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In recent years, avian systematics has been characterized by a diminished reliance on morphological cladistics of mod-
ern taxa, intensive palaeornithogical research stimulated by new discoveries and an inundation by analyses based
on DNA sequences. Unfortunately, in contrast to significant insights into basal origins, the broad picture of neor-
nithine phylogeny remains largely unresolved. Morphological studies have emphasized characters of use in palae-
ontological contexts. Molecular studies, following disillusionment with the pioneering, but non-cladistic, work of
Sibley and Ahlquist, have differed markedly from each other and from morphological works in both methods and find-
ings. Consequently, at the turn of the millennium, points of robust agreement among schools concerning higher-order
neornithine phylogeny have been limited to the two basalmost and several mid-level, primary groups. This paper
describes a phylogenetic (cladistic) analysis of 150 taxa of Neornithes, including exemplars from all non-passeriform
families, and subordinal representatives of Passeriformes. Thirty-five outgroup taxa encompassing Crocodylia, pre-
dominately theropod Dinosauria, and selected Mesozoic birds were used to root the trees. Based on study of specimens
and the literature, 2954 morphological characters were defined; these characters have been described in a companion
work, approximately one-third of which were multistate (i.e. comprised at least three states), and states within more
than one-half of these multistate characters were ordered for analysis. Complete heuristic searches using 10 000 ran-
dom-addition replicates recovered a total solution set of 97 well-resolved, most-parsimonious trees (MPTs). The set
of MPTs was confirmed by an expanded heuristic search based on 10 000 random-addition replicates and a full
ratchet-augmented exploration to ascertain global optima. A strict consensus tree of MPTs included only six tri-
chotomies, i.e. nodes differing topologically among MPTs. Bootstrapping (based on 10 000 replicates) percentages and
ratchet-minimized support (Bremer) indices indicated most nodes to be robust. Several fossil Neornithes (e.g. Dinor-
nithiformes, Aepyornithiformes) were placed within the ingroup a posteriori either through unconstrained, heursitic
searches based on the complete matrix augmented by these taxa separately or using backbone-constraints. Analysis
confirmed the topology among outgroup Theropoda and achieved robust resolution at virtually all levels of the Neor-
nithes. Findings included monophyly of the palaeognathous birds, comprising the sister taxa Tinamiformes and
ratites, respectively, and the Anseriformes and Galliformes as monophyletic sister-groups, together forming the sis-
ter-group to other Neornithes exclusive of the Palaeognathae (Neoaves). Noteworthy inferences include: (i) the sister-
group to remaining Neoaves comprises a diversity of marine and wading birds; (ii) Podicipedidae are the sister-group
of Gaviidae, and not closely related to the Phoenicopteridae, as recently suggested; (iii) the traditional Pelecaniformes,
including the shoebill (

 

Balaeniceps rex

 

) as sister-taxon to other members, are monophyletic; (iv) traditional Ciconi-
iformes are monophyletic; (v) Strigiformes and Falconiformes are sister-groups; (vi) Cathartidae is the sister-group
of the remaining Falconiformes; (vii) Ralliformes (Rallidae and Heliornithidae) are the sister-group to the mono-
phyletic Charadriiformes, with the traditionally composed Gruiformes and Turniciformes (Turnicidae and Mesitor-
nithidae) sequentially paraphyletic to the entire foregoing clade; (viii) 

 

Opisthocomus hoazin

 

 is the sister-taxon to the
Cuculiformes (including the Musophagidae); (ix) traditional Caprimulgiformes are monophyletic and the sister-group
of the Apodiformes; (x) Trogoniformes are the sister-group of Coliiformes; (xi) Coraciiformes, Piciformes and Passe-
riformes are mutually monophyletic and closely related; and (xii) the Galbulae are retained within the Piciformes.
Unresolved portions of the Neornithes (nodes having more than one most-parsimonious solution) comprised three
parts of the tree: (a) several interfamilial nodes within the Charadriiformes; (b) a trichotomy comprising the (i) Psit-
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taciformes, (ii) Columbiformes and (iii) Trogonomorphae (Trogoniformes, Coliiformes) 

 

+

 

 Passerimorphae (Coracii-
formes, Piciformes, Passeriformes); and (c) a trichotomy comprising the Coraciiformes, Piciformes and Passeriformes.
The remaining polytomies were among outgroups, although several of the highest-order nodes were only marginally
supported; however, the majority of nodes were resolved and met or surpassed conventional standards of support.
Quantitative comparisons with alternative hypotheses, examination of highly supportive and diagnostic characters
for higher taxa, correspondences with prior studies, complementarity and philosophical differences with palaeonto-
logical phylogenetics, promises and challenges of palaeogeography and calibration of evolutionary rates of birds, and
classes of promising evidence and future directions of study are reviewed. Homology, as applied to avian examples
of apparent homologues, is considered in terms of recent theory, and a revised annotated classification of higher-order
taxa of Neornithes and other closely related Theropoda is proposed. © 2007 The Linnean Society of London, 

 

Zoo-
logical Journal of the Linnean Society

 

, 2007, 

 

149

 

, 1–95.
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INTRODUCTION

 

‘But as far as the problem of the relationship of the orders of
birds is concerned, so many distinguished investigators have
labored in this field in vain, that little hope is left for spectacu-
lar break-throughs.’ (Stresemann, 1959: 277)

‘It must be remembered that the basic avian structure was
determined at an early stage in the evolutionary history of
birds because of the rigorous limitations placed upon a flying
vertebrate. Consequently, adaptations in the birds have been
along lines that are not always indicated by the details of anat-
omy, a fact that makes these vertebrates highly interesting to
the student of recent animals but difficult subjects for the
palaeontologist.’ (Colbert, 1980: 187)

 

M

 

ATURATION

 

 

 

OF

 

 

 

AVIAN

 

 

 

PHYLOGENETICS

 

Confines of tradition

 

: The opening quotation from Col-
bert (1980) clearly articulates a fundamental assump-
tion of functional constraint under which many avian
systematists laboured for more than a century (Wyles

 

et al.

 

, 1983). Apparently retarded rates of morpholog-
ical and molecular change (Primmer & Ellegren, 1998;
Stanley & Harrison, 1999) strongly influenced evolu-
tionary theory as applied to birds, e.g. prompting
assessment of phylogenetic principles for morphologi-
cally ‘uniform’ groups (Bock, 1963a). This duality –
higher-order diversity defying phylogenetic inference
and study of morphological variation lacking unified
phylogenetic focus – was influential during the last
century.

Avian systematics has followed a general tri-phasic
pattern: (i) a descriptive period – epitomized by the
landmark works by Huxley (1867), Fürbringer (1888)
and Gadow (1892, 1893), in which early classifications
of the period were based solely on anatomical evidence
and distinctly informal in nature (Seebohm, 1888,
1889, 1890a, b, c, 1895; Clark, 1901); (ii) a comparative
(multitaxic) period – typically confined to single skel-
etal elements, articulations, limbs or organ systems

(e.g. Bock, 1959, 1960a, b; Cracraft, 1968; Ames,
1971); and (iii) a phylogenetic period – the primary lit-
erature considered herein.

Important advances in avian systematics have been
typified by studies focused on key extant taxa – e.g.

 

Balaeniceps rex

 

 (Cottam, 1957) and 

 

Pedionomus
torquatus

 

 (Olson & Steadman, 1981) – or promising
aspects of anatomy – e.g. appendicular myology
(Garrod, 1873a, 1874) – as well as a few broad surveys
of modern taxa (Cracraft, 1986; Cracraft & Mindell,
1989). Regardless of method, however, scale of avian
phylogenetics seldom exceeded single orders prior to
1990, when palaeontological finds revived such broad
systematic endeavours. From the earliest years of
avian systematics, ornithologists were attracted to
taxa posing confusing combinations of characters, and
a few systematists showed an uncanny recognition of
taxa that were key to problems concerning larger
groups (Table 1).

Percy Roycroft Lowe (British Museum), despite an
idiosyncratic view of ontogeny in evolution (Livezey,
1995a) and pre-Hennigian concepts of phylogenetic
reconstruction, undertook early and under-appreciated
attempts to resolve the phylogenetic positions of
problematic avian groups. Early works by Lowe
emphasized the vexing Charadriiformes and allied
Gruiformes (Lowe, 1922, 1923, 1924, 1925, 1931a, b),
the ratites (Lowe, 1928, 1930, 1942, 1944a), ‘primitive’
characters of Sphenisciformes (Lowe, 1933), characters
of 

 

Archaeopteryx

 

 possibly germane to an alliance
between birds and dinosaurs (Lowe, 1935, 1944b), the
perplexingly apomorphic Apodiformes (Lowe, 1939),
and preliminary diagnoses for Cuculiformes (Lowe,
1943), Piciformes (Lowe, 1946) and Coraciiformes
(Lowe, 1948). Intermittently during the same period,
Lowe also considered possible relationships among
ratites and some non-avian Theropoda, e.g. 

 

Stru-
thiomimus

 

 and 

 

Ornitholestes

 

, although he was
hampered by the prevailing confusion between syna-
pomorphy and symplesiomorphy and their respective
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implications for phylogeny (Lowe, 1928, 1930, 1935,
1942, 1944a, b). René Verheyen (Institut Royale Bel-
gique) authored approximately 35 papers during 1950–
60 that centred on problems of avian systematics by
means of semi-quantitative methods (e.g. Verheyen,
1956a, b, 1960a, b, 1961). The work by Verheyen, how-
ever, was deemed idiosyncratic and largely ignored
(Sibley & Ahlquist 1990).

Sibley & Ahlquist (1972, 1987, 1990) chronicled
avian systematics since the late 18th century. Raikow
(1985a) reviewed the philosophical underpinnings of
avian systematics in recent decades, and clarified for
the time the fundamental differences among various
systematic schools. Avian systematics in the late 20th
century has been marked by a trough in morphological
phylogenetics (Fautin & Watling, 1999; Jenner, 2004a)
and a concomitant peak in molecular systematics. The
pessimism expressed by Sibley & Ahlquist (1990)
regarding the phylogenetic potential of morphological
characters, however, contrasts with surveys of the con-
tributions of both (Patterson, Williams & Humphries,
1993). Bledsoe & Raikow (1990) concluded that con-
siderable congruence existed among reconstructions
based on DNA–DNA hybridization, sequence-based
analyses, and comparative morphology. In a survey of
the history of avian molecular systematics, Meyer
& Zardoya (2003) recounted discrepancies between
reconstructions of basal lineages based on mtDNA and
nuclear genes. As discourse among schools increased,
it was evident that the familiar demons of avian sys-
tematics haunted both morphological and molecular
practices: differential selection and adaptation, con-
vergence, extinction of lineages, challenges of homol-
ogy and alignment, and heterogeneity of evolutionary
rates and branch-lengths.

 

Palaeontological contributions

 

: Fossils essentially are
amenable only to morphological study, with the excep-
tion of a few, fortunate recoveries of ‘ancient DNA’
(Cooper 

 

et al

 

., 1992, 2001; Austin, Smith & Thomas,
1997; Cooper, 1997; Sorenson 

 

et al.

 

, 1999; Paxinos

 

et al.

 

, 2002), and typically provide only substandard
anatomical material or incomplete specimens. Some of
the most intense conflicts among avian systematists
stemmed either from a commitment to phenetics or
the idiosyncracies of palaeornithological perspectives
(e.g. Cracraft, 1979, 1980, 1981; Olson, 1982). Influen-
tial for avian systematics was the view that avian fos-
sils are both fragile and correspondingly rare (Olson,
1985), despite compendia indicative of extensive tax-
onomic diversity (Brodkorb, 1963, 1964, 1967, 1971a,
b, 1978). Deficiencies in the fossil record (Olson, 1985)
and challenges of homology (e.g. Sereno, 2001),
however, did not diminish a reliance on new fossils
to resolve the broad outlines of avian evolution
(Feduccia, 1980, 1995, 1996).

Palaeontological contributions have been con-
founded by speculative evolutionary scenarios that
extend beyond the underlying systematics (Feduccia,
1973, 1977c, 1995, 1996, 2003). The purported issue of
‘fossil mosaics’ (Eldredge, 1989) – a predictable conse-
quence of heterogeneity in evolutionary rates among
characters – further exacerbated the interpretation of
evolutionary change (Livezey, 1997a). Martin (1983:
291) concluded that during the 150 years of avian
palaeontology, ‘. . . a major burden for palaeornitholo-
gists has been a lack of comparative skeletons of
recent birds’, and that the ‘other major problem is the
incompleteness of most avian fossils.’ With the latter
we agree, but the former is less a problem of availabil-
ity than the result of under-utilization, a factor wor-
sened by the rush to a molecular era.

 

Ethological and parasitological phylogenetics

 

: Behav-
ioural characters are only infrequently used in formal
cladistic analyses (e.g. Hughes, 1996; Lee 

 

et al.

 

, 1996;
Kennedy 

 

et al.

 

, 1996, 2000; Slikas, 1998; Birdsley,
2002), or precursors thereof (Van Tets, 1965). Com-
plete designs have not been attempted for lack of com-
parable data for species of interest (Wimberger & de
Queiroz, 1996), and some are limited to assessments a
posteriori for phylogenetic signal (Winkler & Sheldon,
1993; Lee, Feinstein & Cracraft, 1997; McCracken &
Sheldon, 1997). Phylogeneticists have come to con-
sider selected ethological traits – notably displays of
courtship – worthy of phylogenetic interpretation
(Delacour & Mayr, 1945; Johnsgard, 1961; Archibald,
1976; Paterson, Wallis & Gray, 1995). Patterns of
interspecific hybridization have perhaps the longest
history of study, notably among Anseriformes (Sibley,
1957; Johnsgard, 1960, 1963; Scherer & Hilsberg,
1982). Eventually, interfertility was recognized to
be plesiomorphic and comparatively conservative
(Prager & Wilson, 1975), and therefore interspecific
hybridization to be uniformative with respect to phy-
logenetics (Cohen 

 

et al.

 

, 1997; Braun & Brumfield
1998; Andersson, 1999). Similarly, phylogenetics of
ectoparasites has been explored only infrequently in
phylogenetic reconstructions of birds (Paterson, Gray
& Wallis, 1993; Paterson & Gray, 1996; Page 

 

et al.

 

,
1998; Johnson 

 

et al.

 

, 2002; Storer, 2002; Smith, Page &
Johnson, 2004; Banks, Palma & Paterson, 2006). Con-
sequently, the two primary sources of phylogenetic sig-
nal for birds during the 20th century have been
morphological variation and molecular (increasingly
DNA sequence) data.

 

Molecular phylogenetics

 

: Following an implicit rejec-
tion of DNA hybridization on the grounds of its phe-
netic nature and woefully incomplete distance
matrices, molecular systematics focused on the cla-
distics of parsimony or increasingly explored the
probabilistics of maximum-likelihood and Bayesian
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methods. Phylogenetic analyses based solely on mito-
chondrial genes 

 

de jour

 

 (e.g. cyt 

 

b

 

, 12S) initially were
accorded considerable validity (Sraml 

 

et al.

 

, 1996;
Mindell, Sorenson & Dimcheff, 1998; Johnson &
Sorenson, 1998, 1999; McCracken 

 

et al.

 

, 1999), but
these works effectively were trumped by those based
on entire mitochondrial genomes (Paton, Haddrath &
Baker, 2002) or including nuclear genes, with few
exceptions (García-Moreno, Sorenson & Mindell,
2003). Similarly, explorations of very limited num-
bers of genes (Templeton, 1983; Groth & Barrow-
clough, 1999; Paton 

 

et al.

 

, 2003; Chubb, 2004a, b;
Fain & Houde, 2004) were eclipsed by expanded anal-
yses of nuclear data with diversified taxonomic sam-
ples (Hughes & Baker, 1999; Donne-Goussé, Laudet
& Hänni, 2002; Sorenson 

 

et al.

 

, 2003). This pro-
gression of analytical refinements and expanded
taxonomic representation, despite the continued
challenges discovered in each (e.g. Cotton & Page,
2002), is likely to continue and perhaps accelerate
with the implementation of studies based on ‘total
evidence’ (Huelsenbeck, Bull & Cunningham, 1996;
Baker, Yu & DeSalle, 1998; Ballard 

 

et al.

 

, 1998;
Bininda-Emonds, Gittleman & Steel, 2002; Cracraft

 

et al.

 

, 2004).

 

C

 

URRENT

 

 

 

STATUS

 

 

 

OF

 

 

 

AVIAN

 

 

 

PHYLOGENETICS

‘. . . the currently accepted arrangement of birds in no way
reflects the probable evolutionary history of the class. . . . The
arrangement used here is predicated mainly on the assump-
tions that birds originated on land rather than in the water,
and that highly specialized waterbirds are more derived than
less specialized ones. . . . a consensus has emerged that birds
originated, if not in trees, certainly on land. Therefore, we
should look for the most primitive taxa among the land birds.’
(Olson, 1985: 83, 84)

‘If one had to summarize the current state of knowledge, the
most pessimistic view would see the neoavian tree as a “comb,”
with little or no resolution among most traditional families and
orders.’ (Cracraft 

 

et al.

 

, 2004: 475)

‘Perhaps the greatest unsolved problem in avian systematics is
the evolutionary relationships among modern higher-level
taxa.’ (James, 2005: 1052)

 

Harrison 

 

et al

 

. (2004: 974) concluded: ‘It is almost an
offense against birds that the deep mammalian tree is
virtually resolved . . . whilst there are still major
uncertainties about many aspects of the avian evolu-
tionary tree.’ In support of this sentiment, the authors
cited fundamental discordance among phylogenetic
inferences for birds based on mitochondrial and
nuclear genomes, an assessment at odds with a con-
temporary review by García-Moreno 

 

et al

 

. (2003). Dis-
cussion of morphological efforts by Harrison 

 

et al

 

.
(2004) was limited to the uncertainties raised by Crac-

raft (1981, 2001) but verified increasingly by analyses
(Cracraft, 1982a, 1986, 1988; Cracraft & Mindell,
1989; Cracraft 

 

et al.

 

, 2004; Mayr, 2005a). Reconstruc-
tions of the higher-order relationships of birds based
on morphological characters, in turn, have been dep-
auperate in both characters and taxa and seldom
genuinely cladistic (e.g. Cracraft, 1986, 1988, 2001;
Cracraft & Clarke, 2001; Mayr & Clarke, 2003).

Regardless of the taxonomic group considered, how-
ever, the sobering truth is that the goal of phylogenet-
ics is extremely ambitious and without easy or
uniformly reliable means of accomplishment. It is
beyond debate that the conceptual framework of
morphological cladistics (Hennig, 1966) and ever-
increasing computational power has led to significant
progress. Nevertheless, it is also clear that many
phylogenetic problems have proven resistant to all
attempts at solution and seem destined to controversy.
Also, phylogenetic endeavours are replete with dis-
agreements in method (both for reconstruction and for
evaluation of estimates) and types of evidence consid-
ered most reliable. Currently, the tendency is to con-
sider molecular reconstructions as representing the
future of avian phylogenetics, and that it is simply a
matter of time, perhaps less than a decade, before a
global consensus is achieved within the systematic
community (Barrowclough, 1992; Livezey & Zusi,
2001; Stanley & Cracraft, 2002).

Deficiencies in taxa or characters typically render
comparisons among investigations problematic (Bled-
soe & Raikow, 1990), and attempts to reconcile the
phylogenetic evidence for Aves substantiate this gen-
erality (Cracraft & Mindell, 1989; Mayr, Manegold &
Johansson, 2003, 2004a; Dyke & Van Tuinen, 2004;
Griffiths 

 

et al.

 

, 2004). Indicative of disappointing
progress in mid- and lower-order avian phylogenetics
is the conclusion that basal (higher-order) nodes may
be irresolvable or accurate approximations of genuine,
explosive radiations (Poe & Chubb, 2004). While
demonstrably true of analyses confined to few charac-
ters or limited taxonomically (Kumazawa & Nishida,
1995), a single decade of uninspiring inference is
insufficient to judge solution to be beyond hope.

The current status of molecular resolution of deep-
est neornithine nodes, however, serves to underline
the likelihood that many genes provide inadequate
phylogenetic signal for the problems at hand, a defi-
ciency exacerbated by basal polarities necessarily
based on closest extant relatives that are unfortu-
nately comparatively distantly related, e.g. Crocodylia
and Testudines (Larhammar & Milner, 1989; Iwabe

 

et al.

 

, 2004). The fact that ‘nearest’ outgroup(s) for
molecular analysis need to be be extant has had unfor-
tunate implications for rooting, in that for Neornithes
these outgroups are comparatively distantly related
and may converge on ‘white noise’ as indicators of



 

6

 

B. C. LIVEZEY and R. L. ZUSI 

 

© 2007 The Linnean Society of London, 

 

Zoological Journal of the Linnean Society, 

 

2007, 

 

149

 

, 1–95

 

avian polarities, especially for rapidly evolving mito-
chondrial data.

Like morphological estimates, a number of potential
pitfalls (rooting aside) afflict molecular reconstruc-
tions, e.g. serial homoplasy by misalignment, distor-
tions related to silent substitutions, unrealistic
treatment of ‘gaps’, and unequal evolutionary rates
over extended intervals of geological time and among
lineages. Furthermore, disagreement persists if not
expands regarding methodological preferences – e.g.
classes of data employed, protocols for alignment (i.e.
diagnosis of serial homology), choice among recon-
structive methods, and assessment of resolution and
support (Felsenstein, 2004). Until substantial agree-
ment concerning methods is attained and accurate
synergism among molecular and morphological meth-
ods secured, the field will remain vulnerable to meth-
odological bias and a tolerance for poorly supported
hypotheses of phylogeny, in which even the best-
supported works disagree significantly (see Figs 4–9).

 

G

 

OALS

 

 

 

AND

 

 

 

OBJECTIVES

 

The primary purpose of this paper is to present a mor-
phologically based phylogenetic hypothesis of higher-
order relationships of Neornithes. A compendium of
characters is provided within the companion work
(Livezey & Zusi, 2006), including a bibliographic syn-
thesis, annotations of prior uses of synonymous and
related characters, and a compact disc of the data
matrix for refinement and augmentation. The second-
ary objective of this work is to provide a cladistic alter-
native to the molecular phenetics of Sibley & Ahlquist
(1990), at least for non-passeriform families, and to
serve as a framework for lower-level studies of
included families. An earlier paper on philosophical
and methodogical issues (Livezey & Zusi, 2001),
despite an explicit disclaimer to the contrary, fre-
quently has been cited as a phylogenetic hypothesis
appropriate for comparison with works considered
complete by their authors, even regarding positions of
individual taxa (e.g. Cracraft 

 

et al.

 

, 2003). We began
the present study with the opinion that the phyloge-
netic signal encoded within avian anatomy is, with
adequate study of both definitive and ontogenetic vari-
ation of an adequate sample of modern lineages, more
than sufficient for the reconstruction of the higher-
order phylogeny of Neornithes. We remain at least as
optimistic concerning this goal.

The present phylogenetic hypothesis is intended to
serve both as a baseline estimate and ‘scaffold’ for
finer-scale reconstructions of terminal clades (i.e. fam-
ilies), as attempts at broad reconstructions of the phy-
logeny of Neornithes to date have been limited, at the
very least, in taxonomic representation (e.g. Slack

 

et al.

 

, 2006b) or discredited methods of inference

(Sibley & Ahlquist, 1990). We also sought to provide
robust nodes supplemental to the few phylogenetic
hypothesis currently employed for calibrations of age
based on fossils (e.g. Dyke & Van Tuinen, 2004;
Pereira & Baker, 2006a) or their surrogates (Van
Tuinen, Stidham & Hadly, 2006). Integration of these
data with a rich matrix of DNA-sequence data (Crac-
raft 

 

et al.

 

, 2004) is planned to explore the power of
‘total evidence’ to recover both higher-level and lower-
level avian phylogeny. Perhaps most importantly for
the facilitation of future analyses, be these morpholog-
ical or molecular, is the identification of sister-groups
(optimal outgroups) for purposes of rooting analyses of
single orders or families. The comparatively sparse
representation of taxa in the present analysis
reflected logistical limits, but was considered adequate
for achieving the stated objectives. Findings herein
principally were compared with modern higher-order
reconstructions (e.g. Mindell 

 

et al.

 

, 1997; Mayr &
Clarke, 2003; Mayr 

 

et al.

 

, 2003), the most critical of
which are summarized graphically here (Figs 1–9).
Works of narrower scope are considered where issues
of familial monophyly persist, with emphasis on truly
phylogenetic works as opposed to eclectic or phenetic
assessments (Raikow, 1985a).

 

METHODS

I

 

NCLUDED

 

 

 

TAXA

 

Taxonomic sampling and exemplars

 

: Taxonomic
diversity generally represents a much greater logisti-
cal burden than diversity of characters in phylogenetic
analyses, and challenges imposed by taxa can be
exacerbated by unfortunate sampling (Maddison &
Maddison, 1992; Graybeal, 1998; Swofford, 2002;
Felsenstein, 2004). However, it has been demonstrated
that density of taxonomic sampling for the ingroup
varies directly with expected accuracy, support and
resolution of resultant trees (Lecointre 

 

et al.

 

, 1993),
although the importance of taxonomic density appears
to be greatest for sequence data (especially with
respect to long-branch attraction). Expectations of res-
olution and accuracy that are related to richness of
morphological characters, unlike for sequence data
(Lecointre 

 

et al.

 

, 1994), have not been subjected to
numerical assessment, but logically are significantly
related. The importance of monophyly of the groups
represented by exemplars prompted the citation,
where available, of analyses germane to the mono-
phyly and content of taxonomic families represented
here by exemplars.

We sought to maximize richness of characters and
represent higher-order taxa within logistic limits that:
(i) represented (sub)familial diversity among non-
passeriform Neornithes; (ii) provided special insights
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into interfamilial groups (Livezey, 1997a, 1998a); (iii)
were suitably represented by essential specimens; and
(iv) included taxa of special interest to avian system-
atics. Neornithine families were represented by one or
more exemplars deemed in most cases to reflect at least
a ‘basal’ member (i.e. candidate sister-taxon of other
members) of the taxon in question. This method is not
without difficulties, as concerns persist regarding the
use of exemplars as terminal surrogates for higher-
order taxa (Bininda-Emonds, Bryant & Russell, 1998),
notably where polymorphism is involved (Yeates, 1995;
Simmons, 2001) or monophyly of terminals repre-
sented by single exemplars is in question. Also, limi-
tations on specimens of specialized preparations
impose critical deficiences on resultant data matrices,
an abiding concern of anatomical collections of birds
(Livezey & Zusi, 2001; Livezey, 2003a). Relatively
strong support for monophyly of most clades alleviated
concerns regarding taxonomic sampling, especially
given the number of morphological characters
employed. However, use of minimal numbers of exem-
plars justifies caution in the diagnostics given for
diverse orders and families herein (Table 2).

Crocodylia and non-avian theropod Dinosauria
served as ‘ultra-deep’ and primary outgroups, respec-
tively, to root Neornithes (Maddison, Donoghue & Mad-
dison, 1984; Janke & Arnason, 1997), but the inclusion
of most published characters in placing these taxa
(Benton & Clark, 1988; Evans, 1988; Benton, 1999; Cao

 

et al.

 

, 2000; Brochu, 2001; Brochu & Norell, 2001)
chronicled the acquisition of avian characters during
the Mesozoic (Carroll, 1997). The recent extension of
avian roots, both by newly discovered avialian taxa and
confirmation of early roots among non-avian theropods,
circumvented difficulties of establishing basal polari-
ties for Neornithes based on inadequate diversity of
Mesozoic relatives or (for narrower reconstructions) or
dubious reliance on the problematic Palaeognathae,
notably caused by the complex of apomorphy and
plesiomorphy of ratites relative to the Tinaniformes
(Bertelli, Giannini & Goloboff, 2002). These outgroups
optimized rooting by the hierarchy of information
afforded by multiple (nested) outgroups (Barriel &
Tassy, 1998; Lyons-Weiler, Hoelzer & Tausch, 1998)
and avoided the analytical problems implicit with
hypothetical ancestors (Bryant, 1997, 2001).

 

Figure 1.

 

Morphological phylogenetic trees proposed in previous studies, I. A, Cracraft (1988); B, Mayr 

 

et al

 

. (2003). Some
trees were subjected to topologically neutral modifications of taxa to facilitate comparisons (also Figs 2–9). See correspond-
ing papers for analytical methods and topological statistics.



 

8

 

B. C. LIVEZEY and R. L. ZUSI 

 

© 2007 The Linnean Society of London, 

 

Zoological Journal of the Linnean Society, 

 

2007, 

 

149

 

, 1–95

 

F
ig

u
re

 2
.

 

M
or

ph
ol

og
ic

al
 p

h
yl

og
en

et
ic

 t
re

es
 p

ro
po

se
d 

in
 p

re
vi

ou
s 

st
u

di
es

 (
se

e 
F

ig
. 1

 f
or

 d
et

ai
ls

), 
II

. A
, M

ay
r 

&
 C

la
rk

e 
(2

00
3)

; B
, B

ou
rd

on
 

 

et
 a

l

 

. (
20

05
).



 

HIGHER-ORDER PHYLOGENY OF MODERN BIRDS

 

9

 

© 2007 The Linnean Society of London, 

 

Zoological Journal of the Linnean Society, 

 

2007, 

 

149

 

, 1–95

 

Four comparatively distant outgroups were
sampled for estimating deep polarities – non-
Archosauromorpha (informative states of comparable
characters at the approximate origin of the archosau-
rian clade), Crocodylomorpha (i.e. non-dinosaurian
Archosauria), Ornithischia (i.e. non-saurischian Dino-
sauria) and Sauropodomorpha (modalities of non-
theropod Saurischia). Among non-avian Theropoda,

 

Herrerasaurus

 

 served as the most informative of the
generic outgroups (Sereno, 1994; Sereno & Novas,
1994). Groupings among outgroups (i.e. among non-
avian taxa) were of only secondary interest, however,
whereas establishment of a realiable root for the
Neornithes was the principal priority.

Indeterminate and redundant contributions of
some outgroup taxa with respect to the primary
objective of this analysis, as well as excessive
proportions of missing data recognized upon com-
pletion of the data matrix, prompted limited pruning
and merging of taxa (primarily outgroups) for
analysis: (a) taxa pruned – 

 

Euparkeria, Syntarsus,

Eoraptor, Saurornitholestes, ‘Caenognathidae’, Micro-
venator, Citipati, Chironestes, Ornitholestes, Segno-
saurus, Avimimus, Sinornithosaurus, Microraptor,
Erlicosaurus, Shuvuuia, Jehelornis, Gobipteryx,
Patagopteryx; Diatrymiformes, Dromornithiformes
(Rich, 1979, 1980; Murray & Megirian, 1998; Murray
& Vickers-Rich, 2004), Sylviornis (Poplin & Mourer-
Chauviré, 1985; Mourer-Chauviré & Balouet,
2005); (b) taxa merged: {Allosaurus, Sinraptor}∼
Allosauroidea; {Tyrannosaurus, Albertosaurus}∼
Tyrannosauridae; {Sinovenator, Sinornithoides,
Troodon}∼Troodontidae; {‘Enantiornithidae’, Iberome-
sornis, Cathayornis, Concornis, Neuquenornis, Eoa-
lulavis, Protopteryx}∼Enantiornithes; {Mononykus,
Patagonykus, Alvarezsaurus}∼Alvarezsauroidea.

Two subfossil taxa – Aepyornithiformes and Dinor-
nithiformes – for which character states were only mar-
ginally recovered, were excluded for the primary global
search, and provisionally placed by means of two dif-
ferent protocols. This measure was taken because sim-
ple analysis of these imperfectly known, broadly

Figure 3. Morphological phylogenetic trees proposed in previous studies (see Fig. 1 for details), III. A, Mayr (2005b);
B, Mayr (2005f: fig. 9), excluding fossils Prefica and Paraprefica.
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similar, large ratites led to an apparently artefactual
couplet – ‘long-branch’ distortions exacerbated by miss-
ing data (Wiens, 2005) – as sister-group of other ratites
exclusive of Apterygidae. First, each was analysed in
the absence of the other in a global, unconstrained anal-
ysis. Second, each was separately placed by means of
heuristic searches in which the primary tree was used
as a backbone constraint. The Dinornithiformes were
scored as two families (Dinornithidae and Emeidae) as
approximated by Cracraft (1976a, b) and Worthy and
Holdaway (2002) during character analyses, but anal-
ysed as a single, merged taxon in light of their virtually
identical scores. Accordingly, the ‘trimmed-merged’
data matrix provided in digital form by Livezey & Zusi
(2006) comprised 150 ingroup taxa and 35 outgroups.

PHYLOGENETIC ANALYSIS

General philosophy: Most standard methodological
issues were detailed in the foregoing companion work

(Livezey & Zusi, 2006), including the analytical per-
spectives that serve to justify the delimitation of char-
acters and states, ordering of states, and related
options requisite to preparation of characters for anal-
ysis. Noteworthy is a principal reliance on the litera-
ture for many characters of non-avian Theropoda. In
the present installment, the foregoing characters were
subjected to phylogenetic analysis sensu morphological
cladistics (Kluge & Wolf, 1993) coupled with the crite-
rion of parsimony of character evolution as implied by
the resultant phylogenetic hypothesis (Eldredge &
Cracraft, 1980; Wiley, 1981; Brady, 1982; Farris, 1982;
Felsenstein, 1983, 2004; Semple & Steel, 2003). In light
of the practical and theoretical implications of adopting
the parsimony criterion (Felsenstein, 1983, 2004),
alternative methods were not practical for this analysis
because of missing data (Felsenstein, 1979; Kluge,
1997a, b, 1999) – e.g. optimizations of morphological
characters on branching models under selected models
of stochastic change (Huelsenbeck, Nielsen & Bollback,

Figure 4. Molecular phylogenetic trees proposed in previous studies (see Fig. 1 for details), IV. A, Sibley & Ahlquist
(1990: figs 354–356), simplified to orders, wherein parenthetical ‘para’ indicates paraphyly of sampled members, and
‘aug’ indicates unconventional content; B, Mindell et al. (1997).
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2003) or maximum-likelihood analysis (Lewis, 2001).
Global parsimony – i.e. minimal total for character-
state changes required by final tree (i.e. ‘shortness’) –
served as the criterion of optimality for trees recovered
through searches (Sober, 1982, 2005). The data matrix
was not revised iteratively conditional on outcomes of
analysis, nor was ordering of characters conditional on
such runs. Instead, the entire data matrix summarized
herein was completed prior to the analytical phase,
thereby maintaining a partition between (i) definition
of characters and states, coding of taxa, and issues of
weighting and ordering, and (ii) phylogenetic analysis.

Characters and states: Unfortunate logistic limita-
tions, not oversight or philosophical considerations,
prevented the inclusion of character descriptions with
the present analytical work. Although a reflection of
our unexpected success in defining 2954 morphologi-
cal characters relevant to the project (Livezey & Zusi,
2006), it precluded the familiar juxtaposition of
descriptive material with analytical inferences. We

anticipate that this inconvenience will be ameliorated
by the coordinated publication of the descriptive atlas
of characters and digitally recorded data matrix
(Livezey & Zusi, 2006), to be made available virtually
at cost. We strongly recommend that those interested
in the present work procure a copy of its sister publi-
cation, as it is through examination of both that mean-
ingful improvements will be made.

Where mutually exclusive states of a single charac-
ter were diagnosable (Stevens, 2000), a single multi-
state character was defined (Mishler, 1994, 2005).
Where two or more included states are observed for a
single taxon, a coding of polymorphism was used and
analysed specifically as given (i.e. not as uncertainty).
The expanse of time reflected by the scale of the anal-
ysis also is expected to be associated with the number
of multistate characters recognized (Lipscomb, 1992;
Steel & Penny, 2005), i.e. scale of time and taxonomic
divergences may be expected to be related directly to
scale in evolution of form (Grant & Kluge, 2004).
Multistate characters encode features manifesting

Figure 5. Molecular phylogenetic trees proposed in previous studies (see Fig. 1 for details), V. A, Espinosa de los Monteros
(2000); B, Johansson et al. (2001).
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comparatively great evolutionary change and may
include greater potential phylogenetic signal, and
states thereof will be optimized at multiple internodes
(Simmons, Reeves & Davis, 2004). Unless otherwise
indicated, characters were analysed as unordered.

Ordering can impose significant constraints on solu-
tion sets (Hauser & Presch, 1991; Forey & Kitching,
2000), and was used only where determined to be defen-
sibly realistic, e.g. naturally ordinated (Livezey & Zusi,
2006). For example, multistate characters of forms
‘small, medium, large’, ‘absent, miniscule, prominent’,
courses of passage of types ‘depressio, sulcus, arcus,
tuba’, and junctura of types ‘articulatio, sutura, synos-
tosis’ were considered naturally ordered, counter-evi-
dence lacking. Fundamentally, ordering of states
within a character was fundamental to definition and
differentiation of characters, basic to the delimitation
of states, and represented an extension of parsimony by
inclusion of information on linear likelihoods in coding
schemes. Such reasoning precluded meaningful use of
arbitrary analytical variants such as treating all char-

acters or partitions thereof as unordered. Hypotheses
of transformation were sufficiently simple to obviate
reliance on step-matrices (Ree & Donoghue, 1998), lin-
ear ordering being the sole condition imposed. Differ-
ent numbers of states among characters can impose
different levels of influence simply by different num-
bers of state changes among characters (James, 2004),
but we considered such differential influence to be real-
istic and justified as it encoded diverse richness of evo-
lutionary change instead of arbitrarily imposing
uniformity on contributions of signal. Therefore, no
attempt was made to counter-weight multistate char-
acters. Moreover, no method of explicit weighting – a
priori (Neff, 1986; Wheeler, 1986; Sharkey, 1989) or suc-
cessive (Farris, 1969) – was employed in this analysis,
although some perceive weighting effects to be implicit
by other means (Haszprunar, 1998).

In this work, characters qualifying as autapomor-
phies at this analytical scale (i.e. apomorphic state
limited to single included terminal taxon) were
included in all analyses because most served as syna-

Figure 6. Molecular phylogenetic trees proposed in previous studies (see Fig. 1 for details), VI. A, Van Tuinen et al. (2000);
B, Van Tuinen et al. (2001).
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pomorphies of the higher-order groups represented by
respective exemplars, and many were included in pre-
vious publications as diagnostic of the clades repre-
sented by exemplars. In addition, such characters are
intended to serve others performing lower-level anal-
yses subsequently using some or all of the present
matrix. Although autapomorphies did not serve to
group taxa at this scale, the limited number detected
here were retained because our interests not only
included delimitation of clades but also were intended
to provide a reasonable representation of evolutionary
rates both among internodes and among terminal
branches, of interest in many studies of evolutionary
rates (e.g. Omland, 1997a, b). Also, autapomorphic dif-
ferences (deriving from both unique changes or
homoplasy) are critical to long-standing issues of
perceived (phenetic) distinction and evolutionary
divergence among taxa of debated relationships. Fur-
thermore, such characters do not bias support indices
such as bootstrapping (Harshman, 1994a), and by def-

inition do not influence topologies. Also, a small minor-
ity of characters manifesting two or more states in
original codings (included in the matrix to permit
alternative taxonomic treatments) were rendered
invariant by merging and pruning of taxa as detailed
herein; this treatment was considered simpler than
outright manipulation of the matrix analysed. The pri-
mary parameter of logistical concern where parsimony
is the criterion of optimization is the number of taxa
(Kim, 1998), a dimension that in the present work was
favourably countered by number of characters.

Included characters manifested a range of
homoplasy (Sanderson & Donoghue, 1989). However,
the number of morphological characters employed
here exceeded the domain for which meaningful com-
parison with other works is feasible (Swofford, 1991;
Sanderson & Donoghue, 1989, 1996) and evaluation of
a suite of related issues – e.g. rates of evolution,
notions of relative ‘reliability’ of different data types,
patterns of homoplasy (Faith, 1989; Sanderson, 1991),

Figure 7. Molecular phylogenetic trees proposed in previous studies (see Fig. 1 for details), VII. A, Paton et al. (2002);
B, Sorenson et al. (2003).



14 B. C. LIVEZEY and R. L. ZUSI 

© 2007 The Linnean Society of London, Zoological Journal of the Linnean Society, 2007, 149, 1–95

and Markovian informativeness (Shpak & Churchill,
2000) – was not logistically feasible.

Search for optimal solution: The character matrix was
constructed using MACCLADE (Maddison & Maddi-
son, 1992; Prendini, 2003), and analyses were per-
formed on a Macintosh G5 2.5-GHz dual-processor
computer. Primary phylogenetic analyses were per-
formed using PAUP* version 4.0b10 (Swofford, 2002).
Given the size of the data set and the corresponding
universe of possible trees delimited (Felsenstein,
1978), we undertook a thorough exploration of the tree
space to circumscribe the optimal solution set, i.e. the
set of maximally parsimonious trees (MPTs), summa-
rized graphically by a strict consensus tree of this set.

The set of MPT(s) (min [total length] = 19 553)
recovered during heuristic searches in PAUP (MUL-
PARS, TBR, random-addition of taxa, 10 000 random
starting trees, MAXTREES = 20 000) was confirmed
by a full ratchet-analysis (Goloboff, 1999; Nixon, 1999;
Müller, 2004, 2005), including five random-addition
cycles of 200 ratchet iterations each; the ratchet anal-

yses, employed to escape local suboptima, recovered
97 trees across 1000 topological islands. Choice of opti-
mizations (DELTRAN vs. ACCTRAN) was ineffectual,
and neither DOLLO nor IRREVERSIBLE options
were used. Of particular relevance to this compara-
tively large analysis were recent discussions of: (i) effi-
cient means for finding solutions for large data sets
(Maddison, 1991; Page, 1993; Rice, Donoghue & Olm-
stead, 1997; Quicke, Taylor & Provis, 2001; Salter,
2001), (ii) effects of missing data (Wilkinson, 1995,
2003; Wiens, 2003) and (iii) analytical relevance of
branch lengths (Maddison, 1993; Lyons-Weiler & Hoe-
lzer, 1997; Farris, Källersjö & De Laet, 2001; Norell &
Wheeler, 2003; Wilkinson, LaPointe & Gower, 2003).

Summary statistics used here were: total length, L;
consistency index, CI (Klassen, Mooi & Kicke, 1991;
Kim 1996; Källersjö, Albert & Farris, 1999); retention
index, RI (Farris, 1989); rescaled consistency index,
RC; and skewness index (g1) based on 105 topologies
randomly generated from the same data matrix
(Huelsenbeck, 1991; Källersjö et al., 1992). Despite its
popularity, the CI is negatively correlated with num-

Figure 8. Molecular phylogenetic trees proposed in previous studies (see Fig. 1 for details), VIII. A, Chubb
(2004a); B, Harrison et al. (2004).
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ber of both taxa and characters analysed (Archie,
1989; Sanderson & Donoghue, 1989), making mean-
ingful comparisons of indices across scales of analysis
and classes of characters is difficult. Characters man-
ifesting homoplasy can impose structural resolution
and thereby result in smaller solution sets of MPTs
(Källersjö, Albert & Farris, 1999). The set of equally
parsimonious topologies (i.e. solutions differing only in
optimization of characters on branches of trees of iden-
tical topology or solutions differing in branching struc-
ture but of equal length) were summarized using a
strict consensus tree. Summary statistics for strict
consensus trees were component information, Nelson–
Platnick term and total information, and Mickevich
consensus information.

Support for individual clades was measured by two
statistics (Mort et al., 2000; Wilkinson et al., 2003): (i)
percentages of 10 000 bootstrapped replicates in
which the node was conserved (Felsenstein, 1985;
Sanderson, 1995), indices considered informative even
if assumptions concerning precision and absence of
bias are unrealistic (Felsenstein & Kishino, 1993;
Hillis & Bull, 1993); and (ii) Bremer (support) indices,
the estimated minimal number of additional steps

required wherein the given node, by inverse con-
straint, is not conserved (Bremer, 1994, 1997). The lat-
ter were estimated using PRAP (Müller, 2004, 2005),
metrics similar to the PC-compatible algorithms of
Goloboff (1999) and Nixon (1999). Ratchet methods
were used in order to find the minimum Bremer index
by avoidance of entrapment in local optima (Maddi-
son, 1991). For the Bremer (support) indices, 20
ratchet replicates per node were used (Müller 2004,
2005). The popular alternative protocol, TREEROT,
was not employed because its primary asset – ‘parti-
tioned’ support indices – were not a priority here and
(most importantly) the algorithm lacks the ratchet
(Sorenson, 1999).

Comparisons with other trees: Tests of alternative
hypotheses proposed by other authors were equivalent
to local penalties, i.e. minimal differences in total
length imposed by the alternative hypothesis, while
other aspects of the MPT (exclusive of pruning of taxa
essential for comparability) were conserved (Kluge,
1997a, b). These estimates were made by simple trans-
fer of branch(es) within the consensus cladogram
using MACCLADE (Maddison & Maddison, 1992),

Figure 9. Molecular phylogenetic trees proposed in previous studies (see Fig. 1 for details), IX. A, Pereira & Baker (2006a);
B, Slack et al. (2006a).
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which holds other topological groupings constant. This
procedure differs from searches constrained only to
the grouping of interest, typically performed using
ancillary searches under inverse constraints, as in
protocols for estimation of Bremer (support) indices.

CRITICAL CONCEPTS AND TERMINOLOGY

‘It is possible [50% likelihood] that – 1) a distant relationship
exists between Apteryx and a tinamou-galliform assemblage;
. . . (5) the diurnal birds of prey may be allied to the owls
through the Falconidae . . . It is improbable [formerly widely
believed, since discredited] that – 1) a close relationship exists
between Rhea and the tinamous; . . . (3) Pandion deserves
familial status in the Falconiformes . . .’ (Sibley & Ahlquist,
1972: 241), emphasis added.

‘. . . the mousebirds, or colies, [i] have no close living
relatives, . . . [ii] they are the only survivors of an ancient
divergence . . . Their [iii] closest living relatives are
probably . . .’ (Sibley & Ahlquist, 1990: 363)

Before considering specific findings in the present
study, a clarification of critical terms is essential. The
first of the foregoing quotes comprises four statements
of perceived probability that either make no objective
sense or are self-contradictory by conventional stan-
dards. Also, the second quote contains three conclu-
sions (i–iii) for a single group based on a single data
set that are: either mutually contradictory (i and iii),
or of undetermined meaning (ii vs. either i or iii). In
cladistic terms, ‘most closely’ implies ‘closely’ in that
hierarchy defines relative relationships. Sister-groups
are by definition the ‘most closely related’ of any taxa
compared. For example, in cladistic terms, an assump-
tion of monophyly of life on earth implies that every
taxon has a close relative and/or closest relative,
regardless of extinctions. In other words, degree of
relatedness is relative: all lineages have a closest rel-
ative and therefore a close relative. Sister-groups need
not meet some standard of similarity or absolute
antiquity of divergence to qualify. However, under an
expectation of at least a limited correlation between
evolutionary change in morphology with time – nei-
ther ‘clock-like’ nor wildly heterogeneous and com-
pletely disassociated – sister-taxa can be expected to
share degrees of similarity broadly related to time
since divergence, such that recency of divergence
between sister-taxa tends to be associated with simi-
larity, and antiquity of such divergence to be associ-
ated with dissimilarity.

RESULTS

MINIMAL-LENGTH TREES OR MPTS

The search for MPTs recovered 97 trees of minimal
length (19 553 steps) under standard ordering of mul-

tistate characters and rooting by outgroup taxa as
given (see Methods). This solution set (2.04 × 1011

rearrangements assessed) had the following summary
statistics: CI = 0.2432; RC = 0.1664; RI = 0.6842; and
skewness, g1|105 = −0.4258.

A strict consensus tree of the MPTs (Figs 10–18)
was completely resolved for the Neornithes with the
exception of six polytomies (mostly trichotomies, some
nested, discussed below), uncertainties sufficiently
limited so as to obviate a majority-rule consensus tree
for the primary solutions set, or to delimit ambiguity
where one or more ‘rogue taxa’ may be influential
(Sumrall, Brochu & Merck, 2001). The strict consen-
sus tree for the 97 MPTs shared the following sum-
mary statistics: (i) component information, 173; (ii)
Nelson–Platnick term information, 4367; (iii) Nelson–
Platnick total information, 4540; and (iv) Mickevich
consensus information, 0.168.

OUTGROUP TAXA: MESOZOIC ROOTS OF AVES

Non-Neornithine Aves: In light of the growing con-
sensus regarding fossil lineages of the Mesozoic
and widely employed characters thereof, broad agree-
ment between our findings and those of others treat-
ing pre-neornithine birds was not unexpected.
Relationships among outgroup taxa in this analysis
generally were consistent with recent analyses (Mar-
tin, 1983; Witmer, 1991; Holtz, 1998; Padian & Chi-
appe, 1998; Clarke & Chiappe, 2001; Chiappe, 2001,
2002; Clarke & Norell, 2002, 2004; Clark, Norell &
Makovicky, 2002; Chiappe & Dyke, 2002; Maryanska,
Osmólska & Wolsan, 2002; Pisani et al., 2002; Snively,
Russell & Powell, 2004; Mayr, Pohl & Peters, 2005;
Zhou & Zhang, 2005).

Critical for empirical rooting of ingroup taxa, as
opposed to hypothetical ancestors or other synthetic
means of proposing polarities, this congruence lends
credence to assessments of polarities of characters at
the most basal of neornithine nodes (e.g. the diver-
gence of neognathous from palaeognathous taxa).
Crocodylians fell as predicted among the basal
Archosauria (Larhammar & Milner, 1989; Hedges,
1994). Principal exceptions from a growing consensus
of palaeontologists were reversed positions or irreso-
lution within two pairs (Fig. 12): (i) Troodontoidea
(Troodon and Saurornithoides) and Dromaeosauroi-
dea; and (ii) Rahonavis and Apsaravis, the latter cou-
plet being equally parsimonious whether paraphyletic
to other taxa or as sister taxa. Details of positions
among outgroups are of secondary interest here, but it
is noteworthy that the few instances of incongruence
with other studies were associated with exceptionally
poorly supported nodes or polytomies in the present
work (Fig. 12). It is likely that the generally lower sup-
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port indices among pre-Neornithes reflect missing key
taxa and poor preservation of those coded.

NEORNITHES

‘. . . it is probable that the majority of living genera [of birds]
were in existence by the end of the Tertiary. . . . Most, perhaps
all, of the [modern] orders of birds had become established by
the end of the Eocene.’ (Brodkorb, 1971a: 42)

‘The phylogenetic position of Palaeogene birds thus indicates
that diversification of the crown-groups of modern avian “fam-

ilies” did not take place before the Oligocene, irrespective of
their relative position within Neornithes (crown-group birds).’
Mayr (2005a: 515)

Strong support for monophyly of the Neornithes
(Table 2; Figs 10, 11) was conferred. Notable, however,
in the present reconstruction was its poor congruence
with the ‘tapestry’ depicted by Sibley & Ahlquist
(1990), in which only three higher-order taxa – their
Ratitae, Galloanserae and Procellarioidea, and mono-
phyly of one contentious order (Caprimulgiformes) –

Figure 10. Ordinal-level strict consensus tree for orders of Neornithes based on 2954 morphological characters, indicating
delimitations of segments detailed in Figures 12–18.
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Figure 11. Simplified summary tree for uppermost, supraordinal ranks of avian classification. Dashed internodes corre-
spond to marginally supported clades. For complete classification, see Appendix 1.
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were in significant agreement with corresponding
clades in the present analysis. Points of disagreement,
however, were abundant and included much of the
topological (diagrammatic) structure in the two works,
and notably included the following groupings depicted
by Sibley & Ahlquist (1990: fig. 4A): (i) monophyly of
{Ratitae, Galloanserae}; (ii) provisional, exceptionally
basal placement of Turnix; (iii) very basal positions

and interposition of Piciformes, Coraciiformes,
Coliiformes, Trogoniformes and Passeriformes; (iv)
multiple discrepancies associated with hypotheses of
polyphyly of Pelecaniformes and Ciconiiformes, and
(v) inclusion of some Gaviiformes, Podicipediformes,
Sphenisciformes and Falconiformes among these
groups. Topological dichotomies that hierarchically
group modern orders of Neornithes were sought

Figure 12. Detailed segments of strict consensus tree of all MPTs recovered in present study. Part A. Outgroup
(non-neornithine) taxa. Nodes are labelled by percentages of bootstrapped replicates in which node was retained (numer-
ator), and below by Bremer support indices (denominator).
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(Fig. 10), and these formed the ordinal basis for a
higher-order classification (Appendix 1).

In the following, descriptions of findings, statistics
of support, etc., were presented in figures, and refer-
ence to these was employed in place of repetition of
metrics in the text. Consequently, readers are directed
to the appropriate figures and tables where narratives
refer to robustness, support and relative parsimony of
alternative hypotheses.

MODERN PALAEOGNATHOUS BIRDS

This analysis revealed the relationships among the
palaeognathous birds to be exceptionally resolved,
well supported, virtually unambiguous, empirically
rich, markedly traditional, and supported by an
unprecedented sample of outgroups. The ratites or
flightless modern palaeognathous birds have been the
subject of more anatomical and molecular study than
any other avian group, an important motivation for
which concerned diagnoses of plesiomorphic and apo-
morphic morphological characters in a group widely
recognized to represent an early branch among Neor-
nithes but for which useful outgroups were lacking
(Balouet, 1984; Zusi, 1993). Basal polarities of charac-
ters of plesiomorphic condition among modern and
closely related fossil palaeognathous taxa (Houde &
Olson, 1981; Houde, 1988; Leonard et al., 2005)
awaited resolution by means of the most primitive
Aves, many recovered only recently (Appendix 1).

Taxonomically orientated anatomical studies, em-
phasizing ratites or more inclusive in scope, ensued
during the 19th and 20th centuries (Fürbringer, 1888;
Feduccia, 1980; Houde & Haubold, 1987), and inves-
tigations of phylogenetic emphasis were among the
earliest for Neornithes (Verheyen, 1960a; Sibley &
Ahlquist, 1972; Cracraft, 1974a; Wattel, Stapel & de
Jong, 1988). In some cases, inference of the primary
grade of divergences of palaeognathous, galloanserine
and other neognathous taxa aided in the recovery of
historical patterns and broad outlines of phylogeny of
palaeognathous taxa, patterns that were to prove
beyond the limits of mtDNA for resolution (Härlid,
Janke & Arnason, 1997, 1998).

Most prior studies regardless of method – notably
excepting early works conceptually confined by the
dated biogeographical paradigm of static continents
(Briggs, 2003) or phenetic perspectives on affinities
(McDowell, 1948; de Beer, 1956; Storer, 1960a, 1971a,
b; Sibley & Frelin 1972) – have hypothesized that the
palaeognathous birds are the sister-group of other
Neornithes, the Tinamiformes are the sister-order of
the ratites among palaeognathous taxa (Caspers, Wat-
tel & de Jong, 1994; de Kloet & de Kloet, 2003), and
accordingly the ratites are monophyletic (Bock, 1963b;
Prager et al., 1976; Stapel et al., 1984; Bock & Bühler,

1988; Härlid et al., 1997; Lee et al., 1997; Van Tuinen,
Sibley & Hedges, 1998; Dyke, 2001a; Dyke & Van
Tuinen, 2004; Slack et al., 2006a, b). These findings
counter early disputes based in part on biogeography,
isolated interpretations of fossils (Houde & Olson,
1981), speculations regarding heterochrony (Feduccia,
1985) and (subsequently admitted) analytical anoma-
lies (Härlid & Arnason, 1998). Notable in the last of
the foregoing categories was the initial inference of a
sister-relationship between a neognathous group com-
prising the Galliformes and Anseriformes and the
palaeognathous birds by Sibley & Ahlquist (1990), a
topology rendering at the outset the polyphyly of neog-
nathous taxa; subsequently these authors depicted
the neognathous birds as monophyletic.

Monophyly of the Tinamiformes was supported by
the molecular analyses by Paton et al. (2002) and Har-
rison et al. (2004), but minimal taxonomic sampling
diminished the generality of these inferences. Sister-
group relationships of palaeognathous orders –
Struthioniformes and Rheiformes, and Dromaiiformes
and Casuariiformes – were supported strongly here
(Fig. 13) and elsewhere (Lee, Feinstein & Cracraft,
1997; Leonard, Dyke & Van Tuinen, 2005). A minority
of earlier findings (Figs 7A, 8B) provided weak evi-
dence of paraphyly of the Struthioniformes and
Rheiformes with respect to a sister-grouping of
Dromaiiformes and Casuariiformes and also provided
weak support for the Apterygiformes as as sister-
group to the latter (Van Tuinen, Sibley & Hedges,
2000; Cooper et al., 1992, 2001; Paton et al., 2002;
Harrison et al., 2004). Despite support indices sugges-
tive of robustness in several of the molecular works,
questions regarding Bayesian bootstrap values
(Simmons, Pickett & Miya, 2004) justify caution in
such assessments.

The Apterygiformes, herein placed as sister-group to
all other ratites (Fig. 13), have been inferred to occupy
a marked diversity of positions in prior studies (Crac-
raft, 1974a, 2001; Lee et al., 1997; Cooper et al., 2001;
Haddrath & Baker, 2001; Paton et al., 2002; Harrison
et al., 2004). Also, the position of the Apterygiformes
relative to the extinct Dinornithiformes varied
(Vickers-Rich et al., 1995). The Apterygiformes are the
most speciose and genetically subdivided of extant
orders of ratites (Baker et al., 1995; Burbridge et al.,
2003), but are significantly less diverse than the for-
merly sympatric Dinornithiformes.

The position of the Dinornithiformes also remains a
point of controversy, in part because of missing data
for this extinct, diverse group; monophyly and rela-
tionships among members have been confirmed
(Baker et al., 2005). Cracraft (1974a, 2001) considered
the Dinornithiformes to be the sister-group of the
Apterygiformes, contrary to Cooper et al. (1992, 2001),
Van Tuinen et al. (1998, 2000), Haddrath & Baker
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(2001) and the present provisional inferences. In most
respects, the topologies for ratites inferred by Lee
et al. (1997) and Dyke & Van Tuinen (2004: fig. 4) most
closely approximated that inferred here (Fig. 13).

Missing data for two orders of ratites – Dinornithi-
formes and Aepyornithiformes – proved analytically
problematic if included unconditionally with extant
ratites. Unrestricted analysis of these extinct, moder-
ately related, highly divergent, sparsely coded lin-
eages resulted in a suspicious placement of these two
orders as sister taxa. The large numbers of missing
data in the two extinct lineages, many lacking in

both taxa, prompted two alternative analyses to be
performed. Global searches of Dinornithiformes
(excluding the poorly known Aepyornithiformes) and
placements within the MPT as backbone-constraint
placed the moas to be the sister-group of other ratites
exclusive of Apterygiformes (Fig. 13), contrary to a sis-
ter-relationship between these New Zealand endemics
as advocated by Cracraft (1974a, 2001). By backbone-
constraints or exclusion of the Dinornithiformes, the
Aepyornithiformes were placed as the sister group
of the clade comprising Struthionidae and Rheidae
(Fig. 13).

Figure 13. Detailed segment of strict consensus tree of all MPTs recovered in present study. Part B. Neornithes: Palaeog-
nathae and Galloanserae. Nodes are labelled above by percentages of bootstrapped replicates in which node was retained
(italics), and below by Bremer support indices (bold type).
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GALLIFORMES AND ANSERIFORMES: LAND AND 
WATER FOWL

Interordinal relationships: The sister-group relation-
ship between the Galliformes and Anseriformes, reaf-
firmed here (Fig. 13), was inferred previously by
Cracraft (1981, 1988), Cracraft & Mindell (1989),
and substantiated thoroughly using morphological
(Dzerzhinsky, 1995; Caspers et al., 1997; Livezey,
1997a, 1998a; Cracraft & Clarke, 2001; Dyke, 2003;
Mayr & Clarke, 2003) and molecular data (Bleiweiss
et al., 1994, 1995; Groth & Barrowclough, 1999; Van
Tuinen et al., 2000, 2001; Cracraft, 2001; Prychitko &
Moore, 2003; Chubb, 2004a; Harrison et al., 2004;
Simon et al., 2004; Smith, Li & Zhijian, 2005). How-
ever, marginally supported counter-proposals persist
(Ericson, 1996, 1997; Ericson, Parsons & Johansson,
1998; Bourdon, 2005).

Anseriformes: Within the waterfowl (Anseriformes),
sequential sister-group relationships of the Anhimi-
dae, Anseranatidae and Anatidae, respectively, was
previously demonstrated by Livezey (1997a) and con-
firmed here (Fig. 13). Monophyly of the morphologi-
cally diverse and speciose Anatidae, including the true
geese (Anserinae) and typical ducks (Anatinae), is
essentially beyond dispute (Livezey, 1986). There exist
departures from this arrangement by a minority of
workers (Olson & Feduccia, 1980a; Sraml et al., 1996),
but this topology has been substantiated using diverse
evidence (Livezey, 1986, 1997a; Quinn, 1992; Donne-
Goussé et al., 2002). The historical hypothesis placing
the Phoenicopteridae within the Anseriformes
(Table 1) was among the early casualties of formal
phylogenetics (Livezey, 1997a, 1998a).

Galliformes: The pioneering myological works by
Hudson, Lanzillotti & Edwards (1959) and Hudson
& Lanzillotti (1964) provided early hints concerning
relationships of Galliformes, but unfortunately these
surveys were not cladistic and followed Peters (1934)
in considering unique Opisthocomus as an aberrant
galliform. Studies of galliform fossils continue to be
phenetic in approach (Mourer-Chauviré, 2000;
Göhlich & Mourer-Chauviré, 2005). Fortunately, this
pattern is likely to change with the increasingly com-
mon phylogenetic analyses of galliforms (Dyke, Gulas
& Crowe, 2003) and an improved fossil record (Mayr &
Weidig, 2004; Mayr, 2005a).

In the present work, relationships of two families
within the Galliformes – Megapodiidae (Birks &
Edwards, 2002) and Cracidae (Pereira & Baker, 2004;
Grau et al., 2005) as mutually monophyletic, sequential
sister-groups to all remaining galliforms – agree with
placements by other investigators (Prager & Wilson,
1976; Cracraft et al., 2004). Some workers (Hudson
et al., 1966), however, suggested a sister-group relation-
ship between the two families (superfamily Cracoidea),

as opposed to placement as successive sister-groups
(paraphyletic) to other galliforms (Fig. 13).

The robust placement of Meleagrididae as sister-
group to the Phasianidae sensu lato in the present
work (Fig. 13) opposes inclusion of the family among
the enormous complement of other galliforms
(reviewed by Sibley & Ahlquist, 1990). The present
finding also differs with the indeterminate placement
of this distinctive group from most galliforms by Dyke
et al. (2003). Dyke et al. (2003: fig. 3) depicted the
Megapodiidae and Cracidae as basal, successive sis-
ter-groups to the diverse and speciose ‘Phasianoidea’;
the latter group included Numida and Acryllium
(Numidinae) as members of a polytomous assemblage
immediately basal to Meleagris, Agriocharus, Tetra-
onidae, and a clade comprising 39 taxa of other galli-
forms inviting taxonomic subdivision. Most of the
large-bodied genera of phasianoids (e.g. Gallus, Pha-
sianus) and the ‘Old World quail and partridges’ were
among a large, basal polytomy of the ‘phasianoids’
exclusive of the guineafowl (Numidinae). Some of the
nodes within this large group, including those resolv-
ing Meleagridae and Tetraonidae relative to megapo-
diid and cracid galliforms, were not sustained by Dyke
et al. (2003: fig. 3) in a strict consensus of 1700 MPTs
based on 102 characters. Also, the tree inferred here
(Fig. 13) departed from those recovered using molecu-
lar data (Dimcheff, 2002; Dimcheff, Drovetski & Min-
dell, 2002).

The vast majority of galliform taxa are members of
a morphologically conservative group (Holman, 1961),
many formerly included among the Perdicidae or
Odontophoridae (Sibley & Ahlquist, 1990). These taxa
also posed problems of resolution in the present work
(Fig. 13), and nodes among these taxa were suffi-
ciently weak as to permit alternative local topologies
(i.e. a terminal polytomy). Armstrong, Braun & Kim-
ball (2001) found that mitochondrial and nuclear DNA
similarly resolved groupings within a sparse but broad
sample of Galliformes. Basal nodes of the latter taxa
are broadly consistent with some higher-order topolo-
gies (Prager & Wilson, 1976; Helm-Bychowski &
Wilson, 1986; Crowe et al., 1992; Kimball et al., 1999;
Gutiérrez, Barrowclough & Groth, 2000; Lucchini
et al., 2001; Dimcheff et al., 2002; Pereira, Baker &
Wajntal, 2002). The single exception among this group
(based on included genera) is the strongly supported
sister-group relationship between Gallus (Phasian-
idae) and Numida (Numidinae). The Numidinae were
inferred to be the sister-group of the Phasianidae by
Kimball et al. (1999) and Pereira & Baker (2006a).

MARINE ASSEMBLAGE

A diversity of mutually distinctive groups of aquatic
birds have been the focus of much early speculation
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regarding the potentially misleading effects of similar-
ities of locomotion leading to morphological conver-
gence. Most evocative of these speculations concerned
the Gaviiformes and Podicipediformes (e.g. Stolpe,
1935; Storer, 1956, 1960b), foot-propelled diving spe-
cialists that prompted arguments based on phenetics,
assumptions of ancestral status for fossils, simplistic
proposals of evolutionary trends and (most fundamen-
tally) a failure to meet conventional standards of
phylogenetic inference. These shortcomings notwith-
standing, such proposals from this era gave rise to a
general and uncritical acceptance of rampant conver-
gence uniquely afflicting morphological characters,
claims that persist to the present day.

Various alliances among the Gaviiformes, Podicip-
ediformes and Procellariiformes were suggested by
Mayr & Amadon (1951), and proved consistent with
myological data analysed by McKitrick (1991a, b)
and molecular patterns recovered by Watanabe et al.
(2006). A relationship between the Gaviidae and
Charadriiformes was considered plausible by Storer
(1956). Without explanation, however, Storer (1971b)
listed the loons and grebes together immediately fol-
lowing the Charadriiformes, in apparent contradiction
to his previous opinion. Foreshadowing a natural radi-
ation of marine birds, Ho et al. (1976) inferred a com-
paratively close relationship of the Sphenisciformes
with other primarily marine orders, and fossil evi-
dence for loons – of only marginal quality, optimistic
appraisals by Olson (1992a) and Mayr (2004a) not-
withstanding – suggests an early origin at least for the
Gaviiformes. A phylogenetic alliance among the Sphe-
nisciformes, Procellariiformes, Gaviiformes and Podic-
ipediformes was substantiated as well by Cracraft
(1982a), and this was indicated by Nunn & Stanley
(1998) and Slack et al. (2006a) on molecular grounds.

The comparatively robust skeletal elements of pen-
guins predispose them to fossil preservation, and
recently recovered remains hold promise for strati-
graphic chronology (Slack et al., 2006b). The clade of
basal marine taxa inferred herein evolved myriad
modes of foraging (Storer, 1971a): (i) Gaviiformes and
Podicipediformes being extremely specialized foot-
propelled diving birds; (ii) Sphenisciformes and Pele-
canoididae (Procellariiformes) being wing-propelled
diving birds, submarine ‘flight’ of the former rendering
members aerially flightless (Livezey, 1989a); and (iii)
Procellariiformes, comprising hover-foraging Oceaniti-
dae and other families combining wind-powered glid-
ing and plunge-diving (Del Hoyo, Elliott & Sardgatal,
1992). Some fossil groups remain of uncertain ordinal
affinity – e.g. the wing-propelled Plotopteridae (Olson
& Hasegawa, 1979, 1996; Olson, 1980; Goedert, 1988;
Goedert & Cornish, 2002; Mayr, 2004b) – and did not
merit analysis herein, where states for cranial char-
acters are critical but specimens are woefully incom-

plete. Early descriptions suggested the inclusion of the
Plotopteridae among Pelecaniformes is competitive
with an alternative relationship to Sphenisciformes for
which pectoral similarities were emphasized (Mayr,
2004b). Dissent regarding the ordinal relationships of
the Plotopteridae is consistent, to a point, with the
interordinal relationships of the Pelecaniformes and
Sphenisciformes inferred herein (Fig. 14).

Monophyly of the Sphenisciformes seldom has been
doubted, and resolution of relationships among mod-
ern and fossil species was achieved (Ksepka, Bertelli
& Giannini, 2006), but the position of this distinctive
marine group remains a long-standing controversy.
This duality of distinct synapomorphy and symplesio-
morphy underlies a number of classificatory problems
of Aves, in which marked distinction of groups tends to
confound comparisons with other groups. Of the alter-
natives proposed, an affinity with the Procellarii-
formes has received broadest support, both in the
present analysis (Fig. 14) and elsewhere (Cracraft,
1981, 1986, 1988).

Despite agreement with the inferences by Cracraft
(1982a), it is predictable that strong confirmation of a
sister-group relationship between the Gaviiformes
and Podicipediformes (Fig. 14) herein will engender
concerns of artefactual pairing by convergence
(Storer, 1956, 1971a, 2000, 2002). Storer (2002: 16)
felt that the non-phylogenetic work by Stolpe
(1935) ‘. . . demonstrated that the similarities among
the loons, grebes, . . . resulted from convergent
evolution . . .’ The inclusion of the Mesozoic Hesperor-
nithiformes with modern Gaviiformes and Podicipedi-
formes by Cracraft (1982a), a finding not supported
here (Figs 10, 14), was the inference subjected to
greatest criticism. Obvious similarities of form and life
history have prompted exceptional attention to differ-
ences between the two orders (e.g. Sibley & Ahlquist,
1972: table 1), tallies without benefit of polarities or
phylogenetics. In many cases, these rationalizations
are undermined with respect to functional compari-
sons, e.g. the Gaviidae employ feet for primary propul-
sion but also use their wings (Olson, 1985), and
members of the two orders also differ in the move-
ments typical of the pelvic limb (Storer, 1956). Pairing
of the Gaviiformes with the Podicipediformes as sister-
groups has been championed by Cracraft (1982a,
1988), a proposal not without opposition (e.g. Storer,
1956, 1960b, 1971a; Sibley & Ahlquist, 1972, 1990).
Additional support for this ordinal pairing has been
reported (Cracraft & Mindell, 1989; Bourdon, Boya &
Iarochène, 2005), but most other analyses excluded
one or both of these key orders, rendering comparisons
among such works regarding these orders impossible.

Without a consensus regarding a relationship
between the Podicipedidae and Gaviidae, the former
have been the subject of several extraordinary propos-
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als, based on relatively weak evidence or mere specu-
lation. Olson (1985: 168), under the subheading ‘Family
Incertae Sedis Podicipedidae’, stated: ‘In looking
beyond their obvious specializations for diving, I can-
not see that the grebes (Podicipedidae) would be out of
place in the Gruiformes.’ A more precise proposal for
the latter is a possible affinity on myological grounds
with the gruiforms Rhynochetos and Eurypyga (Zusi &
Storer, 1969). An apparent variant of this speculation
was a possible relationship with the Heliornithidae and
the closely related Rallidae (Beddard, 1893; Olson,
1985; Houde, 1994). Also, a tenuous alliance between
the Podicipedidae and Cuculidae was depicted by Van
Tuinen et al. (2000), but subsequent works have failed
to support this grouping. Another position recently
inferred for the Podicipediformes relates to the Phoe-
nicopteridae (Van Tuinen et al., 2001; Mayr, 2004c), a
proposal considered further below.

In most respects, inferences herein regarding the
Procellariiformes were among the least contentious
for the marine assemblage, whether in comparison
with traditional (Kuroda, 1954) or modern reconstruc-
tions (Nunn & Stanley, 1998; Kennedy & Page, 2002;
Watanabe et al., 2006). A moderate departure from
traditional arrangements is the finding herein of the
Diomedeidae (albatrosses) as comparatively derived,
with other Procellariiformes paraphyletic to the typi-
cal Procellariidae (Austin, 1996; Gómez-Díaz et al.,
2006) and Diomedeidae (Nunn et al., 1996).

PELECANS AND ALLIES: TOTIPALMATE BIRDS

The totipalmate or pelecaniform birds, as traditionally
defined, remain a higher-order group of extraordinary
controversy, but in reality the suite of unifying char-
acters, stressed by Beddard (1898), has been expanded
for decades beyond the totipalmy cited as sole uniting
anatomical character for the order by Sibley & Ahl-
quist (1972). Polyphyly of the order was inferred sub-
sequently by Sibley & Ahlquist (1990) and Hedges &
Sibley (1994). The status of the Pelecaniformes has
been debated since the core assemblage was included
in widely recognized classifications (Mayr & Amadon,
1951; Wetmore, 1930, 1960), and points of controversy
include those of monophyly, content and interordinal
position, as empirically derived from metric (Ver-
heyen, 1960b), neontological (Cracraft, 1985), palae-
ontological (Bourdon, 2005; Bourdon et al., 2005) and
molecular perspectives (Siegel-Causey, 1997; Farris
et al., 1999).

The exceptional heterogeneity of traditionally
included families – e.g. frigatebirds, gannets and pel-
icans – render questions of membership especially
problematic. Perhaps most intriguing of the debated
memberships is that of the shoebill or Balaeniceps
(Reinhardt, 1860, 1862; Cottam, 1957; Feduccia,

1977a; Mayr, 2003a). Purportedly intermediate fea-
tures of ‘stork-like’ and ‘pelican-like’ forms (Van
Tuinen et al., 2001; Bourdon et al., 2005) have
extended to proposals of pelecaniform affinity of the
hammerkop (Scopidae). In agreement with the
present analysis, the consensus of available phy-
logenetic works places the distinct Phaethontidae as
sister-group to other pelecaniforms exclusive of
Balaeniceps (Mayr & Clarke, 2003), with an alterna-
tive position hypothesized for the Phaethontidae as an
exceptional plesiomorph allied to some pelecaniforms
and the Procellariiformes (Bourdon et al., 2005). The
present study also resolved Balaeniceps as sister-
group to the clade comprising Phaethontidae and
other (traditional) Pelecaniformes. Scopus was not
inferred here to be closely related to the Pelecani-
formes (Fig. 14), contra Mayr (2003a).

Relationships among traditional Pelecaniformes
(excluding Balaeniceps), inferred cladistically by Crac-
raft (1985: figs 6, 7), agreed with the inferences pre-
sented herein (Figs 10, 14), whereas comparisons
between the studies with respect to the orders Sphe-
nisciformes, Gaviiformes, Podicipediformes and Pro-
cellariiformes were not possible. Sibley & Ahlquist
(1990) proposed a ‘four-fold’ polyphyly of Pelecani-
formes among the most notable departures of their
analysis from contemporary arrangements, whereas
several other traditional elements were conserved in
their scheme. Hedges & Sibley (1994), based on an
analysis impoverished in both data and taxa, also sug-
gested polyphyly of taxa traditionally considered pele-
caniform in a work remonstrated by Farris et al.
(1999). Syntheses by Van Tets (1965) and Siegel-
Causey (1997: fig. 6.3) reaffirmed ordinal monophyly
(exclusive of Phaethontidae) using morpho-ethological
data, whereas molecular reconstructions violated ordi-
nal monophyly by topologically variable inclusions of
the Diomedeidae, Procellariidae and Cathartidae (Sie-
gel-Causey, 1997: fig. 6.2). One minor departure from
tradition by Sibley & Ahlquist (1990) was a terminal
triad in which the Phalacrocoracidae were placed as
sister-group to the Anhingidae and Sulidae.

Kennedy & Spencer (2004) weakly confirmed mono-
phyly of the traditionally constituted order, in part by
use of appropriate outgroups but despite heteroge-
neous taxonomic sampling of ingroup families. Three
weakly resolved departures by Kennedy & Spencer
(2004) from the hypothesis inferred herein (Fig. 14)
were: (i) reversal of the positions of the Phaethontidae
relative to the Fregatidae + Pelecanidae; (ii) a sister-
relationship between the Pelecanidae and Phae-
thontidae; and (iii) paraphyly of Phalacrocoracidae
and Anhingidae to the Sulidae.

The Phalacrocoracidae and Anhingidae – families
long considered closely related and strikingly similar
in external and skeletal aspects (Siegel-Causey, 1988)
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– have been subjected to unexpected hypotheses of
relationship. A series of related papers (Kennedy,
Spencer & Gray, 1996; Kennedy, Gray & Spencer, 2000;
Kennedy & Spencer, 2000, 2004; Kennedy et al., 2005),
based on limited taxonomic representation of pelecan-
iform families and unconventional analytical methods,
mustered mtDNA sequences and behavioural data
that favoured paraphyly of these two families to the
Sulidae, also inferred phenetically by Sibley & Ahl-
quist (1990). Based on the present analysis (Table 3),
however, a sister-group relationship between Phalac-
rocoracidae and Anhingidae is strongly favoured.

STORKS, HERONS AND ALLIES

‘Wading birds’, as delimited here, comprise the typi-
cally long-legged, long-necked storks and herons, and
exclude the morphologically reminiscent cranes and
allies (Gruiformes) and the potentially allied shore-
birds (Charadriiformes). Highest-order nodes resolved
in the present study defined a primary division of (i)
‘herons’ from (ii) ‘storks’ and allies as sister-groups
(Fig. 14). Among the ‘storks’, Scopus is the sister-
group to other members, the latter comprising clades
partitioning the (i) ibises and spoonbills, and (ii) fla-
mingos and typical storks. Within the ‘herons’, the
only notable finding is the placement of Cochlearius as
sister-group to other herons (Fig. 14), an inference
consistent with traditional classifications (e.g. Wet-
more, 1960) and earlier findings (Cracraft, 1967a;
Sheldon, Jones & McCracken, 2000).

Shufeldt (1901b) suggested affinities between the
Phoenicopteridae (flamingos) and both the Anseri-
formes (waterfowl) and the Ciconiiformes (storks and
traditional allies). Olson (1978) questioned the mono-
phyly of the traditional Ciconiiformes on phenetic
grounds, suggested charadriiform affinities of Phoeni-
copteridae and Threskiornithidae, and expressed
uncertainty regarding the ordinal placement of the
herons (Ardeidae). Van Tuinen et al. (2001), based on
conventional molecular estimates and the phenetics of
DNA–DNA hybridization, found no support for mono-
phyly of the Ciconiiformes in an analysis including
representatives from several other traditional groups.
Molecular reconstructions by Slikas (1997), however,
confirmed monophyly of the morphologically diverse,
‘true’ storks (Scopus and Balaeniceps not sampled),
groupings that also were afforded significant etholog-
ical support (Slikas, 1998).

It has been hypothesized in recent years that the
Phoenicopteridae may be the sister-group of the
grebes (Podicipediformes), a proposal supported by
tenuous molecular (Van Tuinen et al., 2001) and mor-
phological evidence (Mayr & Clarke, 2003; Mayr,
2004c; but see Storer, 2006). Given the variable view-
points expressed regarding the Phoenicopteridae as

well (Gadow, 1877; Shufeldt, 1889a; Feduccia, 1976,
1977a), this couplet offered the hope of dispensing
with two challenging taxonomic placements by means
of a single union, a circumstance not uncommonly an
artefact of long-branch attraction (Philippe et al.,
2005). Both of these autapomorphic taxa have been
subjected to classificatory confusion for more than a
century (e.g. Weldon, 1883; Shufeldt, 1901b; Jenkin,
1957), with affinities of the flamingos considered plau-
sible between either the Ciconiiformes or the Anseri-
formes. Despite robust support for the more
traditional position in the present analysis (Tables 2,
3; Figs 10, 14) and the minimal evidence presented by
others for the proposal of the Podicipediformes, the
latter hypothesis merits examination on the grounds
of its superficial implausibility and the marked rear-
rangements of higher-order avian relationships it
would imply. Supplementary morphological support
for a sister-group relationship between grebes and fla-
mingos marshalled by Mayr & Clarke (2003), however,
required the exclusion (in a second analysis) of the
loons – heretofore the global sister-group of the grebes
– to sustain the grouping in question. Both exclusion
of the Gaviiformes and narrow sampling of characters
and taxa with which the Phoenicopteriformes were
evaluated by Mayr (2004c) weakened the resultant
inferences regarding the relationships of flamingos.

Chubb (2004a: 148) recovered 50% and 78% boot-
strap support for this taxonomic couplet in analyses
of different partitions of the ZENK gene, and joined
Van Tuinen et al. (2001) in the speculation that:
‘. . . because both grebes and flamingos are highly
derived morphologically and adapted to unique
aquatic niches, their potential evolutionary alliance
has previously gone unnoticed.’ Unfortunately, this
rationalization is vulnerable to criticism because: (i)
modifications for foot-propelled diving of grebes are
comparable with those of several other groups of Neor-
nithes – e.g. some Anatidae (Oxyurini, Mergini), Gavi-
idae, Phalacrocoracidae and Anhingidae; and (ii) the
‘unnoticed alliance’ between grebes and flamingos rec-
ognized by Chubb (2004a) instead was countered by a
number of apomorphies in each genus that are shared
with other taxa – e.g. Podiceps with Gavia, Phoenicop-
terus with (other) Ciconiiformes. The present data set
(Livezey & Zusi, 2006) supports the rejection of this
novel proposal involving the grebes and flamingos
(Table 3; Fig. 14), and suggests that the taxonomic pro-
posal for the couplet by Sangster (2005) is premature.

CRANES, RAILS, SHOREBIRDS AND ALLIES

The remaining long-legged, statuesque denizens of
early successional, often wet habitats, together with
the true shorebirds, compose the sister-group of
remaining neornithine taxa (Fig. 15). These families,
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Table 3 .

 

 Alternative topological inferences and minimal differences in tree length (additional steps) relative to placements
in MPTs (Figs 11–17), conditional on other topological alterations being prohibited (optimizations of characters thereon
permitted). Higher-order taxa correspond to classification proposed in Appendix 1

Taxon Alternative hypothesis*

 

∆

 

 length References

Palaeognathae

 

∪

 

 Galloanseromorphae 54 Sibley & Ahlquist (1990)
Ratitae (global)†

 

∆

 

 topology 31 Cracraft (1974a)
Ratitae (local)†

 

∆

 

 topology 63 Cracraft (1974a)

 

∆

 

 topology‡ 17 Cooper 

 

et al

 

. (2001)

 

∆

 

 topology‡ 13 Haddrath & Baker (2001)
Galloanserimorphae Polyphyly§ [19] Bourdon 

 

et al

 

. (2005)
Galliformes Polyphyly 90 Dyke 

 

et al

 

. (2003)
Megapodiidae 

 

∪

 

 Cracidae 10 Dyke 

 

et al

 

. (2003)
Meleagrididae 

 

∪

 

 Phasianidae 20 Dyke 

 

et al

 

. (2003)
Anseriformes 

 

∆

 

 familial topology 54 Olson & Feduccia (1980a); Livezey (1997a)
Anhimae 

 

∪

 

 

 

∨

 

 

 

⊂

 

 Galliformes 41 Olson & Feduccia (1980a); Livezey (1997a)
Gaviomorphae 

 

∪

 

 Charadriomorphae 72 Storer (1956); Olson (1985)
Podicipediformes 

 

∪

 

 Phoenicopteridae 146 Mayr & Clarke (2003); Mayr (2004a)

 

∪

 

 Charadriomorphae 54 Storer (1956)

 

∪

 

 Eurypygidae 182 Zusi & Storer (1969)

 

∪

 

 Ralliformes 159 Olson (1985); Houde (1994)
Pelecaniformes 

 

∆

 

 topology 344 Kennedy & Spencer (2004: fig. 1B)
Sulae 

 

∆

 

 topology 125 Kennedy 

 

et al

 

. (2005: fig. 8)
Balaenicepitidae 

 

¬ ∪

 

 Pelecaniformes 30 Cracraft (1985); Mayr (2003a)
Scopidae

 

∪

 

 

 

∨

 

 

 

⊂

 

 Pelecaniformes 23 Mayr (2003a)
Threskiornithidae

 

∪

 

 

 

∨

 

 

 

⊂

 

 Charadriiformes 174 Olson (1978)
Ardeidae

 

⊂

 

 (Turnices 

 

∪

 

 Eurypygae) 75 Olson (1978)
Phoenicopteridae 

 

∪

 

 Anseriformes 107 Feduccia (1976, 1977b); Hagey 

 

et al

 

. (1990)

 

∪

 

 Cladorhynchini 154 Olson & Feduccia (1980b)
Gruiformes (traditional) Monophyly¶ 11 Livezey (1998b)
Charadriiformes 

 

∆

 

 topology 60 Strauch (1978) 

 

fide

 

 Chu (1995: fig. 1)

 

∆

 

 topology 106 Sibley & Ahlquist (1990) 

 

fide

 

 Paton 

 

et al

 

. (2003)

 

∆

 

 topology 82 Chu (1995: fig. 8), excluding 

 

Ibidorhyncha

 

Mesitornithidae

 

∪

 

 Cuculiformes 107 Mayr & Ericson (2004)
Strigiformes

 

∪

 

 Caprimulgiformes 43 Hoff (1966)
Cathartidae 

 

∪

 

 

 

∨

 

 

 

⊂

 

 Ciconiiformes 112 Ligon (1967); Rea (1983); Avise 

 

et al

 

. (1994a)
Opisthocomidae 

 

∪

 

 

 

∨

 

 

 

⊂

 

 Galliformes 120 Hudson 

 

et al

 

. (1959); Hudson & Lanzillotti (1964)

 

∪

 

 Cuculiformes** 22 Avise 

 

et al

 

. (1994b); Hughes & Baker (1999)
Caprimulgiformes Polyphyly 31 Mayr (2002a, b)

 

∪

 

 Cypselomorphae 42 Mayr (2002a, 2003c, 2004d, 2005f, g)
Aegothelidae

 

∪

 

 Apodiformes 31 Mayr (2002a, 2003c, 2004d, 2005f, g)
Steatornithidae

 

∪

 

 Trogoniformes 102 Mayr (2003b)
Hemiprocnidae 

 

∪

 

 Apodidae, monophyly 5 Sibley & Ahlquist (1990: fig. 361)
Apodidae 

 

∪

 

 Passeri (Hirundinidae) 193 Shufeldt (1889b); Van Tuinen (2002)
Galbulae 

 

∪

 

 

 

∨

 

 

 

⊂

 

 Coraciiformes 20 Olson (1983a)
Coraciiformes 

 

∆

 

 topology, 

 

∈

 

 Trogoniformes 199 Lowe (1946); Maurer & Raikow (1981)
Coracii 

 

∆

 

 topology 64 Cracraft (1971b)

 

Menura

 

∪

 

 

 

∨

 

 

 

⊂

 

 Passeri 11 Irestedt 

 

et al

 

. (2001); Barker 

 

et al

 

. (2002)

*Set-symbolism coopted for concise statement of phylogenetic hypotheses, as follows: 

 

∪

 

, sister-group (disjoint) union;

 

⊂

 

, included as subclade; 

 

∈

 

, included as a member taxon; 

 

∨

 

, or; 

 

∆

 

, change in; 

 

¬

 

, not (negation of predicate argument).
†Local optima for Aepyornithiformes and Dinornithiformes (as bi-ordinal sister-group to ratites exclusive of Apterygi-
formes) and global optima (former as sister-group to Struthionidae and Rheidae, latter as sister-group to ratites exclusive
of Apterygiformes).
‡Comparisons excluded effects due to differences in outgroup taxa, as well as tentatively placed Aepyornithiformes.
§Doubtful comparability given differences in taxonomic samples between studies.
¶Corresponds to that proposed by Livezey (1998b), exclusive of Pedionomidae and fossil gruiforms ( Cracraft 1969, 1971a,
1973a).
**Alternative hypothesis compared sister-grouping with Cuculiformes exclusive of Musophagidae.
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typically included within the traditional Charadrii-
formes and Gruiformes, have a long, perhaps
unequalled history of debate in the ornithological lit-
erature (reviewed by Sibley & Ahlquist, 1972, 1990;
Livezey, 1998b). Primary points of controversy concern
the monophyly of the Gruiformes, and relationships
between the taxa traditionally referred to the Grui-
formes and the Charadriiformes; the latter order is
known for especially great diversity in structure of the
skull (Kozlova, 1961).

Gruiformes and allies: In an analysis of phylogeny
and flightlessness of the Rallidae (Livezey, 1998b,
2003b), the traditionally delimited Gruiformes
appeared to be monophyletic when analysed with only
limited outgroups. However, in the more extensive

sampling of higher-order groups of the present analy-
sis (Fig. 15), this assemblage was resolved to be
paraphyletic to the Charadriiformes. Most families
included among the Gruiformes have been the subject
of comparatively intense debate with respect to taxo-
nomic position, e.g. Sibley, Ahlquist & DeBenedictus
(1993) prepared an addendum for the Rallidae and
allied families, and Houde (1994) revealed the difficul-
ties of resolving the phylogenetic position of the
Heliornithidae within the order. Nonetheless, the
order contributed to early perceptions of southern-
hemispheric origins of many non-passeriform birds
(Cracraft, 1982b).

In the present work, most families formerly
included among the Gruiformes were inferred to be
monophyletic (Fig. 15), forming a single clade within

Figure 14. Detailed segment of strict consensus tree of all MPTs recovered in present study. Part C. Neornithes: nodes are
labelled above by percentages of bootstrapped replicates in which node was retained (italics), and below by Bremer support
indices (bold type).
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which a primary bifurcation established the first of
two subclades comprising the Otididae (Pitra et al.,
2002) and Cariamidae (Livezey, 1998b). The second
of the primary gruiform clades, and sister-group of
the foregoing clade, comprised the sister-groups of
(i) Eurypygae (i.e. Eurypygidae, Rhynochetidae and
Aptornithidae as sequential sister-groups) and (ii) the
nominate suborder Grues (i.e. Psophiidae, Aramidae

and Gruidae as sequential sister-groups). New infor-
mation on the Eocene fossil Eogrus (Cracraft, 1969;
Clarke et al., 2005a) is consistent with monophyly of
the Gruidae inferred by other means (Krawjewski &
King, 1996). With the exception of an alternative posi-
tion hypothesized for the subfossil Aptornithidae
(Livezey, 1994; Houde et al., 1997), arrangements of
these ordinally defining families have engendered

Figure 15. Detailed segment of strict consensus tree of all MPTs recovered in present study. Part D. Neornithes:
Gruiformes and Charadriiformes. Nodes are labelled above by percentages of bootstrapped replicates in which node was
retained (italics), and below by Bremer support indices (bold type).
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only limited dissent (Mitchell, 1915; Livezey, 1994,
1998b).

Several families formerly included within the Grui-
formes by Livezey (1998b), as detailed above, were
inferred herein to be members of the sister-group of
the Gruiformes, and specifically were resolved as
two sequential sister-groups of the Charadriiformes
(Fig. 15). Several of these have attracted an inordinate
interest pertaining to phylogenetic position, diversity
of form, intraordinal membership (e.g. Turnicidae)
and manifestation of morphological intermediacy of
others – e.g. Pedionomidae and Otididae (Gadow,
1891a; Bock & McEvey, 1969; Olson & Steadman,
1981). The present analysis provisionally placed the
Turnicidae and Mesitornithidae as sister-taxa and the
first of the two sequential sister-taxa (taxa paraphyl-
etic) to the Charadriiformes (Fig. 15). Rotthowe &
Starck (1998) agreed with both the present analysis
and that by Livezey (1998b) regarding an affinity
between the Turnicidae and Gruiformes, but Mayr &
Ericson (2004) proposed a close relationship between
the Mesitornithidae and Cuculiformes. The remaining
sequential sister-group (lineage in this grade) com-
prised the Rallidae and its sister-group Heliornithidae
(Fig. 15), a close relationship inferred both by Houde
(1994) and Livezey (1998b), among others.

Charadriiformes: The preceeding clades subtended a
clade herein interpreted as comprising the Charadri-
iformes. The true shorebirds, as resolved here
(Fig. 15), comprise families of comparatively obvious
ordinal affinity and great apomorphy, and generally
accepted as monophyletic (Strauch, 1978; Björklund,
1994; Chu, 1994, 1995; Moum et al., 1994; Moum,
Arnason & Arnason, 2002; Friesen, Baker & Piatt,
1996; Thomas, Wills & Székely, 2004a; Bridge, Jones
& Baker, 2005). Relationships among several major
groups of charadriiform birds have been inferred (e.g.
Thomas, Wills & Székely, 2004b); however, the system-
atics of the group remains markedly controversial
(Strauch, 1985; Christian, Christidis & Schodde, 1992;
Paton et al., 2002; Ericson et al., 2003a; Van Tuinen,
Waterhouse & Dyke, 2004; Paton & Baker, 2006;
Pereira & Baker, 2006b).

The present analysis established the monophyly of
the Charadriiformes, of which the Pedionomidae con-
stituted the sister-group to other members (Fig. 15).
The latter finding represents a slight departure from
the marginal inclusion of Pedionomus among Grui-
formes and affinities of the genus with the charadrii-
form Jacanidae (Whittingham, Sheldon & Emlen,
2000) and Rostratulidae inferred by Livezey (1998b),
and is consistent with the inferences by Olson and
Steadman (1981) and Ericson (1997). Within the
Charadriiformes, Pedionomus is the sister-group to: (i)
the bifamilial couplet comprising the Jacanidae and

Rostratulidae, (ii) the monotypic Dromadidae and
(iii) a clade comprising Thinocoridae and the sister-
families Scolopacidae (e.g. Heteroscelus) and Phalaro-
podidae (Fig. 15); and (iv) a terminal clade comprising
two major subclades and multiple, only partially
dichotomously resolved families (Fig. 15). These broad
groupings bear notable similarities with the suborders
defined by Lowe (1931a).

The remaining clade of the Charadriiformes com-
prises two major subclades, both of which are weak-
ened by three marginally robust, defining nodes
(Fig. 15). The first comprises in turn three lineages or
subclades: (i) the Charadriidae; (ii) the sister-groups
Cursorinae and Glareolinae (collectively constituting
the Galreolidae); and (iii) a clade comprising the
Burhinidae and its sister-group comprising two bifur-
cate clades, the Haematopodidae (united exclusively
with monotypic Ibidorhynchus), and the Recurvi-
rostridae (united exclusively with monotypic Cla-
dorhynchus). The other major, pectinate subclade
within the Charadiformes comprises, respectively, the
sequential sister-groups Chionididae, Alcidae, Sterco-
rariidae, Rynchopidae and Laridae (Fig. 15).

BIRDS OF PREY – DIURNAL AND NOCTURNAL

Raptors or birds of prey – comprising the diurnal Fal-
coniformes and (principally) nocturnal Strigiformes –
share a primary reliance on carnivory, by scavenging
or capture of prey and associated functional common-
alities. The sister-relationship of these raptorial
orders inferred herein (Figs 10, 16) and by Mayr et al.
(2003) has been the subject of suspicion based on phe-
netic tallies of differences (Gadow, 1893; Beddard,
1898) and speculations concerning convergences and
raptorial specializations (Sibley & Ahlquist, 1972;
Cracraft, 1981). However, these orders differ in many
respects and manifest substantial diversity within
orders, conditions as suggestive of comparatively
ancient divergence of sister-groups sharing general
raptorial lifestyles and independent (order- and
family-specific) morphological refinements. This
clade is first in a sequence of four – the birds of
prey, Opisthocomus, Cuculiformes, Psittaciformes and
Columbiformes – that are sequential sister-groups of
remaining Neornithes. Although all of these orders
were robust with respect to individual monophyly, the
four highest-order branches supporting these orders
were not (Figs 10, 15–17), rendering the branching
sequence provisional.

In addition to suspicions of convergence, several
concerns may be seen as opposing the phylogeny
inferred herein: (i) an alternative interordinal hypoth-
esis that presumes the Strigiformes to be most closely
related to the non-raptorial but similarly nocturnal
Caprimulgiformes; (ii) an hypothesis that holds the
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New World vultures (Cathartidae) to be more closely
related to the Ciconiidae than to typical birds of prey;
and (iii) several counterproposals concerning certain
families and genera of Falconiformes, notably posi-
tions of the terrestrially specialized secretary-bird
(Sagittarius serpentarius), the piscivorous ospreys

(Pandion haliaetus), and the distinctive Falconidae
relative to other diurnal raptors.

Falconiformes: In the present analysis, however,
Cathartidae was resolved as the sister-group of other
Falconiformes – an inference considered ‘probable’ by

Figure 16. Detailed segment of strict consensus tree of all MPTs recovered in present study. Part E. Neornithes:
Falconiformes, Strigiformes, Cuculiformes and Psittaciformes. Nodes are labelled above by percentages of bootstrapped
replicates in which node was retained (italics), and below by Bremer support indices (bold type).
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Sibley & Ahlquist (1972) – and the Sagittariidae was
sister-group of the order exclusive of the Cathartidae.
The Falconiformes, exclusive of the foregoing two fam-
ilies, comprised a pair of sister-clades: (i) the Accipi-
tridae, including Old World vultures (e.g. Gyps), and
(ii) a clade comprising the Pandionidae and its sister-

group the Falconidae, the latter including the cara-
caras (Fig. 16).

Jollie (1976, 1977a, b, c) comparatively surveyed
morphological characters of the Falconiformes in a
monograph largely limited to anatomical phenetics
and influenced by suspicions of functional conver-

Figure 17. Detailed segment of strict consensus tree of all MPTs recovered in present study. Part F. Neornithes: Colum-
biformes, Caprimulgiformes, Apodiformes, Coliiformes, Trogoniformes and Coraciiformes. Nodes are labelled above by per-
centages of bootstrapped replicates in which node was retained (italics), and below by Bremer support indices (bold type).



HIGHER-ORDER PHYLOGENY OF MODERN BIRDS 35

© 2007 The Linnean Society of London, Zoological Journal of the Linnean Society, 2007, 149, 1–95

gence. Exclusive of primarily syringeal evidence (Grif-
fiths, 1994), the only phylogenetic study of diurnal
raptors based on morphological characters remains
that by Holdaway (1994). Unfortunately, most studies
treat most families within the Falconiformes (as con-
strued herein) in only limited capacitiy or secondary
focus, e.g. as outgroups for the Falconidae (Griffiths,
1994, 1999; Haring et al., 2001; Griffiths et al., 2004),
or in treatments of other phylogenetic issues within
the Accipitridae (Seibold & Helbig, 1996; Helbig et al.,
2005; Lerner & Mindell, 2005). Cytotaxonomy appears
to possess signal, especially in the comparatively
intensively studied Falconiformes, but even phenetic
groupings of cytotaxonomy have defied interpretation
(Ansari & Kaul, 1986). The recent sequence-based
phylogeny proposed for the diurnal birds of prey
(Lerner & Mindell, 2005) emphasized species-level
relationships within the Accipitridae, and Fain &
Houde (2004) failed to resolve relationships among the
diurnal raptors. Lerner & Mindell (2005) differed from
the present analysis in the placement of Pandion as
more closely related to the Accipitridae than to the
Falconidae or Phalcobaeninae. A sister-group relation-
ship between Cathartidae and other Falconiformes, as
inferred herein (Fig. 16), was recovered by Mayr &
Clarke (2003), although the latter differed regarding
the Strigiformes, Accipitridae and Falconidae.

Ligon (1967) tallied characters suggestive of a phe-
netic ‘affinity’ between the Cathartidae and Ciconii-
formes. Evidently derived from studies by Gadow
(1893), Beddard (1898) and Jollie (1953, 1976, 1977a,
b, c), works that included Pelecaniformes and Procel-
lariiformes as alternative candidates, the work by
Ligon (1967) was a comparison of favoured features
solely between the Cathartidae and selected represen-
tatives of Ardeidae, Ciconiidae and Accipitridae. Ligon
(1967) did not consider polarities or include a formal
analysis based on a broad array of characters, and
most of the phenetic differences are not convincingly
distinct; many features were cast in terms of anti-
quated typology (Cracraft et al., 2003; Zusi & Livezey,
2006), such as the ‘palatal types’ of Huxley (1867).
Nevertheless, this hypothesis found a receptive audi-
ence (Cracraft, 1972a; Cracraft & Rich, 1972; König,
1982; Rea, 1983; Emslie, 1988; Seibold & Helbig, 1995;
Slikas, 1997; Lerner & Mindell, 2005), and it arguably
is more popular than it is empirically robust.

Seibold & Helbig (1995) concluded that limited
mtDNA sequence data supported a close relationship
between the Cathartidae and storks. Subsequent
analyses of the data used by Seibold & Helbig (1995) –
revised and augmented by Hackett et al. (1995) and
Avise & Nelson (1995) – largely were not comparable
because of methodological differences. Avise, Nelson &
Sibley (1994a) and Wink (1995) compiled weak molec-
ular evidence to test the hypothesis, the results of

which were equivocally consistent with the hypothesis
of Ligon (1967). Analyses including these taxa during
the following decade (Figs 1–10) failed to support the
exclusion of the Cathartidae from Falconiformes sensu
stricto, or associate the family with the Ciconiiformes.

Strigiformes: The other substantive debate regarding
birds of prey concerns the relative support for a sister-
group relationship between: (i) diurnal and nocturnal
raptors, or (ii) the similarly noctural Strigiformes and
Caprimulgiformes (Hoff, 1966; Sibley & Ahlquist,
1972; Randi et al., 1991; Wink & Heidrich, 1999). The
current analysis strongly confirmed a sister-group
relationship between the Strigiformes and the Falco-
niformes (Fig. 16), a union also supported by Cracraft
(1988), Mayr & Clarke (2003) and Mayr et al. (2003).
Recent molecular studies have placed the Strigiformes
tenuously with a striking diversity of taxa, including
the Psittacidae, Picidae and Rhamphastidae (Espi-
nosa de los Monteros, 2000; Van Tuinen et al., 2000).
Fossils that exhibit generalized raptorial characters or
those of both Strigiformes and Falconiformes also
have been described (Mayr, 2000a, b, 2005b; Mayr &
Daniels, 2001).

With respect to familial relationships within the
Strigiformes, the present analysis reaffirmed a basal
bifurcation between barn-owls (Tytonidae) and typical
owls (Strigidae), with the former including Phodilus
(Fig. 16). Phodilus (bay owl) has been considered of
variable intermediacy to both strigiform families
(Table 1), but most recent molecular data bearing on
Phodilus (G. Barrowclough, pers. comm.) are consis-
tent with the present findings (Fig. 16).

HOATZIN, CUCKOOS, PIGEONS, PARROTS AND ALLIES

This group of medium-sized landbirds approximates
part of the ‘Anomalogonatae’ of Garrod (1874) and
Beddard (1898), largely synonymous with the earlier
branches within the ‘higher landbird assemblage’ of
Olson (1985). Clades informally included in this grade
of modern landbirds are characterized by mutually
exclusive apomorphies rendering many of the groups
among the most readily recognized of birds. Members
of this subterminal grade of avian orders have been
the subject of numerous studies, but nonetheless a
clear consensus regarding their interordinal affinities
has failed to emerge (Bleiweiss, Kirsch & Lapointe,
1994; Bleiweiss, Kirsch & Shafi, 1995; Johansson
et al., 2001). As noted previously, these taxa – Opis-
thocomus, Cuculiformes, Psittaciformes and Columbi-
formes – traditionally were accorded ordinal rank, and
were resolved here as a grade in which defining nodes
achieved only marginal support. Accordingly, this
series of clades conservatively can be considered to
compose a tri-ordinal grade or corresponding polytomy
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that bridges the Cuculiformes with the Caprimulgi-
formes and Apodiformes. The latter ambiguity prima-
rily relates to the failure to resolve the order of
branching of the Psittaciformes relative to the Colum-
biformes (Fig. 17). Nevertheless, the orders branching
from this grade were each strongly supported.

The Opisthocomidae – solely comprising the
unusual hoatzin (Opisthocomus hoazin) – has been
allied with Tinamidae, Galliformes, Cuculiformes,
Columbidae, Pteroclidae, Rallidae, Otididae and
Coliidae, among other higher-order groups (Table 1).
Recent attempts to resolve the uncertainty of position
of this monotypic lineage by molecular means have
proven largely unsuccessful, principally by mutual
contradiction or ambiquity of findings (Avise, Nelson
& Sibley, 1994b; Hedges et al., 1995; Marceliano,
1996; Sorenson et al., 2003), and also because of con-
taminated sequence data (Avise & Nelson, 1995;
Hackett et al., 1995). A growing number of works are
at least consistent with an affinity between Opisthoc-
omus and the Cuculidae (Sibley & Ahlquist, 1972,
1990; Hughes & Baker, 1999), despite disputes
regarding method and differences in taxonomic sam-
pling. In the present analysis, Opisthocomus was
placed as the sister-group of the Cuculiformes, the
latter weakly including the Musophagidae (Veron,
1999) as sister-group to the Cuculidae (Table 2;
Fig. 16).

Uncertainties of phylogenetic position and super-
ficial plesiomorphy of Opisthocomus led some (e.g.
Feduccia, 1980, 1996; Olson, 1985) to suggest that the
taxon derives from the ‘roots’ of Neornithes. This pro-
posal is consistent with a perception that the species
descended from uniquely primitive ancestry, a view
exemplified by its description as a ‘reptilian’ bird by
Parker (1891), its use as the only neornithine explicitly
figured with Archaeopteryx or non-avian Theropoda
(Brodkorb, 1971a; Feduccia, Lingham-Soliar &
Hinchliffe, 2005: fig. 26), and the much-publicised
retention and use of weakly functional ungues alulares
in the genus prior to fledging (Shufeldt, 1918). In actu-
ality, such ‘wing claws’ are retained by members of
many modern avian orders in variably vestigial states
(Livezey & Zusi, 2006). Accordingly, morphological and
molecular evidence for the purported plesiomorphy of
Opisthocomus is ambiguous at best: most studies place
the genus as closely related to the Cuculiformes
(Hughes & Baker, 1999; present study), whereas a few
analyses suggest a more distant relationship (Mayr
et al., 2003; Mayr, 2005b).

Various other studies, most with only marginal tax-
onomic sampling, have inferred a sister-group rela-
tionship between Opisthocomus and the Cariamidae
(Mayr & Clarke, 2003; Mayr, 2005c) or inclusion
within an eclectic assemblage defying plausible expla-
nation in light of other findings (Fain & Houde, 2004).

The unique alimentary features of Opisthocomus,
notably refinements for herbivorous or ruminant
digestion (Dominguez-Bello, Ruiz & Michelangeli,
1993; Kornegay, Schilling & Wilson, 1994), are of little
phylogenetic significance as they are autapomorphic
among Neornithes. However, the lysozymes associated
with fermentation by Kornegay et al. (1994, 2003) sug-
gest Opisthocomus to be more similar to Columba
than Gallus.

Phylogenetic studies of the Cuculidae per se are sur-
prisingly few, but include taxonomically inclusive
attempts at morphological and ethological insights
(Seibel, 1988; Hughes, 1996, 2000; Posso & Donatelli,
2001) as well as a molecular exploration (Sorenson &
Payne, 2003). Berger (1960) compiled characters dis-
tinguishing the Cuclidae from the Musophagidae,
many of which show homoplasy at wider scales of com-
parison. The molecular study by Johnson et al. (2000),
the primary focus of which were the Malagasy couas,
resulted in a topology within the family broadly sim-
ilar to that inferred herein, differences in sampling
notwithstanding (Fig. 16).

Pigeons and sandgrouse: The Columbidae tradition-
ally are recognized as monophyletic, whereas the
interordinal position of the Columbiformes remains a
primary point of dispute. The incompletely resolved
position inferred here (Fig. 17): (i) compares reason-
ably well with the semi-speculative tree by Cracraft
(1988); (ii) accords acceptably with the poorly resolved
reconstructions by Mayr & Clarke (2003), Mayr et al.
(2003) and Mayr (2005c); and (iii) is only weakly con-
gruent with the placements by Van Tuinen et al.
(2000) and Fain & Houde (2004). The fossil record of
the Columbidae from the Palaeogene is poor, and
described as non-existent by Mayr (2005a). Sampling
of the Columbidae was comparatively intense in the
present study so as to affirm the monophyly of such a
diverse family and to expand the thoroughness of
placements of the extinct ‘raphids’ Raphus and Pezop-
haps (Livezey, 1993).

The present analysis indicated monophyly of flight-
less Raphus cucullatus and Pezophaps solitaria, one of
the principal hypotheses proposed for the ‘raphids’
(Livezey, 1993). Goura and Didunculus, historically
speculated to be sister-genera, were placed as para-
phyletic to the raphids (Fig. 17). These inferences gen-
eral agree with those by Shapiro et al. (2002: fig. 1)
and Johnson & Clayton (2000a, b), and revealed
generic partitions within the Columbidae in consider-
able agreement with the present work. The Ptero-
clidae (sand-grouse) have been the topic of study for
more than a century (Gadow, 1882; Shufeldt, 1901c;
Stegmann, 1957, 1959; Fjeldså, 1976). The pteroclids
were placed herein as the sister-group of the Colum-
bidae – a view favoured by the majority over an
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hypothesized alliance with the Charadriiformes (Sib-
ley & Ahlquist, 1972, 1990).

Parrots and allies: The primary mystery of this
unique order is its interordinal position, a debate
clearly manifested by the myriad groupings inferred
for it in phylogenetic works during the last two
decades. Monophyly of the Psittaciformes, not amena-
ble to testing with the few exemplars included here,
has been assumed (Smith, 1975) or affirmed by
diverse morphological (Sibley & Ahlquist, 1972, 1990)
and molecular means (Ovenden et al., 1987; Christidis
et al., 1991; Leeton et al., 1994; Miyaki et al., 1998;
Eberhard, Wright & Bermingham, 2001; Eberhard &
Bermingham, 2001, 2004; Groombridge et al., 2004;
Russello & Amato, 2004; de Kloet & de Kloet, 2005;
Ribas et al., 2005; Tavares et al., 2006). Higher-order
relationships are less clear, and the order has been
allied with: (i) groups comprising sufficient diversities
of neognathous taxa as to establish little progress
(Sibley & Ahlquist, 1990; Fain & Houde, 2004); (ii)
Trogonidae and/or Coliidae (Espinosa de los Monteros,
2000; Mayr, 2000b, 2005d, e; Mayr & Clarke, 2003);
(iii) Picidae (Van Tuinen et al., 2000); (iv) Coliidae and
some Pici (Mayr et al., 2003); and (v) Strigidae
(Harrison et al., 2004). Although the present analysis
provides no single, well-supported and precise position
for the order, the evidence compiled herein is conso-
nant with a (perhaps deep) relationship between the
Columbiformes and Psittaciformes. This interordinal
union was inferred by Burton (1974) in a study of
Didunculus, and also confirmed by Sibley & Ahlquist
(1972: 241) and Cracraft (1981).

GOATSUCKERS, SWIFTS AND HUMMINGBIRDS, 
MOUSEBIRDS AND TROGONS

Overview: This heterogeneous group of moderate to
small landbirds of controversial relationships –
approximately synonymous with the ‘Coccygomor-
phae’ (Huxley, 1867), the Anomalogonatae (Garrod,
1874; Beddard, 1898), or part of the ‘“higher” landbird
assemblage’ (Olson, 1985) – includes some of the most
specialized and distinctive of modern birds. Unlike the
foregoing groups, most higher-order nodes within this
assemblage – i.e. those structuring relationships
among orders – are robustly resolved (Fig. 17). Essen-
tial findings herein were monophyly of the traditional
Caprimulgiformes (including Aegothelidae), and
monophyly of its sister-group Apodiformes. The Apod-
iformes comprised the crested-swifts (Hemiprocnidae)
as sister-group to a clade comprising the mutually
monophyletic typical swifts (Apodidae) and humming-
birds (Trochilidae).

Caprimulgiformes: A minority of works failed to
recover monophyly of the Caprimulgiformes, either by

unresolved polytomy (Johansson et al., 2001), variably
constituted paraphyly to Trogonidae or Apodiformes
(Mayr & Clarke, 2003; Mayr et al., 2003; Mayr, 2005f;
Barrowclough, Groth & Mertz, 2006), or uniquely pro-
posed alternative alliances with the Accipitridae and
Sulidae (Van Tuinen et al., 2000), Sagittariidae (Min-
dell et al., 1997), or Mesitornithidae (Fain & Houde,
2004). The present phylogeny affirms monophyly of
the traditional Caprimulgiformes, although recent
analyses suggest that the present study may not have
been adequate to capture all ‘family-level’ variation in
the order by omission of Batrachostomus and Eurosto-
podus (Sibley et al., 1988; Mariaux & Braun, 1996).
The moderately distant relationship between the noc-
turnal Caprimulgiformes and Strigiformes – consid-
ered closely related by some (Sibley et al., 1988) – was
favoured herein, a finding consistent with the hypoth-
esis that at least the ocular refinements for nocturnal-
ity in these two orders are not homologous (Fidler,
Kuhn & Gwinner, 2004). In this context it is notewor-
thy that another aspect of colour vision shows low con-
sistency with avian phylogeny (Ödeen & Håstad,
2003). Support for groups within the Caprimulgi-
formes in the present work was marginal at best, and
for practical purposes might be considered to be a
polytomy of the included families. Palaeontological
proposals suggest that fossil members of the
Caprimulgiformes (and certain other groups) cur-
rently endemic to the southern hemisphere previously
extended to the Palearctic (Olson, 1987; Mayr, 1999a,
b, 2002a, b, 2005b, f ).

Fidler et al. (2004) also presented equivocal evi-
dence that the owlet-frogmouths (Aegothelidae) are
not members of the Caprimulgiformes, as tradition-
ally classified, a proposal augmented by some morpho-
logical evidence (Mayr 2002a, b) and DNA sequences
(Barrowclough et al., 2006). The latter studies led to
marginally supported transfers of the Aegothelidae –
herein inferred to be the sister-family of other
Caprimulgiformes – to an alternative position as
sister-group of the Apodiformes, a reasonably eco-
nomical concession from global parsimony using the
present data set (Table 3). Although the position of the
Aegothelidae remains uncertain, mtDNA sequence
data are consistent with the monophyly of this family
(Dumbacher, Thane & Fleischer, 2003). A complete
picture of caprimulgiform phylogeny must await com-
prehensive integration of putative fossil members
(Olson, 1987; Mayr, 1999a, 2002a, b, 2005b, f).

The oilbird (Steatornis caripensis) – a nocturnal, cav-
ernicolous frugivore – is one of the most challenging of
avian genera with respect to phylogenetic position,
irrespective of method. Recent analyses have differed
regarding even the ordinal placement of this taxon, tra-
ditionally assigned to a monotypic family (Garrod,
1873b; Mariaux & Braun, 1996; Livezey & Zusi, 2001;
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Mayr, 2003b; Barrowclough et al., 2006). The present
work tentatively resolved Steatornis to be a highly apo-
morphic member of the Caprimulgiformes (Fig. 17).

Apodiformes: This order is monophyletic and, as tra-
ditionally construed, comprises the highly derived
crested-swifts, swifts, swiftlets and hummingbirds.
The interfamilial relationships inferred here (Fig. 17)
– Hemiprocnidae (crested-swifts) as sister-group to a
clade comprising the mutually monophyletic Apo-
didae (swifts) and Trochilidae (hummingbirds) – have
received growing support from other works (e.g.
Chubb, 2004b) in tabling the largely antiquated con-
tention that the hummingbirds were closely related to
the Passeriformes and related variants of this hypoth-
esis (Table 1). Departures from the present hypothe-
sis included that of monophyly of the Hemiprocnidae
and Apodidae (Chubb, 2004b). The molecular phenet-
ics of Sibley & Ahlquist (1990), including where re-
analysed (Harshman, 1994b) or augmented (Bleiweiss
et al., 1994, 1995), also differed by resolving the Tro-
chilidae as phenetic ‘sister-group’ to all other Apodi-
formes, prompting the former to be ordinally
distinguished as Trochiliformes. The speciose hum-
mingbirds (Trochilidae) achieved phylogenetic diver-
sity in concert with the related apodids (Mayr, 2003c,
2004d, 2005g), a radiation second only to passeri-
forms in scale (Bleiweiss, Kirsch & Matheus, 1997;
Bleiweiss, 1998a, b, c; García-Moreno et al., 2006),
and evolved a diversity of concomitant apomorphies,
some of which overcame unique locomotory challenges
(e.g. Altshuler, Dudley & Ellington, 2004). Phyloge-
netic study of the swifts (Apodidae) by palaeontologi-
cal (Mayr, 2001a, 2003c, 2005g) and molecular means
(Dumbacher et al., 2003; Chubb, 2004b; Thomassen
et al., 2005), resolved a fundamental dichotomy
between taxa possessing capacities for echolocation
(Thomassen et al., 2003).

Coliiformes and Trogoniformes: Modest support was
afforded herein to a sister-group relationship between
the Trogoniformes and Coliiformes (Fig. 17). Both
orders have proven challenging to place among other
avian orders (Garrod, 1876; Forbes, 1881), but mono-
phyly of these orders has not be questioned (Espinosa
de los Monteros, 1998, 2000). The present analysis
confirms earlier anatomical (Verheyen, 1956b) and
molecular analyses (Espinosa de los Monteros, 1998,
2000), in which this couplet also was inferred in turn
to be closely related to Coraciiformes (Berman &
Raikow, 1982). Johansson & Ericson (2004) conceded
that appropriate outgroups for rooting analyses of
these orders was problematic, a problem that led
Moyle (2005) to employ a suite of outgroups. Among
the more notable expansions of palaeodistributional
limits have pertained to the Trogoniformes (Mayr,
1998a, 2001b) and Coliiformes (Mayr, 2000b, 2001a),

although diagnostic evidence was poor by general
neontological standards.

This couplet raises the possibility of artefactual
grouping by way of long-branch attraction (Lyons-
Weiler & Hoelzer, 1997; Wilson, 1999; Bergsten, 2005).
Examination of ranges of terminal branch lengths
compiled in the MPTs – Colius (84–133) and
Trogonidae (10–17), with the branch subtending clade
having a range of lengths 36–97 – suggests that the
Trogonidae are not obviously vulnerable to an artefac-
tual grouping. This judgement is supported further by
the inclusion of a number of multistate, supportive
characters (Wägele, 1996).

CORACIIFORM, PICIFORM, AND PASSERIFORM BIRDS

Overview: Long recognized as a speciose, diverse and
widespread group, historical disagreements pertain-
ing to these orders have turned on familial member-
ships (e.g. Trogonidae) and delimitation of orders
within the assemblage (Lowe, 1948; Wetmore, 1960;
Sibley & Ahlquist, 1972: 241). Predictably, some sub-
groups manifested intermediate suites of characters
and have proven least tractable (Burton 1984: fig. 32);
the latter have been addressed most pointedly, per-
haps, in palaeontological diagnoses (Ballmann, 1979;
Mayr 1998b, c; Mayr & Daniels, 2001). Also, where
data are less numerous, a common alternative to
monophyly of the Coraciiformes or Piciformes is
resolution of the two as sequential sister-groups
(paraphyletic) to the Passeriformes. Although mono-
phyly of the tri-ordinal assemblage was substantiated
here (Figs 17, 18), the analysis revealed several alter-
native arrangements among the three orders, repre-
sented by the polytomy in the strict consensus tree of
MPTs (Figs 17, 18).

Coraciiformes: Monophyly of the families traditionally
included within the Coraciiformes has been a point of
disagreement for almost a century (Murie, 1872b, c,
1873; Lowe, 1948; Sibley & Ahlquist, 1972, 1990), and
persists as a palaeontological challenge (Mayr, 2000d,
2005h, i; Mayr & Mourer-Chauviré, 2003; Mayr et al.,
2003). This state of affairs has been prolonged by poor
representation of the order in many recent family-
level, multi-ordinal analyses (e.g. Espinosa de los
Monteros, 2000; Van Tuinen et al., 2000), with notable
exceptions including the analyses by Johansson et al.
(2001) and Kirchman et al. (2001). Taxonomically nar-
row analyses include morphological works by Cracraft
(1971b), Burton (1974) and Maurer & Raikow (1981),
and the molecular phenetics of Sibley & Ahlquist
(1990) and Bleiweiss et al. (1994).

The Coraciiformes were found herein to be a mono-
phyletic member of a trichotomy that included the
Piciformes and Passeriformes (Figs 10, 11, 17, 18),
but the magnitude of support for monophyly of the
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Coraciiformes was only moderate, and generally was
exceeded by that for included nodes. The ordinal work
by Maurer & Raikow (1981) proved most relevant in
this context, but conclusions of the two analyses dif-
fered considerably. Evidently, restriction of the out-

groups and characters included in the analysis by
Maurer & Raikow (1981) resulted in contradictory
findings symptomatic of diminished signal, e.g. inver-
sions of taxa within the ingroup and inclusion of
Trogonidae within the ingroup.

Figure 18. Detailed segment of strict consensus tree of all MPTs recovered in present study. Part G. Neornithes:
Piciformes, and Passeriformes. Nodes are labelled above by percentages of bootstrapped replicates in which node was
retained (italics), and below by Bremer support indices (bold type).
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The very distinctive hornbills (Bucerotidae),
together with a sister-group comprising the Upupidae
and Phoeniculidae, were situated as the sister-group
of other coraciiforms (Fig. 18). This group was consid-
ered a separate order allied to other Coraciiformes by
Burton (1984) and Kemp (1995). Manegold (2005),
however, inferred the Coraciiformes to be polyphyletic
and comprising: (i) the ‘Bucerotes’ (Upupidae, Phoen-
iculidae and Bucerotidae) as sister-group to the mutu-
ally monophyletic Piciformes (including Galbulae) and
Passeriformes; (ii) the ‘Alcediniformes’ (all other mem-
bers of the traditional order not included elsewhere);
and (iii) Leptosomus, excluded from the Coraciiformes
and of indeterminate ordinal relationship.

The remaining members fell into two sister-groups:
one of these comprised the Motmotidae and its sister-
group comprising the Todidae and Alcedinidae, the
Todidae of uncontested monophyly (Overton &
Rhoads, 2004), and the Alcedinidae monophyletic but
perhaps comprising two or more distinct subgroups
(Fry, 1980; Marks & Willard, 2005). The remaining
member of this pair of sister-groups comprised the
sequential sister-groups of Meropidae, Coraciidae,
Brachypteraciidae and Leptosomatidae (Fig. 17). The
Motmotidae were inferred herein to be the sister-
group of a clade comprising the Todidae and Alce-
dinidae (Moyle, 2006). However, some ‘intermediacy’
of morphological and molecular characters of the tody-
motmot (Hylomanes) and the Todidae suggests possi-
ble paraphyly of the Motmotidae (as traditionally con-
stituted) or the Todidae (Overton & Rhoads, 2004).
The Meropidae (bee-eaters), of established monophyly
(Fry, 1984; Burt, 2004), were inferred here to be the
sister-group to remaining Coraciiformes (Fig. 17), the
latter known in the vernacular as ‘rollers’. As detailed
above, morphological assessments of the memberships
and positions of these families differ significantly
(Manegold, 2005).

Piciformes: The Galbulidae and Bucconidae were
inferred herein to be sister-groups, and together as
forming the sister-group of other Piciformes. The
remaining Piciformes in this analysis comprised two
sister-groups (Fig. 18), each of which comprised two,
provisionally monophyletic families: (i) Capitonidae
(Moyle, 2004) and Rhamphastidae (Eberhard & Ber-
mingham, 2001; Wechstein, 2005); and (ii) Indicatori-
dae and Picidae (Prychitko & Moore, 1997; DeFilippis
& Moore, 2000; Weibel & Moore, 2002a, b). Support for
neither of the latter clades was strong, approximating
only 50% bootstrap support (Fig. 18). This arrange-
ment is consistent with much of the classification pro-
posed by Burton (1984). One point of current debate is
the possible paraphyly of the Capitonidae, in which
member taxa represent successive sister-groups to the
(monophyletic) Ramphastidae (e.g. Prum, 1988; Sibley

et al., 1988; Lanyon & Hall, 1994; Barker & Lanyon,
2000). Unfortunately, despite comparative richness of
the record, fossil members of these groups have pro-
vided few insights into the phylogeny of modern pici-
forms (Mayr, 2001c, d, 2004e, 2005h, i).

Monophyly of the Piciformes, most often challenged
regarding membership of the Galbulae, has been con-
troversial – e.g. Olson (1983a), Raikow & Cracraft
(1983), Lanyon & Zink (1987), Johansson & Ericson
(2003) – despite comparatively detailed anatomical
study (Burton, 1974) and related phylogenetic analy-
ses (Simpson & Cracraft, 1981; Swierczewski &
Raikow, 1981; Avise & Aquadro, 1987; Manegold,
2005). Most attempts to reconstruct the phylogenetics
of the order have been variably inclusive with respect
to included families and limited to molecular evidence
(Webb & Moore, 2005; Wechstein, 2005; Benz, Robbins
& Peterson, 2006), and resultant findings posed no
serious contradictions to the inferences made here.

Passeriformes: The Passeriformes are a dominant evo-
lutionary component of the global avifauna, and the
phylogeny of the order has figured prominently in ter-
minological disputes regarding faunal ‘radiations’
(Barker et al., 2004), ‘key innovations’ of evolutionary
change (Raikow & Bledsoe, 2000; Olson, 2001) and
‘evolutionary success’ (Raikow, 1988). Current consen-
sus by avian systematists holds the Passeriformes to
be one of the most recently differentiated and apomor-
phic of lineages of modern birds, with a growing body
of evidence for Gondwanan genesis (Ericson et al.,
2002a). However, analyses limited to the mitochon-
drial genome (Moore & deFilippis, 1997), the early
mainstay of sequence analyses (Kessler & Avise,
1985; Ast et al., 1997; Braun & Kimball, 2002),
resulted in several studies in the placement of Passe-
riformes as the sister-group of most or all other
Neoaves (Mindell et al., 1997, 1999), a topological
shift of exceptional magnitude and enormous evolu-
tionary implications. This finding, mirrored by the
phenetics depicted by Sibley & Ahlquist (1990) and
very recent analyses based principally on mitogenom-
ics (Pereira & Baker, 2006b; Slack et al., 2006b), since
has been attributed (Cracraft et al., 2003, 2004) in
subsequent works to (unavoidable) reliance on most
closely related but nevertheless distant outgroups –
e.g. Crocodylia, Testudines – which probably serve as
unreliable sources of information on avian polarities.
This circumstance, compounded by weak taxonomic
sampling or shortcomings of mitochondrial data for
reconstruction of deep nodes (e.g. Mindell et al., 1996;
Tsaousis et al., 2005), necessitate caution in corre-
sponding inferences. Fortunately, with respect to
genomes analysed, principal differences reduce to
rotations of three or four variably nested nodes
(Johnson, 2001: fig. 3).
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As for monophyly and composition of the Passeri-
formes (Beecher, 1953; Mayr, 1958; Olson, 1971;
Feduccia, 1973, 1977c; Brom, 1990), the present anal-
ysis was necessarily limited to selected genera and
families of this enormous group, as were the few pre-
vious morphologically based phylogenies of the group
(Raikow, 1982, 1994a, b). A number of passeriform
subgroups, mostly at comparatively low taxonomic
levels, appear to have undergone cladogenesis suffi-
ciently recently to reflect vicariance related to recent
glaciations and current continental patterns (Edwards
& Wilson, 1990), but controversy regarding this tempo
persists (Klicka & Zink, 1997; Johnson & Cicero, 2004;
Zink & Klicka, 2006). The meagre palaeontological
evidence available indicates an origin of the Passeri-
formes to be no later than the early Eocene (Boles,
1995, 1997; Barker et al., 2004; Mayr & Manegold,
2004).

The present analysis substantiated the interordinal
position and monophyly of representatives of major
subgroups of the Passeriformes (Fig. 18). Within the
narrow taxonomic sample analysed herein (cf. Sibley,
1974; Cracraft, 1992a; Helm-Bychowski & Cracraft,
1993; Nunn & Cracraft, 1996; Barker et al., 2002; Irest-
edt et al., 2002), Menura was resolved as the sister-
group of other members of the order, i.e. a member of
the non-passerines (Fig. 18). Menura typically is situ-
ated crownward of basal Acanthisitta (but see Gadow,
1893; Ames, 1971) and included among the basal oscine
passerines (Sibley & Ahlquist, 1970; Sibley, 1974; but
see Ericson et al., 2002a, b, 2003b, 2006). This mini-
mally exemplified and questionably resolved subgroup
was inferred to be the sister-group of remaining pas-
seriforms, first followed by a poorly represented grade
of suboscine passerines (Tyrannides) – Tyrannidae and
Pittidae (Prum, 1993). The Tyrannides in turn sub-
tends the oscine passerines (Passerides), within which
two major subgroups (Ericson et al., 2006) were
sparsely represented but arranged in accord with cur-
rent consensus (Fig. 18). Barker et al. (2002) inferred
the Ptilonorhynchidae (Stonor, 1938; Cracraft, 1992a;
Nunn & Cracraft, 1996; Cracraft & Feinstein, 2000;
Johansson et al., 2001) to be the sister-group of the
remaining passeriform taxa. Among other Passerides,
the single exemplar of the Corvida (Aphelocoma) was
the sister-group of the three representatives of the Pas-
serida – Bombycilla, Parus and Passer (Ericson et al.,
2000; Ericson & Johansson, 2003). With the exception
of the position of Menura in the present analysis, the
broad subdivisions inferred here agree with the major-
ity of other recent works (Edwards, Arctander & Wil-
son, 1991; Irestedt et al., 2001; Ericson et al., 2003b;
Cracraft et al., 2004; Spicer & Dunipace, 2004) and are
consistent with palaeogeographical evidence for an
Australasian origin for the oscines (Boles, 1995, 1997;
Barker et al., 2004).

BRANCH LENGTHS AND EVOLUTIONARY CHANGE

Morphological characters employed in cladistic analy-
ses tend to be held to unrealistic standards, and to
serve as sources of insights (not expected of molecular
characters) beyond mere inference of phylogenetic
relationships. For example, in some circles there is an
expectation that, in addition to resolving phylogenetic
relationships of multiple taxa, apomorphies support-
ive of nodes should make obvious functional sense (e.g.
debates regarding aquatic lineages and possible con-
vergences) and permit interpretation resembling lists
of (semi)diagnostic characters for nested series of
taxa. In some cases, particularly where taxonomic
scale is low and a functional focus pertains, such pat-
terns and trends are discernible. However, with
increasing taxonomic scale, these are in the minority,
and like DNA sequence data, such diagnostic trans-
parency and functional interpretation is seldom
attainable. Many subtle features possessed of phylo-
genetic signal may be structural artefacts of function-
ally neutral details of anatomy, historical accidents
that prove variably reliable through the process of evo-
lutionary modification with descent.

Nevertheless, quantification of evolutionary change
is critical to estimates of rates and correlation of
change among characters and related evolutionary
topics (e.g. Omland, 1997a, b; Nunn & Stanley,
1998), and exploration of this aspect of reconstruc-
tions is intended to pre-empt misplaced expectations
or distorted perspectives. The tempo and mode of
morphological evolution and cladogenesis have held
the interests of systematists for decades (Simpson,
1944; Cracraft, 1984), pre-dating the advent of
molecular methods or assumptions made for them
(e.g. uniform or ‘clock-like’ evolutionary rates). Anti-
quity of lineages provides opportunity, other parame-
ters being equal, for increased expectation of
evolutionary changes (probabilistic, not determinis-
tic expectation), and where such lineages comprise
only modest numbers of members – i.e. limited evolu-
tionary opportunities for departures from uniformity
or reversals within a given lineage – such change
also tends to lead to comparatively direct diagnostic-
ity of terminal lineages. Intuitive relevance of ori-
gins, ages, longevities of lineages and expectations of
evolutionary divergence notwithstanding, these top-
ics have been underserved by newly acquired empiri-
cal evidence. Van Tuinen et al. (2006: table 2) listed
14 avian families construed to show molecular varia-
tion significantly lower than that expected on the
basis of current taxonomic status. Given present
findings, however, this issue appears illusory, with
virtually all taxa in question having early origins,
including the Anhimidae (Anseriformes), Podicipe-
didae and Spheniscidae, three being members of the
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Pelecaniformes, and the remaining examples mem-
bers of either the Ciconiiformes, the Gruiformes or
the Charadriiformes.

Unlike molecular evolution, no strict assumptions
or dependence on constant or uniform rates of change
have been made for morphological characters. In the
present analysis, branch lengths varied substantially
depending on specific optimizations, and therefore
comparisons of lengths, like the internodes in trees,
were not restricted to unambiguous changes. Instead,
central tendencies of branch lengths of MPTs were
quantified by median lengths, and variation among
optimizations by standard deviations and ranges
of lengths recovered. For Neornithes, numbers of
changes optimized as autapomorphies averaged 41
(SD = 33, range 4–186). By contrast, for single lin-
eages, maximal lengths of terminal branches were:
186 for Spheniscus, 132 for Phoenicopterus and 131 for
Mesitornis. Minimal lengths of terminal branches
were: 4 for Francolinus and Alectoris. At higher phy-
logenetic scales (interordinal and interfamimlial),
branch lengths had the following summary statistics:
mean = 36, SD = 33, range 5–133. In general, then,
terminal branch lengths were approximately 10%
greater than those of the branches subtending them
(i.e. deeper internodes). A pattern of short internodes
has been inferred previously (Cracraft et al., 2004),
but the attribution of cause to realities of evolutionary
intervals vs. diminished power of resolution remains
contentious.

A survey of the minimal branch lengths included in
the MPT revealed that branches among higher-order
nodes were extraordinarily similar to associated ter-
minal branches (latter being those subtending individ-
ual taxa) in means and variances of branch lengths.
However, comparative numbers of the more critical
diagnostic and supportive characters within the
Neornithes revealed that character-based definitions
of highest-order clades (corresponding to the most
ancient of synapomorphies) were disappointingly low,
whereas those for superorders and orders (Appendix
2) were comparatively robust and included suites of
diagnostic character-states (Table 2). However, the
correspondence among ‘raw’ branch lengths, statistics
of nodal support and numbers of ‘diagnostic’ apomor-
phies generally was poor (Table 2), in agreement with
the findings of Farris et al. (2001) and Wilkinson
(2003).

DISCUSSION

BROAD COMPARISONS WITH PRIOR STUDIES

‘Survival of the fittest will decide which of the many competing
theories [of avian phylogeny] will prevail. Only one can sur-
vive. Each revisor attempts to shorten the struggle by acting as
a selective factor.’ (Stresemann, 1959: 269)

‘Where the root of the Neoaves goes, however, is highly uncer-
tain and seems likely to remain a very difficult problem.’
(Stanley & Cracraft, 2002: 39)

Perspectives and findings: In the published record of
phylogenetics, it has become virtually customary sim-
ply to generate phylogenetic hypotheses of varying
consonance with little or no consideration of factors
underlying divergent inferences (Figs 1–9). This tra-
dition has led to a false sense of congruence among
studies, especially among molecular systematists. We
consider that it is incumbent upon authors to consider
the points of disagreement as well as the most plau-
sible underlying philosophical and empirical reasons
for the differences. A reasonable degree of detail in
such deliberations inevitably will include points of
contention and opinion, and we hope that these will
challenge the current ambience of consensus and
invite constructive debate of these important issues.
At the same time, however, it is logistically unfeasible
that large-scale studies (e.g. the present work) be held
to standards of character descriptions and illustra-
tions in analytical works that are logistically realistic
in more common, small-scale works. For example, in
the present study, a conservative estimate of charac-
ter-states eligible for illustration would approach
7000. Nonetheless, access to underlying data for all
studies should be made practically available by alter-
native means, and include formal descriptions of
characters as analysed, and essential figures and
references to critical descriptive works (e.g. Livezey &
Zusi, 2006).

Deep tradition and the ‘tapestry’: Broad affinities of
long standing between avian orders – traditionally
only implied to variable degrees by adjacency in linear
classifications (Clark, 1901; Wetmore, 1930, 1960;
Mayr & Amadon, 1951) – that were not supported by
the present analysis were: (i) Galliformes as closely
allied with Falconiformes; (ii) Gaviiformes, Podicipedi-
formes and Sphenisciformes placed as the most basal
of ‘Carinatae’; and (iii) a truly basal position of Opis-
thocomus among Neornithes. Although confidence in
the ‘tapestry’ (e.g. Monroe, 1989) diminished markedly
within a few years of publication, the proposals by Sib-
ley & Ahlquist (1990) were ‘rewoven’ by Harshman
(1994b), ‘dusted off ’ by Mooers & Cotgreave (1994),
and continue to be cited for justification and design of
sequence-based analyses (e.g. Fain & Houde, 2004).
Limited reverence for the tome by Sibley and Ahlquist
(1990) lingers, most conspicuously in the non-
systematic literature (e.g. Del Hoyo, Elliott &
Sardgatal, 2001), principally because of its taxonomic
scale and molecular basis (e.g. Chubb, 2004b; Fain &
Houde, 2004).

Given the controversy and contradictory nature of
the era, it is appropriate to compare our findings with
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the groups delimited by Sibley & Ahlquist (1990),
bearing in mind that the present phylogenetic analy-
sis is of limited comparability with the phenetics of
DNA–DNA hybridization. First, despite the unprece-
dented number of taxa analysed, the earlier work
was invalidated shortly after its appearance because
of problems stemming from phenetic methodology,
sparsity of the distance matrix, absence of a root and
irreducibility of data-type, some deficiencies having
been identified prior to its release (Cracraft, 1987,
1992b; Houde, 1987; Sarich, Schmid & Marks, 1989;
Barrowclough, 1992; Lanyon, 1992; Mindell, 1992).
Simplification of the reconstruction by Sibley & Ahl-
quist (1990: figs 354–356) to ordinal terminal taxa
(Fig. 4) reveals the diagram to be continuously pecti-
nate throughout most of the neognathous birds, and
largely reflects ‘chaining’ of least dissimilar elements,
an artefact common to some agglomerative algo-
rithms. Cracraft et al. (2004) considered current
knowledge of avian phylogeny to be of comparable
irresolution.

A most peculiar aspect of the ‘tapestry’ is the rever-
sal of mid-basal and apical higher-taxa – e.g. Pici-
formes and Passeriformes as sister-groups to the
‘Ciconiiformes’ (sensu Sibley & Ahlquist, 1990) and
allies – a finding countered by the vast majority of
other analyses (Cracraft & Mindell, 1989; Johansson
et al., 2001; Braun & Kimball, 2002; Edwards et al.,
2002; Paton et al., 2002; Mayr & Clarke, 2003; Mayr
et al., 2003; Prychitko & Moore, 2003; Dyke & Van
Tuinen, 2004; Harrison et al., 2004; Poe & Chubb,
2004). This phenetic artefact undoubtedly contributed
to the poor congruence of the present phylogenetic
hypothesis with that by Sibley & Ahlquist (1990), in
which only four higher-order groups – their Ratitae,
Galloanserae and Procellarioidea, and monophyly of
one currently contentious order (Caprimulgiformes) –
showed broad agreement in both works. The present
analysis strongly countered the polyphyly inferred by
Sibley and Ahlquist (1990) for the Pelecaniformes and
Columbiformes, and differed as well regarding para-
phyly of the Coraciiformes and Cuculiformes, the
alternative positions of Galliformes + Anseriformes,
and the provisional placement of the Turniciformes
(Fig. 4).

Sibley & Ahlquist (1972: 240–241) listed 34 sum-
mary inferences entitled ‘Probabilities and Possibili-
ties’, presented under four levels of perceived
likelihood. Of the conclusions listed, agreement (with
minor qualifications) with the present analysis was
achieved for: all eight (100%) of the ‘highly probable’
conclusions; seven of ten (70%) deemed ‘probable’; four
of ten (40%) considered ‘possible’; and only two of six
statements (33%) classified as ‘improbable’, essen-
tially logical negations of views included among the
‘highly probable’.

Contemporary studies: Comparisons among most phy-
logenetic hypotheses are compromised by differential
taxonomic sampling and nodes afforded only tenuous
support. The present phylogenetic hypothesis,
depicted to ordinal scale (Figs 10, 11), approximated
the tree depicted by Cracraft (1988) most closely of
prior works, issues of comparability notwithstanding.
The present analysis, almost 20 years subsequent to
that by Cracraft (1988), represents a return to the
broad outlines of the latter, seminal work. Given the
different scales of the two analyses in terms of taxa
and characters, however, it is unreasonable to assume
similarities to be the result of reliance on ‘the same
characters’.

An increasing proportion of all studies confirm posi-
tions and monophyly of Palaeognathae, Galloanseri-
morphae and major subclades thereof. However, most
molecular studies (e.g. Van Tuinen et al., 2000, 2001;
Paton et al., 2002; Van Tuinen, 2002; Chubb, 2004a),
as well as analyses based on combined data (Dyke &
Van Tuinen, 2004), differed significantly with parts of
the present hypothesis, especially those pertaining
to the Pelecaniformes, Ciconiiformes, Podicipedidae,
Opisthocomiformes, Cathartidae, Caprimulgiformes
and Coraciiformes (Figs 12–18). There was consider-
able disagreement among recent molecular studies
alone (e.g. Espinosa de los Monteros, 2000; Johansson
et al., 2001; Poe & Chubb, 2004), regardless of data
analysed (Philippe et al., 1996; Graur & Li, 2000),
which reveals contrasts only between morphological
and molecular inferences to be oversimplifications of
modern study (e.g. Braun & Brumfield, 1998; Van
Tuinen, 2002).

Comparisons with the limited number of other anal-
yses (Figs 1–3) were virtually uniformative because
palaeontological works have tended to emphasize nar-
row taxonomic groups considered likely to accommo-
date newly described or controversial taxa, and also to
limit characters to those scoreable for the taxon or fos-
sil of interest (e.g. Clarke et al., 2005b), with some
exceptions (e.g. Mayr & Clarke, 2003). Several provi-
sional and ongoing reconstructions by Cracraft et al.
(2004) were not considered here. A survey of compa-
rable cladistic studies of morphological or molecular
bases (cf. Cracraft, 2001; Mayr & Clarke, 2003; Crac-
raft et al., 2004; Fain & Houde, 2004; Clarke et al.,
2005b) revealed that the present analysis achieved
considerable agreement with most of the latter studies
concerning the widely supported (com)positions of the
Palaeognathae and Galloanserimorphae, and an allied
clade dominated by marine and wading birds
(Figs 10–18).

Adjudication of success: It is to be hoped that diverse
approaches will converge empirically toward common
analytical standards (Lake, 1997) and a solution for
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which acceptance is widespread and merited. How-
ever, there are no standards of accuracy against which
phylogenetic analyses of natural lineages can be cali-
brated (i.e. known histories), and therefore the assess-
ment of progress is elusive. Hypothetico-deductive
empiricism may reveal critical characteristics of sci-
entific hypotheses, but cannot provide ‘proof ’ of a
hypothesis (Helfenbein & DeSalle, 2005).

Given that proof of hypotheses or certain recogni-
tion of the single, true phylogeny is unattainable, the
strongest support for a specific reconstruction (beyond
intrinsic robustness) lies in common elements shared
by other analyses – empirical (not popular) consensus.
Such studies are most potent where performed inde-
pendently using new data. Likelihood of correctness of
molecular and morphological reconstructions cannot
be judged a priori, especially across all classes of
investigation. Such assessments are conditional on
individual cases, and decisions based on consistency
with prior analyses, degree of resolution (assuming
bifurcations are the primary cladogenetic mode), size
and diversity of data on which the hypothesis was
based, and analytical properties of included charac-
ters. The relevance of statistics internal to single trees
– e.g. robustness of nodes and consistency indices – to
the likelihood of global accuracy is undecided (Benton,
2001).

Consequently, an important element of phylogenetic
study is comparison of findings with the estimates of
other investigators, especially comparisons of those
aspects of trees that withstand variations in method
or data base. However, against which topology or
topologies does one compare specific findings? This
quandary especially afflicts those disposed to a dichot-
omous view of morphological and molecular estimates
of history. Provision of a sample of trees (Figs 1–9) was
intended, in part, to emphasize the dilemma that faces
investigators wishing to evaluate hypotheses compar-
atively. It appears that until some kind of genuine con-
sensus is achieved, systematists are compelled to pit
their findings against a plethora of other, marginally
comparable works.

MOLECULAR SYSTEMATICS: COMPETITOR OR 
COLLABORATOR?

At present, molecular systematics is characterized
both by the coexistence of general (if not unbridled)
optimism (Van Tuinen, 2002) and by profound doubts
regarding resolution of substantial segments of neor-
nithine phylogeny (Poe & Chubb, 2004). Yet the cur-
rent dominance of avian systematics by molecular
methods is sufficiently profound as to lead some to
consider palaeontology to be the sole justification for a
continued role for morphology in systematics or to

question its value altogether (e.g. Stevens, 2000; Scot-
land, Olmstead & Bennett, 2003; Jenner, 2004a, b).
Nevertheless, historical signal from genes and their
morphological products offer a potentially fruitful syn-
ergy (Jenner 2004a: 340), one that exceeds the use of
morphology for placements of fossils.

An unfortunate pattern has emerged in molecular
circles, however, in which perennial problems of avian
systematics (Table 1) are attributed to the relative
impotence or unreliability of morphological clues to
phylogeny (e.g. Monroe, 1989; Sibley & Ahlquist, 1990;
Givnish & Sytsma, 1997a, b; Sorenson et al., 1999;
Paton et al., 2003; Paton & Baker, 2006), or as justifi-
cation for merely mapping morphological characters a
posteriori onto molecular trees (e.g. Gittleman et al.,
1996; Slikas, 1997; McCracken et al., 1999; Van
Tuinen, 2002; Huelsenbeck et al., 2003). Therefore, it
would be negligent to forego this opportunity to
counter this perception explicitly (e.g. Shafer, Clark &
Kraus, 1991; Hillis & Wiens, 2000; Marques & Gnas-
pini, 2001). We do not intend an assault on molecular
methodology, but seek to refute persistent prejudices
that afflict morphological phylogenetics (cf. Smith,
1998; Baker & Gatesy, 2002), to underline the distinct-
ness between ease of application and reliability in
phylogenetic methods, and to encourage objectivity in
assessment of findings.

Perhaps the deficiency attributed most widely to
morphological phylogenetics stems from suspicions of
morphological convergence, concerns seldom empiri-
cally substantiated and to which molecular methods
are widely assumed to be immune (Lockhart et al.,
1994; Goldring & Dean, 1998; Lee, 1997, 1999;
Sorenson et al., 1999; Yang & Bielawski, 2000). To
date, assumptions of morphological convergence prin-
cipally are made where convenient and are seldom
reversed, with few exceptions (e.g. McCracken et al.,
1999; McCracken & Sorenson, 2005). However, verifi-
cation of convergence in molecular data (Holmquist,
Pearl & Jukes, 1983; Kornegay et al., 1994; Philippe
et al., 1996) is increasingly frequent. For morphology,
we hope that intuitive claims of convergence will be
supplanted by phylogenetically framed analyses of
refined morphological and functional data (Raikow,
1985b), especially those pertinent to the: pectoral limb
(Middleton & Gatesy, 2000; Burness, Chardine &
Darveau, 2005); pelvic limb (Gatesy, 1991; Gatesy &
Biewiener, 1991; McKitrick, 1993; Patak & Baldwin,
1998; Carrano & Biewener, 1999; Abourachid, 2000,
2001; Abourachid & Renous, 2000; Hutchinson, 2001a,
b, 2002; Zeffer & Norberg, 2003; Zeffer et al., 2003;
Fujita, 2004); skull and associated musculature
(Müller, 1961a, b, 1963; Weber, 1990, 1993; Zusi &
Livezey, 2000; Bout, 1997; Meekangvan et al., 2006);
and general body form (Nudds & Rayner, 2006; Bybee,
Lee & Lamm, 2006).
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Studies based both on molecular and morphological
phylogenetics (Figs 1–9) manifest substantial dis-
agreement both within and between schools (Patterson
et al., 1993), and remain comparable in resolution and
support, with disputes often conjectural in nature.
Both classes of data present substantial challenges of
homology (further below), and those that face molec-
ular systematists (Wheeler et al., 1995; Philippe et al.,
1996; Phillips et al., 2000; Jenner, 2004a, b; Wiens,
2004) are remarkably similar to those afflicting mor-
phological phylogeneticists. Problems of homology in
molecular applications, principally related to ‘gaps’,
indels, and their implications for serial homology and
sequence alignment (Redelings & Suchard, 2005),
include: bias in substitution and codons (Collins, Wim-
berger & Naylor, 1994; Kreitman & Antezana, 2000);
concerted evolution (Drouin & Moniz de Sá, 1995;
Eberhard et al., 2001); pseudogenes (Nielsen &
Arctander, 2001); silent substitutions and undetected
heterogeneity in rates of substitution (Wakeley, 1994;
Simon et al., 1996); selectively constrained evolution-
ary rates of repetitive DNA families (Chen et al., 1991);
homoplasy indirectly related to the four-state sam-
pling universe of nucleotides (Wägele, 1995, 1996); and
independence of molecular ‘characters’ (Zardoya et al.,
1998; Graur & Li, 2000; Felsenstein, 2004).

Similarly, subjectivities of sampling and analysis
beset both morphologists and molecular systematists,
including: sampling of genes (Zardoya & Meyer, 1996;
Moore & deFilippis, 1997; Pollock et al., 2002) and
taxa (Bergsten, 2005); comparative weighting (García-
Moreno, 2004); branch support (Felsenstein & Kish-
ino, 1993; Suzuki, Glazko & Nei, 2002; Alfaro, Zoller &
Lutzoni, 2003); and model selection (Mort et al., 2000;
Buckley, Simon & Chambers, 2001; Huelsenbeck
et al., 2002; Simmons et al., 2004; Lee & Hugall, 2005;
Pickett & Randle, 2005; Pickett et al., 2005; Steel &
Pickett, 2006). In addition, the critical distinction
between ‘gene trees’ and ‘species trees’, which can dif-
fer significantly (Page & Charleston, 1997; Berglund-
Sonnhammer et al., 2006), may be overlooked or
ignored (Pamilo & Nei, 1988; Doyle, 1992, 1996;
Moore, 1995; Maddison, 1997; Page & Charleston,
1997; Thornton, 2002; Geeta, 2003).

Despite these considerable challenges, molecular
systematics clearly holds great potential for resolution
of many problems of avian systematics, particularly in
the Passeriformes. An informal survey of the passeri-
form literature since 1990 revealed studies of diverse
taxonomic scales: 11 subordinal, five superfamilial, 34
(sub)familial, 55 generic and 24 (super)specific. This
considerable success notwithstanding, largely unex-
plored is the potential of enterprises jointly including
molecular characters of sequence and higher-order
genomic structure (Kadi et al., 1993; Delport, Fergu-
son & Bloomer, 2002; Prychitko & Moore, 2003; Slack

et al., 2003; de Kloet & de Kloet, 2003, 2005; Edwards,
Jennings & Shedlock, 2005), the latter ignored at con-
siderable peril (Winnepennincks & Backeljau, 1996).
Together with morphological data of fossil and modern
taxa, such molecular diversity appears to be essential
for progress at many scales of avian phylogeny (Gray-
beal, 1994; Edwards et al., 2002; Harrison et al., 2004;
Simon et al., 2004).

Appeal of the novel and unexpected: Apparent depar-
tures from taxonomic groups supported throughout
much of the cladistic or molecular eras have been fre-
quent during recent years (Cracraft et al., 2003, 2004).
Fain & Houde (2004: 2570) proposed the entertain-
ment of a number of counter-intuitive and weakly sup-
ported groupings in their analysis, in the spirit of
freeing systematists from being ‘. . . guided by precon-
ceptions of relationships.’ The latter appeal for objec-
tivity is unquestionably laudable, but the fact that the
proposed groups were merely novel does not constitute
affirmation of any kind. Similarly, Pons, Hassanin &
Crochet (2005: 686) stated that their study:
‘. . . identifies for the first time some sister relation-
ships that had never been suggested before.’ [emphasis
added]. Although many traditionally recognized
higher-order groups deserve formal analysis, novelty
of resultant proposals is irrelevant to these endeav-
ours. Realization of this potential primarily turns on
two issues of modern systematics – rigorous and
nomenclaturally transparent analyses that bridge
subdisciplines (beyond the recent penchant to use fos-
sils in molecular phylogenies for estimates of evolu-
tionary rates), and empirically justified views and
integration of morphological evidence in an era of
increasing reliance on molecular inference.

MORPHOLOGICAL HOMOLOGY – ONTOGENY, 
FUNCTION AND PHYLOGENY

Insights from avian phylogeny: Hope for success lies
in a pluralistic approach to evidence (Cracraft et al.,
2004). This goal, in turn, is conditional on the surren-
der of prejudice and a common concept of homology.
Ornithological systematics is replete with assump-
tions, assertions and inferences concerning homology
and its role in the recognition of characters and evo-
lutionary patterns (Freudenstein, 2005). In practice,
variously defined ‘sameness’ is the basis for pre-
analytical (a priori) assessments of homology in phy-
logenetics (Wake, 1999), but resultant phylogenies
provide the historical framework within which homol-
ogy is confirmed a posteriori (Haszprunar, 1998). How-
ever, non-historical criteria have been attached to the
concept of homology virtually since its theoretical
origins, of which ontogeny and function were perhaps
the most common. Accordingly, alternative percep-
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tions have influenced avian phylogenetics virtually
throughout its history, particularly regarding homol-
ogy and paedomorphic characters, homoplasy and
convergence, the concept of Grundplans (e.g. Weber,
1990), and implications of ontogeny and genetics for
homology of characters.

Phylogenetics and homology: Homology is synapomor-
phy at some phylogenetic level (Nelson, 1994), and is
defined a priori as ‘similarity due to common descent’
(West-Eberhard, 2003: 485). Hall (2003) equated
homology with identity (despite change) made evident
by phylogeny: homology, reversals, rudimentia, vesti-
gia, atavisms and parallelisms. Considerations of
parallelism and convergence for Aves involve aspects
of cranial structures (Starck, 1969) among outgroups
(Carroll, 1988, 1997; Unwin, 1993; Brochu, 2001).
Examples of atavism are few, but include the recur-
rence of a plesiomorphic pelvic muscle among
Paradiesidae (Raikow, Borecky & Berman, 1980).
Strong examples of morphological parallelism in birds
involve the evolutionary loss of flight by flightless Ral-
lidae (Livezey, 2003b).

Similarity and homology: Homology is conditional on
essential, potentially mutable ‘sameness’ of a charac-
ter manifesting continuity of descent within a phylo-
genetic hypothesis, whereas common function and
ontogeny are not conditions thereof (Hall, 1994, 2003;
Wake, 1999). Müller & Newman (1999) advocated sec-
ondary qualities of generation, integration and auton-
omy of a structure for the status of homology to be
conferred, nuances herein considered components of
the essential ‘sameness’, if considered at all. Variants
of characters recognized in a phylogenetic context
(putative homologues) and manifesting modification
with descent – affected by any of a number of mecha-
nisms of evolutionary change (selection, drift, muta-
tion, ontogenetic deviation) – are treated as ‘states’ of
a given character here.

Ontogeny and homology: The ontogenetic mechanisms
that produce homologous states of a character are of
considerable evolutionary interest and may prove crit-
ical in particular cases of diagnosis (Wagner, 1989),
but do not qualify as criteria of homology of terminal
features per se (Cracraft, 1967b; Hall, 2003). Genetics
of ontogeny, however, can provide unique insights into
the bases of likely homologues, e.g. odontogenesis
and the edentuly of modern birds (Chen et al., 2000;
Mitsiadis, Caton & Cobourne, 2006).

A synthetic view of homology holds that respective
developmental stages of members of lineages, inter-
preted hierarchically within a phylogenetic frame-
work, are each potential homologues capable of
partitioned evolutionary patterns (Abouheif, 1997).
Thus, homologues are defined within each develop-

mental stage of each character (Hall, 2003), e.g.,
genes, developmental processes and stages thereof.
However, judgements of homology based on ontoge-
netic processes are mistaken extensions of identity of
descent across quasi-autonomous developmental mod-
ules (Rieppel, 1992, 1994; Wagner, 1994; Santini &
Stellwag, 2002; Arthur, 2004). Traditional assertions
that homologues must share genetic foundations rep-
resent similar overextensions of historical identity
(Hall, 2003). Variants, including asymmetry, of a ter-
minal character evolved during phylogenetic descent
by means of developmental change are homologues of
the given character, and variation in the ontogenetic
mechanisms behind evolution of the character are not
necessarily evidence of non-homology of the resultant
states (Hall, 1994; Cooke, 2004). For practical consid-
erations, predefinitive homologues are problematic for
fossil birds as useful fossil embryos are rare (Elza-
nowski, 1981; Norell et al., 1994).

Developmental sequences include potentially dis-
tinct components such as developmental cascades,
changes in timing (heterochrony) and position (hetero-
topy), and frame shifts (Hall, 1984; McKinney et al.,
1990; Schulmeister & Wheeler, 2004). Where ontoge-
netic mechanisms per se are potential characters, the
concept of modularity of development (Minelli, 1998;
Raff & Raff, 2000) implies a delimitation of ontoge-
netic processes as characters in themselves. Of recent
concern is the digital frame-shift within the digiti
manus avium (Wagner & Gauthier, 1999), which
counters the former embryological hypothesis of
Hinchliffe (1985) that is still advocated by Burke &
Feduccia (1997) and Feduccia (1999). Subsequent
study has implicated Hox genes in such shifts (Chiu
et al., 2000; Vargas & Fallon, 2005a, b), although the
proposal is not without controversy (Galis, Kundrát &
Metz, 2005). The modularity of development permits
the view of the hypothesis of Wagner & Gauthier
(1999) as but one characterization of several plausible
candidates based on embryological principles (Galis,
van Alphen & Metz, 2002; Hamrick, 2002; Welten
et al., 2005).

Several other instances are variably conspicuous
cases of heterochrony (McKinney et al., 1990; Klingen-
berg, 1998; Livezey, 2003b) – e.g. shifts in general
developmental trajectories of Megapodidae (Starck &
Sutter, 2000) and that of the avian furcula (Hall,
2001). Perceptions regarding the diagnostic relevance
of anatomical position with respect to homology vary
(Zelditch & Fink, 1996), e.g. the partly positional argu-
ment of the ‘rostro-parasphenoid’ process as distinct
from the traditionally defined processus basipterygoi-
deus (Weber, 1993), typological paradigms (Richard-
son, Minelli & Coates, 1999), and the role of function
(Elzanowski, 1977). Patterns imposed by altered prox-
imodistal developmental axes of appendages (Richard-
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son, Jeffrey & Tabin, 2004) or action of regulatory (e.g.
Hox) genes (Galis, 1999; Telford, 2000) increasingly
are recognized in changes among transitional and ter-
minal (definitive) developmental homologues. To date,
most references to heterochrony have emphasized
paedomorphic characters, i.e. variants of homologues
typical of juveniles of plesiomorphic relatives (Livezey,
1995a, 2003b; Fink, 1988), and include more than sim-
ple alteration of growth rates (Starck & Sutter, 2000).
Instead of undermining homology, such instances of
heterochrony provide potentially novel synapomor-
phies among paedomorphs (Cracraft, 1981; Raff et al.,
1990).

The law of Von Baer (Gould, 1977) – the biogenetic
law – postulated that the order of developmental
stages in an individual reflects the phylogenetic series
of increasingly apomorphic states found in that lin-
eage. In some cases, this series approximates the evo-
lutionary changes leading to the terminal state
(Gould, 1977), and may provide possible insights into
polarities and transformation series (Kraus, 1978;
Alberch, 1985; Shubin, 1994; Jeffrey et al., 2002;
Grant & Kluge, 2004; Schulmeister & Wheeler, 2004)
– i.e. states consistent with the ‘ontogenetic criterion’
(Alberch, 1985; Meier, 1997; Mabee, 2000). Avian can-
didates for this criterion include the angulus coracos-
capularis and mutliple unions of elements or anlagen
of the definitive avian shoulder girdle (Livezey & Zusi,
2006).

Function, homology and convergence: Cladistic (parsi-
mony) analysis often is charged with a disregard for
functional implications and convergence of character
states, causing systematists to mistake similar but
independently derived features among distantly
related taxa as homologous. Convergence without
demonstrated phylogenetic influence, as well as naive
historical examples – e.g. purported affinities of swifts
and swallows, tabled decades ago (e.g. Shufeldt 1889b;
Lowe, 1939; contra Van Tuinen, 2002) – do not merit
consideration here. Bock (1967, 1979) and Homberger
(1980) considered function to be a critical criterion of
homology, the independent study of which being
required prior to inclusion of the structure in question
in a phylogenetic analysis. Notable examples of this
paradigm concern specializations of the feeding appa-
ratus of Coraciiformes (Rawal & Bhatt, 1974) and
Picidae (Bock, 1999), or cranial refinements among
Charadriidae (Kozlova, 1961). Hypotheses of homol-
ogy between features require a phylogenetic frame-
work, and mere similarity of function in two potential
homologues fails to demonstrate or exclude homology
or convergence.

Convergence frequently is invoked in the context of
adaptation (Coddington, 1994) and, at least in orni-
thological tradition, by superficial comparisons of the

structures among distantly related lineages that
share function, e.g. pelvic limbs of pursuit divers
(cormorants, mergansers, loons), forelimbs of wing-
propelled divers (alcids, diving petrels, penguins), or
bills of piscivores (herons, anhingas, kingfishers). It is
notable, however, that phylogenetic relationships
among these examples were not obfuscated herein by
these analogous similiarities in light of the totality of
characters analysed, and that the purported instances
of convergence were limited to a minority of phyloge-
netically analysed characters.

Given that character-states are homologous vari-
ants of a particular character defined a priori by
critical similarity and a posteriori by continuity of
descent, considerations of function, although of evolu-
tionary interest, are not directly germaine to homol-
ogy or its diagnosis (Lauder, 1994). Function, and its
possible relationship to form, constitute but one poten-
tial precondition of convergence – one component of
homoplasy (Hall, 2003). Examples of homologues cited
independently of ontogeny in birds include: the pro-
cessus basipterygoideus (Elzanowski, 1977) and mod-
ifications for dorsoventral movements of the carpus
(Vazquez, 1992). Given that homology, and therefore
homoplasy, are diagnosed reliably only within a phy-
logenetic context, non-hierarchical assessments of
homoplasy (Faith, 1989; Zeffer et al., 2003) offer few if
any insights.

Simpson (1944) discussed the differentiation of con-
vergence from parallelism in closely related taxa
under the term ‘parallel evolution’, and Bock (1963a)
described it in the context of ‘evolutionary homody-
namy’. Attribution of taxonomic groupings to conver-
gence is conditional on: (i) the case for homology and
plausible selection effecting changes (Fusco, 2001); (ii)
reliability of phylogenetic analyses indicating disjunc-
tion of the disputed groups (Sommer, 1999); and (iii)
the independence of phylogenetic reconstructions from
sources of potential bias (Lee & Doughty, 1997). Two
avian examples follow that might be taken by some to
exemplify cases of ‘convergence’ of morphological char-
acters leading to erroneous phylogenetic groups, exer-
cises critical to assessing perceptions relative to
empirical evidence (Wiens et al., 2003).

Ratites. We found strong support for monophyly of
ratites, a finding in agreement with current consensus.
The prior hypothesis of polyphyly was confounded by a
perspective of static continents, convergence (Cracraft,
1974a) and a phenetic emphasis on differences
(McDowell, 1948; Starck, 1955; Lang, 1956; Romer,
1968; Storer, 1971a). Synapomorphies of ratites not
reasonably related to flightlessness or giantism fail as
cladistic support for polyphyly. Finally, advocates of
convergence fail to propose an empirically supported,
plausible alternative hypothesis of relationship(s) con-
sistent with the morphological (and molecular) data.
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In our analysis, no support was found to ally any
ratites to other non-ratite taxa; by contrast, 75 char-
acters were ‘diagnostic’ or ‘highly supportive’ of mono-
phyly of ratites (Table 2). Of these, 30 referred to the
pectoral girdle or wing. If these 30 characters are
accepted to be homologous as coded, they would lend
support to the monophyly of ratites and (by parsi-
mony) their shared flightlessness. On the other hand,
if analysis had indicated that these same characters
were optimized parsimoniously as non-homologous
(but not coded a priori as such, absent evidence), the
inference would be consistent with the possibility that
flightlessness evolved in parallel more than once
within a palaeognathous clade. Neither the present
phylogeny nor alternative scenarios provide conclu-
sive evidence for hypotheses concerning relative
sequence(s) in the evolution of flightlessness in
ratites; evolutionary trends of this kind are best
explored through optimizations of character-suites a
posteriori on the phylogenetic hypothesis (Fig. 13).

Candidates for parallelism of potential phylogenetic
influence include the synostosis scapulocoracoideum
of ratites and its marked similarity with those of non-
avian Theropoda (Feduccia, 1986), and convergent
enlargement of the angulus coracoscapularis of flight-
less Neornithes (Livezey & Humphrey, 1986; Livezey,
1988, 1989a, b, c, 1990, 1992a, b, 1993, 1995a), espe-
cially in the ratites and Rallidae (Livezey, 2003b).
Diagnosis of the scapulocoracoideum as atavism
would hinge on the phylogenetic history of the feature.
A similar challenge attends classification of other pec-
toral changes among ratites as plesiomorphy, synapo-
morphy, parallelism or convergence.

Grebes and loons. We inferred the loons and grebes
to be sister taxa, with no comparable support for
positioning either taxon more strongly elsewhere
(Table 3). Of the 17 characters diagnostic or highly
supportive of this relationship (Table 2), 11 are from
the pelvic girdle and limb (Livezey & Zusi, 2006).
Those who considered these taxa to be only distantly
related typically espoused a certainty that the simi-
larities of the hindlimb and pelvis were misleading
convergences associated with foot-propelled diving
(Storer, 1956: 426; Storer, 1971a: 5). Suspected conver-
gence is not supported by the differences in the hind-
limbs of loons and grebes in that such are at least as
parsimoniously interpreted to be: (i) symplesiomor-
phies differentially lost or modified in the lineages fol-
lowing divergence; or (ii) autapomorphies acquired
independently following divergence of the orders. Nei-
ther has been shown to be parsimoniously synapomor-
phic with one or more other avian orders (Fig. 14). It is
noteworthy that proponents of an alliance between the
grebes and flamingos are tolerant of multiple dissim-
ilarities between the groups (Chubb, 2004a). What-
ever the scenario, the support index for this couplet of

orders (Table 2; Fig. 14) significantly counters a con-
vergent history for these characters, and an alliance
with either the Charadriomorphae or the Phoenicop-
teridae entailed substantial sacrifices in parsimony
(Table 3).

PALAEORNITHOLOGY: CONTRASTING PERSPECTIVES, 
COMMON GOALS

Contrasts of ends and means: Until recently the fossil
record for birds was marginalized with respect to for-
mal phylogenetics, with most fossil taxa being frag-
mentary representatives or close relatives of modern
groups. A spate of newly discovered fossils from the
late Mesozoic has clarified greatly the theropod roots
of birds. Despite consensus concerning the phyloge-
netic implications of new Mesozoic fossils and a num-
ber of shared goals, neontological and palaeontological
schools often work at cross purposes. A former obstruc-
tion to unified analysis was a tradition of speculative
evolutionary scenarios with strong palaeontological
underpinnings, notably concerning evolutionary tran-
sitions and diversification (Olson, 1985; Feduccia,
1995, 2003; Chatterjee, 1997; Kardong & Zweers,
1997; Zweers & Vanden Berge, 1997a, b; Zweers et al.,
1997; Bleiweiss, 1998c; Feduccia et al., 2005) and avi-
faunal ‘assemblages’ (Brodkorb, 1971a, 1976; Olson,
1985), that served as surrogates for ecological data not
available for fossil lineages and past eras. A signifi-
cant convergence in cladistic methods notwithstand-
ing, it remains an unfortunate impediment that goals,
expectations, nomenclature and assumptions of avian
palaeontologists and neontologists (Cracraft, 1972b,
1974b, 1978, 1979, 1980) exist in largely parallel cir-
cles and have failed to realize a commonality of
professional purpose. The most serious analytical
challenges posed by avian fossils derive from missing
data (Kearney, 2002; Kearney & Clark, 2003), which
may affect the characters admitted for analysis.

Nomenclatural divergence, analytical corollaries:
Issues of strict taxonomy aside, philosophical differ-
ences between the subdisciplines also involve long-
standing perceptions of the diagnosibility of direct
ancestry (e.g. Brodkorb, 1976; Olson, 1976). Palaeon-
tological viewpoints regarding ancestral status of fos-
sils also hold implications for nomenclature of fossil
lineages (e.g. ‘stem-groups’) in phylogenetics (Benton,
2000), analytical validity of ‘ghost lineages’ (Norell,
1992), and the evolutionary significance of fossil
‘mosaics’ (Norell & Clarke, 2001; Dyke & Van Tuinen,
2004). A neontological perspective, however, considers
fossils to differ from modern representatives solely by
extinct status and quality of preservation, with many
modern lineages representing more informative plesi-
omorphs of extant clades than any fossil member – e.g.
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anseriforms Anhimidae, Anseranas vs. fossil Presbyor-
nis (Livezey, 1997a). Where adequately preserved for
phylogenetic placement, fossils also may provide an
estimate of minimal age of the group it represents,
but this estimate is imprecise and subject to bias.
Ironically, a misunderstanding of such estimation
contributed to early arguments concerning ‘temporal
incongruence’ and against a theropod origin for birds
(e.g. Brochu & Norell, 2000, 2001).

Although the definitions of ‘stem’ and ‘crown’ groups
are relatively simple (Meier & Richter, 1992), the
former sharing conceptual roots with earlier terms of
assumed or possible direct ancestry such as ‘plesions’
(Wiley, 1981), it seems that these designations carry
important nomenclatural implications (Benton, 2000)
and may impede the integration and interpretation of
fossil and modern taxa by identical means. Where
ancillary assumptions regarding local polarities and
implications of ‘stem-group’ members are made in
analyses based on narrow samples of taxa (e.g. Bour-
don, 2005; Bourdon et al., 2005) or characters (e.g.
Mayr, 2002a, 2003a, b, c, 2004e, 2005i; Mayr & Clarke,
2003; Mayr et al., 2003; Mayr & Ericson, 2004), or if
the fossil material is of marginal quality (e.g. Mayr,
2002c, 2004e, 2005f), the differences between neonto-
logical and palaeontological schools can be substan-
tial. In many contexts, it appears virtually inescapable
that ‘stem-group’ status implicitly conserves the
notion of possible or likely ancestry relative to the
corresponding crown-group, and thereby suggests an
evolutionary role beyond mere cladistic position (e.g.
successive sister-groups).

Moreover, inclusion of a fossil in a ‘stem-group’
(Mayr, 2002c, 2005d) can lead to alternative analytical
protocols, e.g. speculations of local polarities and sub-
stitution of hypothesized instead of observable char-
acter states to lend support to trees including mulitple
fossils (e.g. Mayr, 2002c, 2004f, 2006a). The compara-
tively well known Pseudasturidae – formerly assigned
to the Family Quercypsittacidae (Psittaciformes) by
Mourer-Chauviré (1992) – were judged to combine
‘intermediacy’ in a number of characters purportedly
diagnostic of psittaciforms with similarities to the
‘Galbulae’ (Piciformes), and were referred to the ordi-
nal ‘stem-group’ of Psittaciformes by Mayr (2002c).
Informal hypotheses of polarities in analyses of fossil
birds – e.g. by Mayr (2005i: characters 5 and 12), Mayr
et al. (2003: characters 1, 6, 11, 29, 35 and 71), and
Mayr & Ericson (2004: character 55) – evidently
intended to impose ‘local’ initial states in a particular
context and often asserted in character descriptions
(Mayr, 2002c), are innocuous if these are inferred from
direct analysis rather than imposed based on precon-
ceptions regarding a taxon. Evidently, however, in
some cases states observed for given terminal taxa are
replaced by states purportedly representative of ‘stem-

group’ members (i.e. states hypothesized to be prede-
cessors to those of taxa included in the corresponding
‘crown group’). Examples of the latter – confirmation
of which requires character descriptions and the data
matrix – include characters 5, 9, 18, 26, 30 and 68 of
Mayr et al. (2003).

A related tradition of avian palaeontology is the
imposition of intuitive trends that exceed the strict
empirical content of available fossil material. For
example, newly discovered fossils – notably a ‘stem-
group hummingbird’ (Eurotrochilus inexpectatus)
from the early Oligocene of Germany of purportedly
modern grade – motivated Mayr (2003c, 2004d, 2005a,
g) to enter the debate concerning the relationships of
the Apodiformes. These efforts included a critique
(Mayr, 2001f) of a description of a fossil taxon by Dyke
(2001c), the attribution by Mayr (2004d) (based on
limited taxonomic comparisons) of morphological spe-
cializations both for hovering flight and for nec-
tarivory to Eurotrochilus, and speculations on the
earliest evidence of avian nectarivory and the coevo-
lution of certain bird-pollinated angiosperms in the
New World. Given the oversimplification of distribu-
tions of characters, especially within the Apodiformes
(Cohn, 1968; Karhu, 1992, 1999, 2001), and the wider
controversy based on molecular data (Dumbacher
et al., 2003; Thomassen et al., 2003, 2005; Chubb,
2004b), it is unfortunate that the characters included
by Mayr (2001f, 2003c, 2004d, 2005g) totalled from 25
to 98, and failed to provide a synthesis of all relevant
characters was not provided for relevant taxa prior to
speculating regarding graded specializations and
coevolutionary trends in the early Cenozoic.

Plesiomorph or interordinal ‘intermediate’?: Perhaps
the most prevalent idiosyncracy of palaeontological
perspectives is the reputed importance of fossils as a
source of phylogenetic ‘bridges’ between extant, com-
paratively divergent lineages (Mayr, 2006b). However,
neither the published record nor phylogenetic theory
supports this notion, and the role of interordinal ‘link-
ing’ lineages is at least as often revealed by extant
taxa (Livezey, 1997a). The taxonomic history of Pres-
byornis illustrates the potential that such expecta-
tions may hold for phylogenetic placements of fossils
with respect to modern higher-order groups.

Wetmore (1926) originally described Presbyornis
from a single element from the Eocene of western
North America as a charadriiform, but later (with
abundant additional material) it was asserted to be a
‘transitional’ shorebird and indicative of a close rela-
tionship between Charadriiformes and Anseriformes
(Olson & Feduccia, 1980a), the intuitive methods
employed in the latter being criticized by Raikow
(1981). More than a decade later and based on direct
cladistic analysis of both Presbyornis and modern
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taxa, the genus was determined to be a plesiomorphic
anatoid (Ericson, 1997; Livezey, 1997a). Subsequently,
Presbyornis (and synonyms) has been the genus of
choice for referral of fossils from the Eocene of
England (Harrison & Walker, 1976a), Eocene of Mon-
golia (Kurochkin, 1988), Palaeocene of eastern North
America (Olson, 1994; Ericson, 1997), Cretaceous of
Antarctica (Noriega & Tambussi, 1995), late Palae-
ocene of North America (Benson, 1999), and Creta-
ceous of Mongolia (Kurochkin, Dyke & Karhu, 2002).

An examination of the material upon which these
referrals were made raises reasonable doubts as to
diagnostic reliability, and reveals the role of the com-
paratively well represented fossil Presbyornis as a
palaeontological ‘strange attractor’ for other, variably
preserved fossils of uncertain affinities. As the refer-
rals of fossils to the early Anseriformes escalated, pur-
ported allies of Presbyornis also increased in number
and morphological diversity: Olson (1994) reported a
‘giant’ Presbyornis from the Palaeocene of eastern
North America, Alvarenga (1999) referred a fossil
from the mid-Tertiary of Brazil to the Anhimidae;
Olson (1999b) phenetically allied Anatalavis from the
London Clay to the modern Australian endemic
Anseranatidae, a placement disputed by Dyke
(2001b); Mourer-Chauviré et al. (2004) allied Anser-
pica from the Oligocene of Europe to the same family;
and Clarke et al. (2005b) likened Vegavis (Cretaceous
of Antarctica) to Presbyornis and referred the genus to
the Anatoidea by a nested series of analyses of
published data sets, by a method similar to that of
supertrees.

The saga of Presbyornis also extended to the inter-
ordinal realm of fossil referrals, and provided insights
into the alliance formerly alleged between Presbyornis
and Phoenicopteridae by way of the poorly understood
Juncitarsus (Olson & Feduccia, 1980a, b; Ericson,
1999), and thereby the subsequently proposed rela-
tionship between Phoenicopteridae and Podicipedidae.
In addition, Cheneval & Escuillié (1992) cited similar-
ities between grebes and the flamingo-like Palaelo-
didae in the pelvic appendage – the very class of
characters considered by many of these authors to be
prone to convergence and therefore unreliable in unit-
ing grebes with loons.

Nevertheless, Mayr (2004c: 140) considered the
sister-group relationship between grebes and flamin-
gos to be ‘. . . one of the best supported higher-level
clades within modern birds.’ Mayr (2005a: 523) then
suggested that the intermediacy of two skeletal fea-
tures between Juncitarsus (Eocene of Wyoming) and
the Palaelodidae (Oligocene of Europe), fossils tradi-
tionally allied to the Phoenicopteridae, ‘. . . provides a
morphological link between Phoenicopteriformes and
Podicipediformes.’ As for the early inferences made for
Presbyornis, to which Juncitarsus and phoenicop-

terids were compared (Ericson, 1999), misclassifica-
tion of fossils can lead to significant errors where
informal phenetics and exceptional treatment of
fossils are involved (Livezey, 1997a), problems not
correctable by adoption of empirically depauperate
taxonomic nomenclatures (e.g. ‘stems’ and ‘crowns’)
and contradictory views on the phylogenetic roles of
fossil taxa.

FOSSIL NEORNITHES: PRESERVATION AND 
OPPORTUNITIES

Referrals, old and new: Despite the foregoing critique,
well-preserved fossils can provide important insights
into avian evolution, especially the Mesozoic origins of
the group, and many potentially important fossils cur-
rently have yet to be described (J. A. Clarke, pers.
comm.) and are beyond the scope of the present work.
Unfortunately, a majority of fossil Neornithes, both of
Mesozoic (Hope, 2002) and Cenozoic age (Brodkorb,
1963, 1964, 1967, 1971b), were named based on mate-
rial not permitting meaningful inclusion in a formal
cladistic analysis of modern scale. Moreover, classifi-
cations of many of these taxa were made phenetically,
and with a marked tendency to refer new taxa to the
modern taxon perceived to be most similar (Livezey &
Martin, 1988; Livezey, 1997a, 2003c). Fortunately,
increased use of cladistic analyses makes it likely that
such records, especially those spanning the late Meso-
zoic and early Cenozoic, will provide an increasingly
refined palaeontological dimension to avian phyloge-
netics.

Given the limitations of direct diagnosis (Table 2)
and the phenetics of seeking the best neornithine
group in which to place a fossil (Livezey & Martin,
1988; Livezey, 1997a), what is the recommended
means for evaluation of a new fossil with respect to the
present data set? Two paths seem most informative at
present: (i) unconstrained analysis of the present data
set, appended with the codings for the fossil taxon,
however incomplete (within reasonable limits of infor-
mativeness); or (ii) analysis of the fossil taxon under a
backbone-constraint for modern lineages (e.g. Figs 13–
18). The latter probably will prove optimal in those
cases where missing data are especially numerous or
where even higher-order affinities are indiscernible,
and especially where both circumstances pertain. Tax-
onomic groups of greatest diversity and quality of
preservation hold the greatest potential for such
insights, and these merit special emphasis here, espe-
cially those broadly consistent with groupings inferred
here and for groups having few modern members.

Diversity, aquatic and terrestrial: Fossils have been
referred, although not all by phylogenetic means, to all
modern families of the Pelecaniformes: Phaethontidae
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(Harrison & Walker, 1976b; Olson, 1983b, 1985; Mayr
& Smith, 2002), Fregatidae (Olson, 1977), Fregatidae
or Sulidae (Olson & Matsuoka, 2005), Sulidae (Olson
& Rasmussen, 2001; Mayr, 2002d; Stucchi & Urbina,
2004), Pelecanidae (Olson, 1999a), Phalacrocoracidae
(Mayr, 2001c) and Anhingidae (Alvarenga, 1995; Alva-
renga & Guilherme, 2003; Mourer-Chauviré et al.,
2004). In addition, the controversially referred Plo-
topteridae (Mayr, 2004b) have increased in palaeodi-
versity (Olson & Hasegawa, 1979, 1996; Olson, 1980;
Goedert, 1988). Less well justified is the putative
membership of a group of widespread, fossil, pseudo-
denticulate birds – Odontopterygiformes (Owen, 1873;
Howard, 1957; Goedert, 1989; Averianov et al., 1991;
Zusi & Warheit, 1992; González-Barba et al., 2002) –
for which a modest analysis mustered marginal sup-
port as an alternative sister-group to the Anseriformes
(Bourdon, 2005).

The Coliiformes, Trogoniformes, Coraciiformes and
Piciformes merit renewed examination as these
groups (e.g. Bucconidae sensu lato, including Pri-
mobucconidae), as well as specimens of uncertain
affinity (Olson, 1992b), also have received multiple
new fossil referrals (Harrison, 1982a; Mayr, 2000c) –
including Trogoniformes (Mourer-Chauviré, 1980;
Mayr, 1998a, 1999a, 2001b, 2003b), Coliiformes (Olson
& Houde, 1989; Houde & Olson, 1992; Mayr & Peters,
1998; Mayr, 2000b, 2001a, 2005d, e; Dyke & Water-
house, 2000; Kristoffersen, 2001; Mayr & Mourer-
Chauviré, 2004), Coraciiformes (Olson, 1976, 1992b;
Mourer-Chauviré, 1985; Mayr & Mourer-Chauviré,
2000; Mayr, Mourer-Chauviré & Weidig, 2004b) and
Piciformes (Mayr, 2001d, 2005h, i). Broadly delimited
zygodactyl taxa (Feduccia & Martin, 1976; Mayr,
1998c, 2001e, 2004e, 2005h, i) complete the apparent
palaeodiversity of ‘higher’ landbirds (Fig. 18), and con-
trasts with modern passeriform dominance (Mane-
gold, Mayr & Mourer-Chauviré, 2004).

The Psittaciformes, at least the modern members
of which are anatomically distinctive, have attracted
a number of newly described fossils, some of which
obscure  this  distinctness  (Mayr,  2002c),  and  thus
the order has undergone pronounced extensions of
its palaeodistributional limits (Harrison, 1982b;
Mourer-Chauviré, 1992; Mayr & Daniels, 1998;
Stidham, 1998; Dyke & Mayr, 1999; Brochu &
Norell, 2000; Dyke & Cooper, 2000; Mayr, 2001g,
2002c; Mayr & Göhlich, 2004; James, 2005). The
uniquely apomorphic form of the crania of some taxa
in this order is so extreme (Smith, 1975) as to pose
challenges of comparability, and many modern mem-
bers also manifest distinctly modified pectoral gir-
dles and apomorphic pelvic skeletons (Smith, 1975;
Livezey & Zusi, 2006). However, some fragments
controversially referred to this clade are of potential
relevance to the origins of modern orders and the K–

T boundary (Stidham, 1998 vs. Dyke & Mayr, 1999),
and merit reassessment.

SPATIOCHRONOLOGICAL DIMENSIONS OF 
PHYLOGENETICS

Preservation and inferred distribution: A traditional
referral of issues of ‘deep time’ to palaeontology
(Brochu et al., 2004) evidently reflects, in part, the
rapidity with which fossil evidence was conjoined with
modern phylogenetics for the calibration of geological
time with phylogenetic hypotheses. Palaeocalibration
of ages provided by fossil records in combination with
models of molecular phylogenetics predictably turns
on taxonomic groups possessed of rich, accurately
aged fossils and reliable phylogenies.

These cross-disciplinary works progressed (perhaps
too) rapidly toward attempts at global treatments of
Neornithes that were influenced by undue inclusion of
fossils of unreliable identity and age. In addition, the
early spate of efforts favoured classes of models (e.g.
Markovian) that facilitate minimization or ‘smoothing’
of discrepancies between calibrations and branching
patterns as opposed to realistic incorporation of het-
erogeneous evolutionary rates (Sheldon et al., 2000;
Brochu & Norell, 2001; Van Tuinen & Hedges, 2001;
Dyke, 2003; Pol et al., 2004; Van Tuinen & Dyke, 2004;
Van Tuinen et al., 2006). The latter, often underappre-
ciated, reality reflects the likelihood of preservation
and a negative skewness of such records expected to
be inversely correlated with body size and related het-
eroscedasticity that is directly correlated with geolog-
ical age. These palaeontological issues are confounded
by unrealistic assumptions of molecular trees and
models in which the fossil data are incorporated. Not
surprisingly, informativeness of such exercises to date
has been limited – i.e. modern orders have been
inferred to have very early origins (Pereira & Baker,
2006a: table 1; Van Tuinen et al., 2006: tables 1, 2).
Nevertheless, a phylogenetic hypothesis of high sup-
port and resolution (Figs 10–18) is an essential start-
ing point – one, however, conditional on independent
testing and augmentation. Another precondition of
success, aside from well-documented fossil records
(e.g. Clarke et al., 2003), is use of realistic assump-
tions regarding molecular evolution where calibration
of ages of divergence events is among the objectives
(Pereira & Baker, 2006a).

Calibration of time: Failure to verify the existence of a
molecular ‘clock’ notwithstanding (García-Moreno,
2004), an endeavour of particular interest regards
bringing to bear the calibration of geological time – the
‘time axis’ of Benton (1996) – through phylogenetically
placed fossil taxa, thereby estimating a minimal age of
corresponding nodes in a phylogeny and recavering
the temporal pattern of avian diversification (Hedges
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et al., 1996; Mindell et al., 1996; Miyaki et al., 1998;
Cooper & Penny, 1997; Kumar & Hedges, 1998; Sep-
kowski, 1999; Waddell et al., 1999; Cracraft, 2001).
Direct use of stratigraphic data for inference of trees
by means of parsimony or ‘stratocladistics’ has been
criticized on several methodological grounds, and is
especially inappropriate for the sparse avian fossil
record (Fisher, 1992; Huelsenbeck & Rannala, 2000).

Well-supported phylogenies for molecular models
are critical for extrapolations of evolutionary rates
from fossil-based point-estimates of geological age
(Marshall, 1990; Springer, 1995; Arbogast et al., 2002;
Broham et al., 2002; Smith & Peterson, 2002; Broham,
2003; Brochu, Sumrall & Theodor, 2004; Van Tuinen &
Hedges, 2004). Disagreements among calibrations to
date are consistent with evidence for significant vari-
ation among rates of evolution (Thorne, Kishno &
Painter, 1998; Johnson & Cicero, 2004; Cicero &
Johnson, 2006; Zink & Klicka, 2006), the effects of out-
groups (Waddell et al., 1999), initial estimates of
which (e.g. Shields & Wilson, 1987) continue to be
used. Other problems stem from the limited suitabil-
ity of stratigraphic data in phylogenetic contexts
(Huelsenbeck & Rannala, 2000), and effects of topo-
logical aspects of trees (Pol et al., 2004). The continued
controversy concerning the position of the Passeri-
formes relative to other Neoaves (especially Fig. 10) –
considered by many to reflect effects of outgroup and
relative evolutionary rates of mtDNA – presents a
critical issue for attempts at calibrations more precise
than Mesozoic vs. Cenozoic origins (Stanley & Crac-
raft, 2002; Cracraft et al., 2004; Pereira & Baker,
2006a, b; Slack et al., 2006a).

Accordingly, the prospect of using currently avail-
able palaeontological data to calibrate evolutionary
rates is disconcerting, regardless of the phylogenetic
framework conjoined, principally because of a paucity
of fossils that are reliably classified and of precise age
(Hope, 2002; Livezey, 2003c). However, the existence of
avian lineages in the late Mesozoic has been substan-
tiated directly by palaeontological evidence (Olson,
1992a; Dalla Vecchia & Chiappe, 2002; Grellet-Tinner
& Norell, 2002; Schweitzer et al., 2002). For example,
the estimated origin of megapodiid galliforms in the
Cretaceous (Pereira & Baker, 2006b) agrees well with
estimates for the comparably ancient Anseriformes.

Special attention relates to the oldest fossil record
for a member of the Neornithes, increasingly with
respect to hypotheses of descent relative to massive
faunal upheavals following the K–T boundary (Feduc-
cia, 1977c, 1995; Olson & Feduccia, 1980a; Olson &
Parris, 1987; Paton et al., 2002, 2003). Despite consid-
erable effort, few points of agreement among phyloge-
netic calibration of rates and fossil records have been
achieved (Benton, 1999, 2001; Dyke & Mayr, 1999; Van
Tuinen & Hedges, 2001). In part, disagreements reflect

variable reliances on assumpitions of ‘clock-like’ mole-
cular evolution (Helm-Bychowski & Wilson, 1986; Van
Tuinen & Hedges, 2001; Van Tuinen & Hadly, 2004).
The unrealistic assumption of ‘clock-like’ molecular
change (Brochu et al., 2004) has led to diverse means
of ‘correction’ or analytical adjustments (Mooers &
Harvey, 1994; Sanderson, 1997; Mindell et al., 1998;
Bleiweiss, 1998c; Ho et al., 2005), increased sampling
of fossils (Springer, 1995; Smith & Peterson, 2002;
García-Moreno, 2004; Pereira & Baker, 2006a, b),
incorporation of multiple ‘clocks’ (Van Tuinen & Dyke,
2004) and relaxation of estimators through Bayesian
methods (Yang & Rannala, 2006).

For example, Mayr (2002c) stated that the earliest
passeriform is no older than the early Oligocene,
whereas Cracraft et al. (2004) inferred the order to
have originated prior to the K–T boundary, a discrep-
ancy of magnitude likely to weaken associated calibra-
tions. Recent attempts to bracket times of avian
cladogenesis by Dyke & Van Tuinen (2004: fig. 3)
based on the few widely accepted higher-order rela-
tionships necessarily encompassed relatively few
major lineages of birds, whereas a priority accorded
expanded taxonomic samples led Van Tuinen et al.
(2006) to accept calibrations based on many fossils
classified from the literature, relationships derived
from the phenetics of DNA hybridization, and a null
model incorporating questionable assumptions con-
cerning molecular evolution (Pereira & Baker, 2006b)
and a basal polytomy for Neoaves.

Palaeobiogeography and the spatial dimension: There
is considerable optimism bestowed upon fossil taxa for
the reconstruction of historical biogeography (Olson,
1985; Carroll, 1997). Southern-hemispheric patterns
interpreted in terms of tectonic fragmentation and
movements are manifested in the literature of avian
systematics (Glenny, 1954; Cracraft, 1973b, 1975,
1976c, 1982c; Hedges et al., 1996; de Kloet & de Kloet,
2005). Realistic reconstructions of historical biogeo-
graphy require effects of vicariance events within con-
tinents – e.g. mountainous uplifts or glaciation – as a
secondary class of abiotic antecedants of phylogenetic
diversification (Ploeger, 1968; Cracraft, 1982c, d).

Of greater empirical substance for Aves, perhaps, are
inferences of historical vicariance, notably those forti-
fied by robust phylogenetic analyses and showing con-
gruent geographical patterns. Most important of these
for birds is the recurrent pattern of southern origins
among many lineages, collectively suggestive of a crit-
ical role for Gondwana in early avian origins and diver-
sification and most strikingly coincident with the K–T
boundary (Cracraft, 2001). Patterns consistent with
southern genesis are especially compelling in light of
a biased tendency for migratory habit to counter
northern–southern hemispheric patterns relative to
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those of eastern–western hemispheres (Böhning-
Gaese, González-Guzmán & Brown, 1998). Taxa for
which circumstantial evidence of this kind is consis-
tent with southern-hemispheric origins (Cracraft,
1973b), include: Ratitae (Cracraft, 1974a; Haddrath &
Baker, 2001), Anseriformes (Livezey, 1986, 1997a,
1998a), Galliformes (Dyke et al., 2003), Sphenisci-
formes (Cracraft, 1988; Cracraft & Mindell, 1989;
Harrison et al., 2004), Gruiformes (Cracraft, 1973a,
1982b; Livezey, 1998b), Psittaciformes (Cracraft, 1988;
Cracraft & Mindell, 1989; Miyaki et al., 1998; de Kloet
& de Kloet, 2005), Trochilidae (Bleiweiss, 1998d)
and suboscine Passeriformes (Ericson, Johansson &
Parsons, 2000; Irestedt et al., 2001, 2002; Ericson et al.,
2002a, b, 2003b; Barker et al., 2002, 2004; Edwards
& Boles, 2002; Yuri & Mindell, 2002; Ericson &
Johansson, 2003; Chubb, 2004b).

The Palaearctic understandably dominated palaeo-
geographical hypotheses in the early 20th century,
especially for fossils from the late Cenozoic (Ploeger,
1968). The prevalence of terrestrial groups during the
Palaeogene considered ‘basal’ to the Passeriformes (i.e.
branching from the lineage culminating in the Passe-
riformes and its sister-group) prompted Mayr (2005a)
to suggest that the former taxa may have occupied
‘passeriform’ niches prior to the Oligocene. This
hypothesis should be amenable to testing by morpho-
logical comparisons but is contingent on the resolution
of debated dates of origin of the Passeriformes (Boles,
1995, 1997; Cracraft et al., 2004; Mayr & Manegold,
2004). Among the avian clades most frequently cited
with respect to adaptive radiation, key innovation,
ontogenetic underpinnings and sheer diversity –
phenomena of prime interest (Starck, 1969; Smith,
1994) – are the Apodiformes and Passeriformes.
Accordingly, the Apodiformes (especially the Trochil-
idae) attracted substantial anatomical (Cohn, 1968;
Karhu, 1992, 1999, 2001) and phylogenetic study
(Dyke, 2001c; Mayr, 2001f, 2003c, 2004d, 2005a, g;
Thomassen et al., 2003, 2005; Chubb, 2004b). The
Passeriformes, however, hold a position of unique
diversity – comprising 60% of extant Aves (Cracraft
et al., 2004) and unmatched global distribution
(Fitzpatrick, 1988; Kochmer & Wagner, 1988),
evolutionary success (Raikow, 1986, 1988; Vermeij,
1988) and adaptation (Baum & Larson, 1991).

Evolutionary radiations and the K-T controversy:
Such palaeogeographical patterns have shed light on
the theory of ‘adaptive radiation’ (Gould & Eldredge,
1977; Eldredge & Cracraft, 1980; Levinton, 1988;
Eldredge, 1989; Valentine, 1990; Jablonski, 2000;
Schluter, 2000), ‘explosive radiation’ (Feduccia, 1980,
1995, 1996, 2003; Sheehan & Fastovsky, 1992; Cooper
& Penny, 1997; Kardong & Zweers, 1997; Cooper &
Fortey, 1998), and ‘mass extinction’ (Jablonski, 2005)

of Aves around the K–T boundary. Other biogeograph-
ical hypotheses of significance relate cladogenetic pat-
terns and faunal diversity to tectonic movements
(Hedges et al., 1996; Craw, Grehan & Heads, 1999;
Humphries & Parenti, 1999), and trans-Gondwanan
dispersal (Cracraft, 1973b, 1975, 1976c, 1982b, c,
2001).

In particular, the Charadriiformes have been the
focus of substantial, speculative scenarios regarding a
special evolutionary role involving multiple avian
groups and major extinctions. The notion that ‘shore-
birds’ are fundamental to an understanding of avian
evolution across the K–T boundary (Olson & Feduccia,
1980a, b) is no longer considered promising, and was
based in part on a preconception of Charadriiformes
as phenotypic intermediates bridging higher-order
avian groups (Zweers & Vanden Berge, 1997a, b; Zwe-
ers, Vanden Berge & Berkhoudt, 1997; Dyke et al.,
2002; Paton et al., 2002).

Quantitative estimation of rates of evolutionary
change (Rodriguez-Trelles, Tarrio & Ayala, 2002) –
given robust phylogenies (Marshall, 1990) and ade-
quate fossil records (Sepkowski, 1999) – have fostered
more detailed hypotheses of phylogenetic bottlenecks
and ‘explosive’ radiation near the K–T boundary
(Feduccia, 1995, 2003; but see Stanley & Cracraft,
2002). However, there is growing evidence, at least
based on Bayesian analyses of data largely or
entirely from the mitochondrial genome, that most or
all neornithine orders date from the late Cretaceous
(Grellet-Tinner & Norell, 2002; Schweitzer et al.,
2002; Dalla Vecchia & Chiappe, 2002; Pereira &
Baker, 2006b; Slack et al., 2006a, b; Van Tuinen et al.,
2006). If accurate, despite the vulnerability of such
data to suboptimal rooting, this record undermines
early anticipations of K–T boundary effects in mod-
ern orders and an evolutionary timespan in which
major divergences of neornithine lineages would
extend through the early and middle Cenozoic.
Expectations for avian fossils of such antiquity are
correspondingly conservative, and although fossils of
such age potentially offer new calibration points for
early avian lineages, there is diminished hope for
points of calibration bearing on the relative antiquity
of modern (super)orders of birds or precise molecular
estimates of associated evolutionary rates character-
istic of phylogenetic lineages.

PRIORITIES FOR FUTURE INVESTIGATION

Current points of irresolution: Based on the present
analysis (Figs 1–8) and other studies during recent
decades (Figs 10–18), the area of primary ignorance
for avian phylogenetics is the heretofore refractory
groupings within the Neoaves, with principal prob-
lems being the highest-level nodes (notably the posi-
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tion of the Passeriformes within this group) and the
comparatively routine but significant work of phylog-
eny within orders and families (Fig. 11; Appendix 1).
Optimism remains justified, however, with new genes
and molecular signal of scale higher than simple
sequences and indels under exploration (e.g. retro-
posons). Reliance solely on a single scale of homology,
e.g. the indels upon which Fain & Houde (2004) pro-
posed largely hemisperically concordant ‘Metaves’ and
‘Coronaves’, is herein inferred to be nomina nuda
(Appendix 1). This fixation on single-scale molecular
analyses justifiably led Harshman et al. (2006: 42) to
ask: ‘Can four million bases [nucleotides] resolve the
[avian] tree?’ Fortunately, there are a number of
anatomical fields of study that remain virtually
untouched in modern phylogenetic contexts (Livezey
& Zusi, 2001, 2006), a circumstance of hope in light of
the palaeontological discoveries that will necessitate
refinement of these and refined anatomical complexes
coded (e.g. os palatinum of Archaeopteryx; Mayr et al.,
2005; Zusi & Livezey, 2006).

Several episodes of avian phylogeny were incom-
pletely resolved in the present analysis (Figs 12–18),
and will require significantly intensified sampling of
taxa to solve:

• Positions of Aepyornithiformes and Dinornithi-
formes relative to extant ratites (Fig. 13).
• Resolution of genera within the Phasianoidea
(Fig. 13).
• Resolution of the positions of the Psittaciformes and
Columbiformes (Figs 16, 17).
• Determination of the relationships among several
poorly resolved nodes involving the traditional
Charadriiformes and Gruiformes, within the ‘central’
Charadriiformes (Fig. 15), for which alternative pro-
posals continue to appear (Simmons et al., 2004; Van
Tuinen et al., 2004; Paton & Baker, 2006; Pereira &
Baker, 2006a), a task likely to require inclusion of rich
suites of such integumentary characters as the natal
integument for reconstruction of deeper nodes, and
aspects of the definitive externum for resolution of
shallower nodes (Jehl, 1968, 1971; Livezey, 1991,
1995b, c, d, 1996a, b, c, 1997c).
• Confirmation of relationships of the families of
Caprimulgiformes (Fig. 17).
• Resolution of the trichotomy among the Coracii-
formes, Piciformes and Passeriformes (Figs 17, 18),
and resolution of subordinal and familial phylog-
eny within the Passeriformes, and affirming the
position of the Passeriformes relative to other
Neoaves.
• Make available an empirically grounded platform
for finer-scale analyses of single orders or families of
Neornithes as an alternative to the classical litera-
ture or the ‘tapestry’ by Sibley & Ahlquist (1990),

with priority accorded to comparatively old, multifa-
milial orders (e.g. Galliformes, Procellariiformes) or
traditionally challenging groups (e.g. Pelecanimor-
phae).
• Phylogenetic integration of well-preserved fossils
into the phylogeny, both serving as additional taxa for
resolution or revision of groups and as points of cali-
bration of (minimal) ages of lineages of which these
are members.

An especially rewarding class of study awaits opti-
mization of life-historical attributes at the present
phylogenetic scale, attributes such as sexual dimor-
phism, parental care and reproductive parameters
(Wyles, Kunkel & Wilson, 1983; Winkler & Sheldon,
1993; Wesolowski, 1994; Wimberger & de Queiroz,
1996; Figuerola, 1999; Geffen & Yom-Tov, 2001;
Tullberg, Ah-King & Temrin, 2002; Roulin, 2004;
Pereira & Baker, 2005; Ekman & Ericson, 2006) as a
starting point for more detailed studies in evolution-
ary biology. This area of study can advance only with:
(i) use of well-resolved, robustly supported phyloge-
nies, often not feasible (e.g. Cubo, 2003); and (ii)
refinement of methods for optimization a posteriori of
attributes, including where phylogenies include poly-
tomies (Saunders, Smith & Campbell, 1984; Temrin &
Sillén-Tullberg, 1994, 1995; Omland, 1997a, b; Ligon,
1999; Richardson et al., 1999).

An unfortunate aspect of such methods has been
revealed by a number of optimizations that relied on
the phenetics of Sibley & Ahlquist (1990), ostensibly
as it was the only hypothesis of adequate taxonomic
breadth for the desired survey (e.g. Van Tuinen et al.,
2006). Attributes so assessed include body mass (Mau-
rer, 1998), wing length (McCall, Nee & Harvey, 1998)
and correlates of flightlessness (Cubo & Arthur, 2001).
Most such published surveys have recovered signifi-
cant patterns in selected morphological attributes
despite the virtually universal view that the quasi-
phylogeny that was used is unreliable. This incongru-
ity indicates that apparent significance of optimiza-
tions is essentially meaningless, but more importantly
provided a fortuitous insight that statistically signifi-
cant patterns can emerge from inaccurate phyloge-
netic hypotheses and that it may be prudent to adopt
more conservative critical values for tests of this
nature. Until more discriminating methods are avail-
able, significance in this context should not be
assessed against a null model of random change but
instead against randomized evolution with varied
descent or reserved for comparisons between
phylogenies.

Broadened phylogenetic horizons: Philippe & Laurent
(1998) entitled their paper with a challenge of undis-
puted cogency: ‘How good are deep phylogenetic
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trees?’ An expansion of phylogenetics of the
Theropoda and Dinosauria is well underway, how-
ever, and will be central to a robust foundation for
avian phylogeny, including significant implications
for ‘global’ homology and anatomical nomenclature.
This exploration should lead to phylogenetic hypothe-
ses among Vertebrata of increasing scale, especially
in light of character analyses already accomplished
for non-avian Tetrapoda (Benton & Clark, 1988;
Evans, 1988; Nielsen, 1995; Zardoya & Meyer, 1996;
Laurin & Reisz, 1997; Philippe & Laurent, 1998;
Zardoya et al., 1998; Xia, Xie & Kjer, 2003; Suzuki,
Laskowski & Lee, 2004; Hill, 2005). Similar explora-
tions among deep roots by molecular and morpholog-
ical means also hold promise for the phylogenetic
resolution of an expanded ‘super-clade’ of Reptilia
and allied Tetrapoda (Benton, 1990; Graybeal, 1994;
Kumazawa & Nishida, 1995; Mindell et al., 1999;
Ruta, Coates & Quicke, 2003), including (sub)fossil
taxa to the degree permitted by remains (Handt
et al., 1994; Taylor, 1996) and logistic limits on life-
historical data available for fossil taxa. In contrast to
issues of quality of the fossil record (Wagner, 2000a)
and limits on signal recoverable from fossils (Wagner,
2000b), potential for neontological study remains
underexplored, especially that involving soft-tissue
anatomical systems (Wägele, 1995).

In light of the evident attraction of probabilistic
reconstructions, phylogenetics may benefit most from
an expansion of Bayesian methods to address prob-
lems of incomplete data (Gelman & Xiao-Li, 2004),
robustness of estimates (Insua & Ruggeri, 2000) and
refined optimization, including (quasi-)likelihood
methods, both parametric and non-parametric
(Heyde, 1997; Beiko et al., 2006; Anisimova & Gas-
cuel, 2006). In both major classes of probabilistic mod-
els, renewed attention is justified to the analytical
properties of branching processes (Harris, 1963; Ath-
reya & Jagers, 1997; Kimmel & Axelrod, 2002; Hac-
cou, Jagers & Vatutin, 2005), for which statistical
methods have been elaborated only recently. In a prob-
lem of this unprecedented scale, it is critical for mod-
ern systematists to exploit a diversity of sources of
data as a means to effect even-handed assessments of
historical pattern.

An overview of the literature (Figs 1–10) reveals
that much remains to be accomplished in avian phy-
logenetics. Significant advances principally lie in
studies of great taxonomic scale and diverse support
that target nodes of ordinal and higher taxonomic
scales of Neoaves, in conjunction with a solution of
the persistent disputes among morphological, mitoge-
nomic and nuclear findings. In combination with
incorporation of additional, evolutionarily conserva-
tive characters of soft anatomy (Oliveira et al., 2004)
and karyotypes (Shetty, Griffin & Graves, 1999; Burt,

2002), the methods of ‘total-evidence’ analyses hold
promise for phylogenetic scales and calibration of
ages previously not feasible (Stanley & Cracraft,
2002; Baker & Gatesy, 2002; Cracraft et al., 2004;
Yang & Rannala, 2006), a potential not without early
tests (e.g. Kennedy & Page, 2002) and new method-
ological challenges (Baker et al., 1998; Ballard et al.,
1998; Bang, Schultz & DeSalle, 2002; Bininda-
Emonds et al., 2002).
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APPENDIX 1

The following proposal for a higher-order classification
of Class Aves is intended to encode natural groups as
recovered in the foregoing phylogenetic analysis of the
companion morphological data (Livezey & Zusi, 2006).
Procedures of phylogenetic classification followed
Wiley (1981) and Cracraft (1974b, 1978). We avoided
the current divergence between rank-free Phylocode
and traditional Linnean formats, as well as the palae-
ontological penchant for ‘stem’ and ‘crown’ groups. The
four principles considered here were: (i) hierarchical
grouping by phylogenetic relationship; (ii) preference
to familiar, available taxa; (iii) preference given to
names based on included type genera, where all other
considerations are equal; and (iv) coordination of
taxonomic ranks by similar emendation of names.
Higher-order group names were chosen to conform
most closely with others published comparatively
recently and conformal with several conventions: (i)
incertae sedis (indicative of unconfirmed monophyly

and/or content); and (ii) sedis mutabilis, where a taxon
comprises three or more members of equal rank (i.e.
lineages in polytomy). Among Neornithes, the
sequencing convention (Wiley, 1981) was used only for
ordinal ranks for some taxa traditionally considered to
be Gruiformes.

The comparatively simplified phylogeny upon which
this classification is based is depicted in Figure 11.
Exemplary taxa (often nominate genera) actually
coded and analysed are shown explicitly in trees
(Figs 13–18), and the higher-order taxa (mostly fami-
lies) that correspond to the exemplars appear in the fol-
lowing classification. Families included in higher taxa
are limited largely to those represented by exemplars
analysed, e.g. two subfamilies of Anatidae as opposed
to all recognized by Livezey (1997b). This convention is
most notable with respect to the exceptionally diverse
and minimally represented Passeriformes and embrac-
ing superorder. However, inclusion of comparatively
recently recognized family group names within two
orders of Superorder Psittacimorphae (Psittaciformes
and Columbiformes), not represented among exem-
plars, was intended to counter under-representation of
non-passeriform clades as well as to accommodate
uncertainty of phylogenetic placement of exemplary
genera with respect to recognized (sub)families.

No protocol for derivation of taxa of higher rank has
been codified; a recent attempt was that by Sibley
et al. (1988, 1990). The proposal made here is but one
of many alternatives, including 150 years of provi-
sional classifications. Although the ‘sequence conven-
tion’ might be applied to the very highest taxonomic
ranks, we elected to retain distinct, dichotomous taxa
to draw attention to these highest-order ranks within
Neornithes; this permits hierarchical clarity, but it
also results in some redundancy of higher-order
names (Table 2). However, the convention was applied
to names for some ranks listed prior to the Neornithes
– parvclasses, sections, etc. (cf. Ratitae). We chose to
use historical names over proliferation of new
(semi)synonyms to preserve taxonomic history and
despite the fact that this perpetuated some names of
variably different content and inappropriate etymol-
ogy and diagnosis (as understood by the original
authors of these taxa). In some cases, acceptable taxa
for some highest-order ranks were not found, and in
these few instances new taxa were proposed, e.g. Ter-
restrornithes, and hyphenates of several others.

Among several frequently cited, 19th-century
authors of higher-order taxa, two – Rafinesque (1815)
and Leach (1820) – were disqualified following the
adjudication of most modern systematists (Bock,
1994). We avoided group names of strongly militaristic
overtones, e.g. the ‘brigades’ and ‘legions’ of Gadow
(1893). We found the compendia by Lambrecht (1933),
Wetmore (1930, 1960), Mayr (1958), Storer (1960a,
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1971b), Brodkorb (1963, 1964, 1967, 1971b, 1978), Sib-
ley et al. (1988, 1990) and Sibley & Ahlquist (1972,
1990) to be critical for ascertainment of taxonomic
authorships. Many taxa named by Stresemann (1959)
or delimited by Verheyen (1961) also were adopted.
Full citations of references for higher-order taxa were
not included herein for the sake of brevity. For taxa of
rank greater than ordinal, we adopted, where possible,
the system of suffixes proposed by Sibley et al. (1988,
1990) and Sibley & Ahlquist (1990). Given the dubious
comparability of taxonomic ranks of higher-order
names, we elected to forego annotation of taxa of
supraordinal rank with the conventional specification
of ‘new rank’ in this proposal.

The higher-order names given in bold type reflect
inferred groupings, and although beyond the ranks of
pervue by the ICZN, we provide diagnostic and sup-
portive characters for these taxa (Table 2; Livezey &
Zusi, 2006), whether new or conserved from historical
works. The latter basis was preferred for naming
higher-order groups, with inexactitude of content con-
ceded as in such names used by Clarke & Norell (2002).
For example, the content of an established name (e.g.
Ornithurae) implicitly is defined herein (i.e. sensu
present study). Taxonomy bearing on outgroup taxa
(i.e. those preceeding Neornithes) are considered espe-
cially tentative. A minor point of contention is the posi-
tion of Lithornis (Houde, 1988), a relative to
palaeognathous Neornithes, inferred to be the sister-
group of Tinamidae by Clarke & Norell (2002) and
Clarke (2004), but inferred to be the sister-group of
Neornithes by Clarke & Chiappe (2001), Leonard et al.
(2005) and the present analysis (Fig. 12). Should a sis-
ter-group relationship between Lithornis and modern
palaeognathous taxa be favoured, Panpalaeog-
nathae Gauthier and de Queiroz, 2001 is available for
the clade comprising both groups. Use of the tradi-
tional, higher-order taxon Carinatae Merrem, 1813,
was precluded by provisional monophyly of Hesperor-
nis and Ichthyornis in the present study (see also Rees
& Lindgren, 2005), avoiding as well the implication of
the name with respect to secondary obsolesence or loss
of the carina sterni among Neornithes (Livezey, 2003a).

Supraordinal names proposed herein were intended
to follow the convention of seniority of taxa and (to a
lesser degree) included type family, as is typical of
lower-scale taxa. Three important higher-order syn-
onyms are: Neoaves Sibley et al., 1988, senior to
Plethornithes Groth & Barrowclough, 1999 (avail-
ability questionable in present context), and distinct
from Eoaves Sibley et al., 1988. There are also, two
taxa – ‘Cracrafti’ and ‘Conglomerati’ – informally pro-
posed as alternatives by Slack et al. (2006a). Unused
herein is the potentially useful higher-order name
Euornithes Sereno, 1999. Gaviomorphae replaced
Colymbimorphae (Gadow, 1893) by revision of

the former type genus Colymbus. We also replaced
the senior, unfamiliar Dypsporomorphae Ogilvie-
Grant, 1898, with the more familiar derivation
Pelecanimorphae. Similar reasoning led to the
suppression of Aetomorphae (Huxley, 1864) by
Falconimorphae (Seebohm, 1890), the latter derived
from an included ordinal taxon, but junior to the
less representative alternative of Strigimorphae
(Wagler, 1830). Uniform emendation of superorders
was not imposed herein for non-Neornithes. The
importance of dichotomy among higher-order names of
comparable rank for comparability with the phyloge-
netic tree resulted in redundancy of supraordinal
names for some clades, e.g. Subdivision Dendrorni-
thes comprises a single Section Raptores, which in
turn comprises a single Superorder Raptoromor-
phae. Antiquity of historical, higher-order taxa often
resulted in minor differences in content – e.g. Anom-
alogonates Garrod, 1874 optimally should exclude
the Cuculiformes for consistency with the myological
diagnosis implied by the name.

Further study will probably subdivide Superorder
Passerimorphae so as to comprise the Superorder
Coracomorphae Huxley, 1867 and Superorder
Passerimorphae (Linnaeus, 1758), the latter to com-
prise Piciformes and Passeriformes (cf. Manegold,
2005). Within the Passeriformes, the most suspicious
anomaly in the present analysis was that of Menura;
broader samples may justify its transfer to the Passe-
rida, and thereby the first subordinal taxon instead
may comprise the Acanthisittidae (Barker et al., 2002,
2004; Ericson et al., 2002a, b), representatives of
which were not available for analysis here.

Principally because of limitations on available
specimens, delegation of ordinal rank to the extinct
elephant-birds (Aepyornithiformes) was favoured
marginally over inclusion at lower rank within the
Struthioniformes. A detailed classification of Order
Anseriformes, including fossil taxa, was presented by
Livezey (1997b), and a preliminary classification of
the traditionally delimited Gruiformes, significantly
revised by the present analysis relative to that pro-
posed by Livezey (1998b), which tentatively recog-
nized monophyly of the traditional order. (Sub)fossil
taxa are plausible candidates for inclusion as sequen-
tial sister-groups of Galloanseromorphae (Diatr-
ymidae, Gastornithidae and Dromornithidae) or
membership within the Galliformes (Sylviornithidae)
or Anseriformes (e.g. Mourer-Chauviré & Balouet,
2005) and are included based on published description
(e.g. Cracraft, 1968; Livezey, 1997a) and cursory
examinations. Material essential for rigorous diagno-
sis is rare or lacking, but we considered provisional
hypotheses to indicate groupings likely but as yet
undemonstrated by formal analysis preferable in such
cases to no inference presented at all.
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Subclass Avialae Gauthier, 1986
  [Infraclass Alvarezsauria (Bonaparte, 1991)]

Infraclass Aves Linnaeus, 1758
Parvclass Palaeoaves; new name

Superorder Archaeornithes Gadow, 1893
Order Archaeopterygiformes Fürbringer, 1888

Family Archaeopterygidae Huxley, 1872
Order Confuciusornithiformes (Chiappe et al., 1999)

Family Confuciusornithidae Hou et al., 1995
Superorder Euenantiornithes Walker, 1981; incertae sedis

Order Rahonaviformes; new name
Family Rahonavidae; new name

Order Apsaraviformes; new name
Family Apsaravidae; new name

Parvclass Ornithurae Haeckel, 1866
Superorder Odontoholomorphae (Stejneger, 1885)

Order Hesperornithiformes (Fürbringer, 1888)
Family Hesperornithidae Marsh, 1872

Order Ichthyornithiformes (Marsh, 1873)
Family Ichthyornithidae (Marsh, 1873)

Parvclass Eoaves Sibley et al., 1988; incertae sedis
Order Lithornithiformes Houde, 1988

Family Lithornithidae Houde, 1988

Parvclass Neornithes Gadow, 1893
Cohort Palaeognathae Pycraft, 1900

Subcohort Crypturi Goodchild, 1891
Superorder Dromaeomorphae (Huxley, 1867)

Order Tinamiformes (Huxley, 1872)
Family Tinamidae Gray, 1840

Subcohort Ratitae Merrem, 1813
  [Superorder Apterygimorphae; incertae sedis]

Order Apterygiformes (Haeckel, 1866)
Family Apterygidae Gray, 1840

Order Dinornithiformes (Gadow, 1893)
  [Family Anomalopterygidae (Archey, 1941)]
  [Family Dinornithidae (Owen, 1843)]

Superorder Casuariimorphae; new taxon
Order Casuariiformes (Forbes, 1884)

Family Casuariidae Kaup, 1847
Family Dromaiidae Richmond, 1908

Superorder Struthionimorphae; new taxon
Order Aepyornithiformes (Newton, 1884)

Family Aepyornithidae Bonaparte, 1853
Order Struthioniformes (Latham, 1790)

Family Struthionidae Vigors, 1825
Family Rheidae (Bonaparte, 1853)

Cohort Neognathae Pycraft, 1900
Subcohort Galloanserae Sibley & Ahlquist, 1990

Superorder Galloanserimorphae (Sibley et al., 1988)
Order Galliformes (Temminck, 1820)

Suborder Craci Sibley et al., 1988; incertae sedis
Superfamily Megapodioidea (Lesson, 1831)

Family Megapodiidae Lesson, 1831
  [Family Sylviornithidae Mourer-Chauviré & Balouet, 2005]
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Superfamily Cracoidea (Vigors, 1825)
Family Cracidae Vigors, 1825

Suborder Phasiani (Vigors, 1825)
Superfamily Meleagridoidea (Gray, 1840)

Family Meleagrididae Gray, 1840
Superfamily Phasianoidea (Vigors, 1825); sedis mutabilis

Family Phasianidae (Vigors, 1825); sedis mutabilis
(Sub)Family Tetraonidae Vigors, 1825

Subfamily Perdicinae (Bonaparte, 1838)
Subfamily Odontophorinae Gould, 1844
Subfamily Phasianinae Vigors, 1825
Subfamily Numidinae Reichenbach, 1850

  [Order Dromornithiformes Fürbringer, 1888]
Family Dromornithidae Vigors, 1825

  [Order Diatrymiformes (Shufeldt, 1913)]
Family Diatrymidae Shufeldt, 1913

Order Anseriformes (Wagler, 1831)
Suborder Anhimae Wetmore & Miller, 1926

Family Anhimidae Stejneger, 1885
Suborder Anseres Wagler, 1831

Superfamily Anseranatoidea (Sclater, 1880)
Family Anseranatidae Sclater, 1880

Superfamily Anatoidea (Vigors, 1825)
  [Family Presbyornithidae Wetmore, 1926]

Family Anatidae (Vigors, 1825)
Subfamily Anserinae Vigors, 1825
Subfamily Anatinae (Vigors, 1825)

Subcohort Neoaves Sibley et al., 1988
Division Natatores Baird, 1858

Subdivision Pygopodo-tubinares; new taxon
Superorder Gaviomorphae; new taxon

Order Gaviiformes Wetmore & Miller, 1926
Family Gaviidae Allen, 1897

Order Podicipediformes (Fürbringer, 1888)
Family Podicipedidae Bonaparte, 1831

Superorder Procellariimorphae (Fürbringer, 1888)
Order Sphenisciformes Sharpe, 1891

Family Spheniscidae Bonaparte, 1831
Order Procellariiformes Fürbringer, 1888

Suborder Pelecanoidi (Gray, 1871)
Family Pelecanoididae Gray, 1871

Suborder Procellarae (Gadow, 1893)
Superfamily Oceanitoidea (Huxley, 1868)

Family Oceanitidae Forbes, 1882
Superfamily Procellarioidea (Fürbringer, 1888)

Family Procellariidae Vigors, 1825
Subfamily Procellariinae (Vigors, 1825)
Subfamily Pachyptilinae (Oliver, 1930)

Family Diomedeidae Gray, 1840
Subdivision Stegano-grallatores; new taxon

Superorder Pelecanimorphae Huxley, 1867
  [Order Odontopterygiformes (Spulski, 1910)]

Family Odontopterygidae Lambrecht, 1933
Order Balaenicipitiformes (Sclater, 1924)

Suborder Balaenicipites (Sclater, 1924)
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Family Balaenicipitidae (Sclater, 1924)
Order Pelecaniformes Sharpe, 1891

Suborder Phaethontes (Sharpe, 1891)
Family Phaethontidae Brandt, 1831

Suborder Steganopodes (Chandler, 1916)
Infraorder Fregatides (Sharpe, 1891)

Superfamily Fregatoidea (Garrod, 1874)
Family Fregatidae Garrod, 1874

Infraorder Pelecanides (Sharpe, 1891)
Parvorder Pelecanida (Sharpe, 1891); new rank

Family Pelecanidae Vigors, 1825
Parvorder Sulida (Reichenbach, 1849); new rank

Superfamily Suloidea (Reichenbach, 1849)
Family Sulidae Reichenbach, 1849

Superfamily Phalacrocoracoidea (Bonaparte, 1854)
Family Phalacrocoracidae (Bonaparte, 1854)
Family Anhingidae Ridgway, 1887

Superorder Ciconiimorphae (Garrod, 1874)
Order Ciconiiformes Garrod, 1874

Suborder Scopi (Bonaparte, 1853)
Family Scopidae (Bonaparte, 1853)

Suborder Ciconiae (Bonaparte, 1874)
Superfamily Ciconioidea (Sundevall, 1836)

Family Ciconiidae Sundevall, 1836
Family Phoenicopteridae Bonaparte, 1838

Superfamily Threskiornithoidea (Richmond, 1917)
Family Threskiornithidae Richmond, 1917
Family Plataleidae (Bonaparte, 1838)

Order Ardeiformes (Wagler, 1831)
Family Cochleariidae Ridgway, 1887
Family Ardeidae Vigors, 1825

Subfamily Botaurinae Bock, 1956
Tribe Botaurini (Bock, 1956)
Tribe Tigriornithini Bock, 1956

Subfamily Ardeinae (Vigors, 1825)
Tribe Nycticoracini Bock, 1956
Tribe Ardeini Bock, 1956

Division Terrestrornithes; new taxon
Subdivision Telmatorae (Lowe, 1931)

Superorder Charadriimorphae Huxley, 1867
Order Gruiformes (Bonaparte, 1854)

Suborder Cariamae (Wagler, 1830)
Infraorder Otides Sibley et al., 1988

Family Otididae Gray, 1840
Infraorder Cariamides (Fürbringer, 1888)

Superfamily Cariamoidea (Gray, 1853); sedis mutabilis
  [Family Bathornithidae Wetmore, 1933]

Family Cariamidae Bonaparte, 1853
  [Family Phorusrhacidae (Ameghino, 1899)]

Suborder Eurypygae (Fürbringer, 1888)
Infraorder Eurypygides Sibley et al., 1988

Family Eurypygidae Selby, 1840
Infraorder Rhynochetides Sharpe, 1891

Family Rhynochetidae Newton, 1868
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Family Aptornithidae Bonaparte, 1856
Suborder Grues Bonaparte, 1854

Superfamily Psophioidea (Bonaparte, 1831)
Family Psophiidae Bonaparte, 1831

Superfamily Gruoidea (Vigors, 1825)
Family Aramidae Bonaparte, 1854
Family Gruidae Vigors, 1825

Order Turniciformes (Huxley, 1868); incertae sedis
Family Turnicidae (Gray, 1840)
Family Mesitornithidae Wetmore, 1960

Order Ralliformes (Reichenbach, 1854)
Family Heliornithidae Gray, 1841
Family Rallidae (Reichenbach, 1854)

Order Charadriiformes (Fürbringer, 1888)
Suborder Pedionomae (Gadow, 1893)

Family Pedionomidae Gadow, 1893
Suborder Parrae (Gadow, 1893)

Family Jacanidae Stejneger, 1885
Family Rostratulidae Ridgway, 1919

Suborder Limicolae (Beddard, 1898)
Infraorder Dromaides (Sharpe, 1891)

Family Dromadidae Gray, 1840
Infraorder Scolopacides (Strauch, 1978)

Superfamily Thinocoroidea (Gray, 1845)
Family Thinocoridae (Gray, 1845)

Superfamily Scolopacoidea (Vigors, 1825)
Family Scolopacidae Vigors, 1825
Family Phalaropodidae Bonaparte, 1831

Infraorder Charadriides (Huxley, 1867); incertae sedis
Superfamily Charadrioidea (Vigors, 1825)

Family Charadriidae Vigors, 1825
Superfamily Glareoloidea (Brehm, 1831)

Family Glareolidae Brehm, 1831
Subfamily Glareolinae Brehm, 1831
Subfamily Cursoriinae Gray, 1840

Superfamily Burhinoidea (Mathews, 1912)
Family Burhinidae Mathews, 1912

Superfamily Haematopoidea (Bonaparte, 1838)
Family Haematopidae Bonaparte, 1838

Subfamily Haematopodinae (Bonaparte, 1838)
Subfamily Ibidorhynchinae Bonaparte, 1856

Family Recurvirostridae (Bonaparte, 1831)
Subfamily Recurvirostrinae Bonaparte, 1831
Subfamily Himantopodinae Reichenbach, 1849

Tribe Himantopodini Sibley et al., 1988
Tribe Cladorhynchini; new taxon

Suborder Lari Sharpe, 1891; incertae sedis
Infraorder Chionidides Sharpe, 1891

Family Chionididae Lesson, 1828
Infraorder Alcides (Sharpe, 1891)

Family Alcidae (Vigors, 1825)
Infraorder Larides (Sharpe, 1891)

Superfamily Laroidea (Bonaparte, 1831)
Family Stercorariidae Gray, 1870
Family Laridae (Bonaparte, 1831)

Subfamily Larinae Bonaparte, 1831
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Subfamily Sterninae Bonaparte, 1838
Superfamily Rynchopoidea (Bonaparte, 1838)

Family Rynchopidae (Bonaparte, 1838)
Subdivision Dendrornithes (Verheyen, 1961)

Section Raptores Baird, 1858
Superorder Falconimorphae (Seebohm, 1890)

Order Falconiformes Seebohm, 1890
  [Suborder Teratornithi (Miller, 1909)]

Suborder Cathartae (Coues, 1824)
Family Cathartidae (Lafresnaye, 1839)

Suborder Accipitres (Vieillot, 1816)
Infraorder Serpentariides (Seebohm, 1890)

Family Sagittariidae Finsch & Hartlaub, 1870
Infraorder Falconides (Sharpe, 1874)

Superfamily Falconoidea (Vigors, 1824)
Family Falconidae Vigors, 1824

Subfamily Falconinae Vigors, 1824
Subfamily Polyborinae Lafresnaye, 1839

Family Pandionidae Sclater & Salvin, 1873
Superfamily Accipitroidea (Vieillot, 1816)

Family Accipitridae (Vieillot, 1816)
Subfamily Accipitrinae (Vieillot, 1816)
Subfamily Gypaetinae (Vieillot, 1816)

Order Strigiformes (Wagler, 1830)
Family Tytonidae (Mathews, 1912)

Subfamily Tytoninae Mathews, 1912
Subfamily Phodilinae Beddard, 1898

Family Strigidae (Gray, 1840)
Section Anomalogonates Garrod, 1874

Subsection Coccyges Huxley, 1867; incertae sedis
Superorder Cuculimorphae Sibley et al., 1988

Order Opisthocomiformes (L’Herminer, 1837)
Family Opisthocomidae Swainson, 1837

Order Cuculiformes (Wagler, 1830)
Suborder Musophagi Seebohm, 1890

Family Musophagidae Bonaparte, 1831
Suborder Cuculi Wagler, 1830

Family Cuculidae Vigors, 1825; sedis mutabilis
Subfamily Neomorphinae Shelley, 1891
Subfamily Centropodinae Horsfield, 1823
Subfamily Crotophaginae Swainson, 1837
Subfamily Cuculinae (Vigors, 1825)
Subfamily Phaenicophacinae (Horsfield, 1822)

Superorder Psittacimorphae (Huxley, 1867); incertae sedis
Order Psittaciformes (Wagler, 1830); sedis mutabilis

Family Nestoridae (Bonaparte, 1850)
Family Psittacidae (Illiger, 1811)
Family Cacatuidae Gray, 1840
Family Loriinidae Selby, 1836

Order Columbiformes (Garrod, 1874)
Suborder Pterocletes (Boucard, 1876)

Family Pteroclidae Bonaparte, 1831
Suborder Columbae (Latham, 1790)

Family Columbidae (Illiger, 1811)
Subfamily Columbinae (Illiger, 1811)
Subfamily Didunculinae Gray, 1848
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Subfamily Gourinae Gray, 1840
Family Raphidae Wetmore, 1930

Subsection Incessores Baird, 1858
Superorder Cypselomorphae Huxley, 1867

Order Caprimulgiformes (Ridgway, 1891)
Suborder Aegotheli Sibley et al., 1988

Family Aegothelidae (Bonaparte, 1853)
Suborder Caprimulgi Ridgway, 1881; sedis mutabilis

Family Caprimulgidae Vigors, 1825
Family Nyctibiidae (Chenu & Des Murs, 1851)
Family Podargidae (Gray, 1840)
Family Steatornithidae (Gray, 1846)

Order Apodiformes Peters, 1940
Suborder Hemiprocni; new taxon

Family Hemiprocnidae Oberholser, 1906
Suborder Apodi (Peters, 1940)

Family Apodidae (Hartert, 1897)
Subfamily Cypselinae Bonaparte, 1838
Subfamily Apodinae Hartert, 1897

Family Trochilidae Vigors, 1825
Subsection Trogones; new name

Superorder Trogonomorphae; new taxon
  [Order Sandcoleiformes Houde & Olson, 1992]

Family Sandcoleidae Houde & Olson, 1992
Order Coliiformes (Murie, 1872)

Family Coliidae (Swainson, 1836)
Order Trogoniformes Wetmore & Miller, 1926

Family Trogonidae Lesson, 1828
Subsection Pico-clamatores; new name

Superorder Passerimorphae Sibley et al., 1988; sedis mutabilis
Order Coraciiformes Forbes, 1884

Suborder Bucerotes Fürbringer, 1888
Infraorder Upupides (Seebohm, 1890)

Family Upupidae Bonaparte, 1831
Family Phoeniculidae Sclater, 1924

Infraorder Bucerotides (Fürbringer, 1888)
Family Bucerotidae (Gray, 1847)

Suborder Halcyones (Forbes, 1884)
Superfamily Motmotoidea (Gray, 1840)

Family Motmotidae Gray, 1840
Superfamily Alcedinoidea (Stejneger, 1885)

Family Todidae Vigors, 1825
Family Alcedinidae (Bonaparte, 1831)

Subfamily Alcedininae Bonaparte, 1831
Subfamily Halcyoninae (Vigors, 1825)

Suborder Coracii (Forbes, 1884)
Infraorder Meropides (Fürbringer, 1888)

Family Meropidae Vigors, 1825
Infraorder Coraciides (Wetmore & Miller, 1926)

Superfamily Coracioidea (Vigors, 1825)
Family Coraciidae Vigors, 1825

Superfamily Leptosomatoidea (Bonaparte, 1850)
Family Leptosomatidae Bonaparte, 1850
Family Brachypteraciidae (Sharpe, 1892)

Order Piciformes (Meyer & Wolf, 1810)
Suborder Galbulae (Fürbringer, 1888)
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Family Galbulidae Bonaparte, 1831
Family Bucconidae Boie, 1826

Suborder Pici (Meyer & Wolf, 1810)
Superfamily Capitonoidea (Bonaparte, 1840)

Family Capitonidae Bonaparte, 1840
Family Rhamphastidae Vigors, 1825

Superfamily Picoidea (Vigors, 1825)
Family Indicatoridae Swainson, 1837
Family Picidae Vigors, 1825

Subfamily Jynginae Bonaparte, 1838
Subfamily Picinae Bonaparte, 1838

Order Passeriformes (Linnaeus, 1758)
Suborder Menurae (Sharpe, 1891)

Family Menuridae (Lesson, 1828)
Suborder Passeres Linnaeus, 1758

Infraorder Tyrannides Sibley et al., 1988
Family Tyrannidae Vigors, 1825
Family Pittidae Swainson, 1831

Infraorder Passerides (Linnaeus, 1758)
Parvorder Corvida Sibley et al., 1988

Family Ptilinorhynchidae Gray, 1841
Family Corvidae Vigors, 1825

Parvorder Passerida Sibley et al., 1988
Family Bombycillidae Swainson, 1831
Family Paridae Vigors, 1825
Family Passeridae Illiger, 1811




