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Abstract: The dominant feature of point counts is that they do not census 
birds, but instead provide incomplete counts of individuals present within a 
survey plot. Considering a simple model for point count sampling, we demon-
strate that use of these incomplete counts can bias estimators and testing 
procedures, leading to inappropriate conclusions. A large portion of the 
variability in. point counts is caused by the incomplete counting, and this 
within-count variation can be confounded with ecologically meaningful varia-
tion. We recommend caution in the analysis of estimates obtained from point 
counts. Using; our model, we also consider optimal allocation of sampling 
effort. The critical step in the optimization process is in determining the goals 
of the study and methods that will be used to meet these goals. By explicitly 
defining the constraints on sampling and by estimating the relationship  
between precision and bias of estimators and time spent counting, we can predict  
the optimal time at a point for each of several monitoring goals. In general, 
time spent at a point will differ depending on the goals of the study. 

Most observational studies of birds have a goal of char-
acterizing the numbers or distribution of birds through time    
or space using observations of the number of birds counted at 
randomly selected points, or clusters of points. Most biolo- 
gists analyze these data using standard sampling estimation 
procedures (Cochran 1977) and assume that the counts can be 
used in place of exact measurements of bird abundance at the 
points. Unfortunately, most point counts miss over 50 percent 
of the individual birds at any point (Sauer and others, 1994a). 
Not only are the data incomplete counts, or indices of bird 
abundance, but usually we cannot estimate the proportion of 
birds counted, or detection probabilities, associated with each 
sample of counts. Burnham (1981) stated that without 
estimating detection probabilities, the use of counts as    
indices of abundance is scientifically unsound and unreliable. 
He also suggested that estimation of detection probabilities 
could be achieved relatively easily using detection distance 
data; unfortunately this view is probably overly optimistic for 
the majority of bird species that large-scale monitoring 
programs are designed to cover. Ironically, in these    
programs samples are collected in many habitats by many 
observers, and detection probabilities are unlikely to be 
comparable among points. 

Therefore, it is critical that we address the question of 
how unmodeled detection probabilities affect inference based 
on point counts, and how sampling at points should be con-
ducted to minimize possible inefficiencies and biases associ-
ated with :incomplete counts. In this paper we develop a 
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model for point count sampling and consider how incomplete 
counting affects some of the common estimators of abun- 
dance and population trend. We then describe optimal alloca-
tion of sampling effort in point counts under our model. 

Model 

In this section, we develop a model for how animals are 
sampled at points. All statistical analyses require an underlying 
model, and we use the model to assess the effects of incomplete 
counts on commonly used estimation procedures. The model 
reflects a view of how an underlying population of individuals 
at a point is counted. Development of the model requires   
some discussion of the mathematical formalism, which    
should be of interest to quantitative ecologists. 

Let ci denote a count at the ith sampling location    
(point) from a population of Ni animals. Among points    
assume that animals are independent and identically distributed 
with mean µ and variance σ2. To model the incomplete 
counting process we assume the ci are binomial random 
variables with parameters Ni and detection probability p, thus  

 
E[c | N,p] = Np, (1) 
E[c] = µp, (2) 
Var(c | N, p) =  Np(1-p), (3) 

and 
Var(c) = µp(1-p) + p2 σ2. (4) 

The E notation represents mathematical expectation. 
Under this model, double counting is not allowed, and   

p is constrained between 0 and 1. Alternatively, one could 
model the counts conditional on N as Poisson random  
variables with parameter pN which would allow p to exceed   
1, as may occur in some cases (Bart and Schoultz 1984). The 
Poisson model may also be advantageous in more complex 
models, such as models for the unconditional distribution of 
bird counts in space or time, as certain mixtures of the    
Poisson distribution can lead to other well known distributions 
such as the negative-binomial or the Neyman type A. As our 
intention is to discuss the sampling process, we consider only 
the binomial model, which is conceptually easy to understand 
in the point count context. 

There are two basic ways to conceptualize what we 
refer to as incomplete counting. In the first case, as represented 
by unlimited distance point counts, all animals noted by the 
observer at a point are recorded. The region sampled at the     
ith point can then be described as that area lying within a circle 
of some unknown radius about the observer, the boundary of 
which marks the point at which detection probability can 
effectively be considered as zero. The number of animals 
associated with this point is then the collection of birds that  
are "located" within this circle, and ci is the count obtained 
from this population. The second case, represented by limited 
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distance sampling, is described in a similar manner, except at 
the time of the count only those animals present within some 
fixed radius of the observer are recorded. The detection 
probability, as described above, is now the product of the 
probability that any one of the Ni birds is located within the 
fixed distance of the observer at the time of the count, and the 
probability that it is detected by the observer given that it is 
present within the fixed radius. This latter probability is usually 
assumed to be 1. 

Estimators 

In this section, we use the model to evaluate the possible 
effects of incomplete counting on estimators of various 
population parameters. Data from point counts are used    
to estimate: (1) mean relative abundance and its variance;  
(2) differences between relative abundances for populations 
in different habitats or regions; (3) population trends; and   
(4) species richness. Point count data are often reasonable 
surrogates for total population sizes for all of these 
population parameters, but we demonstrate that the potential 
exists for analyses based upon point counts to not accurately 
reflect the real population. 

Estimation of Total Counts 

The mean and variance of the counts are given by 
expressions (2) and (4) above. Because p appears in both for-
mulae, as detection probabilities decrease, both the average 
count and the variance of the counts decrease. Thus counts 
from populations with inherently low detection probabilities 
tend to also have low absolute variability. An implication of 
this, which we explore in a later section, is that using variance  
as a measure of count quality is not a good idea. Considering 
the coefficient of variation of the counts (CVc), however, 
from (2) and (4) it can be shown that 

,1 22
Nc CV

p
pCV +

−
=

µ
 (5)  

which increases without bound as p tends to zero. Thus, not 
counting all the animals that are present increases the relative 
variability of the counts. If one is interested in modeling 
demographic processes, the information of interest is 
contained within the variance component described by the 
term  in expression (5). Clearly, however, if detection 
probabilities are not estimated, this information is confounded 
with the additional term associated with p. It is important to 
be aware of the presence of this additional component when 
interpreting index data. For example, variance associated 
with p can dominate the total variance, particularly for counts 
with low detection probabilities. Differences in variances 
over time or regions based on point counts therefore may 
reflect differences in the variability of counts, not real 
population differences in variance. 

2CVN

Ratio Estimator of Population Change 

If it is assumed that detection probabilities remain 
constant through time, it is possible to obtain reasonable 
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estimates of population change between 2 years using the    
ratio estimator 
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where t indexes year. Barker, Link, and Sauer (personal com-
munication) used the model described in the first section to 
derive analytical expressions for bias and variance of the esti-
mator (6). They showed that if pt+1 = pt, then 
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where β denotes the ratio µt+1/µt,  denotes the variance of 

N

2
βσ

t+1/Nt among points, and 2σ  denotes the variance of the 
number of animals among points in the first year. It is evident 
from expression (7) that without complete counts the ratio 
estimator (6) is biased, with the extent of bias determined by 
the detection probability (p) and the number of points sampled 
(n). In the case that pt+1 is exactly equal to pt, the bias tends     
to zero for large samples of points. However, if this condition  
is violated, even if the pt and pt+1 are random variables with  
the same expected values, the expression (7) contains another 
term, and the estimator is no longer unbiased for large sample 
sizes. Thus it is critically important to consider the assumption 
of constant detection probabilities over time when using 
incomplete counts to estimate population changes. Numerous 
studies have demonstrated that observers and environmental 
conditions affect the number of birds counted (Ralph and   
Scott 1981); thus it is likely that in practice an assumption of 
constant detection probabilities through time is unreasonable. 
Therefore, bias in estimation of population change from point 
counts will always exist, but can be minimized by large   
sample sizes if p does not change over time. Use of statistical 
methods such as the base-year method that estimate trends as 
products of these ratio estimators should be avoided (Barker, 
Link, and Sauer, personal communication). 

Comparison of Average Counts by Habitat or Regions 

If it can be assumed that detection probabilities are 
identical between study areas that have been sampled using 
point counts, then it is possible to use the count data to test    
for differences in bird abundance between those areas. Under 
our model, power of a two-sided z-test for a difference in 
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means between two sets of counts with identical detection 
probabilities and equal sampling effort is given by: 
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where Ф(z) denotes the standard normal cumulative density 
function evaluated at z, σo denotes the standard deviation of   
the difference in means under the null hypothesis (H0: µi = µj), 
σ1 denotes the standard deviation of the difference in means 
under the alternative hypothesis (H1: µi ≠ µj), and where    
µj = (1-k)µi. The standard deviation of the difference in    
mean counts under the null and alternative hypotheses can 
easily be computed using expression (4). To demonstrate the 
effect of detection probabilities on power we generated power 
curves for a population with µ1 = 20 birds, σ1

2 = σ2
2 = 20,    

and for p =: 1, 0.75, 0.5, and 0.25 (fig. 1). The incomplete 
nature of the counting process leads to a reduction in    
power of the hypothesis tests, as shown by the decline in 
steepness of the curves as the p becomes smaller. More seri 

equal detection probabilities between areas would have. Such 
a failure leads to a shift in the curve away from the origin 
leading to both increased power and increased Type I error 
rates (fig. 2). Even small changes in detection probabilities  
can invalidate the statistical tests. Thus, a change in detection 
probabilities between treatments can never be separated    
from a real population difference, and the null hypothesis    
gets rejected at a greater rate even when no difference in 
population means exists. 

Allocation of Sampling Effort 

Several components of the design of point count studies 
remain controversial. One primary source of disagreement is 
the optimal length of time spent sampling at points. In our 
opinion, consistency in design is desirable for monitoring 
programs, and one consequence of this workshop is a set of 
standards for the design of point count studies. However, 
selection of point count duration should be viewed as a statis-
tical problem, for which one uses available information and a 
model to predict a sampling procedure with optimal properties.  
In this section, we discuss a method of optimizing point   
count duration and review how different goals for a survey  
can lead to different point count durations. 

Figure 1--Power of a 2-sided z-test for a difference in means of two populations plotted as a function of the ratio of popu-
lation means (1-k) and detection probability (p = 1: __; p = 0.75:_ _ _ ; p = 0.5: …; p = 0.25: - - -). Detection probabilities     
are the same in the two populations and 20 point counts are made from each population. The mean and variance of the 
number of birds present at each point are the same within groups, and in the first group of counts there are an average of 
20 birds per site present (µ1). At the second group of sites there are an average of (1-k)µ2 birds present per site. 
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Figure 2--Power of a 2-sided z-test for a difference in means of two populations plotted as a function of the ratio of popu-
lation means (1-k). Detection probability in the first population (p1) = 0.75, but is different in the second population (p2 = 
0.75:___; p2 = 0.70:_ _ _; p2 = 0.5: ….; p2 = 0.25: ---- ). Twenty point counts are made from each population. The mean 
and variance of the number of birds present at each point are the same within groups, and in the first group of counts 
there are an average of 20 birds per site present (µ1). At the second group of sites there are an average of (1-k)µ2 birds 
present per site. 

Clear Statements of Goals Are Necessary for Optimization  
The first step in any optimization is to specify the 

appropriate estimators (or testing procedures) for the goals of 
the study, because optimal allocation of effort depends on the 
procedures used. For example, a study that is designed to test 
for differences in counts among habitats will be optimized 
differently from a survey designed for analysis of population 
trends. Of course, in practice, no study would begin without 
first identifying goals and evaluating if these goals can be    
met with the proposed study design. Once an estimator is 
specified, we can use its attributes to evaluate alternative    
study designs. For example, if we are interested in estimating 
population trend, we would want to design the study to mini-
mize the mean squared error of the trend estimate. 

Once the estimator or testing procedure has been selected, 
the next step is to obtain an expression that describes 
performance of the estimation procedure and is also a    
function of the time spent counting at a point. For example, it 
may be possible to express the relationship between detection 
probability and time spent surveying at a point; thus, for a  
fixed sampling time, the appropriate detection probability can 
be obtained. Many investigators have empirically described   
the relationship between point count duration and proportion 
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of total birds detected (Buskirk and MacDonald, in this 
volume), although it can also be estimated by using more 
sophisticated procedures (Dawson and others, in this    
volume). Finally we need to specify time and other constraints 
placed on sampling. 
 
Modelling Detection Probabilities as a Function of Count 
Duration 

Detection probabilities play an important role in allo-
cating point count sampling effort. Typically the experi- 
menter is faced with the problem of trying to decide how    
best to allocate number of points and time spent sampling at a 
given point. Because the proportion of animals detected 
increases with time spent sampling, bias and relative vari-   
ance at a point tends to decrease as count duration increases. 
Conversely, estimator precision tends to decrease as dura-   
tion increases because fewer points can be sampled, so 
between-point components of the total variance increase. To 
optimally allocate sampling effort, the experimenter needs    
a model describing these relationships and a criterion for 
survey performance that can be used to judge the process    
of trading off time spent at points and the number of    
points sampled. 
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To describe the process by which the proportion of birds 
counted increases with time (denoted as the function    
p = f(Ts)), we assume that this proportion increases from zero 
to one as the cumulative distribution function of the random 
variable, time to first detection. One way to model these times 
until first detection is as independent and identically distributed 
exponential random variables with mean r. In this case 

( ) srTetf −−= 1  (10) 

A drawback of this model is that it assumes that detec-
tion times are identically distributed. In practice, the parameter 
r may vary between individuals. For example, in the model 
described above, it is likely that in the case of unlimited dis-
tance methods, birds farther from the observer are counted  
with lower probability. In the case of fixed distance methods,   
it seems likely that the probability that one of the Ni birds 
associated with the sampling point occurs within the fixed 
radius at the time of the count decreases with distance from the 
observer. 

A more flexible model is the Weibull model, in which 
the probability that the time to first detection is less than t is 
given by 

( ) ( )btaetf −−= 1  (11) 

This model reduces to the exponential model when the    
"shape" parameter b = 1. 

Given estimates of the parameters, the percentage of 
animals sighted in the sampling period Ts can be esti-    
mated by 

( ) ,1ˆ ˆ sTr
s eTf −−=  (12) 

under the exponential model, or by 

( ) ( ) ,1ˆ ˆ b
s aT

s eTf −−=  (13) 

under the Weibull model. In both cases maximum likelihood 
parameter estimates can be easily obtained. 
 
Optimization Procedure 

Using the components described above, we can use 
standard statistical procedures to estimate a count length that 
will provide efficient sampling in the context of the goals of  
the study. We will provide a brief example of this optimization 
procedure. For a more extensive description of the method    
and the issues involved in the optimization, see Barker and 
others (1993). 
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Consider a survey in which sampling effort is con-
strained by the time available for sampling. We assume total 
time surveying can be described by 

T = (n-1)Tt +  nTs  . (14) 

where T is the total survey time, n is the number of points 
sampled, Tt is the travel time between points, and Ts is the 
sampling time spent at each point. We consider three possible 
goals of the study: estimation of (1) average count; (2) trend; 
or (3) z-test of difference between two study areas.  
Performance of these estimators is assessed either by minimizing 
mean square error (bias2 +  variance), or by maximizing test 
power (z-test for population change). Although not associated 
with a specific hypothesis, many investigators use total birds 
counted as a criterion for optimization. 

Optimal allocation of sampling effort can now proceed 
using the constraint function (14), an estimate of the function 
f(Ts) (obtained, say, from pilot data), and an appropriate measure 
of estimator performance (mean square error, test power, or 
total count). To obtain solutions we optimize the functions 
describing mean square error (minimize), test power (maximize), 
or total expected count (maximize) with respect to n or Ts . 
These are all functions of both n and Ts, so we use the con-
straint function to express the additional variable in terms of 
the variable to be optimized. Note that, as in other sample    
size allocation procedures, pilot estimates of population sizes 
and variances must also be used in the procedure. 

Mathematical details of the optimization process are 
provided by Barker and others (1993), and they provide an 
example of optimization for a hypothetical bird population   
and several estimation procedures. 

Numerical Example 

We present a numerical example of the procedure for a 
bird population with an average of 20 birds present per site  
(µ), variance of the number of birds among sites of 40, 180 
minutes of time available for sampling, travelling time of 10 
units between sites, and an exponential parameter of 0.23 
(table 1). This latter parameter corresponds to the parameter 
estimate that Barker and others (1993) obtained for the 
Hawaiian Thrush (Myadestes obscurus) from a published 
data set (Scott and Ramsey 1981). For this hypothetical 
population, we estimated allocation of sampling effort that 
corresponds to optimization criteria of: (1) the minimum   
mean square error of the count; (2) the maximum expected 
total count; (3) the maximum power of a 2-sided z-test for a 
difference in means of 10 percent; and (4) the minimum    
mean square error of the ratio estimator of population change 
(table 1). Allocations of point count lengths differ considerably 
among these criteria. Interestingly, maximum expected count 
does not coincide with maximum power of the z-test. The 
explanation lies in the fact that the maximum expected count 
depends only on the mean number of birds present and the 
detection probability, whereas test power depends on    
the variance of the number of birds among sites, as well as    
the number present, and the detection probability. 
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Discussion 

From a statistical point of view, the dominant feature of 
point counts is that they do not completely census the popula-
tion of animals that are associated with each sampling point. 
Instead, an incomplete count is obtained with the fraction of 
the population observed at each point unknown and varying. 
We have considered this sampling characteristic using a bino-
mial sampling model and have demonstrated that it can bias 
estimates of number of animals present and trends. It also can 
be a substantial component of the variance of the counts, which   
is confounded with ecologically meaningful variation. These 
attributes of point count data suggest that estimates of popula-
tion parameters based on them should be treated cautiously. 

We recognize, however, that point counts are often the 
only source of data we have for most bird species. Because of 
their limitations, we believe that point counts are of best use  
in early-warning monitoring systems, but that population 
changes estimated from the count data should be used as a 
basis for further, more specific research. Attempts to use  
count data in sophisticated modeling procedures often lead to 
inappropriate results. Elsewhere, we have considered the 
effects of incomplete counts on modeling of density 
dependence, and we have shown that existing methods of 
detecting density dependence from incomplete count data are 
rendered worthless unless detection probabilities are close to 
1, because of greatly elevated type 1 error rates (Barker and 
Sauer 1991). 

If the survey is being used to describe trends for many 
species, "optimality" of sampling effort is an ill-defined concept 
because the allocation of sampling effort that leads to optimal 
performance of estimators or testing procedures is    
species specific. Thus, how should one allocate effort in such   
a multi-species program? This process itself must    
involve trading efficiency among competing species.    
One approach may be to pick key species from the  
assemblage associated with the study area and optimize effort 
with respect to the hardest species to sample. This will    
lead to a tendency to spend more time sampling at each point. 
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Table 1--Optimal sampling allocation of number of sites and time spent 
sampling at each site (Ts) for four optimization criteria. These results 
apply to a hypothetical study with mean number of animals present at 
each point of 20, variance of the number of animals among points of 40, 
total sampling time available of 180 minutes of time, 10 minutes of time 
required for travel between points, and the function relating detection 
probability at each site (p) to the time spent sampling at each site (Ts) 
given by p = 1 – e-rTs where r = 0.23. MSE = Mean Square Error 

Optimization criteria Number Ts p 
 of sites   
Count MSE 5.24 26.26 0.99
Total count 11.31 6.80 0.79 
Power 13.00 4.62 0.66 
Ratio 13.06 4.55 0.66 

If too little time is spent at each point, bias may dominate
estimator performance. 

In a single species study, optimization can proceed 
using the methods we have outlined above. We stress that the 
critical step in the process is in determining the goals of the 
study and the analytical means by which this goal is to be 
met. In the absence of such goals and methods, the notion of 
optimality is without meaning. If the goal is to estimate some 
population parameter (e.g., annual growth rate), we suggest 
that mean square error is an appropriate measure of estimator 
performance. If the goal is to test a specific hypothesis (e.g., 
comparing mean count between areas), we suggest that test 
power is an appropriate performance criterion. Because 
different tests are different functions of various population 
parameters, optimal performance in terms of test power is 
also specific to testing procedures.  

We have not attempted to address issues related 
to estimation of species richness from point counts. 
Obviously, the observed species richness from a point
count is a biased estimate of actual species richness in the 
same manner that counts are biased estimates of number of 
animals present. However, because species are the variable 
of interest, mark-recapture procedures can often be used to 
estimate species richness. 
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