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Abstract

Efforts to model the potential habitat and risk for spread of invasive diseases such as Sudden Oak
Death (SOD) are important for disease regulation and management. However, spatially referenced
risk models using identical data can have differing results, making decision-making based on the
mapped results problematic. We examined the results from five spatial risk models generated from
common input parameters, and investigated model agreement for mapping risk for the causal path-
ogen for SOD, Phytophthora ramorum across the conterminous United States. We examined five
models: Expert-driven Rule-based, Logistic Regression, Classification and Regression Trees, Genetic
Algorithms, and Support Vector Machines. All models were consistent in their prediction of some
SOD risk in coastal California, Oregon and Washington states, and in the northern foothills of
the Sierra Nevada Mountains in California, and in an east-west oriented band including eastern
Oklahoma, central Arkansas, Tennessee, Kentucky, northern Mississippi, Alabama, Georgia and
South Carolina, parts of central North Carolina, and eastern Virginia, Delaware and Maryland
states. The SVM model was the most accurate model, and had several advantages over the other
models. Although theoretical in nature, this paper presents results that have practical, applied value

* Corresponding author. Tel.: +1 510 642 7272; fax: +1 510 642 1477.
E-mail address: mkelly@nature.berkeley.edu (M. Kelly).
! Present address: School of Engineering, University of California, Merced, P.O. Box 2039, Merced, CA 95344,
USA.
2 Present address: Department of Geography, The Ohio State University, 1036 Derby Hall, 154 North Oval
Mall, Columbus, OH 43210, USA.
3 Present address: California Department of Fish and Game, 4949 Viewridge Ave., San Diego, CA 92123, USA.

0198-9715/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compenvurbsys.2006.10.002

Please cite this article in press as: Kelly, M. et al., Modeling the risk for a new invasive forest ...,
Computers, Environment and Urban Systems (2007), doi:10.1016/j.compenvurbsys.2006.10.002



mailto:mkelly@nature.berkeley.edu

2 M. Kelly et al. | Comput., Environ. and Urban Systems xxx (2007) xxx—xxx
for managers and regulators of this disease, and discusses common challenges in modeling invasive
species niches over large scales.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Environmental niche modeling; Sudden oak death; Geographic information systems

1. Introduction

An invasive pathogen Phytophthora ramorum is the causal agent for a new disease
called “Sudden Oak Death” that has reached epidemic levels in hardwood and mixed
hardwood forests in 14 counties in central coastal California and one county in southern
Oregon (Fig. 1). In the United States the disease is confined to the west coast, however the
potential for the disease to spread to other areas is high, and modeling its potential envi-
ronmental niche across a broad geographic scope is important for disease monitoring and
management.

The disease has killed tens of thousands of oak and tanoak trees (Quercus agrifolia,
Quercus kelloggii and Quercus parvula var.shrevei and Lithocarpus densiflorus) and affects
more than 25 “foliar hosts” — plant species that experience non-fatal foliar symptoms
(McPherson et al., 2005; Rizzo, 2003; Rizzo & Garbelotto, 2003). The foliar hosts, partic-
ularly California bay laurel (Umbellularia californica), play an important role in short-
range pathogen dispersal within forests: their leaves serve as reservoirs for the pathogen
spores which, given advantageous moisture and temperature conditions, can be spread
to soil and leaf litter via rain, and short distances through a forest by wind-driven rain
(Davidson, Rizzo, Garbelotto, Tjosvold, & Slaughter, 2002; Davidson & Shaw, 2003;
Davidson, Wickland, Patterson, Falk, & Rizzo, 2005; Rizzo & Garbelotto, 2003). Other
foliar hosts play a similar role to a lesser degree. At larger scales, human activity might
play a role in pathogen movement. Researchers have discussed the possibility of move-
ment of affected soil material through recreation activities (e.g., hiking, biking) or on vehi-
cle tires (Cushman & Meentemeyer, 2005; Davidson & Shaw, 2003; Tjosvold, Chambers,
Davidson, & Rizzo, 2002), and likely long-range dispersal mechanisms include trade in
ornamental plants, including the foliar hosts Rhododendron,Camellia and Viburnum
(Davidson & Shaw, 2003; Englander & Tooley, 2003; Rizzo, 2003), and trade in seasonal
garlands, wreaths and Christmas trees, which can be made from foliar hosts (Davidson &
Shaw, 2003).

The concern about SOD spread is not only theoretical: recent inspections of US nurs-
eries have documented the transport of potentially infected ornamental plants from a Cal-
ifornia wholesale nursery to over 700 garden centers in 39 states in 2005, and confirmed
positive samples of P. ramorum in nurseries in Oregon, Washington and British Columbia
(Stokstad, 2004). Given that similar environmental conditions and susceptible plant spe-
cies are found elsewhere in North America (for example, two eastern US oak trees, north-
ern red oak (Q. rubra) and pin oak (Q. palustris) have been proven susceptible to
P. ramorum (Rizzo, 2003)), there is considerable concern about potential spread of the
pathogen to other forests nationwide (Cree, 2003; Davidson & Shaw, 2003; Gottschalk,
Morin, & Liebhold, 2002; Rizzo, 2003; Tooley & Kyde, 2003).

Predictive habitat distribution models, or environmental niche models (ENM), are
increasingly recognized as important tools that can support our understanding of biotic
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Fig. 1. Current distribution of Phytophthora ramorum in California and Oregon.

invasions and diseases (Costa, Peterson, & Beard, 2002; Guo, Kelly, & Graham, 2005;
Higgins, Richardson, & Cowling, 2001; Jules, Kauffman, Ritts, & Carroll, 2002; Venette
& Cohen, 2006), historical habitats and climate change impacts (Iverson & Prasad,
1998; Clark, Rose, Levine, & Hardgrove, 2001), biodiversity and speciation mechanisms
(Rushton, Omerod, & Kerby, 2004; Graham, Ferrier, Huettman, Moritz, & Peterson,
2004), as well as aid in setting natural resource, conservation and species management pri-
orities (Felicisimo, Frances, Fernandez, Gondalez-Diez, & Varas, 2002; Fleishman, Nally,
Fay, & Murphy, 2001; Illoldi-Rangel, Sanchez-Cordero, & Peterson, 2004; Kelly, Fons-
eca, & Whitfield, 2001; McShea et al., 2005; Mladenoff, Sickley, & Wydeven, 1999; Rax-
worthy et al., 2003; Sperduto & Congalton, 1996; Zaniewski, Lehmann, & Overton, 2002).
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Efforts to model the potential habitat for P. ramorum and Sudden Oak Death (SOD)
are important for disease regulation and management, and have been used at land-
scape-, regional- and nationwide-scales. For example, in California, researchers used an
expert knowledge driven Rule-based Geographic Information System (GIS) model to pre-
dict SOD risk based on plant host, temperature and moisture data (Meentemeyer, Rizzo,
Mark, & Lotz, 2004), and this model has been used to guide sampling, aerial surveys, and
other statewide monitoring efforts. In addition, Venette and Cohen (2006) used a Rule-
based model and expert knowledge to characterize suitable regional climate for P. ramo-
rum across the United States. Rule-based models such as these use expert knowledge
rather than statistical inference, and thus the predictor ecological variables used are
known a priori. Other spatially referenced ecological niche models (such as logistic regres-
sion and classification and regression trees) use presence data to train a statistically based
model with the aim of revealing interactions between data that represent ecological niches.
The variety of techniques used for ecological niche modeling is growing (Guisan & Zim-
mermann, 2000), and there has been a corresponding increase the spatial modeling litera-
ture in work that compares results from different models (Guisan & Zimmermann, 2000;
Huang & Lees, 2004; Manel, Dias, & Ormerod, 1999; Manel, Dias, Buckton, & Ormerod,
1999; Muiioz & Felicisimo, 2004). These efforts show that spatially referenced models
using identical data often have differing results, due in part to: (1) the fact that models
can be either parametric or non-parametric with varying reliance on explanatory variable
distribution, (2) user-defined weightings placed on variables can differ by analyst, and (3)
the different methods used for generating absence data for input to models can influence
results. Therefore, it is often necessary to implement several niche models to determine
whether the prediction results will depend on methods used (Graham, Moritz, & Williams,
2006). In addition, when modeling a biotic invasion, one is necessarily using samples
drawn from a geographically constrained area to model over a larger geographic scope.
This necessarily increases uncertainties, and enhances the differences between models in
the results. In this research, we used a collection of common and newer model types to
map risk for SOD across the conterminous United States, and evaluate model perfor-
mance. We examined five classes of models that differed in terms of parametric and
non-parametric requirements, the necessity for presence and/or absence data, and whether
or not the explanatory variables were determined a priori or revealed during the model
process. Our spatial models included: (1) Rule-based Expert-driven GIS overlay, (2) Logis-
tic regression (LR), (3) Classification and Regression Trees (CART), (4) Genetic Algo-
rithms (GA), and (5) Support Vector Machines (SVM).

1.1. Model descriptions

Rule-based spatial risk models use research data and expert input, rather than statistical
inference to determine the importance of predictor variables (Meentemeyer et al., 2004).
Predictor variables are given weights based on importance, and all weighted variables
are manipulated using algebraic or Boolean logic operations in a GIS overlay procedure
to produce a mapped output (Franklin, 1995). This method is straightforward, intuitively
understandable, and not computationally intensive. Rule-based models have been used in
numerous ecological and natural resource management applications. Site-selection appli-
cations benefit from this approach because experts can weigh the relative importance of
variables in locating areas that meet a suite of criteria. For example, an expert-driven over-
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lay process has been used to site wetland restoration projects (Llewellyn et al., 1995;
McCauley & Jenkins, 2005; Russell, Hawkins, & O’Neill, 1997), aquaculture sites (Arnold,
White, Norris, & Berrigan, 2000; Buitrago, Rada, Hernandez, & Buitrago, 2005; Karthik,
Suri, Saharan, & Biradar, 2005) and to predict habitat for plant and animal species using
expert input (Kampichler, Barthel, & Wieland, 2000; Petit et al., 2003; Pyke, 2005). The
ability to harness expert opinion in a series of mathematical equations or logical “if”
“then” statements is one of the cited advantages of the GIS overlay approach. For exam-
ple, Parra, Graham, and Freile (2004) found sites for potential riparian vegetation resto-
ration based on land cover, wetness, proximity to water, and size constraints. These
“layers” were summed through an overlay process to yield a prioritization of potential res-
toration sites. Pyke (2005) modifies the technique to allow fuzzy membership in various
output results, and site suitability for a California salamander was based on a series of log-
ical propositions using input data layers such as land cover, road density, agriculture,
urban growth, and movement parameters. Despite ease of use and flexibility, the overlay
method does not take advantage of the strengths of statistical inference in deriving models,
as do the next four models evaluated.

One of the most commonly used model for inferring ecological niches over space using
presence and absence data is Logistic Regression (LR) (Franklin, 1995). LR is a variation
of ordinary regression which is used when the dependent (response) variable is binary and
represents the occurrence or non-occurrence of some outcome events, usually coded as ‘0’
or ‘I’, and the independent (input) variables are continuous, categorical, or both. Result-
ing probabilities can be mapped over space for an easily understood cartographic repre-
sentation of modeled distribution. LR is a powerful parametric method for ecological
niche modeling, and has been used in a variety of ecological modeling and conservation
examples. McShea et al. (2005) used a LR model to identify environmental variables that
were significant predictors of Eld’s deer in Southeast Asia in support of region-wide spe-
cies conservation efforts. Kelly et al. (2001) used LR to map the area potentially utilizable
for seagrass colonization using bathymetry and disturbance information. Since seagrass
patches can migrate over the seafloor, the seagrass area mapped directly at any one time
can underestimate the actual habitat area; LR provided a more comprehensive picture of
the habitat. Felicisimo et al. (2002) modeled the potential for six different forest types in
northern Spain based on topographic variable and proximity to marine influences in order
to better plan for forest management in the region. Mladenoff et al. (1999) used LR to
guide wolf re-colonization efforts, and estimated the amount and spatial configuration
of potential wolf habitat in the northeastern US.

The third model examined is relatively new, but is increasingly being used in ecological
modeling and classification applications. Classification and Regression Trees (here called
CART for simplicity) are a non-parametric alternative to parametric techniques such as
LR (De’ath & Fabricius, 2000) and Linear Discriminant Analysis (LDA) (Feldesman,
2002). The method is increasing in popularity among researchers analyzing multivariate
data, as it requires no advance variable selection, its results are invariant to transforma-
tions such as log transforms, it can use any combination of categorical and continuous
predictor variables, it can handle missing data (Feldesman, 2002), and it has the ability
to capture hierarchical and non-linear relationships and expose interactions among predic-
tor variables (Clark & Pregibon, 1993; De’ath & Fabricius, 2000; Kelly & Meentemeyer,
2002; Michaelsen, Schimel, Friedl, Davis, & Dubayah, 1994). The tree models are devel-
oped by recursively partitioning the response variable into increasingly homogeneous bin-

Please cite this article in press as: Kelly, M. et al., Modeling the risk for a new invasive forest ...,
Computers, Environment and Urban Systems (2007), doi:10.1016/j.compenvurbsys.2006.10.002




6 M. Kelly et al. | Comput., Environ. and Urban Systems xxx (2007) xxx—xxx

ary subsets based on critical thresholds in predictor variables. The split chosen is the one
that most reduces the average impurity in the resulting bins (Breiman, Friedman, Olshen,
& Stone, 1984; De’ath & Fabricius, 2000; Venables & Ripley, 2002). The resulting “trees”
are often displayed graphically, and are easy to understand as a series of if/then condi-
tions, but they can be complex to render cartographically (Mufoz & Felicisimo, 2004).

Vayssieres, Plant, and Allen-Diaz (2000) compared CART to generalize linear models
for predicting the distribution of three major oak species in California. They found the
CART models performed significantly better than the regression models, and noted the
suitability of the “trees” to deal with complex environmental data which involves interac-
tions and non-linearities. Fabricius and De’ath (2001) also comment on this: they used
CART to examine the relationship between a kind of marine algae and visibility, slope
and sediment exposure on coral reefs. Kelly and Meentemeyer (2002) used CART to
reveal landscape-scale environmental controls distribution and spread of Sudden Oak
Death mortality in a park in California facing epidemic levels of the disease. The method
was able to use data from numerous formats, and revealed important interactions between
environmental variables in defining the niche for the disease.

The fourth method evaluated, Genetic Algorithm (GA) modeling, is a an evolutionary
computing system that has documented capabilities for delineating ecological niches and
geographical distributions of species (Anderson, Lew, & Peterson, 2003; Raxworthy et al.,
2003; Stockwell & Peters, 1999a, 1999b; Stockwell, 1999). The method use genetic algo-
rithms to predict the potential distribution of a species by generating a set of rules. First,
occurrence points are divided evenly into training and test data sets, and initial rules
describing niches are developed by choosing a method from a set of possibilities. For
example in the software we used (Desktop GARP (Genetic Algorithm for Rule-set Pro-
duction) (Stockwell, 2006)) there are four types of rules implemented: atomic, logistic
regression, bioclimatic envelope, and negated bioclimatic envelope rules. The atomic rule
uses a single value of a variable (e.g., if max temp = 32 °C); the logistic regression uses lin-
ear logit equations; the bioclimatic rule encloses the range of the variables in a climate
“envelope” (e.g., if the max temp is >25° and <32°); negated bioclimatic rules are similar
to the bioclimatic rules, but they also allow negation (i.e. the rule applies outside of the
range indicated) (Stockwell, 2006). We used all the rules in the GARP process, which will
select the best fit rules for the model. Predictive accuracy of the model is then evaluated
using test data. Rules “evolve” through an iterative process in which operational concepts
similar to evolutionary biology (such as mutation and crossover) are employed; these
might consist of random perturbations to rule structure, or additional rules may be pro-
duced. The change in predictive accuracy of a rule from one iteration to the next is used
to evaluate whether a particular rule should be incorporated into the model, and the algo-
rithm runs until convergence. As such, the GA method represents a superset of other
approaches, and has several advantages: it is less susceptible to local maxima, it is able
to handle various data formats (continuous and discrete), and should always have greater
predictive ability than any one of the possible algorithms (logistic regression or bioclimatic
rules) when used alone (Godown & Peterson, 2000).

GA models have been used in the exploration of potential niches for species of concern
using voucher museum data (Graham et al., 2004), and other occurrence data. For exam-
ple, Raxworthy et al. (2003) report significant ability to predict chameleon distribution in
Madagascar using museum occurrence data and numerous land cover and climate data
layers as inputs to a GA model. Illoldi-Rangel et al. (2004) used GA modeling to predict
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potential geographic distribution for 17 mammal species in Mexico, using museum occur-
rence data and climate, vegetation and topography. Foci of richness of endangered bird
species in the US were successfully modeled using a GA method with Breeding Bird Survey
data (Godown & Peterson, 2000), aiding avian protection efforts. The method has also
been successful in predicting potential niche of diseases or disease vectors from regional
monitoring data (Costa et al., 2002).

Finally, Support Vector Machines are a new generation of learning algorithms that can
perform binary classification (pattern recognition) and real valued function approximation
(regression estimation) tasks. SVM have been developed on a solid base of statistical learn-
ing theory and are designed especially to provide high flexibility for approximating class
boundaries while avoiding over-fitting phenomena (Guo et al., 2005). Functionally,
SVM seek to find an optimal hyperplane with the maximal margin separating presence
and absence training point classes (this is called a “two-class™ case), or a series of hyper-
planes around presence training points (this is called a “one-class™ case) in multidimen-
sional space (Cristianini & Scholkopf, 2002; Huang, Davis, & Townshend, 2002). These
multidimensional classes are then used to map a niche across a landscape. SVM are able
to handle non-linear and categorical data, they make no assumption about the probability
density of the data, and are competitive with the best available machine learning algo-
rithms in classifying high-dimensional datasets. SVMs are new tools, and as yet not com-
monly used in ecological niche modeling; one example is Guo et al. (2005), who used one-
and two-class SVM to model SOD risk in California, and the authors comment on the util-
ity of one-class SVMs in cases where presence-only data is available.

These models differ in numerous ways (characteristics for these five models are summa-
rized in Table 1), but all can be used in a spatial framework, using geographically refer-
enced data “layers” as explanatory inputs. For example, with the exception of the Rule-
based model, the models are inferential, but some are parametric and some are non-para-
metric. All inferential models with the exception of one-class SVM require presence and
absence data to train the model, the SVM provides a means to generate an environmental
niche based on presence data alone (called a ““one-class” case). The outputs also differ: the
Rule-based model produces a ranked mapped output that can change depending on how
input values are weighted and combined; the LR model is deterministic and produces one

Table 1

Characteristics of the five classes of models used

Model name Absence data required?  Parametric/non- Important variable Output

parametric selection
Rule-based No Non-parametric a priori Ranked
Logistic Yes (semi-) Parametric Through training Probability
Regression

CART* Yes Non-parametric Through training P/A based on #
runs

GA® Yes Both Through training P/A based on #
runs

SVM* No (one-class) Yes Non-parametric Through training P/A based on #

(two-class) runs

# Classification and Regression Tree.
° Genetic Algorithm.
¢ Support Vector Machines.
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map of probability; and the CART, GA and SVM produce binary presence/absence maps
that can be combined after multiple runs.

2. Methods

We developed five spatial models using common nationwide spatial data. All spatial
data were maintained in Albers Conical Equal Area projection (NADS3, GRS80, meters,
Parallels: 29.5°N, 45.5°N, Central Meridian: 96°W, Origin: 23°N). All explanatory vari-
ables were maintained in GRID format, the training data was originally a point shapefile,
and transformed to either x, y locations or a binary grid for use in models. SVM, CART
and LR required this data in x, y format and GARP required it in gridded format; the
Rule-based model did not require training data.

2.1. Database development

2.1.1. Explanatory ecological variables

Physical data. Physical variables included topography and climate: we used Digital Ele-
vation Model (DEM) and DAYMET weather and climatologically modeled raster sur-
faces gridded at 1 km to summarize physical conditions for the pathogen. DAYMET is
an assortment of climate raster surfaces interpolated from ground-based meteorological
stations (interpolation considers station density, elevation, daylight, and incident solar
radiation) on a daily basis over an 18 year period (1980-1997) yielding 1-km resolution
data (Thornton, Running, & White, 1997). Data were downloaded (http://www.day-
met.org/) as grids of 18-year means or as monthly means over the 18-year period. The pri-
mary climate surfaces utilized in this modeling project included total annual precipitation,
total annual frost days, average minimum temperature, average maximum temperature
and average maximum august temperature. Numerous other variables were evaluated
early in the project, and discarded. Topography was derived from GTOPO30, a global dig-
ital elevation model (DEM) with a horizontal grid spacing of 30 arcsec (approx. 1 km)
that was derived from multiple raster and vector sources. The United States portion
was derived from USGS DEM data United States Geological Survey National Elevation
Dataset (U.S.G.S., 1999b). BIL data were downloaded (http://edc.usgs.gov/products/ele-
vation/gtopo30/gtopo30.html) and imported into Arc/Info GRIDs using ArcTools (ESRI,
2004), and mosiacked to create a seamless 1-km resolution dataset.

Hostlvegetation data. We had a considerable challenge finding a detailed vegetation
map for the conterminous US with sufficient floristic and spatial detail to allow modeling.
We explored the utility of four datasets: (1) National Land Cover Data (NLCD), (2)
USGS digital tree range maps, (3) FIA Percent basal area estimates, and (4) EPA Ecore-
gion Level 3 data, and ended up using the NLCD and FIA data to refine the modeled
results, and the EPA Level 3 Ecoregion data to ensure that the areas of high risk had a
strong ecological rationale. The USGS digital tree range maps were not used.

The first among these was the National Land Cover Data (NLCD) dataset, a 21-cate-
gory classification derived primarily from Landsat Thematic Mapper (TM) imagery from
1992 (Vogelmann, Sohl, & Howard, 1998; Vogelmann, Sohl, Campbell, & Shaw, 1998;
Vogelmann et al., 2001). The NLCD classification supplies high spatial resolution (30-
m) but poor floristic detail, with only three general vegetation categories relevant to our
project: deciduous forest (areas dominated by trees where 75% or more of the tree species
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shed foliage simultaneously in response to seasonal change), evergreen forest (arecas dom-
inated by trees where 75% or more of the tree species maintain their leaves all year) and
mixed forest (areas dominated by trees where neither deciduous nor evergreen species rep-
resent more than 75% of the cover present). Each conterminous state’s NLCD image was
downloaded (http://landcover.usgs.gov/natllandcover.asp) and converted into an Arc/
Info GRID. Hosts for P. ramorum exist in all of the three forest categories, but we decided
to enhance the hardwood forests, and created a 1-km gridded vegetation dataset depicting
“hardwood density”” based on the percent of deciduous and mixed forest 30-m cells found
within each resampled 1-km cell.

The second dataset we investigated was the digital tree range maps for North America
created by the USGS for a vegetation climate modeling study (U.S.G.S., 1999a), which
provided more floristic detail, but was coarse in spatial detail. This product was based
upon a series of tree range maps assembled by Elbert L. Little, Jr. in the 1970s as the
“Atlas of the United States Trees” (Little, 1971, 1976, 1977; U.S.G.S., 1999a), and digi-
tized by the USGS. Of the 58 digital oak species maps created by USGS (http://clim-
change.cr.usgs.gov/data/atlas/little/), we determined that 34 were potentially susceptible
to SOD. Digital versions of these 34 oak species maps were then combined with digital
maps of 12 other tree range maps of species found to either be directly susceptible to
the pathogen or to be related (i.e., in the same taxonomic Genus as a susceptible species).
The 46 tree range maps were then combined to form a “hardwood diversity index’” map by
summing the number of susceptible species per pixel. It should be emphasized that the
hardwood diversity index as calculated for this study was limited to a portion of the tree
range maps made available by the USGS, and contains only a minimal number of shrub or
understory species. It is only intended to represent areas within the US that potentially
contain high numbers of susceptible SOD host species (both foliar and terminal hosts)
with the recognition that there are many more species not included.

The third vegetation layer examined was provided by the USFS Northeastern Research
Station (Gottschalk et al., 2002). In this product, Forest Inventory and Analysis (FIA)
plot data for the eastern US were used to calculate the percentage of forest basal area com-
posed of the red and live oak groups, and these points were kriged to create a continuous
raster surface for the eastern United States. Percent basal area estimates were adjusted for
forest density using the NLCD dataset.

Finally, we also used Environmental Protection Agency Ecoregion Level 3 data (ECO-
MAP, 1993; Omernik, 1987, 1995) as a post-model “screen” to evaluate the ecological
rationale for model results. Ecoregions are defined to be areas within which geology, phys-
iography, vegetation, climate, soils, land use, wildlife, and hydrology are similar. Ecore-
gion Level 3 descriptions include information on climatic regime, topography and
predominant vegetation alliances, with information on dominant species. A shapefile con-
taining the Level 3 Ecoregions for the conterminous US was downloaded (http://www.
epa.gov/), brought into the ArcMap GIS and overlayed on the model results.

All raster layers (climactic variables, host data, and topographic data) were resampled
to 1-km resolution and clipped with a detailed US boundary vector layer in which coastal
islands were removed.

2.1.2. Presencelabsence data
Four of the five models (GA, LR, CART and SVM) required both presence and
absence data for model training (we ran a two-class SVM model). The use of P. ramorum
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presence data is straightforward. In California, presence of P. ramorum is determined by
either the California Department of Food and Agriculture or University of California at
Davis using identical isolation techniques. The protocol involves growing mycelia of Phy-
tophthora species from sampled leaf tissue, and identification of P. ramorum based on mor-
phological characteristics (Davidson, Werres, Garbelotto, Hansen, & Rizzo, 2003).
Samples are collected in the field, and in most cases, Global Positioning Systems (GPS)
locations are recorded on a Pest Record Form indicating location of the sample. The com-
plete dataset of P. ramorum occurrences is maintained by the University of California at
Berkeley OakMapper project (Kelly, Tuxen, & Kearns, 2004). Four hundred and eighty
seven confirmed SOD locations were obtained from this database. Of these points, many
were redundant in that the field personnel recorded one GPS point for an entire forest
stand. These redundant points were removed from the dataset, leaving 266 points. To
avoid pseudo-replication, we retained only one point per 1 km? area (the modeling reso-
lution), leaving 169 points for the predictive models. This point shapefile was converted
to a binary grid (for modeling with GARP), or used to generate a table of presence and
absence locations with corresponding climactic variables (for modeling with SVM, CART
and LR). Since the prediction was taking place across the United States and we had a lim-
ited number of points, a subset of the presence points was not removed for testing the
accuracy of the models.

We chose not to use absence data from the field collections for three reasons. First, cor-
rect isolation of P. ramorum can depend on sampling technique and timing (Davidson
et al., 2003), and the process can yield false negatives. Second, the pathogen is an invasive
one; there are areas that had been sampled and negative for the pathogen in the past that
are now infested. Consequently, absence data are often unreliable or meaningless for mod-
eling invasive species (Hirzel, Hausser, Chessel, & Perrin, 2002; Hirzel, Helfer, & Metral,
2001). Finally, the disease appears to be patchy across a landscape due to landscape het-
erogeneity and possible plant resistance (Kelly & Meentemeyer, 2002; Rizzo, 2003), thus
accurate negative sample can be taken from an infested site. Given these considerations,
we generated ‘pseudo-absence’ data for the models in the following manner. We created
a zone of infestation within California consisting of the infested counties, and their border
counties. We then generated random ‘““pseudo-absence points™ (n = 169) from locations in
California outside this zone using a random point generator written in Visual Basic Appli-
cation for ArcGIS (Fig. 2). These pseudo-absence points were generated 100 times for 100
different model runs. These pseudo-absence points were then used for LR, SVM, and
CART. Desktop GARP, which we used for GA model, has a built-in function to generate
pseudo-absence points. The slight differences in generating pseudo-absence points between
GARP and other models (LR, SVM, CART) may attribute to some of the prediction dif-
ferences described in later section.

2.2. Model development

We first developed our nationwide Rule-based model using similar input data to those
used in the California model (Meentemeyer et al., 2004) for the conterminous United
States. Climate variables for six winter months were parameterized and placed into
weighted classes in accordance with the methods of Meentemeyer et al. (2004). Two differ-
ent coarse-resolution vegetation maps (hardwood diversity and hardwood density) were
used as a surrogate for the detailed vegetation map used in the California modeling case.
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O  Confirmed locations of
P. ramorum

© Random pseudo-
absence locations
Hosts for P. ramorum
in California
Counties describing
SOD presence

Fig. 2. Location of Phytophthora ramorum occurrences and pseudo-absence locations used in the modeling.

It became clear at this stage that the topographic data and the vegetation information
would not be useful as direct model inputs in the subsequent modeling exercises. Topog-
raphy did not appear to be a strong control on disease at larger scales; as Rizzo and Gar-
belotto (2003) point out, the disease exists in niches from sea level to 800 m, and slope and
aspect appeared insignificant at the national scale. Also, detailed vegetation maps are not
available for every state, and the coarseness of our nationwide data, either in spatial or
floristic terms was problematic. We thus considered climatic niches to be the dominant
controller for P. ramorum establishment, and interpreted the results according to logical
associations of vegetation.

Our CART model utilized Splus v. 6.2 for Windows. We generated 100 classification
“trees” using 100 unique pseudo-absence point distributions and the 169 SOD presence
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points. Each “tree” was pruned to its appropriate size by examining a plot of deviance and
tree complexity (Feldesman, 2002), and the resulting tree models were implemented in
ArcInfo using Arc Macro Language (AMLs) as 100 binary “presence’ or “absence”
maps. These were summed to produce a 0-100 scored presence map. We then developed
a LR equation using Splus v. 6.2 © for Windows © and mapped the probabilities (0—
100%) in ArcInfo. Desktop GARP (Stockwell, 2006; Stockwell & Peters, 1999b) software
was used for the application of the GA model. 100 model runs were performed (the model
generates its own ‘‘pseudo-absence’ points for each run). Finally, we developed SVM
models using Matlab© and LIBSVM software (Chuang & Lin, 2001). Cross-validation
was used for each of the 100 runs to optimize parameter selection.

The initial model inputs (with the exception of the Rule-based model) were limited to
climate variables, since we had decided the topographic data provided no discriminating
information with respect to the environmental niche of P. ramorum at the continental
scale, and the host data was too floristically or spatially coarse to be of use. The four pre-
dictive models (excluding the Rule-based model) were run with a range of input predictor
variables including temperature, precipitation, humidity and radiation. Precipitation total,
frost days, average maximum temperature and average minimum temperature were deter-
mined to be the most important variables in predicting the niche for P. ramorum.

2.2.1. Risk weightings

All model results were normalized for visual display purposes using the following tech-
nique. The mean value was calculated and then boundaries were set for plus or minus two
standard deviations. Any values above or below were reclassed to the minimum or max-
imum of the 95th percentile. This grid was then rescaled from 0 to 100, and classed into
five classes of risk: 0-20% low, 20-40% medium low, 40-70% medium, 70-90% medium
high, and 90-100% high.

2.3. Accuracy assessment

A simple metric of model accuracy was assessed using the original 169 training points.
A point intersect tool was used with each model grid, and the percentage of points falling
into each of the five risk classes (high, moderately high, medium, moderately low, and low)
was calculated. Accuracy of the models outside of CA and OR could not be attempted, as
there are no positive cases in the US of P. ramorum outside of the west coast of the US.

2.4. Model combination and filtering

We combined the results from the five models together to create a final map based on
model agreement. First, we added together the five (un-classed) model results per pixel,
giving each of the five models equal weighting. We then used the same rescaling method
as described above. Second, in an effort to eliminate areas of non-hardwood forest in
the final risk maps, we filtered the combined model results through the NLCD and FIA
red oak basal area vegetation maps by multiplying the map by each vegetation map
rescaled from 0 to 1. We also examined model results in relation to EPA Level 3 Ecoregion
data in order to ensure that the areas of high risk had a strong ecological rationale. We did
not include the USGS vegetation map in this exercise, as the spatial fidelity of the product
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seemed problematic. The representation of hardwood diversity in the southeast US may
not be accurate due to the relatively small number of tree ranges used.

3. Results

The results from each individual model are shown in Fig. 3. The Rule-based model
shows a high risk for SOD spread across the southeastern US from eastern Texas to Vir-
ginia including Florida, with risk declining to the north and west. The model also shows
moderately high risk in the coastal northwest, and risk in the northern foothills of the
Sierra Nevada Mountains in California. While this model is a copy of that provided by
the Meentemeyer et al. (2004) model, our different results in California are likely due to
qualitative differences in input data and spatial resolution. The LR results show a broadly
similar pattern to the Rule-based model, with less risk on the west coast, and less overall
risk in the southeast: the model constrains the highest risk to the southern states of Lou-
isiana, Alabama, and Mississippi with risk declining in a northerly and easterly direction

Risk for SOD
B High
]

|:| Medium
[]

- Low

Fig. 3. Risk for Sudden Oak Death in the conterminous United States from five spatially referenced models: (a)
Rule-based, (b) Logistic Regression, (c) Classification Tree, (d) Genetic Algorithm, and (e) Support Vector
Machine.
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from there. The LR formula determined that precipitation total, average minimum tem-
perature and average maximum temperature were important in risk prediction. CART
and GA results are similar, with a band of highest risk occurring throughout the middle
southeast, from Oklahoma in the west to Virginia and North Carolina in the east. Both
models found precipitation total, frost days, and average maximum temperature to be
the most important predictors. The SVM result captures some of the patterning from
all the other models, with risk in a west—east band across the southeast (as with the CART
and GA models), and with some moderate risk for the disease in the southern states (as
with the Rule-based and LR models). The SVM algorithm predicted risk as a result of pre-
cipitation total, frost days and average maximum temperature.

The combined model output (with each model given equal weight) show that the mod-
els agree on an area of high-risk for SOD in roughly 500,000 km? of the conterminous
United States (Fig. 4). All models predict risk for the disease in coastal California and
in the northern foothills of the Sierra Nevada mountains in California. Away from the
west coast, SOD risk appears in all models across an east—west oriented band including
the hardwood forests of Oklahoma, Arkansas, Tennessee, Kentucky, and in the northern
portions of Mississippi, Alabama, Georgia and South Carolina, parts of central North
Carolina, eastern Virginia, Delaware and Maryland.

We filtered the combined model with two vegetation datasets, and evaluated it with
EPA Ecoregion Level 3 data (Fig. 5). Use of the NLCD data constrains the overall risk
somewhat, with higher risk areas remaining in hardwood forests in Arkansas, Tennessee,
southern Kentucky and northern Alabama. A more limited map of potential risk is
depicted when the final combined model is filtered with the FIA data red oak basal area
map; higher risk clusters are scattered across the southeast, with the largest clusters found
in southern Missouri and northern Arkansas in the Ozark Mountains. Interpretation of
the final map with the EPA Ecoregion Level 3 data is more useful. The high-risk area
includes portions of several ecoregions, including the Piedmont ecoregion of North Car-
olina, South Carolina, Georgia, Alabama and Mississippi, a transitional area between
the mostly mountainous ecoregions of the Appalachians to the northwest and the rela-

: 2% based on model agreement
[ High
|
|: Medium
[ ]
- Low

Fig. 4. Risk for Sudden Oak Death in the conterminous United States based on agreement between five spatially
referenced models.
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Fig. 5. Southeastern US, showing the climatic niche results constrained by vegetation data: (a) NLCD, (b) FIA
red oak basal area, and EPA Level 3 Ecoregions.

tively flat coastal plain to the southeast. Much of this region has reverted to successional
pine and hardwood woodlands, with an increasing conversion to an urban and suburban
land cover (ECOMAP, 1993; Omernik, 1987, 1995). There is also predicted risk for SOD
in hardwood forests of the Southwestern Appalachians in Tennessee, and in the primarily
oak-hickory forests of the Interior Plateau in Kentucky and Tennessee. Eastern Okla-
homa and central Arkansas shows high risk, in the oak—hickory—pine forests of the Ouach-
ita Mountains, and in the red oak, white oak, and hickory dominated forests of the Boston
Mountains, and in the predominantly oak forests of the Southern Ozarks (ECOMAP,
1993; Omernik, 1987, 1995). Coastal Maryland and Delaware, part of the Middle Atlantic
Coastal Plain are climactically susceptible, and have forests at risk in riparian areas.

We cannot assess accuracy for the models in areas outside of California and southern
Oregon with field data (as there are no positive cases of P. ramorum outside of CA and
OR), and accuracy of the models varied widely within that area (Table 2). The most accu-
rate model (defined as the number of positive samples falling into the highest risk area)
was the SVM model, with 98.8% of sample points falling into the highest risk area in Cal-
ifornia and southern Oregon. The other newer modeling tools also performed well (CART
and GA had 96% and 95% respectively of confirmed occurrences of P. ramorum in high
risk areas). The Rule-based model had poorer results, with no positive P. ramorum sam-
ples falling in the modeled high-risk area; most points (61.5%) fell in the moderately high
risk areas on the west coast. The LR was the poorest performer overall; only 5% of posi-
tive P. ramorum occurrences were mapped on high risk areas, 26.3% of points fell into the
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Table 2
Accuracy assessment of all models, using 169 presence points from California and Oregon: number represents
percentage of training points found in each risk class

Model type
Risk level Rule-based LR CART GA SVM Combination model
High 0 5.5 96 95 98.8 89.3
61.5 20.8 0.5 2 0 8.9
Medium 38.5 46.3 1.8 2 0 1.8
0 249 0.5 1 0 0
Low 0 2.5 1.2 0 1.2 0

moderately high area, and well over half of positive P. ramorum occurrence points fell in
the medium-risk and lower-risk categories. The final combination model had a high over-
all accuracy (89.3% of locations of confirmed presence of P. ramorum were found in mod-
eled high risk areas, and 98.2% of points were found in both high and moderately high risk
areas), but was slightly poorer than the GA, CART and SVM models.

4. Discussion and conclusions

The difference in model results can be explained by a number of factors. First, we have a
geographically constrained training sample, and are modeling across a large geographic
scope. With such a small training sample (as is the case with a new biotic invasion), var-
iance is large, and we would expect the models have different results. Second, there are
general trends in the models that can be examined in addition. The results are easily split
into three broad patterns: (1) the Rule-based and LR models, which tended to predict lar-
ger distributions of risk (across the southern states of the United States east of the Missis-
sippi River with risk declining northwards) and had lower overall accuracies, (2) the GA
and CART models, which predicted a tighter geographic band of risk (running from the
Ozarks east along the Appalachian foothills) with higher accuracies; and (3) the SVM
model, which had patterns from both other sets (displaying the tight band of west—east
risk through the mid southeast similar to the GA and CART models, and also predicting
more risk through the southeast coastal plain, similar to the rule-based and LR models)
and the highest accuracy overall. Model mechanics, and in particular, how each model
deals with overfitting given a small sample size, explain much of these differences.

Each of the five models we examined deals with overfitting differently, but each of the
three machine learning models (GA, CART and SVM) have explicit tools for minimizing
overfitting. For example, CART avoids overfitting by pruning the ‘“trees” so that the
“tree” structure is not overly large and complex. GA avoids overfitting by implementing
a cross-validation approach, in which the whole dataset is divided into training and testing
data. SVM minimizes classification errors and at the same time, constrains the model com-
plexity to avoid overfitting. In contrast, the LR model is less useful as it attempt to min-
imize empirical errors based on training data from a small area (e.g., California) without
considering overall model generalization (across the US), and likely under-fits the data.
The Rule-based model is a special case; it does not technically “fit” a model as it is not
inferential and so has no mechanism to avoid overfitting, but it could be described as
developing a model from expert knowledge. Indeed, our accuracy assessment suggests that
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the Rule-based model and LR model did not capture the complexity of data because of
their simpler rule structure or parametric function form whereas the GA, CART, and
SVM models were able to derive more structure from the small training sample.

The SVM model deserves more discussion. It was the most accurate model and it cap-
tured some of the results from all models, demonstrating capacity without overfitting. The
model is also known to generalize unseen data well, which is exactly the case early in a
biotic invasion. In light of these reasons, we suggest that SVM is a robust, accurate and
easily implemented choice for modeling the potential niche of a biotic invasion when mul-
tiple model comparisons are not possible.

Despite their differences, these kinds of predictive environmental niche model results
are useful for the management of Sudden Oak Death in several ways. The results can
be used to raise concern about the potential for SOD establishment and spread in the
southeastern US. There is clearly a large area potentially at high-risk for the disease
(around 500,000 km?); given that the pathogen can be dispersed via wind-driven rain
and that there have been past shipments of possibly infected stock to nurseries in the area,
we should be concerned about hurricanes and other storm events potentially moving the
pathogen. In addition, the risk maps can be combined with refined state vegetation data to
target monitoring efforts or overflights, as has been the case in California (Meentemeyer
et al., 2004). Many of the states in high-risk areas have floristically and spatially precise
spatial data that can be used in this way. Finally, the maps can also be used to target areas
for public outreach efforts. A considerable amount of early reconnaissance of the disease
in California was facilitated through public awareness of the disease, its symptoms, and its
potential dramatic effects (Carlsen, 2003; Kelly, 2001; Kelly & Tuxen, 2003).

There are other issues raised by this work that are common to other efforts modeling
invasive species dynamics. First, because there are no wildland cases of SOD outside of
California and Oregon, none of these models can be adequately assessed for accuracy.
This is unfortunate, but a common situation when modeling invasive species (Munoz &
Felicisimo, 2004). Three of our five initial models, and the two combination models fit well
in coastal California and Oregon, but that fact helps little in the areas of concern outside
of the west coast. Several of the models allow for some form of cross-fold validation tools
for assessing accuracy, but these tools can be problematic due to the small number of
training samples, and their concentrated distribution (Graham et al., 2004). A small num-
ber of spatially concentrated samples are typical in cases of invasive organisms in the
introductory phase.

Second, the generation of pseudo-absence data must also be examined. We do not have
reliable negatives for P. ramorum, so we used a common method for generation of pseudo-
absence data, constraining the pool of possible absence points to be taken from outside the
zone of infestation. The lack of scientific knowledge regarding the ecological and physio-
logical boundaries of the pathogen (outside of a laboratory environment), the unknown
probabilities of pathogen absence due to competition, lack of dispersal or lack of detec-
tion, and its long-distance dispersal potential (via ornamental species in nurseries) make
any delineation of presence/absence zones within potential host ranges a somewhat arbi-
trary process. Experiments with pseudo-absence data generated within the zone of infes-
tation resulted in models that over-predicted the risk of the disease. Clearly, the choice
of pseudo-absence data generation can have an influence on the end-product. Another
possible method of approaching this problem would be to use a model requiring only pres-
ence data, such as one-class Support Vector Machine (SVM) or Environmental Niche Fac-
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tor Analysis (ENFA); these models can be used to directly map an environmental niche
(Guo et al., 2005), or to create a predicted probability surface outside of which ‘pseudo’
absence points can be generated (Munoz & Felicisimo, 2004).

Third, while environmental niche models can capture similarities to potential niches
outside of a current distribution, one obvious problem with the fundamental assumptions
of this predictive model is that all presence and absence points are located within the eco-
logical and climatic confines of a select range of tree habitats in California, that might not
be adequately modeled. Factors such as coastal influences of the Pacific Ocean, weather
regimes of the west coast, orographic climatic impacts of the Coast Ranges and Sierra
Nevada Mountains, and the biogeography of hardwood and conifer distributions are pos-
sibly not adequately modeled using these input data, influencing predictions of SOD risk
elsewhere in the country.

Finally, the host data available for the entire United States was the largest limiting fac-
tor in our modeling exercise; all nationwide vegetation layers we used had significant
drawbacks. Climate, vegetation and topography are common inputs for these types of eco-
logical niche models (Parra et al., 2004), but different models have different levels of suc-
cess with various combinations. For example, Parra et al. (2004) had trouble using
remotely sensed vegetation indices as a proxy for vegetation cover, and relied more on cli-
matic variables for modeling bird habitat in the Andes. We faced (as do all others mod-
eling with vegetation data at this scale) a trade-off between spatial and floristic detail.
Specifically, the NLCD data was the most spatially comprehensive layer, with compete
coverage at a high spatial resolution; however, specific floristic detail was absent, and
the vegetation classes were much too broad to be of great use in the modeling exercise.
The USGS layer and the EPA Level 3 ecoregion layers have sufficient floristic detail,
but they are tremendously course in resolution. Finally, the FIA product only covered
the east coast area, and thus could not be used in the models that required training. A sim-
ilar west coast product is not currently available. Although the United States is a geospa-
tial-data-rich country, floristically detailed coverages that are consistent across the US are
needed to improve the quality of this work. The requirements of consistency and detail are
what limited our use of existing datasets. That said, detailed host data on a state-by-state
framework can be used in areas of high risk.

This work examined common ecological niches for P. ramorum, but an investigation of
the human component to disease establishment and spread should also be considered. The
locations of wholesale and retail nurseries to which infested stock has been sent is a nec-
essary future important component to this research. Although theoretical in nature, the
results of this paper have practical, applied value for managers and regulators of this
disease.
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