Livestock and Deforestation
Central America in the 1980s and 1990s: A Policy Perspective

David Kaimowitz

CIFOR Special Publication
Livestock and Deforestation
Central America in the 1980s and 1990s: A Policy Perspective

David Kaimowitz
ABSTRACT

This study analyses seven factors used to explain the conversion of forest to pasture in Central America between 1979 and 1994: 1) favourable markets for livestock products; 2) subsidised credit and road construction; 3) land tenure policies; 4) limited technological change in livestock production; 5) policies which reduce timber values; 6) reduced levels of political violence; and 7) characteristics specific to cattle which make conversion attractive.

Deforestation rates in Central America declined in the 1980s, but remained high. After expanding rapidly, cattle population and pasture area have stagnated, although they continue to expand on the humid tropical frontier.

Strong markets for beef and dairy products stimulated livestock expansion and deforestation in the 1960s and 1970s. After that period, markets for livestock products became less favourable, which led to lower investment.

During the 1960s and 1970s large government subsidies for cattle raising encouraged forest conversion. Since then credit subsidies have been reduced, but subsidised public road construction continues, causing widespread deforestation. Land speculation is another reason why pasture expansion has continued in agricultural frontier areas.

There is little evidence that technological progress in livestock production reduces deforestation. Nor is it clear that removing policies which discriminate against forest production would have a major positive effect in this regard.

The author proposes: 1) restrictions on road construction and livestock credit in agricultural frontier areas; 2) increased enforcement of land-use restrictions in protected areas; 3) the expansion of land rights for indigenous peoples; 4) stronger restrictions on the titling of natural lands by large landholders; 5) pilot efforts to establish local land taxes with higher rates for pasture and crop lands than for forest; and 6) economic incentives for secondary forest regeneration and research on pasture degradation in Central America.
CONTENTS

1. Introduction .. 1

2. Forests, Cattle, Pastures and Crops ... 4
 Deforestation .. 5
 Costa Rica ... 9
 Guatemala ... 9
 Honduras ... 10
 Nicaragua ... 10
 Panama ... 10
 Cattle Population and Pasture .. 11
 Secondary Forest and Brush ... 14
 Changes in Land Use for Crops .. 17

3. The Different “Logics” of Livestock Production ... 19
 Traditional Medium and Large Ranchers ... 19
 “Investment” Ranchers ... 20
 Medium and Large Agricultural Frontier Ranchers 21
 Common Features of the Medium and Large Ranchers 22
 Small Farmers ... 23
 The Implications for Policy ... 24

4. The Role of Market Forces in the Cattle-Forest Relationship 25
 The Hamburger Connection .. 25
 The Domestic Demand for Beef ... 30
 Milk Imports and Exports and the Domestic Demand for Dairy Products 32
 The Implications for Policy ... 34
Introduction

The most important change in land use in tropical Latin America over the last thirty years has been the widespread conversion of forest to pasture. Between 1981 and 1990, the region lost 75 million hectares of forest, the majority of which became grass lands (FAO 1993).

In some cases these changes were justified. But in many others, the social costs of deforestation outweighed the benefits (Ledec 1992a). Large amounts of wood and non-timber forest products were wasted. Soil degradation and siltation increased. Valuable genetic resources were lost. Carbon dioxide released by burning forests contributed to global warming. Moreover, many of the new pastures can only sustain their nutritional value for cattle for a few years under current practices.

The benefits of any future deforestation will probably be even lower and the costs higher. The remaining forests tend to be on marginal lands with excessive rains and poor soils or steep slopes. Cattle raising or crop production in these areas generates low levels of income per hectare. At the same time, forests in very humid or mountainous areas are likely to have a high value for biodiversity conservation and watershed protection, and as the total area in forest declines the “existence value” which society places on forests may increase.

Deforestation is especially problematic in Central America because, unlike the Amazon, most remaining forest could disappear in the next few decades. Because of its role as a biological “bridge” between North and South America and its great diversity in climates, soils and altitudes, the region has one of the highest levels of biodiversity per square kilometre in the world (Reid and Miller 1989). Given the low levels of value added which could be generated by livestock and cropping on currently forested land (typically below $50 per hectare), environmental services
provided by forests do not have to be very high to outweigh the benefits of agricultural production on those lands.

Seven explanations of pasture expansion at the expense of forest can be found in the literature (Godoy and Brokaw 1994):

- Land tenure policies that promote deforestation to establish property rights (Jones 1990).
- Slow technological change in livestock management that favours extensive production systems (Serrão and Toledo 1992, 1993).
- Policies which depress timber values and make forest management unprofitable (Kishor and Constantino 1993, Stewart and Gibson 1994).
- Reduced violence, which has lowered the risk of ranching in isolated areas (Maldidier 1993).
- Characteristics of cattle such as their low labour and supervision requirements, transportability, limited risk, prestige value, limited use of purchased inputs, and biological and economic flexibility (Hecht 1992).

Some of these explanations also apply to forest clearing for crops, and indeed large areas have been deforested for crop expansion. Nevertheless, because of the specific advantages of cattle identified in the last explanation, landowners have often chosen to convert their land to pasture rather than crops.

Depending on which factors one believes to be more important, the prognosis and policy recommendations emerging from the analysis are different. This study uses the Central American experience during the last fifteen years to put forth some hypotheses about how each of the seven factors listed above has influenced the conversion of forest to pasture in that region, and about how effective policies designed to address these issues have been or are likely to be. Because of the diversity of situations within and between countries, Central America constitutes an excellent “policy laboratory” from which valuable insights can be drawn about these issues which may be relevant for other regions of tropical Latin America.
The Central American case is particularly interesting because the region has gone through both a cattle boom and a period of decline. This allows one to look not only at the processes which fuel cattle expansion and deforestation, but also to examine the extent to which these processes can operate in reverse. The analysis covers all of Central America, except El Salvador, which has little remaining natural forest and where changes in forest cover have been only marginally related to trends in the livestock sector in recent years.

The study concludes that falling beef and dairy prices are likely to only moderately reduce the extent of forest clearance for pasture and are likely to lower cattle population and pasture area in traditional cattle-grazing regions more than on the agricultural frontier. The promotion of technologies favouring livestock intensification and the elimination of policies which lower timber prices will probably not be very effective since their effect on deforestation comes through similar relative price shifts to those associated with changes in beef and dairy prices. Moreover, technological changes in livestock production in Central America are unlikely to significantly affect beef prices, which are largely determined on the international market, and lower timber prices can reduce pressure for timber removal from unmanaged forests. On the other hand, changes in road construction, land tenure and land-use policies have the potential to significantly encourage major reductions in forest clearance for pasture, although they are unlikely to eliminate it entirely. At present, livestock credit is not a major cause of forest clearing, but should be restricted in agricultural frontier regions with high rainfall. Incentives which promote the permanent conversion of abandoned pastures to secondary forests may also be effective, and may be more efficient and justifiable than subsidies for reforestation in situations where trees with commercial value are likely to rapidly grow back naturally. Additional research is required on pasture degradation so that some negative consequences of forest clearance, such as soil degradation, can be reduced in areas where deforestation has already occurred.

Deforestation rates in Central America as a whole in the late 1980s were lower than ten years earlier, but remained high and, in some cases, may once again be rising due to reduced violence, continued public support for road construction in forest regions, and the increasing political power of cattle ranchers.

The information for the study has come mostly from secondary sources. Given the great deficiencies of available statistics at the
national level, an effort was made to complement this information with evidence from local-level studies. Limited field work was also carried out by the author in September 1994, in Petén and Alta Verapaz, Guatemala, including interviews with forty-five ranchers and other key informants. In addition, the author has benefited from the preliminary findings of two masters students he is supervising at the National University (UNA) of Costa Rica, Rosario Ambrogio and Rosalba Ortiz, who recently interviewed 25 and 32 ranchers respectively about these issues in Boaco, Chontales, and Nueva Guinea in Nicaragua and in the San Carlos region of Costa Rica.

The study has nine sections. The first examines the trends in land use and cattle in Central America over the last fifteen years. These are, if you will, the dependent variables which need to be explained. The second part describes the major types of livestock ranches in Central America and their relative importance. This is followed by six sections which analyse the way factor identified above has affected the observed tendencies and the conclusions and policy recommendations.

Finally, it should be stressed that the study’s almost exclusive focus on the role of livestock in deforestation in Central America in no way implies that pasture expansion is the only cause of deforestation in the region. Currently available information is not comprehensive or accurate enough to determine the percentage of deforestation in the region that can be attributed to pasture expansion except to say that it is probably more than half. Undoubtedly, however, deforestation for expanding crop lands, timber removal (particularly in pine forests) and other purposes is also very important and may be caused by factors different from those causing pasture expansion. The fact that the paper only marginally touches on these issues reflects its limited scope, not that the other causes of deforestation are irrelevant.

FORESTS, CATTLE, PASTURES and CROPS

Any discussion of deforestation and livestock in Central America must acknowledge the serious limitations of the data on which the conclusions are based (Grainger 1993). Available statistics are often contradictory, use different definitions of forest cover and pasture, and vary widely in accuracy and timeliness. Reliable estimates of recent deforestation rates exist only for Costa Rica and the Petén, Guatemala (Lutz
et al. 1993, World Bank 1993, Mario Rodriguez, personal communication). Honduras and Panama are the only countries with recent census data on livestock. In the remaining countries the statistics on deforestation and pastures and cattle population are out of date and/or of questionable reliability. Nevertheless, a compelling argument regarding the general trends can still be pieced together.

A second caveat concerns the definition of deforestation. As used in this article, the term implies “more or less permanent removal of most of the natural tree cover from an area” (Ledec 1992b: 20). Lumber companies or cattle grazing under pines often seriously degrade forests without “deforesting” them, as the term is used in this study. Those processes are not analysed here. On the other hand, typically, when forests are cleared for pasture expansion small numbers of trees are left for shade or other purposes. Generally, however, so little tree cover remains in these areas that they could be considered “deforested” under the above definition.

An additional problem with deforestation statistics is that they rarely specify whether they refer to gross or net deforestation. It is unclear to what extent they reflect net changes in total forest cover (including new forest as well as forest losses) or only forest clearance. Until recently the difference between these two indicators was marginal, but it is now significant due to the growth of secondary forests and, in Costa Rica, reforested areas.

Livestock statistics are frequently biased upwards or downwards, depending on ranchers’ incentives to report ownership of more or less cattle, and this has undoubtedly affected the data presented below. When agrarian reform policies are in effect large ranchers tend to report having less land and fewer cattle. However, when higher cattle export quotas are allocated to ranchers with a larger herd size, as was often the case in Costa Rica during the 1970s and 1980s ranchers may claim to have more cattle than they really do (Edelman 1992).

Deforestation

It is clear from Table 1 that deforestation has been rapid during the entire period 1950 to 1986. The table provides information on forest area in each Central American country for selected years between 1950 and 1986 and two different estimates for 1990. The majority of deforested land has been transformed into pastures, either directly or after being used for crops, with most of the remainder being used for
annual crop production by small producers (Ledec 1992a; Nations 1992a; Walker et al. 1993) (See Maps 1 and 2).

Table 1. Forest area for selected years in Central America (excluding El Salvador) (millions of hectares).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>2.7</td>
<td>1.6 (1977)</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Guatemala</td>
<td>7.1</td>
<td>4.4 (1980)</td>
<td>3.7</td>
<td>4.2</td>
</tr>
<tr>
<td>Honduras</td>
<td>6.8*</td>
<td>5.1 (1986)</td>
<td>4.7**</td>
<td>4.6**</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>7.0</td>
<td>4.5 (1980)</td>
<td>4.1</td>
<td>6.0</td>
</tr>
<tr>
<td>Panama</td>
<td>5.2</td>
<td>3.9 (1974)</td>
<td>3.2</td>
<td>3.1</td>
</tr>
<tr>
<td>Total</td>
<td>29.0*</td>
<td>17.1</td>
<td>19.3</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
* A 1962 figure was used for Honduras since none was available for 1950.
** These figures are probably too low, as recent interpretations of 1989 satellite images found 5.7 million hectares of forest in Honduras (Silviagro 1994).

A sample of recent estimates of the deforestation rate for each country (Table 2) shows a total deforestation rate for the region of between 324,000 and 431,000 hectares per year. Nevertheless, most of them probably over-estimate deforestation during the period covered or are no longer applicable, since deforestation has declined since the original studies were made.
Map 1

FORESTED AREAS OF CENTRAL AMERICA
1940, 1964, 1990

1940

1964

1993

PUENTE
National Geographic, 1992

0 200 400 600
MILES

PUENTE:
Snider, C., 1984

0 100 200 300
MILES

PUENTE
U.C.H. 1993, World Conservation Monitoring Center

0 100 200 300
MILES
FORESTED AREAS OF CENTRAL AMERICA 1990

Table 2. Recent estimates of annual deforestation in Central America (excluding El Salvador) (thousands of hectares)*

<table>
<thead>
<tr>
<th>Nation</th>
<th>Grainger (76-80)</th>
<th>Nations & Komer (82)</th>
<th>WRI (81-85)</th>
<th>FAO (81-90)</th>
<th>Merlet (91)</th>
<th>Utting (90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Guatemala</td>
<td>na</td>
<td>60</td>
<td>90</td>
<td>81</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Honduras</td>
<td>53</td>
<td>70</td>
<td>90</td>
<td>112</td>
<td>108</td>
<td>80</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>97</td>
<td>100</td>
<td>121</td>
<td>124</td>
<td>125</td>
<td>70</td>
</tr>
<tr>
<td>Panama</td>
<td>31</td>
<td>50</td>
<td>36</td>
<td>64</td>
<td>41</td>
<td>34</td>
</tr>
<tr>
<td>Total</td>
<td>na</td>
<td>340</td>
<td>402</td>
<td>431</td>
<td>394</td>
<td>324</td>
</tr>
</tbody>
</table>

* The years in parenthesis are the years for which the figures supposedly apply. However, all the figures are based on studies carried out in the mid-1980s or earlier.

The most recent available evidence for deforestation in each country shows the following:

Costa Rica
Annual deforestation fell from between 40,000 and 60,000 hectares in the late 1970s and early 1980s to 18,000 hectares between 1987 and 1992, and more recently to only 8,500 hectares (Lutz et al. 1993; Nuñez 1993; World Bank 1993).

Guatemala
Thirty thousand hectares per year were deforested in Petén between 1976 and 1987, and 42,000 hectares of medium and dense forest were cleared annually between 1987 and 1993 (AHT-APESA 1992; Mario
Rodriguez, personal communication). Given that land clearance in Guatemala in this period was concentrated in the Peten, the deforestation rates in Table 2 are probably too high. Based on comparisons between recent estimates of total national forest coverage and estimates from the mid 1970s it appears that annual deforestation over the last twenty years has been between 50,000 and 60,000 hectares, rather than the 80,000 or 90,000 hectares mentioned in many studies (Cabrera 1992).

Honduras
Reliable estimates of forest coverage only exist for 1962 and 1989. Based on the difference in forest cover in these two years, net deforestation during the period averaged 53,000 hectares per year, a figure much lower than most recent estimates (Silviagro 1994).

Nicaragua
The figure of approximately 120,000 hectares of annual deforestation comes from a study conducted by the Nicaraguan government in 1986, using aerial photography to compare forest cover in that year with forest cover in 1972-1974 (personal communication Cesar Aviles 1994). Nevertheless, most experts agree that deforestation declined substantially in Nicaragua between 1983 and 1989, and then began to increase again with the end of the military conflict (Maldidier 1993).

Panama
Government statistics show that deforestation fell from 46,000 hectares per year between 1970 and 1980 to 35,000 hectares per year between 1980 and 1987 (IICA 1993b).

After reviewing the available evidence, this author estimates that total deforestation in Central America probably diminished from around 400,000 hectares per year in the late 1970s to some 300,000 hectares in 1990. This decline is no cause for comfort, however, since even at the current rate of deforestation Central America would lose all of its remaining forest in less than sixty years. Deforestation declined in Costa Rica, Nicaragua (during the 1980s) and Panama. On the other hand, it increased in Petén, Guatemala and Nicaragua (since 1990). Deforestation is currently concentrated in the Petén and the Northern Transversal Strip in Guatemala; Atlántida, Colón, Olancho and Gracias a Dios in Honduras; Zelaya, Jinotega, and Rio San Juan in
Nicaragua; and the provinces of Panama, Bocas del Toro, and Darien in Panama.

Cattle Population and Pasture

Between 1950 and 1978, the region’s cattle herd more than doubled, after which it stagnated and the region had fewer cattle in 1992 than fourteen years earlier. Table 3 shows the evolution of the cattle population in Central America since 1950. Cattle expansion in Honduras began later but continued into the nineties. Nicaragua lost much more of its cattle herd than any other country.

Table 3: Cattle population in Central America in 1950 1970 1978 and 1992 (excluding El Salvador) (million head)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>0.6</td>
<td>1.5</td>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Guatemala</td>
<td>1.0</td>
<td>1.5</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Honduras</td>
<td>0.9</td>
<td>1.2</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>1.1</td>
<td>2.2</td>
<td>2.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Panama</td>
<td>0.6</td>
<td>1.2</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Total</td>
<td>4.2</td>
<td>7.6</td>
<td>10.1</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Changes in national pasture areas followed closely the changes in cattle population (See Table 4). Although the figures show that pasture expanded in Costa Rica despite a decline in cattle population and fell
in Honduras despite a rise in livestock numbers, this may reflect statistical errors and lags rather than real trends. These national statistics, however, hide major differences between regions within each country. At the same time as pastures expanded in certain areas, they declined in others.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>0.6</td>
<td>1.3</td>
<td>1.7</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Guatemala</td>
<td>0.8</td>
<td>1.0</td>
<td>1.1</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Honduras</td>
<td>0.8</td>
<td>1.2</td>
<td>1.3</td>
<td>1.6</td>
<td>1.5*</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>0.8</td>
<td>2.3</td>
<td>3.4</td>
<td>4.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Panama</td>
<td>0.5</td>
<td>1.1</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td>3.5</td>
<td>6.9</td>
<td>8.8</td>
<td>10.5</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Pasture expansion in the last fifteen years has occurred in different regions and ecosystems than in the period between 1950 and 1979 (See Figure 1). During the earlier period, 60 per cent of pasture expansion occurred in tropical dry areas of the Pacific and central regions where fire could be easily used, with less than 2,000 mm of annual rainfall and/or more than three dry months (Toledo 1992). Since that time,
Figure 1. Geographical location of cattle expansion (1950-1993).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>Guanacaste</td>
<td>Alajuela</td>
<td>Alajuela</td>
</tr>
<tr>
<td></td>
<td>Nicoya</td>
<td>Guanacaste Perez Zeledon</td>
<td>Limón</td>
</tr>
<tr>
<td>Guatemala</td>
<td>Escuintla</td>
<td>Alta Verapaz</td>
<td>Petén</td>
</tr>
<tr>
<td></td>
<td>Jutiapa</td>
<td>Chiquimula</td>
<td>Izabal</td>
</tr>
<tr>
<td></td>
<td>Santa Rosa</td>
<td>Izabal</td>
<td>Quiche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Petén</td>
<td>Petén</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zacapa</td>
<td></td>
</tr>
<tr>
<td>Honduras</td>
<td>Copán, Cortes, El Paraíso, Olancho, Santa Barbara</td>
<td>Atlántida, Colon Choluteca, El Paraíso, Olancho, Yoro</td>
<td>Colón, El Paraíso, Olancho, Yoro</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>Matagalpa</td>
<td>Chontales</td>
<td>Jinotega</td>
</tr>
<tr>
<td></td>
<td>Nueva Segovia</td>
<td>Jinotega</td>
<td>Zelaya</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Matagalpa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nueva Guinea</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Río San Juan</td>
<td></td>
</tr>
<tr>
<td>Panama</td>
<td>Coclé</td>
<td>Panama</td>
<td>Panama</td>
</tr>
<tr>
<td></td>
<td>Chiriqui</td>
<td>Colon</td>
<td>Bocas del Toro</td>
</tr>
<tr>
<td></td>
<td>Herrera</td>
<td></td>
<td>Colon</td>
</tr>
<tr>
<td></td>
<td>Los Santos</td>
<td></td>
<td>Darien</td>
</tr>
<tr>
<td></td>
<td>Veraguas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

however, the expansion has moved eastward towards the Atlantic plains, which generally have fragile infertile soils and too much rain for annual crops (Merlet 1992). Pasture area in Petén, Guatemala has grown by over 200,000 hectares since 1979 (AHT-APESA 1992; Manuel Rodriguez, personal communication). In the humid tropics of Honduras it grew by at least 275,000 hectares over the last 20 years (SECPLAN 1994). Most of the 170,000 hectare growth in pastures in Panama between 1981 and 1991 was also in the humid frontier provinces (Gobeimo de Panama 1993).

At the same time, cattle population and pasture area in the traditional cattle-producing areas of the Pacific and interior has declined (See Figure 2). The very areas which were the centres of livestock expansion in the 1950s and 1960s, such as Guanacaste and Puntarenas in Costa Rica, the south coast of Guatemala, western Honduras and western Panama were the areas where the cattle population declined the most in the 1980s (See Map 3).

Secondary Forest and Brush

The decline in cattle populations has led to a major increase in abandoned lands, which have become brush, wooded areas and even secondary forest. This process is clearest in Nicaragua and Costa Rica, but is also occurring in other countries. Nicaragua now has some 1.1 million hectares of “scrub forest”, defined as “areas where there is a predominance of woody species lower than five meters, often combined with extensive livestock”, and an additional 900,000 hectares in “forest fallow”, defined as “woody vegetation that appears after the clearance of natural forests for migratory agriculture” (INTECFOR 1993). Most of the scrub forest is located in the drier, traditional cattle producing regions, whereas the forest fallow is concentrated in the more humid areas of eastern Nicaragua.

In Costa Rica, the area of secondary forest grew from 229,189 hectares in 1984 to 388,341 in 1989, with most of this growth coming from abandoned pastures (TSC/WRI 1991). Recently, the Tropical Science Center estimated the area under secondary forest to be 425,000 hectares (Nuñez 1993). These trends in the national statistics have been corroborated by two recent regional studies of land-use changes in Guacimo-Rio Jimenez-Siquirres in Limon and Arenal-Tempisque in Guanacaste, both of which show a decline in pasture area, greater presence of shrub vegetation within pastures, an
increase in secondary forest, and a growth in crop lands (Fallas and Morera 1993; Huising 1993). The area reforested in Costa Rica in forest plantations has also grown 76,465 hectares since 1990, from 35,114 hectares to 111,579 hectares (MIRENEM 1994).

Figure 2: Geographical location of cattle retraction and stagnation (1980-1993)

<table>
<thead>
<tr>
<th>Retraction</th>
<th>Stagnation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica*</td>
<td>Nicoya, Guanacaste, Central Pacific, Western Limon</td>
</tr>
<tr>
<td>Guatemala</td>
<td>Escuintla</td>
</tr>
<tr>
<td>Honduras</td>
<td>Choluteca, Cortes, Santa Barbara</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>Entire country until 1989</td>
</tr>
<tr>
<td>Panama</td>
<td>Chiriqui, Veraguas Los Santos</td>
</tr>
</tbody>
</table>

* The information for Costa Rica, except for western Limón, was taken from the 1984 agricultural census, and hence only reflects stagnation and decline in the first half of the 1980s.
LIVESTOCK GRAZING PROVINCES AND DEPARTMENTS OF CENTRAL AMERICA AND OTHER PROVINCES WITH AGRICULTURAL FRONTIER AREAS, 1994

Countries and departments that no longer have Agricultural Frontier:

- Atlantic and Costa Rica provinces where livestock grazing is no longer the main activity.

Map 3

Symbols:
- Provinces and departments that have a Historical Agricultural Frontier.
- Provinces and departments that still have an Agricultural Frontier.
- Provinces and departments that no longer have an Agricultural Frontier.
The recent 1993 Honduran Agricultural Census found that fallow lands and secondary forest had increased by 110,000 hectares since 1974 (SECPLAN 1994). Similarly, satellite images from the Petén in Guatemala show that there were 111,000 hectares more of “abandoned crop lands” in 1993 then in 1987 (Mario Rodriguez, personal communication). By 1991, Guatemala had some 360,000 hectares of secondary forest (Cabrera 1992).

Another indicator of the growth of abandoned lands is the increase in the category of “other land uses” registered in the FAO land-use statistics (See Table 5). According to FAO (1992), this type of land use grew from 9.1 million hectares in 1976 to 12.1 million hectares in 1991.

Table 5. Area in “Other Land Use” in Central America in 1976 and 1991 (excluding El Salvador) (million hectares)

<table>
<thead>
<tr>
<th></th>
<th>1976</th>
<th>1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Guatemala</td>
<td>3.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Honduras</td>
<td>2.8</td>
<td>3.6</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>1.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Panama</td>
<td>1.5</td>
<td>2.1</td>
</tr>
<tr>
<td>Total</td>
<td>9.1</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Changes in Land Use for Crops

To complete the analysis of land-use trends in Central America, it is worth mentioning that the area under annual and perennial crops has remained almost constant. FAO statistics show the same area of crops in 1991 as in 1978 (FAO 1979, 1992). There were slight increases in Guatemala and Panama, but these were compensated for by a small decrease in Nicaragua (See Table 6).
Table 6. Area in annual and perennial crops in Central America in 1978 and 1991 (excluding El Salvador) (millions of hectares)

<table>
<thead>
<tr>
<th></th>
<th>1978</th>
<th>1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Guatemala</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>Honduras</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Panama</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Total</td>
<td>6.2</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Just as in the case of livestock, however, the stagnation of crop lands is actually the product of two conflicting processes which tend to offset each other. Growth has continued in the area of crop lands at the agricultural frontier, particularly in Petén, Guatemala and eastern Honduras and Nicaragua. In these areas there has been a substantial increase in maize production in particular. The area of coffee in Honduras also grew 75,000 hectares between 1979 and 1987, and much of this growth may have come at the expense of forest (Baumeister 1994). At the same time the area planted to cotton in the Pacific regions declined by 440,000 hectares between 1977 and 1992, and a large portion of these former cotton lands were abandoned or converted to pasture, rather than other crops (Gil 1993).

Significant shifts back and forth have taken place between crop land and pasture, but these are impossible to quantify with the available information. In many areas maize is grown after an area is deforested and before pasture is planted, either because large landholders give small farmers access to land to plant annual crops in return for clearing it and later planting pasture, or because small farmers sell the land they have been planting with annual crops on to large farmers who then convert it to pasture. On the other hand, thousands of hectares formerly under pasture in Costa Rica are now being used for
producing oranges, rice, sugar cane and other crops, and there may be similar cases in the other countries (Edelman 1992).

THE DIFFERENT “LOGICS” OF LIVESTOCK PRODUCTION

The Central American livestock sector has distinct types of producers, who respond differently to changes in policy, markets and technology. The relative weight of these producer types varies by region and country, and this is one major reason why these regions react differently to similar contextual changes.

For purposes of this study, four major types of livestock producers have been identified: 1) “traditional” medium and large ranchers; 2) “investment” ranchers without historical ties to cattle ranching; 3) medium and large ranchers on the agricultural frontier; and 4) small farmers with a few cattle. This section characterises these producer types and provides information regarding their relative importance in each country and region.

"TRADITIONAL" Medium and Large Ranchers

These are cattle ranchers whose families have been in the business since before 1950, and often since the colonial period. Although some of their land has been purchased during recent decades, much of it is inherited or was obtained at minimal cost by making claims on public lands and hence, while it has opportunity costs, does not represent a cash outlay for cattle production. As a result, these ranchers may base their decisions more on the short-term cash flows offered by livestock than on full-cost calculations of profitability.

The traditional cattle families can be found throughout the dry and semi-humid areas of Central America, but they are especially associated with towns such as Cañas and Liberia in Costa Rica, Escuintla and Retalhuleu in Guatemala, Catacamas, Choluteca, Comayagua, Danlí and Quimistán in Honduras, Grenada, Juigalpa, Rivas and Matagalpa in Nicaragua, and David, Santiago and Sona in Panama. Some live in their countries’ capital cities, but many continue to live in these provincial towns.

Most of these families have investments apart from cattle. What separates them from the group which follows, however, is their
traditional association with livestock and the fact that they inherited important portions of their land and cattle. These ranchers may also have a “cattle culture”, in which livestock and land has substantial prestige value above and beyond their immediate economic worth (Heckadon 1984; Graciela 1989; Ledec 1992b; Thrupp 1980).

Some of these families have ranches in more humid areas near the agricultural frontier. Those ranches, however, tend to play a secondary role in their cattle operations and are used mostly to feed cattle during the dry season.

“INVESTMENT” Ranchers

After 1950, capitalist entrepreneurs, both domestic and foreign, began to view cattle ranching and meat packing as an attractive sector for investment. They were enticed by the potential profits in steer fattening, beef processing and exporting, rising land values and government land grants, the availability of subsidised credit, limited supervision requirements of cattle operations and, in some cases, interesting tax breaks. Most of these investors had little, if any, experience in cattle production, and few lived on the ranches they owned. Some went into business on their own; others sought out joint ventures with established cattle ranchers (Edelman 1992). Many of those involved in this type of investment were wealthy businessmen and large companies. Others were simply well-off professionals, government officials, and merchants, who saw cattle ranching as a good area to invest their savings (Kaimowitz 1995).

The regions associated with this type of investment include: Guanacaste and, more recently, northern Alajuela in Costa Rica, the North Coast of Honduras, Izabal and Petén in Guatemala, and Chiriqui, Los Santos, and Veraguas in Panama (Alderman 1973; Banco de Guatemala 1981a; Aguilar and Solis 1988; AHT-APESA 1992; Edelman 1992; Ledec 1992b). Similar types of ranchers also existed in Nicaragua, but many of them had their lands expropriated during the agrarian reform of the 1980s. Often, investment ranchers prefer farms which are very accessible, as this allows them to visit the ranch and return the same day or the following day.

The great majority of investment ranchers live in urban areas. For example, in the early 1970s over 80 per cent of the members of the principal ranchers association in the north coast of Honduras had addresses in the city of San Pedro (Alderman 1973). Among the 54
ranchers in northern Guatemala who received loans from the World Bank Livestock Development Project (PRODEGA) in the 1970s, 69 per cent lived off the farm and 37 per cent reported their primary occupation as something besides farming (World Bank 1978).

Military officers constitute a particular sub-group within this type of ranchers. Some officers purchased their lands; others simply laid claim to forest areas or small farmers’ lands and obtained government titles for them. Compared to the other investors, military officers are more likely to own land in isolated areas where land tenure is insecure and their access to military force places them in a privileged position to defend their claims to land. Areas which are generally associated with military land ownership include parts of Alta Verapaz and Petén in Guatemala, Olancho in Honduras, and northern and eastern Nicaragua (Maloney 1981; Schwartz 1990; Richards 1994).

The “investment ranchers”, both civilian and military, tend to concentrate their attention on steer fattening and meat processing. These investments provide the quickest returns, are less risky and, in the case of steer fattening, require less management and supervision than calf raising or dairy production. Some investment ranchers seem to base their decisions on short-term profit margins (including the opportunity costs of money invested in land and cattle), have low “barriers to exit” from cattle production, and tend to sell their land or reduce their cattle stock when business is poor. Others, however, apparently view cattle raising as a long-term, low-risk activity in which to invest their savings and tend to react more slowly to changes in market conditions.

Medium and Large Agricultural Frontier Ranchers

These ranchers can be distinguished from the first two groups by their physical residence in or near agricultural frontier areas and their generally more humble origins. Few individuals with substantial economic resources are willing to reside in agricultural frontier areas. This group is less likely to have major investments outside their residential region, although many of them engage in commerce, transport activities, and lumber extraction, in addition to cattle ranching. Geographically, this group is concentrated in eastern Honduras, Panama Province and eastern and northern Nicaragua.

Frequently, these are families who first moved to the agricultural frontier to cut lumber or to trade, but were later able to claim or purchase large areas of land. They tend to have been among the first
families to arrive in the areas where they live and to have come with some initial capital resources (Hernández 1987; Merlet 1992; Maldidier 1993). Some of these families have substantial incomes by local standards, but due to their relative isolation they tend to maintain more rural cultural attributes.

For ranchers at the agricultural frontier, cattle offer the critical advantage of being easy to transport. In some cases, ranchers even walk to market themselves. Moreover, once annual crop yields begin to fall due to declining fertility and weed infestation, conversion to pasture is often the only economically viable use for frontier land (Hecht 1992).

Common Features of the Medium and Large Ranchers

Traditionally, all three groups of medium and large ranchers obtained a substantial amount of their labour through systems of “colonato” or labour rents (Hemández-Mora 1994). In these systems, poor rural families were provided with (often forested) land to plant corn or other annual crops, but in return had to do occasional jobs for the landowner, leave the crop residues for the rancher and, after a few years, plant grass and move to another plot. Through this system ranchers were able to convert large areas of forest to pastures at minimal cost.

In recent years, however, many large ranchers seem to have shifted to the use of wage labour and labour contracts to convert forest to pastures (Banco de Guatemala 1981a; AHT-APESA 1992; Ledec 1992b; Pijnenburg and Martinez 1992). These ranchers prefer wage labour because it allows them to obtain pasture quicker (without passing through the stage of maize production) and in sparsely populated areas is often the only way to attract sufficient labour. The widespread use of chain saws, which have tended to replace axes, made it easier to clear forested areas and reduced the need to use labour rent systems for that purpose (Davila and Castro 1990). A particularly innovative system reported by Richards (1994) in Honduras is for ranchers to offer chain saws to small farmers in exchange for land or to lend them the money to purchase chain saws, both of which help accelerate the land-clearing process.

The size and relative importance of large and medium size ranchers varies depending on the country. Large ranchers are most important in Guatemala where, in 1979, some 300 ranchers with more than 1,000 animals each owned one-third of the national herd, while ranchers with
between 100 and 1,000 head owned an additional one-third (RUTA 1993). At the other extreme lie Honduras and Nicaragua. In the former, the 2,745 ranchers who had more than 200 hectares in 1993 owned only 24 per cent of the cattle and 32 per cent of the pastures; while in the latter the 687 ranchers with more than 350 hectares in 1992 owned only 12 per cent of the cattle and 17 per cent of the pasture (Holman 1994; SECPLAN 1994). Similarly, in Panama, ranchers with over 200 hectares own 31 per cent of the cattle, and the 297 ranchers with more than 500 hectares each, own only 15 per cent of the cattle (IICA 1993a). Guanacaste and San Carlos in Costa Rica tend to be more like Guatemala, while the rest of the country is more like Honduras and Nicaragua (Direction de Estadistica y Censo 1987). Altogether, the region probably has 3,000 to 4,000 ranchers with more than 500 hectares, and perhaps as many as 15,000 to 20,000 with more than 200 hectares.

Small Farmers

Except for farmers with prime agricultural land, the first thing that almost any small farmer in Central America does when he/she accumulates a little land or money is to purchase cattle. The limited availability of family labour constrains the expansion of crop production and farmers prefer to avoid the cash outlays and supervision time required to hire large amounts of outside labour. Cattle raising allows small farmers to have up to 50 hectares and still cover more than 50 per cent of their labour requirements with household labour (Ventura 1992). Cattle also have the additional advantages for small farmers of being a convenient form of low-risk and easily convertible savings, providing regular income from the sale of dairy products, and making use of marginal or degraded lands which can no longer sustain crops (Hecht 1992). Thus, for example, in a survey of small- and medium-sized ranchers in Puriscal, Costa Rica, in the mid-1970s, Thrupp (1980) found that 63 per cent of farmers had shifted to cattle because they required less labour, 33 per cent to obtain milk for their family, 29 per cent because cattle presented fewer problems and risks, 27 per cent because they were more profitable, and 20 per cent because land deterioration no longer permitted growing crops in those areas¹⁰.

Most small farmers have dual-purpose systems, which produce calves and small quantities of milk and occasionally permit them to
sell a cow or steer (typically to the local municipal slaughterhouse). Depending on how many cows they have and their access to markets for dairy products, the sale of milk may or may not be a major source of income for these farmers. Typically, these farms have more intensive cattle systems than the large farms, with higher stocking densities and greater use of crop residues as animal feeds.

Costa Rica is the only country with an important group of specialised small dairy farmers with relatively high levels of capital intensity and productivity. Currently, the country has some 15,000 specialised dairy producers with less than 20 hectares each who fit this description.

Small farmers with less than 50 hectares own 43 per cent of the cattle in Honduras and one-third of the cattle in Costa Rica and Panama; farmers with less than 70 hectares own 42 per cent of the livestock in Nicaragua (Direction de Estadistica y Censo 1987; IICA 1993a; Ventura 1992; Holman 1994). Farmers with less than 92 hectares in Guatemala own only 30 per cent of the cattle (Colchester and Lohmann 1993). In all the countries small farmers play an important role in calf and dairy production.

The high percentage of cattle in the hands of small farmers in Nicaragua is largely a result of the agrarian reform process begun in 1979. Agrarian reform and colonisation programmes were also important in creating groups of small dairy and dual-purpose producers on the south coast of Guatemala, in northern Costa Rica, and along the north coast of Honduras.

The Implications for Policy

Policy instruments which operate through livestock and forest product prices are more likely to influence the land use patterns of investment ranchers and of ranchers in traditional livestock grazing areas than of ranchers who live on the agricultural frontier. Similarly, changes in credit policy are only likely to be relevant for those ranchers with potential access to public credit. A large portion of land and cattle in agricultural frontier areas is owned by ranchers who have low supply elasticities for the livestock production and minimal access to public credit. Poor public enforcement of property rights gives groups with private access to means of coercion a competitive advantage.
THE ROLE OF MARKET FORCES IN THE CATTLE-FOREST RELATIONSHIP

This section analyses how changes in international and domestic markets for beef and dairy products have affected the supply of cattle and changes in land-use patterns. It first examines the export market for beef, then looks at the domestic demand for beef, and finally discusses changes in dairy markets.

The Hamburger Connection

In 1981, Myers coined the term “the hamburger connection” to describe how the expanding US market for Central American beef generated a cattle boom that in turn led to widespread deforestation. Prior to the 1950s, Central American cattle exports were limited to small numbers of live cattle sold by Honduras and Nicaragua to neighbouring countries. But that changed when the first export meat-packing plant opened in 1957 and it became possible to export large amounts of pasture-fed, “low-quality” beef to the US market.

During the 1960s, rising real incomes in the United States led to a 20 per cent increase in per capita beef consumption and the rapid growth in fast food and supermarket chains generated new demands for beef imports (Williams 1986). The demand for ground beef in particular grew even more after 1973, when rising petroleum prices pushed up the cost of producing feed grains and fatty grain-fed beef increasingly became a luxury for US consumers, leading them to shift to less-expensive hamburger (Edelman 1985).

In the early years, Central American beef producers had almost unlimited access to the US market. Before 1964, there were few restrictions on US beef imports, and although the US Meat Import Act of 1964 theoretically instituted a system of import quotas, none was imposed between 1965 and 1968. Soon after, the Central Americans accepted a system of voluntary export restrictions but, except for a brief period around 1974, these did not pose any serious problem for exporters (Slutsky 1979).

Central American beef exporters were also able to take advantage of high international meat prices, particularly between 1965 and 1974 (Howard 1987). As a result, Central American beef exports rose from $9 million in 1961 to $290 million in 1979, and the amount
of beef exported increased eight and a half times (Williams 1986). By the end of the period, the region had 28 modern meat-packing plants authorised to export to the United States. Costa Rica and Nicaragua were larger exporters than Guatemala and Honduras, while Panama exported only marginal amounts. Rising international beef prices were reflected in increasing domestic prices for cattle (León et al. 1982). This, in turn, undoubtedly stimulated the livestock sector as a whole.

The export boom had its most direct effect on medium and large ranchers who fattened cattle for sale to the export-packing plants and on the investors who owned those plants. It had much less effect on small ranchers who focused more on milk production and the sale of older cattle to local slaughterhouses. When small farmers did produce calves and steers to be fattened and exported, they typically received only a small percentage of the final export price.

After the mid-1970s, the outlook for Central American beef exports worsened. International beef prices were low between 1975 and 1977, rose for a few years, and then started falling again after 1980, from which they have still not recovered (See Table 7). Two reasons for this were that the European Economic Community went from being a net beef importer to becoming a net exporter and per capita beef consumption in the US fell after 1977 as consumers became more health conscious and real incomes stagnated (Howard 1987; Brockett 1988).

Table 7. Real international meat prices 1960 - 1990 (cents/kilogram, constant 1985 dollars)

<table>
<thead>
<tr>
<th>Year</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>246</td>
</tr>
<tr>
<td>1965</td>
<td>282</td>
</tr>
<tr>
<td>1970</td>
<td>359</td>
</tr>
<tr>
<td>1975</td>
<td>203</td>
</tr>
<tr>
<td>1980</td>
<td>265</td>
</tr>
<tr>
<td>1985</td>
<td>215</td>
</tr>
<tr>
<td>1990</td>
<td>180</td>
</tr>
</tbody>
</table>

Source: Trejos 1992
The effect of declining international beef prices on beef producers’ incomes was aggravated by policies leading to over-valued exchange rates and government price controls. In Nicaragua, in particular, over-valued exchange rates and low cattle prices paid to ranchers by the government (which nationalised meat exports in 1979) lowered the share of international prices that ranchers received (Cajina 1986; Biondi-Morra 1990). This situation improved after 1984, when the government started to purchase part of the cattle exported in dollars, but it continued to dampen local beef prices throughout the 1980s (Jarquin and Videa 1990). Honduras’ exchange rate was also increasingly over-valued through the 1980s and in Costa Rica price controls on beef imposed in the mid-1970s reduced real beef prices (Leon et al. 1982).

At the same time cattle ranchers’ costs rose. In Panama, for example, the cost of ranching inputs such as wire, herbicides, vaccines, nutritional supplements, and other items increased far more than beef prices between the mid-1970s and the mid-1980s (Heckadon 1984). The situation was similar in Nicaragua (Biondi-Morra 1990). Beef export taxes also rose substantially in both Costa Rica and Nicaragua (Edelman 1994; Siles and Hernandez 1994).

If these problems weren’t bad enough, in 1979, the US Congress passed a more restrictive meat import act which substantially reduced Central America’s access to the US market. The United States also began to strictly enforce laws prohibiting the import of sub-standard beef and beef with pesticide residues, leading on several occasions to the closure of the US market to beef exports from Costa Rica, Guatemala and Honduras (Banco de Guatemala 1981 b; Edelman 1985). Between 1985 and 1993, the US government prohibited meat imports from Nicaragua, first as a political sanction against the Sandinista government, and later because Nicaragua’s export plants had not yet been certified by American slaughterhouse inspectors. Panama’s beef exports to the US were also blocked for political reasons between 1987 and 1990. On the private side, Burger King, which at one time bought 70 per cent of Costa Rican beef exports, decided in 1987 not to buy any more Latin American beef due to criticism about the “hamburger connection” (Van der Kamp 1990).

These growing difficulties in maintaining access to the US beef market forced Central America to seek other markets for its meat. In 1980, the Guatemalan Congress authorised the export of 50,000 head of live cattle to Mexico and the following year it signed a trade agreement with Mexico which allowed Guatemala to export $18 million...
worth of cattle (Brockett 1988). At different times during the 1980s, almost all the Central American countries exported live cattle and meat to Mexico, which became a significant market and paid higher prices for beef than the United States. Recently, however, Mexico has imposed new tariffs on Central American beef and cattle exports and, due in part to the North American Free Trade Agreement (NAFTA), an increasing portion of Mexican meat imports have come from the US (Foreign Agricultural Service 1994). It is doubtful whether Central America will continue to be competitive in the Mexican market once NAFTA becomes fully operational (Barquero 1994).

Nicaragua began to export meat to Canada when the United States imposed its trade embargo in 1985. Canada, however, paid lower prices than the US and also used quantitative restrictions to limit Nicaraguan exports (Cajina 1986).

Thus, ultimately low international prices combined with reduced US demand led to a substantial drop in exports. Between 1978 and 1985, Central American beef exports declined from 120 million metric tons to only 49 million tons, and the income they generated fell from 213 million dollars to 91 million (Torres-Rivas 1989). After that, meat exports began to rise again, and by 1992 had reached 74 million metric tons and 135 million dollars. However in real terms they remained well below the levels of the 1970s (See Table 8).

<table>
<thead>
<tr>
<th></th>
<th>61</th>
<th>66</th>
<th>71</th>
<th>76</th>
<th>81</th>
<th>86</th>
<th>91</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>2.8</td>
<td>5.6</td>
<td>21.1</td>
<td>41.7</td>
<td>79.7</td>
<td>68.3</td>
<td>71.3</td>
</tr>
<tr>
<td>Guatemala</td>
<td>0.8</td>
<td>6.1</td>
<td>19.1</td>
<td>20.0</td>
<td>51.1</td>
<td>4.8</td>
<td>29.6</td>
</tr>
<tr>
<td>Honduras</td>
<td>1.5</td>
<td>3.9</td>
<td>12.5</td>
<td>25.7</td>
<td>47.3</td>
<td>17.4</td>
<td>28.9</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>4.0</td>
<td>6.7</td>
<td>28.9</td>
<td>40.5</td>
<td>21.3</td>
<td>5.6</td>
<td>38.7</td>
</tr>
<tr>
<td>Panama</td>
<td>0.1</td>
<td>0.0</td>
<td>1.4</td>
<td>3.8</td>
<td>5.1</td>
<td>0.0</td>
<td>12.3</td>
</tr>
<tr>
<td>Total</td>
<td>9.2</td>
<td>22.3</td>
<td>83.0</td>
<td>131.7</td>
<td>204.5</td>
<td>96.1</td>
<td>181.2</td>
</tr>
</tbody>
</table>

Source: USDA, World Agricultural Trade Indexes
The combination of low prices, weak demand and rising costs reduced the profitability of beef production (León et al. 1982; Howard 1987; Camacho 1989; Stonich 1989). Numerous studies in the 1980s and 1990s showed that when profitability was calculated using full opportunity costs for land, capital and labour, and without including capital gains from rising land prices, cattle production was not profitable for most ranchers during this period (Banco de Guatemala 1981a; Leon et al. 1982; Edelman 1985; Jarquin 1990; Van der Kamp 1990; Ventura 1992; Holman 1993; IICA 1993a; Mercado 1993). Nevertheless, profitability varied significantly between ranches and ranching still appeared profitable when one compared gross receipts with immediate cash outlays, without taking into account the opportunity costs of the land and cattle involved (Jarquin 1990, 1991; Schwartz 1990; Convenio MAG-DNA-GTZ 1991; Ventura 1992; Didier 1993; Hering and Jaendl 1993; Maldidier 1993).

There is also evidence that within the livestock sector, cattle fattening continued to be the most profitable activity and large ranches tended to be more profitable than small ones (Namdar and Levard 1984; Biondi-Morra 1990; Van der Kamp 1990; Ventura 1992; AHT-APESA 1992; IICA 1993a; Merlet 1994). The only exception to this was Costa Rica, where strong consumer demand and protectionist policies made milk production more profitable than beef production, and there has been a major increase in dual-purpose herds, at the expense of cattle fattening (Van der Kamp 1990; Motte and Billan 1994; Ortiz 1994).

Ranchers responded to the profit squeeze in beef production for export in different ways, depending on their available alternatives, liquidity, and the role of livestock within their systems of production. Fewer new investors entered cattle production after 1979, except for specific situations where rising land prices and available subsidised credit made ranching profitable for other reasons. Instead, these investors invested their money in non-traditional agricultural exports, tourism, short-term money notes, and commercial real estate.

With the initial price declines, many traditional medium and large ranchers retained their cattle to wait for higher prices. When prices did not improve, they were often forced to sell their cattle to pay their debts (Howard 1987; Van der Kamp 1990). Many heavily indebted ranchers and smaller ranchers with minimal liquidity were forced out of business entirely (Van der Weide 1986; Escuela de Ciencias Agrarias 1987; Maldidier 1993). Large private ranchers in Nicaragua who, during the 1980s, faced not only declining profitability but also
the threat of expropriation under the agrarian reform, ran down their assets by not replacing their bulls, neglecting their pastures, or slaughtering cows of reproductive age (Biondi-Morra 1990).

Other producers, however, changed their behaviour little or even increased their investment in cattle. The influence of price changes on many smaller and more isolated ranchers was limited, since these ranchers had few viable alternatives given labour constraints, ecological conditions and limited market access (Hijfte 1989). There were probably also some traditional large ranchers who did not greatly vary their activities. With rapid inflation in Nicaragua in the late 1980s, investment in cattle was one of the few effective hedges against inflation. This led many production co-operatives created during the agrarian reform to purchase cattle between 1985 and 1988 (Lutz 1993). Throughout the entire period medium and large farmers continued to purchase new farms on the agricultural frontier to take advantage of the comparatively low land prices.

While flourishing export markets for beef clearly promoted pasture expansion and deforestation in the 1960s and 1970s, the impact of reduced beef exports is less clear. As shown earlier, most of the decline in cattle population in the 1980s and 1990s was in traditional livestock regions, while pasture expansion and deforestation continued in many agricultural frontier areas. This is consistent with the idea that declining markets had their greatest effect on investment ranchers and large ranchers located in traditional cattle zones who had more alternative uses for their land and labour, and influenced ranchers on the agricultural frontier relatively little.

The Domestic Demand for Beef

The literature criticising the Central American beef export boom of the 1960s and 1970s frequently points to the fact that, during the period, average per capita beef consumption actually declined in the region (Nations and Komer 1983; Williams 1986; Stonich 1989; Lehmann 1991). Nevertheless, thanks to population growth of over 3 per cent per year during that period, stagnant per capita consumption did not preclude a major increase in total domestic beef consumption, which reinforced the growth in the demand for beef for export.

During the 1980s and 1990, the situation was more complex. Declining real incomes throughout much of the region and technological changes which greatly reduced real poultry prices lowered
beef consumption. For each 1 per cent decline in real income in Central America, the demand for meat fell between 0.5 and 0.8 per cent (Solera-Ruiz 1981; Jarvis 1986). At the same time, however, over-valued exchange rates and reduced access to foreign markets favoured the local sale of beef.

The net result of these contradictory tendencies varied between countries. In Costa Rica, both absolute and per capita beef consumption rose, and compensated to a certain extent for the decline in exports (See Table 9). The percentage of Costa Rican beef production exported fell from 50-60 per cent in the late 1970s to only 29 per cent in 1989 (Van der Kamp 1990; Lehmann 1991). A similar process occurred in Nicaragua during the mid-1980s (Holman 1993).

Table 9. Per capita beef consumption in Central America 1976/83 and 1984/91 (kg/person)

<table>
<thead>
<tr>
<th></th>
<th>1976/83</th>
<th>1984/91</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>20.4</td>
<td>22.9</td>
</tr>
<tr>
<td>El Salvador</td>
<td>6.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Guatemala</td>
<td>5.3</td>
<td>3.8</td>
</tr>
<tr>
<td>Honduras</td>
<td>8.5</td>
<td>6.6</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>15.4</td>
<td>8.6</td>
</tr>
<tr>
<td>Panama</td>
<td>26.1</td>
<td>26.7</td>
</tr>
<tr>
<td>Total</td>
<td>11.9</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Source: CIAT 1993

The situation in Guatemala and Nicaragua in the late 1980s and early 1990s was different. In both countries declining real incomes led not only to lower per capita beef consumption, but also to a smaller total domestic demand for beef (Holman 1993; MAGA 1993). In these countries, trends in domestic demand exacerbated the problem rather than compensating for the decline in beef exports.
Milk Imports and Exports and the Domestic Demand for Dairy Products

The livestock and deforestation literature has largely ignored the trends in dairy markets. This is a mistake since a large percentage of Central America’s cattle has always formed part of dual purpose livestock systems (Vargas et al. 1991; Holman et al. 1992; Holman 1993, Sarmiento 1992). In these systems dairy products not only provide a large percentage of total earnings, but also play a major role in maintaining a regular cash flow.

The production and consumption of pasteurised milk and other industrialised dairy products grew rapidly in the 1960s and 1970s. Between 1970 and 1981, fresh milk consumption in Central America rose 4.2 per cent yearly (Jarvis 1986). Dairy companies such as Borden and Dos Pinos in Costa Rica, Prolacsa, La Perfecta, La Selecta and El Eskimo in Nicaragua, Leyden in Honduras, and Nestles and Chiricana de Leche in Panama offered ranchers secure markets and succeeded in greatly expanding milk production in their supply areas (Cajina 1986; Camacho 1989; Ventura 1992). At least in some specific areas, such as eastern Matagalpa and Chontales in Nicaragua and, later, northern Alajuela in Costa Rica and Atlantida in Honduras, they probably also stimulated the clearance of primary forests (S. Humphries, personal communication). Cloud forests were particularly susceptible to being cleared for milk production because dairy cattle thrive best at higher elevations.

As with beef during the 1980s and 1990s, however, many of Central America’s dairy markets became less attractive for producers. The stagnation of domestic milk consumption was one reason for this, but government price controls and the flooding of domestic markets with dairy imports were perhaps even more important.

The only country where per capita dairy consumption declined significantly during the last fifteen years was Nicaragua, where it is now about half of what it was in the 1970s (Holman 1993). In the remaining countries, per capita consumption has been stable or has slightly increased. Over time, however, milk imports have satisfied an increasing portion of the domestic demand. Regional dairy imports rose from $14.8 million in 1975 to $47.4 million in 1990 and, by 1991, accounted for 18 per cent of all regional dairy consumption (Nuñez and Galetto 1993) (See Table 10). Milk imports were particularly high in Nicaragua between 1982 and 1988 and in Guatemala
between 1986 and 1990. These imports have had an especially depressive effect on domestic milk prices because a large percentage were donations, which were often sold locally at below market prices (Garst and Barry 1990). The only country which has made a serious effort to protect its national dairy markets from foreign dumping is Costa Rica, where milk production grew at an average annual rate of 4.8 per cent between 1982 and 1994, and which went from being a net importer of dairy products to recently becoming a net exporter (Holman et al. 1992; Motte and Billan 1994).

Table 10. Central American milk imports 1970-1990 (excluding El Salvador) (million dollars)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>0.7</td>
<td>2.7</td>
<td>6.3</td>
<td>2.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Guatemala</td>
<td>2.3</td>
<td>2.6</td>
<td>12.3</td>
<td>8.2</td>
<td>24.7</td>
</tr>
<tr>
<td>Honduras</td>
<td>2.6</td>
<td>4.9</td>
<td>10.4</td>
<td>13.7</td>
<td>10.0</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>0.9</td>
<td>1.5</td>
<td>3.4</td>
<td>10.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Panama</td>
<td>1.3</td>
<td>3.1</td>
<td>7.9</td>
<td>6.0</td>
<td>4.2</td>
</tr>
<tr>
<td>Total</td>
<td>7.8</td>
<td>14.8</td>
<td>40.3</td>
<td>40.6</td>
<td>48.4</td>
</tr>
</tbody>
</table>

Source: USDA, World Agricultural Trade Indexes

Domestic milk prices have also been depressed by government price controls. Costa Rica has had controls since 1973 (Camacho 1989). Nicaragua not only had price controls during the 1980s, but the government also owned the most important processing plants and set the prices at which the plants purchased milk from farmers. In Guatemala, price controls were instituted in 1972, partially lifted in 1981, and then re-imposed at different times between 1985 and 1991 (RUTA 1993). Controls have also been used in Honduras and Panama.
The combined effect of subsidised imports, government price controls and stagnant markets has been to reduce real milk prices. Real milk prices in Costa Rica were 11 per cent lower on average between 1987 and 1993 than they had been between 1980 and 1986 (Camacho 1989; Nufiez and Galetto 1993). At the same time real wages, land prices and input prices rose much faster than productivity, leading to a sharp deterioration in dairy farmers’ real net incomes (Holman et al. 1992). Real milk prices in Guatemala during the 1987-1993 period were also substantially lower than during the previous seven years (RUTA 1993). Panamanian ranchers received the same nominal price for their milk in 1991 as they had in 1983, despite major cost increases in that period (Sarmiento 1992).

Nevertheless, in all the countries except Nicaragua, milk production rose during the last fifteen years, despite declining real prices. In 1991, milk production in Honduras, Panama and Costa Rica was 54 per cent, 50 per cent and 45 per cent higher than it had been in 1981 (Nuñez and Galetto 1993). This reflects the limited alternatives available to small- and medium-sized ranchers in which to invest their resources and the great premium small producers place on having a steady cash flow, a relatively assured market for their production and, in some cases, credit and technical assistance provided by the milk plants.

The Implications for Policy

Policy instruments which lower producer prices for beef and milk such as over-valued exchange rates, measures which dampen domestic incomes, price controls, protectionist measures in beef-importing countries, consumer beef boycotts in developed countries, and policies facilitating dairy imports will all discourage cattle production and hence the pressure for clearance of forest for pasture. Only a small reduction can be expected in response to moderate policy changes, however, and pasture area may well decline in traditional cattle-grazing areas which are more suited for livestock, but continue in the poor soil, humid tropical areas along the agricultural frontier. There may also be discontinuities in the responses to policy changes with initial large reductions in pasture area, as investment ranchers reduce their holdings, but only minimal further declines in pasture area, as the remaining pasture lands are controlled by farmers with low supply
elasticities with respect to these policy changes. Overall, these policy instruments are probably not appropriate mechanisms for controlling deforestation.

GOVERNMENT SUBSIDIES FOR LIVESTOCK AND PUBLIC ROAD CONSTRUCTION

This section focuses on how and why governments have used subsidies that foster forest clearance. It first looks at the role of national and international interest groups in this process, then analyses government subsidies through credit and road construction.

Interest Groups Favouring Government Support for Cattle

Large cattle ranchers have always been among the most powerful and well organised groups in Central America. The annals of Central American history are filled with presidents, generals, ministers and congressmen whose family wealth had its origins in extensive cattle ranches. In addition, ranchers associations such as the Guanacaste Chamber of Ranchers (CGG), the Nicaraguan Ranchers Federation (FAGANIC), the National Federation of Farmers and Ranchers of Honduras (FENAGH), and Panama’s National Ranchers Association (AGAN) have traditionally been quite successful in lobbying to protect their interests (Edelman 1982; Guess 1992). These groups’ major concerns have been to increase their access to subsidised credit, avoid land expropriations and squatting, limit government price controls, eliminate cattle rustling, and protect dairy producers from foreign competition.

During the 1960s and 1970s, international agencies such as the World Bank, Inter-American Development Bank (IDB) and the US Agency for International Development (USAID) also supported efforts to promote beef production and exports as a central focus of economic growth (Williams 1986). Over half of the World Bank and IDB loans to the region between 1963 and 1980 for agriculture and rural development directly supported beef production for export (Brockett 1988). By 1985, these loans had provided $364 million to finance livestock credit, slaughter houses, technical assistance and animal health services (Howard 1987).
Central American government officials generally supported cattle production in the hope of diversifying exports beyond the traditional mainstays of coffee and bananas, and military officers often saw pasture expansion in frontier areas as a way to extend a government’s effective control over the entire national territory (Heckadon 1984).

In the 1970s, however, the cattle industry came under increasing criticism on both environmental and social grounds. The publication of an influential article by James Parsons in 1976 prompted a series of critical studies focusing on the negative effects of livestock expansion on forests (Parsons 1976; Shane 1980; Myers 1981; DeWalt 1982). The rising pressure for agrarian reform in the region also highlighted what was considered to be the under-utilisation of many pasture areas. In response to these pressures, the international agencies began to reduce their support for the cattle industry.

The military governments in Honduras and Panama in the mid-1970s and the Sandinista government in Nicaragua during the 1980s were also less attentive to the interests of the larger ranchers than their predecessors. With the political changes in these three countries in 1990, however, ranching interests have once again returned to major positions of power within the agricultural sector. Thus it was no coincidence that, in 1994, five of the six ministers of agriculture in Central America were cattle ranchers.

Livestock Credit

The ebbs and flows of political support for the livestock industry have been directly reflected in the terms and availability of livestock credit. During the beef export boom in the 1960s and early 1970s, the amount of livestock credit in real terms and the percentage of agricultural credit allocated to livestock grew rapidly in all the countries. By 1970, livestock was receiving 43 per cent of government agricultural loans in Honduras, 39 per cent in Nicaragua, 37 per cent in Costa Rica and 22 per cent in Guatemala, and this percentage tended to grow during the following three or four years (Williams 1986). These percentages were generally much higher than the contribution of livestock to total agricultural production.

Livestock credit provided during this period was heavily subsidised, went predominantly to cattle fattening, and was allocated to a relatively small group of ranchers. Subsidies were provided through
both below market interest rates and leniency with respect to loan recuperation. In Costa Rica, for example, real interest rates for livestock credit were negative between 1970 and 1983, at times reaching below -10 per cent. Almost one-third of the money loaned for livestock during this period was not recuperated on time, as opposed to only 16 per cent of loans for agriculture and 19 per cent of loans for industry (Aguilar and Solis 1988). Real interest rates in the PRODEGA livestock project in Guatemala averaged -3.4 per cent (World Bank 1978). Interest rates in Panama were also historically subsidised, although usually positive in real terms (Boyer et al. 1990). Public sector cattle loans in that country were periodically discharged, and borrowers who did not repay previous loans frequently received new ones (Ledec 1992b). Central American governments also indirectly subsidised cattle loans by placing ceilings on the interest rates which could be charged by private banks.

Subsidised credit for cattle promoted deforestation in several ways (Ledec 1992b). Credit helped ranchers to overcome capital constraints, which would have otherwise limited pasture expansion. Interviews by the author in 1994 in Petén, Guatemala, for example, show that often the major reason why large ranchers have deforested only a portion of their land holdings is that they do not have the $36,000 to $90,000 required to clear, fence and plant pastures on their 450-hectare holdings. Large ranchers also used a significant amount of livestock credit directly to purchase lands which they might otherwise have been unable to afford. Traditionally, a rancher’s ability to expand his or her area or cattle herd had been largely limited by the herd’s natural growth rate or his or her ability to accumulate money from some other source, but with the appearance of government credit programmes this ceased to be the case (Merlet 1992).

Credit subsidies made livestock a more attractive investment prospect compared to other alternatives and, even when the credit was not subsidised, it still made livestock more attractive because it transferred risk from ranchers to the banks. If the venture failed there was a high probability that the bank, rather than the rancher, would eventually assume a large portion of the loss. Subsidised cattle credit also created incentives for landholders to establish pastures on previously forested land simply to qualify for the credit, which could then be diverted to non-cattle investments. Indirectly, subsidised credit raised land prices, which promoted land speculation since banks would often not accept forested land as collateral. This provided an incentive
for ranchers to deforest the land to improve their access to credit (World Bank 1993).18

Another way that credit promoted deforestation was by facilitating the transfer of cattle from ranchers with sufficient pasture resources to others who needed to clear new lands to maintain their newly acquired cattle. Thus, for example, in recent years the concentration of livestock credit in the hands of a few large ranchers in Nicaragua has allowed these ranchers to purchase cattle from smaller ranchers who lack liquidity (Maldidier 1993). Once the cattle are purchased, the ranchers must acquire additional land to maintain them, often in previously forested areas, while much of the smaller farmers’ pastures is subsequently abandoned.

Nevertheless, the role of subsidised public credit in the conversion of forest to pasture should not be exaggerated. Ledec’s (1992b) dissertation on the impact of livestock credit on deforestation concludes that only about 7 to 10 per cent of all Panamanian deforestation could be attributed to public livestock credit. Moreover, most of this deforestation was of small forested areas outside the agricultural frontier. He notes that in general banks prefer to lend to large established ranchers in traditional cattle-raising areas, rather than to the relatively small colonist ranchers who are active in frontier areas. Other evidence which supports Ledec’s thesis that subsidised public credit has been important in accelerating the forest-to-pasture conversion process but is not essential to that process include multiple regression and linear programming models of livestock production in Costa Rica, which show that beef cattle production is quite inelastic in its response to credit availability and variations in interest rates, and the experience of rapid pasture expansion in Petén and eastern Honduras, despite the fact that relatively little public livestock credit has been available in those areas (Solera-Ruíz 1981).19

In the last fifteen years public livestock credit has become less available and less subsidised. Lending for livestock reached its peak in Guatemala in 1973 and then declined through 1989 (Vargas et al. 1991). Since 1986 ranchers have received little public credit (RUTA 1993). In Costa Rica, the decline began in 1981 and, by 1989, livestock lending had fallen to the same level as in 1970 (Holman et al. 1992). Lending in Honduras, Nicaragua and Panama rose until the second half of the 1980s but then fell abruptly (Jarquín and Videa 1990; SRN 1991; Ventura 1992; Sarmiento 1992; Maldidier 1993). In the latter part of the 1980s, real interest rates have risen substantially and Nicaragua now
has loan provisions which automatically adjust loan repayment rates whenever the national currency loses value in relation to the dollar (Aguilar and Solis 1988; CATIE 1990; Siles and Hernández 1994). These changes reflect the unfavourable market conditions in the sector itself, as well as declining international support for subsidised public agricultural credit in general, and for livestock credit in particular.

Faced with unfavourable market conditions and falling government support, the ranchers' associations have pressured governments for greater assistance. In certain instances they have succeeded for short periods, but in general they have been unable to maintain government support for more than a few years.

One example of this is the Agricultural Development Program (FODEA) in Costa Rica. In that case, as a result of unfavourable market conditions, by 1987 nearly two-thirds of Costa Rican banks' cattle loans were in arrears and cattle ranchers began heavily pressuring the government for debt relief (Czel 1990). This resulted in passage of the 1987 “FODEA” law, which cancelled certain debts, provided longer pay-back periods for others, and generally lowered interest rates on past debts (Hijtie 1989). The law provided ranchers with an annual subsidy of $16 million in 1988 and 1989, the vast majority of which went to large ranchers (Lutz and Daly 1991; World Bank 1993). Under similar circumstances, in 1985 the Honduran government created a $2.5 million “compensatory fund” to reactivate the livestock sector, which directly subsidised the cattle-purchasing price paid by the packing houses, and in 1993 the Nicaraguan government extended repayment periods on short-term cattle loans when 78 per cent of loan recipients fell behind in their payments (Ventura 1992; Siles and Hemández 1994). In none of these cases, however, were the subsidy programmes maintained for more than a few years.

Probably the only country where reduced access to subsidised credit has had a major impact on cattle production is Nicaragua, where most ranchers have major liquidity problems after years of political turmoil and economic crisis. Large areas of pasture in that country have been under-utilised or abandoned because landowners lack money to purchase cattle (Maldidier 1993; Matus et al. 1993; Mercado 1993). Smaller ranchers and production co-operatives have been particularly affected.

In the other countries, the decline in credit availability has had some effect, but it has probably been greater in traditional cattle grazing regions than along the agricultural frontier.
Road Construction

If there is one single government policy which has had a major and indisputable impact on promoting conversion of forest to pasture, it is road construction in forested regions (Jones 1990; Van der Kamp 1990; Deacon 1992; AHT-APESA 1992; Ledec 1992b). This is reflected in a 1987 statistical analysis of deforestation in northern Honduras, which found that “those areas nearest to roads are most susceptible to deforestation. The further an area from a road, the smaller the percentage of (area) affected by deforestation. Beyond five kilometers there was a rapid drop in the percentage cleared” (Ludeke 1987: 76). In Panama it has been shown that “colonisation and eventual deforestation are likely to occur within 2-10 kilometers of either side of an all-weather rural road which has penetrated a frontier area. This implies a deforestation area of influence of 400 to 2000 hectares for each new kilometer of road built in forested zones” (Ledec 1992b: 199). Similarly, in Costa Rica, Sader and Joyce (1988) found that in 1977 the mean distance from nearest road or railroad to non-forest locations was only 5.5 kilometres compared to a mean distance from forest locations of 14.2 kilometres. The magnitude of forest destruction that road building has caused can easily be understood if one considers that between 1953 and 1978 the length of all-weather roads in Central America rose from 8,350 kilometres to 26,700 kilometres (Williams 1986).

Road construction promotes the conversion of forest to pasture both directly and indirectly. By providing access to new areas it makes it easier to enter and deforest, and cheaper to transport cattle and dairy products from the area. The latter is of fundamental importance since often transportation costs are the major determinants of land-use patterns in agricultural frontier areas (Schneider 1994). Roads also stimulate land speculation, a topic discussed in greater detail below.

Some public road construction in forested areas has been associated with specific colonisation projects such as the Rigoberto Cabezas (PRICA) project in Nueva Guinea in Nicaragua, the Northern Transversal Strip Land Resettlement Project in northern Guatemala, the Aguan Valley colonisation programme in Honduras, and the agrarian reform settlements in northern and eastern Costa Rica (Fledderjohn and Thompson 1982; Jones 1990; Merlet 1992; Walker et al. 1993). Most activity, however, has been limited to independent road construction.
Private feeder-road construction by lumber companies has been another major problem (Herlihy and Herlihy 1992; Ledec 1992b; Utting 1993). After these companies extract the wood they are interested in, they leave behind feeder roads which greatly facilitate the subsequent arrival of agricultural colonists and ranchers. In some cases in Guatemala, lumber companies have even offered to build roads for communities in return for access to the wood on their farms. Often, these feeder roads have a much greater negative impact on the environmental services provided by the forests than does the extraction of wood itself. Similar problems have occurred with publicly constructed roads designed to provide access to mineral, petroleum and hydroelectric resources in northern Guatemala and western Panama (Utting 1993).

Unlike favourable market conditions and credit subsidies which tended to disappear in the 1980s, public road construction in forested areas continued largely unabated. The annual expansion of roads in Costa Rica, for example, increased from 6.5 per cent between 1974 and 1980 to 10.4 per cent between 1981 and 1990, with much of the new growth being financed by the USAID Northern Zone project in the heavily forested northern portion of Alajuela (Holman et al. 1992; Girot 1989). New roads such as the Chiriqui - Bocas del Toro highway in Panama, the route between Las Cruces and El Naranjo in Peten, Guatemala, and the roads connecting Rio Blanco and Siuna and Nueva Guinea and Bluefields have recently brought floods of colonists to previously forested areas (Flores et al. 1994; Jones 1990). There are also currently plans to close the only remaining gap in the Panamerican Highway which is in the forested area of Darien, Panama, and to greatly improve most of the existing main roads in Peten, Guatemala.

In some instances Central American governments have attempted to control settlement, land speculation and deforestation along newly constructed roads, but invariably they have failed. In Panama, for example, in 1973 the government banned settlement within an 8-kilometre radius of the newly constructed section of the Panamerican highway between Tirao and Canglon in Darien. The attempts failed, however, and by 1984 there were already 9,729 people living in that area (Herlihy 1989). Similarly, the Costa Rican government declared that most of the area to be crossed by a new road between San Jose and Guapiles as a national park before the road was announced, and tried to strictly enforce prohibitions on land clearing. They were also
unable to stop major deforestation near the road in a number of areas (Sader and Joyce 1988; Van der Kamp 1990).

In many areas, the principal justification for government road building in the 1980s was to facilitate military access to areas of armed conflict or potential conflict. This was certainly the case in northern and eastern Nicaragua, northern Costa Rica, south-eastern Honduras and northern Guatemala. Unfortunately, however, these areas were propitious for non-conventional warfare precisely because of the presence of large forested areas where it was easy for troops to hide and difficult for their opponents to reach. By opening up these areas to greater troop mobility, the Central American governments and their foreign sponsors greatly facilitated the process of deforestation.

As much as any other single factor, the continued growth in roads during the 1980s and 1990s helps to explain why, despite the loss of favourable markets and subsidised credit, land clearance on the agricultural frontier continued throughout Central America.

The Implications for Policy

Restricting livestock credit in agricultural frontier regions can contribute to reducing forest clearance for pasture. Credit for cattle fattening is likely to promote greater land clearance than credit for dairy farming and calf production, because it generates multiplier effects in the livestock production system and is associated with more extensive production systems. The implications of providing livestock credit outside of agricultural frontier areas must be examined on a case-by-case basis.

Road construction and improvement in agricultural frontier regions will almost invariably promote rapid deforestation. Governments almost always lack the capacity to enforce restrictions on settlement and land clearance around new roads.

THE ROLE OF GOVERNMENT LAND POLICIES AND LAND MARKETS

The characteristics of local land markets and government land policies have a major impact on how quickly new lands are incorporated into farms and cleared. This section first discusses Central American land
markets and then looks at land acquisition and titling policies, colonisation schemes, agrarian reform efforts, protected areas indigenous land rights, extractive reserves and land taxes.

Land Markets and Land Conversion

Purchasing, claiming, or forcibly grabbing rural lands in Central America has traditionally been quite profitable. In northern Costa Rica, for example, real land prices have been rising steadily since at least 1875. “Particularly after 1932, land prices in the region began a slow climb which assured long-term gains for the patient investor” (Edelman 1985: 167). This process accelerated rapidly during the 1970s, with land prices quadrupling during the decade in San Carlos, Liberia, Bagaces, Nicoya and Tilaran (Aguilar and Solís 1988).

In Guatemala, real land prices in the Petén and other northern departments have risen rapidly since at least the mid-1970s (Colchester and Lohmann 1993). “Between the 1970s and the mid to late 1980s, land values in Peten rose from less than 10 quetzales to 27 quetzales to about 45 quetzales or more” (Schwartz 1990: 269). Real land prices in the Guatemalan south-coast livestock departments rose about 8 per cent per year from 1974 to 1988 (Shearer et al. 1993). Rapid increases in real land prices in recent years have also been reported in agricultural frontier regions in Atlantida and Colon in northern Honduras (Hernández-Mora 1994).

Probably the only country in Central America where real land prices have not risen in recent years is Nicaragua, where political instability, economic crisis and land-tenure insecurity have kept land prices low (Matus et al. 1993). Even there, however, newly incorporated lands on the agricultural frontier grow rapidly in value as they become more accessible.

One major reason values have risen over time is that land has become more accessible as a result of the road construction discussed above (Edelman 1985). “Heckadon reports that land prices in the Tonosi district of Los Santos province in Panama increased from less than 50 dollars per hectare before road access was established, to more than 100 dollars immediately thereafter” (Ledec 1992b: 96). Similarly, cattle lands along the road from Mulukuk to Siuna in Nicaragua sold for $112 to $140 per hectare in 1992, while comparable lands one day’s walk from the road cost $30 to $40 dollars per hectare, and land in the most isolated places was worth only $10 (Maldidier 1993). In some
areas of Petén, Guatemala, land prices have doubled or even tripled in the last few years in anticipation of new road construction. Public investment in utilities, agro-industrial processing plants and subsidised credit has also been capitalised into land prices (Edelman 1985; Holman et al. 1992). Land is frequently purchased or claimed that is currently unprofitable for farming in anticipation of future road construction that will lower transportation costs and make cattle raising attractive (Schneider 1994).

Other factors which have encouraged higher land prices have been high beef and milk prices during certain periods and rising demographic pressure (Escuela de Ciencias Agrarias 1987; Holman et al. 1992). In Costa Rica, the expansion of tourism, subsidised reforestation and banana and citrus production have also been important in the 1980s.

Several authors have also pointed to a purely speculative component to land prices which “involves people attributing to deforested land an asset value that is well in excess of its actual production value” (Ledec 1992b: 96). Griffith and Zepeda (1994) have used linear programming techniques to show that the shadow price of land for small milk producers in Monteverde, Costa Rica, is substantially lower than the land’s market value and in certain instances may not justify the cost of even clearing the land. According to Shearer et al. (1993) “money laundering, labour remittances, and a hedge against inflation and devaluation help keep land prices above their value solely for production.” There may also be what the literature calls “rational bubbles”, in which ranchers expect land prices to rise so they become willing to pay higher land prices, which in turn bids up market prices and converts their expectations into self-fulfilling prophecies (Clark et al. 1993). An additional factor fuelling land speculation in several countries has been the purchase of large ranches by governments and international agencies at higher than prevailing market prices for land redistribution, refugee resettlement or conservation areas (Edelman 1992; Kaimowitz 1995). The imperfect nature of rural financial markets in many agricultural frontier areas also means that the local population has few alternative opportunities for savings and investment besides purchasing land.

Not only have land prices tended to rise, but deforested lands usually sell for much higher prices than forested lands (Ledec 1992b; World Bank 1993). In Peten, Guatemala, for example, deforested land typically sells for approximately $80 more per hectare on average than
land with degraded forest (Kaimowitz 1995). This is in part a reflection of the labour invested in land clearance (known throughout Central America as “mejoras” or “improvements”) and in part due to the more secure land-tenure status of deforested lands, discussed below. There are even people in some places who have made land clearance practically an occupation, moving into forest land and clearing it in order to sell it for a price reflecting the implicit wage cost of land clearing (Cruz et al. 1992).

At the same time, land price increases caused by urbanisation in peri-urban areas such as the Central Valley of Costa Rica and the area around Guatemala City, have made specialised dairy production in these areas less profitable than parcelling the land and building houses on it. This has promoted the search for new regions for milk production, such as the (previously forested) northern portion of Alajuela in Costa Rica (Camacho 1989). Similarly, as land prices rose rapidly on the South Coast in Guatemala, due in part to the expansion of sugar cane production, south-coast ranchers sought cheaper lands in frontier areas in Izabal and the Petén (World Bank 1978).

The rise in land prices has been so significant in agricultural frontier areas, that a large percentage of pasture expansion may have as much or more to do with land speculation as with cattle raising per se\(^\text{21}\). For example, a Banco de Guatemala survey (1981: 63) of large ranchers in Peten, Guatemala, found that despite the fact that “financial calculations show that ranches take six to nine years before they have positive cash flows and the internal rate of return is substantially below other investment opportunities . . . The ranchers interviewed... were optimistic thanks to: 1) the opportunity to obtain capital gains as land prices rise... 2) falling transportation costs resulting from government road construction, and 3) the possibility to increase their productivity over time”. Similarly, Van der Weide (1986: 36), describing the large cattle ranches in the Atlantic Coast of Costa Rica, says that a typical strategy was to “sell the best timber wood, prepare some land for maize or cattle grazing and wait for land prices to increase through speculation”. “In some cases families just have cattle on land to show ownership while they speculate with land prices. Land ownership is a long term investment, which is more important than the income from livestock as such” (Hijfte 1989: 16). Hence, Jones (1990: 2) is correct when he says that “Deforestation is often portrayed as an economic strategy, especially as a beef production strategy, a view which is only half correct. Deforestation is also
a title establishment mechanism, in which cattle serve primarily to
demonstrate active land use, and...only secondarily as a source of
income”.

Land Claims and Land Titling

To better understand why land speculation in Central America has led
to massive conversion of forest to pasture it is important to analyse the
legal and practical aspects of claiming and protecting land in the
region. Most land converted from forest to pasture over the last few
decades originally belonged to the government. These lands could be
legally claimed by farmers if they could show that they had been
occupying them for more than a certain number of years. Often the
laws required colonists to clear the forest in order to acquire posses-
sion rights and, in some cases, such as Costa Rica’s Law 11 of 1941,
permitted farmers to obtain title for larger amounts of land if it was for
pasture than if it was for crops (León et al. 1982). That same law stat-
ed that people wishing to obtain title to areas where the majority of the
land was covered in forest had to provide evidence of occupancy in the
form of a public document issued more than ten years earlier. “As
requiring a ten year old public document made lying about possession
of forested area much more difficult, people simply cut 50 per cent or
more of the forest cover” (Utting 1993 : 43).

Even when laws do not specifically require deforestation to
demonstrate land possession, land clearance and the subsequent
planting of pasture has still been one of the best ways to discourage
squatters and avoid the threat of agrarian reform action designed to
put “idle lands” into use (Place 1981; Edelman 1992; Salaverri 1992;
World Bank 1993)22. Thus, for example, many large landholders in
northern Guatemala who have not deforested all their land, have had
their forest areas invaded by squatters, while squatting is quite rare
where pastures have been planted. Edelman (1992) analysed all 13
squatter invasions involving over 500 hectares which occurred in
Guanacaste, Costa Rica, between 1963 and 1981 and found that
almost all cases involved heavily forested areas. Flores et al. (1994)
report that many farmers who are settling lands in eastern Nicaragua
that were abandoned during the military conflict are deforesting as
quickly as possible because they do not know if the land was previ-
ously owned and wish to improve their bargaining power in case the
original owners return by making “improvements”. If one simply
wants to show that his or her land is in use to guarantee tenure security while the land appreciates in value, grazing a few cattle on it is often the cheapest way to do so.

With the end of redistributive agrarian reform policies in Central America in the 1990s and recent modifications in the titling legislation in Costa Rica and Honduras designed to eliminate some of the incentives for deforestation, the incentive to convert forest to pasture to ensure tenure security may have weakened (Utting 1993; Richards 1994). Nevertheless, there is evidence that the changes in titling legislation have still had little effect on the behaviour of government agencies at the local level and in many agricultural frontier areas land clearance remains the only effective mechanism for claiming possession (Silviagro 1994; Hernández-Mora 1994).

There is also evidence that recent land titling programmes initiated by Central American governments to provide secure tenure rights for land occupants without legal title have fuelled the speculative drive for land. In 1993, many families were attracted to the agricultural frontier regions of Rio San Juan in Nicaragua by rumours that the government would give land title in those areas, and that the titled land could then be resold at a handsome profit (personal communication, Jorgen Strange-Hansen 1993). It has also been reported that passage of the 1972 Agricultural Modernization Law in Honduras which promotes land titling led many ranchers to claim new lands in the buffer zone of the Rio Jarquín Biosphere reserve in the hopes of being able to gain title (Richards 1994). As a World Bank study about Costa Rica, cited in Walker et al. (1993), expresses it “legalizing the purchase of illegally obtained lands encourages squatters”; and the best way for a squatter to show possession is by deforesting.

In the long run, land titling and government enforcement of individual property rights probably discourage land clearance aimed at improving tenure security and extracting natural resources before someone else can claim them. One reason cattle ranchers in Costa Rica have been willing to abandon their pastures and let them return to secondary forest may be that as individual property rights have become more secure they no longer fear they will lose their land if they leave it “idle”. To the (limited) extent that large landholders in agricultural frontier regions in other countries have tenure security and do not want to or cannot clear their land, this also provides some protection from deforestation by others. Legeay (1994), for example, in his detailed study of the area between El Remate and Melchor de Mencos
in Petén, Guatemala, identified certain areas which had not been deforested by squatters because they were reluctant to invade private land owned by large landowners. It is not clear, however, how these long-term benefits of land titling can be achieved without fuelling short-term land speculation.

Colonisation Schemes

Some governments have gone beyond simply permitting the privatisation of national lands for cattle raising to actively promoting it. By far the most important example of this has been in the Petén, Guatemala, where in 1971 the government passed a law authorising the Institute for the Promotion and Economic Development of the Petén (FYDEP) to sell areas of up to 675 hectares at low prices to ranchers (Latinoconsult 1974). Initially, the government sold land for prices ranging from $2 to $9 per hectare and even today land is sold for only between $22 and $42 per hectare, which is a fraction of market prices. Moreover, the government only requires a down payment of 10 per cent, with the remainder to be paid over twenty years at zero interest. Although there are no reliable figures on how much land has been sold in the Petén under this system, the Banco de Guatemala (1981b) estimated that by 1980 FYDEP had given titles for 700 large parcels for ranching and another 700 similar cases were being processed. Most of these lands were sold to entrepreneurs and professionals from Guatemala City and Coban, politicians and military officers from various regions, and medium-sized ranchers from the eastern departments of Chiquimula, Jutiapa and Jalapa. According to the law, purchasers were obliged to keep 20 per cent of the land received in forest, but this requirement was never enforced (Schwartz 1990). This colonisation programme was undoubtedly one of the major reasons why pasture area in the Petén rose from 32,000 hectares in 1964 to some 300,000 hectares in 1991 (AHT-APESA 1992, ICAITI 1974). In order to retain their lands, the Law required that land recipients begin “activities or investments” on the land within one year of receipt and not abandon it for more than six months (Valenzuela 1994).

Government colonisation schemes were also major forces behind the expansion of pasture area in Nueva Guinea, Nicaragua, northern Costa Rica, and the Northern Transversal Strip in Guatemala. When the Rigoberto Cabezas (PRICA) colonisation scheme first began in Nueva Guinea in 1965 with support from the Inter-American
Development Bank (IDB) over 75 per cent was covered with forest and there were less than 32,000 head of cattle (Merlet 1992). By the late 1970s, however, forest cover had shrunk to 27 per cent, much of it heavily degraded, and the cattle herd had risen to 180,000 (Jarquin 1990). A recent survey of ranchers in the area found that less than 5 per cent of the land on their farms still had forest (Pijnenburg and Martínez 1992).

Between 1974 and 1984, the Costa Rican government resettled 1,801 families on 36,815 hectares in Northern Alajuela, and in the following three years they resettled an additional 4,604 families on 45,460 hectares. The great majority of lands distributed were forest lands with poor soils that were subsequently converted to pasture (Girot 1989; Cruz et al. 1992).

More recently, following the end of the military conflict in Nicaragua, the government turned over 286,000 hectares of land to 11,645 former military personnel, anti-government insurgents and repatriated families (Ortega 1993). Most of this land was in the forested areas of eastern Nicaragua, and has since been rapidly deforested. To date, there are still few animals on these lands, since most land recipients have lacked funds to purchase cattle, but the majority plan to put cattle on their lands in the future (CIPRES 1992).

None of these colonisation schemes included a significant effort to encourage the incoming families to sustainably use forest products. For the most part, forests were viewed as a nuisance that should be removed as quickly as possible.

Agrarian Reform, Protected Areas, Indigenous Territories and Extractive Reserves

Not all government land policies have promoted forest clearing. The agrarian reform process which began in 1979 in Nicaragua, for example, was an important deterrent to private investment in cattle ranching and offered tens of thousands of families an alternative access to land rather than moving to the agricultural frontier (Jarquin and Videa 1990, Karliner 1985). In the early 1980s, most of the 930 ranchers in that country with farms large enough to be subject to the agrarian reform law responded to the threat of expropriation by reducing their herds (Biondi-Morra 1990). The lands expropriated were converted mostly to state farms which, at their peak in 1983, controlled 35 per cent of the country’s cattle and pastures, and for the most part these farms had
little interest in converting forest to pasture. After 1983, the area of state farms in Nicaragua declined, as the Nicaraguan government began transferring lands to production co-operatives and individual farmers. Large ranchers’ fear of expropriation, however, continued until at least 1989 and this inhibited pasture expansion.

Another (and currently more relevant) land policy which has discouraged the conversion of forest to pasture has been the creation of national parks and other protected areas. Costa Rica first established its national park system in 1974 (Lehmann 1991). The system expanded rapidly between 1974 and 1978 and continued to grow steadily. Currently almost 25 per cent of the national territory is in protected areas, of which more than two-thirds is forested (Peuker 1992). Overall, the Costa Rican government has been quite successful in protecting forested area in national parks from land clearance, although it has had less success in protecting forest reserves (Jones 1990). This, combined with the fact that there is no longer much forest outside protected areas, is one of the main reasons why deforestation rates have dropped precipitously in Costa Rica during the last five years.

Other regional countries have also expanded the amount of land in protected areas over the last decade, with the total in Central America rising from 9 per cent of the land in 1980 to 13 per cent in 1990 (Herlihy 1992). Most of this land is concentrated in six large protected areas of between 500,000 hectares and 1,500,000 hectares: the Maya Biosphere in northern Petén in Guatemala, the Rio Plátano River Biosphere in Honduras, the Bosawas and Indio-Maiz Reserves in Nicaragua, the Amistad National Park in Costa Rica, and the Darién National Park in Panama (Merlet et al. 1992).

Outside of Costa Rica, and to a lesser extent Panama, most national parks and other protected areas are subject to major encroachment problems (Boyer et al. 1980, Colchester and Lohmann 1993; Ortega 1993; Valenzuela 1994). In many cases the enabling legislation is incomplete and there are almost no resources available for enforcement. In addition, poverty levels in Guatemala, Honduras, and Nicaragua are much higher, implying that resource-poor families have few alternatives to squatting in protected areas. The protected status of these areas may be a partial deterrent to pasture expansion, but it is certainly not complete.

The problems governments face in controlling access to protected areas have led some groups to propose use of the military for this purpose; an idea generally supported by the armed forces themselves, who
see it as an opportunity to obtain resources and public support at a time when they are under strong pressure to reduce their budgets. The evidence regarding military intervention in protected areas, however, is mixed. On the one hand, military control over northern Peten prior to 1987, access to Darien Province in Panama prior to 1989, and access to parts of eastern Honduras in recent years succeeded in limiting land clearance in those areas and, in the case of Panama, the introduction of cattle. The Nicaraguan military also succeeded in removing most farmers from the agricultural frontier areas of Rio San Juan during the military conflict in that country between 1983 and 1989. On the other hand, military control over forest areas in these countries has typically been associated with high levels of corruption, lumber extraction and human rights abuses and may diminish public support for conservation policies by associating them with the (generally unpopular) military forces.

In addition to protected areas, per se, there has also been growing interest in providing tenure rights for indigenous people or improving existing rights (Davis and Wali 1993). It is argued that “Indian populations tend to be less destructive of natural resources than other groups in the region” (Herlihy 1992). While this may not always be true, it is the case that to date most indigenous groups in Central America have cleared little forest for pasture and are unlikely to do so in the near future (Godoy and Brokaw 1994).

Panama is the country which has moved the farthest in formalising indigenous land rights. Its Kuna Yala and Embera “comarcas” cover over 700,000 hectares, and have largely been able to avoid incursion by outside ranchers (Herlihy 1992). In Costa Rica, indigenous reserves covered some 278,000 hectares in the early 1980s. Small areas in eastern Honduras have also been titled to indigenous communities. In Nicaragua, the regional autonomy and Indian land laws also recognise that indigenous people have certain territorial rights, although there have been problems with incursions by outsiders.

There have also been some initial attempts in Central America to create extractive reserves or forest reserves, in which specific communities or groups of individuals are given exclusive rights to extract wood or non-timber forest products from an area. This, it is hoped, will give these groups an incentive to protect the lands under their control from land clearing by outsiders.

During the 1970s, the Honduran government supported the creation of resin-tapping co-operatives in the pine forests by assigning them tracts of forest and giving financial and technical support. Many of
these co-operatives disappeared, however, when the price of resin plunged in the mid-1980s (Hernández-Mora 1994).

Beginning in 1988, the Broadleaf Forest Project (PBL) in northern Honduras created ten “integrated management areas” (AMIs) of 1,000 to 5,000 hectares each in which groups of rural families were to develop forest management plans and be given exclusive rights to cut lumber, as well as receive technical and social services. Because of disputes over rights to the forests, conflicts within the groups over various issues, and weak technical and financial assistance, however, these efforts were only partially successful and in the last few years have been largely discontinued (Hernández-Mora 1994, Silviagro 1994).

In the buffer zone of the Indio Maiz biological reserve in Rio San Juan, Nicaragua, since 1993 a group of retired military officers, former anti-government insurgents and local farmers have received land, credit and access to lumber markets in return for agreeing to abide by strict land-use and forest-management regulations (Didier 1993). Over 5,500 square kilometres have also been set aside in the Uaxactun-Carmelita Multiple-use Reserve in Petén, Guatemala, specifically for local harvesters of xate palm, chicle gum and allspice (Heinzman and Rening 1988; Nations 1992b). In both the Nicaraguan and Guatemalan cases, however, it is still too early to evaluate the results of these efforts 27.

Finally, the unique experience of Darien province in Panama is also worth mention. For years Darien has had restrictions on cattle, designed to avoid the spread of hoof and mouth disease from nearby Colombia. “Within 25 kilometers of the Colombian border no cattle raising is permitted. In the rest of Darien, cattle raising is permitted on a limited scale, but no cattle may be transported out of the province” (Ledec 1992b: 177). Because of its interest in limiting the spread of hoof and mouth disease, the US government has provided substantial resources to enforce these restrictions. Some forests have been cleared for pastures anyway, but overall the result has been a lower amount of forest cleared by each settler family in Darien than in most other agricultural frontier areas 28.

Land Taxation

Theoretically, nationally mandated municipal taxes with higher rates for pasture and crop lands than for forest could be a major incentive to limit forest clearance where cattle grazing is only marginally prof-
itable. Similarly, land taxes could be used to discourage land speculation by raising the cost of using long-term landholding as a hedge against inflation or a source of capital gains, charging landowners for the costs of infrastructural improvement, and lowering the price of land (Strasma et al. 1987; Strasma and Celis 1992).

Nevertheless, the experience to date has not been encouraging. Throughout Central America, not only have rural land tax rates been low (typically below 0.5 per cent of assessed value), but governments have found it difficult to accurately assess land values and no country indexes assessed values for inflation (Strasma and Celis 1992). Land taxes require relatively complete and accurate cadastral information, which does not exist in most Central American countries, particularly not in agricultural frontier areas. In fact, Skinner (1991a, 1991b) argues persuasively that the administrative constraints on effective land-tax administration are so severe in most developing countries that they should be largely discarded for this reason alone.

Costa Rica and Guatemala have traditionally had higher taxes for “idle” lands, which might have promoted deforestation were it not for the fact that tax rates and enforcement have been so low. On the other hand, Costa Rica has also exempted tree plantations and watershed protection areas from land taxation but this is equally unlikely to have affected ranchers’ behaviour for the same reason (Strasma and Celis 1992). Costa Rican tax laws “contain provisions for automatically increasing assessments of properties whose value increases through public investment in roads and other infrastructure,...(but) the office charged with this responsibility was never established” (Edelman 1992: 251).

Perhaps with the recent strengthening of municipal governments in Central America resulting from national decentralisation policies, these local governments may take greater interest in land taxes to improve their revenue base and may develop a greater capacity to accurately assess local land values. Skinner himself acknowledges that local land taxes have been much more successful than national taxes. It will be difficult, however, to establish taxes high enough to significantly affect land use patterns without causing financial distress for cash-poor farmers on the agricultural frontier.

The Implications for Policy

Improving land-tenure security can reduce some incentives for deforestation. Nevertheless, policies which tolerate squatting on public
lands and allow squatters to obtain title for those lands are a major cause of deforestation. Government-induced settlement of agricultural frontier areas almost inevitably promotes forest clearance for pasture expansion. Protected areas, indigenous land rights and restrictions on cattle in buffer zones of protected areas can be (and have been) effective in limiting deforestation, but only where there are sufficient resources and political resolve to enforce these policies and the local population is brought into the process. Agrarian reform programmes can discourage investment in cattle raising and offer alternatives to land access for poor rural families other than migration to the agricultural frontier, but they can also favour deforestation if forest lands are subject to expropriation for being “under-utilised”. Land taxes which penalise deforestation could theoretically reduce land clearance, but are difficult to administer and, for all practical purposes, are still largely untested. Macro-economic policies which produce high and variable inflation rates, financial market policies which tolerate money laundering, and land purchases by governments and international agencies for above prevailing market prices favour rural land speculation, and thus, indirectly, forest clearing.

TECHNOLOGICAL CHANGE AND ENVIRONMENTAL DEGRADATION

Pasture researchers in Latin America have long argued that technological improvements in livestock production systems can reduce pressure on marginal lands at the agricultural frontier by making it possible to produce the same amount of meat and milk on less land (Serrão and Toledo 1992, 1993). This process should operate through market mechanisms. As the efficiency of cattle production on existing pastures increases, the price of meat and milk will fall by more than the productivity gains and this will lower the incentive to convert marginal lands into pasture. At the same time, many existing livestock systems in Central America are rapidly degrading the resource base on which they depend. This has major environmental consequences and could mean that more land is required to produce the same amount of meat and milk.

This section first examines the experience of technological change in Central American livestock and then the evidence regarding pasture degradation.
Technological Change

The post-war cattle boom in Central America was accompanied by important advances in technology including wider use of improved stock and artificial insemination, introduction of new pastures such as African Star grass (*Cyndodon plectostachyum*), increased use of veterinary inputs, fertilisers and herbicides, and large investments in infrastructure such as fences, ponds, and wells. “The combined effects of better breeds, better pastures, and better animal care produced younger, beefier, healthier animals for the packing plants... From the moment of conception to the final fattening before slaughter, not a single stage of the cattle-raising process was left untouched as herd and pasture management adapted to the needs of the world market” (Williams 1986: 95).

Technological progress was especially notable in Costa Rica, where specialised meat and milk production incorporating substantial input use became common. An average steer in Costa Rica’s North Pacific gained 13 kilograms per month in the 1970s, compared to 9 in the 1940s, and the period required to bring a steer to slaughter fell from between 42 and 60 months in the 1940s to between 24 and 48 months in the 1970s (León *et al.* 1982). Progress in milk production was sufficient for milk producers to improve their profitability during the 1970s despite falling real prices, due to better efficiency (Camacho 1989).

In general, however, progress in improving weight gain, raising milk production and reducing mortality was much greater than the advance in stocking rates, which was minimal (Alderman 1973; Heckadon 1984). With localised exceptions, most livestock systems continued to be extensive, with average stocking densities of only about one head of cattle per hectare (Ledec 1992b).

More recently, there has been a certain amount of technological regression, particularly with regard to beef production. Between 1975 and 1990, the amount of meat produced annually per head of cattle fell in Guatemala, Honduras and Nicaragua, and grew only moderately in Costa Rica and Panama. Average milk production per cow grew over 30 per cent in Costa Rica and Honduras, but fell precipitously in Nicaragua and was constant in Guatemala and Panama (FAO 1976, 1991). This stagnation is consistent with the general decline in profitability of livestock production during the period.

There is now sufficient technology available to double or perhaps even triple average stocking densities in Central America (Mercado
Even if this were to occur, however, it is unlikely that it would lead to a decline in deforestation. The experience of the last twenty years shows that pasture expansion in agricultural frontier areas can continue despite major declines in real beef and dairy prices. This is so because, as shown above, land speculation is often as important a factor in pasture expansion in these areas as the profitability of livestock itself, pastures are often the lowest cost land use which provides tenure security, and farmers in frontier areas typically have few viable production alternatives other than cattle.

Moreover, in the current context of increasing trade liberalisation it is far from clear that changes in the efficiency of regional livestock production will affect prices, which are now determined mostly in the world market. Von Amsberg (1994) has shown than when the demand for an agricultural product such as beef or milk is very elastic, as is now the case in Central America, technological changes which make livestock more profitable would unambiguously lead it to expand at the expense of forests.

A plausible argument can even be made that improved livestock technology applicable to areas with poor soils in the humid tropics is likely to increase deforestation, as it would make cattle raising in these areas more profitable. It is often argued that, by offering small farmers on the agricultural frontier a stable source of income, improved livestock (or agricultural) technologies could discourage them from selling their land and moving farther into the forest to clear new lands. Schneider (1994) has argued persuasively, however, that many of these farmers do not sell their land to ranchers because the lands are degraded and are no longer productive, but because large ranchers have a higher shadow price for the land than small farmers and thus are able to offer attractive sums of money. Humphries came to similar conclusions based on field work around La Ceiba, Honduras (Sally Humphries, personal communication). If this argument is correct, improved livestock technology, rather than reducing land sales and migration by small farmers, is likely to increase it if large farmers have earlier access to that technology.

Environmental Deterioration and Pasture Degradation

At the same time as talk continues about the prospect of improving livestock technology in Central America, many cattle-grazing areas in the region suffer from reduced pasture management and environmental
degradation. Previous reference was made to the conversion of pasture to brush, wooded areas and secondary forests. But even in many areas still in pasture, that pasture’s quality has been greatly reduced, particularly in areas with higher rainfall and steeper and less fertile soils.

A study in Boaco and Chontales in Nicaragua, the country’s most important cattle region, found that although pasture area remained constant at 2.1 million hectares between 1977 and 1987, due to the fall in pasture quality those 2.1 million hectares were equivalent to 1.2 million hectares of “good pasture” in 1977, but only 780,000 hectares of “good pasture” in 1987 (Hirvela et al. 1989). Another study of the Malacotoya watershed in Boaco in 1986 found that, of the total area in pasture, 33.8 per cent was in “degraded pasture with weeds” and 31.2 per cent in “pasture and scrub forest”. Less than 1 per cent was in dense pasture with few weeds (Tremblay and Malenfont 1992). Similarly, 32 per cent of the pasture in nearby Nueva Guinea was said to be seriously degraded in 1992 (Carlor and de Kroes 1994). At the national level, Holman (1993) estimates average real grass coverage in pasture areas in Nicaragua is currently less than 50 per cent because of the heavy presence of weeds.

Studies in Nicoya, Arenal-Tempisque, northern Alajuela, the central and south Pacific, and the Atlantic Coast of Costa Rica all point to a deterioration in pasture quality during the 1980s (Van der Weide 1986; Escuela de Ciencias Agrarias 1987; Holman et al. 1992; Utting 1993; Fallas and Morera 1993; Huising 1993). Severe pasture degradation has also been reported in Petén, Guatemala, Honduras and Panama (Alderman 1973; Boyer et al. 1980; Heckadon 1984; Stonich 1989; AHT-APESA 1992; Ledec 1992b; Colchester and Lohmann 1993).

Pasture degradation is the result of a combination of weed proliferation, soil compaction, constant burning of the land, erosion, lixivia- tion, nutrient depletion and over-grazing (Ledec 1992b; Place 1981). These processes are caused by social and environmental factors, which are often difficult to distinguish and are mutually reinforcing. Among the social factors that have contributed to reduced pasture management and over-grazing are the falling profitability of cattle raising, limited access to credit for cattle ranching, rising labour costs in Costa Rica, war-time labour scarcity in Nicaragua, physical insecurity due to military conflicts and banditry, and the concentration of cattle in areas near houses and towns to avoid cattle theft and kidnapping (Clerx et al. 1993; Namdar and Levard 1984; Bastiaans and Clemens 1986; Jarquin and Vide a 1990; Holman et al. 1992; Matus et al. 1993).
Environmental degradation has made certain pastures more costly and less profitable to maintain.

Environmental factors alone have also greatly reduced the carrying capacity of the pastures. Conversion from forest to pasture increases soil compaction, erosion, temperature variations and dry winds and decreases relative humidity, water infiltration and organic matter in the upper soil (Place 1981). Four or five years after first burning the forest in the humid tropics, the levels of phosphorous drop significantly (Jarquin 1990).

Much of the pasture land in Central America is “poorly adapted for cattle-grazing. Over grazing is common, and proper pasture management or field rotation is rarely practiced. Consequently pasture lands have problems of soil compaction and loss of capacity of infiltration and water storage, and obstruction of lateral drainage. During the rainy season, this causes floods in flatlands and promotes erosion in sloped areas... Whenever the pastures are extended on very steep slopes...furrows, ditches, sinkings and landslides are evident in the soil...With subsoils exposed and hardened, the soil develops a very low capacity to sustain nutrients for pastures after a few years. But even when exhausted, the lands are continually burned and grazed...so that the soil is persistently impoverished until it often finally becomes worthless” (Thrupp 1980: 45-46).

Heckadon (1984: 251) reports that, in Panama, “a recurrent phenomenon of the expanding cattle frontier is the gradual decline of the carrying capacity of the pasture lands. Whereas in the initial years a producer can keep one head of cattle per hectare, after five or seven years he will need two or three hectares to keep the same animal”. Likewise on the Atlantic Coast of Nicaragua, “the recuperation time of a new “India” pasture being grazed may be 45 to 55 days...Nevertheless, a pasture six to eight years old can take 70-90 days to reach the same height, without considering the decline in the total volume of forage due to the decrease over time in the number of plants per area and the lack of fronds” (Howard 1988). In Petén and other northern departments in Guatemala’ livestock productivity often plummets around seven to ten years after pasture establishment (Colchester and Lohmann 1993).

Soil erosion tends to be high in areas lacking vegetative cover, and many pasture areas have large exposed areas as a result of regular burning, over-grazing, soil compaction, and the characteristics of the grasses used. Jaragua and “india grass”, two of the most common
pastures in Central America, are particularly vulnerable to soil erosion since they grow in dispersed clusters (Carlor and deKroes 1994). Even during the rainy season, a Jaragua pasture still leaves 40-50 per cent of the land unprotected. Often, “the soil between the grass clusters is softened by the trampling of animal hooves and then washed away by water runoff by the rains” (Boyer et al. 1980: 21). In a survey of ranchers in Puriscal, Costa Rica, in the late 1970s, over half of those sampled reported both erosion and landslides in their pastures, and only one-fifth said that they had neither of these problems (Thrupp 1980).

Weed encroachment, particularly by gramineas which is difficult to control with herbicides, is another problem (Jarquin 1990; Colchester and Lohmann 1993). On the poor soils where many pastures are located, unless they are fertilised pasture production declines after a few years, less productive native gramineas replace the planted grasses and weeds eventually dominate (Paladines 1978; Toledo and Navas 1986). Pasture compaction by animals and over-grazing accelerate this process.

In Costa Rica and Nicaragua, a particular problem has been the rapid expansion during the 1980s of “ratana” grass (Iscahemum ciliare), a grass with limited nutritional value, at the expense of more productive pastures (Morales 1992; Pijnenburg and Martinez 1992) Ratana was first introduced by ranchers, but later grew out of control and began to aggressively invade new areas. This was said to have been the principal reason for an observed decline in per hectare milk production over a 13-year period in 44 ranches studied in Rio Frio and Sonafluca in Northern Alajuela (Holman et al. 1992).

Reducing pasture degradation is important not only for increasing the productivity on existing pastures but also for reducing the incentive for “nutrient mining” (Schneider 1994). There is evidence that ranchers often prefer to deforest new areas to take advantage of their initially high fertility levels, rather than recover recently abandoned pastures which may have lower fertility and greater weed infestation (Federico Holman, personal communication). If cost-effective techniques are found to avoid pasture degradation this could reduce the preference for clearing primary forest (although it would not eliminate other reasons for clearing that forest).

There is scattered evidence that some larger ranchers have begun to take measures to reduce degradation through the introduction of new pastures and better pasture management. In the Petén, for example,
these ranchers have planted approximately 15,000 to 20,000 hectares of improved pastures in recent years (Kaimowitz 1995). Such efforts, however, still seem to be relatively uncommon.

The Implications for Policy

Support for livestock research and extension is unlikely to significantly reduce deforestation in agricultural frontier areas, and could even lead to an increase. There is a great need, however, to better understand the processes of pasture degradation in Central America, and technological change can reduce the environmental degradation associated with existing pastures.

THE ROLE OF FORESTRY POLICY

Another view of why farmers have cleared forest land in Central America is that government policies have reduced the value of forest land and forest products, and hence the potential profitability of maintaining the land in forest (Stewart 1992; Kishor and Constantino 1993; World Bank 1993; Stewart and Gibson 1994). These authors argue that the use of log export bans, low public expenditure on forestry, restrictions on cutting timber, and cumbersome requirements for forestry management plans have discriminated against the forestry sector and made forestry less profitable compared to cattle raising and crop production.

Most forestry laws in the region traditionally gave the government total control over all trees, commercially planted or otherwise, and required a cutting permit that might or might not be granted. This made plantation forestry risky and sometimes led farmers to rid themselves of their trees as soon as possible to avoid controls (Stewart 1992). In Honduras the problem was even worse. Between 1973 and 1992 all trees were formally owned by the national government, which paid landowners only a small price for each tree harvested from their land (Walker et al. 1993).

All the governments have attempted to control deforestation by requiring permission from public forestry agencies to clear land. They have been universally unsuccessful, however, and in most countries more than half of all land clearance has occurred without government consent.
Stewart and Gibson (1994) estimate that if there were no policy distortions both management of native forests and forest plantations would currently yield higher returns per hectare of land than cattle in Costa Rica; and they imply that one simply has to remove these distortions and ranchers will stop deforesting and start planting trees. Kishor and Constantino (1993), on the other hand, affirm that even without trade distortions cattle raising would still provide higher incomes than continuous management of natural forests, although they agree with Stewart and Gibson that forestry plantations would be more profitable than ranching.

Several recent studies using net present value criteria have shown that secondary forest regeneration is probably already profitable in many of the more humid areas of Costa Rica if left for periods ranging from 15 to 40 years (Herrera 1990; Coseforma DGF-GTZ 1993; Guillén 1993). The authors of these studies admit, however, that most existing secondary forests are the result of pasture or crop abandonment, rather than a conscious effort to produce forest products. This is consistent with a recent survey by Ortiz (1994) of 32 ranchers in Northern Costa Rica who own secondary forest areas. In this survey, none of the ranchers questioned stated that he/she had allowed their pastures to revert to secondary forest because of the value of the wood produced. However, over one-half of the ranchers noted that, despite the fact that the land had been “abandoned”, it continued to grow in value because of increases in land prices and wood production. One-third of the ranchers interviewed by Ortiz expected to allow all of their secondary forest to regenerate indefinitely, 30 per cent said they would leave part, and 25 per cent expected to clear all of it.

The basic argument that policies which lower the value of timber discourage reforestation and secondary forest regeneration is undoubtedly valid. Nevertheless, in addition to comparing the net present value of cattle versus forestry, policy analysts must also consider the other reasons why landowners have preferred cattle over other investment options such as limited labour requirements, low supervision costs, ease of sale on short notice, and the advantages of cattle as a way to demonstrate land possession. Different types of forestry management have some of these attributes, but not necessarily all of them. Probably the only group of ranchers for which net present value per hectare is the over-riding factor in defining land use are the investment ranchers. This implies that improvements in
timber prices alone are unlikely to eliminate all conversion of forest to pasture, although they may reduce it.

There has also been a confusion in much of the literature referring to natural forest management between incentives which will promote sustainable management of natural forests, secondary forest regrowth and new forest plantations, and those that may encourage rapid extraction of valuable timber, thus leaving a forest of greatly diminished commercial value which would be subject to clearing. Von Amsberg (1994) has shown unambiguously that a higher timber price, ceteris paribus, leads to a smaller area of biologically mature and previously unclogged forests. “This result suggests that measures [such as export restrictions in the timber producing countries] to reduce the producer price for timber would be suitable as a second best policy to reduce the pressure on unmanaged forest frontiers” (von Amsberg 1994: i). While it is true that high forest product prices would be necessary to induce landowners to manage existing forests sustainably, there are still very few cases in the world of sustainably managed, tropical broad leaf forests. Policies which favour reforestation and secondary forest regeneration by increasing timber prices and giving individual clear property rights over timber may at the same time encourage clearance of primary forests.

In recent years, Costa Rica has spent large sums of money on fiscal incentives and subsidies for reforestation, at a rather high cost per hectare reforested, and other countries are considering greatly increasing their own incentives (Segura 1992). Typically, these subsidies cover a large percentage of the costs of planting new trees. Even greater environmental services could be obtained, however, by promoting secondary forest regeneration through research, marketing support, credit facilities and small cash payments. Secondary forests are more biologically diverse forests and often have lower levels of erosion than tree plantations. They are also easier to manage, respond well to silvicultural treatments, and many of the trees for timber have become commercially attractive (G. Budowski, personal communication). This alternative would probably be much cheaper, per hectare, than current reforestation incentives, since farmers would only need to be paid sums similar to or less than the small amounts of net income generated by livestock per hectare, particularly if these payments were accompanied by guarantees of tenure security. These efforts would only accelerate pre-existing trends, and are compatible with farmers’ objectives and resource endowments. Unless such measures are taken,
much of the current brush and secondary forest may be cleared before reaching maturity.32

The Implications for Policy

Policies which increase the price of forest products and provide clear individual property rights for tree ownership simultaneously favour reforestation, secondary forest regeneration, and more rapid lumber extraction from existing forests. The relative importance of these effects will vary in each case, and little is known about the magnitude of likely policy responses. Past government efforts to regulate forest management have largely failed and the institutional capacity for such regulation in Central America is weak. One efficient way to increase forest-related environmental services may be to provide incentives to ensure that existing secondary forests are allowed to grow to maturity and to stimulate more ranchers to “abandon” marginal forest lands. This could be used along with other incentives such as technical and market information, access to long-term credit and payments for carbon sequestration that could be made available to the forestry industry as a whole.

POLITICAL INSTABILITY AND VIOLENCE

Instability and violence have discouraged investment in cattle and limited pasture expansion in Nicaragua and parts of northern Guatemala at different times. The herds of Costa Rica and Honduras grew as cattle were moved from Nicaragua to those countries. This section looks briefly at this issue.

The Role of Violence in Nicaragua

The Nicaraguan civil war during the late 1970s reduced the national cattle herd by between 25 per cent and 35 per cent as a result of direct war losses, indiscriminate slaughter and live cattle exports to Costa Rica and Honduras (Cajina 1986). The final 1979 insurrection itself led to the loss of an estimated 100,000 head of cattle (Biondi-Morra 1990). Beef exports jumped 30 per cent in 1978 and an additional 35 per cent in 1979 as large ranchers sought to liquidate their assets, and this further reduced the cattle stock. Honduran statistics show an increase of 200,000 cattle slaughtered in 1979 over the previous year and a rise of
372,000 head compared to 1977, which can only be explained by wide-scale contraband imports of cattle. Similarly, Solera-Ruiz (1981) estimated that unrecorded cattle exports from Nicaragua to Costa Rica were between 48,000 and 65,000 head in 1978.

After 1983, an upsurge in anti-government violence once again discouraged cattle production. Between 1983 and 1989, expansion of the agricultural frontier came to a virtual standstill, and tens of thousands of families fled or were forcibly resettled from frontier areas (Prado et al. 1991; Maldidier 1993). As a result, by 1988, the Nicaraguan government estimated that 300,000 hectares of farm land, 5 per cent of all land in farms, had been abandoned due to the war (Gutierrez 1988). Perhaps as much as 50 per cent to 60 per cent of the national cattle herd was located in areas affected by the war (Jarquin and Videa 1990).

The direct losses to the livestock sector provoked by the military conflict between 1980 and 1985 have been calculated at $5.7 million (Biondi-Morra 1990). There were also large indirect losses as a result of the heightened risk of investment, military-related labour shortages, over-grazing in areas close to the towns, and loss of access to pastures in humid areas used to feed livestock during the dry season. On the other hand, the abandonment of huge agricultural frontier areas also brought about an impressive regrowth of secondary forest on former crop and pasture lands.

The formal end of the military conflict in 1990 brought with it the return of thousands of displaced families to the agricultural frontier, but has not meant a complete end to rural violence. Armed bands took advantage of the chaotic situation after the 1990 elections to steal cattle on a large scale, particularly from state farms and co-operatives (Clerx et al. 1993). Land markets in the interior became more active in 1990 and 1991 after the war ended, but then were virtually paralysed again, due to continued problems of insecurity. Frequent assaults and kidnappings and ranchers’ inability to take effective possession of lands they purchase have continued to make it unappealing to buy land or locate cattle in inaccessible areas (Stanfield 1992; Matus et al. 1993; Siles and Hernandez 1994).

The Role of Violence in Guatemala

Violence in Guatemala also had a major impact on the cattle sector, particularly in the Petén and Alta Verapaz. After 1980, growing violence in the Petén associated with Guatemala’s internal military conflict
substantially reduced the number of ranchers interested in purchasing land from the government and led many to abandon their lands or to sell them for low prices. Violence was particularly heavy between La Libertad and the Usumacinta river and near Poptun and Dolores. This situation continued until 1987 or 1988, after which the level of violence declined markedly. Since that time guerrilla organisations have continued to extort contributions from ranchers in many areas, but these have rarely been high enough to affect their profit margins.

In Alta Verapaz, the northern cattle-raising municipalities of Chisec and Cobán were practically abandoned after 1982 due to the military conflicts and only recently have ranchers returned and begun to invest again. In contrast, ranchers in municipalities further east, such as Chahal and Fray Bartolomé de las Casas, which were relatively peaceful during the 1980s currently face serious problems of theft, kidnapping and extortion by anti-government insurgents.

Had it not been for the military conflict in the 1980s deforestation in the Petén and Alta Verapaz would have probably been much higher. Since the levels of violence have subsided in the Petén investments in cattle and land prices have increased rapidly. Cattle grazing in Northern Alta Verapaz, on the other hand, has been slow to recover, due to poor maintenance of the Northern Transversal Strip highway constructed in the late 1970s, especially poor soils and high rainfall, and persistent security problems.

The Implications for Policy

No one would suggest that military conflicts and banditry should be encouraged in order to reduce deforestation. These factors must be considered, however, when analysing trends in deforestation rates, and policy makers must be aware that, unless no measures are taken to prevent it, less violence in agricultural frontier areas is likely to lead to rapid deforestation.

CONCLUSIONS AND POLICY RECOMMENDATIONS

While deforestation continues to be a very major problem in Central America, it declined significantly in the late 1980s. Unfavourable market conditions, reduced access to credit, higher interest rates,
expansion of protected areas and military conflicts were all important in this decline. And while there is little hard evidence on the subject, deforestation by entrepreneurs and large ranchers living outside agricultural frontier areas probably decreased more as a result of the changes in market conditions and credit than did deforestation by ranchers living in agricultural frontier areas.

The clearance of forests for pasture expansion which has occurred over the last fifteen years can largely be attributed to attempts to claim public lands and improve land-tenure security, declining transportation costs resulting from public road construction, government colonisation programmes, and the specific characteristics of cattle raising which make it quite attractive to farmers with land but little capital, labour, management skills and access to markets.

This pattern, in fact, is quite consistent with recent experience in the Brazilian Amazon (Hecht 1992; Moran 1993), where deforestation rates have declined since 1987 as a result of the termination of credit and fiscal subsidies, economic recession and other policies. But after initially falling, deforestation rates in Brazil may have now reached a plateau, with most of the land clearance being carried out by small- and medium-sized farmers who are less affected by changes in government subsidies or the price of livestock products.

This implies that to bring deforestation rates down further, whether it be in Central America or other areas of tropical Latin America, will require going beyond the elimination of subsidised public credit and fiscal incentives for cattle ranching, although such measures are appropriate. Given what has been shown about the limited responsive of forest clearance to changes in livestock product prices, trying to artificially lower the prices of livestock products through consumer boycotts or other measures is also unlikely to succeed. Stimulating improved livestock technology and eliminating policies which depress timber prices have a number of virtues in their own right, but will probably not significantly reduce the clearing of natural forest, and could even increase it.

To further reduce deforestation in Central America below its current level will require directly addressing the issues of road construction, land tenure and land-use regulation. Road construction and improvement in most forest areas should be discouraged. Governments must decide which public lands they do not want to pass into private hands and strictly enforce those decisions, and the incentives must be eliminated for clearing forests to claim land and improve
tenure security. These governments cannot be realistically expected to maintain control over all current public lands, but they should attempt to keep control of priority areas. Protected areas must really be protected, while at the same time establishing the best possible relations with neighbouring communities. Indigenous land rights should be expanded. Continued experimentation is also necessary to find common property regimes appropriate for forest management by non-indigenous people. Cattle ranching should be restricted in certain buffer zones around protected areas. Land taxes designed to discourage forest clearance could be trialled through pilot projects.

Forestry policy in general merits more attention and resources than it has received in the past. If landholders are ever to seriously consider leaving more of their land in forest they will need more information on market and technical opportunities, less cumbersome forest management regulations, access to credit and, in some instances, transfer payments which reflect the environmental services provided by forests which are not received by individual owners.

Many of these policies involve a greater role for government or for non-governmental agencies which carry out public functions and may require hiring additional government personnel. In the current circumstances where the armed forces of several Central American countries are seeking new roles in post-war societies there may be some temptation to assign them to enforce property rights and guard protected areas. This may be appropriate in certain cases, but brings with it serious risks which must be considered, and should generally be viewed as an option of last resort.

Two final policy areas which merit greater attention are research and extension efforts designed to reduce pasture degradation and incentives for promoting secondary forest regeneration and sustainable utilisation. Unlike the Amazon, there has been almost no research on the serious problems of pasture degradation in Central America, and efforts to reduce such degradation could greatly diminish environmental deterioration in large areas of the region already in pastures.

More needs to be understood about the economic, social and biological aspects of secondary forest regeneration. But it would appear that, given the fact that ranchers have already begun to abandon large areas of marginal pastures, there may be great opportunities to turn these areas into permanent or semi-permanent “set-asides” at limited cost. This could offer significant benefits with respect to carbon sequestration, soil and water protection, biodiversity and the availability of forest products.
The author gratefully acknowledges comments by and discussions with Gerardo Budowski, Neil Byron, Ronnie de Camino, Marc Edelman, Sam Fujisaka, Alicia Grimes, Peter Hazell, Federico Holman, Elizabeth Katz, Timothy Kelly, Manuel Paveri Anziani, Sara Scherr, Denise Stanley, Lori Ann Thrupp, Stephen Vosti, and Satya Yadav. Maria Ileana Mora, Jorge Rodriguez, and William Sunderlin greatly assisted in obtaining and organising livestock and forestry statistics and references. Earlier versions of this paper were presented at the economic policy and natural resource management masters programmes at the National University (UNA) of Costa Rica and the Central American Institute of Business Administration (INCAE), at the International Food Policy Research Institute (IFPRI), and in a workshop of Rockefeller Foundation social science fellows at the International Livestock Center for Africa (ILCA) in Addis Ababa, Ethiopia, where the author received useful questions and comments. Portions of the study were financed by the Deutsche Gesellshaft fur Technische Zusammenarbeit (GTZ), the Inter-American Institute for Cooperation in Agriculture (IICA), the United States Agency for International Development (USAID), and the World Bank, without whose support the study could never have been carried out. IFPRI provided an office and good company during preparation of the final draft. The author, however, is solely responsible for the material presented.

2 The fact that carbon sequestration and biodiversity conservation offer substantial “spill-over” benefits to countries outside Central America, which may even be higher than the benefits these environmental services provide to the region itself, undoubtedly raises the issue of international compensation for the incremental costs of these national conservation efforts. However, this issue is beyond the scope of this paper.

3 For purposes of this study, Panama is considered part of Central America.

4 The full Guatemala study has been written up in Kaimowitz (1995).

5 The discussion of the specific characteristics of livestock has been incorporated into the section on the types of livestock ranches.

6 The most recent available estimates of deforestation in Central America based on aerial photographs or satellite images cover the following

7 The General Forestry Directorate (DGF) of the Costa Rican government, however, estimates that the area under secondary forest is only 200,000 hectares. The difference between these two estimates may be due to the definitions used (Núñez 1993).

8 High incomes by local standards may still be low by international standards. For example, a recent survey of 340 ranchers in Nueva Guinea, Nicaragua, found that even the most wealthy 5 per cent of those surveyed, who had an average of 110 hectares of land and 90 head of cattle, only earned average gross annual incomes of $8,000 (Pijnenburg and Martinez 1992).

9 Currently, a new chain saw sells for around $1,500, much more than most small farmers can afford.

10 These percentages sum to over 100 per cent because farmers were permitted to give more than one reason for switching to livestock.

11 Honduras was a partial exception to this. There, monopsonistic control of the export slaughterhouses apparently kept ranchers from receiving many of the benefits of rising international prices (Slutsky 1979).

12 This does not imply, however, that without exports the livestock sector would necessarily have stagnated. Panama, for example, had minimal beef exports but one of the highest growth rates in cattle population during the 1960s.

13 In Honduras, producer prices for milk dropped by one-third after the government reduced milk import tariffs in April 1993 (Núñez and Galetto 1993).

14 Central American governments also support livestock through subsidised animal health services and tax incentives, but these incentives have generally been much less significant than credit and road construction.

15 In Costa Rica, livestock credit peaked at 58 per cent of agricultural credit in 1974 and, during most years between 1973 and 1980, more credit went to livestock than to crops (Place 1981; Aguilar and Solis 1986).
16 In Honduras, for example, in the mid-1970s some 200 ranchers received 45 per cent of all public-sector livestock credit (Slutsky 1979). In the World Bank PRODEGA livestock project in Guatemala, 232 ranchers received loans averaging $24,600 each, as well as free technical assistance which cost the project $4,823 per farm. These ranchers’ average herd size was 162, at a time when there were only 2,511 ranchers in the country with over 100 head of cattle (World Bank 1978; RUTA 1993). Seventy-two per cent of the credit provided by the World Bank’s Third Livestock Project in Panama went to ranchers with over 150 hectares (World Bank 1991).

17 Aguilar and Solis (1988) studied some 109 large- and medium-sized ranches in Costa Rica in the mid-1980s and found that 75 per cent of the large farms and 65 per cent of the medium-sized farms which had purchased land did so with money from public loans. They also found that 30 per cent of 291 cases of investment credit for livestock given between 1973 and 1978 were used for land purchases, and an additional 29 per cent had “mixed uses”, which may have included land purchases. In Panama, the public livestock credit programmes explicitly prohibit the purchase of land with credit funds. Nevertheless, because of fungibility, many ranchers have used long-term, low-interest governmental bank credit to expand their land holdings (Ledec 1992).

18 Flores et al. (1993) report that in the 1970s public credit agencies in Nueva Guinea, Nicaragua, made more credit available to ranchers who deforested large areas because this was taken as evidence that they were hard workers.

19 Multiple regression models using national data for Costa Rica from 1967 to 1976 estimated that a 20 per cent increase in credit for beef cattle would only increase beef production by 7 per cent (Solera-Ruíz 1981).

20 The Nicaraguan government recently signed a 22 million dollar loan agreement with the Central American Bank for Economic Integration (BCIE) which could significantly increase deforestation in that country (Siles and Hernández 1994).

21 Similar results have been found in the Brazilian Amazon (Browder 1988; Hecht et al. 1988), although they have been partially disputed by Mattos and Uhl (1994).
22 The Honduran agrarian reform law exempted all pasture lands from potential expropriation. The 1962 Panamanian agrarian reform law specified that land served a socially useful function if it was in pasture, crops, tree plantations or urban construction; otherwise it was considered “idle” (Graciela 1989).

23 Southgate et al. (1991) also found that deforestation was lower in agricultural frontier municipalities in Ecuador that had higher percentages of titled land.

24 Despite the favourable terms under which the Guatemalan government made land available in the Petén, many purchasers never fulfilled the conditions necessary to become owners. Often ranchers only went through the first few steps in the titling process, failed to make regular payments for their land, never invested on it, or abandoned it for long periods of time.

25 Most land recipients were never legally eligible to purchase land in the first place, since according to the law to buy land a rancher could not own more than 45 hectares of land outside the Petén. Thus, even today the legal means exist in Guatemala for the government to reclaim large amounts of land transferred to large ranchers.

26 This process of privatisation, which greatly accelerated after 1990 and culminated in the disappearance of the state-farm sector, was in many instances accompanied by widespread slaughter of cattle.

27 For a well-argued negative assessment of the prospects for extractive reserves in Central America see Edelman (1994).

28 Due to lack of enforcement, however, a similar Nicaraguan government prohibition of extensive cattle ranching in the buffer zone of the Indio-Maiz buffer zone in Nueva Guinea and Río San Juan has had little impact (Flores et al. 1994).

29 Nevertheless, a recent study by Hernández-Mora (1994) of the El Recreo community in Atlantida, Honduras, found that municipal officials claimed to charge higher land taxes for land with perennial crops than for land with annual crops and no taxes for land with forests, but landowners were unaware of this distinction and complained that they were being forced to pay taxes on areas which they are not allowed to deforest and hence was “giving them nothing”.
30 Improved livestock systems, if they were more labour intensive, could also theoretically diminish land clearance by limiting the amount of labour available for that activity; however, there is little empirical evidence available to assess whether this might really be likely to occur.

31 About one-third said they had abandoned the pasture because it was unprofitable, half mentioned that the land was not suitable for pasture, and 15 per cent said they planned to put the land to an alternative use.

32 Admittedly, however, not all lands can quickly revert to commercially attractive secondary forests. This depends on the availability of seeds, soil and climate conditions, and other factors (G. Budowski, personal communication). Moreover, this argument in favour of incentives for secondary forests does not imply that incentives for reforestation or management of existing forests is never appropriate.

33 Almost all of the 25 ranchers interviewed recently by Rosario Ambrogio in Boaco, Chontales and Nueva Guinea reported having lost cattle and having to abandon pastures during the 1980s due to the military conflicts.
REFERENCES

CIERA (Centro de Investigaciones y Estudios de la Reforma Agraria). 1983. *Informe de Nicaragua a la FAO*. Managua: CIERA.

IICA (Instituto Interamericano de Cooperación para la Agricultura). 1993a. Estudio de la cadena de la ganadería e industria de la came en Panama. Unpublished manuscript, Panama.

Jarquín, J. and L.M. Videa. 1990. Los sistemas de producción ganaderos en la V región y el impacto de las políticas económicas hacia el sector. Departamento de Economía Agrícola. UNAN, Managua.

This study analyses seven factors used to explain the conversion of forest to pasture in Central America between 1979 and 1994: 1) favourable markets for livestock products; 2) subsidised credit and road construction; 3) land tenure policies; 4) limited technological change in livestock production; 5) policies which reduce timber values; 6) reduced levels of political violence; and 7) characteristics specific to cattle which make conversion attractive.

Deforestation rates in Central America declined in the 1980s, but remained high. After expanding rapidly, cattle population and pasture area have stagnated, although they continue to expand on the humid tropical frontier. Strong markets for beef and dairy products stimulated livestock expansion and deforestation in the 1960s and 1970s after which markets for livestock products became less favourable, which led to lower investment.

During the 1960s and 1970s large government subsidies for cattle raising encouraged forest conversion. Since then credit subsidies have been reduced, but subsidised public road construction continues, causing widespread deforestation. Land speculation is another reason why pasture expansion has continued in agricultural frontier areas.

There is little evidence that technological progress in livestock production reduces deforestation. Nor is it clear that removing policies which discriminate against forest production would have a major positive effect in this regard.

The author proposes: 1) restrictions on road construction and livestock credit in agricultural frontier areas; 2) increased enforcement of land-use restrictions in protected areas; 3) the expansion of land rights for indigenous peoples; 4) stronger restrictions on the titling of natural lands by large landholders; 5) pilot efforts to establish local land taxes with higher rates for pasture and crop lands than for forest; and 6) economic incentives for secondary forest regeneration and research on pasture degradation in Central America.