
species abundance at the point at which the cumulative number of species reaches 25%
of the total. Likewise R,, the upper quartile, marks the point at which 75% of the
cumulative number of species is found. The Q statistic measures the slope Q between
these quartile. (Data from table 1, Wright 1988.}

where n_=the total number of species with abundance R; R, and R, =the
25% and 75% quartiles; ng, = the number of species in the class where R,
falls; and ng, =the number of species in the class where R, falls.

The quartiles are chosen so that:

Ry-1 3

Rl R R,
an<—832 and Y n,<=8<Y
1 49 1 49

where S = the total number of species in the sample; although the place-
ment of R, and R, is not critical as the interquartile region of a cumula-
tive species abundance curve, or indeed a rank/abundance plot, tends to
be linear. In the case of a rank/abundance plot the slope 1/Q is used (see
Worked example 6).

Kempton and Wedderburn (1978) point out that Q, expressed in terms
of the log series model, is analogous to a. For the log normal model Q =
0.371 S$*/o (= 0.3714). The congruence between these three diversity
measures is clearly illustrated in Figure 4.1. Thus, while Q is not formal-
ly a parametric index its performance is similar to those that are.

1
100,000
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Although Q may be biased in small samples, this bias is low if >50% of
the species in the community have been censused (Kempton & Taylor
1978). Despite its simplicity and ease of interpretation the Q statistic has
not been widely adopted by ecologists. Pettersson (1996}, however, used
it when comparing the diversity of spiders in lichen-rich, natural spruce
Picea abies forests in northern Sweden with selectively logged, lichen-
poor forests. Spider diversity was found to be higher in the unlogged
forests. (Interestingly, rarefaction plots—see Chapter 5—also used by
Pettersson (1996} indicated no differences between the sites apart from a
lower abundance of spiders on branches in lichen-poor forests.} Ghazoul
(2002) also adopted the measure to track shifts in butterfly diversity in re-
lation to disturbance level in a tropical dry forest in Thailand. An even-
ness measure, conceptually similar to the Q statistic, has been proposed
by Nee et al. (1992} (see below).

“Nonparametric” measures of diversity '

Most diversity measures are not explicitly associated with named
species abundance models even though their performance is often gov-
erned by the underlying distribution of species abundances. The next
section investigates a number of these so-called “nonparametric” mea-
sures of diversity and assesses their utility.

Information statistics

One of the most enduring of all diversity measures is the Shannon index.
Such endurance is all the more remarkable in light of the fact that most
commentators who discuss the relative merits of the various methods of
measuring diversity go out of their way to underline the disadvantages of
the Shannon index (May 1975; Magurran 1988; Lande 1996; Southwood
& Henderson 2000). Inertia, however, has insured that this measure will
not go quietly. Many people feel happier about adopting a measure with a
long tradition of use, even if it has not stood the test of time. Its origins in
information theory and its association with concepts such as entropy
likely also contribute to its continuing appeal (Martin & Rey 2000).
Shannon and Wiener independently derived the function that is now
generally known as the Shannon index or Shannon information index,
though sometimes mistakenly referred to as the Shannon-Weaver index
(Krebs 1999)—a misunderstanding that arose because the original for-
mula was published in a book by Shannon and Weaver (1949). The index
is based on the rationale that the diversity, or information, in a natural
system can be measured in a similar way to the information contained in
a code or a message. It assumes that individuals are randomly sampled
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from an infinitely large community (Pielou 1975), and that all species are
represented in the sample. The Shannon index is calculated from the
equation:

H’=-) p;Inp;

The quantity p;, is the proportion of individuals found in the ith species.
Worked example 7 illustrates the calculations. In asample the true value
of p,isunknown but is estimated using its maximum likelihood estima-
tor, n,/N (Pielou 1969). Since the use of n,/N to estimate p; produces a
biased result, the index should, strictly speaking, be obtained from the
following series (Hutcheson 1970; Bowman et al. 1971):

| _ -1 -1_ 2
S‘1+1 ZPI- +2(P1' D; )+
2N 12N2 12N3

H'=—2Pilnpi—

In practice, however, this error is rarely significant (Peet 1974) and all the
terms in the series after the second are very small indeed. A more sub-
stantial source of error arises when the sample does not include all the
species in the community (Peet 1974). This error increases as the propor-
tion of species represented in the sample declines. As the true species
richness of an assemblage is usually unknown for all the reasons dis-
cussed in Chapter 3, an unbiased estimator of the Shannon index does
not exist (Lande 1996).

For historical reasons log, is often used when calculating the Shannon
diversity index. There are no pressing biological reasons why this tradi-
tion should be preserved. Indeed it is computationally simpler, and eco-
logically just as valid, to use natural logs (log,, also known as In] or even
log,,in the equation. There is an increasing trend towards standardizing
on natural logs (see, for example, Cronin & Raymo 1997 and it is essen-
tial to use these in the series (shown above). What is important is to be
consistent in the choice of base when comparing diversity between sam-
ples or studies or when using the Shannon index to estimate evenness
(see the equation on p. 108).

Pielou (1969) lists the terms used to describe the units in which the
Shannon index measures diversity. These stem from information theory
and depend on the type of logarithms used. “Binary digits” or “bits”
apply when log, is adopted, “natural bels” or “nats” when it is log,, and
“decimal digits” or “decits” for log,,. These terms are rarely applied
these days, a sensible trend since they do not assist in the interpretation
of estimates of diversity. However, references to bits and nats do crop up
from time to time in the older literature.

The value of the Shannon index obtained from empirical data usually
falls between 1.5 and 3.5 and rarely surpasses 4 (Margalef 1972). It is only
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when there are huge numbers of species in the sample that high values
areproduced. May(1975)notes that, given alog normal pattern of species
abundance, 10° species would be needed to produce a value of H’ >5.0.

The fact that the Shannon index is so narrowly constrained in most cir-
cumstances can make interpretation difficult. The ecologist confronted
by values of H =2.35 and H’ =2.47 may have little idea whether the two
sites in question have similar diversities or are substantially different. (A
similar criticism can be directed towards the log series index o..) Some in-
vestigators sidestep the problem by using e’ instead of H’. e’ is an intu-
itively meaningful measure as it gives the number of species that would
have been found in the sample had all species been equally common
(Whittaker 1972). Thus, H’ = 2.35 becomes e’ = 10.49 and H’ = 2.47
becomes e’ = 11.82. Kaiser et al. (2000] used this approach when
examining the effects of chronic fishing disturbance on marine benthic
communities. Transforming the index has the useful function of spread-
ing the values out, but it still does not shed much light on whether esti-
mates of diversity are significantly different or not. e’ is equivalent to
Hill’s N, diversity index (Chapter 5).

A better approach, assuming that there is an a priori hypothesis why
one assemblage should be more or less diverse than another, is to em-
ploy a statistical test. In the past one of the only options was to use
Hutcheson’s [1970) “t” test for the Shannon index. Hutcheson (1970] sets
out the method for calculating the variances of the two estimates, the
value of t and the degrees of freedom used to assess significance. How-
ever, Taylor (1978] pointed out that when the Shannon index is calculat-
ed for a number of sites, the indices themselves will be normally
distributed. This property makes it possible to use parametric statistics,
including powerful analysis of variance methods (Sokal & Rohlf 1995}, to
compare sites for which diversity has been calculated (see, for example,
Kaiser et al. 2000). Recently, attention has switched to resampling pro-
cedures such as bootstrap and jackknife methods (Lande 1996). This ap-
proach, which has much to recommend it, is discussed in Chapter 5.

The Shannon evenness measure

As a heterogeneity measure the Shannon index takes into account the
degree of evenness in species abundances. None the less, it is possible to
calculate a separate evenness measure. The maximum diversity (H_ )
that could possibly occur would be found in a situation where all species
had equal abundances, in other words if H'= H_, =In S. The ratio of ob-
served diversity to maximum diversity can therefore be used to measure
evenness (J'] [Pielou 1969, 1975):

J’=H'/H_, =H/InS

max
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Beisel and Moreteau (1997) provide a simple method of calculating H

min/

avalue used in other forms of the Shannon evenness (see Hurlbert 1971).

Heip’s index of evenness

Heip (1974) felt that evenness measures should not be dependent on
species richness (which Pielou’s [’ is, up to approximately S =25 (Smith &
Wilson 1996]) and that they should have a low value in contexts where
evenness is obviously low. His proposed measured was intended to meet
these criteria:

(e -)
EHeip = (S _ 1)

Although Eteip 18 less sensitive to species richness than J, it does not
meet the requirement of being independent of sample size when there
are fewer than about 10 species in the sample (Smith & Wilson 1996). It
does, on the other hand, satisfy the expectation of attaining a low value
when evenness is low [see Table 4.1, p. 120}. Smith and Wilson {1996
showed that the minimum value of Heip’s measure is 0 and that it regis-
ters 0.006 when an extremely uneven community (with species abun-
dances 1,497,1, 1, 1)isused.

e : SHE analysis

One of the problems with the Shannon index is that it confounds two as-
pects of diversity: species richness and evenness. This is often viewed as
a disadvantage since it can make interpretation difficult; an increase in
the index may arise either as a result of greater richness, or greater even-
ness, or indeed both. However, Buzas and Hayek (1996) and Hayek and
Buzas (1997) realized that this characteristic of the Shannon index can
actually be turned to an advantage. Their reasoning is as follows. They
first note that one measure of evenness is E = ef/S (Heip 1974; see also
discussion above) and then go on to observe that the Shannon index is
simply the sum of the natural log of this value (In(E)) and the natural log
of species richness (In(S)). (This assumes that natural logs have been used
in the calculations.) It follows that the index can be decomposed into its
two components:

H=InS+InE

The most obvious advantage of this decomposition is that it allows the
user to interpret changes in diversity. Thus, an ecologist can attribute a
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decrease in the diversity of a community following a pollution incident
to a loss of richness or evenness, or a combination of these. SHE analysis
can also shed light on the underlying species abundance distribution.
The essence of SHE analysis is the relationship between S (species rich-
ness), H (diversity as measured by the Shannon index), and E (evenness).
The manner in which this relationship changes as a function of sample
size can be remarkably informative. Like the estimation of species rich-
ness, this approach makes use of accumulated samples. Hayek and Buzas
(1997) point out that when a sample of large and small N are compared,
five scenarios are possible. Two of these are unlikely to prevail in natural
communities but the remaining three are indicative of specific species
abundance distributions.

1 §,=S, H,=H,, E,=E,; identical richness, evenness, and relative abun-
dance of species irrespective of sample size.

2 S$,=S,,H,#H,, E,#E,; speciesrichnessremains constant but evenness
changes.

3 $,#S,, H,=H,, E, #E,; Hremains constant because changes in S and E
offset one another.

4 S,#S, H #H, E, =E,; E remains constant but S, and therefore H,
changes.

5 S,#S,, H,#H,, E,#E,; Hchangesbecause differences in S and E do not
offset one another.

Scenarios 1 and 2 are implausible in nature partly because increased
sampling almost always uncovers additional species; Hayek and Buzas
(1997) explain why. However, scenario 3 indicates a log series distribu-
tion, scenario 4 a broken stick, and scenario 5 a log normal one. This
means that a graphic method [SHE analysis) can potentially be used to
distinguish the three patterns {though further exploration is required to
rule out the possibility that other distributions could generate similar
outcomes). Hayek and Buzas (1997] provide an example of this (Figure
4.3). I tested the approach using ground flora data collected for an Irish
woodland. If the data are displayed in the form of a conventional species
abundance plot a log normal distribution is revealed (Figure 4.4a); SHE
analysis (Figure 4.4b) also indicates that the data are log normal in char-
acter. In this instance SHE analysis proved to be an effective method of
deducing the underlying species abundance distribution, thus removing
the need to formally fit the models and perform goodness of fit tests.
However, although it is a promising method, SHE analysis needs wider
testing across a range of taxa and communities. What, for example, will
happen when truncated or left-skewed log normal distributions are ob-
served? Itsbehavior in relation to abundance distributions other than the
three discussed here also needs examination. Moreover, as Chapter 2
illustrated, distinguishing statistical models is not always an easy task.
Interpreting the results of a SHE analysis could therefore be tricky.
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Figure 4.3 SHE analysis plots showing expected patterns for (a) broken stick, (b) log
normal, and [c) log series distributions in relation to increasing N. Both In(E)/In(S} and
In(E) are multiplied by 10. In the broken stick both S and H’ are expected to increase and E
to stay constant. The log normal is associated with an increase in S and H but a decline in
E. With the log series S will increase, H will remain constant, and E will decrease.
{(Redrawn with permission from Hayek & Buzas 1997.}
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Figure 4.4 (a) The distribution of abundance of ground vegetation in an Irish woodland
(Roe Valley, Co. Derry| is log normal. (b) SHE analysis correctly identifies this pattern.
The two SHE graphs, which follow the format of Figure 4.3, plot In(S), H’, In(E)/In(S) and
In(E} in relation to N. The values of S, H’, and E are based on one or 50 randomizations of
50 point quadrats; a “hit” by the pin of a quadrat represents N=1. Both S and H’ increase
inrelation to N, while, as predicted, E declines. These graphs also illustrate the
consequences of multiple randomizations of data: the right panel, based on 50
randomizations, generates a smoother pattern than the left panel, which is based on one
randomization.

L

Arita and Figueroa (1999) used SHE to examine geographic patterns of
body mass diversity in Mexican mammals. They substituted the num-
ber of body mass categories for S and calculated p, as the proportion of
species per category rather than the usual proportion of individuals per
species. The authors concluded that evenness (of the distribution of body
mass values) was high at intermediate spatial scales but low at the re-
gional one. This is a novel application of the SHE approach, but since no
other evenness measures were considered it is unclear whether itis more
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informative than the alternatives. Buzas and Hayek (1998) describe how
SHE can be used to identify communities (of Foraminifera in their exam-
ple) along a gradient.

The Brillouin index

When the randomness of a sample cannot be guaranteed, for example
during light trapping where different species of insect are differentially
attracted to the stimulus (Southwood & Henderson 2000), or if the com-
munity is completely censused and every individual accounted for, the
Brillouin index (HB), is the appropriate form of the information index
{Pielou 1969, 1975). It is calculated as follows:

HB < lnN!—Zlnni!
N

and again rarely exceeds 4.5. Both the Shannon and Brillouin indices give
similar and often correlated estimates of diversity. However, when the
two indices are used to measure the diversity of a particular data set,
the Brillouin index will always produce the lower value. This is because
the Brillouin index describes a known collection about which there is no
uncertainty. The Shannon index, by contrast, must estimate the diversi-
ty of the unsampled as well as the sampled portion of the community.
Evenness (E) for the Brillouin diversity index is obtained from:

E=HB/HB__
where HB_ . is calculated as:

HB,, ., =iin = N
NAIN/SI - {(N/s]+ Y

where [N/S]=the integer of N/S; and r= N-S[N/S].

Animportant difference between the two measures of diversity is that
the Shannon index will always provide the same answer so long as the
number of species, and their proportional abundances, are held constant.
Thus, if one site has 10 species each with five individuals and another
site has 10 species each with 10individuals, the Shannon index would re-
turn a value of 2.30 in both cases. The value of the Brillouin index, by
contrast, would be 2.01 in the site with 50 individuals and 2.13 in the site
with 100 individuals.

Since the Brillouin index measures the diversity of a collection, as op-
posed to a sample, each value of HB will, by definition, be different from
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every other. This means that the index has no variance and that no sta-
tistical tests are needed to demonstrate significant differences. It is, of
course, possible to use the jackknife or bootstrap procedure to generate a
mean estimate along with an associated variance but whether such fig-
ures have any real meaning is open to debate. Laxton {1978] concludes
that the Brillouin index is, mathematically speaking, the superior of the
two information measures of diversity. Pielou (1969, 1975} strongly ad-
vocates its use in all circumstances where a collection is made, or sam-
ples are nonrandom, or where the full composition of the community
is known. In practice, however, few ecologists take this advice as the
Brillouin index is morc time consuming to calculate, and less familiar,
than the Shannon index. Its dependence on sample size can also some-
times lead to unexpected results, though admittedly only when thereisa
highly unusual species abundance distribution or when N {number of in-
dividuals)is low. The index cannot be used when abundance is measured
as biomass or productivity (Legendre & Legendre 1983; Krebs 1999). The
Brillouin index seems to suffer from many of the disadvantages of infor-
mation statistics and offer few of the benefits. Notwithstanding this, it
continues to be used often [Lo et al. 1998; Dans et al. 1999; Ito & Imai
2000}, but not invariably (Andres & Witman 1995; Bartsch et al. 1998, to
describe parasite assemblages.

Dominance and evenness measures

The information statistics described above tend to emphasize the
species richness component of diversity. Another group of diversity in-
dices are weighted by abundances of the commonest species and are
usually referred to as either dominance or evenness measures ([domi-
nance and evenness being, of course, opposite sides of the same coin|.
One of thebest known, and earliest, dominance measures is the Simpson
index. Itis occasionally called the Yule index since it resembles the mea-
sure G. U. Yule devised to characterize the vocabulary used by different
authors [Southwood & Henderson 2000}

Simpson’s index (D)

Simpson {1949} gave the probability of any two individuals drawn at ran-
dom from an infinitely large community belonging to the same species
as:

D=3 p?

where p,=the proportion of individualsin the ith species. The formof the
index appropriate for a finite community is:
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=)

where n,=the number of individuals in the ith species; and N = the total
number of individuals. Worked example 7 provides details.

As D increases, diversity decreases. Simpson’s index is therefore
usually expressed as 1 — D or 1/D. Simpsons’s index is heavily weighted
towards the most abundant species in the sample, while being less sensi-
tive to species richness. May (1975) has shown that once the number
of species exceeds 10, the underlying species abundance distribution is
importantindeterminingwhether theindexhasahigh orlow value. Con-
fidence limits can be applied by jackknifing (Chapter 5).

The Simpson index is one of the most meaningful and robust diversity
measures available. In essence it captures the variance of the species
abundance distribution. Thus, when expressed as the complement (1 —
D) or reciprocal {1/D) of D, the value of the measure will rise as the as-
semblage becomes more even. Although the reciprocal {1/D)is the most
widely used form of the Simpson index, Rosenzweig (1995) notes that it
can have severe variance problems, and recommends instead -In(D), a
transformation introduced by Pielou (1975) following the advice of C. D.
Kemp. Rosenzweig (1995] advises that Kemp’s transformation is easily
interpretable, that it will reflect underlying diversity, and that it is inde-
pendent of sample size. Lande (1996 observes that the overall diversity
of a set of communities, measured as 1/D, may be less than the average
diversity of those communities—a conceptually intriguning notion —and
recommends 1 - D.

As noted in the previous chapter, Lande et al. (2000) find the Simpson
index more effective than species accumulation curves in ranking com-
munities. May (1975} approves of the measure because it is intuitively
meaningful. Its utility has been illustrated in a range of contexts: see, for
example, It6 (1997), Azuma et al. (1997), and Gimaret-Carpentier et al.
(1998). Clarke and Warwick’s (1998} index of taxonomic distinctness
(discussed on p. 123] is a natural extension of Simpson’s index. Lande
{1996) demonstrates how the index can be partitioned to give a measure
of diversity among, as well as within, assemblages, and describes how
analysis of variance can be used to accurately estimate the total diversi-
ty in aregion. Despite these plaudits, Simpson’s index remains inexplic-
ably less popular than the Shannon index.

Simpson’s measure of evenness

Although Simpson’s diversity measure emphasizes the dominance, as
opposed to the richness, component of diversity, it is not strictly speak-
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ing a pure evenness measure. A separate measure of evenness can, how-
ever, be calculated by dividing the reciprocal form of the Simpson index
by the number of species in the sample (Smith & Wilson 1996; Krebs
1999:

(1/D)

El/D = T

The measure ranges from 0 to 1 and is not sensitive tospecies richness. It
is usually termed E, , to denote the use of the reciprocal form of the
index. Smith and Wiison (1996) note that E, p, is formally related to its
parent index:

(1/ D) = El/D -S

Bulla (1994) asserted that any good evenness index becomes a hetero-
geneity measure if multiplied by S (but see Molinari [1996) for a criticism
of this comment). The Simpson evenness index is relatively unusual in
that this multiplication restores the standard measure of Simpson diver-
sity (Smith & Wilson 1996). The Shannon index can also be decomposed
in the same way and it was this property that Buzas and Hayek (1996) and
Hayek and Buzas (1997) exploited in their SHE analysis (described
above].

MclIntosh’s measure of diversity

McIntosh (1967) proposed that a community can be envisaged as a point
in an S-dimensional hypervolume and that the Euclidean distance of the
assemblage from its origin could be used as a measure of diversity. The
distance is known as U and is calculated as:

1

The McIntosh U index is not formally a dominénce’ index. However, a
measure of diversity (D} or dominance that is independent of N can also
be calculated:

_ N-U
N-+N

And a further evenness measure can be obtained from the formula
(Pielou 1975):
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N-U

EzN—N/«/E

The Berger—Parker index (d)

The Berger-Parker index, d, is an intuitively simple dominance meas-
ure [Berger & Parker 1970; May 1975). It also has the virtue of being ex-
tremely easy to calculate. The Berger-Parker index expresses the
proportional abundance of the most abundant species:

d=N_, /N

max

where N, = the number of individuals in the most abundant species.
Conceptually d can be regarded as equivalent to geometric series k since
both measures describe the relative importance of the most dominant
species in the assemblage. As with the Simpson index, the reciprocal
form of the Berger-Parker index may be adopted so that an increase in the
value of the index accompanies an increase in diversity and a reduction
in dominance. The simplicity and biological significance of the index
leads May (1975] to conclude that it is one of the most satisfactory diver-
sity measures available. In large assemblages (S > 100), d is independent
of S, but in smaller ones its value will tend to decline with increasing
species richness (Figure 4.5). (See Worked example 7 for further details.)
With the exception of Heip’s index these evenness and dominance
measures were described in the first incarnation of this book (Magurran
1988). Several new measures have been introduced since it was written.

Nee, Harvey, and Cotgreave’s evenness measure

Nee et al. (1992 proposed the slope (b) of a rank/abundance plot (in
which the abundances had been log transformed)—see also Wilson
(1991)—as an evenness measure.

The resulting measure:

ENHC =b

falls between — and 0, where 0 is perfect evenness. This range of values
makes the measure difficult to interpret. There are other problems with
the measure as well: it is more properly a measure of diversity than of
evenness and rather similar to Kempton and Taylor’s (1976) Q statistic
(Smith & Wilson 1996). Smith and Wilson (1996} therefore proposed a
new form of the measure:

E, =-2/m arctan(p)
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Figure 4.5 The relationship between the Berger-Parker index (d) and species richness (S}
for freshwater fish assemblages in Trinidad. The dashed line indicates the value that d
would take for a given number of species if all species were equally abundant (that is
perfect evenness). Since d represents the proportional abundance of the most abundant

species, lower values of d represent higher diversity. See text for details. [Redrawn with
permission from Magurran & Phillip 2001b.}

In this measure the ranks are scaled before the regression is fitted. This s
achieved by dividing all ranks by the maximum rank so that the most
abundant species takes a rank of 1.0 and the least abundant a rank of 1/S.

The transformation (-2/n arctan) places the measure in the O (no even-
ness) to 1 (perfect evenness) range.

Carmargo’s evenness index

Carmargo (1993] also introduced an evenness measure:

S
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where E = Carmargo’s index of evenness; p,=the proportion of species i
in the sample; p; = the proportion of species j in the sample; and S = the
number of species in the sample.

Although the index is simple to calculate and relatively unaffected by
rare species (Krebs 1989), Mouillot and Lepetre (1999] found it to be
biased, especially in comparison with the Simpson index.

Smith and Wilson’s evenness index

Smith and Wilson (1996) proposed a new index designed to provide an in-
tuitive measure of evenness. This index measures the variance in species
abundances, and divides this variance over log abundance to give propor-
tional differences and to make the index independent of the units of
measurement. Thus it does not matter, for example, whether biomass
is measured in grams or kilograms, though, of course, different values
will still ensue if abundance is measured in different ways (such as num-
ber of individuals versus biomass). The conversion by —2/r arctan in-
sures that the resulting measure falls between 0 {minimum evenness)
and 1 (maximum evenness). Smith and Wilson called their measure E,, .

)

N

2
S
T arctan Z[lnni —Zlnnj/S] S
i1

i=1

where n;=the number of individuals in species 1; n,= the number of indi-
viduals in species j; and S = the total number of species.

Smith and Wilson’s consumer’s guide to evenness measures

It canbe difficult to know which evenness index is best in which context.
Smith and Wilson (1996) conducted an extensive set of evaluations of
available measures using a range of criteria. These included four require-
ments [essential attributes) and 10 desirable features of measures. Their
requirements were as follow:

1 The measure is independent of species richness.

2 The measure will decrease if the abundance of the least abundant
species is reduced.

3 The measure will decrease if a very rare species is added to the
cominunity.
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4 The measure is unaffected by the units used to measure it.

The additional 10 features were as follow:

1 The maximum value of the index is achieved when abundances are
equal.

2 The maximum value is 1.0. :

3 The minimum value is achieved when abundances are as unequal as
possible.

4 The index shows a value close to its minimum when evenness is as
low asis likely to occur in a natural community.

5 The minimum valueis 0.

6 The minimum is attainable with any number of species.

7 The index returns an intermediate value for communities that would
be intuitively considered of intermediate evenness.

8 The measure should respond in an intuitive way to changes in
evenness.

9 The measure is symmetric with regard to rare and common species,
that is as much weight is given to minor species as to very abundant ones.
10 Askewed distribution of abundances should resultin alower value of
the index.

Their results are summarized (for the measures described in this chap-
ter)in Table 4.1. Smith and Wilson found that different indices often pro-
duced strikingly different results. For example, when asked to assess the
evenness of a community in which the species abundances were 1,000,
1,000, 1,000, 1,000, 1,000, and 1 the measures produced values ranging
from 0.046 to 0.999 {on a O to 1 scale]. However, some measures did
emerge as being significantly better than their competitors. Indepen-
dence from species richness was Smith and Wilson’s (1996) primary cri-

Table 4.1 A summary of Smith and Wilson’s (1996) evaluation of evenness measures.

Requirements Features

2 |3 5

—
-
—
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Index
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v =good; O =poor; X=fail.
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terion. This was satisfied by E, ;, (the Simpson evenness measure}, a
measure that also responded in an intuitive way to changes in evenness
(feature 8 above, named by Smith and Wilson (1996] as the Molinari test
after Molinari (1989]). Carmargo’s index, E (Smith & Wilson 1996], the
new index E_,, and their modification of Nee et al.’s (1992) index, E,,
also met the species richness criterion and demonstrated other desirable
properties. Smith and Wilson (1996) concluded with the following
recommendations.
1 When symmetry between rare and abundant species (feature 9 above|
isrequired (that is, where rare and abundant species should be weighted
equally with regard to their influence on the evenness measure) select:
(a) E, D if minimum evenness should be 0, or a good response to an
intuitive gradient in evenness is essential; or
(b} Eif intermediate values for intermediate levels of evenness are
sought. .
2 When symmetry between rare and abundant species is not required
(that is, where common species receive a higher weighting than rare
ones), select:
(a) E if a good response to the intuitive evenness gradient is not
required; or
(b} E,,,ifitis. |
Overall, Smith and Wilson (1996} rate E_, as the most satisfactory
evenness measure. It will be interesting to see if it is widely adopted in
the future. On the other hand the sound performance of Simpson’s
E,p and its unambiguous relationship with its parent heterogeneity
index—which is itself an excellent measure of diversity —are important
recommendations.

Taxonomic diversity

If two assemblages have identical numbers of species and equivalent pat-
terns of species abundance, but differ in the diversity of taxa to which the
species belong, it seems intuitively appropriate that the most taxonomi-
cally varied assemblage is the more diverse (Figure 4.6). Moreover, mea-
sures of taxonomic diversity can be used in conjunction with species
richness and rarity scores in the context of conservation (Virolainen et al.
(1998} provide an example). The quest for measures that incorporate phy-
logenetic information can be traced back to Pielou (1975), who pointed
out that diversity will be higher in a community in which species are di-
vided amongst many genera as opposed to one where the majority of
species belong to the same genus. The approach has gained impetus in
the last decade as a consequence of their perceived role in setting con-
servation priorities (Vane-Wright et al. 1991; Williams et al. 1991;
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Figure 4.6 Taxonomic distinctness [A*]is based on the average pairwise path lengths
between species in an assemblage (see text for details). In this example (based on
presence/absence data and ignoring species abundances) A* values are: (a} 3.0; (b} 1.0; (c)
1.56; and (d} 1.2. The four hypothetical assemblages are therefore ranked in an intuitive
way. In other words, the greater the distribution of species amongst higher taxa, the
greater the value of the index. (Redrawn with permission from Clarke & Warwick 1998.)

Vane-Wright 1996; Williams 1996). A further potential application in
environmental monitoring has also been addressed (Warwick & Clarke
1995; Clarke & Warwick 1998, 1999; see also Chapter 5).

As long as the phylogeny of the assemblage of interest is reasonably
well resolved, measures of taxonomic (or hierarchical) diversity are, in
principle, possible.* Pielou (1975) adapted the Shannon index to include
familial, generic, and species diversity and showed how the idea could be
extended to the Brillouin index. Izsak and Papp (2000) and Ricotta (2002)
describe how a taxonomic weighting factor can be incorporated into
various diversity measures. May (1990b), Vane-Wright et al. (1991), and
Williams et al. {1991, 1994) used a different approach and devised meth-
ods based on the topology of a phylogenetic tree. Information on taxo-
nomic diversity can also be gleaned by summing the branch lengths
within a taxonomic tree, as in Faith’s (1992, 1994) measure of phylogen-
tic diversity (PD).%

Measures of taxonomic diversity are not spared the conceptual or prac-

4 The phylomatic website is a data base for applied phylogenetics and offers a different, but practical,
approach to the phylogenetic measurement of diversity (http://www.phylodiversity.net/phylomatic/).
5 The pRIMER package calculates PD (www.pml.ac.uk/primer/index.htm).
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tical problems of their species diversity counterparts. Both sets of mea-
sures give a predetermined weighting to the richness and evenness com-
ponents of diversity. Sometimes this weighting can lead to a loss of
information. For example, because Faith’s PD measure reflects the
cumulative branch length of the whole tree, it emphasizes the taxonom-
ic richness of a set of organisms at the expense of its evenness {Clarke &
Warwick 1998). This could hinder the identification of vulnerable as-
semblages (such as 2d). Another consideration is sensitivity to sampling
effort—a problem that species, and taxonomic, richness measures are
particularly vulnerable to. Two recent developments —a taxonomic dis-
tinctness measure (Clarke & Warwick 1998; Warwick & Clarke 1998)
and a functional diversity measure (Petchey & Gaston 2002a, 2002b)—
merit further consideration.

Clarke and Warwick’s taxonomic distinctness index

A very promising recruit to this suite of methods is Clarke and
Warwick’s taxonomic distinctness measure (Warwick & Clarke 1995,
1998, 2001; Clarke & Warwick 1998, 1999). [Webb (2000) has indepen-
dently derived a very similar index for rain forest trees. ]

A particular virtue of this measure, which is a natural extension of
Simpson’s index, is its robustness in the face of variable or uncontrolled
sampling effort. Taxonomic evenness of an assemblage is also accounted
for. Warwick and Clarke (2001} highlight the distinction between their
taxonomic distinctness measure, which summarizes the pattern of re-
latedness in a sample, and taxonomic distinctiveness (the phylogenetic
diversity of May, Vane-Wright, Williams, and Faith described above),
which is used primarily to identify species of particular conservation
importance.

The Clarke and Warwick measure, which describes the average taxo-
nomic distance —simply the “path length” between two randomly cho-
sen organisms through the phylogeny (or Linnean taxonomy] of all the
species in an assemblage —has two forms. The first form, A or “taxonom-
ic diversity” (appropriate for species abundance data), takes account of
species abundances as well as taxonomic relatedness. It measures the
average path length between two randomly chosen individuals (which
may belong to the same species). The second form, A* or “taxonomic dis-
tinctness,” represents the special case where each individual is drawn
from a different species. A*, a pure measure of taxonomic relatedness, is
equivalent to dividing A by the value it would take if all species belonged
to the same genus, that is in the absence of a taxonomic hierarchy. When
presence/absence data are used both measures reduce to the same statis-
tic, A*, which is the average taxonomic distance between two randomly
selected species. It is calculated as follows: ~
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Table 4.2 The weightings of steps in a taxonomic hierarchy for UK marine nematodes,
standardized using taxon richness at each level (from Clarke & Warwick 1999).

k Sk o, o

(step (taxon (default weighing for (step length proportional to
length) Taxon richness) constant step length) percentage decrease in richness)
1 Species 395 o 167 15.9

2 Genus 170 - - 333 373

3 Family 39 50.0 60.2

4 Suborder 7 66.7 72.2

5 Order 4 833 86.1

6 Subclass 2 100 100

& =[X 3 oy [s(s7)/2]

where s=the number of species in the study; and @, = the taxonomic path
length between speciesiandj.

Animportant consideration is the weighting (v) assigned to each of the
levels in the taxonomic hierarchy. The simplest approach, as used by
Warwick and Clarke (1995, 1998 and Clarke and Warwick (1998}, in
their studies of marine nematodes, it to set the value of v as 1. Each step
up through the hierarchy in search of a shared taxonomic level (from
species to genera, families, suborders, orders, subclasses, and classes) in-
crements the value of o by 1. For instance, the path length for two species
in the same genus is o = 1. As pairs of species become more distantly re-
lated the scores increase. If the species belong to the same family (but not
genus) ® = 2; if they share no more affinity than being members of the
same class, =6.

As Clarke and Warwick (1999 recognize, there are cases where it may
be inappropriate to treat v as a constant. This will arise if some taxonom-
ic groupings convey little or no additional information. To resolve this
problem, Clarke and Warwick (1999) suggest defining the weight of a
step as proportional to the percentage of taxon richness accounted for by
the step. This is illustrated in Table 4.2. Such scaling of richness weight-
ing insures that the inclusion of a redundant taxonomic subdivison in
the analysis cannot alter the value of A*.

Rogers et al. (1999] contrasted the default weighting and the weighting
based on taxon richness (®, and ©,/”)) in their analysis of fish communi-
ties in the northeast Atlantic and found that they produced highly corre-
lated values of A*. Clarke and Warwick {1999) also analyzed different
weightings and concluded that their measure of taxonomic distinct-
ness is robust as long as the distinction between taxonomic levels is
preserved.
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Thus, although it may appear logical to adjust the weighting of ® in
line with the distribution of phylogenetic diversity, unless the circum-
stances are exceptional the advantages of these extra calculations seem
rather slight. Furthermore, because the weighting is based on the rich-
ness of a particular assemblage, comparisons across assemblages are
problematic (Clarke & Warwick 1999).

Asnoted repeatedly in this book, one of the difficulties that frequently
besets diversity measurement is sensitivity to sample size. Changes in
sampling effort often have a dramatic impact on the value of the measure
and the investigator is faced with the dilemma of trying to standardize
sampling across sites or to sample each site exhaustively. A particular
virtue of the taxonomic distinctness index is its lack of dependence
on sampling effort (Price et al. 1999). This is dramatically illustrated in
Figure 4.7, which contrasts the performance of three popular diversity
statistics, the Shannon diversity, Margalef diversity, and Simpson diver-
sity with A, A*, and A*. The issue of sample size is discussed in detail in
the next chapter.

A further advantage of A* is that a significance test can be carried out.
This examines the departure of A_*, the distinctness measure for a set of
m species, from the value of A* calculated for the global species list, and
has potential application in identifying impacted areas or localities of ex-
ceptional taxonomic richness. Clarke and Warwick (1998) derived the
method and explain it in detail. Their starting assumption is that there is
a reasonably complete inventory of species for a region—and, of course,
that at least a Linnean taxonomy exists for these species. This condition
is likely to be met for well-studied taxa, such as birds and mammals, in
most parts of the world, and for less engaging organisms in the parts of
the world well populated by taxonomists. The null hypothesis that the
taxonomic distinctness of a locality is not significantly different from
the global list is tested by repeatedly subsampling species lists of size m
atrandom from the global list and constructing a histogram of the result-
ing estimates of A ,,*. The observed A * can be compared with the simu-
lated values of A_*. To reject the null hypothesis at the 5% level, the
observed A_* should fall below the 2.5 percentile (i.e., below the 25th
lowest out of 1,000 ranked simulated values of A *) or above the 97.5
percentile (i.e., above the 975th out of 1,000 ranked simulated values)
(Figure 4.8].

Since the simulation must be repeated for each locality with a
different number of species {m) the procedure can be computationally
demanding. However, a faster method is also available. This is based on
the variance (equation 5 in Clarke and Warwick (1998); see also the
equation on p. 126) of the subsample estimate which is then used to
construct an approximate 95% confidence funnel {(mean t 2 s.d.} across
the full range of m values [Figure 4.9). The mean is equal to the A* of



{a)

126 Chapter4

(b)

80 4 2.0 :
°
RIR
70 : ° : e %0
: 1.5 ° !.
™
[ Y ® ‘ o
60 !. ) °
2z ° . . l
3 .o $ o80gl Lo Teatis
2 ®q o e%e e
8 504 eots
[ ] b .'!
o $
os{ 8§38q
40 - ) °
s°
30 1 I H 1 00 1 ) i 1
(c) (d)
25+ 1.00
[ ]
204 :'.l 4 '.'.'!.'
°® ' ° 0.75 e o ]
. 09 O: b .'.... '
- [ ] ° [ ]
15 °38 ,° oSl
z ] s 8§ & sog o °
@ ) 0501 ®ege ...
get | 1°3
G104 eg . o o0
[ .'.. i e
Se 0 0.25- o 8
054 @ °
oo L
° °
e o ® o
0.0 T T T 1 000__. T T T 1
5 10 15 20 0 5 10 15 20
Species richness Species richness

Figure 4.7 Unlike other popular diversity measures, for example the Margalef (b),
Shannon [c), and Simpson (d] indices, Clarke and Warwick’s taxonomic distinctness
measures, such as average A* shown here in panel (a), are independent of species richness.
Data shown represent Trinidadian freshwater fish assemblages and were collected by
Phillip (1998).

the global list and the standard deviation is the square root of the vari-
ance expression:

var(At,) = 2(s — m)[m(m -1)(s - 2)(s - 3)]_l
[(s-m-1)o2 +2(s-1)(m~-2)02]
where s = the whole set of species; m = the number of species in the sub-

set; w; = the predetermined weightings; 6,2 = [(ZZ. wiiz)/s(s -1)] - o2
(i.e., the variance of all the path lengths [wi,z) between different species);
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Fullerton

200 T

Frequency

36 40 44 48 52 56 60 64 68 72
Taxonomic distinctness (A*)

Figure 4.8 The Fullerton River in Trinidad has been colonized by tilapia {Oreochromis
niloticus), one of the world’s most invasive organisms (www.issg.org/database). Has this
invasion had an impact on the taxonomic distinctness of the assemblage? The graph plots
999 simulated values of A*, based on m = 8 species [the species richness of the Fullerton
site] drawn at random from the Trinidad species pool. The value for Fullerton lies well
below the 2.5 percentile indicating that the site is less taxonomically distinct than
expected. The data are from Pillip (1998) and the analysis used the PRIMER package.
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Figure 4.9 Confidence funnel indicating the taxonomic distinctness of the Fullerton site
[see Figure 4.8} in relation to the pattern for localities across Trinidad. The funnel plot
shows the 95% probability limits of A* (based on 999 random selections) for each value of
m (number of species). The dotted line indicates average taxonomic distinctness which,
as noted in the text, does not change with S. The points for the other sites are not shown
on this graph for clarity but can be seen in Figure 4.7a. The data are from Phillip (1998] and
the analysis used the PRIMER package.

02 =[[£82)/s] - ® (i.e., the variance of the mean path lengths (&) from
each species to all others); ®; = (Z;,0;l/ls — 1); and © = (I, ©)/s =
(2Z,0,)/[sls - 1)]=A".

Since 6,2 and o, are constants that are a function of the taxonomic
structure of the global species list, they need only be calculated once to
construct the confidence funnel.
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Variation in taxonomic distinctness (A*) (Clarke & Warwick 2001b;
Warwick & Clarke 2001} measures the evenness with which the taxa are
distributed across the hierarchical taxonomic tree. A*is largely indepen-
dent of sample size and (as with A*) can be tested against an expectation
based on the species list for the region. It is also possible to construct a
two-dimensional “envelope” plot of A* versus A*. This combination pro-
vides a statistically robust summary of the taxonomic diversity of the as-
semblage. The PRIMER package® is recommended for all these analyses.

As Clarke and Warwick (1998) note, these tests, in contrast to vir-
tually all other diversity statistics, can be used in situations where sam-
pling is uncontrolled and where the data are in the form of species pres-
ence/absence. Indeed, they argue that the method is relatively robust
against sampling inconsistencies, so long as these do not bias the esti-
mates of A_* in any systematic way. For example, recorders in different
localities might vary in expertise but this will not matter if misidentifi-
cations occur at random across the species pool. Of course, certain
groups are more taxonomically challenging and it is important that the
user is vigilant for any potential biases. In addition, some sampling tech-
niques, such as notoriously different types of light trap (Southwood &
Henderson 2000), can favor the collection of some taxa and prejudice the
recording of others (see also Chapter 5).

Functional diversity

Functional diversity has attracted considerable interest as a conse-
quence of the current debate on ecosystem performance. Indeed, the pos-
itive relationship between ecosystem functioning and species richness
is often attributed to the greater number of functional groups found in
richer assemblages (Diaz & Cabido 1997; Tilman 1997, 2000; Hector et
al. 1999; Chapin et al. 2000; Loreau et al. 2001; Tilman et al. 2001). More-
over, it is not always obvious how functional groups should be delineat-
ed, nor which species should be assigned to them. Petchey and Gaston
(2002a, 2002b) have recently proposed a new method for quantifying
functional diversity (FD)]. This approach is conceptually similar to the
phylogenetic diversity (PD) measure of May (1990b), Vane-Wright et al.
(1991}, Faith (1992, 1994}, and Williams et al. (1994]. Both measures are
based on total branch length. However, whereas phylogenetic diversity
isestimated from a phylogenetic tree, functional diversity uses a dendro-
gram constructed from species trait values. One important considera-
tion is that only those traits linked to the ecosystem process of interest

6 www.pml.ac.uk/primer/index.htm.
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are used. Thus a study focusing on bird-mediated seed dispersal would
exclude traits such as plumage color that are not related to this function.
A trait matrix, consisting of s species and t traits is assembled, and then
converted into a distance matrix. Standard clustering algorithms are
used to generate a dendrogram, which in turn provides the information
needed to calculate branch length (Petchey & Gaston 2002b). The result-
ing measure is continuous and can be standardized so that it falls
between(Oand 1. The method makes intuitive sense. For example, a com-
munity with five species with different traits will have a higher FD than
a community of equal richness but where the species are functionally
similar. And, as the complementarity of the species increases, the value
of FD becomes more strongly associated with species richness. In addi-
tion, the measure appears robust and provides qualitatively similar re-
sults when different distance measures and clustering techniques are
used. FD has been shown to be a powerful technique for evaluating the
functional consequences of species extinctions (Petchey & Gaston
2002a) and has the potential to shed light on a number of key issues
in ecology, such as species packing and community saturation. To date it
has been evaluated using well-censused assemblages in which the func-
tional roles of the member species have been extensively documented.
It will be interesting to see how it performs when samples are incom-
plete and where the functional dynamics are less well understood.

Body size and biological diversity

In contrast to taxonomic and functional diversity measures, “tradi-
tional” diversity measures treat all species as equal. Species abundances
provide the only weighting in heterogeneity and evenness statistics.
Other differences are ignored. Species abundance (typically measured as
the number of individuals or biomass) is an intuitive measure of species
importance. Indeed, niche apportionment models are built on the as-
sumption that relative abundance is a surrogate for the manner in which
resources are distributed amongst species (Chapter 2]. None the less,
species abundance data can be time consuming to collect. Oindo et al.
(2001} have devised a new index which makes inferences about the rela-
tive abundances of species from their body size. It is based on the obser-
vation (Damuth 1981) that there is a predictable relationship between
body size and abundance:

A=kw-075

where A =the abundance of a species; and W = the average body mass of a
species.
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Different guilds have different values of k. Oindo et al.’s (2001) index
uses this relationship to estimate diversity:

n
B= ZWITOJS

i=1

The new index performed well when tested using assemblages of
mammalian herbivores in Kenya and has potential in rapid biodiversity
assessment. Further evaluation would be useful, particularly in circum-
stances where species have been disproportionately harvested.

Summary

1 Diversity indices, sometimes referred to as heterogeneity measures,
distil the information contained in a species abundance distribution
into a single statistic. Heterogeneity measures fall into two categories:
parametric indices, such as log series a, that are based on a parameter
of a species abundance model, and nonparametric indices, such as the
Simpson index, that make no assumptions about the underlying distrib-
ution of species abundances. Nonparametric measures can be further di-
vided into those that emphasize the species richness component of
diversity, for example the Shannon index, and those, for instance the
Berger-Parkerindex, that focus on the dominance/evenness component.
2 Although nonparametric measures are not linked to specific species
abundance models the underlying distribution of species abundances
can influence their performance.

3 One of the most popular diversity statistics, the Shannon index, has
properties that can impede the interpretation of results. On the other
hand, the Simpson index performs well, both as a general purpose diver-
sity statistic and when recast as an evenness measure. Advice on the
selection of diversity measures is provided in Box 4.1.

4 Communities may be identical in terms of richness and evenness but
differ in the taxonomic diversity of their species. A new class of measures
takes this aspect of biological diversity into account. One promising
method, the Warwick and Clarke taxonomic distinctness measure, is an
extension of the Simpson index and has the advantage of being robust
against variation in sampling effort.

5 Confidence limits can be applied to many of these measures. Chapter
5 provides details.



chapter five

Comparative studies of
diversity'

AsInoted in the introductory chapter, biodiversity measurement is fun-
damentally a comparative discipline. A single estimate of diversity isnot
informative. It is only when we ask whether forest x has more bird
species than forest y or how pollution has affected the diversity of as-
semblage z that the measures begin to have meaning. Analyses of shifts
in species richness along spatial or temporal gradients (such as latitude
or succession) are one form of comparative investigation. Relating pat-
terns of diversity to variation in land use is another. Even estimates of
the total number of species on earth are comparative in the sense that
they can be contrasted with levels of diversity at earlier points in evolu-
tionary history, adopted as a benchmark against which extinction rates
can be evaluated or used to highlight our planet’s unique biota. Meaning-
ful comparisons, however, demand good data. Since sampling effort has
a significant impact on biodiversity measurement the chapter begins by
discussing sampling procedures and pitfalls. The units in which abun-
dance is measured —for example, number of individuals, biomass, and
cover —are also discussed. I then review the statistical methods used to
determine whether the diversity of two (or more) assemblages differ and
to set confidence limits on diversity measures. The chapter concludes by
focusing on the application of diversity measurement in environmental
assessment.

1 After Sanders(1968).



132 Chapter 5

Sampling matters

Each of the preceding three chapters has highlighted the dangers of inad-
equate sampling but has so far drawn back from commenting on what an
adequate sample might consist of. In fact, this question, which does not
have a simple answer, is revisited several times during the book. As
Chapter 3 revealed, the number of species, and hence the diversity of an
assemblage, tends to increase with the intensity of sampling. Thus, if a
site is sampled over time, or the sampling area is extended, or even if the
sampling unit is scrutinized more thoroughly, more species will almost
always be recorded (see Figure 3.1). Connor and Simberloff (1978), for ex-
ample, found that the number of botanical trips to the Galapagos Islands
was a better predictor of species richness than area or isolation. Longino
et al. (2002) note that investigators tend to perceive a community as a
candy jar from which it should be possible, with sufficient effort, to esti-
mate all the different types of candy. In reality, of course, the jar leaks,
and community boundaries are permeable. Since resources are invari-
ably limited, efficient sampling strategies are vital. Several key decisions
must be made. Should sampling be individual based or sample based?
Should sampling effort be equal across localities? Are several small
samples better than a single large one? Which sampling methodologies
shouldbe used, and is a single method adequate? How should abundance
be measured?

Individual-based or sample-based sampling?

There is an important distinction between individual-based protocols
such as “collectors curves” and sample-based protocols such as quadrats
and arthropod traps (Gotelli & Colwell 2001). These types of data set are
often treated as interchangeable. However, Gotelli and Colwell (2001}
warn that standardizing by the number of individuals collected and stan-
dardizing by area or sampling effort, can lead to different conclusions
regarding species richness. For example, when the same assemblage is
analyzed using both approaches, sample-based species accumulation
curves typically lie below individual-based curves (see Figure 3.5). This
is because environmental heterogeneity, combined with individual be-
havior, almost invariably leads to a nonrandom distribution of species
amongst samples, even when samples are themselves randomly located.
Comparisons based on species density need to be treated with caution if
the absolute density of individuals differs between assemblages. For in-
stance, the density of trees can vary markedly between forests, particu-
larly for those contrasts such as logged/unlogged that tend to be the focus
of diversity studies. Apparent differences in species richness, based
on species density calculations, may vanish once a correction for stem
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density has been made (Cannon et al. 1998). Gotelli and Colwell {2001)
provide sound advice on this and related topics.

Sampling effort

There are essentially two choices regarding sampling effort. The investi-
gator may either adopt a standard sample size and apply this to every
assemblage in the study, or adjust sampling effort to reflect underlying
variation in diversity. Unless there are firm grounds for deciding other-
wise, usually the best approach is to standardize the sample size. Pielou
(1975) reminds us that two samples of different size, drawn from the
same assemblage, can lead to quite different conclusions about its diver-
sity. Hayek and Buzas [1997) also recommend the use of standard sample
sizes. They note that the number of individuals needed for a reasonable
estimate of diversity is typically in the region of 200-500. These num-
bers are derived from empirical studies and represent the trade-off be-
tween the cost (in terms of time and effort) involved in collecting and
identifying individuals and the probability of encountering new species.
Indeed, some disciplines already have conventions that a certain number
of individuals should always be processed. In the case of micropaleontol-
ogy, for example, it is 300 (Buzas 1990). For many taxa, particularly those
found in temperate regions, all but the rarest species will be represented
in a sample of 300-500 individuals. The recommendations are repeated
with a health warning: they should only be adopted where the userisable
to demonstrate that this intensity of sampling is adequate. Predeter-
mined sample sizes of a few hundred individuals are, for example, inap-
propriate for megadiverse assemblages such as tropical arthropods. In
such cases the experience of knowledgeable field ecologists, combined
with an assessment of the rate at which new species are being encoun-
tered, is the best guide to sample size. For instance, experience played a
large part in designing sampling protocols to measure the diversity of a
variety of taxa, ranging from birds to termites, in a forest reserve in
Cameroon (Lawton et al. 1998). Serensen et al. (2002) recommend that a
useful rule of thumb for high diversity sites is 30-50:1 {specimens per
species). This was based on their investigation of the spider assemblage
in a Tanzanian montane forest during which a range of sampling tech-
niques was used to collect 9,096 individuals representing 170 species.
Species richness estimators can be used to confirm that the chosen
sample size is adequate. Stopping rules may also be useful (these were
evaluated in Chapter 3).

Another consideration is that some measures of biodiversity are much
more sensitive to sample size than others. Species richness, as noted
above, is notoriously vulnerable to variation in sampling effort (Lande
et al. 2000). On the other hand, taxonomic distinctness measures are
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relatively unaffected by sample size (Price et al. 1999). Heterogeneity
measures also vary in their sensitivity. The Simpson index outperforms
the Shannon index in this respect, as in most others (Gimaret-Carpentier
etal. 1998; Lande et al. 2000). Gimaret-Carpentier et al. (1998) examined
the diversity of trees in moist evergreen forests in India and Malaysia and
discovered that the Shannon index was considerably more influenced
by the addition of new species. Moreover, the Simpson index stabilized
at a low sample size. Gimaret-Carpentier et al.’s (1998) recommended
sampling regime was 300-400 trees grouped in small clusters of 10-50
individuals.

Number of samples

The advantages of taking a number of small samples, rather than a single
large one, were clearly evident in the context of species richness estima-
tion (Chapter 3). This approach allows a cumulative diversity profile to
be constructed. For all the reasons stressed earlier, species effort curves
are unlikely to flatten off. For instance, Jimenez’s (2000) investigation of
abird assemblage in the temperate rain forest of southern Chile failed to
show an asymptote in species richness despite increases in plot size, plot
number, or sampling duration. But nonparametric species richness esti-
mators can draw on the information contained in the samples to predict
where that asymptote is likely to lie and mean that sampling does not
need tobe exhaustive. Ina similar vein (following Pielou 1975) a measure
of diversity {or evenness) can be plotted against cumulative sample
size—and if the order in which the samples are included is randomized,
and the outcome is averaged over several repetitions, the resulting curve
willbe smoother (Figure 5.1). If the diversity curve reaches an asymptote,
the user can be reasonably confident that the diversity of the assem-
blage—as measured by the index of choice—has been encapsulated.
These subsamples can also be jackknifed (see below) to improve the over-
all estimate of diversity or incorporated in an ANOVA comparing the di-
versity of the different assemblages.

How many replicates are needed? Tokeshi [1993) recommended 10
where the aim was to fit niche apportionment models. Veijola et al.’s
(1996] goals were different. They wished to determine the optimum
number of Ekman grab samples needed to measure the diversity of the
profundal benthos of Finnish lakes. The answer, again, was 10. A similar
recommendation arose from Gimaret-Carpentier et al.’s (1998] work.
Tenisnotamagic numberbut these investigations suggest that it may be
a useful starting point; and the health warning issued in relation to sam-
pling predetermined numbers of individuals is repeated. The extent to
which the precision of an estimate of diversity is improved by additional
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Figure 5.1 The plot shows the value of Simpson’s index [as 1/D+18.D.)in relation to
sample size, following 50 randomizations of sample order. The data represent ground
vegetation in an Irish woodland (Roe Valley, Co. Derry); this is the same data set used to
construct Figure 4.4. There were 74 species in the assemblage and it was sampled using
50 point quadrats. The curve flattens off indicating that, for this index at least, a
reasonable estimate of diversity has been obtained. The graph was constructed using the
EstimateS package (http://viceroy.eeb.uconn.edu/EstimateS].

sampling can be measured (see, for example, Southwood & Henderson
2000). The optimum number of replicate samples will obviously be
influenced by the scale of the sampling unit in relation to the size of the
assemblage. Ideally, the overall sample size, and the number of replicates
used to achieve it, should be selected on the basis of the most diverse
assemblage, and then used consistently through the study. It is also
essential that the details of the sampling regime are included in any pub-
lications. This is particularly true when sample size is not consistent.
Unequal sample size is probably only justifiable when assemblages differ
markedly in their diversity and where it is neither appropriate, nor cost
effective, tosample the impoverished localities to the same degree as the
rich ones. In such cases it is vital to demonstrate that further in-
creases in sample size would not lead to a change in the estimate of
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diversity. It is only then that comparisons between assemblages are
meaningful.

It is worth stressing the distinction between replication and
pseudoreplication (Hurlbert 1984). Crawley (1993) provides sound ad-
vice regarding replication in ecological studies. The primary considera-
tion is that replicates must be independent. In other words, repeated
sampling of the same quadrat, or samples that form part of a time series,
are not true replicates. Replicates should also be spatially independent
rather than being grouped together in one place. Strictly speaking, if the
goal is to compare the diversity of two forest types, or polluted and
unpolluted rivers, the number of replicates is the number of examples of
each type of forest orriver. In practice, however, one is often dealing with
a few unique assemblages and the subsamples that are taken are often
referred to as replicates. Independence is still important, and sampling
regimes that include the random or systematic placement of samples can
help achieve this (Thompson et al. 1998). A related matter is whether
quadrats, or any other sampling devices, can be considered to provide
samples of a larger homogenous community (Pielou 1975; Hill 1997,
Barabesi & Fattorini 1998). This stems from the proposition that
communities may not be meaningful ecological entities (Wilson &
Chiarucci 2000; see also discussion in Chapter 1). Finally, it is worth
noting the distinction between “repetitive” sampling, and “nonrepeti-
tive” sampling (Dobyns 1997; Serensen et al. 2002). Dobyns (1997) found
that repeated sampling of the same sampling units (repetitive sampling]
yielded higher species richness and more rare species than the nonrepet-
itive approach, in which sampling occurs at the same intensity but
where each area is sampled only once.

Sampling techniques

Different sampling techniques are, of course, appropriate for different
taxa and environments. Krebs (1999), Thompson et al. (1998), South-
wood and Henderson (2000), and Sutherland (1996) provide details. It
essential to be aware of potential sampling biases. Many diversity mea-
sures assume that individuals have been sampled randomly —a require-
ment that is hard to achieve in practice. Predator avoidance,
competition, foraging behavior, habitat requirements, and reproduction
are just some of the factors that cause organisms to aggregate. When this
occurs it is “probably impossible” (Pielou 1975] to insure that individu-
als are sampled at random even when the sampling device is itself ran-
domly positioned. Moreover, each sampling method has its own biases.
Light traps, for example, are more attractive to some target species than
others (Southwood & Henderson 2000). Seasonality, weather condi-
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Table 5.1 A range of sampling techniques may be needed to comprehensively census
certain taxa. This table examines the complementarity between the sets of spider species
collected in a Tanzanian montane forest using different sampling methods (Colwell &
Coddington 1994, see also Chapter 6]. Corrections have been made for differences in
sampling effort. Complementarity values range from 0 to 100, where 100 signifies no
overlap in species composition. In only two cases {marked with *)—*“ground” hand
collecting and hand collecting of “cryptic” habitats, and vegetation “beating” and
“aerial” hand collecting —was the similarity in composition greater than 50%. “Pitfall”
trapping and hand “sweeping” generated samples of a consistently different species
composition from those produced by other methods. (After table 3, Serensen et al. 2002.)

Pitfall Ground Aerial Beating Sweeping
Cryptic 73 39 78 67 68
Pitfall 66 94 92 92
Ground 74 64 66
Aerial 48" 77
Beating na . 57

tions, and the skill of the investigator contribute yet more variables.
Comparing like with like is vital.

When the goal is to estimate species richness, and particularly where
small organisms are involved, a variety of sampling techniques may be
required. Two investigations of arthropod diversity, one in Costa Rica
(Longino et al. 2002}, the other in Tanzania (Serensen et al. 2002), illus-
trate the importance of using a wide range of techniques to insure that all
potential niches are searched (Table 5.1 and Figure 5.2). Longino et al.
(2002) draw attention to methodological edge effects. These arise when
species are inefficiently sampled by one technique and thus give the im-
pression of being rare or absent. Other sampling methods may reveal that
apparently rare species are in fact abundant. Interestingly, Serensen
et al.’s (2002) investigation of spider diversity in an Afromontane forest
revealed that sampling methodology, and the time of day at which
sampling took place, had a greater influence on the richness estimate
than collector experience. Semiquantitative protocols (Coddington
et al. 1991, 1996; Serensen et al. 2002), involving complementary
methodologies, a combination of plot-based and unrestricted (plot-free)
samples, and collectors of varying experience, appear to be an efficient
way of inventorying megadiverse assemblages. On the other hand, when
estimates of species density are required, plot-based [e.g., quadrat)
sampling is essential.

These studies testify to the effort needed to measure species richness.
Serensen et al.’s (2002) census took 200 h. The 370 samples yielded 170
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Figure 5.2 Different sampling techniques may reveal a different pattern of species
abundance. Spider diversity in Tanzania was assessed using six different methods. This
graph compares the rank/abundance plots derived from pitfall trapping, daytime
sweeping and using the six methods combined. [Data from appendix 1, Serenson et al.
2002).

species and over 9,000 individuals. None the less, the Chao 1 measure
(which outperformed the other estimators) indicated that many more
samples were needed. By comparison, the species accumulation curve in
Longino et al.’s(2002) investigation approached an asymptote indicating
that the inventory (of 437 species) was almost complete. However, in
this case sampling was exceptionally exhaustive. Eight methods were
used over durations ranging from 1 month to 23 years. Furthermore long-
term, specialized collecting by John Longino meant that the investiga-
tors could be confident that species had not been overlooked. Sgrensen et
al.{2002) recommend that monitoring programs, where resources are in-
variably limited, should focus on one or a few families, or a single feeding
guild, and employ a small number of standardized methods. Nonpara-
metric richness estimators can be used to assess undersampling bias,
while permanent plots provide baseline data for ongoing investigations.

Units of abundance

Diversity measures and species abundance models were initially devel-
oped using data from groups of animals, such as moths and birds, where
individuals are readily identifiable. There are, however, circumstances
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where it can be difficult to decide where one individual ends and the next
one begins. Plant assemblages, for example, may contain clonal species
in which a single individual can cover a considerable area simply by re-
peating the modularunit {Harper 1977). Clonal growth is the major mode
of reproduction in Japanese knotweed, Fallopia japonica, one of the most
invasive alien plant species in the UK (Hollingsworth et al. 1998).
Harberd (1967) showed that a single genetic individual of the grass
Holcus mollis extended over 1km despite being fragmented into a
number of phenotypic units. Moreover, the weights of individual plants
within a species can vary 50,000-fold (Harper 1977). The largest single or-
ganism in the world is reputed to be a clone of the quaking aspen,
Populus tremuloides, in Colorado.? It extends across 80ha and weighs
over 6,000 tonnes. Many littoral communities are also characterized by
clonal species such as corals and bryozoa. It is, of course, possible to
literally unearth the extent of a vegetative clone by excavating its root
system, and molecular methods can be used to estimate the size of a
clonal bryozoan (Hatton-Ellis et al. 1998). However, it takes but a
moment’s reflection to realize that these approaches do not provide
meaningful measures of abundance in the context of diversity estima-
tion. Niche apportionment theory assumes that abundance is a surro-
gate measure of niche size. And while statistical models do not a priori
set out to explain niche fragmentation, they also assume that the abun-
dance of an organism is in some way related to its ecological importance.

A variety of other approaches can be used to measure abundance. The
number of modular units per species in a plant community is one alter-
native (Harper 1977). Modular units, which are relatively constant in
size within a species, include the shoot of a tree, the tiller of a grass, and
the leaf and bud of an annual. Harper sees the number of modular units of
primary use in studies of population dynamics, which, by definition,
generally focus on a single species. However, if the species that are the
target of the diversity investigation have similar growth forms, there is
no reason why modular units should not be used to measure abundance.
Indeed, in certain animals with clonal reproduction, for example some
small freshwater fish species in the genera Poecilia and Poeciliopsis
(Schultz 1989; Wetherington et al. 1989), modular units and individuals
are one and the same.

A more universally applicable measure of abundance is biomass. This
has been used successfully in many studies including those of Pielou
(1966), Tilman and Downing (1994}, and Hector et al. (1999). The con-
trast between patterns of abundance revealed by biomass and number of
individuals was the key to the ABC method of detecting environmental

2 http://www.extremescience.com/aspengrove htm.
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stress (discussed in Chapter 2 and revisited later in this chapter). Biomass
can be time consuming to measure. In plant assemblages, for instance,
vegetation must be harvested and then sorted into species lots, dried
if necessary, and weighed. Although investigations typically focus on
above-ground biomass, it is arguable that this should be supplemented
by information on below-ground biomass if a complete picture of abun-
dance is required. Despite these methodological complications, as an
abundance measure biomass has many advantages. In particular, it is a
more direct measure of resource use than the number of individuals (Guo
& Rundel 1997), even where the individuals are readily recognizable
(Harvey & Godfray 1987). Biomass also facilitates comparisons between
taxa in which population sizes are markedly different. It was noted in
Chapter 2 that the density of soil bacteria and deer in 1 m? varies by over
25 orders of magnitude. The range of biomass in the same organisms
covers only 4 orders of magnitude (0.001-1.1 g/m) (Odum 1968). Tokeshi
(1993) argues that because biomass reflects resource use more exactly, it
should be preferred over numbers of individuals whenever models of
resource apportionment are involved. None the less, as Chapter 2 noted,
it is not an appropriate measure where the log series is concerned.

The area that plants or other sessile organisms cover can also be used
as an abundance measure. The coverage of individual species is typically
expressed as the percentage of the area surveyed. This method has been
used in many classic studies, including Whittaker’s {1965) investigation
of plant species in the Sonoran desert and continues to find favor today
(see, for example, Luzuriaga et al. 2002; Nugues & Roberts 2003). Cover
can be estimated directly in the field, measured from photographs, and
even in certain circumstances deduced from remote sensing (Nohr &
Jorgensen 1997]. Problems arise when organisms overlap one another or
where there is a combination of erect and prostrate growth forms (for ex-
ample grasses, bryophytes, and corals). Cover is also a problem for
marine ecologists using quadrat surveys in the intertidal zone (where
macroalgae hide the faunaj and for those using the increasingly valuable
underwater imagery techniques to analyze benthic communities with-
out dredging. [See Piepenburg et al. (1997) and Starmans and Gutt (2002)
for some nice Antarctic/Arctic comparisons that address these issues.)

Although easier to use, cover scales such as those of Domin,
Braun-Blanquet (Kershaw & Looney 1985], and Daubenmire (Mueller-
Dombois & Ellenberg 1974} have little application in diversity measure-
ment. These scales generally provide the most resolution at maximum
and minimum coverage. The nonlinear nature of the data they generate
impedes interpretation.

Point quadrats (Kershaw & Looney 1985) have also been developed by
plant ecologists to measure cover. A point quadrat consists of a frame of
pins. The pins are then dropped (or raised) one at a time, and the species
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touched by each pin recorded. The total number of “hits” on each species
is equated with its abundance. I [Magurran 1988} found this the most
tractable means of estimating the abundance of herbaceous vegetation
in woodlands. A particular advantage of the technique is that it simulta-
neously generates data on taxonomic and structural diversity. South-
woodet al. (1979), for example, used the method to measure both aspects
of diversity in a secondary succession. Point quadrat analysis may also be
supported by biomass estimation. Churchfield et al. (1997 adopted this
two-pronged approach when relating vegetation composition and struc-
ture to habitat use by small mammals, as did Press et al. (1998) in their
examination of the responses of a dwarf shrub heath in subarctic Sweden
to simulated environmental change.

Frequency or incidence —the number of sampling units in which a
species occurs —is another common method of estimating abundance.
Indeed, it is reminiscent of the point quadrat approach, but the sampling
units are generally on a much larger scale. An obvious drawback is that
the abundance of widespread species will be underestimated and
the abundance of rare species overestimated. Notwithstanding this,
presence/absence data of this type are extremely useful in diversity mea-
surement. They can be usedin species richness estimation (Chapter 3], to
devise complementarity algorithms for conservation purposes (Williams
et al. 1996; Rodrigues et al. 2000; Eeley et al. 2001; Sarakinos et al. 2001),
and when measuring B diversity (Chapter 6). Gaston (1994) examines the
use of incidence data in the estimation of species’ geographic range sizes.

Chiarucci et al. {1999]) asked whether inferences about biodiversity
might be influenced by the choice of abundance measure. To test this
they measured the diversity of serpentine vegetation in Tuscany using
both cover and biomass. The authors concluded that there was “rather
little difference” between rank/abundance plots constructed using the
two measures. The two approaches also generated broadly similar re-
sults when richness measures were used {Chapter 3), but there was less
congruence if evenness was estimated. The greatest departure came
when the shape of the abundance distribution was examined. The
Zipf-Mandelbrot model provided the best descriptor of the cover data
while the biomass data followed a log normal distribution. These
conclusions reflect the intrinsic characteristics of the two abundance
measures. Because biomass is a measure of volume, rather than area, dif-
ferences between species of high and low abundance are amplified. This
increases the likelihood of a mode in the frequency distribution of the
(logarithmic] abundances of species. Differences in evenness are also
more likely to be detected. Chiarucci et al. (1999) note that little is
known about the implications of adopting different abundance mea-
sures, and advise, that in plant studies at least, surrogates of biomass
should not be used until more investigations have been conducted. How-
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ever, Magurran et al. (unpublished) obtained similar relationships
between the richness and evenness of freshwater fish assemblages in
Trinidad, irrespective of whether abundance was measured as the num-
ber of individuals or biomass. In general, reconciling conclusions drawn
using biomass and other abundance measures seems to be less problem-
atic for animal than for plant assemblages. Michaloudi et al. (1997), for
example, note that the abundances of pelagic zooplankton in Lake
Mikri Prespa in Greece, measured as the number of individuals or
biomass, cover a similar range (61-905 individuals/l and 58-646ug/l,
respectively).

Not all species are equal . . .

So far the chapter has made little comment on the status of species
included in richness estimates. None the less, it is evident from well-
studied assemblages that some species are resident, have established
populations, and compete for limited resources while others are transi-
tory. Gaston (1996b) notes that such taxa have been called accidentals,
casuals, immigrants, incidentals, strays, tourists, transients, vagrants,
and waifs. The most usual term is vagrant. He further points out that 258
species out of the 537 in the British and Irish bird list are in this category.
Abbot (1983] argues that it is “absurd” to include vagrant species in
turnover studies on islands and, indeed, most investigations now follow
this advice. Russell et al. {1995) went further and restricted their analysis
of turnover in bird species on islands off Britain and Ireland to resident
terrestrial species (excluding freshwater and marine ones). On the other
hand, there are cases where vagrant species become the focus of study
(see, for example, Delmoral & Wood 1993; Rose & Polis 2000). Clearly,
these insights depend on long-term information about the status of the
species involved —data that are particularly scarce in poorly studied, but
speciose, tropical assemblages (Diefenbach & Becker 1992; Hammond
1994). The proportion of vagrant species varies with latitude, habitat,
and taxon in a complex manner Stevens 1989; Chesser 1998; Hinsley et
al. 1998; Dingle et al. 2000; Longino et al. 2002} so it is difficult to make
assumptions about which species might fall into this category. Never-
theless, it isimportant to be aware that a considerable number of species
may be classified as vagrants and their inclusion—if this is not consis-
tent with the objectives of the study —will have the effect of artificially
inflating the species count or richness estimate. It also complicates com-
parisons between species counts conducted using different criteria.

Preston (1948, 1960) noted the resemblance between species—area and
species-time curves (see also Chapter 6). In both cases the number of
species will increment as the sampling universe expands and the rate at
which new species are encountered can be used to deduce total species
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richness. However, spatial and temporal surveys differ in one respect. It
is unlikely that the proportion of vagrant species will vary in relation to
area sampled, particularly if a uniform habitat isunderinvestigation and
samples have been taken randomly. In contrast, it is likely that the
proportion of vagrant species collected per unit time will increase as the
duration of a study is extended. Thus permanent or resident species may
predominate in the early stages of a survey and transient ones in the later
ones. Preston (1948) reported the results of two long-term (22 years) light
trap surveys of moths. One of these, at Saskatoon in Canada, had record-
ed 277 species, the other, at Lethbridge, also in Canada, recorded 291
species. The presence of the veil line on the log normal distribution of
these species abundances led Preston to deduce that they were only 72%
and 88% complete, respectively. The literature does not record if these
missing species were subsequently found, but we can be reasonably con-
fident that if they were they were almost entirely vagrants.

Comparison of communities

The manner in which the statistical comparison of communities or
other ecological entities is achieved depends to some extent, though
with significant overlaps, on the aspect of biodiversity that has been
measured. The following three sections reinforce and extend the recom-
mendations in the preceding chapters. I also briefly mention the role of
null models in comparative studies of biological diversity.

Species abundance distributions

Assuming that sampling has been adequate, comparisons of species
abundance patterns across communities are conceptually simple if occa-
sionally computationally complex. The null hypothesis, that the same
model fits all data sets, can be tested using the methods described in
Chapter 2. Alternatively, the slopes of rank/abundance plots may be
compared directly (see Figure 2.16} or the Kolmogorov—Smirnov two-
sample test {Sokal & Rohlf 1995) used to test for significant differences
between the species abundance distributions of two assemblages (see
Worked example 3).

Species richness estimates

Sample size dependence is a particularly pressing problem where species
richness measures are concerned. Even well-designed, resource-
intensive surveys can fail to provide a complete inventory. And unless
the sampling curve of richness against effort has reached an asymptote
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there will be uncertainty about how complete the data set is. In such
cases there are two approaches. Richness estimators can used to deduce
overall richness. They may form the basis of community comparison,
providing a convincing asymptote is reached. In many cases, however, a
minimum estimate of richness is the best that can be obtained. Alterna-
tively, rarefaction is a technique that reduces sample data to a common
abundance level [typically the same number of individuals) so that direct
comparisons of the species richness of communities can be made.

Rarefaction

As Chapter 3 noted, rarefaction and smoothed species accumulation
curves are closely related. However, while species accumulation curves
can be used to draw inferences about the diversity of a more fully cen-
sused assemblage (that is, they are viewed from left to right; Gotelli &
Colwell 2001}, rarefaction curves permit the investigator to work in the
other direction (from right to left). During rarefaction the information
provided by all the species that were collected is used to estimate the
richness of a smaller sample. For instance, the species richness of two
samples, one consisting of 750 individuals and the other of 500 individu-
als, can be compared directly by “rarefying” the former down to 500 in-
dividuals. Figure 5.3 shows how the species richness of two Brazilian
Drosophila assemblages, with different abundances, can be compared
using rarefaction (Dobzhansky & Pavan 1950). Sanders’ (1968) original
rarefaction formula was subsequently modified by Hurlbert {1971} and
Simberloff (1972}, who independently published a corrected estimator
(Krebs 1999]. Rarefaction is computationally demanding (Heck et al.
1975). Coleman’s “random placement” method {Coleman 1981; Cole-
man et al. 1982} uses a different approach, which is much more efficient
and produces virtually indistinguishable results (Brewer & Williamson
1994; Colwell & Coddington 1994; Gotelli & Colwell 2001). Colwell’s
(2000) EstimateS software can be used to construct “Coleman curves.”
Rarefaction makes a number of assumptions. Samples obtained by dif-
ferent collecting techniques, and communities that are intrinsically dif-
ferent, cannot be compared by means of rarefaction. Rarefaction usually
assumes that individuals are randomly dispersed (Krebs 1999].31f, as is so
often the case in nature, they are clumped rather than random, species
richness will be overestimated (Fager 1972). Some modifications have
been developed for nonrandom spatial distributions (Smith et al. 1985,
but these continue to assume that the individuals themselves have been
sampled randomly [Gotelli & Colwell 2001). Since rarefaction curves

3 EstimateS does not make this assumption when computing sample-based rarefaction (R. K. Colwell,
personal communication).
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Figure 5.3 An example of rarefaction. Dobzhansky and Pavan {1950) collected Drosophila
species from a range of localities in Brazil. This graph contrasts the result for the terra
firma sample where 360 flies were collected with the igap6 sample where 712 flies were
collected. When the igap6 sample is rarefied down to 360 individuals its species richness
still exceeds that recorded for the terra firma site. The graph also shows the 95%
confidence limit for the igap6 locality. This confirms that, for equivalent N, the

igapéis richer. The graph was constructed using the Ecosim package
(http:homepages.together.net/~gentsmin/ecosim.htm). (Data from table 3, Dobzhansky
& Pavan 1950.)

converge at small sample sizes (Tipper 1979; Gotelli & Colwell 2001),
sampling needs to be sufficient to characterize the community. Finally,
estimates can be biased if sampling is inadequate or if the samples are
drawn from sites with markedly different species abundance distribu-
tions. May (1975) observes that 73 individuals would have to be sampled
from a broken stick distribution of 50 species before half the species were
encountered, while 230 individuals would be required before the equiva-
lent proportion of species from a canonical log normal distribution of
identical richness was revealed. Figure 5.4 vividly illustrates the differ-
ent outcomes achieved by rarefying three samples of identical § and N,
but where the abundance distributions differ markedly.

None theless, ecologists continue to find rarefaction a useful approach
(see, for example, Brewer & Williamson 1994; Boucher & Lambshead
1995; Haddad et al. 2001). Gotelli and Entsminger (2001) provide soft-
ware that can be used to construct rarefaction curves (with confidence
intervals) when sampling has been individual based. In addition to the
usual richness-based rarefaction, their package will also generate rar-
efaction curves for other diversity measures including the Berger—Parker
(dominance] (Figure 5.5] and the Shannon (heterogeneity) indices. Col-
well’s (2000) EstimateS software will calculate sample-based rarefaction
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Figure 5.4 Rarefaction is influenced by the underlying species abundance distribution.
Sample 1 shows the rarefaction curve ([Hurlbert’s method] for data in Sanders (1968). In
sample 2 all 40 species have equal numbers of individuals. Sample 3 has one species with
961 individuals and 39 species with one individual. The graph shows that the extent of
underestimation of species richness depends on the level of dominance. {Redrawn with
permission from Gray 2000; after Fager 1972..)
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Figure 5.5 Rarefaction techniques can also be applied to diversity measures other than
species richness. This example compares the igap6 and terra firma habitats of Figure 5.3

using the Berger-Parker index (d). As before, the igap6 sample is more diverse when
rarefied to the value of N observed for the terra firma site.
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curves. Once again, confidence intervals can be attached to these curves.
In either case, the simplest method of deciding whether two communi-
ties differ in diversity is to ascertain whether the observed diversity of
the smaller community lies within the 95% confidence limits of the rar-
efaction curve of the larger community. The comparison is made at the
point at which the abundance level of the larger community matches the
levelin the smaller one (Gotelli & Entsminger 2001) (Figure 5.5). Gotelli
and Colwell (2001} note that when the data consist of lists of individuals
only individual-based rarefaction is possible. However, when sample-
based data are available either sample-based or individual-based rare-
faction is possible. Their relative advantages and disadvantages are
discussed by Gotelli and Colwell (2001).

Rarefaction can also be based on the log series distribution. The
method isidentical to the one set out in Chapter 3 (see the equation on p.
84]in the context of species richness estimation, except that in this case
species richness is deduced for communities that have been reduced to a
common number of individuals. As the log series assumes individual-
based sampling, no sample-based method is possible. Rarefaction by the
log series model is both intuitively and computationally simple {Figure
5.6) and will work providing the data fit the model quite well. None the
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Figure 5.6 Rarefaction using the logseries index o.. The graph shows a species
accumulation curve (dashed line] for Trinidad and Tobago freshwater fish [see Figure 3.6)
plotted in relation to the numbers of individuals sampled. The equivalent curve for o
{solid line} is also shown. Both curves are based on 50 randomizations of the data. The
number of species estimated for a sample of 10,000 individuals (using the equation on
p.84and 0=4.71}is 36.1: aresult in remarkable agreement with the number of species
actually recorded {dotted line). The estimate for a sample size of 50,000 is 43.6. This is
consistent with expectation based on extensive collecting (Phillip 1998).



148 Chapter 5

less, its utility is open to question since this approach shares some of the
drawbacks of the other rarefaction methods. If a log series distribution
hasbeen fitted to acommunity, o, the diversity measure that constitutes
a parameter of the distribution will automatically be calculated. This
measure, o, provides a robust and comprehensible description of the
diversity of a community. It is an index which, as we saw before, is not
unduly affected by sample size (Taylor 1978). Indeed, it may even be used
in circumstances where species abundances do not follow a log series
distribution (Chapter 4. If the sampling was good enough to generate an
adequate estimate of o, o may be all that is needed to compare the com-
munities in question. On the other hand, if the sampling was inadequate
in the first place, no method of rarefaction is going to compensate. There
may be certain contexts in which rarefaction is appropriate but, as al-
ways, it is essential that the investigator is clear about the aims of the in-
vestigation, as well as the drawbacks associated with the methodology
used. Rosenzweig (1995] contends that rarefaction has been supplanted
by a.. He also suggests the Simpson index (which, like o, is robust against
variation in sampling effort) can be used in a similar fashion.

Species diversity indices

When diversity indices are used to compare communities, different
measures may produce different rankings of sites [Patil & Taillie 1982).
The reasons for this and ways of dealing with discordant rankings are dis-
cussed below. This section also explains how statistical comparisons of
diversity measures can be achieved.

Relationships between indices

Working from the observation that diversity measures can be arranged
by their propensity to emphasize either species richness (weighting
towards uncommon species) or dominance (weighting towards abun-
dant species), Hill (1973] produced an elegant method of describing the
relationship between indices. By defining a diversity index as the “recip-
rocal mean proportional abundance” he was able to classify them ac-
cording to the weighting they give to rare species. In the general case:

Y(1-
Na=(pf+pg+p§...+pg)/( )

where N, =the ath “order” of diversity when p, = the proportional abun-
dance of the nth species. It follows that when a=0, N, is the total number
of species in the sample.

The orders [or numbers) of N frequently used in diversity work are:
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N__, = the reciprocal of the proportional abundance of the rarest
species [this is May’s (1975) dimensionless ratio J);

N,=the number of species;

N, =the exponential Shannon index;

N, =thereciprocal of Simpson’s index;

N_=thereciprocal of the proportional abundance of the commonest
species (the reciprocal of the Berger-Parker index).

Any order of N may be used as a diversity index, though there are clear
advantages in using those whose properties are well understood. These
diversity measures also differ in their discriminatory ability. Kempton
(1979] used data from the Rothamsted Insect Survey to determine how
good Hill’s measures were at distinguishing samples. Orders of a be-
tween O (where N, = S} and 0.5 (where N, = expH’) provided the highest
degree of discrimination.

Ranking communities

Hill’s (1973} analysis, which drew on Rényi’s (1961} investigation of en-
tropy, underlined the fundamental relationship between diversity mea-
sures. As Hill concluded, diversity is little more than the “effective
number of species present” (see also Good 1953; Backowski et al. 1998).
Different weightings result in different orders of diversity, but in essence
these orders are all describing the same property of an assemblage. How-
ever, different measures (or orders) of diversity can rank assemblages in
different ways (Hurlbert 1971; T6thméresz 1995; Southwood &
Henderson 2000) (Figure 5.7). Accordingly, the conclusion about
whether one site is more diverse than another can depend on the choice
of diversity measure. This is aptly demonstrated by Hurlbert {1971},
Toéthméresz (1995), and Nagendra (2002) for the Shannon ({H’) and Simp-
son (1/D]indices.

Patil and Taille (1982) use the same mathematical relationships as Hill
(1973), but a different logic, to show how species richness, the Shannon
index, and the Simpson index are related. Their framework, which
examines the sensitivity of an index to rare species, reformulates these
familiar measures in terms of interspecific encounters. In other words,
the rarer the ith species, the less likely that this will be the species of the
next organism to be encountered.

How should inconsistencies in ranking be dealt with? One option is to
compare only those assemblages that are ranked consistently when dif-
ferent orders of diversity are used. The methods described by Rényi
(1961}, Hill (1973], and T6thméresz (1995) can be used to accomplish
this. Indeed, Southwood and Henderson (2000) argue that such diversity
ordering must be undertaken if the intention is to compare communities
using a single “nonparametric” measure. In practice, however, most in-
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Figure 5.7 Different measures of diversity do not always rank assemblages in the same
way. In this example of soft-sediment macrobenthos from 16 localities in the southern
part of the Norwegian continental shelf, there is little concordance between the Shannon
index and species richness (r,=0.25, P> 0.05}. The Shannon and Simpson measures, by
comparison, produce highly concordant rankings of sites (z,=0.95, P<0.01). The
exponential form of the Shannon index and reciprocal form of the Simpson index are
shown. P values have received Bonferroni correction. [Data from table 1, Ellingsen 2001.]

vestigators omit this step. This is acceptable as long as it is clear that the
aspect of diversity measured relates only to the index used to measure it,
and there is no claim or suggestion that diversity in any broader sense is
being measured.

A related problem was noted by Lande et al. (2000), who observed that
species accumulation curves may intersect [see also the discussion in
Chapter 3). This means that rankings of assemblages can differ as a func-
tion of sample size. Lande et al. [2000) recommend the Simpson index for
its ability to consistently rank agssemblages when sample size varies.
Moreover, the probability that the observed (estimated) Simpson diver-
sity accurately reflects the true Simpson diversity increases rapidly with
sample size. In their example a sample of 100 individuals was sufficient
to correctly rank butterfly assemblages using the Simpson diversity
index. The required sample size rose to 2,000 individuals if species rich-
ness was used to rank them (see Figure 3.8). The Shannon index was re-
jected due to its high bias in small samples (see also Lande 1996). Platt
et al. (1984) have also argued that the diversity of two or more assem-
blages can only be unambiguously compared when k-dominance plots
do not overlap see Figure 2.6).
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Statistical tests

Providing replicate samples have been taken, and as long as the distribu-
tions of values meet the necessary assumptions, standard statistical
techniques such as t tests and ANOVA can be used to compare assem-
blages [Sokal & Rohlf 1995). Indeed, estimates of diversity produced by
the Shannon, Simpson, and other widely used diversity statistics are
often approximately normally distributed, greatly facilitating such
comparisons. Alternatively jackknifing or bootstrapping can be used to
attach confidence intervals to a diversity statistic.

Jackknifing: a measure of diversity

Jackknifing (Miller 1974) is a technique that allows the estimate of
virtually any statistic to be improved. It was originally proposed by
Quenouille in 1956 with modifications by Tukey in 1958. The method
was first applied to diversity statistics by Zahl (1977). This application
was further investigated by Adams and McCune [1979) and Heltshe and
Bitz (1979). As Chapter 3 revealed, jackknifing can also be used to esti-
mate species richness.

The general method is described by Sokal and Rohlf {1995). Its beauty
is that it makes no assumption about the underlying distribution. In-
stead, a series of “pseudovalues” are produced. These pseudovalues are
(usually) normally distributed; their mean forms the best estimate of
the statistic. Approximate confidence limits can also be attached to
the estimate. The procedure (illustrated in Worked example 8) is simple.
The first step is to estimate diversity (for example, using the Shannon
index) for all n samples together. This produces St, the original diversity
estimate. Next, the diversity measure is recalculated n times, missing
out each sample in turn. Each recalculation produces a new estimate,
St_;. The pseudovalue (or ¢;) can then be calculated for each of the n
samples:

0,=nSt—(n-1)St_,

The jackknifed estimate of the diversity statistic is simply the mean of
these pseudovalues:

P
n

The approximate standard error of the jackknifed estimate is:
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This standard error may be used to assign approximate confidence limits
tothejackknifed diversity estimate. It is also possible to perform approx-
imatet tests. Aninvestigator could therefore compare the observed (jack-
knifed) diversity with the value predicted by a null hypothesis. In both
cases it is appropriate to use n — 1 degrees of freedom (but see Adams and
McCune (1979) and Schucany and Woodward (1977) for a more detailed
discussion of the issue). Confidence limits are set in the usual way, i.e.:

6 + t0.05(n_1)S.E.$

Sokal and Rohlf (1995) recommend that statistics that are bounded in
range (such as those constrained between 0 and 1) should be transformed
prior to jackknifing. For example, they suggest Fisher’s z transformation
for correlation coefficients and a logarithmic transformation for vari-
ances. The advice is relevant to the many diversity statistics that have
similar properties. Sokal and Rohlf {1995] also note that jackknifing does
not always work. It cannot, for example, correct for outliers—to which
the initial diversity estimate will, of course, be just as vulnerable. Sokal
and Rohlf (1995) provide some suggestions about how to deal with such
outliers. As always the onus is on the user to insure that the outcome is
biologically meaningful. Some authorities, for example Zar (1984) and
Southwood and Henderson (2000), caution against the use of the jack-
knife procedure to set confidence limits.

Bootstrapping is a related method of generating standard errors and
confidence limits. It is computationally more demanding, but is consid-
ered an improvement over the jackknife. In essence the original data set
is repeatedly sampled to produce many combinations of observations.
These are then used to deduce the standard error. Sokal and Rohlf {1995}
and Southwood and Henderson (2000) provide more details. Bootstrap-
ping, like jackknifing, can be used in species richness estimation. It is
also an important technique in phylogenetic reconstruction (Felsenstein
1985). Solow (1993) offers a simple randomization test for the Shannon
index (implemented in Species Diversity and Richness?).

Null models

One of the most striking changes in the last 15 years is the greater use of
null models in diversity measurement. Ecologists are now much more

e

4 The package Species Diversity and Richness will bootstrap a range of popular diversity measures.
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aware of the need to formulate testable null hypotheses (Gotelli &
Graves 1996). Moreover, the phenomenal increase in computing power
means that complex simulations and demanding calculations are no
longer an obstacle. Some applications of null models have already been
discussed. For instance, Hubbell (2001) used this approach to argue that
empirical species abundance patterns could be explained without invok-
ing ecological differences between organisms. Tokeshi’s (1990] random
assortment model is also an example. A null hypothesis states that the
observed patterns are not attributable to the assumed causal explana-
tion. In essence, it assumes that nothing meaningful has happened
(Strong 1980). The relevance of null models to comparative studies of
diversity is obvious. One important application is exemplified by tests
of taxonomic distinctness (Clarke & Warwick 1998; see also Chapter 4).
Here the community under investigation is contrasted with a set of
equivalent richness, constructed using a random draw of species from
the regional species pool. Null models can also be used to determine
whether perceived differences in diversity are simply an artifact of sam-
pling. Clearly much depends on how the null community is assembled.
Gotelli and Graves (1996) and Gotelli {2001} provide an overview, while
Gaston and Blackburn (2000] illustrate the use of null models in macro-
ecology. Null models are considered further in Chapter 7.

Diversity measures and environmental assessment

Environmental assessment evaluates the status of impacted or vulnera-
ble assemblages against some benchmark expectation. Since diversity is
widely perceived to correlate with environmental well being—in reality,
of course, the relationship is much more complex—diversity measures
of various kinds are playing an increasing role in environmental assess-
ment. The measures have the potential (not always realized) to provide
objective and quantitative appraisals. There are also many pitfalls for the
unwary. For instance, comparisons between pristine and perturbed sites
will be invalid if the sampling effort is inadequate or the sampling
techniques are not directly comparable. Sampling matters just as much
in applied studies of biodiversity as in fundamental ones. Any of the
methods described in the book can be used in environmental assess-
ment. None the less some techniques have been developed with this goal
in mind. These are discussed below.

Taxomonic distinctness

Although Warwick and Clarke’s taxonomic distinctness method
(Chapter 4] is relatively new, applications in environmental assessment
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have already been demonstrated. Rogers et al. (1999) showed that varia-
tion in the taxonomic distinctness of fish communities in the coastal
waters of northwest Europe could be attributed to the distribution of
elasmobranchs. Due to their life history attributes, which include de-
layed maturity and a low rate of population increase, elasmobranchs are
particularly susceptible to commercial trawling.

In another context, Warwick and Clarke (1998) found that A* cor-
rectly identified degraded habitats. Their investigation of marine nema-
tode diversity in the UK and in Chile highlighted two further advantages
of the measure. First, they demonstrated that they could discriminate
habitat types that have naturally lower distinctiveness values from
those habitats where a reduction in the measure could be attributed to
pollution; it was only in the latter case that values of A* dropped below
the 95% confidence funnel. This solves a problem that often confronts
users of diversity statistics, that is disentangling human-driven reduc-
tions in diversity from naturally occurring variation. Second, they real-
ized that taxonomic distinctness in the marine nematodes they were
interested in was closely associated with trophic diversity. In other
words A" was lower in localities that contained fewer trophic groups
even if species richness remained constant. This link between tax-
onomic distinctiveness and ecosystem function indicates that A* is an
ecologically meaningful measure as well as one that has considerable
potential in environmental impact assessment. Tilman (1996] has also
suggested that taxonomic diversity helps promote ecosystem stability.
Figures 4.8 and 4.9 show that a Trinidadian freshwater assemblage,
colonized by high densities of the invasive tilapine Oreochromis niloti-
cus, is less taxonomically distinct than it should be given the number of
species found there.

Despite these virtues there are a number of cases (see, for example,
Somerfield et al. 1997) where A* seems no more sensitive than tradi-
tional diversity statistics. Clarke and Warwick {1998) point out that
there is often a trade-off between sensitivity and robustness. A* is ex-
tremely robust in the face of variations in sampling effort and requires
only incidence data. It can be used in contexts where conventional
diversity statistics would either fail or yield misleading results.
Methods that are sensitive to subtle shifts in diversity are also extremely
vulnerable to unstandardized or inadequate sampling. In fact, Warwick
and Clarke (1991] advocate the use of multivariate methods when the
primary aim is the detection of small variations in community structure
and diversity. Increased variability between samples from impacted as-
semblages may also be revealed by multivariate analysis. Such increases
may also be a symptom of stress in marine systems (Warwick & Clarke
1993).
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Figure 5.8 Use of ABC curvesin practice. This graph compares (a) the fish assemblage in
an unpolluted site in Trinidad with (b} one experiencing a high level of oil pollution. The
pattern should be contrasted with the expectation in Figure 2.7. [Data from Magurran &
Phillip 2001b.]
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Anothermethod that has received considerable attention, almost entire-
ly in the context of marine or estuarine macrobenthic assemblages, are
ABC curves (abundance/biomass comparison curves) (Warwick 1986).
These were mentioned in Chapter 2 and represent one of the many for-
mats in which species abundance data can be graphically presented. The
approach uses k-dominance plots (Lambshead et al. 1983), where the
cumulative abundance of species (as proportions or percentages) is
plotted against log species rank (see Figure 2.7). Two curves are con-
structed for each assemblage; one is based on individuals data (given the
shorthand of abundance, or A}, the other uses biomass (B) data (Figure
5.8). These A and B curves are then compared (C). The placement of the
two curves with respect to each other is used to make inferences about
the degree of disturbance in the assemblage. The underlying premise is
that undisturbed assemblages will be characterized by species that have
large body size and long life spans. These are unlikely to be numerically
dominant but are expected to be dominant in terms of biomass. Oppor-
tunistic species will also be present but these would not normally com-
prise a large proportion of assemblage biomass. Consequently, the
distribution of individuals amongst species will be more even than the
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distribution of biomass amongst species. As such the individuals (or
abundance] curve will be expected to lie below the biomass curve. In con-
trast, opportunistic species are predicted to become more dominant, in
terms of both biomass and numbers of individuals, as disturbance in-
creases. As a result the biomass and individuals curves will overlap and
may cross each other several times. A few small-bodied species typically
dominate severely polluted assemblages. This can be seen when the in-
dividuals curve is consistently higher than the biomass curve.

ABC curves have been used productively by a number of investigators.
For example, Lasiak (1999) employed the approach when assessing the
impact of subsistence foragers on infratidal macrofaunal assemblages
along the Transkei coast of South Africa. Campos-Vazquez et al. (1999}
likewise adopted the method to evaluate the level of disturbance created
by visitors in a Mexican marine park. ABC curves have also been used to
monitor the effects of physical trawling damage in a previously unfished
Scottish sea loch (Tuck et al. 1998] and to determine the effects of long-
term fishing disturbance on the structure of soft-sediment benthic as-
semblages (Kaiser et al. 2000). Warwick and Clarke {1994) add a note of
caution, however, and recommend that indications of disturbance
should be interpreted with care if the species involved are not poly-
chaetes. None the less, Penczak and Kruk (1999) were able to demon-
strate the effect of sewage on fish populations using ABC curves, though
the method was less effective at detecting heavily polluted Trinidadian
fish assemblages (Figure 5.8). Even when the technique effectively pin-
points stress it cannot shed light on the source. DelValls et al. (1998)
foundthat ABC curvescouldnotdistinguish between disturbancearising
fromorganic andinorganiccontamination, while Roth and Wilson {1998}
were unable to discriminate between natural and anthropogenic stress.

ABC plots examine the entire species abundance distribution. Inter-
pretation depends on visual inspection and is onerous if many sites or
samples are involved. Clarke (1990) has introduced a summary
statistic— W (after Warwick]:

W= z[505 1)

where B, = the biomass value of each species rank [i] in the ABC curve;
and A, =the abundance (individuals) value of each species rank (i).

A, and B, do not necessarily refer to the same species since species are
ranked separately for each abundance measure.

If the biomass curve is consistently above the individuals curve the
result will be positive. This signifies an undisturbed assemblage. In con-
trast, a negative value is suggestive of a grossly perturbed assemblage,
that is one in which the individuals curve is consistently above the bio-
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mass curve. Curves that overlap produce a value of W close to 0 and
imply moderate disturbance. W ranges from -1 to +1.

W statistics are computed separately for each sample. If treatments
have been replicated ANOVA can be used to test for significant differ-
ences. Alternatively, if unreplicated samples have been taken along a
transect or over a time series (such as before, during, and after a pollution
event) graphing W values can be a very effective way of illustrating shifts
in the composition of the assemblage. Roth and Wilson (1998) found
that W statistics were more useful than ABC curves at discriminating
samples.

Tokeshi [1993] lists a number of problems and wider issues relating to
the ABC approach. From a practical perspective the method is time con-
suming as two types of abundance data need to be collected. Since the
method is sensitive to slight variations in sampling protocol it is essen-
tial that sampling is both rigorous and standardized. Furthermore, it is
unclear from a theoretical perspective why pollution stress should result
in biomass being more evenly distributed than the number of individu-
als. Indeed, the terms “pollution stress” and “disturbance” tend to be
used rather loosely and considerably more research on the effects of dif-
ferent types of disturbance on assemblage structure is warranted.

Species abundance distributions

An alternative approach to monitoring impacted assemblages is to look
for shifts in the species abundance relationship. The traditional assump-
tion has been that undisturbed assemblages follow a log normal pattern
of species abundance and that thisis replaced, following perturbation, by
a less even geometric series distribution. As Chapter 2 pointed out, this
method is not as straightforward as it sounds since it is often difficult to
decide which model best describes a given data set. Kevan et al. (1997)
did, however, find that bee assemblages in Canadian blueberry fields de-
parted from log normality following pesticide stress. Tokeshi’s (1993) so-
lution, in situations where the log normal provides a less satisfactory
outcome, is to fit a geometric series model to each assemblage and
then to use the parameter k (or the slope of the regression of the rank/
abundance plot) to compare them. This appears to have considerable
merit (see also Chapter 2).

Dominance shifts

One typical outcome of environmental degradation is a loss of species
and an increase in dominance. To what extent are these an inevitable
consequence of one another? Together with Dawn Phillip of the Univer-
sity of the West Indies, I have been investigating the implications for
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Figure 5.9 Magurran and Phillip (2001b) compared the diversity of eight grossly polluted
fish assemblages in Trinidad (open diamonds) with the assemblages in 52 unperturbed
localities (closed circles). Three measures, all emphasizing the dominance/evenness
component of diversity, were used: (a) Berger—Parker; (b) the Simpson index; and (c)
Simpson evenness. In no case did we find that the polluted sites could be distinguished
from the unperturbed sites of equivalent richness. Solid regression lines depict

the unperturbedsites, broken lines the polluted ones. (ANCOVA Berger—Parker (d]

F, 54=1.29, P=0.26; Simpson (1/D| F, ;. =0.20, P=0.66; Simpson (evenness) F 54=2.24,
P=0.14}. Redrawn with permission from Magurran & Phillip 2001b.)

freshwater fish diversity in Trinidad of organic and inorganic pollution
{Magurran & Phillip 2001b). Ninety localities, representing a stratified
sample of all major river habitats and drainages, were surveyed (Phillip
1998). Eight samples were from sites where the water was heavily pollut-
ed. A further 52 were from localities categorized as unperturbed. We
found a significant reduction in the species richness of the heavily pol-
luted sites, but could not distinguish them, using a variety of diversity
measures, from unpolluted sites of equivalent richness (Figure 5.9). The
congruence in the structure of sites that are naturally species poor and
those that have lost species as a result of anthropogenic disturbance
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means that high dominance is not necessarily evidence of impairment.
Heterogeneity measures therefore need to be applied with care and are
probably only useful if benchmark data, showing the structure of unper-
turbed control sites, are available. Indeed, given the covariance between
richness and dominance a reliable estimate of species number—with
appropriate control data—is likely to be the most meaningful guide
to ecosystem health.

The literature largely reinforces this conclusion. Garcia-Criado et al.
(1999), Kevan et al. (1997), Lydy et al. (2000), Olsgard and Gray (1995),
and Scarsbrook et al. (2000), for example, found diversity measures of
limited utility. The failings of the Shannon index are particularly high-
lighted by these studies. Karydis and Tsirtsis (1996} showed that species
richness provided one of the most effective means of distinguishing olig-
otrophic, mesotrophic, and eutrophic water. Olsgard and Gray (1995)
concluded that multivariate analysis provided better insights into the
effects of oil and gas exploration on benthic communities on Norway’s
continental shelf. There are fewer investigations providing support for
heterogeneity measures. Gyedu-Ababio et al. (1999] and Spurgeon and
Hopkin {1999) are two exceptions. A number of these studies have also
sought potential indicator species. Several candidate species emerged
but it seems unlikely that there are any universal indicators (Olsgard &
Gray 1995).

Indices of biotic integrity

Another method thatis gaining popularity in environmental assessment
is the index of biotic integrity (IBI) (Karr & Chu 1998; Harris & Silveira
- 1999; Karr 1999). This has been devised to assess the biological quality of
various freshwater habitats. An IBI is a measure that integrates several
different variables (or “metrics”}, some of which incorporate aspects of
diversity. Harris and Silveira (1999) describe an IBI developed for fish in
southeastern Australian rivers. It is based on 12 metrics, including: total
number of native species; percent native species; number of individuals
in samples; and proportion of individuals with abnormalities. The troph-
ic composition of the fauna is also factored in. Each metric is given a
scoreof 1,3, or 5 with a higher value reflecting a “healthier” system. The
expectations for each metric are adjusted for the region and stream size.
The IBI is calculated by summing the scores assigned to the 12 metrics.
The total value is used to categorize sites. For example, scores of 58-60
mean that a river is in excellent health, while a value of 12-22 indicates
that it is in very poor condition. Despite an element of circularity, and
the inclusion of the same data in different forms, the IBI approach seems
promising (Karr & Chu 1998), as investigations of fish assemblages in
France (Belliard et al. 1999) and in the USA (Kelly 1999; Stauffer et al.
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2000) reveal. None the less, Liang and Menzel’s {1997) observation
that an IBI provides more consistent results than the Shannon index is
hardly a ringing endorsement of the method. Fore et al. {1996} conclude
that the IBlapproach incorporates more biological information than con-
ventional multivariate approaches. This advantage must be weighed
against the extensive background information required to assign appro-
priate scores to the various metrics in the first place. As a result IBIs
arenot easy to apply to poorly studied habitats. In addition, although IBIs
are constructed using components of biological diversity, they are not
intended to be measures of diversity. If the goal is to evaluate changes in
diversity, IBIs can supplement conventional approaches but are unlikely
toreplace them. Since IBIs rely on an accurate census of species richness,
this most fundamental measure of biological diversity will automatical-
ly be available.

Other integrated approaches have been proposed. For instance, Kitsiou
and Karydis (2000) sought to develop a procedure for investigating
eutrophication in marine systems. Their approach incorporated seven
measures including S, N, and the Margalef, Menhinick, and Shannon in-
dices. A eutrophication scale was developed for each index. These values
were mapped and the seven different maps synthesized to produce a
summary map depicting the spatial distribution of eutrophication in
the Saronicos Gulf, in Greece. Although Kitsiou and Karydis (2000)
found that their approach produced useful results, the difficulty of inter-
preting combined diversity measures, in conjunction with the inevitable
complications of sample size, means that it is likely to be of limited
application.

Summary

1 Investigations of biological diversity are implicitly or explicitly com-
parative. It is therefore essential that comparisons are meaningful. For
example, standardizing by the number of individuals collected and
standardizing by area or sampling effort, can lead to different conclu-
sions regarding species richness.

2 The benefits of adopting a standard sample size are discussed. How-
ever, sampling must be sufficient to adequately characterize the richest
assemblage. As a general rule it is better to have a number of small sam-
ples than a single large one. Nonparametric species richness estimators
can be used to check for undersampling bias. Although a variety of meth-
ods can be used to measure abundance, the number of individuals and
biomass are the most common metrics. Biomass is thought to most
closely reflect niche apportionment.

3 Techniques for making statistical comparisons of assemblages are dis-
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cussed. Comparisons based on species richness are vulnerable to sample
size bias. Rarefaction is a useful technique for overcoming this problem.
Different measures (or orders) of diversity can rank assemblages in dif-
ferent ways. Accordingly, the conclusion about whether one site is more
diverse than another can depend on the choice of diversity measure. The
Simpson index is recommended for its ability to consistently rank
assemblages when sample size varies.

4 Null models are being increasingly employed in diversity measure-
ment. Amongst other benefits they provide a useful way of deciding
whether observed differences between communities are genuine.

5 An important use of diversity measurement is in environmental
assessment. Key techniques, including ABC curves, taxonomic dis-
tinctness, and indices of biotic integrity are evaluated.



chapter six
Diversity in space (and time)'

So far this book has focused on what is generally termed o diversity, in
other words the diversity of a defined assemblage or habitat.2 However,
from a broader perspective, across a sweep of several assemblages, it is
clear that diversity will increase as the similarity in species composition
decreases. In other words, a landscape comprised of 10 assemblages each
with 10 species, but with no overlap in species identity, will be more
diverse than an equivalent landscape in which the assemblages are
equally speciose but where many species are shared. This observation
led Whittaker {1960) to make the distinction between o and B diversity
(Figure 6.1). o diversity is the property of a defined spatial unit, while B
diversity reflects biotic change or species replacement. In essence then, B
diversity is ameasure of the extent to which the diversity of two or more
spatial units differs. Whittaker (1960 originally conceived B diversity as
a measure of the change in diversity between samples along transects or
across environmental gradients but there is no reason why the concept
cannot be applied to different spatial configurations of sampling units.
Indeed, the same approach can be used to examine changes in diversity
over time. Temporal changes in diversity are usually referred to as
“turnover,” although the term may be applied to spatial changes as well.

A moment’s reflection will reveal that the relationship between a
and B diversity is scale dependent. Accordingly, an increase in the size of

1 After Rosenzweig(1995).

2 Methods of measuring o diversity are described in Chapters 2-4. The log series index o is one mea-
sure of a diversity and it is no coincidence that these measures have been identified by the same Greek
letter since Whittaker’s (1960, p. 321} original paper on the topic, which described how B diversity canbe
calculated using Fisher’s a statistic.



Diversity in space (and time) 163

30 o - 0.8
- 0.7
20 - 0.6
g5 -o5 §
3 2
10 - 0.4
5

. I.- ) .|... T . I.. . ....I A 0.2
670 1,070 1,370 1,680 1,920 2,140
Elevation {m)

Figure 6.1 Changes in a diversity and B diversity with elevation in the Siskiyou
Mountains of Oregon and California. Bars indicate the o diversity [as species richness)

of trees at six elevations: 460-670m, 670-1,070m, 1,070-1,370m, 1,370-1,680m, 1,680~
1,920m, and 1,920-2,140m. The turnover diversity {B diversity} between adjacent
samples is superimposed on this plot [diamonds). f diversity is measured as the 1 —Jaccard
index [see text for further details). (Raw data from table 12, Whittaker 1960.)

the sampling unit relative to the boundaries of the study area will typi-
cally result in an increase in o diversity —particularly if measures
weighted by species richness are used to describe it. This point was
discussed in Chapters 3 and 5. Estimates of B diversity can also vary
with scale, even when measures apparently independent of species
richness are used; Figure 6.2 provides an example. Whittaker (1972) rec-
ognized this difficulty and devised terms to accommodate the hierarchy
of scales across which diversity can be described (Table 6.1). Inventory
diversity, in other words the diversity of defined geographic units, can
be measured at different levels of resolution. Under this scheme point
diversity is the diversity of a single sample, whereas o diversity is the
diversity of a set of samples (or within-habitat diversity). y (gamma) di-
versity represents the diversity of a landscape and € (epsilon) diversity
the diversity of a biogeographic province. These levels of inventory di-
versity are matched by corresponding categories of differentiation diver-
sity. Pattern diversity describes the variation in the diversity of samples
(point diversity) taken within a relatively homogenous habitat (or area
of a diversity). B diversity is a measure of between-habitat diversity,
while § (delta) diversity is defined as the change in species composition
(and abundance) that occurs between units of ydiversity within an area of
e diversity.
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Figure 6.2 a diversity characteristically increases with area sampled. (a) The mean (+95%
confidence limits) species richness of birds in Fife, Scotland, at two levels of resolution;
25km? (n=100)and 250km? [n = 10}. B diversity, in contrast, declines as the size of the
sampling unit increases. (b) The median B diversity (plus interquartile range} calculated
for pairwise comparisons between the 25 km? samples and between the 250 km? samples
of Fife. Samples within each level of resolution are nonoverlapping. B diversity is
measured as the 1-Jaccard index. [Data courtesy of Fife Nature. |

Table 6.1 Categories of inventory and differentiation diversity in relation to scale of
investigation (after Whittaker 1972).

Scale Inventory diversity Differentiation diversity
Within sample Point diversity

Between samples, within habitat Pattern diversity
Within habitat o diversity

Between habitats, within landscape B diversity

Within landscape ydiversity

Between landscapes . S diversity

Within biogeographic province € diversity

In principle, each level of inventory diversity can be measured using
any of the methods described in Chapters 2—4; in practice, the larger the
scale of the investigation, the less easy it becomes to measure species
abundances and the more likely it is that species richness or higher taxon
diversity will be used. Differentiation diversity requires a different set of
techniques. These are described below.

Although Whittaker’s sevenfold scheme appears to cover all eventual-
ities, there is considerable inconsistency in how it is applied. For in-
stance, Rosenzweig (1995) uses the term point diversity to refer to what
other workers have called a diversity (Gray 2000), while Harrison et al.’s
(1992] units of a diversity are 50 x 50 km squares in mainland Britain. In
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addition, terminology devised for terrestrial environments may not be
easily transferable to marine ones (Steele 1985}; alandscape is something
that can be recognized on land much more readily than in the sea (Gray
2000).

There is also disagreement about the extent to which the scales of
diversity should embrace ecologically coherent entities. Pielou (1976}
and Loreau (2000) envisage o diversity as the property of a community,
though, as noted earlier [Underwood 1986; Gray 2000; see also Chapter
1), there is considerable debate about exactly what constitutes a com-
munity. Substituting the term assemblage helps set the taxonomic, if
not the geographic, limits. Following Whittaker {1960), I (Magurran
1988} equated o diversity with within-habitat diversity. Of course, delin-
eating a habitat is not necessarily straightforward either, but at least
habitats are generally identifiable on the basis of their physical charac-
teristics and usually have recognizable boundaries. Other investigators
have made no assumptions about ecological coherence and have mea-
sured the a diversity of predefined spatial units. Grid squares of varying
sizes are a common approach (see, for example, Harrison et al. 1992;
Lennon et al. 2001). Similar imprecision applies to ydiversity. Although
it is recognized that y diversity occurs at a larger scale than o diversity,
and is more heterogenous, there is no consensus about just how large a
landscape or region is involved. Whittaker’s final category, € diversity, is
rarely used.

This confusion prompted Gray (2000) to propose a unifying terminol-
ogy. He advocates the recognition of four scales of species richness: point
species richness, sample species richness, large area species richness,
and biogeographic province species richness. These are distinguished
from habitat species richness and assemblage species richness since
neither habitats nor assemblages fit neatly into a logical progression of
increasing scale. Table 6.2 provides details. Although Gray describes
these scales in the context of species richness, other heterogeneity diver-

Table 6.2 Unifying terminology for scales of diversity as proposed by Gray (2000].

Definition
Scale of species richness
Point species richness: SR, ‘ The species richness of a single sampling unit
Sample species richness: SR % The species richness of a number of sampling units
from a site of a defined area
Large area species richness: SR, The species richness of a large area that includes o
variety of habitats and assemblages
Biogeographic province species The species richness of a biogeographic province
richness: SR,
Type of species richness
Habitat species richness: SR, The species richness of a defined habitat

Assemblage species richness: SR, The species richness of a defined assemblage
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sity measures are acceptable —if less practical at larger scales. Further-
more, since B diversity is not a scale of diversity, Gray recommends, fol-
lowing Clarke and Lidgard {2000}, that the term turnover diversity be
substituted. Other authors have also used the word turnover in lieu of B
diversity. As noted above, one potential source of confusion is that
turnover is often assumed to refer to temporal variation in species com-
position and diversity, whereas B diversity is almost invariably applied to
spatial patterns.

The advantage of Gray’s approach is that it forces the user to think
clearly about, and report, the scales of the investigation. It should also
foster comparability within disciplines with standard sampling tech-
niques. However, the terms o, B, and y diversity are well entrenched in
the ecological literature and will probably persist for the foreseeable
future. This will not necessarily impede progress, for, as Loreau (2000)
has noted, scales of diversity are not discrete entities but rather inter-
grade along a continuum. Indeed, it can be illuminating to examine the
relationship between a and B diversity at different scales. This conclu-
sion follows from Lande’s {1996) observation that inventory and differ-
entiation diversity can be partitioned:

D,=D,+D,

When species richness is used to measure o and y diversity, p diversity
may be estimated as follows:

Dy =S¢ _§i =qu(ST _Si)
]

where S, =speciesrichnessof the landscape (ydiversity); S ;=therichness
of assemblage j; and g, =the proportional weight of assemblage jbased on
its sample size or importance.

The method can also be adapted for the Shannon and Simpson diver-
sity measures; Lande (1996) explains how this is done.

Lande’s (1996} approach, in which the average value of o diversity is
added to the B diversity to produce ydiversity, contrasts with Whittaker’s
(1972) method (see below) where a diversity and B diversity are multi-
plied. One advantage of Lande’s additive partition is that it can be applied
across different scales. The relative contributions of o and B diversity to
landscape diversity are also clearly identified. Many small sampling
units will result in low o and high B diversity, while the converse will
hold if there are fewer but larger samples. Both sampling strategies, all
other things being equal, lead to the same inferences about y diversity.
Moreover, if identical sampling protocols are applied to different land-
scapes, insights into the relative contribution of o and B diversity to v



Diversity in space (and time) 167

diversity are possible. B diversity will increase in heterogeneous land-
scapes, in which few species are shared by sampling units, and decline in
homogenous ones where the species’ composition of sampling units is
identical (Figure 6.3).

Measuring B diversity

There are a variety of methods of measuring B diversity. These fall
roughly into three categories. The first set of measures examine the ex-
tent of the difference between two or more areas of o diversity relative to
v diversity, where v diversity is usually measured as total species rich-
ness. Whittaker’s original measure, By, is part of this group, as is Lande’s
partition method, described above. These measures were often explicit-
ly proposed as measures of B diversity. The second set focus on the differ-
ences in species composition amongst areas of o diversity and were
formulated as measures of complementarity or similarity/dissimilarity.
They include the Jaccard and Bray-Curtis coefficients and evaluate the
biotic distinctness of assemblages. Such analysis need not be restricted
to species identities; some B diversity measures, like the new generation
of o diversity measures, take phylogenetic information into account
{Izsak & Price 2001). Indeed the difference between assemblages in taxo-
nomic distinctness A* and/or variation in taxonomic distinctness A*
(Clarke & Warwick 2001b; Warwick & Clarke 2001; see also Chapter 4)
could be treated as a measure of B diversity. The final group of measures
exploit the species—area relationship and measure turnover related to
species accumulation with area (Harte et al. 1999b; Lennon et al. 2001;
Ricotta et al. 2002). As Lennon et al. {2001) observe, the slope z in the re-
lationship between log(S) and log(A), or the slope m in the relationship
between S and log(A), can reasonably be considered as a measure of
turnover if areas are nested subsets.

Indices of B diversity®

The majority of these indices use presence/absence data and as such
focus on the species richness element of diversity.

Whittaker’s measure B,

One of the simplest, and most effective, measures of B diversity was
devised by Whittaker (1960):

3 Species diversity and richness will calculate most of these indices
[http://www.irchouse.demon.co.uk/).
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Figure 6.3 The effect of sample size on the relationship between o and B diversity. Both
graphs represent an area of ydiversity that supports 16 species. In each case it is surveyed
completely using either 16, 8, 4, 2, or 1 samples. The proportion of ydiversity attributable
to B diversity declines as fewer (but larger] sampling units are adopted. o diversity
converges on ydiversity when a single sample is used. B diversity also reduces as the
compositional similarity of the sampling units increases. In (a) each of the 16 smallest
sampling units contains a unique species, whereas in (b] there is some overlap (Jaccard

index=0.16).
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szS/a

where S = the total number of species recorded in the system (i.e., ¥
diversity); and a = the average sample diversity, where each sample is
a standard size and diversity is measured as species richness. This is
equivalent to:

Dy =$¢/$;

in Lande’s notation.

When Whittaker’s measure is used to compute By, between pairs of
samples or adjacent quadrats along a transect, values of the measure will
range from 1 (complete similarity] to 2 (no overlap in species composi-
tion). {The maximum possible value is the same as the number of sam-
ples used to calculate mean o diversity.) Subtracting 1 from the answer
has the effect of putting the result on the 0 (minimum B diversity] to 1
(maximum B diversity) intuitively meaningful scale that many other
measures of B diversity use.

Harrison et al. (1992) introduced a modification of Whittaker’s
measure (see Worked example 9). This allows the user to compare two
transects (or samples) of different size:

B ={[(S/@)-1]/(N -1)} * 100

where S =the total number of species recorded; o.= mean o diversity; and
N = the number of sites (or grid squares) along a transect. The measure
ranges from O (no turnover) to 100 [every sample has a unique set of
species) and can be used to examine pairwise differentiation between
sites.* Since this measure (like Whittaker’s original measure) does not
distinguish between true species turnover along a transect or across a
landscape, nor does it identify situations where species are lost without
new species being added, Harrison et al. [1992) suggested a second modi-
fication which is insensitive to species richness trends:

Btz = {[(8/0tmar) ~11/(N - 1)} * 100

Here o, is the maximum within-taxon richness per sample. Lawton
et al. {1998) used By, to compare the turnover of various taxa in relation
to disturbance in a Cameroon forest.

4 Thave preserved the original formulation here but the user can, of course, adjust this and other mea-
sures to range between 0 and 1 as opposed to 0 and 100.
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Cody’s measure .

Cody (1975) was interested in the change in composition of bird commu-
nities along habitat gradients. His index, which is easy to calculate and is
a good measure of species turnover, simply adds the number of new
species encountered along a gradient to the number of species that are
lost.

g(H) +1(H)

Bc= )

where g(H) = the number of species gained; and J{H) = the number of
species lost.

Routledge’s measures By, B;, and B,

Routledge (1977) was concerned with how diversity measures can be
partitioned into o and B components. The following three measures are
derived from his work. His first index, By, takes overall species richness
and the degree of species overlap into consideration.

SZ
(2r+8)

BR=

where $ = the total number of species in all samples; and r = the number
of species pairs with overlapping distributions.

B, the second index, stems from information theory, and has been
simplified for presence/absence data and equal sample size by Wilson
and Shmida (1984):

B, =log T -[(1/T)Y e;loge,] - [(/T)Y. S, log ;]

where e;=the number of samples in the transect in which species i is pre-
sent; S;=the species richness of sample j; and T=ZXe, = S,
The third index, B, is simply the exponential form of B;:

Be =expB,

Wilson and Shmida’s index B

Wilson and Shmida (1984] proposed a new measure of B diversity. This
index has the same elements of species loss {I) and gain (g) that are present
in Cody’s measure, and the standardization by average sample richness
present in Whittaker’s measure.
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[s(H) + I(H)]

25,

BT=

Evaluation of the six measures of B diversity

Wilson and Shmida chose four criteria to evaluate these six measures of
B diversity. These criteria were: number of community (assemblage)
changes; additivity; independence from a diversity; and independence
from excessive sampling. The degree to which each index measured
community turnover was tested by calculating the B diversity of two
hypothetical gradients, one of which was homogenous, that is the same
species were present throughout its length, and one of which consisted of
distinct communities with no overlap. Whittaker’s index By, accurately
reflected these extremes of community turnover. Br was more limited in
that it only adequately represented turnover in conditions where the o
diversity at both ends of the gradient was equal to average a diversity. By
and B were even more restricted in that they required constant species
richness. The remaining two measures P and B; showed no ability to
pick up turnover.

Theirsecond criterion was additivity, that is the ability of ameasure to
give the same value of B diversity whether it is calculated using the two
ends of a gradient or from the sum of B diversities obtained within the
gradient. For instance, given three sampling points (a, b, and c), B(a,c]
should equal B(a,b) + B(b,c). Only one index, B, was completely additive.

Independence from adiversity, the third property, was examined using
two hypothetical gradients that were identical except that one had twice
as many species as the other. B alone failed this test. Without this inde-
pendence it is difficult to compare B diversity in species-rich and species-
poor assemblages.

The final criterion, independence from sample size, was tested by
increasing the number of (identical samples) taken at each site. All
measures apart from those derived from information theory (B; and B)
were found to be unaffected by this.

Out of the six measures tested by Wilson and Shmida, By, emerged as
fulfilling most criteria with fewest restrictions, showing that the oldest
techniques are sometimes the best. Wilson and Shmida’s own index, By,
came a close second. A more recent evaluation (Gray 2000) came to a
similar conclusion: “these two measures” noted Gray “are currently the
best measures of turnover diversity.” Because the Harrison et al. {1992)
methods are an improvement on Whittaker’s formulation they too merit
serious consideration.
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Table 6.3 Complementarity. Twosites, 1 and 5, together conserve all seven species in the
assemblage.

Speciesa | Speciesb | Speciesc | Speciesd | Speciese Species f
Site 1 x x x
Site 2 x x X
Site 3 x x X
Site 4 x X
Site 5 X X x x

Indices of complementarity and similarity

The term complementarity, which was introduced by Vane-Wright et al.
(1991], describes the difference between sites in terms of the species they
support. The concept is primarily directed towards conservation plan-
ning. Complementarity algorithms are used to select a suite of reserves
that together preserve the maximum number of species (Pimm &
Lawton 1998; van Jaarsveld et al. 1998). Table 6.3 provides a hypothetical
example. There are a number of potential difficulties with the applica-
tion of these algorithms (Prendergast et al. 1999], but a new generation of
methods, that take account of turnover in time as well as in space, look
promising (Rodrigues et al. 2000).

Complementarity is, of course, B diversity by another name—the
more complementary two sites are, the higher their B diversity.
Measures typically combine three variables: a, the total number of
species presentin both quadrats or samples; b, the number of species pre-
sent only in quadrat 1; and ¢, the number of species present only in
quadrat 2. This terminology follows Pielou (1984).

One of the easiest, and most intuitive, methods of describing the B
diversity of pairs of sites is to use a similarity/dissimilarity coefficient.
Given their utility in ordination and phylogenetic reconstruction, a vast
number of such measures exist (Legendre & Legendre 1983; Pielou 1984;
Southwood & Henderson 2000). However, for the purposes of measuring
B diversity some of the oldest coefficients are also the most useful.
Following Pielou (1984), Colwell and Coddington {1994) recommend the
Marczewski-Steinhaus (MS) distance as a measure of complementarity
(see Worked example 9).

a
Cops =1 - ———
MS a+b+c

This measure is in fact the complement of the familiar Jaccard (1908)
similarity index:
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_a
I a+b+c

As suggested by Pielou (see Colwell & Coddington 1994), the statistic
can also be adapted to give a single measure of complementarity across a
set of samples or along a transect:

U.
CT _ Zn ik

where U, =§,+8; —2V, and is summed across all pairs of samples; V,; =
the number of species common to the two lists j and k (the same value as
a in the formulae above); §; and §; = the number of species in samples j
and k, respectively; and n=the number of samples.

When n is large, C approaches a value of nS/4. S1 is the species rich-
ness of all samples combined.

The Marczewski-Steinhaus dissimilarity measure (and thus the com-
plement of the Jaccard similiarity measure] is what is known as a metric
(as opposed to a nonmetric) measure. This means that it satisfies certain
geometric requirements. The important consequence from the user’s
perspective is that it can, therefore, be treated as a distance measure and
can be used in ordination (Pielou 1984).

Another popular similarity measure was devised by Serensen (1948):

2a

Cs = 2a+b+c

Serensen’s measure is regarded as one of the most effective presence/
absence similarity measures (Southwood & Henderson 2000). It is
identical to the Bray-Curtis presence/absence coefficient.

Lennon et al. (2001) note that if samples differ markedly in terms of
species richness the Sgrensen measure will always be large. They intro-
duce a new turnover measure B_; _, that focuses more precisely on differ-
ences in composition:

sim/

a
Puim =1- [a +min(b,c)]

Thisis related to a measure derived by Simpson (1943]. Any difference in
species richness inflates either b or c¢. The consequence of using the
smallest of these values in the denominator is thus to reduce the impact
of any imbalance in species richness. Lennon et al. (2001) find that this
measure performs well.
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One of the great advantages of these measures is their simplicity —
they are easy to calculate and interpret. However, this virtue is also a dis-
advantage in the sense that the coefficients take no account of the
relative abundance of species. As with richness measures of o diversity, a
species that dominates an assemblage carries no more weight in a pres-
ence/absence B diversity measure than one represented by a singleton.
This consideration has led to the development of similarity/dissimi-
larity measures based on quantitative data. Bray and Curtis (1957 intro-
duced a modified version of the Serensen index. Thisis sometimes called
the Serensen quantitative index (Magurran 1988 [see Worked example
9):

c - N
N (Na+Nb)

where N, =the total number of individuals in site A; N = the total num-
ber of individuals in site B; and 2jN = the sum of the lower of the two
abundances for species found in both sites.

For example, if 12 individuals of a species were found in site A, and 29
individuals of the same species were found in site B, the value 12 would
be included in the summation to produce jN. The Bray-Curtis index is
widely used (see, for example, Thrush et al. 2001; Burd 2002; Ellingsen &
Gray 2002). Clarke and Warwick (2001a) conclude that the measure is a
particularly suitable one. They tested the index using six criteria: (i) the
value should be 1 {or 100) when two samples are identical; (ii) the value
should be 0 when samples have no species in common; (iii} a change of
measurement unit does not affect the value of the index; (iv) the value is
unchanged by the inclusion or exclusion of a species that occurs in nei-
ther sample; (v) the inclusion of a third sample makes no difference to the
similarity of the initial pair of samples; and (vi) the index reflects differ-
ences in total abundance [and not just relative abundance). Although
most coefficients satisfy the first three criteria the Bray—Curtis index is
one of the few to meet them all (Clarke & Warwick 2001a).> Faith et al.
(1987) also conclude that this is a particularly satisfactory measure.

Wolda (1981) investigated a range of quantitative similarity indices
and found that all but one, the Morisita-Horn index,® were strongly
influenced by species richness and sample size. A disadvantage of the
Morisita-Horn index (MH)} is that it is highly sensitive to the abundance
of the most abundant species. Nevertheless, Wolda [1983] successfully

5 The Bray—Curtis coefficient is included in the PRIMER package (http://www.pml.ac.uk/primer/).
6 The Jaccard, Serensen, and Serensen quantitative (Bray-Curtis) and Morisita-Horn indices of
sample similarity are included in the Estimate$S package (http://viceroy.eeb.uconn.edu/EstimateS).
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used a modified version of the index to measure B diversity in tropical
cockroach assemblages (see Worked example 9).

22 (aj ’bi)

Ot =1, d,)+ (N, * )

where N '= the total number of individuals at site A; N} = the total num-
ber of individuals at site B; a; = the number of individuals in the ith
species in A; b, = the number of individuals in the ith species in B; and d,,
(and d;) are calculated as follows:

Y

a 2
Na

The Morisita-Horn measure is widely used (see, for example, Green
1999; Arnold et al. 2001; Williams-Linera 2002). Southwood and
Henderson (2000) provide a version of Morisita’s original index that is
suitable for easy computation. A further simple measure is percentage
similarity (Southwood & Henderson 2000; after Whittaker 1952):

S
P =100—0-52|Pai —Pbi|

i=1

where P, and Py, = the percentage abundances of species i in samples a
andb, respectively; and S =the total number of species.

« Smith (1986) carried out an extensive evaluation of similarity mea-
sures using data from the Rothamsted Insect Survey [Taylor 1986).
Qualitative and quantitative techniques were included. Smith conclud-
ed that the presence/absence (qualitative) indices were generally unsat-
isfactory. Of those tested, the best proved to be the Serensen index. The
large number of quantitative similarity measures made selection diffi-
cult and Smith advised that the choice of index for any particular study
would depend on the aims of the investigation and the form of the
data. However, she did conclude (like Wolda 1981) that versions of the
Morisita-Horn index are among the most satisfactory available. Many
other similarity measures are discussed by Legendre and Legendre
(1998). :

Clarke and Warwick (2001a) note that quantitative measures can
be unduly influenced by the abundance of the most dominant species.
Their solution is to transform the raw data. They recommend either
the root transform Vx, or where a more severe correction is required, the
double root transform VVx. An alternative method, similar in effect to
\Wx, is log[x + 1). Of course the ultimate transform is to allocate every
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species an abundance of 1, which has the result of changing a quantita-
tive measure into a presence/absence one.

Estimating the true number of shared species

The foregoing measures make the assumption that the sites that are
being compared have been completely censused. This book has
repeatedly highlighted the difficulty of achieving this. Colwell and
Coddington {1994) note that, for statistical reasons, complementarity is
more likely to be overestimated between rich samples than between
species-poor ones unless samplingeffort is sufficiently large throughout,
or has been proportionally increased for the rich sites. Fortunately Anne
Chao and her colleagues (Chao et al. 2000) are developing new tech-
niques to estimate the number of species that two communities have in
common. Their approach is based on the coverage estimator ACE (re-
viewed in Chapter 3). The shared species estimator, V,” requires abun-
dance data. Like ACE, V assumes that rare species (those with <10
individuals) contain the most information about the true similarity in
the composition of two assemblages. Accordingly, the number of rare
shared species is used to estimate the number of unobserved shared
species (Chao et al. 2000). The number of abundant shared speciesis then
added to this. Confidence limits may be attached. Simulations reveal
that the true number of shared species may be severely underestimated
in samples (Chao et al. 2000). Empirical studies confirm this conclusion.
Chao et al. [2000]) examined bird assemblages in two Taiwanese estuar-
ies: Ke-Yar estuary had 155 species and Chung-Kang estuary had 140
species. Some 111 bird species were recorded in both areas. The estimate
of the number of shared species was 134. This was derived from 90 abun-
dant shared species (those observed more than 10 times in one or both
areas) plus a correction factor of 44 (based on the rare, shared species|. In
other words it appeared that the survey had failed to discover a further 23
shared species.

Ghazoul (2002) wished to determine the impact of logging on the rich-
ness and diversity of forest butterflies in a tropical dry forest in Thailand.
Three areas of forest were examined: undisturbed, moderately disturbed,
anddisturbed. In each case butterflies were surveyed along twenty 500 m
transects. Figure 6.4 shows the rank/abundance plots for the pooled re-
sults from eachsite. Although observed speciesrichnessis virtually iden-
tical (39, 40, and 37, respectively), these plots suggest that an increase in
disturbance is associated with greater dominance. Various statistics (see

7 R.K. Colwell’s EstimateS software (http://viceroy.eeb.uconn.edu/EstimateS) will calculate V. The
user’s guide contains details of the method.
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Figure 6.4 Rank/abundance plots illustrating butterfly diversity of “undisturbed,”
“moderately disturbed,” and “disturbed” plots in a tropical dry forest in Thailand. The Q
statistic for these plots is 13.1, 10.0, and 8.1, respectively, indicating a trend towards
lower diversity with greater impact. (Data from table 3, Ghazoul 2002..|

also Figure 6.4 caption) support this conclusion. Ghazoul (2002) was also
interested in how species were shared amongst the sites and used a Venn
diagram to illustrate the pattern of species overlap. As Figure 6.5 reveals,
Venndiagrams are an effective and intuitive method of representing com-
plementarity when three (or even four] sites are involved. However, they
are as vulnerable as any other method to underestimates in the number
of species shared by different localities. Reassuringly, Chao et al.’s {2000)
technique confirms that Ghazoul’s (2002) sampling protocol did produce
arobust estimate. The estimated species richness (using ACE) matched
the observed levels very closely (undisturbed: 39 observed, 39 expected;
moderately disturbed: 40 observed, 42 expected; disturbed: 37 observed,
40 expected). Moreover, the observed and estimated shared species were
alsoalmostidentical [Table 6.4).8

B diversity and scale: practical implications

As the introduction to this chapter observed, most measures of B diver-
sity are sensitive to scale. In other words, turnover decreases as progres-

8 Calculations used EstimateS software.
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Figure 6.5 Species overlap among the butterfly assemblages in “undisturbed,”
“moderately disturbed,” and “disturbed” sites in tropical dry forest in Thailand.
(Redrawn with kind permission of the author and Kluwer Academic Publishers from
fig. 5, Ghazoul 2002.)

J

Table 6.4 The observed shared species in forest butterflies in a tropical dry forest in
Thailand (Ghazoul 2002} in relation to estimated shared species, following Chao et al.’s
{2000) method.

Observed shared species
Moderately
Undisturbed disturbed Disturbed
Estimated Undisturbed 29 29
shared Moderately 29 31
species disturbed
Disturbed 29 33

sively larger areas are investigated. Accordingly, comparisons between
investigations that examine turnover on different scales can be difficult.
However, as Lennon et al. {2001} point out, the mean number of species
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gained and lost between assemblages is independent of scale. As they
explain, this isa consequence of the species-arearelationship. The semi-
logarithmic species-area relationship (S versus log(A)] assumes that the
difference in species richness between larger and smaller quadrats is con-
stant. Moreover, Lennon et al. {2001) note that, in their investigation of
British birds, local richness gradients have a major impact on estimates
of Bdiversity. For example, greater turnover is observed in localities with
low species richness. (R. K. Colwell (personal communication) points
out that tropical plant communities show exactly the opposite pattern.)
Lennonet al.’s(2001) result may be because depauperate assemblages are
more likely to be random mixtures of species than rich assemblages are.
The negative relationship that they detected between richness and turn-
over islikely to diminish or vanish altogether at regional scales since the
ranges of many species will be contained within a single sample. A
further consideration is that undersampling diverse habitats —for exam-
ple by selecting a constant number of individuals in sites with different
richness —can miss rare species and underestimate turnover (Colwell &
Coddington 1994]. Since most practitioners measure B diversity at local
scales it is important to be aware of the inherent biases involved. Reserve
selection algorithms also need to take account of these factors.

Comparing communities

Assuming that the correct number of shared species has been enumer-
ated or estimated, and that scaling issues and richness gradients have
been dealt with, how might an investigator make comparisons amongst
communities in terms of the level of B diversity? Several graphic and sta-
tistical options are presented below.

Cluster analysis is a very simple, and intuitively meaningful, method
of representing differences amongst samples and communities. Similar-
ity or distance measures are used to measure the distance (based on
species composition| between all pairs of sites. Either presence/absence
or quantitative data can be used. The two most similar sites are com-
bined to form a single cluster. The analysis proceeds by successively
clustering similar sites until a single dendrogram is constructed (Figure
6.6). There are a variety of techniques for deciding how sites should be
joined into clusters and how clusters should be combined with each
other (for an introduction to the subject see Pielou 1984; Southwood
& Henderson 2000). Many packages (including Species Diversity and
Richness and priMER] can be employed for this purpose. Sites or samples
that cluster together are revealed as being more similar to one another.
Depending on the method used, the distance between nodes on the
dendrogram may represent f diversity. Bootstrap values may also be at-
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Figure 6.6 A dendrogram showing the similarity between moth species at three sites in
an Irish oakwood, and at two sites in an adjacent conifer plantation. The cluster analysis
was carried out using Jaccard’s similarity coefficient. B diversity is greatest between the
woodland types. [Redrawn with kind permission of Kluwer Academic Publishers from
fig. 5.8, Magurran 1988.] b

tached to dendrograms. They indicate the robustness of the analysis,
that is the percentage of times a tree reconstructed using a resampling
algorithm would exhibit the same branching pattern. Alternatively, or-
dination can be used to describe the relationship between a set of sam-
ples or localities based on their attributes (the presence and relative
abundance of species found there). Principal components analysis is one
of the most widely used methods but there are a large range of other tech-
niques available (Southwood & Henderson 2000). Clarke and Warwick
(2001a) recommend nonmetric multidimensional scaling [MDS] for its
conceptual simplicity and its flexibility.

A second approach is to complete an analysis of similarities
(ANOSIM)] (Clarke & Green 1988). ANOSIM is a nonparametric test
applied to the rank similarity matrix. It uses a permutation procedure
following Mantel (1967} and tests the null hypothesis that there is no dif-
ference in community composition amongst sites. Significance levels
are generated using a randomization approach. The test can be per-
formed in a one-way design, where comparisons are made amongst x
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localities each with y replicates (Clarke & Green 1988). Clarke and
Warwick (2001a) point out that it is essential that pseudoreplication is
avoided. Alternatively, a two-way design, where sites have been allocat-
ed to treatments or categories on the basis of some a priori criterion such
as pollution level or habitat structure, can be used (for examples of
this method see Clarke 1993; Clarke & Warwick 1994). primER includes
these procedures.

Third, an investigator may contrast the observed pattern of B diversity
with some null expectation. Clarke and Lidgard (2000) examined the o,
B, and y diversity of bryozoans in the North Atlantic. Data were pooled
into bins of 10° of latitude. Interestingly, the study revealed higher B
diversity at lower latitudes, though the paucity of marine studies and
the pitfalls of comparisons with terrestrial systems make interpretation
of these results complex (see also Chapter 7). In an attempt to further ex-
plore B diversity in this system, Clarke and Lidgard (2000] constructed
two null models. The first model drew a set number of species at random
from a regional assemblage of 100 species. Jaccard coefficients were cal-
culated between all pairs of samples. The second model imposed a log
normal distribution on the regional species pool. Individuals were then
sampled (without replacement) until a predetermined number of species
had been recorded. In this log normal scenario the likelihood of a species
appearing in a given sample was a product of its abundance in the overall
distribution. Once again, pairwise Jaccard coefficients were produced.
Although this study did not formally compare the observed and expected
frequency distributions of coefficients (it was not one of the authors’
goals to do this), it is easy to see how such an approach could represent a
powerful test of empirical patterns of B diversity. Clarke and Lidgard
{2000) did, however, conclude that the species richness of assemblages
had important consequences for B diversity and that while the species
abundance distribution also has a strong influence on the results ob-
tained, the log normal distribution may not be the most appropriate
model for bryozoans.

Finally, the distributions of pairwise B diversity measures may be com-
pared directly. Magurran and Phillip (unpublished data) examined the
consequences for B diversity of pollution in freshwater fish assemblages
in Trinidad. We started with the observation that loss of B diversity is not
simply a consequence of compositional change —B diversity will also
decline if the species found in perturbed sites are consistently ranked
in order of abundance; that is if the same species tend to dominate im-
pacted assemblages with other species occurring at moderate or low
abundances. This is a reasonable assumption because some species may
be better at dealing with stressful conditions than others and experimen-
tal manipulations (Moran & Grant 1991; Tilman 1996} and field obser-
vations (Magurran & Phillip 2001b] reveal that impacted assemblages
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Figure 6.7 Frequency distributions of pairwise comparisons of B diversity between: {a)
unpolluted sites {n=52})in Trinidad, and (b) sites experiencing oil pollution {n=24). A
Kolmogorov-Smirnov two-sample test indicates that these distributions are significantly
different (D =0.281, P<0.01]. See text for further details.

converge in structure. Using water quality benchmarks developed for
South America, we divided sites into three categories: severely impacted
by oil pollution, moderately impacted, and unpolluted (A. E. Magurran &
D. A. T. Phillip, unpublished). We then calculated pairwise estimates of
the Morisita—-Horn index (since we are concerned with the relative rank-
ings of sites a quantitative measure is essential here). The median value
of B diversity is markedly lower for the polluted localities (0.47 versus
0.76). A Kolmogorov-Smirnov test confirms that the two distributions
are significantly different (Figure 6.7). Large differences in species rich-
ness between polluted and pristine sites could affect the result (Colwell
& Hurtt 1994; Lennon et al. 2001), but in this case patterns of species
richness were broadly similar. Furthermore, simulations using the ran-
dom fraction model confirm that, for constant species richness, greater
congruence in species rankings across assemblages leads to a reduction
in B diversity measured using the Morisita-Horn index.

Turnover in time
('l
Turnover, defined as “the number of species eliminated and replaced per
unit time” is the concept that lies at the heart of MacArthurand Wilson’s
(1967) theory of island biogeography. Like turnover in space it can be
measured in a variety of ways. Indeed, many of the methods presented
above can be used to describe the change in species composition over
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time. Percentage similarity between successive time periods is one com-
mon approach. The proportion of species not present in the previous year
is another (Nichols et al. 1998; Lekve et al. 2002). Brown and Kodric-
Brown (1977) defined turnover as:

_ b+c

t=
S +S,

where b = the number of species present only in the first census; ¢ = the
number of species present only in the second census; S, = the total num-
ber of species in the first census; and S, = the total number of species in
the second census.

Diamond and May (1977) observed that turnover rates will be influ-
enced by the length of time between censuses. They proposed:

_1+g
T S*ci

t

where ] = the number of species lost (extinct); g =the number of species
gained (immigrations); S = the total number of species present; and ci =
the census interval. :

In a similar vein, Preston (1960) pointed out that species—time curves
can be constructed in the same manner as species-area curves. The slope
of this relationship might therefore reasonably be assumed to reflect
turnover.

Mean turnover values can be computed and compared amongst locali-
ties (see, for example, Lekve et al. 2002) or turnover rates can be plotted
in relation to time (Russell et al. 1995). Of course temporal turnover is
just as vulnerable to biases related to sample size, species richness, and
incomplete inventories as spatial turnover is. Abbot (1983} advises that
the inclusion of migratory species in turnover estimates is “absurd.”
The same comment might equally be applied to investigations of o and
B diversity (spatial turnover) and, as we saw in Chapter 2, the temporal
status of species in an assemblage has implications for the shape of the
species abundance distribution.

Sepkoski [1988] completed an interesting analysis of o and B diversity
during the Palaeozoic. o diversity was estimated as the mean generic
diversity of marine macrofossils in a range of soft-bottom communities
(for example the peritidal and deep-water zones). The B diversity of these
zones was estimated using the Jaccard index. Global taxonomic diver-
sity increased by a factor of four during the Ordovician radiations (be-
tween the Cambrian and the later Palaeozoic). Some of this could be
attributed to a rise in o diversity. However, Sepkoski also concluded
that, as a result of increasing habitat specialization by taxa, B diversity
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increased by about 50% during the same period. Thus a and B diversity
jointly contribute to changes in diversity over evolutionary time. In-
deed, Sepkoski concludes that “hidden” sources of B diversity, such as
the expansion of new community types including bryozoan thickets and
crinoid gardens, are a major component of the rise in global taxonomic
richness. The interplay of a and B diversity over ecological, and evolu-
tionary, time is a topic that surely warrants much more consideration.

Summary

1 Bdiversity (or turnover) is a measure of the extent to which the diver-
sity of two or more spatial units differ in terms of their species com-
position. Complementarity, a concept widely applied in conservation
planning to help select reserves that together preserve the maximum
number of species, is a form of B diversity.

2 PBdiversity canbe measured in a variety of ways. These include tailored
measures such as Whittaker’s index, measures of similarity/dissimilar-
ity and complementarity, and the slope of species—area relationship.

3 ydiversity is the diversity (usually measured as species richness) of a
landscape or other large area. Following Lande, ydiversity can be treated
as mean o diversity plus B diversity. Thus, the larger the areas of o diver-
sity relative to y diversity, the smaller the contribution of B diversity to
overall diversity.

4 Estimates of B diversity are influenced by local richness gradients.
They may also be biased if the true number of shared species is unknown.
Methods for resolving this problem are discussed.

5 Turnover over time can be analyzed using similar approaches

/i



chapter seven
No prospect of anend'

The 2002 Johannesburg World Summit provided an important opportu-
nity to take stock of progress towards monitoring and conserving the
earth’s biological diversity. Unfortunately, the statistics are dishearten-
ing. Humankind is making an indelible mark on the planet. High rates of
deforestation in tropical forests (Wilson 1992; Skole & Tucker 1993) are
already causing concern but may underestimate the problem; logging
crews severely damage an additional 10,000-15,000 km? of forest in the
Brazilian Amazon per annum (Nepstad et al. 1999]. Our species con-
sumes between a quarter and a half of all terrestrial primary productivity
(Vitousek et al. 1986; May 2002). The projections for population growth
mean that human exploitation of natural resources is bound to increase,
probably significantly. Laudable aspirations for sustainable develop-
ment seem more difficult torealize than ever. Against thisonly 6% of the
earth’s surface has been set aside for conservation. Our knowledge of the
extent of the world’s biological diversity remains incomplete. The an-
swer to a question posed in 1988 —the year in which this book’s prede-
cessor appeared —“How many species are there on earth?” (May 1988) is
still uncertain to within an order of magnitude. No single data base of
species records yet exists (Chapter 3). Indeed, it is estimated that given
current rates of recording (about 10,000 new species per year) it will take
over 500 years to complete the global inventory of (eukaryote) species
(May 1999). In the meantime extinction continues apace and even the
IUCN’s definitive list of species loss? appears to represent a substantial
underestimate (Diamond 1989; May 2002). The 2002 World Summit’s

1 FromHutton (1788).
2 http://www.redlist.org.
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stated goal —toreduce the rate of biodiversity loss by 2010 —is a formida-
ble challenge.

These global issues may not seem to have a great deal to do with the
subject matter of this book and its focus on small- to medium-scale in-
vestigations of biological diversity. None the less, life on earth is distrib-
uted across a tapestry of communities. Deeper understanding of how
these communities are structured is essential if biologists are to produce
a more robust estimate of how many species exist on this planet—or at
least to narrow the confidence limits around the present best guesses.
Equally, effective conservation and environmental management de-
pends on good baseline data on biological diversity across a range of taxa
and at a variety of scales. Moreover, tallying the rate of biodiversity loss
in different habitats and communities requires a consensus on how bio-
diversity should be measured in the first place. Below I identify some
questions arising from the discussion in the earlier sections of the book
that can, in turn, be addressed using the methods set out there. I also con-
sider emerging themes and technologies that seem set to drive investiga-
tions of biological diversity and its measurement in the next decade and
beyond.

Some challenges

As Chapter 3 observed, one of the methods of estimating species number
at large geographic scales, including the entire planet, is to extrapolate
information collected at smaller scales. This can be done taxon by taxon
or by using occurrence ratios between two or more groups. For example,
Hawksworth (1991) observed that around six or seven fungal species are
associated with each plant species in the UK and used this figure to esti-
mate a global total of 1.5 million species of fungi (based on 270,000 plant
species recorded worldwide). However, scaling up exercises are ham-
pered by the fact that good data on suites of taxa exist for very few places,
and those that do exist are not necessarily representative of the world as
awhole (May 1999). Moreover, deducing trends in the diversity of species
at large geographic scales from patterns at small scales is not straightfor-
ward. There are two intertwining issues here.

First, as I noted in Chapter 1, most assays of biological diversity have
concentrated on single, usually narrowly defined, taxonomic groups.
There are sound practical reasons for doing this—Lawton et al.’s (1998)
inventory of a Cameroon forest makes plain the level of investment that
more ambitious investigations demand. However, the extent to which
the diversities of taxa covary, across a range of habitats and scales, de-
serves much greater attention. It would be instructive to further com-
pare the patterns of richness and abundance in groups that are typically
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well studied, such as butterflies and birds, with those that are not, in-
cluding most invertebrates. It is commonly assumed that charismatic
species are a surrogate for biological diversity as a whole. Indeed, arecent
investigation has uncovered significant taxonomic bias in the conserva-
tion literature with a preponderance of studies devoted to vertebrates —
69% of papers against 3% on species in nature (Clark & May 2002).
However, we already know that the relationship is complex (Negi &
Gadgil 2002). The presence of a “hotspot” of richness for one taxon is no
guarantee that other taxa will be unusually speciose in the same locality
(Prendergast et al. 1993). This “mismatch” is particularly evident in
small-scale investigations (see also Chapter 6]. For example, a classic
study revealed that bird species diversity in deciduous forests is predict-
ed by tree structural diversity rather than by tree species diversity
(MacArthur & MacArthur 1961). At larger scales major environmental
gradients, such as those of latitude and altitude, foster greater covariance
in taxon diversity. Yet even here, as Gaston (1996a) notes, there can be
marked differences amongst taxa in the relationship between richness
and environmental conditions. Ellingsen and Gray (2002), for instance,
found no evidence of a latitudinal gradient along the Norwegian conti-
nental shelf when they examined macrobenthos richness. Sampling arti-
facts and spatial autocorrelation can also lead to spurious conclusions
about the extent of covariance in richness, and mean that conservation
strategies designed for one group of species may not safeguard others
(Gaston 1996a). I suspect that more detailed investigation will uncover
some interesting and perhaps unexpected outcomes.

Second, as Chapter 2 observed, it is still unclear how species abun-
dancerelationships, for single taxa, are influenced by geographic scale (as
opposed to sampling effort). Are species abundance distributions of land-
scapes or regions typically log series, as Hubbell (2001] has asserted
(based on the point mutation model of speciation), or is the conventional
wisdom that the log normal is the default pattern correct (see Chapter 2
for details)? Intensive investigation of tropical invertebrate assemblages
(Longino et al. 2002) reveals that singleton species are much less
common than hitherto assumed, implying that an apparent log series
distribution may be replaced by a log normal once more detailed infor-
mation is available. Tokeshi (1993) proposed that the geometric series
will be evident in small-scale studies and that this will shift to the log se-
ries and ultimately the log normal as the scope of the investigation
broadens (Figure 7.1). Does this characteristic progression occur in a
range of taxa? If so, how does the transition relate to geographic scale, and
to the body size of the organisms involved? And why are log normal dis-
tributions so often log left-skewed? Some suggestions were discussed in
Chapter 2 but the issue deserves more attention. The recent observation
that the locations of hotspots of bird richness in Britain change with the
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Gegmetrlc . Log series
series

Log normol

Relative abundance

Species rank

Figure 7.1 The nested relationship between the geometric series, log series, and log
normal models. As the scale of the investigation increases the pattern of abundance is
expected to shift from the geometric series, through log series, to log normal. But does the
relationship between abundance distribution and scale vary amongst taxa, or in relation
to body size? (Redrawn with permission from Tokeshi 1993.)

resolution of the analysis (as it increases from areas of 10 x 10km to 90 x
90km) underlines the importance of addressing spatial scale (Lennon et
al. 2001). Many of these issues fall within the domain of macroecology,
authoritatively mapped out by Brown (1995) and Gaston and Blackburn
(2000).

Spatial issues are currently the focus of considerable research activity.
In contrast, with the exception of successional studies and turnover on
islands, shifts in diversity over time have received remarkably little
attention. The analysis of temporal diversity was pioneered by Preston
(1960) who drew attention to the similarity of species-area and
species—time curves (see also Williams 1964). In both cases the ratio of
species to individuals decreases as the extent of the investigation in-
creases. In other words, although individuals may continue to be record-
ed at an approximately equal rate, the incidence of new species declines
over time or space. There is still debate about the shape of species-time
curves [Rosenzweig 1995) and they remain an intriguing and little stud-
ied phenomenon. It would be interesting, for instance, to compare the
slopes of species-area and species-time curves across localities, or taxa,
that vary in immigration rate. As noted in Chapter 2, temporal investi-
gations can also shed light on community structure. The abundance of a
species at a given point of time is related to its permanence in an assem-
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blage (Collins & Benning 1996). Thus, long-term resident and transitory
species leave a different signature on the species abundance distribution
(Magurran & Henderson 2003). This imprint is evident irrespective of
whether species abundances are recorded in a snapshot survey or are av-
eraged across an extended data set—though of course the investigator
needsa time series, orindependent knowledge of their ecology, to deduce
the status of individual species. In addition, a temporal perspective may
help us understand how diversity is affected by, or can indeed mediate,
the effects of environmental change. For example, long-term experi-
ments (Brown et al. 2001) and data sets (Lekve et al. 2002) reveal that the
homeostatic capacity of a system, and its ability to adapt to new condi-
tions, may depend on the arrival of suitable colonists from a large pool of
species.

Finally, after I first wrote about diversity measurement it was gently
pointed out to me that I had focused on terrestrial systems and had ig-
nored marine ones. The comment made me realize how few investiga-
tors straddle both fields. Techniques and approaches vary, different
hypotheses may be tested, and papers are often targeted at specialist jour-
nals. Important differences in the biological diversity of land and sea
have already been highlighted (May 1994a). There is considerable scope
for an exchange of ideas and comparative analyses, particularly in re-
spect of the scaling issues and temporal questions mentioned above. For
instance, Gray (2000) has drawn attention to the difficulties of translat-
ing terrestrial concepts, such as landscapes, to the oceans (Chapter 6).
How does marine turnover relate to geographic scale, both in the pres-
ence and absence of clear community boundaries? A few investigations,
such as Clarke and Lidgard’s (2000) analysis of bryozoan diversity, have
begun to elucidate patterns but more studies are needed. A further inter-
esting puzzle is that marine communities, notably those found in pelag-
ic environments, are characterized by many individuals but few species.
Does the relationship between S and N shift between land and sea? A
related question is whether conservation strategies for the preservation
of biological diversity developed for terrestrial systems can be translated
to marine ones, and vice versa.

The biodiversity toolkit
The growing interest in biological diversity and its conservation means
that the field is an exceptionally active one. Emerging trends include
greater use of null models, improved phylogenetic information, and
more user-friendly and powerful computer data bases. These areas are
interrelated and seem likely to shape the manner in which biological
diversity will be investigated and measured for some time to come.

.
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Null models are an exceptionally useful ecological tool (Harvey et al.
1983; Gotelli & Graves 1996). The first example of a null approach in the
context of biodiversity occurred as long ago as 1929 when Maillefer
used a card deck to deduce expected patterns of generic richness in small
plant communities (Gotelli 2001]. Despite this precedent the widespread
adoption of null models in biodiversity measurement is remarkably
recent. Examples that have been already mentioned in the book
(Chapters 2 and 4] include Tokeshi’s {1990) random assortment model,
Hubbell’s {2001) neutral theory of biodiversity, and Clarke and
Warwick’s null model for assessing taxonomic distinctness (Clarke &
Warwick 1998; Warwick & Clarke 2001). As Gotelli {2001} emphasizes, a
null model does not assume thata community has no structure or thatall
processes act at random. Instead, randomness is assumed only in respect
of the mechanism being tested. For example, observed values of taxo-
nomic distinctness are compared against the expectation based on ran-
dom draws of equivalent species richness from the regional species pool
(Chapter 4). There is still considerable discussion, much of it heated,
about how null models should be formulated (for discussion, see Gotelli
2000, 2001). None the less, there are many aspects of biological diversity
measurement that would benefit from greater deployment of null tech-
niques. Gotelli and Colwell {2001} have highlighted the utility of the ap-
proach in determining whether apparent differences in species richness
are an artifact of differences in species density. Gaston and Blackburn
{2000) show how random species draws can be used to examine the struc-
ture of natural assemblages. Null models are already used extensively to
evaluate species co-occurrence patterns (Gotelli 2000); the analysis of B
diversity presents analogous problems and I anticipate that null ap-
proaches will soonbecome standard in this field (see, for example, Gering
& Crist 2002). Other obvious applicationsinclude environmental assess-
ment, where the significance of achangein diversity (measured using the
index of choice) would be judged against a null expectation.

Null models raise a number of general methodological issues (Gotelli
& Graves 1996; Gotelli 2000). There are some additional considerations
that must be addressed when they are applied to biodiversity questions.
As noted above, an investigator might wish to determine whether the
diversity of an assemblage is higher or lower than the random expecta-
tion. From which pool of species are the potential assemblage members
to be drawn? The simplest approach is to conduct a random draw using
the regional species list but this ignores variation in behaviorand habitat
preferences. In reality only a subset of species is likely to be able to exist
in, or colonize, a particular locality. For example, in order to assess the
extent to which a fish community in a heavily impacted river in south-
east Trinidad is taxonomically depauperate, it is essential to know
which species are potentially found there. Fortunately, in this case, the
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data are available (Kenny 1995; Phillip 1998; Phillip & Ramnarine 2001}
and were used to construct Figures 4.8 and 4.9. Gotelli (in press) makes a
compelling case for more cooperation between community ecologists
and taxonomists. This will assist in the construction of a priori source
pools, regional species lists and so on, and will insure that null models
are ecologically relevant. Also, as this book has made clear, species are
not equal, either in terms of their abundance or their spatial occurrence.
A random draw that assumes that they are could produce a distorted
picture. But which model of species abundance/occurrence should be
adopted? The log normal or power fraction models seem a useful starting
point if the assemblage is a large one, Tokeshi’s random fraction model or
the geometric series if it is small. Experience will tell if this is correct.
Gotelli (2000} advises that problems associated with null model analyses
will be overcome as more data sets are compiled, with the express aim of
examining species co-occurrence patterns. The same can be said for the
measurement of biological diversity. Species presence and abundance
data collected over meaningful scales, using standardized and repeatable
sampling techniques, and with appropriate sample sizes, will generate
data sets that lend themselves to null analyses, and have the potential to
address longstanding problems (including some of those mentioned at
the beginning of the chapter). The next development in this list of emerg-
ing themes will aid this process.

A single computer-based catalog of life on earth may still be some way
off. Nevertheless, rapid advances in e-science mean that large data sets
can now be readily compiled and distributed. Indeed it is already a
requirement of many granting agencies and journals that data are made
freely available to the scientific community. The data sets for the Cedar
Creek Natural History Area?® are a fine example of how the field is devel-
oping.* Comparative studies are likely to become much more tractable —
and attractive—as a result. Better access to information on species
identities will be an important by product. Until very recently, journal
editors frowned on detailed species lists due to space constraints; results
were typically presented as synoptic tables or graphs. (In fact [had to refer
to older studies, published when editors were more generous with space,
to find data on species abundances that could be used for the worked ex-
amples in this book.) E-appendices, a practice increasingly adopted by
publishers, make complete data sets available. Data on species occur-
rences will facilitate the analysis of patterns of biological diversity in
space and time (see Chapter 6 for some examples of the approaches used).
It remains to be seen whether conventions for the presentation of biodi-

3 http://www.lter.umn.edu/index.html.
4 Seealso http://www.esapubs.org/archive/default.htm.
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versity data will emerge, and whether information will be deposited in
specialist sites, as is increasingly the case in genetic studies.

Although an infinite number of a diversity measures could be devised
(Molinari 1996] it seems improbable that new methods would signifi-
cantly improve the measurement of biological diversity. Existing tech-
niques are reasonably well understood and benchmark methods have
been adopted. On the other hand there is little consensus about how best
to measure B diversity, until now a relatively neglected field. I anticipate
atlurry of activity, and the development of a range of new techniques, fo-
cused on this component of biological diversity. However, I expect most
attention to be directed towards measures of functional and taxonomic
diversity. Some important new approaches have already been discussed
(see, for example, Warwick & Clarke 2001; Petchey & Gaston 2002b) but
as the genetic revolution has made phylogenetic reconstruction faster
and cheaper it seems likely that many more techniques will emerge. The
cross-referencing of genetic and biodiversity data sets, that has already
begun (Bult et al. 1997), will greatly facilitate this process. Indeed,
it holds out the promise of a common framework for measuring the
biological diversity of prokaryote as well as eukaryote organisms.

Conclusion

“Questions about the commonness and rarity of species” wrote May in
1986 “are of fundamental interest, and have important applications in
conservation biology and elsewhere.” The continuing high profile of bi-
ological diversity is in large part due to concern at the rate at which it is
vanishing. This is not a new problem. The excerpt from the old Irish
lament, Kilcash, with whichIbring the book to a close, is a reminder that
our forebears recognized the utilitarian and esthetic benefits of biologi-
cal diversity and mourned its loss. I look forward to advances in the mea-
surement of biological diversity but hope that these are matched by
advances in the conservation of biological diversity so that successive
generations of ecologists continue to have the opportunity to tackle the
fundamental questions to which May alluded.

Caoine Cill Chais The Lament for Kilcash

Créad a dhéanfaimid feasta gan What shall we do for timber!?
adhmad,

Té deireadh na geoillte ar 14; The last of the woods is down.

Ni chluinim fuaim lacha No sound of duck or geese there,
nd gé ann,

Na fiolair ag déanadh aeir Hawk’s cry oreagle’s call.

cois cuain,
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Na fiti na mbeacha chum saothair
A thabharfadh mil agus céir

don tslua,
Nil ceol binn milis na n-éan ann
Le hamharc an lae a dhul vainn,

N4 an chuaichinimbarrana
ngéagann,

-0, ‘sia chuirfeadh an saol chum
suain!

Nil coll, nil cuileann, nil caora
ann,

Ach clocha agus maolchlochiin;

Pairc na foraoise gan chraohb
ann,

Is d’imigh an géim chun fin.

Traditional (anonymous)

No humming of the bees there,
That brought honey and wax for all.

Nor even the song of the birds there,

When the sun goes down in the
west.

No cuckoo on top of the boughs
there,

Singing the world to rest.

There’s no holly nor hazel nor ash
there.

The pasture’s rock and stone.

The crown of the forest has
withered,

And the last of its game is gone.

Translated Frank O’Connor (1959)
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Worked examples

Worked example 1: Fitting a log series distribution

Lewis and Taylor (1967, p. 244} give the frequency distribution of individuals per
species in a light trap sample of Macrolepidoptera collected at Rothamsted
Experimental Station, UK, during 1935. This is reproduced below. Do these data
conform to alog series?

Individuals No. of species Individuals No. of species
1 37 39 1
2 22 40 3
3 12 42 2
4 12 48 2
5 1 . 51 1
6 1 52 1
7 ) 53 1
8 4 58 1
9 3 61 1

10 5 64 2
1" 2 69 1
12 4 73 1
13 2 75 1
14 3 83 1
15 2 87 1
16 2 88 1
17 4 105 1
18 2 115 1
20 4 131 1
21 4 139 1
22 1 173 1
23 1 200 1
25 1 223 1
28 2 232 1
29 2 294 1
33 2 323 1
34 2 603 1
38 1 1,799 1
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The first step is to estimate the two parameters of the log series: x and a. x is esti-
mated by iterating the following term:

S/N =[(1-x)/x]-[-In(1-x)]

where S =the total number of species {197 in this example) and N =the total num-
ber of individuals (6,815). x is usually >0.9 and always <1.0. In cases where the
ratio N/S > 20, x > 0.99. Figure 2.10 provides further information on this point.
Here N/S = 34.5. Tteration involves trying successive values of x until the two
sides of the equation are equal. This means that the equation cannot simply be
typed into a spreadsheet. However, a spreadsheet can be used to deduce x and this
is what I did to calculate this example. Simply type a trial value of x into a cell (I
used cell $3 in an Excel package) and the equation into a reference cell. In my ex-
ample it was written as follows: = ({1 — $3)/S3) *(-LN(1 - S3)}). Then it is simply a
matter of testing values of x until the reference cell provides an answer that
exactly matches S/N. For these data /N =0.0289. x should be estimated to four
or five decimal places.

x=0.995 gives S/N=0.2662

x=0.994 gives S/N=0.03088
x=0.9945 gives S/N=0.02877
x=0.9944 gives S/N=0.02920
x=0.99445 gives S/N=0.02899
x=0.99447 gives S/N=0.02890

Once x has been estimated it is simple to calculate o using the equation:

_ N(-x) _6,815%(1-0.99447)

=37.
X 0.99447 20

0.1

ais an index of diversity. (See Chapter 4 for further discussion. |
The log series takes the form

ox? ox? ox?
O, === e

where ax = the number of species predicted to have one individual, ax?/2 is the
number predicted to have 2 and so on. (See Chapter 2 for further details.)

Here ax=37.8965%0.99447 = 37.687 and ax?/2 = 18.7393. These calculations
can be done in a spreadsheet.

The next stage is to group the observed and expected data into classes. Octaves
{log, classes] provide a particularly convenient grouping. Adding 0.5 to the upper
boundary makes it simple to assign species unambiguously (for clarity this is
omitted from Figure E1]. The columns of observed and expected species both
sumto 197.

The number of species in the largest class (in this example octave 11, with
>1,024.5 individuals per species) is therefore most easily obtained by subtracting
the cumulative total for the other classes from S.
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Upper Observed Expected

Octaves boundary species species
1 25 59 56.43
2 4.5 24 21.69
3 8.5 32 23.22
4 165 23 23.50
5 325 21 2254
6 645 20 20.08
7 128.5 8 15.54
8 256.5 6 9.57
9 5125 2 3.69
10 1,0245 1 0.59
11 >1,024.5 1 0.16
197 197.00

Figure Ela plots the expected and observed species in each octave and the
agreement between the two distributions appears good. A Kolmogorov-Smirnov
goodness of fit test (Sokal & Rohlf 1995) can be used to test this assumption.!
Two new columns are constructed. The first (F; ;) contains observed cumula-
tive frequencies (F) from which 0.5 has been subtracted for each class (F - 0.5).
The second holds the cumulative expected frequencies. Next g, s, the absolute
value of the difference between the cumulative frequencies in each class, is ob-
tained. g, o5 [the class containing the largest difference) is then located. In this
example it is 13.163 in octave 3 as shown in Figure E1b and in the table below.

“y

Upper Observed Expected Cumulative : Cumulative o
Octaves boundary species species observed Fos expected 9os
1 25 59 56.43 59 58.5 56.426 2.074
2 45 24 21.69 83 82.5 78.116 4.384
3 85 32 23.22 115 1145 101.337 13.163*
4 16.5 23 23.50 138 1375 124.833 12.667
5 325 21 22.54 159 158.5 147.374 11.126
6 64.5 20 20.08 179 178.5 167.449 11.051
7 1285 8 15.54 187 186.5 182.993 3.507
8 256.5 6 9.57 193 1925 192.566 0.066
9 5125 2 3.69 195 194.5 196.255 1.755
10 1,024.5 1 0.59 196 195.5 196.845 1.345
1 >1,024.5 1 0.16 197 196.5 197.000 0.500

*
gmax,0.5'

The Kolmogorov-Smirnov test statistic is: D = (largest difference +0.5)/S =
(13.163 +0.5)/197 =0.06936.

Because these datahave been fitted toa distribution in which the parameters (o
and x) are derived using the sample data this is an example of what is known as a

1 A Gtestory?test could also be used to compare observed and expected values.
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Figure E1 [a) Number of species observed (open bars) and number expected according to
the log series distribution (stippled bars). Abundance classes are octaves. The upper
boundary of each class is indicated. (b} Cumulative frequency distributions for observed
and expected species (key as above). The octave in which D (the largest difference) falls is
indicated by an arrow.

test of an intrinsic hypothesis (Sokal & Rohlf 1995). Rohlf and Sokal (1995, table
Y) supply critical values for D for n <100. For larger samples, approximate critical
values can be calculated as follows: at the 0.05 level it is 0.89196/+/S and for 0.01
it is 1.0427/+S (Sokal & Rohlf 1995). Thus: D, ;5 = 0.89196/+197 = 0.0635 and
Dy, = 1.0427/197 =0.0743.

Since the observed D is greater than 0.0635 but less than 0.0743 the two distri-
butions are significantly different at P <0.05 and the moth data do not follow alog
series. However, different methods of assessing fit may lead to rather different
conclusions. Interestingly, Lewis and Taylor {1967, p. 245) noted that there was
some scatter in the points but concluded on the basis of visual inspection that
“for practical purposes, the distribution of individuals within species, in a



220 Worked examples

sample of Macrolepidoptera caught in a light trap, conformed to a logarithmic
series.” Goodness of fit tests, after all, are only one of the many tools that ecolo-
gists use to interpret patterns found in nature.

Worked example 2: The truncated log normal

Most log normal distributions of species abundance data are truncated to the left
(see Chapter 2 for more details). Pielou (1975), following the methods of Cohen
(1959, 1961), describes how to fit a truncated log normal model to abundance
data.! Although this method can be used even when the mode of the distribution
is absent [as in Figure 2.14c}, it is generally unadvisable to do so unless there is
some independent method of deducing where the mode might lie so thata check
on the result is possible). Use of a spreadsheet is strongly recommended though
all the calculations can be done on a pocket calculator if necessary.

This example examines the annual abundance (measured as numbers of indi-
viduals) of estuarine fish. Data were collected at approximately 3-week intervals
from January 1967 until February 1968 at 14 stations in the estuarine system of
the Sapelo and St Catherines Sounds, Georgia, USA (Dahlberg & Odum 1970).

Individuals No. of species Individuals No. of species
1 14 62 i
2 5 65 1
3 2 70 2
4 2 72 1
5 1 87 1
6 2 129 1
7 1 147 1
8 4 256 1
9 1 299 1

1 2 516 1
12 1 574 1
15 1 580 1
17 1 947 1
18 1 1,113 1
24 1 1,191 1
30 1 1,513 i
31 1 1,527 1
37 1 1,682 1
43 1 2,391 1
49 1 2,458 1
50 1 15,272 1
52 2

61 1 Total number of species (S)=70

Total number of individuals (N)=31,637

1 Asimplified version of thismethod can be used when truncation is minimal or absent. See footnote 2,
p.221.
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As this is alog normal distribution the first step is to log transform the species
abundances (x =log,,n,}. This example uses log,, though any log base is accept-
able as long as it is used consistently. Here log,,1 =0andlog,,15,272 =4.1839.

Calculate the observed mean (x) and variance (6?] in the usual way:

X=Yx/Sando2=Y (x-%)*/s

In this example X =1.32059 and 62=1.18692.

Next, calculate y= 02/ (X — x,)> where x,=-0.30103. (The truncation point (x,)
is assumed to fall at -0.30103 or log,,0.5, this being the upper boundary of the
class containing species that lie behind the veil line.)

Use Cohen's {1961] table 1 (reproduced in Magurran {1988] and Krebs [1999]) to
obtain 0 from . Here 8 =0.4103. 6 is called the “auxiliary estimation function”
andis used to correct the estimates of the mean (i) and variance (V, ) allowing for
the truncation.

These are obtained as follows:

n,=x-6(x-x,) (herep, =0.65524)
V,=02+0(X-x,)" (here V, =2.26588)

The next step is to calculate the standardized normal variate (z,) correspond-
ing to the truncation point (x,): . ;

2y =(xg -1y )/JV, (herez,=-0.63528)

Refer to tables for the normal distribution {e.g. Rohlf & Sokal 1995) to find the
area of the normal curve (py) to the left of the truncation point (z,). p, is propor-
tional to the number of species predicted to be behind the veil line. Spreadsheets
often have a function that provides the same information. In Excel, for example,
itis= NORMSDIST( ], where the cell containing the value of z, is the one identi-
fied in the brackets. Here p,=0.26262.

Use p, to estimate the total species richness of the assemblage, S*.

$*=S/(1-p,) (here S*=94.9312)

These values of S$* have little practical application as empirical estimates of
assemblage richness but are necessary to scale the expected distribution of
abundances.

Everythingis now in place to construct that distribution and compare it to the
observed one. To do this it helps to create a table as follows.?

Column (a): the upper class boundary. Log,, increments are used here but it
would also be acceptable to use other class widths with the proviso that the veil
line (the upper boundary of the first class) falls at 0.5.

2 To fit a nontruncated distribution construct the table ignoring class 1 (there is no veil line}, use the
observed mean |x) and standard deviation (6] in column (¢| and use the observed number of species (S} to
scale column (d).
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Column (b): the upper class boundary converted tolog, .

Column (c): the standardized form (in standard deviation units) of these class
boundaries, thatis [b - |/\/V, (see table below for examples).

Column (d): the cumulative number of species expected. Each successive class
represents another step across the log normal distribution. This means that the
cumulative area under the curve that is accounted for is equivalent to the cumu-
lative number of species expected. To obtain the values for column (d) take the
valuein(c)andeitherlook it up in the tables for the normal curve (as above}oruse
the normal distribution function in a spreadsheet (as used to obtain p). This then
needs to be multiplied by $* (the expected total number of species). The number
of species in class 1 corresponds to the number of species predicted to fall below
the veil line.

Column (e): the cumulative expected distribution excluding the “unseen”
species that lie behind the veil line. This is necessary for the goodness of fit test
and insures that the number of species in both the observed and expected
columns sum to 70.

(e)
(d) Cumulated f
(a) (<) Cumulative expected Cumulative
Class (b) Standardized no. of without no. of

upper Log,oupper  formofupper  expected “unseen” observed (g) (h)
boundary boundary boundary peci peci species Fos  9os

1 0.5 -0.301029996 -0.63527727 24 9311 0
2 1.5 0.176091259 -0.318312733  35.6109 10.7 14 135 28
3 105 1.021189299 0.24311 56.5826 31.7 32 315 02
4 1005 2002166062 0.894798083  77.3263 52.4 54 535 1.1
5 1,0005 3.000217093 1.557830342  89.2696 64.3 62 615 28
6 10,0005 4.000021714 2.222027558  93.6835 68.8 . 69 685 03
7 100,0005 5.000002171 2.886341586  94.7460 69.8 70 695 03
8 oo oo o0 949312 70.0 70 69.5 05

Column (e) can then be compared with the cumulative observed distribution
in column (f) using a Kolmogorov-Smirnov goodness of fit test. To do this
column (g) - containing values of F, ; - is needed. (F ; is equal to (e} - 0.5.] The
absolute value of the differences between (e) and (g) gives g, s (column h). The
largest difference (g, o 5) i used to obtain the Kolmogorov-Smirnov test statis-
tic D {where D = (largest difference +0.5)/S}). Here D=(2.8 +0.5)/70=0.0471. The
critical value for P=0.05 with a sample of S=701s 0.09883 (table Y, Rohlf & Sokal
1995).3 As D does not exceed this we can conclude that the observed distribution
is consistent with a truncated log normal distribution (Figure E2). Worked
example 1 and Sokal and Rohlf {1995) provide further information on the
Kolmogorov-Smirnov test.

3 Pvalues can also be calculated as follows: 0.05 level P=0.89196/¥S ;0.01 level P=1.04271/¥S [see
Rohlf & Sokal 1995].
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Figure E2 Number of species observed [open bars} in relation to the number expected
(stippled bars) by the truncated log normal distribution. The upper bounds of the classes
are shown. For clarity the 0.5 added to the boundaries during the calculation is omitted
from the graph. The veil line is indicated. The hatched bar represents the “unseen”
species that are predicted to lie behind it.

Worked example 3: Comparing rank/abundance plots using the
Kolmogorov-Smirnov two-sample test

The Kolmogorov-Smirnov two-sample test (Sokal & Rohlf 1995) provides a con-
venient and simple method of comparing two rank/abundance plots. Here it is il-
lustrated with data collected by Harrel et al. (1967). The investigators used seines
to sample fish at 22 sites in the Otter Creek drainage basin in north central
Oklahoma, USA. These sites were distributed across 3rd, 4th, 5th, and 6th order
streams. Two sites were subject to pollution from oil fields. In all cases the iden-
tity and abundance (number of individuals] of species was recorded. Sites were
sampled twice in 1965; this example relates to the first survey, which took place
in June. It compares the rank/abundance distribution of species in a polluted 4th
order site with the average pattern in unperturbed sites (n = 5} of the same river
order. The average rank/abundances in the unperturbed sites were used because
the Kolmogorov-Smirnov test can only compare two distributions at a time.
Moreover, it was felt that average values provided a better representation of the
typical structure of these fish assemblages. One potential problem is inflation of
overall species richness. A total of 12 species were recorded in the unperturbed
4th order sites, but the mean species richness per site was eight. In the event this
did not affect the outcome of this particular comparison.
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Mean abundance in Abundance in
Species unpolluted 4th order sites polluted 4th order site
Notemigonus crysoleus 144 5
Pimephales promelas 148.75 301
Ictalurus melas 5.25 0
Lepomis macrochirus ' 8.2 12
Lepomis cyanellus 6.66 1
Gambusia affinis 30.25 2
Lepomis humilus 15.6 2
Notropis lutrensis 125 110
Lepomis megalotis 8 4
Micropterus salmoides 1 10
Pomoxis annularis 8 1
Phenacobius mirabilis 1 0
Total number of species (S) 12 10
Total number of individuals (N) . 259.62 448

The first step is to rank the species (column 1 below), in order from most to
least abundant, and then to calculate their relative abundances. For example, the
most abundant species in the unpolluted sites in Pimephales promelas. Its rela-
tive abundance is 0.5730 (148.75/259.62). These relative abundances are shown
in columns 2 and 3 and are the data used to construct the rank/abundance {or
Whittaker) plots shown in Figure E3a. The next stage is to construct columns
showingthe cumulative relative abundances for the twossites. Finally, in column
6, the (unsigned) difference (D) between the two cumulative distributions (4 and
5)can be calculated:

4:Unpolluted  5:Polluted  6: Difference
2: Unpolluted 3: Polluted cumulative cumulative (unsigned)

1: Species relative relative relative relative between
rank bund abundance abundance abundance 4and5
1 0.5730 0.6719 0.5730 0.6719 0.0989
2 0.1165 0.2455 0.6895 09174 0.2279
3 0.0601 0.0268 0.7496 0.9442 0.1946
4 0.0555 0.0223 0.8050 0.9665 0.1615
5 0.0481 0.0112 0.8532 0.9777 0.1245
6 0.0316 0.0089 0.8848 0.9866 0.1019
7 0.0308 0.0045 0.9156 0.9911 0.0755
8 0.0308 0.0045 0.9464 0.9955 0.0492
9 0.0257 0.0022 0.9721 0.9978 0.0257
10 0.0202 0.0022 0.9923 1.0000 0.0077
11 0.0039 - 0.9961 1.0000 0.0039

12 0.0039 - 1.0000 1.0000 0.0000
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Figure E3 [a) Rank/abundance plots for the polluted 4th order stream in the Otter Creek
drainage are shown in relation to the average of {n = 5) unperturbed sites of equivalent
river order. A Kolmogorov-Smirnov test shows that these are not significantly different.
(b} A similar analysis for the 5th order polluted site. Although there is a marked difference
in species richness between it and the average of the (n=>5) unperturbed 5th order sites,
once again the ranked species abundance differences are not significantly different [D =
15.56, P>0.10). (Data from Harrel et al. 1967

The largest unsigned difference is 0.2279. This is then multiplied b;él‘ll -n, (10
x 12 % 0.2279) to yield 27.35. The critical value for this statistic (n,n,D) can be
obtained from table W in Rohlf and Sokal (1995) as well as from other statistical
tables. In the present case n;n, D, : = 66 and n,n,D,, ;= 60. Since the calculated
value must exceed the critical value for a significant difference to be detected, it
isclear that, in the Otter Creek example, the pattern of species abundances in the
polluted 4th order stream is not significantly different (P > 0.1) from that in the
unpolluted control sites.

Rohlf and Sokal’s [1995) tables provide values for n; and n, < 25. There will,
however, be many occasions where more than 25 species are observed. Sokal and
Rohlf (1995] provide an approximate test for two larger samples. D is first calcu-
lated as above. D, (where o is the probability required) can then be computed as
follows:

Dy = Ka\l[(“] +m,)/(n, - n,)]
where :
Ko =[1/2(~1n(0/2))]

For equal sample sizes D simplifies to K, +/(2/n)-
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All these critical values are for two-tailed tests, which is appropriate since the
relationship between species abundance and environmental variation {including
pollution stress and productivity) is complex.

The Kolmogorov-Smirnov test is a rather conservative one and for small
sample sizes (= few species) substantial differences between sites are required to
deliver a significant result. This is evident in Figure E3b in which the equivalent
test for the 5th order streams is presented. Here there is a marked difference in
the richness of the two categories, but because the first few species in both local-
ities account for broadly similar proportions of the total abundance, there is no
significant difference in the overall ranked distribution of species abundances
(see Magurran & Phillip 2001b for further details). This approach takes no ac-
count of the species identities but instead compares the contribution, to the
assemblage, of species in order of their ranked abundances. An alternative ap-
proach would be to examine the relative contribution of “named” species. In
other words, in the Otter Creek example, one would calculate the difference, in
terms of relative abundances, of Notemigonus crysoleus in the polluted and un-
polluted sites, repeat this for Pimephales promelas, and continue until all the
species had been accounted for. It is important, however, to have an a priori rea-
son for doing so. Assemblages often vary markedly in composition over space
and time for stochastic reasons (see discussion on B diversity in Chapter 6 for fur-
ther details). In many cases, therefore, a significant difference between assem-
blages, based on a comparison of the relative abundances of named species, could
be an ecologically trivial result. Situations where this approach would be justi-
fied include experiments in which communities are assembled from a known
species pool (see, for example, Naeem et al. 1994) or where it is interesting to
learn how species perform relative to one another.

The Kolmogorov-Smirnov goodness of fit test is illustrated in Worked
examples 1 and 2.

Worked example 4: Geometric series

The geometric series model is typically applied to species-poor assemblages. It is
underpinned by the assumption that the dominant species pre-empts proportion
k of some limiting resource, the second most dominant species takes proportion
k of the remainder and that this continues until all the species have been accom-
modated. Figure 2.3 illustrates the process. The abundance of each species is
thought to reflect the proportion of the resources it uses. In a geometric series
the abundances of species, ranked from most abundant to least abundant, are
therefore:

n; = NC k(1- k)'™!

where k = the proportion of available niche space or resource that each species
occupies; n, = the number of individuals in the ith species; N = the total number
of individuals; and C, =[1 —{1 — k)], and is a constant that insures that Zn, = N.
This example asks whether the relative abundances of dung beetle species
found on dung pats around Bangalore in the Western Ghats, India follow a
geometric series. Data are taken from appendix 1 in Ganeshaiah et al. (1997).
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Species Abundance
Onthophagus truncaticornis 897
Caccobius meridionalis 339
Onthophagus rectecornutus 144
Oniticellus cinctus 98
Onitis philemon 70
Ontophagus dama 63
Drepanocerus setosus 62
Caccobius unicornis 25
Copris indicus 16
Oniticellus spinipes 7
Onthophagus tarandus 7
Liatongus rhadamistus 6
Onthophagus catta 5
Onthophagus pactolus 2
Onthophagus spinifex 2
Sisyphus sp. 2
Total number of species (5) 16
Total number of individuals (N) 1,745

To fit a geometric series, constant k must first be estimated. This is done by
iterating the following equation [see May 1975 for details).

where N, ;. =the number of individuals in the least abundant species. In this case
N,../N=2/1,745=0.001146.

Aswith thelogseries (see Worked example 1), aspreadsheet can be used for this
iteration. To solve, try different values of k until the two sides of the equation
balance. For example:

k=04 gives 0.000188127
k=0.3 gives 0.001429
k=031 gives 0.001189
k=0.312 gives 0.001146

With k estimated as 0.312 it is now possible to calculate C;:
G =[1-(1-K*]" =[1-(1-0.312)°]" =1.00252645
and then to work out the expected number of individuals in each of the 16
species.

For the most abundant species:

n, = NCK(1- k)™ =1,745 x 1.00252645 x 0.312 x (1-0.312)° = 545.82
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The abundance of each species is estimated in turn and observed and expected
values are complied in a table in the usual way. They may also be plotted on a
rank/abundance graph (Figure E4) and compared by eye. The following table sets
out the observed and expected abundances which are then compared using a
Kolmogorov-Smirnov test.

Observedno.  Expected no. Cumulative Cumulative Unsigned

Speciesrank ofindividuals of individuals observations expectedno. difference
1 897 545.82 897 545.82 351.18
2 339 375.52 1,236 921.34 314.66
3 144 258.36 1,380 1,179.70 200.30
4 98 177.75 1,478 1,357.45 120.55
5 70 122.29 1,548 1,479.74 68.26
6 63 84.14 1,611 1,563.88 47.12
7 62 57.89 1,673 1,621.76 51.24
8 25 39.83 1,698 1,661.59 36.41
9 16 27.40 1,714 1,688.99 25.01
10 7 18.85 1,721 1,707.84 13.16
11 7 12.97 1,728 1,720.81 7.19
12 6 8.92 1,734 1,729.73 427
13 5 6.14 1,739 1,735.87 3.13
14 2 422 1,741 1,740.09 091
15 ' 2 2.91 1,743 1,743.00 0.00
16 2 2.00 1,745 1,745.00 0.00

N=1,745 N=1,745
D,..,, the Kolmogorov-Smirnov test statistic, is the maximum unsigned dif-

ference {351.18) divided by the total number of individuals = 351.18/1,745 =
0.201. Table 33 in Rohlf and Sokal [1981] — “Critical values of the one-sample
Kolmogorov-Smirnov statistic for intrinsic hypotheses”! — reveals that for a
sample with 16 items the critical value at P =0.05 is 0.213. Since the calculated
value (0.201) lies below this, the observed and expected values are not signifi-
cantly different and it can therefore be concluded that the geometric series is
indeed an appropriate descriptor of this dung beetle assemblage. Dung pats are
clearly a limited resource and it would thus be interesting to investigate the
manner in which niche apportionment is achieved.

Rohlf and Sokal’s {1981] table 33 provides critical values for samples with up to
30 items. When S > 30 the following asymptotic approximation can be used

[
I

1 Forsimplicity the form of the Kolmogorov-Smirnov test shown hereis the traditional D, statistic.
Sokal and Rohlf {1995) and Rohlf and Sokal {1995} explain how to calculate a 8-corrected
Kolmogorov-Smirnov test and how torelate the corrected critical values to those for D .. A G test or x2
test could also be used to compare observed and expected values.



Worked examples 229

1,000 ~

w~—{}—— Observed

A )——  Expected

Y 100~
c
[~}
O
c
3
L
[+]
o
2
£
[T}
[+4
10 <

! T T T
5 10 15
Species rank

Figure E4 Rank/abundance graph comparing observed abundances with those expected
by the geometric series model.

(Rohlf & Sokal 1981): at the 0.05 level the critical value is 0.886/vS, while at the
0.01level itis1.031/vS (see also Worked examples 1 and 2). Note that because the
parameters of the expected distribution (notably k) are obtained from the ob-
served distribution thisisa test of an intrinsic hypothesis. It isalso worth bearing
in mind that the Kolmogorov-Smirnov test assumes that the variable under
examination is continuous. When it is discrete — as here, species being discrete
entities — the testis a conservative one.

Another way of deciding whether data conform to the expectations of a geo-
metric series distribution is simply to inspect the rank/abundance plot. As in
this example a geometric series may be inferred when the data points approxi-
mate astraight [steep) line. 2 statistics can be used to quantify the strength of the
relationship (here r>=0.97]. Slope can be measured using regression and can use-
fully be employed to compare two or more assemblages — shallower relationships
imply less extreme niche apportionment (see Figure 2.16).
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Worked example 5: Fitting stochastic niche apportionment models

Stochastic models, by definition, generate a slightly different pattern of
species abundance every time they are run. For example, a random fraction
model with S =5 species might predict relative abundance to be 0.31, 0.20, 0.18,
0.16, and 0.15 in the first replicate, 0.57, 0.25, 0.13, 0.04, and 0.01 in the second,
and so on. For this reason it is necessary to use a large number of replicates
and average these to obtain a representative expected abundance distribution.
Similarly, the distribution of observed species abundances should be derived
from a number of replicate samples (typically >10) taken over space or time
(Tokeshi 1993; see Chapter2 formore details). It is essential to use replicated data
when the broken stick or MacArthur fraction models are being investigated (see
Chapter 2 for further discussion of this point and for ways of dealing with un-
replicated data).

Stochastic models require computer simulation. One freeware package,
PowerNiche! (Drozd & Novotny 2000), is already available and it is likely that
others will soon appear. This Excel-based program can be used to model the bro-
ken stick, random fraction, and power fraction. Each of these models assumes
that the segment, or niche, selected for division is divided at random. They differ
in the way in which the target niche is selected. The random fraction chooses a
niche at random. This means that all niches — from the largest to the smallest -
are equally likely tobe chosen for division. In the power fraction and broken stick
(MacArthur fraction) models, however, the probability that a niche will be se-
lected is some function of its size {see Chapter 2 for further details). PowerNiche
can also be used to examine Sugihara’s sequential breakage model. Sugihara’s
model selects the target niche at random (like the random fraction), but then
subdivides it in a deterministic way to produce two segments of specified rela-
tive sizes. Sugihara modeled niche apportionment using a 0.25:0.75 split but
other divisions are also possible. PowerNiche computes up to 250 replications
(the maximum is set by the dimensions of the Excel spreadsheet] of the specified
model in an assemblage of S species (where S is entered by the user). The mean
relative abundance (with confidence limits) of the ranked species abundance dis-
tribution can then be calculated.

This example uses PowerNiche to ask whether the relative species abun-
dances in an estuarine fish assemblage are consistent with Tokeshi’s random
fraction model. The data are taken from Dahlberg and Odum (1970). This study
also supplied the data used to test the truncated log normal distribution (see
Worked example 2). In that case abundances were summed across the 13 samples
that comprised the study. Here, in contrast, these samples can be treated as 13
separate replicates of relative species abundance. Moreover, as understanding
niche apportionment is the goal, species that make a negligible contribution to
assemblage abundance can be excluded from the analysis. A total of 70 species
were recorded by Dahlberg and Odum (1970). As Figure E5 shows, 25 of these
jointly accounted for 99% of the total abundance.

1 http://www.entu.cas.cz/png/PowerNiche/.
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Figure ES Cumulative relative abundance of the 70 fish species sampled during Dahtberg
and Odum’s (1970} estuarine study. A total of 13,637 individuals were collected. Species
are ranked in order of relative abundance. The dotted line indicates 99% of total
assemblage abundance [summed across the 13 months of the survey). It is clear that a
relatively small fraction of species [25/70) account for most of the abundance and it is
therefore logical to restrict the analysis of niche apportionment to these.

Species Jan Feb Mar Apr May July Aug  Sept  Oct Nav Dec Jan Feb
Stellifer lonceolotus 20 329 54 27 163 1,049 3,664 1687 5773 2,050 393 4 59
Cynoscian regalis 18 4 6 104 1,351 480 79 322 73 17 3 1
Symphurus plagiuso 89 338 38 53 10 9 136 120 287 471 552 65 133
Galeichthys felis n 159 173 580 44 314 3 1
Menticirrhus 51 86 5 2 25 342 351 120 224 66 73 35 147
americanus
Anchoa mitchelli 129 34 48 14 20 439 28 150 128 41 59 113 310
Bairdiella chrysuro 1 1 2 4 48 458 67 74 416 18 44 46 12
Leiostomus xanthurus 191 490 88 26 102 65 15 5 9 13 32 77
Micropogon undulatus 6 17 7 13 174 493 82 4 73 10 17 21 30
Uraphycis regius 1 235 189 41 1 2 m
Brevoortio tyrannus 4 205 2 1 5 3 1 1 1 37 15 299
Etropus crassatus 28 92 1 6 3 13 24 23 118 72 136
Trinectes maculotus 6 1 10 36 35 57 17 77 29 28 3
Chaetadipterus fober 1 205 35 7 8
Prinatus evalvans 2 9 2 1 20 32 2 2 27 9 6 7 18
Larimus fasciatus 2 4 62 12 3 32 7 1 6
Prinatus scitulus 4 1 5 10 1 48 4 3 11
Dosyatis sabina 1 5 3 19 1 1 3 7 7 2 1 2
Cynascion nothus 66 4
Ancyclapsetto 3 12 2 7 3 1 2 40
quadracellato
Paralichthys 2 10 4 4 1 1 3 4 3 33

lethastigma
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Species Jon Feb Mar Apr May July Aug  Sept Oct Nov Dec Jan Feb

Scophtholmus 2 1 9 20 16 14
aquosus

Centropristes 4 1 1 5 4 6 15 16 5 4
philadelphicus

Urophycis floridons 4 20 3 5 (] 1 13

Cynoscion nebulosus 1 15 1 2 1 2 13 17

Total 553 1,919 455 260 1,199 4,672 5497 2,730 7,774 2,836 1,376 443 1,472

The first step is to compile a table showing the monthly abundances (number
of individuals), per sample, of the 25 estuarine species that together contributed
99% of assemblage abundance.

The next stage is to calculate the relative abundance of each species in each of
the samples. For example the relative abundance of Stellifer lanceolatus in the
first sample (Jan) is 0.036 (20/553). These relative abundances are then ranked,
within months, without regard for species identity and the mean proportional
abundance of the species (in rank order) is calculated. In this instance we are fo-
cusing on “process” and simply examining the pattern of niche apportionment
in the samples. No correspondence between species rank and species identity is
assumed. It therefore does not matter that Leiostomus xanthurus is the most
abundant species in the first and second samples whereas Urophycis regius is
most abundant in the third. A “species-oriented” analysis, that examines the
relationship between species rank and species identity, is also possible (see

Tokeshi 1999).
vy
3 ) Mean
‘ relative
Jan Feb Mar Apr May July Aug Sept Oct Nov Dec Jan Feb  abundance

03411 0.2512 0.4127 0.2031 0.1671 0.2882 0.6661 06179 07412 07188 03991 0.2534 0.2092 0.4053
0.2304 0.1732 0.1921 0.1571 0.1418 0.2238 0.1054 0.1615 0.0534 0.1651 0.2842 0.1614 0.2018 0.1732
0.1589 0.1686 0.1179 0.1034 0.1328 0.1052 0.0873 0.0549 0.0413 0.0256 0.0853 0.1457 0.0992 0.1020
00911 0.1205 0.1048 0.0996 0.1296 0.0977 0.0638 0.0440 0.0403 0.0231 0.0528 0.1031 0.0918 0.0817
0.0500 0.1051 0.0830 0.0766 0.0848 0.0936 0.0247 0.0440 0.0368 0.0144 0.0427 0.0785 0.0897 0.0634
0.0357 0.0472 0.0197 0.0536 0.0831 0.0730 0.0149 0.0289 0.0288 0.0102 0.0318 0.0717 0.0749 0.0441
0.0321 0.0441 00153 0.0498 0.0538 0.0369 0.0122 0.0271 0.0164 0.0081 0.0268 0.0471 0.0520 0.0324
0.0107 0.0174 0.0109 0.0421 0.0391 0.0211 00104 0.0062 0.0099 0.0063 0.0202 0.0336 0.0398 0.0206
0.0071 0.0118 0.0066 0.0421 0.0293 0.0139 0.0051 0.0048 0.0094 0.0056 0.0123 0.0291 0.0270 0.0157
0.0071 0.0103 0.0066 0.0383 00204 0.0132 0.0027 0.0029 0.0062 0.0035 0.0123 0.0157 0.0223 0.0124
0.0071 0.0087 0.0044 0.0268 0.0163 0.0075 0.0022 0.0022 0.0041 0.0032 0.0094 0.0090 0.0202 0.0093
0.0054 0.0077 0.0044 0.0230 0.0163 0.0075 0.0020 0.0015 0.0035 0.0032 0.0051 0.0090 0.012] 0.0077
0.0054 0.0062 0.0044 0.0230 0.0155 0.0068 0.0013 0.0011 0.0031 00025 0.0043 0.0067 00115 0.0070
0.0036 0.0051 0.0044 0.0192 0.0130 0.0023 0.0007 0.0011 0.0019 0.0025 0.0036 0.0067 0.0094 0.0057
0.0036 0.0046 0.0044 0.0153 0.0106 0.0021 0.0005 0.0007 0.0013 0.0021 0.0029 0.0067 0.0088 0.0049
0.0036 0.0031 0.0022 0.0077 0.0081 0.0021 0.0004 0.0004 0.0009 0.0021 0.0029 0.0045 0.0081 0.0035
0.0018 0.0031 00022 0.0038 0.0081 0.0013 0.0002 0.0004 0.0006 0.0014 0.0014 0.0045 0.0074 0.0028
0.0018 0.0026 0.0022 0.0038 00049 0.0011 0.0002 0.0004 0.0005 00011 0.0014 0.0045 0.0047 0.0022
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Mean

. . relative
Jon Feb Mar Apr May July Aug Sept Oct Nov Dec Jan Feb  abundance
0.0018 0.0021 0.0022 0.0038 0.0041 0.0009 0.0000 0.0000 0.0001 0.0011 0.0007 0.0022 0.0040 0.0018
0.0018 0.0021 0.0000 0.0038 0.0041 0.0009 0.0000 0.0000 0.0001 00004 0.0007 0.0022 0.0020 0.0014
0.0000 0.0021 0.0000 0.0038 0.0041 0.0006 0.0000 0.0000 0.0001 00000 0.0000 0.0022 0.0020 0.0012
0.0000 0.0015 0.0000 0.0000 00033 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.0013 0.0007
0.0000 0.0010 0.0000 0.0000 0.0033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 00007 0.0004
0.0000 0.0005 0.0000 0.0000 0.0024 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0002
0.0000 0.0005 0.0000 0.0000 0.0024 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0002

The expected mean () abundances in a random fraction for an assemblage
with § =25 species can then be generated using PowerNiche or similar software.
Next, the standard deviation (o) of the abundance of each rank is calculated and
confidence limits assigned. These confidence limits are set in the usual way,
with the important consideration that the sample size is n1 (that is the number of
replicated samples of the assemblage] rather than N (the number of times the
model was simulated).

Confidence interval =p + ro/vn

where r defines the breadth of the confidence limit. It is 1.96 fora 95% limit and
1.65 for a90% limit. These operations can be performed quickly and simply on a
spreadsheet. The results are shown below (decimal places are reduced for clarity
in this illustration).

Mean relative Mean relative

abundance abundance Standard deviation 95% confidence
(observed) (expected) (expected) interval (expected)
0.4053 0.3911 0.1628 0.0885
0.1732 0.1868 0.0746 0.0405
0.1020 0.1113 0.0459 0.0249
0.0817 0.0764 0.0356 0.0194
0.0634 0.0528 0.0272 0.0148
0.0401 0.0388 0.0210 0.0114
0.0324 0.0303 0.0177 s 0.0096
0.0206 0.0242 0.0151 0.0082
0.0157 0.0187 0.0125 0.0068
0.0124 0.0149 0.0106 0.0057
0.0093 0.0119 0.0090 0.0049
0.0077 0.0093 0.0075 0.0041
0.0070 0.0075 ) 0.0063 0.0034
0.0057 0.0060 - 0.0053 : 0.0029
0.0049 0.0048 0.0045 0.0025
0.0035 0.0039 0.0039 0.0021

0.0028 0.0030 0.0032 0.0018
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Mean relative Mean relative

abundance abundance Standard deviation 95% confidence
(observed) (expected) (expected) interval (expected)
0.0022 0.0024 0.0028 0.0015
0.0018 0.0019 0.0024 0.0013
0.0014 0.0014 0.0019 0.0010
0.0012 0.0010 0.0015 0.0008
0.0007 0.0007 0.0011 0.0006
0.0004 0.0005 0.0008 0.0004
0.0002 0.0003 0.0005 0.0003
0.0002 0.0001 0.0003 0.0001

Finally, the mean observed abundances can be superimposed on a graph show-
ing the mean [+ confidence interval) expected values [Figure EG). In this case the
agreement between the observed data and the pattern predicted by the random
fraction model is good, implying that the niches that the species occupy may
indeed be subdivided according to the scenario envisaged. More detailed field
analyses and experiments would be needed to test this hypothesis.
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Figure E6 Mean relative abundance of observed species rank [¢] superimposed on the
mearn (+95% confidence intervals) expected abundance (shown as bars). Expected
abundances were calculated using PowerNiche with n=250replications. All of the
observed values lie within the 95% confidence intervals.

Worked example 6: the Q statistic

The Q statistic (Kempton & Taylor 1976, 1978) is a measure of the interquartile
slope of the cumulative species abundance curve (see Figure 4.2). Itis arobust and
useful measure and does not require the fitting of a species abundance distribu-
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tion, nor does it make assumptions about the shape of the underlying abundance
distribution. The calculations are illustrated using data on ground flora in Breen
oakwood, Northern Ireland. I sampled the vegetation using 50 randomly placed
point quadrats. Abundances are the number of hits {or points) per species.

Species Abundance
Luzula sylvatica 170
Deschampsia flexuosa 140
Vaccinium myrtillus 133
Oxalis acetosella 63
Molinia caerula 52
Polytrichum formosum 38
Holcus lanatus 37
Rhytidiadelphus triquetrus 33
Anthoxanthus odoratum 33
Pteridium aquilinum 29
Potentilla erecta 20
Thuidium tamariscinum 15
Sphagnum acutifolium 15
Agrostis tenuis 14
Juncus effusus - 13
Dicranum majus 1
Blechnum spicant 10
Rhytidiadelphus squarrosus 9
Sphagnum palustre 8
Calluna vulgaris 7
Hypnum cupressiforme 6
Holcus mollis 6
Rhytidiadelphus loreus 4
Dryopteris dilitata 4
Pseudoscleropodium purum 3
Mnium hornum 3
Gallium saxatile 3
Carex flexuosa 3
Poa trivialis 2
Number of species (S) 29
Number of individuals (N) 884

To calculate the Q statistic, assemble a table showing the cumulative number
of species against abundances (as below) and use this to locate the positions of the
lower and upper quartiles, that is the points at which 25% and 75 % of the species
lie. One-quarter of 29 species is 7.25 while three-quarters of 29 is 21.75. The
lower quartile (R;) should be chosen so that the cumulative number of species in
the class in which it occurs is greater than, or equal to, 25% of the total number
of species. Likewise, the upper quartile, R, fallsin the class with greater than, or
equal to, 75% of the total number of species. In this example R, occurs when the
cumulative numberof species reaches 9 and R, is found at the point where the cu-
mulative number is 22. The exact choice of R, and R, is relatively unimportant.
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Derrycunnihy Muckross yew Sitka spruce
oakwood wood plot
Song thrush 2 6 0
Redstart 1 0 0
Mistle thrush 1 0 0
Dunnock 1 0 0
Sparrow hawk 1 1 0
Long-eared owl 0 1 0
Jay 0 1 0
Chiff chaff 0 0 1
Total number of species (S) 20 15 8
Total number of territories (N} 170 110 75

Calculations will be demonstrated using the Derrycunnihy wood and results
from the other two samples presented for comparison.

Shannon index

The Shannon index is calculated using the following equation:

H'=-3 p;Inp,

where p,=n,/N; n;=the abundance of the ith species; and N=the total abundance
(total number of territories in this example).

A spreadsheet is ideal for the calculations. This example uses Excel. The first
column sets out the abundance of all 20 species in turn (ignoring those not pre-
sent in this particular assemblage]. The next column calculates p; for each of
these species; for example, 35/170 = 0.206. The next stage is to take the log of
this value (as in In (0.206) = -1.580). I have followed usual practice in using the
natural log (In) here. Multiply these two values [n; and In (n,]) and then simply
sum them. The minus sign in the summation (a result of taking logs of propor-
tions) is cancelled out by the minus sign in the equation. In this example, there-
fore, H'=2.408.

Evenness can also be estimated:

J'=H'/H_, =H’/InS=2.408/In20 = 0.804

n; n/N In(n,/N) n;/NxIn(n;/N)
Chaffinch 35 0.206 -1.580 -0.325
Robin 26 0.153 -1.878 -0.287
Blue tit 25 0.147 -1.917 -0.282
Goldcrest 21 0.124 -2.091 -0.258
Wren 16 0.094 -2.363 -0.222

Coal tit 11 0.065 -2.738 -0.177
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n n/N In(n,/N) n;/N*In(n,/N)
Spotted flycatcher 6 0.035 -3.344 -0.118
Tree creeper 5 0.029 -3.526 -0.104
Siskin 3 0.018 —-4,037 -0.071
Blackbird 3 0.018 -4.037 -0.071
Great tit 3 0.018 -4.037 —0.071
Long-toiled tit 3 0.018 -4,037 —0.071
Woodpigeon 3 0.018 —-4.037 -0.071
Hooded crow 2 0.012 -4.443 -0.052
Woodcock 2 0.012 —4.443 —0.052
Song thrush 2 0.012 —4.443 -0.052
Redstart 1 0.006 -5.136 —-0.030
Mistle thrush 1 0.006 -5.136 -0.030
Dunnock 1 0.006 -5.136 -0.030
Sparrow hawk 1 0.006 -5.136 -0.030
Sum of (n,/N)+(In (n,/N})) -2.408
Simpson index

Simpson’s index is calculated as:

_y(n(m =1 ]
b= 2[ N(N-1)

Once again a spreadsheet provides a quick and convenient solution. Succes-
sive columns can be used to work through the calculations as shown. The sum
of the final column gives the value D, which is the probability of two individuals
belonging to the same species. Here the answeris 0.1147. To represent the diver-
sity of the assemblage this value should be expressed as the complement (1 - D)

or reciprocal (1/D). For example, the reciprocal form (1/D)=8.718. Evenness can
be estimated by dividing this value by S:

(l D) 8.718
EI/D = /T = T = 0436
n; n;_, mx(n,_y)  (nx (0, )IN=(N-1))

Chaffinch 35 34 1,190 0.0414
Robin 26 25 650 ‘ 0.0226
Blue tit 25 24 600 0.0209
Goldcrest 21 20 420 0.0146
Wren 16 15 240 0.0084
Coal tit 11 10 110 0.0038
Spotted flycatcher 6 5 30 0.0010
Tree creeper 5 4 20 0.0007
Siskin 3 2 6 0.0002
Blackbird 3 2 6 0.0002
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n; n;,_, nx(n;_,) (nx (n,_,))/(N«(N-1))

Great tit 3 2 6 0.0002
Long-tailed tit 3 2 6 0.0002
Woodpigeon 3 2 6 0.0002
Hooded crow 2 1 2 0.0001
Woodcock 2 1 2 0.0001
Song thrush 2 1 2 0.0001
Redstart 1 0 0 0.0000
Mistle thrush 1 0 0 0.0000
Dunnock 1 0 0 0.0000
Sparrow hawk 1 0 0 0.0000
Sum of (n*(n;_)/IN*(N-1)) . 0.1147
N 170

N«(N-1) 28,730

Berger-Parker index

The Berger-Parker index is simply the proportional abundance of the most
abundant species. It is often reported in its reciprocal form. In this case:

d=Nmx _ 35 _ 906
N 170

Rank/abundance plots (Figure E8) and diversity statistics indicate that the
sitka spruce bird assemblage is less diverse than the others. Although Derry-
cunnihy oakwood has the most species, the Muckross yew assemblage is more
equitable. Thus, while the Shannon index, which emphasizes the richness
component of diversity, ranks Derrycunnihy as the most diverse, the Simpson
and Berger-Parker measures, which place more weight on evenness, conclude
that the breeding bird assemblage at Muckross has the highest diversity. To
attach confidence limits to these estimates, it is necessary to have a number of
replicate samples from each assemblage type. Worked example 8 shows how
this is done.

1 4

° Derrycunnihy oakwood | Muckross yew wood 7 Sitka spruce plot
B
5 01 b -
3 .
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&5 001 4 : 4
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Species rank

Figure EB Rank/abundance plots illustrating the breeding bird assemblages in the
three woodlands.
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Shannon H’ Simpson (1/D) Berger—Parker(1/d)
Derrycunnihy 2.408 8.718 4.85
Muckross 2.346 9.181 524
Sitka plot 1.715 4.505 25

Worked example 8: jackknifing, an index of diversity

The jackknife technique is a general method that reduces the bias of an estimate
and can be used to generate a standard error for the statistic of interest {Sokal &
Rohlf 1995}. It has a wide application, including species richness estimation (see
Chapter 3). Here itis used toimprove the estimate of adiversity statistic. This ex-
ample employs the reciprocal form of the Simpson index; most other measures
can be treated in the same way. Since the technique repeatedly recalculates
the statistic of interest, missing out each sample in turn, it is essential to
have replicate data. The approach is illustrated using the abundance (number
of individuals) of carabid beetles sampled in 16 plots in an English hedgerow
(appendix A, Maudsley et al. 2002).

Species

—

-
(-]

—
[ N

-—
w

-
F Y

-—
w

-
[ )

Agonum dorsale

Agonum muellerii
Asaphidion flavipes
Badister bipustulatus
Bembidion aeneum
Bembidion guttula
Bembidion lampros
Bembidion lunulatum
Bembidion obtusum
Bembidion quadrimaculatum
Bembidion tetracolum
Demetrias atricapillus
Dromius linearis

Harpalus rufipes

Harpalus rufibarbis
Metabletus obscuroguttatus
Notiophilus biguttatus
Pterostichus diligens
Pterostichus strennus
Pterostichus vernalis
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The first step is to calculate the diversity of all 16 plots combined. The equa-
tion for Simpson’s index is shown below [the method is described in Worked

example 7). As before a spreadsheet is used for the calculations.
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n,(n; -1)
D= i\q
2 [ N(N-1) ]
In this case D=0.179. The reciprocal form of the index (1/D)=5.5743. This is the
sample statistic St.
Next, recalculate the diversity index n times (where n = the number of sam-
ples) missing out each sample (i] in turn. These statistics are St_;. For example

St_s uses samples 1-4 and 6-16 to estimate Simpson's diversity.
The pseudovalues, ¢, can then be calculated:

¢, =nSt—[(n-1)St_,]

For example St_,=5.5284; ¢, =16%5.5743 - 15%5.5284=6.2637.

Pseudovalues for the other samples in the carabid data set are shown in the
table below. The jackknifed estimate of the diversity statistic is simply the mean
of these pseudovalues:

$=& =7.0231
n

The approximate standard error of the jackknifed estimate is:

= Z(q’i_@z_
SE.¢= —n(n—l) =1.0109

95% confidence limits are set in the usual way, i.e.:
o x tO.OS(n—l)S'E‘$

to.osias < 15) = 2-131. The confidence limits are 7.0231 + 2.1543. The lower confi-
dence limit is thus 4.8688 and the upper confidence limit is 9.1773. Although the
jackknifed estimate of diversity (7.02] is higher than the estimate for the whole
data set combined (5.57), this latter value falls within the jackknified confidence
limits. Indeed these confidence limits are rather large — a product of the fact that
most samples are rather species poor and most species in them are represented by
singletons.

D 1/D(St.) nSt—[(n—1)St ]

1 0.182 5.5063 6.5950
2 0.184 5.4354 7.6584
3 0.174 57434 3.0373
4 0.187 5.3570 8.8345
5 0.181 5.5284 6.2627
6 0.201 4.9751 14.5616
7 0.178 56112 5.0206
8 0.180 5.5552 5.8603
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D 1/D(St.) naSt-[(n-1)5t_]

9 0.181 55136 6.4849
10 0.191 5.2414 10.5673
" 0.163 6.1362 -2.8537
12 0.198 5.0621 13.2580
13 0.185 5.4091 8.0524
14 0.180 5.5501 5.9370
15 0177 5.6642 4.2254
16 0.187 5.3548 8.8673
Mean pseudovalue 7.0231

Sokal and Rohlf {1995} suggest that statistics that are bounded in range should
be transformed before pseudovalues are calculated. It would, for example, be ap-
propriate to use the z-transformation (tanh™!] if the complement of Simpson’s
index (1 - D) were adopted.

Worked example 9; measures of B diversity

Cunningham et al. (2002) assessed the reaction of lizards to a catastrophic wild-
fire in April 1996 in a central Arizona mountain range. Lizards were pit-trapped
from 1996 to 1999 in four vegetation types: burned chaparral, unburned chapar-
ral, burned forest, and unburned forest. The table shows the total number of
species and individuals collected in each locality.

Burned Unburned Burned Unburned
Species chaparral chaparral forest forest
Western whiptail 357 52 7 0
Eastern fence lizard 124 138 450 126
Tree lizard 45 4 43 2
Sonoran spotted whiptail 34 6 16 0
Gila spotted whiptail 28 6 7 0
Plateau striped whiptail 27 17 34 2
Little striped whiptail 26 19 92 15
Banded gecko 22 1 7 0
Greater earless lizard 10 0 0
Collared lizard 8 8 1 0
Desert-grassland whiptail 3 3 1
Great plains skink 3 0 4 0
Desert spiny lizard 2 2 0 0
Short horned lizard 1 7 14 6
Gila monster 0 1 0 0
Madrean alligator lizard 0 1 14 7
Lesser earless lizard 0 0 0 1
Clark’s spiny lizard 0 0 0 1
No. of species (S) 14 14 13 9
No. of individuals (N) 690 265 702 161
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Whittaker’s measure By, (presence/absence data)

One of the simplest, and most effective, measures of B diversity was devised by
Whittaker (1960):

Bw =S/a

where S = the total number of species recorded in both sites; and o = the average
samplerichness. Itis used here to estimate p diversity between pairs of sites. Sub-
tracting 1 from the answer insures that the result falls between 0 (complete sim-
ilarity) and | (maximum B diversity).

For example, the comparison between burned and unburned chaparral yields:

Bw =(16/14)-1=0.143

indicating low B diversity. The values for the complete set of pairwise com-
parisons are:

Unburned Burned Unburned

chaparral forest forest
; Burned choparral 0.14 0.1 0.48
~ Unburned chaparral 0.1 0.57
Burned forest 0.36

It is also possible to use Whittaker’s measure to calculate overall B diversity
across the assemblage as a whole. To do this total richness is simply divided by
meanrichness(18/12.2=1.44}. The maximum value of this statistic, found when
all sites have different species, will be the same as the number of sites. For exam-
ple, four sites each with 10 species, and no overlap, would produce the result
40/10 = 4. Other measures of a diversity, including Fisher’s o statistic, may be
substituted in the equation but the result will, of course, fall on a different scale.

Harrison et al. (1992) introduced a modification of Whittaker’s measure:

Br ={[(8/2) ~1]/(N - 1)} * 100

where § = the total number of species recorded; oo = mean species richness; and
N = the number of sites. The measure ranges from 0 [no turnover) to 100 [every
sample has a unique set of species). It can be used to estimate overall B diversity.
The answerhere {[(18/12.2] - 1]/(4-1)}*100=14.7

Marczewski-Steinhaus (MS) distance (Jaccard index')
(presence/absence data)

a

Cyc=l———--—
Ms a+b+c

1 The EstimateS package (http://viceroy.eeb.uconn.edu/EstimateS) will calculate the Jaccard,
Serensen quantitative, and Morisita-Horn measures.
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This measure is the complement of the familiar Jaccard similarity index:

_ a
T a+b+c

where a = the total number of species present in both samples; b = the number of
species present only in sample 1; and ¢ = the number of species present only in
sample 2. Thus C;=13/(13+2+2]=0.75 (burned chaparral and unburned chapar-
raljand Cy;=1- C;=0.25.

" The Cjvalues for all pairwise comparisons are:

Unburned Burned Unburned

chaparral forest forest
Burned chaparral 0.75 0.80 0.35
Unburned chaparral 0.80 0.44
Burned forest 0.47

e

Alternatively, the Jaccard index may be calculated using the following
equation;

a
c=—2 _
T~ a-B+C

where a = the number of species found in both sites; B = the total number of
species in sample 1; and C = the total number of species in sample 2.
A check using the burned and unburned chaparral sites confirms this:

C;=12/(12-14+14)=0.75

As suggested by Pielou [see Colwell & Coddington 1994), the statistic can also
be adapted to give a single measure of complementarity across a set of samples or
alonga transect:

U.
CT — Zn jk

where Uy = S, + S, — 2V, (= the number of species that are not shared). This
is summed across all pairs of samples. Vi = the number of species common to
the two lists j and k (the same value as a in the formulae above; S;and S; = the
number of species in samples j and k, respectively (the same values as B and C in
the previous equation); and n=the number of samples.

Inthiscase C;=[(14+14-2x12)+(14+13-2x 12)+...+({13+9-2x7]|/4=

38/4=9.5.
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Serensen quantitative index (abundance data)

G UN
(Na + Nb)
where N, = the total number of individuals in site A; N}, = the total number of
individuals in site B; and 2jN = the sum of the lower of the two abundances
for species found in both sites.

For the burned and unburned chaparral pairwise test this works out as: Cy =
[2% (52 +124+ . .. +1)]/(690 +265) = 2 x 243)/955 = 0.50.

Results for the complete set of comparisons are as follow:

Unburned Burned Unburned

chaparral forest forest
Burned chaparral 05 0.39 0.34
Unburned chaparral 0.45 0.72
Burned forest 0.37

This is a similarity measure, therefore the higher the value of the index, the
more similar the sites will be [that is the lower the B diversity). Thus, as with the
Jaccard coefficient, the measure can be transformed into an index of B diversity
by subtracting the result from 1.

Morisita—Horn index (abundance data)
The equation for this is:

22 (a7b;)

Ot =3+ d,)* (N, *N;)

where N, =the total number of individuals at site A; N}, = the total number of in-
dividuals at site B; a,= the number of individuals in the ith species in A; b, = the
number of individuals in the ith species in B; and d, (and d, ) are calculated as fol-
lows:

, Sa

a Ng,

d,=0.3127 and d, =0.3220.
In this example: Cpyp;=(2+37,287}/[0.3127 +0.3220) * 690 + 265] = 0.6426.
The results for all comparisons are:

Unburned Burned Unburned

chaparral forest forest
Burned chaparral 0.64 0.36 0.31
Unburned chaparral 093 0.88

Burned forest 097
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Thisisalsoasimilarity measure. Subtract the result from 1 to obtain a measure
of dissimilarity (B diversity).

Although the different methods yield slightly different answers they consis-
tently highlight higher B diversity between the burned chaparral and unburned
forest.
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Page numbers in bold refer to tables, and those in italic refer to figures

ABC (abundance/biomass comparison|}
curves, 24-5,25,139-40, 155,
155-7

summary statistic (W), 156

abundance (species abundance), 18-71, 129

body size relationship, 129-30

data presentation, 21-7

abundance/biomass comparison (ABC
curves), 24-5,25

k-dominance plot, 24, 24

log normal distribution, 23, 23, 39

log series distribution, 23,23, 29-30

Q statistic, 25

rank/abundance (Whittaker| plots,
21-3,22,23

definitions, 7, 8

distribution models, 18-19, 23, 23, 39

comparison of communities, 143

environmental assessment, 157

limitations, 19

SHE analysis, 110, 111

spatial scale effects, 187-8, 188
evenness see evenness

models, 15-16,27-43

biological/theoretical, 16,28, 29,
45-61

deterministic, 16, 61, 62

goodness of fit tests, 43-5

statistical, 16,27,28-43,29,61

stochastic, 16, 61, 62

patterns investigation, 646

replicated observations, 61

resource competition, 20, 21

species richness estimation, 81, 83, 846
sampling effects, 73, 75
units of measurement, 12,131, 13842
variation in assemblages, 18, 19
abundance-based coverage estimator
(ACE), 68, 88,90, 93,176,177
aggregated species, 136, 144
aims of investigation, 64, 101, 148
algae, 26
allopatric speciation, 53
alpha see log series a
alphadiversity, 9, 162, 163, 190-1
definitions, 164
spatial scale, 15,162-3, 164, 165
altitude gradients, 187
Amazon manatee {Trichechus inuguis), 2
Amazon tropical forest, 97, 185
birds, 66
butterflies, 95, 96
trees, 66
varzeaforest, 1,2
analysis of similarities [ANOSIM), 180-1
ANOVA, 134,151, 157
ants, 36, 68, 86, 93,97
Appalachia, 85

Arapaima gigas [pirarucu), 2

arthropod sampling techniques, 132, 137
assemblage species richness, 165
assemblages, 13, 18
boundaries of investigation, 15, 64-5
definitions, 13
investigational domains, 14, 14
niche-based models, 46
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resident/transient species, 142
species abundance variation, 18, 19
Atlantic Ocean, 124, 181
Atlas Mountains, 69
Australia, 159

bees, 157
beetles, 3, 26, 90-2, 91
benthic communities, 24, 3940, 58, 108,
134, 140, 150, 159, 187
ABC curves, 155
fishing-related disturbance, 156
Berger-Parker (dominance)index, 101,
117,118, 145, 146
relationships between indices, 149
worked example, 237, 240-1, 240
beta diversity, 16, 162-84, 163, 191
community comparisons, 179-82, 182
complementarity, 172
definitions, 162, 163
estimating true number of shared
species, 176-7,177,178,178
estimation from species richness, 166
measurement, 4, 167-76
complementarity/similarity indices,
172,172-6
incidence data, 141
null models, 190
sample size effects, 166-7, 168
scale dependence, 15, 163, 164
practical aspects, 177-9
beta diversity indices, 167-72
Cody’s measure (Bc), 170,171
evaluation, 171
Routledge’s measures (B, B;, and By,
170,171
Whittaker’s measure (By), 167, 169,
171
Wilson and Shmida’s index (), 170-1
worked example, 243-7
biodiversity (biological diversity), 6-9
abundance measures, 8
conservation, 10-11
definitions, 6-7,8,9
origin of term, 6
taxonomic measures, 8
use of term, 6-7, 7
see also diversity
biodiversity movement, 7
biogeographic species richness, 165
biological diversity see biodiversity
(biological diversity)
biological species concept, 72
biological {theoretical) models, 16, 28, 29,
45-58
deterministic, 47-8
ecological/evolutionary processes, 467
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larger assemblages, 46
stochastic, 47-8
biomass as abundance measure, 139-40,
141, 142
birds, 2, 3, 27,36, 41, 66,92, 97,133, 134,
138, 164,176,187
vagrant species, 142
black-headed squirrel monkey (Saimiri
vanzolinii), 2
body size, 187
species abundance relationship, 129-30
bootstrap estimators, 90, 93
bootstrapping, 152
Bray—Curtis presence/absence coefficient,
167,173,174
Brazil, 1, 144, 145, 185
Brillouin index, 113-14
taxonomic diversity incorporation, 122
British birds, 27
vagrant species, 142
broken stick model, 25, 44, 45,47, 50-1,
63
computer software, 54
fitting empirical data, 51
rank/abundance plots, 23, 23
SHE analysis, 110,111
species richness extrapolations, 81, 83
bryophytes, 140
bryozoans, 139, 181, 189
butterflies, 3, 69, 95, 96,97, 106, 150, 176,
177,178,178, 187

Cacajao calvus (white uacari), 2
Cameroon, 73, 133, 169, 186
Canada, 143, 157
canonical log normal, 34, 35, 36
Carmargo’s evenness index, 118-19, 121
Cedar Creek Natural History Area, 191
central limit theorem, 34
Chao estimators, 86-8, 92, 94, 95
Chao 1,87, 90,92, 93, 138
Chao 2, 87-8,90, 92,93
chi? test, 43-4
Chile, 134, 154
chironomids, 54
cladocera, 6
clonal species, 139
cluster analysis, 179
cockroaches, 175
Cody’s measure (B}, 170,171
Cohen estimator, 86
cohesion concept, 72
Coleman curves, 144
collectors curves see species accumulation
curves
commercial trawling, 154
commonness, 4, 18-71
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communities, 12-13
B diversity comparisons, 179-82, 182
definitions, 13
investigational approaches, 13-14, 14
permanent/occasional species
components, 41-2, 42
ranking, 149-50, 150
statistical comparisons, 143-53
null models, 152-3
temporal/ecological validity, 14-15
community saturation, 129
community structure, 188-9
geometric series model, 49
neutral model [Caswell], 58-9
comparative diversity studies, 131, 143-61
competition, 64
niche-based models, 46, 58, 61
species abundance influence, 20, 21
complementarity, 172, 172
B diversity measurement, 172, 1726
shared species estimation, 177, 178
composite model, 52, 53, 58
computer software, 4-5, 5
computer technology, 4
e-science, 191
conifer woodland, 32, 33
conservation, 10-11, 70, 141, 185, 186, 192
site complementarity, 172
taxonomic bias, 187
taxonomic diversity measures, 121
terrestrial/marine systems, 189
continuous log normal distribution, 39, 85,
86
corals, 139, 140
Costa Rica, 36, 68, 81, 83, 92,93, 137
cover as abundance measure, 140, 141
coverage estimators, 88

data collection problems, 16
data set availability, 191
deep-sea species richness, 74
deer, 140
deer (Odocoileus sp.), 13
delta diversity, 163
dendrograms, 179-80, 180
deterministic models, 47-8, 49, 61, 62
diatoms, 36
differentiation diversity, 163, 164, 164,
166
discrete log normal, 39
disturbed sites
ABC curves, 24, 155-7
B diversity comparisons, 181-2, 182
neutral model [Caswell}deviation
statistic (V], 59
probability plots, 39-40
SHE analysis, 110

Index

species accumulation curves, 95, 96
see also environmental assessment
diversity, 10
comparative studies, 131, 143-61
differentiation, 163, 164, 164, 166
ecosystem function covariance, 10
inventory, 163, 164, 164, 166
investigational domains, 13-14, 14
pattern, 163
point, 163, 164
scales
hierarchy, 163, 164
terminology, 163-5, 165
units of measurement, 12
see also biodiversity (biological
diversity); ecological diversity
diversity indices, 8,9, 28, 72, 76-7, 100-30
body size-based, 129-30
confidence limits, 152
jackknifing, 151-2
worked example, 241-3
sampling effort effects, 134
selection, 101
statistical tests, 151
diversity measures, 16, 102
B diversity estimation, 166
comparison of communities, 148-52
ranking communities, 149-50, 150
relationships between indices, 148-9
environmental assessment, 153-60
log series a, 29, 30-1, 41
nonparametric, 106-21
dominance/evenness measures,
114-21
information statistics, 106-14
parametric, 102-6
see also taxonomic distinctness
dominance, 18
environmental degradation-related
shifts, 157-9
measures, 114-21
rank/abundance plots, 23
dominance decay model, 28, 48,51, 53,57
dominance/diversity curve see
rank/abundance plot
dominance index see Berger-Parker
(dominance} index
dominance pre-emption model, 28,48, 51,
52,53
Drosophila, 144, 145
Duncan’s multiple range test, 45

e-science, 191
ecological diversity, 6-9
definitions, 7-8
measures, 8
use of term, 6-7,7



Index

ecological processes, 46-7
edge effects, 98, 137
species richness studies, 73
Ekman grab samples, 134
elasmobranchs, 154
endemic species, 11
ensembles, 13
definitions, 14, 14
investigational approaches, 14
environmental assessment, 16, 153-60
ABC curves, 155-7
dominance shifts, 157-9
indicator species, 159
indices of biotic integrity (IBI}, 159-60
null models, 190
species abundance distributions, 157
taxonomic distinctness, 122, 1534, 155,
158
epsilon diversity, 163, 165
EstimateS, 87,95, 144, 145
eutrophication, 160
evenness, 8,9, 18,20
broken stick model, 51
definition, 9, 18
dominance decay model, 52, 57
geometric series model, 49
MacArthur fraction model, 52
measures, 102, 108-9, 113, 114-21
Smith and Wilson’s evaluation,
119-21,120
niche apportionment models, 48, 61
power fraction model, 52
random fraction model, 52
rank/abundance plots, 22-3, 23
species accumulation curves, 95,97
species richness studies, 73
evolutionrates, 4
evolutionary processes, 46-7
experimental manipulations, 65
extinctions, 4,129, 185

Fallopia japonica (Japanese knotweed),
139

family-level richness, 98

Finland, 134

fish, 1,2, 2, 20,67, 69, 69, 74, 82,90,
118,124, 126,127,142, 147, 154,
155,156, 158, 158, 159, 181, 182,
190

clonal reproduction, 139

Fisherplots, 26

fossil record, 14

France, 159

frequency as abundance measure, 30, 141

functional diversity, 128-9

fundamental niche, 45-6

fungi, 185
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Gtest, 43

Galapdgos Islands, 131

gamma diversity
o/ diversity contribution, 166-7
sample size effects, 166-7, 168
scale, 163, 165

Garwhal Himalaya, 97

gastropods, 36

genetic diversity [within-species

diversity), 6,7, 11

genus-level richness, 98

geographic boundaries
investigational domains, 13-14, 14
spatial scale of investigation, 15, 187-8

geometric series, 18-19, 23, 44, 45,47,

48-50,49, 65, 191

ecological processes, 31-2
environmental assessment, 157
rank/abundance plots, 23, 23
spatial scale effects, 187, 188
worked example, 226-9, 229

Glacier National Park, Montana, 83

global diversity estimates, 98, 185, 186

goodness of fit tests, 43-5

grasses, 140

grasshopper (Orchelimum sp.), 13

Great Smoky Mountains, 83

Greece, 142, 160

grid squares, 76, 164, 165

guilds, 13

habitat species richness, 165
Heip’s index of evenness, 109
heterogeneity measures, 9, 16, 102
Holcus mollis, 139

Hughes’ dynamic model, 58
human resource exploitation, 185
Hutcheson’s t test, 108

hypothesis testing, 10, 64

immigration, 15
neutral theory (Hubbell), 60
incidence-based coverage estimator [ICE),
88-9,90,93
incidence/occurrence data
abundance measure, 141
species richness estimation, 76
India, 134
Garwhal Himalaya, 97
indices of biotic integrity (IBI), 159—60
individual-based sampling, 76, 132-3
individuals as abundance units, 29, 139,
142
information statistics, 106-14

‘infratidal macrofauna, 156

Inia geoffrensis, 2
insects, 67, 68,98
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intertidal zone, 140

inventory diversity, 163, 164, 164, 166

invertebrates, 2, 3, 187

Irish woodland, 27, 33, 104,110, 112, 135,
180

island biogeography, 4, 59, 83, 142, 182

Jaccard index, 167,172-3, 181, 183
worked example, 244-5
Jackknife 1, 89
Jackknife 2, 89, 90, 92, 93
jackknife estimators, 86, 89,92, 93, 95
jackknifing diversity measures, 151-2
sampling repetitions, 134
worked example, 241-3
Japanese knotweed {Fallopia japonica),
139
Johannesburg World Summit (2002},
185-6

k-dominance plots, 24,24, 155
Kenya, 130
Kolmogorov-Smirnov goodness of fit
(GOF] test, 44
Kolmogorov-Smirnov two-sample test, 44,
66,143,182
worked example, 223-6, 225

Lake Mikri Prespa, 142
Lake Victoria, 46, 47
landscapes, 15, 165,187,189
ydiversity, 163
large area species richness, 165
latitudinal gradients, 4, 187
light traps, 113, 136
linear regression, 65
liverworts, 97
log normal distribution, 15, 16, 28, 32,
34-43,44,143, 191
B diversity comparisons, 181
biological explanations, 36
community permanent species, 41
continuous, 39, 85, 86
environmental assessment, 157
features of distribution, 32, 34, 34-5
fitting to empirical data
unveiling distribution, 36-40
veil lines, 36, 37,38
form of abundance data, 85
graphic presentation, 39-40
left-skewed distribution, 41, 42
neutral theory (Hubbell}, 60
overlapping distributions, 40, 40-2
Poisson/discrete log normal, 39, 85
rank/abundance plots, 23, 23
Preston plot, 25, 27
SHE analysis, 110, 111

Index

spatial scale effects, 187, 188
species richness estimation, 84, 85-6
statistical explanations, 35
truncated, 38, 40, 65
worked example, 220-2, 223
lognormal A, 39, 103, 104
log series a, 29, 30-1, 101, 102-3, 104, 148
log series distribution, 16, 19,27, 28-32,
30,40-1,47,65-6, 68
community occasional species, 41
ecological processes, 31-2
form of abundance data, 29-30
log series index (a), 29, 30-1, 101, 102-3,
104,148
neutral theory (Hubbell), 60
rank/abundance plots, 23, 23, 25-6
Fisher plot, 26
rarefaction, 147-8
sampling distribution, 31
SHE analysis, 110, 111
spatial scale effects, 187, 188
species richness estimation, 84-5
worked example, 216-20, 219
Lolium perenne, 32

MacArthur fraction model, 47, 48, 51, 53,
56-7,63
macrolichens, 97
Malaysia, 74, 134
Mamiraua Sustainable Development
Reserve, 1-3,2
mammals, 2,74,112,130
USA abundance, 19 .
Marczewski-Steinhaus (MS) distance, 172,
173
worked example, 244-5
Margalef diversity index, 76, 125, 126
marine communities, 189
mark-recapture analysis, 86
MciIntosh Uindex, 116-17
Menhinick’s index, 77
metacommunities, 59, 60
Mexico, 112, 156
Michaelis—Menten model, 81, 83, 90,92,
93
application as sampling stopping rule, 94
microbial diversity, 11
Microtus sp., 13
migrant species, 183
species abundance distribution
characteristics, 41-2, 42
modular units, 139
Molinari test, 121
mollusks, 3
Monte Carlo methods, 63
Morisita—Horn (MH]) index, 174-5, 182
worked example, 246-7



Index

Morocco, 69

morphospecies, 73

morphotypes, 73

mosses, 97

moths, 36, 38, 138, 143, 180
multidimensional scaling (MDS), 180

Nee, Harvey, and Cotgreave’s evenness
measure, 117-18, 121
negative binomial model, 42
negative exponential model, 81
nematodes, 73, 124, 154
netting, 12 .
neutral model (Caswell), 57, 58-9
neutral theory (Hubbell}, 41, 59-61, 190
biodiversity number (g), 60, 61
niche apportionment, 11
species abundance influence, 21
niche apportionment models, 4, 10,28, 41,
45,47-8,129
computer software, 54
fitting to empirical data, 614, 63
fundamental/realized niche, 45-6
larger assemblages, 46
niche filling, 47
niche fragmentation, 46-7
replicate sampling, 134
spatial scale, 15
Tokeshi’s models, 51, 51-8, 53, 65
units of abundance, 139
worked example, 2304, 231, 234
niche filling, 47, 52
niche fragmentation, 46-7, 52, 56, 62, 139
niche invasion
biological models, 456, 47
geometric series model, 31,45
log normal model, 36
log series model, 31
niche pre-emption hypothesis, 48
niche space, 45
nonrepetitive sampling, 136
Norway, 150, 159,187
null models, 5, 10, 15, 152-3, 189-90
methodological issues, 190-1
number of species, 6
global diversity estimates, 98, 185, 186
large geographic scales, 186-7
relationships between indices, 149
shared species estimation, 176-7, 178,
178
species richness, 75-6

occurrence (frequency]data, 30, 141
ocean, 189

octaves, 32

Odocoileus sp. (deer), 13
Orchelimum sp. (grasshopper), 13
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Oreochromis niloticus (tilapia), 127, 154
overlapping niches, 45

Palaeozoic diversity changes, 1834
particulate niche, 45
patchiness, 92-3
pattern diversity, 163
Peru, 66, 81
phylogenetic diversity, 122, 123
phylogenetic investigational approach,
13-14, 14
phylogenetic species concept, 72
Picea abies, 106
pirarucu (Arapaima gigas), 2
pitfall traps, 76
plankton hauls, 76, 78
plants, 36, 69, 69, 74, 83,92, 97, 139
cover as abundance measure, 140
modular units of abundance, 139
Poecilia sp., 139
Poeciliopsis sp., 139
point diversity, 163, 164
point quadrats, 140-1
point species richness, 165
Poisson log normal, 39, 85
pollution
environmental assessment
ABC curves, 155-6, 157
taxonomic distinctness, 154
species richness, 157-9
see also disturbed sites; environmental
assessment
polychaetes, 156
pooled quadrat method, 79
Populus tremuloides (quaking aspen), 139
power fraction model, 41, 48, 51, 54-6, 63,
65,191
computer software, 54
PowerNiche, 36, 54
Preston plot, 25,27, 32
Preston’s canonical hypothesis, 34
PRIMER, 128,179, 181
principal component analysis, 180
probability plots, 39
pseudoreplicate sampling, 136

Q statistic, 25, 103, 104, 105, 105-6
worked example, 234-6, 237
quadrats, 76, 78, 132, 136, 140
point, 140-1
quaking aspen (Populus tremuloides),
139
quartile criterion of rarity, 58, 66, 70
Queen Charlotte Islands, 92

random assortment model, 48, 52, 53, 57,
153,190
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random fraction model, 36, 48, 51, 52-3,
53,54, 56, 65,191
computer software, 54
species richness extrapolations, 81, 83
random niche boundary hypothesis see
broken stick model
range size, 68-9
quantification, 69
rank/abundance (Whittaker) plot, 21-3, 22,
23,65,143
rankings of assemblages, 12, 16
rarefaction, 144-8, 145, 146
individual-based, 147
log series distribution, 147-8
sample-based, 147
species numbers estimation, 84-5
rarefaction curves
software, 145
species accumulation curve
comparisons, 79, 80
rarity, 4, 18-71
categories/determinant variables, 69, 69,
70
definitions, 66-7, 68-9
absolute, 67
quartile criterion, 58, 66, 67, 70
log normal model, 41
log series model, 31-2
sampling methodology, 68
singleton species, 67, 68
species richness estimator performance,
93
realized niche, 45-6
red data book, 70
remote sensing, 97, 140
replicate sampling, 61, 63, 64,101, 134-5,
136
resident species, 142, 143, 189
resource apportionment models, 140
resources
competition, species abundance
influence, 20, 21
investigational approaches, 13-14, 14
Rio Earth Summit {1992}, 4
rocky shore, 20
Rothampsted Insect Survey, 149,175
Rothampsted Park Grass Experiment, 49,
49,76
Routledge’s measures (Bg, By, and Bg), 170,
171

Saimiri vanzolinii (black-headed squirrel
monkey), 2
sample numbers, 134-6
sample order randomization, 134, 135
sample size, 101, 125,135-6
B diversity effects, 166-7, 168

Index

influence on ranking of assemblages, 150
standardization, 133
stopping rules, 94
sample species richness, 165
sampling, 3, 4,19, 64, 78,131, 132-6
bias, 136
undersampling, 138
edge effects, 68, 73, 137
environmental assessment, 153
individual-based, 76, 132-3
nonrepetitive, 136
pseudoreplicate, 136
random, 136
rarity definitions, 68
replicate, 134-5, 136
sample-based, 76, 132-3
selectivity, 12
species richness studies, 73, 76, 77
stopping rules, 94, 133
subsamples, 136
techniques, 136-8, 137, 138
unsampled cases estimation, 86
sampling effort, 1334
high-diversity sites, 133
species accumulation curves, 78
species richness estimates, 76, 77, 77,
133,137-8, 143-4
stopping rules, 94, 133
taxonomic diversity measures, 123, 125,
126
scales of diversity, 163-6, 164, 165
Scotland, 3, 156, 164
Fife beetle species richness, 90-2, 91
self-similarity models, 14, 41
Shannon evenness measure, 108-9
Shannonindex, 8, 16, 101, 106-8, 116, 125,
126,134,145, 151,159
B diversity estimation, 166
randomization test, 152
ranking communities, 149, 150
relationships between indices, 149
statistical tests, 108
taxonomic diversity incorporation, 122 .
worked example, 237, 238
Shannon-Weaver index, 106
shared species estimator, 176
SHE analysis, 109-13, 111,112,116
similarity indices, 172, 172-6
Simpson index, 8, 95,96-7,101,114-15,
125,126,134, 148,151
B diversity estimation, 166
ranking communities, 149, 150
relationships between indices, 149
sample order randomization, 135
worked example, 237,239
Simpson’s measure of evenness, 101,
115-16,121
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singleton data, 67, 68, 85, 187
Siskiyou Mountains, 74, 163
Smith and Wilson’s evenness index, 119,
121
snakes, 27
soil bacteria, 13, 140
soil nutrients, 20
Sonoran desert, 140
Serensen quantitative index, 173, 1 74,
175
worked example, 246
Sotalia fluviatilis, 2
South Africa, 156
spatial diversity, 162-84
spatial scale, 12-15, 187-8
investigational domains, 13-14, 14
speciation, 534
neutral theory (Hubbell), 59, 60
species
abundance see abundance (species
abundance)
concepts, 72
discrimination, 72
evolution rates, 4
numbers see number of species; species
richness
resident versus transitory, 142, 143,
189
vagrant, 142-3
species accumulation curves, 2,2, 78,
78-84,95,132
intersecting curves, 95-6, 96, 97, 150
limitations, 95-7, 96
nonparametric estimator performance
evaluation, 94
rarefaction curves comparisons, 79, 80
sampling issues, 132-3
sample order randomization, 79, 83
sampling effort, 138
stoppingrules, 94
species abundance distribution
influence, 81, 83
species—area curves, 79
total species richness extrapolation,
79-80
asymptotic curve generation, 80, 81,
82,83
nonasymptotic curves, 80, 83—4
species-area curves, 14-15, 79, 83, 142-3,
188
log linear model, 83
log-log model, 83
species—arearelationship, 167, 178-9
species density, 76, 190
sampling issues, 132
sampling techniques, 137
Species Diversity and Richness, 179
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species packing, 129
species-rich assemblages, 546
species richness, 9, 72-99

assemblage, 165

B diversity estimation, 166

biogeographic, 165

comparison of communities, 143—4

definitions, 7, 8,9, 72

functional diversity relationship, 128,
129

global diversity estimates, 98, 185, 186

habitat, 165

indices, 76-7

large area, 165

point, 165

polluted/degraded sites, 157-9

rarefaction, 144-8

relationship to diversity measures, 149,
150

sample, 165

sample order randomization, 134, 135

sample size dependence, 143—4

sampling, 73,132

abundance distribution effects, 73,
75
techniques, 137 :

spatial scale of investigation, 15, 73, 74,
165, 165-6

species surrogates, 97-8

vagrant species counts, 142

species richness measures, 4, 9, 16, 74-97,

102
absolute measurement, 74
comparison of communities, 144
incidence/occurrence data, 76
indices, 76-7
individual-based assessment protocols,
76
nonparametric estimators, 86-93, 134,
138
evaluation, 90-3
overview, 95
patchiness impact, 923
sampling considerations/stopping
rules, 94
numerical species richness, 75-6
parametric methods, 84-6
log normal model, 84, 85-6
log series model, 84-5
sample-based assessment protocols,
76
sample size standardization, 133
sampling effort effects, 76, 77,133, 134,
137-8
species accummulation curves see
species accummulation curves
species density, 76



256 : 7 : Index

species surrogates, 97-8, 187
cross-taxon, 97
environmental, 97
within-taxon, 97
species-time curves, 142-3, 183,188
spiders, 81, 83, 85,92, 106,133,137, 138
statistical models, 16,27,29,61
larger assemblages, 46
species abundance models, 16,27,
28-43,29
stochastic models, 47-8
fitting to empirical data, 61, 62, 63
niche apportionment model, worked
example, 2304, 231,234
replicated observations, 61, 63
stopping rules, 94, 95, 133
subsamples, 136
succession, 12
geometric series model, 49
Zipf~-Mandelbrot model, 43
surrogates of species, 97-8, 187
cross-taxon, 97
disadvantages, 98
environmental, 97
within-taxon, 97
survey data biases, 2, 3
sustainable development, 185
Sweden, 106

ttests, 151,152
Taiwan, 176
Tanzania, 133, 137
taxonomic distinctness, 11,123, 167, 190
environmental assessment, 1534, 155,
158
measures, 8,101, 1334
taxonomic distinctness index [Clarke and
Warwick], 115, 123-8, 124
independence of sampling effort, 125,
126
taxonomic diversity, 121-8, 122
measures, 4,121-3
sampling effort effects, 123
taxonomic trees, 122,123
temporal diversity, 188-9
see also turnover
termites, 133
Thailand, 106, 176,177,178, 178
theoretical models see biological
[theoretical] models

tilapia (Oreochromis niloticus), 127, 154
time series, 136
Tokeshi’s models, 51, 51-8, 53, 65
transitory species, 142, 143, 189
trapping, 12
trawling, 154, 156
trees, 81,134
Trichechus inuguis (Amazon manatee], 2
Trinidad freshwater fish, 20, 67, 69, 82, 90,
118,126, 127,142, 147,154, 155,
156, 158,158,181, 182,190

tropical arthropods, 133
tropical dry forest, 106, 176
tropical rain forest, 81, 134

resource competition, 20
tropical species richness, 1, 74, 142
truncated log normal, 38, 40, 65

worked example, 220-2,223
turnover, 162, 165

marine, 189

measurement, 167,173

scale sensitivity, 177-8
turnover in time, 1824

see also temporal diversity

Tuscany, 141

unique singletons, 68
United States, 74, 159
units of abundance, 12, 131, 138-42

vagrant species, 142-3
vérzea habitat, 1

websites, 5, 5

weighting of individuals/species, 11-12,
129

white uacari [Cacajao calvus), 2

Whittaker (rank/abundance] plots, 21-2,
22,23, 65, 143

Whittaker’s measure (B}, 167, 169, 171

worked example, 244
Wilson and Shmida’s index (By), 1701
worked examples, 21647

Yuleindex, 114

“z"” values, 83

zero-sum multinomial distribution, 60, 61
Zipf-Mandelbrot model, 42-3, 44, 58, 141
zooplankton, 76, 142
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