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Concluding remarks
Asmentioned earlier, there are twomain, but notmutually
exclusive, models for the mechanism by which paramuta-
tion occurs. The data presented in these recent papers
favour the role of RNA in paramutagenic silencing. In a
nutshell, the paramutagenic, transgenic allele Kittm1Alf is
associated with the presence of vast numbers of abnormal
RNA molecules in the sperm. The injection of this RNA
is sufficient to induce paramutation in the absence of
Kittm1Alf. Consistent with this, an RNA-dependent RNA
polymerase has been found to be required for paramuta-
tion in plants. Paramutation is usually associated with
changes in chromatin structure and often occurs at loci
that contain repetitive elements. The silencing of these
repetitive elements probably occurs through an RNA-
mediated silencing pathway, and RNA in the germline is
associated with proteins from families known to be
involved in chromatin alterations. These reports provide
strong, albeit circumstantial, evidence for the involvement
of RNA in paramutation, indicating that RNA has yet
another role in the biology of higher organisms.
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Genome Analysis
I am what I eat and I eat what I am: acquisition of
bacterial genes by giant viruses
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Giant viruses are nucleocytoplasmic large DNA viruses
(NCLDVs) that infect algae (phycodnaviruses) and amoe-
bae (Mimivirus). We report an unexpected abundance in
these giant viruses of islands of bacterial-type genes,
including apparently intact prokaryotic mobile genetic
elements, and hypothesize that NCLDV genomes
undergo successive accretions of bacterial genes. The
viruses could acquire bacterial genes within their bac-
teria-feeding eukaryotic hosts, and we suggest that such
acquisition is driven by the intimate coupling of recom-
bination and replication in NCLDVs.
Introduction
Nucleocytoplasmic large DNA viruses (NCLDV) constitute
a diverse group that infects a wide range of eukaryotic
hosts including algae (phycodnaviruses), protists (Mimi-
virus) and metazoa (poxviruses, African swine fever virus,
iridoviruses). They either replicate exclusively in the cyto-
plasm or begin their cycle in the host nucleus before
passage into the cytoplasm [1]. Consistent with this way
of life, they carry most of the genes necessary for DNA
metabolism, replication and transcription in addition to
those involved in virion assembly.

Giant viruses are thought to be monophyletic based on a
common set of 30 homologous genes [1]. The recent sequen-
cing of giant NCLDV representatives with genomes of
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between 330 kb (phycodnaviruses) and 1.2 Mb (Mimivirus)
indicated that their genomic repertoire is large compared
with other DNA viruses (30–200 kb) and equivalent to that
of several parasitic bacteria [2]. Most giant virus genes are
lineage-specific and globally their origin is poorly under-
stood. It was recently observed that their genome size is
correlated with the number of paralogous genes [2,3],
suggesting frequent successive gene duplications during
giant virus genome evolution.

Despite much effort, we are still unable to place viruses
on the universal tree of life and their origin remains
speculative. Interestingly, almost all giant virus lineages
carry genes with bacterial and eukaryotic homologs [1,4].
These genes could testify to an ancient origin predating the
divergence of the three kingdoms of life. Each giant virus
lineage would then have retained a diverse assemblage of
genes resembling bacterial or eukaryotic genes [5]. Alter-
natively, giant viruses could be regressive or highly
derived cells that have undergone a simplification process
[5]. These explanations contrast with the traditional view
of evolution in which virus and phage are thought to
have evolved mainly by accretion of genes from disparate
sources [6,7]. However, analysis of the Mimivirus genome
revealed that most genes homologous to eukaryotic genes
are only distantly related to those of their host (an amoeba)
[8]. This contradicts the notion of numerous lateral gene
transfers with its amoebal host. We propose that NCLDVs
can acquire foreign DNA sequences, and that some, as a
result of their lifestyles, have acquired significant numbers
of bacterial genes.

The distribution of bacterial-like genes in giant viruses
The presence of bacterial-like genes had previously been
documented in both mimiviruses and phycodnaviruses
[1,4]. We were interested in the distribution of these genes
across the respective genomes to gain insight into the
evolution of the viral genomes (e.g. contiguous groups could
reflect their inheritance as a block).

To identify bacterial-like genes, we used BLAST
analysis with a lower cut-off of an expected value (E)
<10�5. Using this cut-off, most of the bacterial genes
identified had no eukaryotic homologs or eukaryotic genes
were so distantly related that no ambiguity was possible.
For Mimivirus, 78 out of 96 bacterial-like genes (i.e. 81%)
were unambiguously bacterial in origin with no, even
distantly related, eukaryotic homologs (Online Supple-
mentary Material Table S1). Between 48 and 57 bacter-
ial-like genes were also identified in each of the three
Chlorella phycodnaviruses. For Chlorella virus NY2A,
87% of these are unambiguously of bacterial origin (Online
Supplementary Material Table S2). Only a small fraction
of the identified bacterial-like genes have weak statistical
support owing to the lack of resolution of the phylogenetic
tree.

The bacterial-like genes showed a strong bias toward
‘DNA replication and repair’ (48% of proteins for the NY2A
phycodnavirus and 20% in Mimivirus) and ‘cell envelope’
(14% for the NY2A phycodnavirus and 12.5% for Mimi-
virus) in COG (clusters of orthologous groups) functional
gene categories (Online Supplementary Material Tables
S1, S2).
www.sciencedirect.com
Coinheritance of bacterial-like genes

Three consecutive reading frames (L136, L137 and L138)
carried by Mimivirus are syntenic with three frames in
Clostridium acetobutylicum. L136 encodes a sugar transa-
minase (COG0399) homologous to gene CAC2350 in C.
acetobutylicum (BLASTP E-value = 10e�19) (Online Sup-
plementary Material Table S2). L137 encodes a glycosyl
transferase (COG0443) homologous to CAC2349 (BLASTP
E-values = 10e�37), whereas L138 has weak similarities
(BLASTP E-values > 10e�5) with CAC2348 (unknown
function). This suggests that these bacterial-like genes
were inherited as a short contiguous block.

In contrast to the genome of Paramecium bursaria
Chlorella virus 1 (PBCV-1), the NY2A genome has 13
additional bacterial-like genes including seven DNA
methyltransferases. The genome of NY2A encodes at least
14 DNA methyltransferases. At least two are associated
with a site-specific restriction endonuclease resembling the
arrangement of bacterial restriction or modification sys-
tems, again implying coinheritance. Many phycodnavirus
bacterial-like genes encode functional proteins [4] suggest-
ing that most have been recruited and are maintained by
the virus, possibly to fulfil viral functions.

Genomic location of bacterial islands in giant viruses
The bacterial-like genes are not randomly dispersed but
tend to be localized in specific genomic regions toward the
endsof thegenome,possibly in the formof islands (Figure1).
In Mimivirus they are positioned within the first and last
250 kb of the genome. In contrast, NCLDV core genes and
genes with eukaryotic affinities are localized toward the
middle of the genome. In phycodnaviruses, bacterial-like
genes are more dispersed but still show this tendency. As in
most viruses, there is a greatabundance of orphangenes but
these are distributed relatively evenly over the entire gen-
ome (Figure 1). It is probable that a fraction of these will
eventually be found to derive from unidentified bacterial,
viral or eukaryotic sources.

The GC skew, which in bacteria can be associated with
the direction of replication or imposed by the polarity of
the coding and noncoding strands [9], seems to change near
the boundaries between the proposed terminal regions
of bacterial-like genes (Online Supplementary Material
Figure S1; D.H. Evans, pers. commun.). This could imply
a different source for these genes from the viral and
eukaryal-like genes or that these regions exhibit properties
different to the rest of the genome, such as replication or
transcription.

Interestingly, the genomes of Mimivirus and
phycodnaviruses are terminally redundant (i.e. carry
duplicated regions) [3]. As has been suggested for vaccinia
viruses [10], insertion of foreign genes into a resident gene
in the terminally redundant region would leave the other
resident copy (located at the other end) intact. This might
favour viral derivatives in which inserted DNA occurs
within one or the other end.

Detection of prokaryotic mobile elements in giant
viruses
We also detected numerous mobile genetic elements
previously thought to be specific to prokaryotes. These



Figure 1. Genomic map of Mimivirus (a) and Chlorella (b) phycodnaviruses (NY2A, AR158 and PBCV1). The phylogenetic affinities of each gene were determined using

BLASTP against a nonredundant database with an exclusion threshold of E < 10�5 [37]. If the query produced genes from different kingdoms within the first ten hits of a

BLAST search, the evolutionary status of the gene was analyzed further by individual phylogenetic analysis. Tree building was carried out using the NJ (neighbour-joining)

programme of the MUST package [38]. The putative phylogenetic origins of these genes are indicated with the following colours: red, bacterial-type genes; blue, eukaryotic

genes; green, NCLDV genes; and black, orphan genes. The orphan genes are placed on the underside of the genomic map. The positions of the IS607 elements are indicated

by a red arrow. The Mimivirus (1.2 Mb) and phycodnaviruses (300–400 kb) are not to the same scale. The intervals under the genomic map represent 100 kb.
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include apparently intact insertion sequences (ISs),
believed to be major agents of lateral gene transfer in
prokaryotes [11], homing endonucleases and inteins (Box
1). Except for two copies of an element belonging to the IS4
family in the genome of the brown alga virus, Ectocarpus
siliculosus virus 1 (EsV-1), we could not identify ISs in any
other eukaryotic viral genome in the public databases.

The ISs inMimivirus and phycodnaviruses belong to the
bacterial and archaeal IS607 family (Box 1). Several are
intact and not only carry the appropriate open reading
frames but also include defined IS ends. Based on the
known sequences of other members of this family (ISFin-
der; http://www-is.biotoul.fr), these full-length copies
would presumably be active in the appropriate host. The
IS elements co-localize with stretches of other bacterial-
like genes. They do not, however, occur at the boundaries
between bacterial and other genes but are embedded
within stretches of contiguous bacterial-like (or orphan)
genes, suggesting that they have been inherited along with
bacterial DNA.

The presence and location of such ISs lends strong
support to the idea that they were inherited from bacterial
genomes along with the other bacterial-like genes.
Furthermore, giant viruses also display relatively large
numbers of prokaryotic-like homing endonucleases and
inteins (Box 1), further strengthening the notion that giant
viruses are chimeras of genes from disparate sources.

What is the source of the bacterial-like genes and how
are they acquired?
Incorporation of bacterial genes would require two
conditions: (i) an ‘ecological’ niche bringing viral and bac-
terial DNA into close contact and (ii) a recombination
mechanism to drive bacterial gene accretion.

Bacterial and viral DNA could occupy the same cell

compartment

TheMimivirus host, Acanthamoeba polyphaga, frequently
carries and releases diverse human bacterial pathogens
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such asLegionella [12], phagocytoses bacteria, amajor food
source, and also possesses bacteriolytic activities [13]. In
addition, many free-living amoebae harbour a range of
pathogenic and nonpathogenic bacteria, often as obligate
symbionts that cannot be cultured axenically [14]. For
example, infecting Legionella bacteria, incorporated by
‘coiling phagocytosis’, can be found replicating in the host
cytoplasm some hours after infection [15]. Hence there are
documented mechanisms that place the bacteria in the
same cell compartment as replicating viral DNA.

Phycodnaviruses infect photosynthetic algae of the
Chlorella genus, which are not known to ingest bacteria.
However, chlorellae live as symbionts within Paramecium
bursaria (the term ‘farming’ has been used in this context).
Paramecium bursaria, a common ciliate in freshwater
environments, also grazes on bacteria and, under certain
starvation conditions, can digest the resident chlorellae as
a source of nutrients. Paramecia harbour bacteria both in
phagosomes (digestive vacuoles) and, individually, within
the cytoplasm [16]. This would also facilitate access of
infecting phycodnaviruses to a bacterial gene pool in the
cytoplasm of their host. However, present knowledge of the
replication cycle of these viruses is limited. Viral infection
has only been reproduced on isolated free-growing chlor-
ellae and not in the context of their symbiont host.
Circumstantial evidence suggests that replication
commences in the chlorella nucleus although intact
nuclear membranes are not required [17]. Paramecium
bursaria can be cured of its symbiotic chlorellae. On
reinfection, the chlorellae, like bacterial prey, are incorpo-
rated into digestive vacuoles, perhaps together with the
bacteria. Most, but not all, are destroyed [18] and the
survivors become symbionts. We note that similar levels
of bacterial-like genes have not been reported in NCLDVs
that infect metazoans, possibly because they do not come
into such intimate contact with bacterial DNA in these
hosts.

Thus, although we are unable to provide direct
molecular evidence, it seems plausible that viral and
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Box 1. Prokaryotic-like mobile genetic elements

Insertion sequences

We identified several IS607 family elements: ISvMimi_1 and ISvMimi_2

in the Mimivirus genome, and ISvPBCV_1, ISvNY2A_1, ISvNY2A_2 and

ISvAR158_1 in three closely related Chlorella phycodnaviruses. Like

prokaryotic IS607 elements, these contain two orf genes: tnpA which

encodes the transposase required for mobility, and tnpB, whose

function remains unknown [34]. The transposases of these viral

elements display 50–66% amino acid identity between themselves

and 45–55% identity with bacterial IS607 elements. Although there is

only one Mimivirus genome sequence, the three Chlorella phycodna-

virus genomes (AR158, NY2A and PBCV-1) enable genomic compar-

isons: the unique copy of ISvPBCV_1 present in all three genomes is

conserved at the same location; two copies of ISvNY2A_2 are present at

the same sites in the genomes of NY2A and AR158; whereas

ISvAR158_1 and ISvNY2A_1 are specific to the genomes of AR158

(one copy) and NY2A (three copies), respectively. Whole-genome

alignment of NY2A versus PBCV-1 using a dotplot diagram

(Figure I) showed that the NY2A ISs, which are not conserved in

PBCV-1, are associated with nonconserved regions between the two

genomes.

HNH homing endonucleases

These are a diverse collection of proteins characterized by an HNH

motif, generally encoded by genes within mobile, self-splicing introns,

that promote the movement of the DNA sequences that encode them

by making a site-specific double-strand break at a target site. The gene

is then copied into the double-strand break [35]. Phycodnaviruses carry

seven to 14 homing endonucleases of the HNH group, and two HNH

homing endonucleases are present in Mimivirus. Compared with other

homing endonuclease groups, members of the HNH group are found

principally in bacteriophage genomes that infect both Gram-positive

and Gram-negative bacteria [35]. Some are present within bacterial-like

sequences (Online Supplementary Material Tables S1, S2).

Genomic comparison in phycodnaviruses (Figure I) shows exten-

sive variation in the number and location of HNH genes suggesting

that they have or had the capacity to excise, insert and disseminate or

that they have been recruited in repeated acquisitions. The two

Mimivirus HNH endonuclease genes flank a unique gene typically

found in bacterial prophages suggesting horizontal transfer from a

bacteriophage.

Inteins

These are defined segments of proteins able to excise and to rejoin the

flanking peptides. They occur in the DNA polymerase gene of Mimivirus

[36] and in the phycodnavirus NY2A ribonucleotide reductase gene

(NrdA) and an open reading frame (orf) of unidentified function (Id:

R508). NY2A inteins are not conserved in the homologous genes of

AR158 and PBCV-1. At least two-thirds of known inteins are found in

prokaryotes and those found in the eukarya are restricted to yeasts – see

‘Inteins – Protein Introns’ (http://bioinformatics.weizmann.ac.il/�pietro/

inteins/) and InBase (http://www.neb.com/neb/inteins.html).

Figure I. Genome dotplot of Chlorella phycodnavirus NY2A (vertical axis)

versus PBCV1 (horizontal axis). Intergenome comparisons were performed by

pairwise BLASTN alignments without filtering and with an exclusion

threshold of E < 10�5. Each ORF of a genome was blasted against all ORFs

of the other genome and the sequences having the best high-scoring segment

pair were used to plot the alignment diagram. Red and black arrows map

IS607 elements and mobile endonucleases, respectively. Insets show a more

detailed picture.
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bacterial genes can at least transitorily occupy the same
cell compartment.

Replication- or recombination-driven gene acquisition

How might such ‘foreign’ genes be acquired? One possible
explanation is suggested by the replication mode of the
related poxvirus [10]. In these viruses, replication and
recombination are intimately coupled [19–21] in a similar
way to bacteriophage T4. For T4, this style of replication
has been called recombination-primed replication [22] (Box
2). Interestingly, recent studies have indicated that up to
10% of the genomes of some members of the T4 group of
phages could be of bacterial origin [23].

Replicating poxviruses undergo such increased levels of
homologous recombination that genetic linkage is appar-
ently lost at distances greater than 500 bp [19,20]. Purified
Vaccinia virus DNA polymerase is capable of promoting
ATP-independent intermolecular single-strand transfer in
vitro and requires polymerase 30!50 exonucleolytic (proof-
reading) activity [24] and DNA homology. The reaction is
most efficient using linear DNA substrates and gives rise to
www.sciencedirect.com
linear concatamers. Recombination of linear molecules
requires little sequence homology and will occur between
molecules containing as little as 12 bp of end-sequence
identity [25]. Indeed, substrates with no apparent end-
sequence homology can still generate recombinants at
frequencies about tenfold above background [10]. Similarly
increased recombination frequencies (�2%) have been
observed for the phycodnaviruses themselves [26].
Although an extensive mechanistic analysis remains to
be undertaken, it is known that the ends of phycodna-
viruses PBCV-1 and CVK1 are long inverted repeats.
Moreover, the CVK1 terminal inverted repeats carry a
nick that could serve as an initiation point for replication
and strand invasion [27] (Box 2, Figure I). Indeed, recent
comparison of 45 epidemiologically varied poxviruses has
led to the conclusion that recombination occurs frequently
at the ends of the viral genome [28].

An alternative, or additional, possibility for promoting
strand exchange would be that observed in the l red
and E. coli RecE–RecT systems [29] or in herpesvirus
recombination [30]. These systems involve two proteins:
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Box 2. Models for bacterial-like gene acquisition

The mechanism, illustrated in Figure I, is based on the phage T4

model but can be extended to Vaccinia and other giant viruses [10,27].

Strand exchange is initiated by a single-strand annealing (SSA)

mechanism [25] in which a short 50!30 single strand, exposed by

30!50-exonuclease-mediated degradation of the complementary

strand (Figure Ia), invades receptor genomes carrying a single-strand

nick or double-strand breaks (Figure Ib). The strand exchanges

generate ends that can then serve as primers for the replicative

polymerase (Figure Ic). The process can be coupled to (Figure Ig) or

independent of (Figure Id) replication (Figure Ig). Depending on

strand polarities and cleavages, genes can be incorporated either as

short regions (or patches; Figure If and Figure Ij) or as longer regions

(or splices; Figure Ie or Figure Ih). The pathway resulting in splicing

would be the most relevant to the present discussion.

Figure I. T4 replication–recombination illustrating how regions of foreign DNA could be introduced by a splice or patch mechanism. Target DNA is shown in green,

invading DNA in red. (a) A replicating donor molecule and a nonreplicating target DNA. (b) Resection of the invading DNA end leaving a 30 overhang. (c) Strand invasion

of the 30 overhang creates a D-loop. (d) Strand invasion at a single-strand break. (e) Cleavage of target strand (i) generates a splice junction. (f) Cleavage of invading

strand (ii) generates a patch. (g) The 30 invading strand acts as a replication primer for continuous strand synthesis, which then enables assembly of a replication fork

and initiation of discontinuous strand replication. (h) Cleavage (iii) generates a splice junction. (j) Cleavage at (iv) generates a patch. The dashed arrows indicate

replication. This figure is inspired by several diagrams compiled by the late Gisela Mosig.
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a DNA-binding protein (red b for phage l; RecT for
E. coli; ICP8 for herpesvirus) and an exonuclease (red a

for l; RecE for E. coli; UL12 for herpesvirus). As in the T4
model (Box 2), a DNA end is resected to form a single-
strand overhang (either 50 or 30 overhangs function in vitro
[30]) and strand invasion occurs in a second step. In con-
trast to the T4 model, it is unnecessary to invoke replica-
tion (Box 2).

Although we think that a recombination-primed
replication model is attractive as an explanation for the
entrapment of bacterial-like genes, other potential
mechanisms exist. For example, it has been suggested that
Vaccinia virus topoisomerase IB might be involved in
promoting recombination, and this enzyme possesses
several biochemical properties that support this view
[31,32]. Moreover, a topoisomerase IB gene from Mimi-
virus, which produces a biochemically similar enzyme, has
recently been described [33]. However, although a topoi-
somerase II has been identified, to our knowledge no
topoisomerase IB gene has yet been identified in the
phycodnaviruses.
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Concluding remarks
Our analysis suggests that most bacterial-like genes found
in giant viruses were recently and independently acquired
in Mimivirus and phycodnavirus lineages and might also
indicate that the resident bacterial DNA has been acquired
several times during successive acquisition events. Com-
parison of the closely related genomes of phycodnaviruses
suggests that acquisition of bacterial genes and mobile
genetic elements is a continuous process. These findings
contradict the idea that they could be inherited from a
common ancestor. We propose, based on results obtained
with bacteriophage T4 and poxviruses, that it is the extra-
ordinarily intimate coupling between replication and
recombination that leads to exceptionally high recombina-
tion frequencies facilitating promiscuous incorporation of
foreign genes into the viral genome. The presence of
repeated sequences such as ISs could subsequently favour
this process by supplying the homologies to drive inter-
molecular recombination. Their presence would also be
expected to lead to further rearrangements in the host
viral genome during subsequent viral replication cycles.
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We propose that the host (or a host symbiont) of a
giant virus provides both the necessary source of bacterial
DNA (from grazing of bacteria) and the cell compartment
that enables this DNA to encounter actively replicating
viruses. These systems therefore would provide an
extensive interface for (one-way) genetic exchange between
prokaryotes and eukaryotes. Bacterial gene acquisition by
viruses was first observed in the form of transducing
bacteriophages. Our hypothesis could be tested by co-
infecting bacteria, genetically marked with a selectable
marker (e.g. a drug resistance gene), with the viral host.
The sibling giant viruses that had acquired such bacterial
genes might then, under suitable conditions, be selected
following reinfection of a secondary host.

Note added in proof
The genomes of NY-2A and AR158 have now been
published [39].
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