Andrew V.Z. Brower
Department of Zoology,
Oregon State University,
Corvallis, OR 97331, USA
Email: browera@science.oregonstate.edu

submitted October 2005
accepted December 2005

PERSPECTIVE

Problems with DNA barcodes for species delimitation: ‘ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae)

Abstract Hebert and colleagues (2004) used a short region of the mitochondrial Cytochrome oxidase subunit I gene as a delimiter for ten putative species from among 466 individuals of the skipper butterfly currently known as Astraptes fulgerator from Guanacaste, Costa Rica. Their data are reanalysed to assess cluster stability and clade support using Neighbor-Joining bootstrap, population aggregation analysis and cladistic haplotype analysis. At least three, but not more than seven mtDNA clades that may correspond to cryptic species are supported by the evidence. Additional difficulties with Hebert et al.’s interpretation of the data are discussed.

Key words mtDNA, COI, molecular systematics, skipper butterfly

Introduction

For some years now, the limiting stage in study of DNA data has not been the generation of sequences themselves, which is now routinely performed at an industrial scale, or even outsourced to private companies, much like sending a roll of film to be developed. Instead, as is evidenced by the birth of bioinformatics as a discipline, it is the careful analysis and interpretation of sequences that is the most time-consuming and labour-intensive step in the process, and the step at which the greatest value is added, raw data being transformed into useful knowledge. A parallel may be drawn with the building of an entomological research collection. Mass sampling of insects in the field is only the first of many stages in the conversion of a bunch of dead bugs into a well-curated, authoritatively identified resource for science. The ‘taxonomic impediment’ (Wheeler et al., 2004) exists just as much for molecular data as it does for traditional collections.

The idea that a ‘DNA barcode’, a short stretch of mitochondrial DNA sequence, can be used as a universal identifier for animal taxa has lately been promoted by Hebert and colleagues (2003a, b; 2005), and has met with substantial criticism (Lipscomb et al., 2003; Sperling et al., 1994; Baker & Palumbi, 1994; DeSalle & Birstein, 1996), and has been employed for identifying various closely related insects and associating holometabolous life-stages by a number of authors (Sperling et al. 1995; Armstrong et al., 1997; Stern et al., 1997). Most of the fulmination over the recent popularization of DNA barcodes has been provoked by Hebert et al.’s hopeful prediction that the method will replace the expertise of traditional systematists as the primary mode of species identification. This paper addresses some methodological and philosophical weaknesses of the DNA barcoding approach as a proxy for the arduous, painstaking work of genuine systematics.

Association of an unknown specimen with a known species by a DNA barcode is accomplished by finding an identical or similar COI sequence in a pre-established data base of sequences from authoritatively identified specimens through pairwise comparison or a clustering algorithm. The question of how similar a sequence from an unidentified organism and a known sequence must be to be considered to belong to ‘the same species’ is a metaphysical one. One can only say that the sequence from unknown specimen x is more similar to the sequence of species y than it is to the sequence of any other species currently in the database. As has been demonstrated by many authors (e.g., Crochet et al., 2003; Penton et al., 2004; Meyer & Paulay, 2005), mtDNA (or any other single feature) does not necessarily provide a precise reflection of species boundaries as they might be implied by a broader sampling
of nuclear genes, morphology, mating preferences, and other biological attributes, so even if the diversity of mtDNA COI sequences were exhaustively sampled (which, of course, it has not been), the closest mtDNA match may not identify its bearer’s species correctly.

In a recent paper (Hebert et al., 2004, hereafter HPBJH), the scope of DNA barcoding is expanded beyond mere identification of unknowns to the delimitation of multiple new species out of an entity formerly considered to be a single species or species-complex based on traditional morphological characters. This is a bold step because it implies that the information content of a 648 bp fragment of mtDNA reveals more than simply the affinity of its bearer to the most similar reference sequence. Now HPBJH claim that DNA barcodes can themselves be used to delimit formal taxa. Below, I will evaluate how the particular example of the skipper butterfly *Astraptes fulgerator* was used to hypothesize ‘ten species in one’, and show that both as executed by HPBJH in this case, and as a general principle, the delimitation of species by analysis of a short segment of a single gene is ill-conceived and non-operational.

Methods and materials

As the data proved difficult to extract from Hebert’s BoLD web site (www.barcodinglife.com, accessed 12/04), the partial mtDNA COI sequences for 466 members of the *Astraptes fulgerator* complex were individually downloaded from GenBank (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Tree&id=310673&lvl=3&lin=&keep=1&srchmode=1&unlock, accessed 12/04). An executable NEXUS matrix is available at www.science.oregonstate.edu/systematics/browera/datasets/Astraptes.html. Individuals are identified by their Genbank accession code and ‘species’ designation as given by HPBJH (these taxa were not formally described in the publication, so they will be referred to here in quotes). Several individuals are identified only by code and ‘fulgerator’.

The sequences were screened for identity by examination of pairwise distances using PAUP* (Swofford, 2000). One representative of each identical sequence set was retained in a reduced matrix of 71 unique haplotypes (not the ‘137 different sequences’ reported by HPBJH, who apparently counted sequences with missing data as distinct from otherwise identical sequences) reported by HPBJH (these taxa were not formally described in the publication, so they will be referred to here in quotes). Several individuals are identified only by code and ‘fulgerator’.

The sequences were screened for identity by examination of pairwise distances using PAUP* (Swofford, 2000). One representative of each identical sequence set was retained in a reduced matrix of 71 unique haplotypes (not the ‘137 different sequences’ reported by HPBJH, who apparently counted sequences with missing data as distinct from otherwise identical sequences). A *Pyrgus communis* sequence (AF170857) was used as an outgroup (HPBJH did not include an outgroup in their NJ analysis).

Population aggregation analysis (PAA; Davis & Nixon, 1992) was performed manually by inspection of the aligned NEXUS file. Neighbor-Joining (NJ) bootstrap using the HPBJH weighting parameters and cladistic haplotype analysis (CHA; Brower, 1999) using parsimony with equal weights were performed using PAUP* on a Mac G4 laptop. It should be noted that the low number of phylogenetically informative characters in the data set, even after the elimination of identical duplicate sequences, resulted in computer memory saturation by a multiplicity of equally parsimonious trees prior to completion of heuristic parsimony searches. Cladograms and branch support values were inferred based on these aborted searches, but may be overestimates.

Results

The ‘species’ identified by HPBJH are terminal clusters in a neighbor-joining tree. It is well-known that NJ analyses are sensitive to the order of the terminals in the matrix (Farris et al., 1996), but there is no indication in their published methods that HPBJH tested the stability of groups with multiple runs. Nor were any measures of group support or stability, such as a bootstrap, performed. While I am not an advocate of either NJ or bootstrapping (Neighbor-Joining does not hypothesize monophyletic groups in the Hemigean sense), it is instructive to consider the result of a bootstrap analysis of the data (K-2 weighted, as per HPBJH). Figure 1 shows a reduced cartoon of the bootstrap tree. Only TRIGO and LONCHO are supported at > 95%, and YESSEN, SENNOV, MYST and INGCUP form an undifferentiated bush.

Filtering identical sequences from the 467 terminal matrix resulted mostly in elimination of multiple individuals from the same ‘species’ (as is not surprising, given that the ‘species’ were determined on the basis of their sequences). One exception to this is AT866878, which is identified as YESSEN, but is identical to a group of SENNOV sequences. Although this sequence was excluded from PAA and CHA analyses conducted here, its existence requires the combination of YESSEN and SENNOV as a single entity under the criteria of both PAA and CHA.

Population aggregation analysis (Davis & Nixon, 1992) of the reduced 71-unique-terminal matrix, using the HPBJH ‘species’ designations (CELT, LOHAM, etc.) reveals 41 polymorphic nucleotide sites that differentiate putative groups within the *A. fulgerator* complex. Of these, 17 sites differentiate TRIGO from the remaining groups. The next most differentiated group is NUMT, which differs from the rest by six sites, then, in decreasing order, CELT+NUMT (4), LONCHO (3), LOHAM (3), CELT (2) and CELT+LOHAM, CELT+YESSEN, CELT+NUMT+YESSEN, CELT+NUMT+SENNOV, INGCUP+LOHAM+MYST, INGCUP+LOHAM+SENNOV, HIHAM (1 each). Note that some of these implied groupings contradict others, suggesting that some of the PAA characters must represent homoplasy rather than homology (Brower, 1999). FABOV, SENNOV, MYST, INGCUP, BYTTNER and YESSEN are not differentiated as distinct taxa by any mtDNA character sensu PAA. Given that the hypothetical ‘species’ were identified based on the sequence data, it is quite remarkable that there is so little unambiguous, non-homoplastic support present.

Cladistic haplotype analysis (Brower, 1999) provides somewhat more resolution (Fig. 2). Most of the ‘species’ represented by more than a single terminal appear as distinct terminal groups (at or below the species level, it is inappropriate to refer to clades of mtDNA haplotypes as monophyletic entities; Davis & Nixon 1992). Branch support values range from 17 (TRIGO) to 2 (YESSEN). INGCUP and SENNOV form nonterminal grades, and the distinctness of BYTTNER and HIHAM is not tested because each is represented by a
single sequence in the reduced data set. Again, it should be noted that these PAA and CHA analyses do not represent independent tests of the hypothesized ‘species’, since the ‘species’ were based on the patterns of similarity among the sequences in the first place.

HPBJH report that 13 butterflies exhibited polymorphic electropherogram bands at certain sites in the COI region. They hypothesized the presence of a second sequence differing from the ‘typical’ sequence at each polymorphic site, and interpreted these as co-amplifying nuclear pseudogenes (Numts). Four other individual specimens amplified only for the putative Numt sequence. Inspection of these ‘Numt’ sequences shows that the pseudogene explanation is very unlikely to be correct. Nuclear copies of mitochondrial genes are not constrained by selection like their functional templates, and therefore are expected to accumulate mutations irrespectively of nucleotide position (Lopez et al., 1997; Bensasson et al., 2001). Thus, if these inferred sequences are indeed Numts, an equal number of nucleotide polymorphisms is expected to be seen in first, second and third codon positions. In comparison to members of the most similar non-pseudogene sequence cluster (CELT), 15 of 17 differences occur in normally silent third positions, and the other two are first position T/C transitions that are also silent. The probability of 17/17 mutations in a pseudogene being ‘silent’ is about one in a million. Alternative hypotheses to explain these apparent mitochondrial heterozygotes are that the individual butterflies are actually heteroplasmic, or that some error or contamination took place in the laboratory. Neither of these alternatives bodes well for the practical success of DNA barcoding as a means to unequivocally identify taxa.

Discussion

A basic flaw of the HPBJH methodology is their failure to explicitly hypothesize the distinctness of putative groups a priori, the existence of which is subsequently tested by analysis of
Figure 2 Strict consensus tree of reduced data set of 71 unique *A. fulgerator* sequences, with *Pyrgus* as outgroup. Length = 234 steps, CIx = .5849, RI = .9041. Branch support values are indicated above branches leading to supported ‘species’ or groups of ‘species.’ INGCUP and SENNOV are nonterminal grades.

the new DNA evidence (Davis & Nixon, 1992; Brower *et al*., 1996; Brower, 1999; DeSalle *et al*., 2005). Without employing the mtDNA COI evidence as a test of an a priori hypothesis of grouping, conclusions based upon their phylogenetic analysis are tautologous, since any NJ analysis of any variable data will yield a bifurcating topology, the terminal clusters of which can be circumscribed as distinct taxa. As is alluded to in HPBJH’s introduction and suggested by the interim names of their hypothesized species, there are morphological and ecological characters that could have been used to formulate testable hypotheses, but instead, these features were discussed in the context of the mtDNA dendrogram, post hoc.

Furthermore, the names associated with these ‘species’ imply particular ecological patterns that are not cleanly
reflected in the distribution of those associations on the published dendrogram. For example, SENNOV is reported to feed ‘chiefly on Senna hayesiana’, and YESENN ‘chiefly on Senna papillosa’. While 55 of 76 YESSON caterpillars were found on S. papillosa, only 45 of 100 SENNOV caterpillars were found on S. hayesiana. LONCHO and LOHAMP larvae were found on both Lonchocarpus and Hampea, and caterpillars of two or more ‘species’ were found on Canavalia, Cassia, Cupania, Diosclea and Inga. Discovery of a wild larva on a plant means not only that the larva is able to feed successfully on that plant, but also that the adult female selected that plant as a host. The lack of host specificity within and among most of the haplotype clusters suggests that if there are indeed multiple species here, they are not obviously differentiated by larval food plant choice (note that the two ‘species’ most divergent in their mtDNAs, TRIGO and CELT, were recorded from distinctive plant taxa and do not occur on the hosts of the remaining ‘species’). Other sequences that do not fit the general host plant pattern were simply dismissed with an ad hoc and manifestly incorrect explanation.

What conclusions may be drawn from this reexamination of the HPBJH data? First, there are probably at least three species in Guanacaste Preserve within the current circumscription of Astraptes fulgerator, but probably not more than the six or seven HPBJH suspected based upon their morphological and ecological characters. Without more extensive sampling from a broader geographical range (A. fulgerator s. l. occurs throughout tropical Latin America), it is difficult to interpret the patterns of mtDNA diversity discovered at a single site. Funk & Omland (2003) found that some 23% of animal species (535 out of 2319 records) are polyphyletic as implied by their mtDNA. If this is a general pattern, it means that even under the best of circumstances, a circumscription of terminal clusters as ‘species’ based on DNA barcoding will be ambiguous or wrong about a quarter of the time (Meyer & Paulay, 2005). This is not to suggest that mtDNA or other DNA sequences are not useful in the discovery of new taxa. The showy mimetic butterfly Heliconius tristero was detected initially by its position in a mtDNA cladogram, but the pattern suggested by the molecular evidence was corroborated with morphological characters before the species was described (Brower, 1996). There could well be ten species of Astraptes among HPBJH’s 466 Guanacaste samples, but the limited information borne by a short fragment of COI sequenced does not support that hypothesis, and further evidence should be presented to corroborate the claim. The era when every sport with a novel colour pattern was described as a new species has happily drawn to a close. It would be unfortunate indeed to diminish the scope of our systematic expertise will be accelerated, and the framework of natural history to which DNA barcodes are intended to link will be impoverished.

Acknowledgements

This work was inspired by a symposium at the 2004 Entomological Society of America meeting. It was supported by NSF DEB- 0089870 and the Harold and Leona Rice Endowment for Systematic Entomology.

References

Andrew V.Z. Brower

