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A. The Notion of a Surface 

The notion of a surface may be roughly ex- 
pressed by saying that by moving a curve we 
get a surface or that the boundary of a solid 
body is a surface. But these propositions can- 
not be considered mathematical definitions of 
a surface. We also make a distinction between 
surfaces and planes in ordinary language, 
where we mean by surfaces only those that are 
not planes. In mathematical language, how- 
ever, planes are usually included among the 
surfaces. 

A surface can be defined as a 2-dimensional 
+continuum, in accordance with the definition 
of a curve as a l-dimensional continuum. 
However, while we have a theory of curves 
based on this definition, we do not have a 
similar theory of surfaces thus defined (- 93 
Curves). 

What is called a surface or a curved surface 
is usually a 2-dimensional ttopological mani- 
fold, that is, a topological space that satisfies 
the tsecond countability axiom and of which 
every point has a neighborhood thomeomor- 
phic to the interior of a circular disk in a 
2-dimensional Euclidean space. In the follow- 
ing sections, we mean by a surface such a 2- 
dimensional topological manifold. 

B. Examples and Classification 

The simplest examples of surfaces are the 2- 
dimensional tsimplex and the 2-dimensional 
isphere. Surfaces are generally +simplicially 
decomposable (or triangulable) and hence 
homeomorphic to 2-dimensional polyhedra (T. 
Rad6, Acta Sci. Math. Szeged. (1925)). A +com- 
pact surface is called a closed surface, and a 
noncompact surface is called an open surface. 
A closed surface is decomposable into a finite 
number of 2-simplexes and so can be inter- 
preted as a tcombinatorial manifold. A 2- 
dimensional topological manifold having a 
boundary is called a surface with boundary. A 
2-simplex is an example of a surface with 
boundary, and a sphere is an example of a 
closed surface without boundary. 

Surfaces are classified as torientable and 
tnonorientable. In the special case when a sur- 
face is +embedded in a 3-dimensional Euclid- 
ean space E3, whether the surface is orien- 
table or not depends on its having two sides 
(the “surface” and “back”) or only one side. 
Therefore, in this special case, an orientable 
surface is called two-sided, and a nonorientable 

surface, one-sided. A nonorientable closed 
surface without boundary cannot be embed- 
ded in the Euclidean space E3 (- 56 Charac- 
teristic Classes, 114 Differential Topology). 

The first example of a nonorientable surface 
(with boundary) is the so-called Miihius strip 
or Miihius hand, constructed as an tidenti- 
fication space from a rectangle by twisting 
through 180” and identifying the opposite 
edges with one another (Fig. 1). 

A1 
B C 

A 4!i!EQ i 

DB 

Fig. 1 

As illustrated in Fig. 2, from a rectangle 
ABCD we can obtain a closed surface homeo- 
morphic to the product space S’ x S’ by 
identifying the opposite edges AB with DC 
and BC with AD. This surface is the so-called 
2-dimensional torus (or anchor ring). In this 
case, the four vertices A, B, C, D of the rec- 
tangle correspond to one point p on the sur- 
face, and the pairs of edges AB, DC and BC, 
AD correspond to closed curves a’ and h’ on 
the surface. We use the notation aba-‘bm’ to 
represent a torus. This refers to the fact that 
the torus is obtained from an oriented four- 
sided polygon by identifying the first side and 
the third (with reversed orientation), the sec- 
ond side and the fourth (with reversed orienta- 
tion). Similarly, aa m1 represents a sphere (Fig. 
3), and a,b,a;lb;‘a,b,a;lb;l represents the 
closed surface shown in Fig. 4. 
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Fig. 4 

All closed surfaces without boundary are 
constructed by identifying suitable pairs of 
sides of a 2n-sided polygon in a Euclidean 
plane E*. Furthermore, a closed orientable 
surface without boundary is homeomorphic to 
the surface represented by au-’ or 

u,h,a;‘b,‘...a,b,a,‘b,‘. (1) 

The 1 -dimensional +Betti number of this 
surface is 2p, the O-dimensional and 2-dimen- 
sional +Betti numbers are 1, the ttorsion coefi- 
cients are all 0, and p is called the genus of the 
surface. Also, a closed orientable surface of 
genus p with boundaries ci , . , ck is repre- 
sented by 

w,c, w;’ w,c,w,‘a,b,a;‘b,’ . ..a.b,a,‘b,’ 

(2) 

(Fig. 5). A closed nonorientable surface with- 
out boundary is represented by 

(3) 

Fig. 5 Fig. 9 

The l-dimensional Betti number of this 
surface is q - 1, the O-dimensional and 2- 
dimensional Betti numbers are 1 and 0, re- 
spectively, the l-dimensional torston coeffi- 
cient is 2, the O-dimensional and 2-dimensional 
torsion coefficients are 0, and q is called the 
genus of the surface. A closed nonorientable 
surface of genus q with boundaries c, , , ck 
is represented by 

-1 w,c,w, . ..WkCkWk -‘alal . ..uquy. (4) 

Each of forms (l))(4) is called the normal form 
of the respective surface, and-the curves q, b,, 

wk are called the normal sections of the surface. 
To explain the notation in (3), we first take the 
simplest case, aa. In this case, the surface is 
obtained from a disk by identifying each pair 
of points on the circumference that are end- 
points of a diameter (Fig. 6). The :surface au is 
then homeomorphic to a iproject-lve plane of 
which a decomposition into a complex of 
triangles is illustrated in Fig. 7. On the other 
hand, aabb represents a surface like that 
shown in Fig. 8, called the Klein bottle. Fig. 9 
shows a handle, and Fig. 10 shows a cross cap. 
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The last two surfaces have boundaries; a 
handle is orientable, while a cross cap is non- 
orientable and homeomorphic to the Mobius 
strip. If we delete p disks from a sphere and 
replace them with an equal number of handles, 
then we obtain a surface homeomorphic to 
the surface represented in (1) while if we 
replace the disks by cross caps instead of by 
handles, then the surface thus obtained is 
homeomorphic to that represented in (3). 
Now we decompose the surfaces (1) and (3) 
into triangles and denote the number of i- 

dimensional simplexes by si (i = 0, 1,2). Then in 
view of the tEuler-Poincare formula, the sur- 
faces (1) and (3) satisfy the respective formulas 

a,-q+a,=2-q. 

The tRiemann surfaces of talgebraic func- 
tions of one complex variable are always sur- 
faces of type (1) and their genera p coincide 
with those of algebraic functions. 

All closed surfaces are homeomorphic to 
surfaces of types (I), (2), (3), or (4). A necessary 
and sufficient condition for two surfaces to be 
homeomorphic to each other is coincidence of 
the numbers of their boundaries, their orienta- 
bility or nonorientability, and their genera (or 
+Euler characteristic a0 -u’ + 3’). This propo- 
sition is called the fundamental theorem of the 
topology of surfaces. The thomeomorphism 
problem of closed surfaces is completely solved 
by this theorem. The same problem for n 
(n > 3) manifolds, even if they are compact, 
remains open. (For surface area - 246 Length 
and Area. For the differential geometry of 
surfaces - 111 Differential Geometry of 
Curves and Surfaces.) 
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A. General Remarks 

Symbolic logic (or mathematical logic) is a field 
of logic in which logical inferences commonly 
used in mathematics are investigated by use of 
mathematical symbols. 

The algebra of logic originally set forth by 
G. Boole [l] and A. de Morgan [2] is actually 
an algebra of sets or relations; it did not reach 
the same level as the symbolic logic of today. 
G. Frege, who dealt not only with the logic 
of propositions but also with the first-order 
predicate logic using quantifiers (- Sections 
C and K), should be regarded as the real 
originator of symbolic logic. Frege’s work, 
however, was not recognized for some time. 
Logical studies by C. S. Peirce, E. Schroder, 
and G. Peano appeared soon after Frege, but 
they were limited mostly to propositions and 
did not develop Frege’s work. An essential 
development of Frege’s method was brought 
about by B. Russell, who, with the collabor- 
ation of A. N. Whitehead, summarized his 
results in Principia mathematics [4], which 
seemed to have completed the theory of sym- 
bolic logic at the time of its appearance. 

B. Logical Symbols 

If A and B are propositions, the propositions 
(A and B), (A or B), (A implies B), and (not A) 
are denoted by 

A A B, AvB, A-tB, lA, 

respectively. We call 1 A the negation of A, 
A A B the conjunction (or logical product), 
A v B the disjunction (or logical sum), and 
A + B the implication (or B by A). The propo- 
sition (A+B)r\(B+A) is denoted by AttB 
and is read “A and B are equivalent.” A v B 
means that at least one of A and B holds. The 
propositions (For all x, the proposition F(x) 
holds) and (There exists an x such that F(x) 
holds) are denoted by VxF(x) and 3xF(x), 
respectively. A proposition of the form V.xF(x) 
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is called a universal proposition, and one of the 
form &F(x), an existential proposition. The 
symbols A, v , -+, c--), 1, V, 3 are called log- 
ical symbols. 

There are various other ways to denote 
logical symbols, including: 

AAB: A&B, A.B, 

AvB: A+B, 

A+B: AxB, A-B, 

AttB: APB, A-B, A-B, AIcB, A-B, 

1A: -A, A; 

VxF(x): (x)F(x), rIxF(x), &Jw, 

3xF(x): (Ex)F(x), CxF(x), VxF(x). 

C. Free and Bound Variables 

Any function whose values are propositions is 
called a propositional function. Vx and 3x can 
be regarded as operators that transform any 
propositional function F(x) into the propo- 
sitions VxF(x) and 3xF(x), respectively. Vx and 
3x are called quantifiers; the former is called 
the universal quantifier and the latter the 
existential quantifier. F(x) is transformed 
into VxF(x) or 3xF(x) just as a function f(x) 
is transformed into the definite integral 
Jd f(x)dx; the resultant propositions VxF(x) 
and 3xF(x) are no longer functions of x. The 
variable x in VxF(x) and in 3xF(x) is called a 
bound variable, and the variable x in F(x), 
when it is not bound by Vx or 3x, is called a 
free variable. Some people employ different 
kinds of symbols for free variables and bound 
variables to avoid confusion. 

D. Formal Expressions of Propositions 

A formal expression of a proposition in terms 
of logical symbols is called a formula. More 
precisely, formulas are constructed by the 
following formation rules: (1) If VI is a formula, 
1% is also a formula. If 9I and 8 are for- 
mulas, 9I A %, Cu v 6, % --) b are all formulas. 
(2) If 8(a) is a formula and a is a free variable, 
then Vxg(x) and 3x5(x) are formulas, where x 
is an arbitrary bound variable not contained 
in z(a) and 8(x) is the result of substituting x 
for a throughout s(a). 

We use formulas of various scope accord- 
ing to different purposes. To indicate the scope 
of formulas, we fix a set of formulas, each 
element of which is called a prime formula (or 
atomic formula). The scope of formulas is the 
set of formulas obtained from the prime for- 
mulas by formation rules (1) and (2). 

E. Propositional Logic 

Propositional logic is the field in symbolic 
logic in which we study relations between 
propositions exclusively in connection with the 
four logical symbols A, v , +, and 1, called 
propositional connectives. 

In propositional logic, we deal only with 
operations of logical operators denoted by 
propositional connectives, regarding the vari- 
ables for denoting propositions, called propo- 
sition variables, only as prime formulas. We 
examine problems such as: What kinds of 
formulas are identically true when their propo- 
sition variables are replaced by any propo- 
sitions, and what kinds of formulas can some- 
times be true? 

Consider the two symbols v and A, 
read true and false, respectively, and let A = 
{V, A}. A univalent function frotn A, or 
more generally from a Cartesian product 
A x . x A, into A is called a truth function. 
We can regard A, v, +, 1 as the following 
truth functions: (1) A A B= Y for 4 = B= v, 
and AA B= h otherwise; (2) A vB= h for 
A=B=h,andAvB= Votherwise;(3) 
A-B= h for A= Y and B= h, and 
A+B= v otherwise; (4) lA= h for A= v, 
and lA=Y for A= h. 

If we regard proposition variabmles as vari- 
ables whose domain is A, then each formula 
represents a truth function. Conversely, any 
truth function (of a finite number of indepen- 
dent variables) can be expressed by an appro- 
priate formula, although such a formula is not 
uniquely determined. If a formula is regarded 
as a truth function, the value of thle function 
determined by a combination of values of the 
independent variables involved in the formula 
is called the truth value of the formula. 

A formula corresponding to a truth function 
that takes only v as its value is called a tau- 
tology. For example, %v 12I and ((‘X-B) 
+5X)+ 9I are tautologies. Since a truth func- 
tion with n independent variables takes values 
corresponding to 2” combinations of truth 
values of its variables, we can determine in a 
finite number of steps whether a given formula 
is a tautology. If a-23 is a tautology (that is, 
Cu and !.I3 correspond to the same truth func- 
tion), then the formulas QI and 23 .are said to be 
equivalent. 

F. Propositional Calculus 

It is possible to choose some specific tau- 
tologies, designate them as axioms, and derive 
all tautologies from them by appropriately 
given rules of inference. Such a system is called 
a propositional calculus. There are many ways 
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to stipulate axioms and rules of inference for 
a propositional calculus. 

The abovementioned propositional calculus 
corresponds to the so-called classical propo- 
sitional logic (- Section L). By choosing ap- 
propriate axioms and rules of inference we can 
also formally construct intuitionistic or other 
propositional logics. In intuitionistic logic the 
law of the texcluded middle is not accepted, 
and hence it is impossible to formalize intui- 
tionistic propositional logic by the notion of 
tautology. We therefore usually adopt the 
method of propositional calculus, instead of 
using the notion of tautology, to formalize 
intuitionistic propositional logic. For example, 
V. I. Glivenko’s theorem [S], that if a formula 
‘91 can be proved in classical logic, then 1 1 CL1 
can be proved in intuitionistic logic, was ob- 
tained by such formalistic considerations. A 
method of extending the classical concepts of 
truth value and tautology to intuitionistic 
and other logics has been obtained by S. A. 
Kripke. There are also studies of logics inter- 
mediate between intuitionistic and classical 
logic (T. Umezawa). 

G. Predicate Logic 

Predicate logic is the area of symbolic logic in 
which we take quantifiers in account. Mainly 
propositional functions are discussed in predi- 
cate logic. In the strict sense only single- 
variable propositional functions are called 
predicates, but the phrase predicate of n argu- 
ments (or wary predicate) denoting an n- 
variable propositional function is also em- 
ployed. Single-variable (or unary) predicates 
are also called properties. We say that u has 
the property F if the proposition F(a) formed 
by the property F is true. Predicates of two 
arguments are called binary relations. The 
proposition R(a, b) formed by the binary re- 
lation R is occasionally expressed in the form 
aRb. Generally, predicates of n arguments are 
called n-ary relations. The domain of defini- 
tion of a unary predicate is called the object 
domain, elements of the object domain are 
called objects, and any variable running over 
the object domain is called an object variable. 
We assume here that the object domain is not 
empty. When we deal with a number of predi- 
cates simultaneously (with different numbers of 
variables), it is usual to arrange things so that 
all the independent variables have the same 
object domain by suitably extending their 
object domains. 

Predicate logic in its purest sense deals 
exclusively with the general properties of 
quantifiers in connection with propositional 
connectives. The only objects dealt with in this 

field are predicate variables defined over a 
certain common domain and object variables 
running over the domain. Propositional vari- 
ables are regarded as predicates of no vari- 
ables. Each expression F(a,, . . , a,) for any 
predicate variable F of n variables a,, , a, 
(object variables designated as free) is regarded 
as a prime formula (n = 0, 1,2, ), and we deal 
exclusively with formulas generated by these 
prime formulas, where bound variables are 
also restricted to object variables that have a 
common domain. We give no specification for 
the range of objects except that it be the com- 
mon domain of the object variables. 

By designating an object domain and sub- 
stituting a predicate defined over the domain 
for each predicate variable in a formula, we 
obtain a proposition. By substituting further 
an object (object constant) belonging to the 
object domain for each object variable in a 
proposition, we obtain a proposition having a 
definite truth value. When we designate an 
object domain and further associate with each 
predicate variable as well as with each object 
variable a predicate or an object to be sub- 
stituted for it, we call the pair consisting of the 
object domain and the association a model. 
Any formula that is true for every model is 
called an identically true formula or valid 
formula. The study of identically true formu- 
las is one of the most important problems in 
predicate logic. 

H. Formal Representations of Mathematical 
Propositions 

To obtain a formal representation of a math- 
ematical theory by predicate logic, we must 
first specify its object domain, which is a non- 
empty set whose elements are called individ- 
uals; accordingly the object domain is called 
the individual domain, and object variables are 
called individual variables. Secondly we must 
specify individual symbols, function symbols, 
and predicate symbols, signifying specific indi- 
viduals, functions, and tpredicates, respectively. 
Here a function of n arguments is a univa- 
lent mapping from the Cartesian product 
D x x D of n copies of the given set to D. 
Then we define the notion of term as in the 
next paragraph to represent each individual 
formally. Finally we express propositions for- 
mally by formulas. 

Definition of terms (formation rule for terms): 
(1) Each individual symbol is a term. (2) Each 
free variable is a term. (3) f(tt , , t,) is a term 
if t, , , t, are terms and ,f is a function symbol 
of n arguments. (4) The only terms are those 
given by (l)-(3). 

As a prime formula in this case we use any 
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formula of the form F(t,, , t,), where F is a 
predicate symbol of n arguments and t,, , t, 
are arbitrary terms. To define the notions of 
term and formula, we need logical symbols, 
free and bound individual variables, and also a 
list of individual symbols, function symbols, 
and predicate symbols. 

In pure predicate logic, the individual 
domain is not concrete, and we study only 
general forms of propositions. Hence, in this 
case, predicate or function symbols are not 
representations of concrete predicates or func- 
tions but are predicate variables and function 
variables. We also use free individual variables 
instead of individual symbols. In fact, it is now 
most common that function variables are 
dispensed with, and only free individual vari- 
ables are used as terms. 

I. Formulation of Mathematical Theories 

To formalize a theory we need axioms and 
rules of inference. Axioms constitute a certain 
specific set of formulas, and a rule of inference 
is a rule for deducing a formula from other 
formulas. A formula is said to be provable if it 
can be deduced from the axioms by repeated 
application of rules of inference. Axioms are 
divided into two types: logical axioms, which 
are common to all theories, and mathematical 
axioms, which are peculiar to each individual 
theory. The set of mathematical axioms is 
called the axiom system of the theory. 

(I) Logical axioms: (1) A formula that is the 
result of substituting arbitrary formulas for the 
proposition variables in a tautology is an 
axiom. (2) Any formula of the form 

is an axiom, where 3(t) is the result of sub- 
stituting an arbitrary term t for x in 3(x). 

(II) Rules of inference: (I) We can deduce a 
formula 23 from two formulas (rl and ‘U-8 
(modus ponens). (2) We can deduce C(I+VX~(X) 
from a formula %+3(a) and 3x3(x)+% 
from ~(a)+%, where u is a free individual 
variable contained in neither ‘11 nor s(x) and 
%(a) is the result of substituting u for x in g(x). 

If an axiom system is added to these logical 
axioms and rules of inference, we say that a 
formal system is given. 

A formal system S or its axiom system is 
said to be contradictory or to contain a con- 
tradiction if a formula VI and its negation 1 CLI 
are provable; otherwise it is said to be consis- 
tent. Since 

is a tautology, we can show that any formula 
is provable in a formal system containing a 

contradiction. The validity of a proof by 
reductio ad absurdum lies in the f.act that 

((Il-r(BA liB))-1% 

is a tautology. An affirmative proposition 
(formula) may be obtained by reductio ad 
absurdum since the formula (of flropositional 
logic) representing the discharge of double 
negation 

1 lT!+'U 

is a tautology. 

J. Predicate Calculus 

If a formula has no free individual variable, we 
call it a closed formula. Now we consider a 
formal system S whose mathematical axioms 
are closed. A formula 91 is provable in S if 
and only if there exist suitable m.athematical 
axioms E,, ,E, such that the formula 

is provable without the use of mathematical 
axioms. Since any axiom system can be re- 
placed by an equivalent axiom system contain- 
ing only closed formulas, the study of a formal 
system can be reduced to the study of pure 
logic. 

In the following we take no individual sym- 
bols or function symbols into consideration 
and we use predicate variables as predicate 
symbols in accordance with the commonly 
accepted method of stating properties of the 
pure predicate logic; but only in the case of 
predicate logic with equality will ‘we use predi- 
cate variables and the equality predicate = as 
a predicate symbol. However, we can safely 
state that we use function variables as function 
symbols. 

The formal system with no mathematical 
axioms is called the predicate calculus. The 
formal system whose mathematical axioms are 
the equality axioms 

u=u, u=/J + m4+im)) 

is called the predicate calculus with equality. 
In the following, by being provable we mean 

being provable in the predicate calculus. 
(1) Every provable formula is valid. 
(2) Conversely, any valid formula is prov- 

able (K. Code1 [6]). This fact is called the 
completeness of the predicate calculus. In fact, 
by Godel’s proof, a formula (rI is provable if 
9I is always true in every interpretation whose 
individual domain is of tcountable cardinality. 
In another formulation, if 1 VI is not provable, 
the formula 3 is a true proposition in some 
interpretation (and the individual domain in 
this case is of countable cardinality). We can 
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extend this result as follows: If an axiom sys- 
tem generated by countably many closed 
formulas is consistent, then its mathematical 
axioms can be considered true propositions 
by a common interpretation. In this sense, 
Giidel’s completeness theorem gives another 
proof of the %kolem-Lowenheim theorem. 

(3) The predicate calculus is consistent. 
Although this result is obtained from (1) in this 
section, it is not difftcult to show it directly 
(D. Hilbert and W. Ackermann [7]). 

(4) There are many different ways of giving 
logical axioms and rules of inference for the 
predicate calculus. G. Gentzen gave two types 
of systems in [S]; one is a natural deduction 
system in which it is easy to reproduce formal 
proofs directly from practical ones in math- 
ematics, and the other has a logically simpler 
structure. Concerning the latter, Gentzen 
proved Gentzen’s fundamental theorem, which 
shows that a formal proof of a formula may be 
translated into a “direct” proof. The theorem 
itself and its idea were powerful tools for ob- 
taining consistency proofs. 

(5) If the proposition 3x’.(x) is true, we 
choose one of the individuals x satisfying the 
condition ‘LI(x), and denote it by 8x%(x). When 
3x91(x) is false, we let c-:x’lI(x) represent an 
arbitrary individual. Then 

3xQr(x)+‘x(ExcLr(x)) (1) 

is true. We consider EX to be an operator as- 
sociating an individual sxqI(x) with a propo- 
sition 9I(x) containing the variable x. Hilbert 
called it the transfinite logical choice function; 
today we call it Hilbert’s E-operator (or E- 
quantifier), and the logical symbol E used in 
this sense Hilbert’s E-symbol. Using the E- 
symbol, 3xX(x) and Vx’lI(x) are represented by 

Bl(EXPI(X)), \Ll(cx 1 VI(x)), 

respectively, for any N(x). The system of predi- 
cate calculus adding formulas of the form (1) 
as axioms is essentially equivalent to the usual 
predicate calculus. This result, called the c- 
theorem, reads as follows: When a formula 6 is 
provable under the assumption that every 
formula of the form (1) is an axiom, we can 
prove (5 using no axioms of the form (1) if Cr 
contains no logical symbol s (D. Hilbert and 
P. Bernays [9]). Moreover, a similar theorem 
holds when axioms of the form 

vx(‘.x(x)~B(x))~EX%(X)=CX%(X) 

are added (S. Maehara [lo]). 

(2) 

(6) For a given formula ‘U, call 21’ a normal 
form of PI when the formula 

YIttW 

is provable and ‘% satisfies a particular con- 
dition For example, for any formula YI there is 

a normal form 9I’ satisfying the condition: YI’ 
has the form 

Q,-xl . . . Q.x,W,, . . ..x.), 

where Qx means a quantifier Vx or 3x, and 
%(x,, , x,) contains no quantifier and has no 
predicate variables or free individual variables 
not contained in ‘Ll. A normal form of this 
kind is called a prenex normal form. 

(7) We have dealt with the classical first- 
order predicate logic until now. For other 
predicate logics (- Sections K and L) also, we 
can consider a predicate calculus or a formal 
system by first defining suitable axioms or 
rules of inference. Gentzen’s fundamental 
theorem applies to the intuitionistic predicate 
calculus formulated by V. I. Glivenko, A. 
Heyting, and others. Since Gentzen’s funda- 
mental theorem holds not only in classical 
logic and intuitionistic logic but also in several 
systems of frst-order predicate logic or pro- 
positional logic, it is useful for getting results 
in modal and other logics (M. Ohnishi, K. 
Matsumoto). Moreover, Glivenko’s theorem 
in propositional logic [S] is also extended to 
predicate calculus by using a rather weak 
representation (S. Kuroda [12]). G. Takeuti 
expected that a theorem similar to Gentzen’s 
fundamental theorem would hold in higher- 
order predicate logic also, and showed that 
the consistency of analysis would follow if 
that conjecture could be verified [ 131. More- 
over, in many important cases, he showed 
constructively that the conjecture holds par- 
tially. The conjecture was finally proved by 
M. Takahashi [ 141 by a nonconstructive 
method. Concerning this, there are also con- 
tributions by S. Maehara, T. Simauti, M. 
Yasuhara. and W. Tait. 

K. Predicate Logics of Higher Order 

In ordinary predicate logic, the bound vari- 
ables are restricted to individual variables. In 
this sense, ordinary predicate logic is called 
first-order predicate logic, while predicate logic 
dealing with quantifiers VP or 3P for a predi- 
cate variable P is called second-order predicate 
logic. 

Generalizing further, we can introduce the 
so-called third-order predicate logic. First we 
fix the individual domain D,. Then, by intro- 
ducing the whole class 0; of predicates of n 
variables, each running over the object domain 
D,, we can introduce predicates that have 0; 
as their object domain. This kind of predicate 
is called a second-order predicate with respect 
to the individual domain D,. Even when 
we restrict second-order predicates to one- 
variable predicates, they are divided into vari- 
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ous types, and the domains of independent 
variables do not coincide in the case of more 
than two variables. In contrast, predicates 
having D, as their object domain are called 
first-order predicates. The logic having quan- 
tifiers that admit first-order predicate variables 
is second-order predicate logic, and the logic 
having quantifiers that admit up to second- 
order predicate variables is third-order predi- 
cate logic. Similarly, we can define further 
higher-order predicate logics. 

Higher-order predicate logic is occasionally 
called type theory, because variables arise that 
are classified into various types. Type theory is 
divided into simple type theory and ramified 
type theory. 

We confine ourselves to variables for single- 
variable predicates, and denote by P such a 
bound predicate variable. Then for any for- 
mula ;4(a) (with a a free individual variable), 
the formula 

is considered identically true. This is the point 
of view in simple type theory. 

Russell asserted first that this formula can- 
not be used reasonably if quantifiers with 
respect to predicate variables occur in s(x). 
This assertion is based on the point of view 
that the formula in the previous paragraph 
asserts that 5(x) is a first-order predicate, 
whereas any quantifier with respect to first- 
order predicate variables, whose definition 
assumes the totality of the first-order predi- 
cates, should not be used to introduce the first- 
order predicate a(x). For this purpose, Russell 
further classified the class of first-order predi- 
cates by their rank and adopted the axiom 

for the predicate variable Pk of rank k, where 
the rank i of any free predicate variable occur- 
ring in R(x) is dk, and the rank j of any 
bound predicate variable occurring in g(x) is 
<k. This is the point of view in ramified type 
theory, and we still must subdivide the types if 
we deal with higher-order propositions or 
propositions of many variables. Even Russell, 
having started from his ramified type theory, 
had to introduce the axiom of reducibility 
afterwards and reduce his theory to simple 
type theory. 

L. Systems of Logic 

Logic in the ordinary sense, which is based on 
the law of the excluded middle asserting that 
every proposition is in principle either true or 
false, is called classical logic. Usually, propo- 

sitional logic, predicate logic, and type theory 
are developed from the standpoint of classical 
logic. Occasionally the reasoning of intuition- 
istic mathematics is investigated using sym- 
bolic logic, in which the law of the excluded 
middle is not admitted (- 156 Foundations of 
Mathematics). Such logic is called intuitionistic 
logic. Logic is also subdivided into proposi- 
tional logic, predicate logic, etc., according to 
the extent of the propositions (formulas) dealt 
with. 

To express modal propositions stating possi- 
bility, necessity, etc., in symbolic logic, J. tu- 
kaszewicz proposed a propositional logic called 
three-valued logic, having a third truth value, 
neither true nor false. More generally, many- 
valued logics with any number of truth values 
have been introduced; classical logic is one of 
its special cases, two-valued logic with two 
truth values, true and false. Actually, however, 
many-valued logics with more than three truth 
values have not been studied mu’ch, while 
various studies in modal logic based on classi- 
cal logic have been successfully carried out. 
For example, studies of strict implication 
belong to this field. 

References 

[l] G. Boole, An investigation of the laws of 
thought, Walton and Maberly, 1:554. 
[2] A. de Morgan, Formal logic, or the cal- 
culus of inference, Taylor and Walton, 1847. 
[3] G. Frege, Begriffsschrift, eine der arith- 
metischen nachgebildete Formalsprache des 
reinen Denkens, Halle, 1879. 
[4] A. N. Whitehead and B. Russell, Principia 
mathematics I, II, Ill, Cambridgl: Univ. Press, 
1910-1913; second edition, 1925-1927. 
[S] V. Glivenko, Sur quelques points de la 
logique de M. Brouwer, Acad. Roy. de Bel- 
gique, Bulletin de la classe des sciences, (5) 15 
(1929) 1833188. 
[6] K. Godel, Die Vollstlndigkeit der Axiome 
des logischen Funktionenkalkiils, Monatsh. 
Math. Phys., 37 (1930) 3499360. 
[7] D. Hilbert and W. Ackermann, Grundziige 
der theoretischen Logik, Springer, 1928, sixth 
edition, 1972; English translation, Principles of 
mathematical logic, Chelsea, 1950. 
[S] G. Gentzen, Untersuchungen iiber das 
logische Schliessen, Math. Z., 39 (1935) 1766 
210,4055431. 
[9] D. Hilbert and P. Bernays, Grundlagen 
der Mathematik II, Springer, 1939; second 
edition, 1970. 
[lo] S. Maehara, Equality axiom on Hilbert’s 
a-symbol, J. Fat. Sci. Univ. Tokyo, (I), 7 (1957) 
419-435. 



1557 412 C 
Symmetric Riemannian Spaces and Real Forms 

[l 11 A. Heyting, Die formalen Regeln der 
intuition&&hen Logik I, S.-B. Preuss. Akad. 
Wiss., 1930,42%56. 
[ 121 S. Kuroda, Intuitionistische Untersu- 
chungen der formalist&hen Logik, Nagoya 
Math. J., 2 (195 l), 35-47. 
[13] G. Take&, On a generalized logic cal- 
culus, Japan. J. Math., 23 (1953), 39-96. 
[14] M. Takahashi, A proof of the cut- 
elimination theorem in simple type-theory, J. 
Math. Sot. Japan, 19 (1967), 399-410. 
[ 151 S. C. Kleene, Mathematical logic, Wiley, 
1967. 
[16] J. R. Shoeniield, Mathematical logic, 
Addison-Wesley, 1967. 
[17] R. M. Smullyan, First-order logic, Sprin- 
ger, 1968. 

412 (IV.13) 
Symmetric Riemannian 
Spaces and Real Forms 

A. Symmetric Riemannian Spaces 

Let M be a +Riemannian space. For each point 
p of M we can define a mapping gp of a suit- 
able neighborhood U, of p onto U, itself so 
that a,(x,)=x-,, where x, (It/ <E,x~=P) is any 
tgeodesic passing through the point p. We call 
M a locally symmetric Riemannian space if for 
any point p of M we can choose a neighbor- 
hood U,, so that crp is an tisometry of U,,. In 
order that a Riemannian space M be locally 
symmetric it is necessary and sufficient that the 
tcovariant differential (with respect to the 
+Riemannian connection) of the tcurvature 
tensor of A4 be 0. A locally symmetric Riemann- 
ian space is a +real analytic manifold. We say 
that a Riemannian space M is a globally sym- 
metric Riemannian space (or simply symmetric 
Riemannian space) if M is connected and if for 
each point p of M there exists an isometry cp 
of M onto M itself that has p as an isolated 
fixed point (i.e., has no fixed point except p in a 
certain neighborhood of p) and such that 0; is 
the identity transformation on M. In this case 
ap is called the symmetry at p. A (globally) 
symmetric Riemannian space is locally sym- 
metric and is a tcomplete Riemannian space. 
Conversely, a tsimply connected complete 
locally symmetric Riemannian space is a (glob- 
ally) symmetric Riemannian space. 

B. Symmetric Riemannian Homogeneous 
Spaces 

A thomogeneous space GJK of a connected 
+Lie group G is a symmetric homogeneous 

space (with respect to 0) if there exists an in- 
volutive automorphism (i.e., automorphism of 
order 2) 0 of G satisfying the condition Kt c 
Kc K,, where K, is the closed subgroup con- 
sisting of all elements of G left fixed by 0 and 
K,” is the connected component of the iden- 
tity element of K,,. In this case, the mapping 
aK+B(a)K (aEG) is a transformation of 
G/K having the point K as an isolated fixed 
point; more generally, the mapping OoO: aK --) 
a,O(a,)-’ O(a)K is a transformation of G/K 
that has an arbitrary given point a, K of G/K 
as an isolated fixed point. If there exists a G- 
invariant Riemannian metric on G/K, then 
G/K is a symmetric Riemannian space with 
symmetries { QaO 1 a,, E G} and is called a sym- 
metric Riemannian homogeneous space. A 
sufficient condition for a symmetric homoge- 
neous space G/K to be a symmetric Riemann- 
ian homogeneous space is that K be a com- 
pact subgroup. Conversely, given a symmetric 
Riemannian space M, let G be the connected 
component of the identity element of the Lie 
group formed by all the isometries of M; then 
M is represented as the symmetric Riemannian 
homogeneous space M = G/K and K is a com- 
pact group. In particular, a symmetric Rie- 
mannian space can be regarded as a Riemann- 
ian space that is realizable as a symmetric 
Riemannian homogeneous space. 

The Riemannian connection of a symme- 
tric Riemannian homogeneous space G/K is 
uniquely determined (independent of the 
choice of G-invariant Riemannian metric), and 
a geodesic xt( j tI < co, x0 = a, K) passing 
through a point a, K of G/K is of the form 
x, = (exp tX)a, K. Here X is any element of the 
Lie algebra g of G such that O(X)= -X, where 
0 also denotes the automorphism of g induced 
by the automorphism 0 of G and exp tX is the 
tone-parameter subgroup of G defined by the 
element X. The covariant differential of any G- 
invariant tensor field on G/K is 0, and any G- 
invariant idifferential form on G/K is a closed 
differential form. 

C. Classification of Symmetric Riemannian 
Spaces 

The tsimply connected tcovering Riemannian 
space of a symmetric Riemannian space is also 
a symmetric Riemannian space. Therefore the 
problem of classifying symmetric Riemannian 
spaces is reduced to classifying simply con- 
nected symmetric Riemannian spaces M and 
determining tdiscontinuous groups of iso- 
metries of M. When we take the +de Rham 
decomposition of such a space M and repre- 
sent M as the product of a real Euclidean 
space and a number of simply connected irre- 
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ducible Riemannian spaces, all the factors are 
symmetric Riemannian spaces. We say that M 
is an irreducible symmetric Riemannian space if 
it is a symmetric Riemannian space and is 
irreducible as a Riemannian space. 

A simply connected irreducible symmetric 
Riemannian space is isomorphic to one of the 
following four types of symmetric Riemannian 
homogeneous spaces (here Lie groups are 
always assumed to be connected): 

(1) The symmetric Riemannian homoge- 
neous space (G x G)/{ (a, a) 1 a E G) of the direct 
product G x G, where G is a simply connected 
compact isimple Lie group and the involutive 
automorphism of G x G is given by (a, h)d(h, a) 
((a, h)~ G x G). This space is isomorphic, as a 
Riemannian space, to the space G obtained by 
introducing a two-sided invariant Riemannian 
metric on the group G; the isomorphism is 
induced from the mapping G x G ~(a, h)+ 
Ub-‘EG. 

(2) A symmetric homogeneous space G/K, 
of a simply connected compact simple Lie 
group G with respect to an involutive auto- 
morphism 0 of G. In this case, the closed sub- 
group K, = {a E G) 0(u) = u} of G is connected. 
We assume here that 0 is a member of the 
given complete system of representatives of the 
iconjugate classes formed by the elements of 
order 2 in the automorphism group of the 
group G. 

(3) The homogeneous space G”/G, where GC 
is a complex simple Lie group whose tcenter 
reduces to the identity element and G is an 
arbitrary but fixed maximal compact subgroup 
of CC. 

(4) The homogeneous space G,/K, where G, 
is a noncompact simple Lie group whose 
center reduces to the identity element and 
which has no complex Lie group structure, 
and K is a maximal compact subgroup of G. 
In Section D we shall see that (3) and (4) are 
actually symmetric homogeneous spaces. All 
four types of symmetric Riemannian spaces are 
actually irreducible symmetric Riemannian 
spaces, and G-invariant Riemannian metrics 
on each of them are uniquely determined up to 
multiplication by a positive number. On the 
other hand, (1) and (2) are compact, while (3) 
and (4) are homeomorphic to Euclidean spaces 
and not compact. For spaces of types (1) and 
(3) the problem of classifying simply connected 
irreducible symmetric Riemannian spaces is 
reduced to classifying +compact real simple Lie 
algebras and tcomplex simple Lie algebras, 
respectively, while for types (2) and (4) it is 
reduced to the classification of noncompact 
real simple Lie algebras (- Section D) (for the 
result of classification of these types - Ap- 

pendix A, Table 5.11). On the other hand, any 
(not necessarily simply connected) irreducible 

symmetric Riemannian space defines one of 
(l)-(4) as its tuniversal covering manifold; if 
the covering manifold is of type (3) or (4), the 
original symmetric Riemannian space is neces- 
sarily simply connected. 

D. Symmetric Riemannian Homogeneous 
Spaces of Semisimple Lie Groups 

In Section C we saw that any irreducible sym- 
metric Riemannian space is representable as a 
symmetric Riemannian homogeneous space 
G/K on which a connected semisimple Lie 
group G acts +almost effectively (-- 249 Lie 
Groups). Among symmetric Riemannian 
spaces, such a space A4 = G/K is characterized 
as one admitting no nonzero vector field that 
is tparallel with respect to the Riemannian 
connection. Furthermore, if G acis effectively 
on M, G coincides with the connected compo- 
nent I(M)’ of the identity element of the Lie 
group formed by all the isometries of M. 

We let M = G/K be a symmetric Riemann- 
ian homogeneous space on which. a con- 
nected semisimple Lie group G acts almost 
effectively. Then G is a Lie group that is tlocally 
isomorphic to the group 1(M)‘, and therefore 
the Lie algebra of G is determined by M. Let g 
be the Lie algebra of G, f be the subalgebra of 
g corresponding to K, and 0 be the involutive 
automorphism of G defining the symmetric 
homogeneous space G/K. The automorphism 
of g defined by 6’ is also denoted by 0. Then f = 
{XEgIQ(X)=X}. Puttingm={XEg/B(X)= 
-X}, we have g = m + f (direct sum of linear 
spaces), and nr can be identified in a natural 
way with the tangent space at the point K of 
G/K. The tadjoint representation of G gives 
rise to a representation of K in g, which in- 
duces a linear representation Ad,,,(k) of K in m. 
Then {Ad,,,(k) 1 k E K} coincides wl th the +res- 
tricted homogeneous holonomy group at the 
point K of the Riemannian space G/K. 

Now let cp be the +Killing form of g. Then f 
and m are mutually orthogonal with respect to 
cp, and denoting by qt and (P,” the restrictions 
of cp to f and m, respectively, qDt is a negative 
definite quadratic form on f. If v,,~ is also a 
negative definite quadratic form on nt, g is a 
compact real semisimple Lie algebra and G/K 
is a compact symmetric Riemannian space; in 
this case we say that G/K is of compact type. 
In the opposite case, where (pm is a tpositive 
definite quadratic form, G/K is said to be of 
noncompact type. In this latter case, G/K is 
homeomo’rphic to a Euclidean space, and if 
the center of G is finite, K is a maximal com- 
pact subgroup of G. Furthermore, the group 
of isometries I(G/K) of G/K is canonically 
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isomorphic to the automorphism group of 
the Lie algebra 9. When G/K is of compact 
type (noncompact type), there exists one and 
only one G-invariant Riemannian metric on 
G/K, which induces in the tangent space m 
at the point K the positive definite inner 

product -v,,, (vd 
A symmetric Riemannian homogeneous 

space G/K, of compact type defined by a sim- 
ply connected compact semisimple Lie group 
G with respect to an involutive automorphism 
0 is simply connected. Let g = nr + f, be the de- 
composition of the Lie algebra g of G with 
respect to the automorphism 0 of 9, and let gc 
be the +complex form of g. Then the real sub- 
space gs = J-1 m + fs in gC is a real semi- 
simple Lie algebra and a treal form of ~1~. Let 
GB be the Lie group corresponding to the Lie 
algebra ge with center reduced to the identity 
element, and let K be the subgroup of G, cor- 
responding to fe. Then we get a (simply con- 
nected) symmetric Riemannian homogeneous 
space of noncompact type Go/K. 

When we start from a symmetric Riemann- 
ian space of noncompact type G/K instead of 
the symmetric Riemannian space of compact 
type G/K, and apply the same process as in 
the previous paragraphs, taking a simply 
connected G, as the Lie group corresponding 
to gs, we obtain a simply connected symmetric 
Riemannian homogeneous space of compact 
type. Indeed, each of these two processes is the 
reverse of the other, and in this way we get a 
one-to-one correspondence between simply 
connected symmetric Riemannian homoge- 
neous spaces of compact type and those of 
noncompact type. This relationship is called 
duality for symmetric Riemannian spaces; 
when two symmetric Riemannian spaces are 
related by duality, each is said to be the dual 
of the other. 

If one of the two symmetric Riemannian 
spaces related by duality is irreducible, the 
other is also irreducible. The duality holds 
between spaces of types (1) and (3) and be- 
tween those of types (2) and (4) described in 
Section C. This fact is based on the following 
theorem in the theory of Lie algebras, where 
we identify isomorphic Lie algebras. (i) Com- 
plex simple Lie algebras gc and compact real 
simple Lie algebras 9 are in one-to-one corre- 
spondence by the relation that gc is the com- 
plex form of 9. (ii) Form the Lie algebra g, in 
the above way from a compact real simple Lie 
algebra g and an involutive automorphism 0 
of n. We assume that 0 is a member of the 
given complete system of representatives of 
conjugate classes of involutive automorphisms 
in the automorphism group of 9. Then we get 
from the pair (g,O) a noncompact real simple 
Lie algebra gR, and any noncompact real 

simple Lie algebra is obtained by this process 
in one and only one way. 

Consider a Riemannian space given as a 
symmetric Riemannian homogeneous space M 
= G/K with a semisimple Lie group G, and let 
K be the +sectional curvature of M. Then if M 
is of compact type the value of K is > 0, and 
if M is of noncompact type it is GO. On the 
other hand, the rank of M is the (unique) di- 
mension of a commutative subalgebra of g 
that is contained in and maximal in m. (For 
results concerning the group of isometries of 
M, distribution of geodesics on M, etc. - 131.) 

E. Symmetric Hermitian Spaces 

A connected tcomplex manifold M with a 
+Hermitian metric is called a symmetric Her- 
mitian space if for each point p of M there 
exists an isometric and +biholomorphic trans- 
formation of M onto M that is of order 2 and 
has p as an isolated fixed point. As a real ana- 
lytic manifold, such a space M is a symmetric 
Riemannian space of even dimension, and the 
Hermitian metric of M is a +Kihler metric. Let 
I(M) be the (not necessarily connected) Lie 
group formed by all isometries of M, and let 
A(M) be the subgroup consisting of all holo- 
morphic transformations in I(M). Then .4(M) 
is a closed Lie subgroup of 1(M). Let G be the 
connected component ,4(M)' of the ideniity 
element of .4(M). Then G acts transitively on 
M, and M is expressed as a symmetric Rie- 
mannian homogeneous space G/K. 

Under the de Rham decomposition of a 
simply connected symmetric Hermitian space 
(regarded as a Riemannian space), all the 
factors are symmetric Hermitian spaces. The 
factor that is isomorphic to a real Euclidean 
spaces as a Riemannian space is a symmetric 
Hermitian space that is isomorphic to the 
complex Euclidean space c”. A symmetric 
Hermitian space defining an irreducible sym- 
metric Riemannian space is called an irreduc- 
ible symmetric Hermitian space. The problem 
of classifying symmetric Hermitian spaces is 
thus reduced to classifying irreducible sym- 
metric Hermitian spaces. 

In general, if the symmetric Riemannian 
space defined by a symmetric Hermitian space 
M is represented as a symmetric Riemannian 
homogeneous space G/K by a connected semi- 
simple Lie group G acting effectively on M, 
then M is simply connected, G coincides with 
the group A(M)’ introduced in the previous 
paragraph, and the center of K is not a +dis- 
Crete set. In particular, an irreducible sym- 
metric Hermitian space is simply connected. 
Moreover, in order for an irreducible symmetric 
Riemannian homogeneous space G/K to be 
defined by an irreducible symmetric Hermitian 
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space M, it is necessary and sufficient that the 
center of K not be a discrete set. If G acts 
effectively on M, then G is a simple Lie group 
whose center is reduced to the identity ele- 
ment, and the center of K is of dimension 1. 
For a space Gjlv satisfying these conditions, 
there are two kinds of structures of symmetric 
Hermitian spaces defining the Riemannian 
structure of G/K. 

As follows from the classification of irre- 
ducible symmetric Riemannian spaces, an 
irreducible Hermitian space defines one of the 
following symmetric Riemannian homogeneous 
spaces, and conversely, each of these homoge- 
neous spaces is defined by one of the two kinds 
of symmetric Hermitian spaces. 

(I) The symmetric homogeneous space G/k’ 
of a compact simple Lie group G with respect 
to an involutive automorphism 0 such that the 
center of G reduces to the identity element and 
the center of K is not a discrete set. Here 0 
may be assumed to be a representative of a 
conjugate class of involutive automorphisms 
in the automorphism group of G. 

(II) The homogeneous space G,/K of a 
noncompact simple Lie group G, by a maxi- 
mal compact subgroup K such that the center 
of G, reduces to the identity element and the 
center of K is not a discrete set. 

An irreducible symmetric Hermitian space 
of type (I) is compact and is isomorphic to a 
irational algebraic variety. An irreducible 
symmetric Hermitian space of type (II) is 
homeomorphic to a Euclidean space and is 
isomorphic (as a complex manifold) to a 
bounded domain in C” (Section F). 

By the same principle as for irreducible 
symmetric Riemannian spaces, a duality holds 
for irreducible symmetric Hermitian spaces 
which establishes a one-to-one correspondence 
between the spaces of types (I) and (II). Fur- 
thermore, an irreducible symmetric Hermitian 
space M, of type (II) that is dual to a given 
irreducible symmetric Hermitian space A4, 
= G/K of type (I) can be realized as an open 
complex submanifold of M, in the following 
way. Let GC be the connected component of 
the identity element in the Lie group formed 
by all the holomorphic transformations of A4,. 
Then GC is a complex simple Lie group con- 
taining G as a maximal compact subgroup, 
and the complex Lie algebra gc of GC contains 
the Lie algebra g of G as a real form. Let 0 be 
the involutive automorphism of G defining the 
symmetric homogeneous space G/K, and let g 
= m + t be the decomposition of g determined 
by 0. We denote by G, the real subgroup of GC 
corresponding to the real form go = J-1 m + 
t of gC. Then G, (i) is a closed subgroup of 
CC whose center reduces to the identity ele- 
ment and (ii) contains K as a maximal com- 

pact subgroup. By definition the space M,, is 
then given by Go/K. Now the group G, acts on 
A4, as a subgroup of GC, and the orbit of G, 
containing the point K of M, is an open com- 
plex submanifold that is isomorphic to M, (as 
a complex manifold). M, regarded as a com- 
plex manifold can be represented as the homo- 
geneous space GC/U of the comp18ex simple Lie 
group GC. 

F. Symmetric Bounded Domains 

We denote by D a bounded domarin in the 
complex Euclidean space C” of dimension n. 
We call D a symmetric bounded domain if for 
each point of D there exists a holomorphic 
transformation of order 2 of D onto D having 
the point as an isolated fixed point. On the 
other hand, the group of all holomorphic 
transformations of D is a Lie group, and D is 
called a homogeneous bounded domain if this 
group acts transitively on D. A symmetric 
bounded domain is a homogeneous bounded 
domain. The following theorem gives more 
precise results: On a bounded dommain D, 
+Bergman’s kernel function defines a Kghler 
metric that is invariant under all holomorphic 
transformations of D. If D is a symmetric 
bounded domain, D is a symmetric Hermitian 
space with respect to this metric.. and its defin- 
ing Riemannian space is a symmmetric Riemann- 
ian homogeneous space of nonoompact type 
G/K with semisimple Lie group G. Conversely, 
any symmetric Hermitian space of noncom- 
pact type is isomorphic (as a complex mani- 
fold) to a symmetric bounded domain. When 
D is isomorphic to an irreducible symmetric 
Hermitian space, we call D an irreducible 
symmetric bounded domain. A symmetric 
bounded domain is simply connected and can 
be decomposed into the direct product of irre- 
ducible symmetric bounded domains. 

The connected component of the identity 
element of the group of all holomorphic trans- 
formations of a symmetric bounded domain D 
is a semisimple Lie group that acts transitively 
on D. Conversely, D is a symmetric bounded 
domain if a connected semisimple Lie group, 
or more generally, a connected Lie group 
admitting a two-sided invariant tHaar mea- 

sure, acts transitively on D. Homogeneous 
bounded domains in C” are symmetric 
bounded domains if n < 3 but not necessarily 
when n>4. 

G. Examples of Irreducible Symmetric 
Riemannian Spaces 

Here we list irreducible symmetric Riemannian 
spaces of types (2) and (4) (- Section C) that 
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can be represented as homogeneous spaces of 
classical groups, using the notation introduced 
by E. Cartan. We denote by M, = G/K a sim- 
ply connected irreducible symmetric Riemann- 
ian space of type (2) where G is a group that 
acts almost effectively on M, and K is the 
subgroup given by K = K,” for an involutive 
automorphism 0 of G. For such an M,,, the 
space of type (4) that is dual to M, is denoted 
by A40 = Go/K. Clearly dim M, = dim M,. (For 
the dimension and rank of M, and for those 
M, that are represented as homogeneous 
spaces of simply connected texceptional com- 
pact simple Lie groups - Appendix A, Table 
5.111.) In this section (and also in Appendix A, 
Table 5.111), O(n), U(n), Sp(n), SL(n, R), and 
SL(n, C) are the torthogonal group of degree n, 
the +unitary group of degree n, the tsymplectic 
group of degree 2n, and the real and complex 
ispecial linear groups of degree n, respectively. 
Let SO(n)= SL(n, R)n O(n) and SU(n) = 
SL(n, C) n U(n). We put 

where I, is the p x p unit matrix. 
Type AI. M, = SU(n)/SO(n) (n > 1), where 

O(s) = s (with ?; the complex conjugate matrix 
of s). M, = SL(n, R)/SO(n). 

Type AII. M, = SU(2n)/Sp(n) (n > 1), where 
O(s)=J,sJ,‘. M,=SU*(2n)/Sp(n). Here 
SU*(2n) is the subgroup of SL(2n,C) formed 
by the matrices that commute with the trans-. 
formation (zi, ,z,, z,+i, ,z2.)+(Z,+,, , 

Zzn, --z , , , -Z,) in C”; SU*(2n) is called the 
quaternion unimodular group and is isomorphic 
to the commutator group of the group of all 
regular transformations in an n-dimensional 
vector space over the quaternion field H. 

Type AIII. Mu = SU(p + q)/S(U,, x Uq) (p 3 
qb l), where S(U,x U,)=SU(p+q)n(U(p) x 
U(q)), with U(p) x U(q) being canonically 
identified with a subgroup of U(p + q), and 
O(s) = I,,,sl,,,. This space M, is a +complex 
Grassmann manifold. M, = SU(p, q)/S( UP x U,), 
where SU(p, q) is the subgroup of SL(p + q, C) 
consisting of matrices that leave invariant the 
Hermitian form zili + +z,~~-z~+,Z,+, - 

“’ -zp+qzp+q. 
Type AIV. This is the case q = 1 of type AIII. 

M, is the (n - l)-dimensional complex projec- 
tive space, and M, is called a Hermitian hyper- 
bolic space. 

Type BDI. M,=SO(p+q)/SO(p) x SO(q) 
(p>q> l,p> l,p+q #4), where O(s)= I,,$,,,. 
M, is the +real Grassmann manifold formed by 

the oriented p-dimensional subspaces in Rp+“. 

M, = SOdp, q)lSO(p) x SO(q), where SO(p, q) is 
the subgroup of SL(n, R) consisting of matrices 
that leave invariant the quadratic form x: + 

2 2 2 +xP-Xp+,-...-Xp+qr and SO,(p, q) is the 
connected component of the identity element. 

Type BDII. This is the case q = 1 of type 
BDI. M, is the (n - I)-dimensional sphere, and 
MO is called a real hyperbolic space. 

Type DIII. M, = S0(2n)/U(n) (n > 2), where 
U(n) is regarded as a subgroup of SO(2n) by 
identifying SE U(n) with 

and 0(s)= J,,sJ;‘. M,=SO*(2n)/U(n). Here 
SO*(2n) denotes the group of all complex 
orthogonal matrices of determinant 1 leaving 
invariant the skew-Hermitian form z, Z,+, - 

zn+1z1 +zzz.+2 -Z”+2Z2+...+ZnZZn-Z2nZ,; 
this group is isomorphic to the group of all 
linear transformations leaving invariant a 
nondegenerate skew-Hermitian form in an n- 
dimensional vector space over the quaternion 
field H. 

Type CI. M,=Sp(n)/U(n) (n> 1), where U(n) 
is considered as a subgroup of Sp(n) by the 
identification U(n) c SO(2n) explained in type 
DIII and O(s) =S( = J,,sJ,‘). M,= Sp(n, R)/U(n), 
where Sp(n, R) is the real symplectic group of 
degree 2n. 

Type CII. M, = SP(P + q)lSp(p) x Sp(q) (P 3 
q> l), where Sp(p) x Sp(q) is identified with a 
subgroup of Sp(p + q) by the mapping 

and Rs) = K,,,sK,,,. MO = SP(P, q)lSp(p) x 
Sp(q). Here Sp(p, q) is the group of complex 
symplectic matrices of degree 2(p + q) leav- 
ing invariant the Hermitian form (zi , , 
zP+J K,,, ‘(Zi, ,Z,+,); this group is interpreted 
as the group of all linear transformations leav- 
ing invariant a nondegenerate Hermitian form 
of index p in a (p + q)-dimensional vector space 
over the quaternion field H. For q = I, Mu is 
the quaternion projective space, and M, is 
called the quaternion hyperbolic space. 

Among the spaces introduced here, there are 
some with lower p, q, n that coincide (as Rie- 
mannian spaces) (- Appendix A, Table 5.111). 

H. Space Forms 

A Riemannian manifold of +constant curvature 
is called a space form; it is said to be spherical, 
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Euclidean, or hyperbolic according as the con- 
stant curvature K is positive, zero, or negative. 
A space form is a locally symmetric Riemann- 
ian space; a simply connected complete space 
form is a sphere if K > 0, a real Euclidean 
space if K = 0, and a real hyperbolic space if 
K < 0. More generally, a complete spherical 
space form of even dimension is a sphere or 
a projective space, and one of odd dimension 
is an orientable manifold. A complete 2- 
dimensional Euclidean space form is one of 
the following spaces: Euclidean plane, cylinder, 
torus, +Mobius strip, +Klein bottle. Except for 
these five spaces and the 2-dimensional sphere, 
any iclosed surface is a 2-dimensional hyper- 
bolic space form (for details about space forms 

- C61). 

I. Examples of Irreducible Symmetric Bounded 
Domains 

Among the irreducible symmetric Riemannian 
spaces described in Section H, those defined by 
irreducible symmetric Hermitian spaces are of 
types AIII, DIII, BDI (q = 2), and CI. We list 
the irreducible symmetric bounded domains 
that are isomorphic to the irreducible Her- 
mitian spaces defining these spaces. Positive 
definiteness of a matrix will be written >>O. 

Type I,.,. (m’>m~l).Thesetofallmxm’ 
complex matrices Z satisfying the condition 
I,. -‘zZ>>O is a symmetric bounded domain 
in Cm”‘, which is isomorphic (as a complex 
manifold) to the irreducible symmetric Hermi- 
tian space defined by M, of type AI11 (p=m, 
q = m’). 

Type II, (m 3 2). The set of all m x m com- 
plex tskew-symmetric matrices Z satisfying the 
condition I,-‘zZ>>O is a symmetric bounded 
domain in Cm(m-1)i2 corresponding to the type 
DIII (n = m). 

Type III, (m 2 1). The set of all m x m com- 
plex symmetric matrices satisfying the con- 
dition I,-‘zZ>>O is a symmetric bounded 
domain in Cm(m+lXa corresponding to the type 
CI (n = m). This bounded domain is holomor- 
phically isomorphic to the +Siegel upper half- 
space of degree m. 

Type IV, (m > 1, m # 2). This bounded 
domain in C” is formed by the elements 
(z, , . , z,) satisfying the condition Izl 1’ + 
. ..+~z.~*<(l+~z~+...+z~~)/2<1,and 
corresponds to the type BDI (p = m, q = 2). 

Among these four types of bounded 
domains, the following complex analytic iso- 
morphisms hold: I,,, ~II,~III, EIV,, 11,~ 
I ,,3, IV,=III,, IV,gI,,,, IV,gII,. (For 
details about these symmetric bounded 
domains - [2].) There are two more kinds of 
irreducible symmetric bounded domains, 

which are represented as homogeneous spaces 
of exceptional Lie groups. 

J. Weakly Symmetric Riemannian Spaces 

A generalization of symmetric Riemannian 
space is the notion of weakly symmetric Rie- 
mannian space introduced by Selberg. Let M 
be a Riemannian space. M is called a weakly 
symmetric Riemannian space if a Lie sub- 
group G of the group of isometries I(M) acts 
transitively on M and there exists an element 
~EI(M) satisfying the relations (i) ,nGp-’ = G; 
(ii) $6 G; and (iii) for any two points x, y of 
M, there exists an element m of G such that px 
= my, py = mx. A symmetric Riemannian space 
M becomes a weakly symmetric Riemannian 
space if we put G = I(M) and p = the identity 
transformation; as the element m in condition 
(iii) we can take the symmetry op at the mid- 
point p on the geodesic arc joining x and y. 
There are, however, weakly symmetric Rie- 
mannian spaces that do not have the structure 
of a symmetric Riemannian space. An example 
of such a space is given by M = G == SL(2, R) 
with a suitable Riemannian metric, where p 
is the inner automorphism defined by 

1 0 ( > 0 -1 

(Selberg [4]). On a weakly symmetric Rie- 
mannian space, the ring of all G-invariant 
differential-integral operators is commutative; 
this fact is useful in the theory of spherical 
functions (- 437 Unitary Representations). 
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A +Riemannian manifold M is called a sym- 
metric Riemannian space if M is connected and 
if for each pe!v4 there exists an involutive 
tisometry gP of M that has p as an isolated 
fixed point. For the classification and the 
group-theoretic properties of symmetric Rie- 
mannian spaces - 412 Symmetric Riemann- 
ian Spaces and Real Forms. We state here 
the geometrical properties of a symmetric Rie- 
mannian space M. Let M be represented by 
G/K, a tsymmetric Riemannian homogeneous 
space. The +Lie algebras of G and K are de- 
noted by g and f respectively. Let us denote by 
T, the tleft translation of M defined by a E G, 
and by X* the vector field on M generated by 
X E g. We denote by 0 the differential of the 
involutive automorphism of G defining G/K 
and identify the subspace m = {XE~ 10(X) 
= -X} of g with the tangent space T,(M) of 
M at the origin o = K of M. The trepresen- 
tation off on m induced from the tadjoint 
representation of g is denoted by ad,,,. 

A. Riemannian Connections 

M is a complete real analytic thomogeneous 
Riemannian manifold. If M is a isymmetric 
Hermitian space, it is a thomogeneous Kah- 
lerian manifold. The +Riemannian connection 
V of M is the tcanonical connection of the 
homogeneous space G/K and satisfies V,X* = 
[X, Y] (Ysm) for each XEI and VyX*=O 
(Yem) for each X~rn. For each X~rn, the 
curve yx of M defined by yx(t) = (exp tX)o 
(t E R) is a igeodesic of M such that ~~(0) = o 
and yx(0) = X. In particular, the texponen- 
tial mapping Exp, at o is given by Exp, X = 
(exp X)o (X E m). For each X E m, the tparal- 
lel translation along the geodesic arc yx(t) 
(06 t < to) coincides with the differential of 
z,,~~~~. If M is compact, for each PE M there 

exists a smooth simply closed geodesic passing 
through p. Any G-invariant tensor field on M 

is iparallel with respect to V. Any G-invariant 
+differential form on M is closed. The Lie 
algebra h of the +restricted homogeneous 
holonomy group of M at o coincides with 
ad,” [m, m]. If the group I(M) of all isometries 
of M is tsemisimple, one has h = {A E gI(m) 1 
A g, = 0, A R, = 0) = ad,,& Here, g0 and R, 
denote the values at o of the Riemannian 
metric g and the +Riemannian curvature R of 
M, respectively, and A is the natural action 
of A on the tensors over m. If, moreover, M 
is a symmetric Hermitian space, the value 
J,, at o of the ialmost complex structure J 
of M belongs to the center of h. In general, 
h = { 0) if and only if M is +flat, and h has no 
nonzero invariant on m if and only if I(M) 
is semisimple. 

B. Riemannian Curvature Tensors 

The Riemannian curvature tensor R of M is 
parallel and satisfies R,(X, Y) = -ad,, [X, Y] 
(X, Y~nr). Assume that dim M > 2 in the fol- 
lowing. Let P be a 2-dimensional subspace of 
m, and {X, Y} an orthonormal basis of P with 
respect to gO. Then the tsectional curvature 
K(P) of P is given by K(P)=g,([[X, yl, X], Y). 
K = 0 everywhere if and only if M is flat. If M 
is of +compact type (resp. of +noncompact 
type), then K > 0 (resp. K d 0) everywhere. 
K > 0 (resp. K < 0) everywhere if and only if 
the +rank of M is 1 and M is of compact type 
(resp. of noncompact type). For any four 
points p, q, p’, q’ of a manifold M of any of 
these types satisfying d(p, q) =d(p’, q’), d being 
the +Riemannian distance of M, there exists 
a #EI(M) such that &)=p’and #(q)=q’. 
Other than the aforementioned M’s, the only 
Riemannian manifolds having this property 
are circles and Euclidean spaces. If K > 0 
everywhere, any geodesic of M is a smooth 
simply closed curve and all geodesics are of the 
same length. For a symmetric Hermitian space 
M, the tholomorphic sectional curvature H 
satisfies H = 0 (resp. H > 0, H < 0) everywhere 
if and only if M is flat (resp. of compact type, 
of noncompact type). 

C. Ricci Tensors 

The +Ricci tensor S of M is parallel. If q,,, 
denotes the restriction to m x m of’the +Killing 
form cp of g, the value S, of S at o satisfies S, = 

1 -z(p,,,. If M is tirreducible, it is an +Einstein 
space. S = 0 (resp. positive definite, negative 
definite, nondegenerate) everywhere if and 
only if M is flat (resp. M is of compact type, M 
is of noncompact type, I(M) is semisimple). If 
M is a tsymmetric bounded domain and g is 
the +Bergman metric of M, one has S = -9. 
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D. Symmetric Riemannian Spaces of 
Noncompact Type 

Let M be of noncompact type. For each p E M, 
p is the only fixed point of the tsymmetry oP, 
and the exponential mapping at p is a diffeo- 
morphism from 7”(M) to M. In particular, M 
is diffeomorphic to a Euclidean space. For 
each pair p, 4 E M, a geodesic arc joining p 

and q is unique up to parametrization. For 
each PE M there exists neither a tconjugate 
point nor a +cut point of p. If M is a symmetric 
Hermitian space, that is, if it is a symmetric 
bounded domain, then it is a +Stein manifold 
and holomorphically homeomorphic to a 
+Siegel domain. 

E. Groups of Isometries 

The isotropy subgroup at o in I(M) is denoted 
by I,(M). Then the smooth mapping I,(M) x 
m+l(M) defined by the correspondence 4 x 

x H krpX is surjective, and it is a diffeo- 
morphism if M is of noncompact type. If M 
is of noncompact type, I(M) is isomorphic to 
the group A(g) of all automorphisms of g in a 
natural way, and I,(M) is isomorphic to the 

subgroup Ah, f) = {&A(g) INI = f) of A(g), 
provided that G acts almost effectively on M. 
Moreover, in this case the center of the iden- 
tity component I(M)' of I(M) reduces to the 
identity, and the isotropy subgroup at a point 
in I(M)' is a maximal compact subgroup of 
I(M)'. If I(M) is semisimple, any element of 
I(M)' may be represented as a product of an 
even number of symmetries of M. In the fol- 
lowing, let M be a symmetric Hermitian space, 
and denote by A(M) (resp. H(M)) the group of 
all holomorphic isometries (resp. all holomor- 
phic homeomorphisms) of M, and by A(M)' 
and H(M)' their identity components. All 
these groups act transitively on M. If M is 
compact or if I(M) is semisimple, one has 
A(M)' = I(M)‘. If I(M) is semisimple, M is 
simply connected and the center of I(M)' 
reduces to the identity. If M is of compact 
type, M is a +rational iprojective algebraic 
manifold, and H(M)' is a complex semisimple 
Lie group whose center reduces to the identity, 
and it is the tcomplexification of I(M)'. In 
this case, the isotropy subgroup at a point in 
H(M)' is a iparabolic subgroup of H(M)'. If 
M is of noncompact type, one has H(M)' = 
I(M)'. In the following we assume that G is 
compact. 

F. Cartan Subalgebras 

A maximal Abelian +Lie subalgebra in m is 
called a Cartan subalgebra for M. Cartan sub- 

algebras are conjugate to each other under the 
tadjoint action of K. Fix a Cartan subalge- 
bra a and introduce an inner product ( , ) 
on a by the restriction to a x a of gc,. For an 
element c( of the dual space a* of a, we put 
nr,={XEtnI [H,[H,X]]=--cc(H)'X forany 
HEa}. The subset c={a~a*-{0}~m,#{O}} 
of a* is called the root system of M (relative to 
a). We write m, = dim m, for LYE C. The subset 
D={HEaIa(H)E7cZforsomeccsZ} ofais 
called the diagram of M. A connected compo- 
nent of a-D is called a fundamental cell of M. 
The quotient group W of the normalizer of a 
in K modulo the centralizer of a in K is called 
the Weyl group of M. W is identified with a 
finite group of orthogonal transformations of 
a. 

G. Conjugate Points 

For a geodesic arc y with the initial point o, 
any +Jacobi field along y that vankhes at o and 
the end point of y is obtained as the restriction 
to y of the vector field X* generated by an 
element Xgf. For HER- {0}, Exp,,H is a 
conjugate point to o along the geodesic y,, if 
and only if cc(H) E nZ - (0) for some a EC. In 
this case, the multiplicity of the conjugate 
point Exp,H is equal to ~CatL,a~H~tnZ-~O~ M,. 
From this fact and Morse theory (- 279 
Morse Theory), we get a tcellular decompo- 
sition of the tloop space of M. The set of all 
points conjugate to o coincides with K Exp,D 
and is stratified to a disjoint union of a finite 
number of connected regular submanifolds 
with dimension <dim M - 2. 

H. Cut Points 

We define a tlattice group I- of a by I- = 
{AEaIExp,A=o},andput C,={HEal 
Max,,,-(,)2(H, A)/(A, A)= 1). Then, for HE 
a - {0}, Exp, H is a cut point of o arlong the 
geodesic yH if and only if HE C,. The set C, of 
all cut points of o coincides with K Exp, C, 
and is stratified to a disjoint union of a finite 
number of connected regular submanifolds 
with dimension <dim M - 1. The !set of all 
points Virst conjugate to o coincides with C, if 
and only if M is simply connected. 

I. Fundamental Groups 

Let I-, denote the subgroup of a generated by 
{ (2n/(a, ~))a 1 acC}, identifying a* with a by 
means of the inner product ( , ) of a. This is a 
subgroup of I-. We regard r as a subgroup of 
the group I(a) of all motions of a by parallel 
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translations. The subgroup I? = WT of I(a) 
generated by r and the Weyl group W is 
called the affine Weyl group of M. m leaves 
the diagram D invariant and acts transitively 
on the set of all fundamental cells of M. Take a 
fundamental cell D such that its closure c 
contains 0, and put m0 = {w E m 1 w(c) = c}. 
Then the fundamental group n,(M) of M is an 
tAbelian group isomorphic to the groups flc 
and r/r,. nl(M) is a finite group if and only if 
M is of compact type. In this case, the order 
of nl(M) is equal to the cardinality of the set 
r n ?? as well as to the index [I-: r,]. Moreover, 
if we denote by m: the group p0 for the 
symmetric Riemannian space M* = G*/K* de- 
fined by the tadjoint group G* of G and K* = 
{a~ G* 1 a0 = 0u}, then I@c is isomorphic to a 
subgroup of mz. If M is irreducible, @: is 
isomorphic to a subgroup of the group of all 
automorphisms of the textended Dynkin dia- 
gram of the root system C. 

J. Cohomology Rings 

Let P(g) (resp. P(i)) be the igraded linear space 
of all tprimitive elements in the tcohomology 
algebra H(g) of g (resp. H(f) off), and P(g, f) 
the intersection of P(g) with the image of the 
natural homomorphism H(g,f)-,H(g), where 
H(g, f) denotes the relative cohomology alge- 
bra for the pair (g, f). Then one has dim P(g, f) 
+ dim P(f) = dim P(g). Denote by hP(g, t) the 
exterior algebra over P(g, f). The tgraded 
algebra of all G-invariant polynomials on g 
(resp. all K-invariant polynomials on f) is 
denoted by I(G) (resp. I(K)), where the de- 
gree of a homogeneous polynomial with de- 
gree p is defined to be 2p. We denote by I+(G) 
the ideal of I(G) consisting of all f~ I(G) such 
that f(O)=O, and regard I(K) as an r’(G)- 
module through the restriction homomor- 
phism. Then the treal cohomology ring H(M) 
of M is isomorphic to the tensor product 
AP(g,f)@(I(K)/l+(G)I(K)). If K is connected 
and the tPoincar& polynomials of P(g), P(f), 
and P(g, f) are x:=1 t’“‘~‘, Cf=, t2”lm1, and 
CI=,+l t’“‘~-‘, respectively, then the Poincart: 
polynomial of H(M) is given by n&,+, (1 + 
t’“L-‘)n;=,(l -t2”f)n.;=,(l -tZ”,)-‘. 
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Systems of Units 

A. International System of Units 

Units representing various physical quantities 
can be derived from a certain number of fun- 
damental (base) units. By a system of units we 
mean a system of fundamental units. Various 
systems of units have been used in the course 
of the development of physics. Today, the 
standard is set by the international system of 
units (systitie international d’unitCs; abbre- 
viated SI) [l], which has been developed in 
the spirit of the meter-kilogram system. This 
system consists of the seven fundamental units 
listed in Table 1, units induced from them, and 
unit designations with prefixes representing 
the powers of 10 where necessary. It also con- 
tains two auxiliary units for plane and solid 
angles, and a large number of derived units 

[Il. 

B. Systems of Units in Mechanics 

Units in mechanics are usually derived from 
length, mass, and time, and SI uses the meter, 
kilogram, and second as base units. Neither 
the CGS system, derived from centimeter. 
gram, and second, nor the system of gravita- 
tional units, derived from length, force, and 
time, are recommended for general use by 
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Table 1 

Quantity SI unit Symbol Description 

Length 

Mass 

Time 

Intensity of 
electric current 

Temperature 

Amount of 
substance 

Luminous 
intensity 

meter 

kilogram 

second 

ampere 

kelvin 

mole 

candela 

m 

kg 

S 

A 

K 

mol 

cd 

The meter is the length equal to 1,650,763.73 wave- 
lengths in vacuum of the radiation corresponding 
to the transmission between the levels 2~” and 5d5 
of the krypton-86 atom. 
The kilogram is equal to the mass of the interna- 
tional prototype of the kilogram. 
The second is the duration of 9,192,631..770 periods 
of the radiation corresponding to the transmission 
between the two hyperfine levels of the ground 
state of the cesium-133 atom. 
The ampere is the intensity of the constant current 
maintained in two parallel, rectilinear conductors 
of infinite length and of negligible circular section, 
placed 1 m apart in vacuum, and producing a force 
between them equal to 2 x lo-’ newton (m’kg’s-‘) 
per meter of length. 
The kelvin, the unit of thermodynamical tempera- 
ture, is l/273.16 of the thermodynamical tempera- 
ture of the triple point of water. 
The mole is the amount of substance of a system 
containing as many elementary entities as there are 
atoms in 0.012 kg of carbon- 12. 
The candela is the luminous intensity in a given 
direction of a source emitting monochromatic 
radiation of frequency 540 x 10” hertz. (= s-r), the 
radiant intensity of which in that direction is l/683 
watt per steradian. (This revised definition of 
candela was adopted in 1980.) 

Table 2 

Quantity SI unit 

Frequency 
Force 
Pressure and stress 
Work, energy, quantity of heat 
Power 
Quantity of electricity 
Electromotive force, potential 

difference 
Electric capacitance 
Electric resistance 
Electric conductance 
Flux of magnetic induction 

magnetic flux 
Magnetic induction, magnetic 

flux density 
Inductance 
Luminous flux 
Illuminance 
Activity 
Adsorbed dose 
Radiation dose 

hertz 
newton 
Pascal 
joule 
watt 
coulomb 
volt 

farad 
ohm 
siemens 
weber 

tesla 

henry 
lumen 
lux 
becquerel 

gray 
sievert 

Symbol 

Hz 
N 
Pa 
J 
W 
C 
v 

F 
n 
s 
Wb 

T 

H 
lm 
lx 

Bq 
GY 
SV 

Unit in terms of SI 
base or derived 
units 

1 Hz= 1 ssl 
1 N== 1 kg.m/s’ 
1 Pa= 1 N/m2 
lJ=lN.m 
1 W .= 1 J/s 
1 C== 1 A.s 
1 V==l W/A 

1 F== 1 C/V 
1 R== 1 V/A 
1 SE 1 0-1 

1 Wb=l v.s 

1 T == 1 Wb/m’ 

1 H:= 1 Wb/A 
1 lm=l cd.sr 
1 lx:= 1 lm/m’ 
1 Bq= 1 s-l 
1 Gy= 1 J/kg 
1 Sv=l J/kg 
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the SI Committee. Besides the base units, 
minute, hour, and day, degree, minute, and 
second (angle), liter, and ton have been ap- 
proved by the SI Committee. Units such as the 
electron volt, atomic mass unit, astronomical 
unit, and parsec (not SI) are empirically de- 
fined and have been approved. Several other 
units, such as nautical mile, knot, are (area), 
and bar, have been provisionally approved. 

C. System of Units in Thermodynamics 

The base unit for temperature is the degree 
Kelvin (“K; formerly called the absolute tem- 
perature). Degree Celsius (“C), defined by t = 
T- 273.15, where T is in “K, is also used. 
The unit of heat is the joule J, the same as the 
unit for other forms of energy. Formerly, one 
calorie was defined as the quantity of heat that 
must be supplied to one gram of water to raise 
its temperature from 14.5”C to 15.5”C; now 
one calorie is defined by 1 cal = 4.1855 J. 

D. Systems of Units in Electricity and 
Magnetism 

Three distinct systems of units have been 
developed in the field of electricity and mag- 
netism: the electrostatic system, which origi- 
nates from Coulomb’s law for the force be- 
tween two electric charges and defines mag- 
netic quantities by means of the Biot-Savart 
law; the electromagnetic system, which origi- 
nates from Coulomb’s law for magnetism; and 
the Gaussian system, in which the dielectric 
constant and permeability are taken to be non- 
dimensional. At present, however, the rational- 
ized MKSA system of units is adopted as the 
international standard. It uses the derived units 
listed in Table 2 (taken from [2]), where the 
derived units with proper names in other fields 
are also listed. 

E. Other Units 

In the field of photometry, the following defi- 
nition was adopted in 1948: One candela (cd) 
(kO.98 old candle) is defined as l/(6 x 105) of 
the luminous intensity in the direction normal 
to a plane surface of 1 m2 area of a black body 
at the temperature of the solidifying point of 
platinum. The total luminous flux emanating 
uniformly in all directions from a source of 
luminous intensity I cd is defined as 4n lumen 
(Im). One lux (lx) is defined as the illuminance 
on a surface area of 1 m2 produced by a lumi- 
nous flux of 1 cd uniformly incident on the 
surface. In 1980, the definition was revised as 
shown in Table 1. 

For theoretical purposes, a system of units 
called the absolute system of units is often 
used, in which units of mass, length, and time 
are chosen so that the values of universal 
constants, such as the universal gravitational 
constant, speed of light, Planck’s constant, and 
Boltzmann’s constant, are equal to 1. 
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415 (XXl.41) 
Takagi, Teiji 

Teiji Takagi (April 21, 18755February 28, 
1960) was born in Gifu Prefecture, Japan. 
After graduation from the Imperial University 
of Tokyo in 1897, he continued his studies in 
Germany, first with Frobenius in Berlin and 
then with Hilbert in Gottingen. He returned 
to Japan in 1901 and taught at the Imperial 
University of Tokyo until 1936, when he re- 
tured. He died in Tokyo of cerebral apoplexy. 

Since his student years he had been inter- 
ested in Kronecker’s conjecture on ?Abelian 
extensions of imaginary quadratic number 
fields. He solved it affirmatively for the case of 
Q(g) while still in Gottingen and presented 
this result as his doctoral thesis. During World 
War I, he pursued his research in the theory of 
numbers in isolation from Western countries. 
It developed into tclass field theory, a beautiful 
general theory of Abelian extensions of alge- 
braic number fields. This was published in 
1920, and was complemented by his 1922 
paper on the treciprocity law of power residues 
and then by tArtin’s general law of reciprocity 
published in 1927. Besides these arithmetical 
works, he also published papers on algebraic 
and analytic subjects and on the foundations 
of the theories of natural numbers and of real 
numbers. His book (in Japanese) on the his- 
tory of mathematics in the 19th century and 
his General course ofanulysis (also in Japanese) 
as well as his teaching and research activities 
at the University exercised great influence on 
the development of mathematics in Japan. 
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416 (XI.1 6) 
Teichmiiller Spaces 

Consider the set M, consisting of the con- 
formal equivalence classes of closed Riemann 
surfaces of genus g. In 1859 Riemann stated, 
without rigorous proof, that M, is parame- 
trizedbym(g)(=Oifg=O, =l ifg=l, =3g-3 
if g > 2) complex parameters (- 11 Algebraic 
Functions). Later, the introduction of a topol- 
ogy and m(g)-dimensional complex structure 
on M, were discussed rigorously in various 
ways. The following explanation of these 
methods is due to 0. Teichmiiller [ 1,2], L. V. 
Ahlfors [3,4], and L. Bers [S-7]. For the 

algebraic-geometric approach - 9 .4lgebraic 
Curves. 

The trivial case g = 0 is excluded, since M, 
consists of a single point. Take a closed Rie- 
mann surface 9X0 of genus g > 1, and consider 
the pairs (!R, H) consisting of closed Riemann 
surfaces !I? of the same genus g and the tho- 
motopy classes H of orientation-preserving 
homeomorphisms of !I$, into !R. Two pairs 
(%, H) and (X’, H’) are defined to be con- 
formally equivalent if the homotopy class 
H'H-' contains a conformal mapping. The set 
T, consisting of the conformal equivalence 
classes (%, H) is called the Teichmiiller space 
(with center at ‘%a). Let 9, be the group of 
homotopy classes of orientation-preserving 
homeomorphisms of !I& onto itself. $j, is a 
transformation group acting on T, nn the sense 
that each q E $, induces the transformation 
(!I$ H) -+ (%, Hq). It satisfies Tq/5j3, = M,. The 
set 3, of elements of 5j, fixing every point of T, 
consists only of the unity element if g b 3 and 
is a normal subgroup of order 2 if g = 1,2. For 
the remainder of this article we assume that 
g > 2. The case g = 1 can be discussed similarly, 
and the result coincides with the classical one: 
T, can be identified with the upper half-plane 
and 9 i /3 i is the tmodular group. 

Denote by B(si,) the set of measurable 
invariant forms pdzdz-’ with I/P//~ < 1. For 
every p E B(!R,,) there exists a pair (%, H) for 
which some h E H satisfies h, = pLh, (-- 352 
Quasiconformal Mappings). This correspon- 
dence determines a surjection pc~ B(%a) H 
(X, H)cT,. Next, if Q(%e) denotes the space 
of holomorphic quadratic differentials cpdz’ 
on X0, a mapping ~EB(!I&)H(~EQ(!R~) is 
obtained as follows: Consider /* on lthe uni- 
versal covering space U (= upper half-plane) 
of Y+,. Extend it to U* (=lower half-plane) by 
setting p = 0, and let f be a quasiconformal 
mapping f of the plane onto itself satisfying 
& = pfZ. Take the Y%hwarzian derivative $I = 
{A z} of the holomorphic function f‘ in U*. -~ 
The desired cp is given by q(z) = I,&?) on U. It 
has been verified that two p induce the same 
cp if and only if the same (%, H) corresponds 
to p. Consequently, an injection (‘32, H) E 
T,H~EQ(Y$,) is obtained. Since Q(%a)= 
Cm(g) by the Riemann-Roth theorem, this in- 
jection yields an embedding T, c C”‘@), where 
T, is shown to be a domain. 

As a subdomain of Cm(g), the Teichmiiller 
space is an m(g)-dimensional complex analytic 
manifold. It is topologically equivalent to the 
unit ball in real 2m(g)-dimensional space and 
is a bounded tdomain of holomorphy in C”‘g’. 

Let {ui, . . . . m2,} be a l-dimensional ho- 

mology basis with integral coefficients in 910 
such that the intersection numbers are (ai, aj) 
zz 

(c(g+i,ag+j)=o, (ai,a,+j)=6ij, i,i= 1, ...,,4. 
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Given an arbitrary (%, H) ET,, consider the 
iperiod matrix Q of ‘iK with respect to the 
homology basis Her, , , Hcc,, and the basis 
wi, . , wg of +Abelian differentials of the first 
kind with the property that JHa,mj= 6,. Then R 
is a holomorphic function on T,. Furthermore, 
the analytic structure of the Teichmiiller space 
introduced previously is the unique one (with 
respect to the topology defined above) for 
which the period matrix is holomorphic. 

‘j, is a properly discontinuous group of 
analytic transformations, and therefore M, is 
an m(g)-dimensional normal tanalytic space. 
e3, is known to be the whole group of the 
holomorphic automorphisms of T, (Royden 
181); thus T, is not a tsymmetric space. 

To every point r of the Teichmiiller space, 
there corresponds a Jordan domain D(r) in the 
complex plane in such a way that the fiber 
space F, = { (7, z) 1 z E D(z), z E T, c C”@)} has the 
following properties: F, is a bounded domain 
of holomorphy of Cm(g)+l. It carries a properly 
discontinuous group 8, of holomorphic auto- 
morphisms, which preserves every fiber D(r) 
and is such that D(r)/@, is conformally equiva- 
lent to the Riemann surface corresponding to 
r. F, carries holomorphic functions Fj(r, z), 
j = 1, ,5g - 5 such that for every r the func- 
tions FJF,, j = 2, . , Sg - 5 restricted to D(z) 
generate the meromorphic function field of the 
Riemann surface D(r)/@,. 

By means of the textremal quasiconformal 
mappings, it can be verified that T, is a com- 
plete metric space. The metric is called the 
Teichmiiller metric, and is known to be a 
Kobayashi metric. 

The Teichmiiller space also carries a natu- 
rally defined Klhler metric, which for g = 1 
coincides with the +Poincare metric if T, is 
identified with the upper half-plane. The +Ricci 
curvature, tholomorphic sectional cruvature, 
and +scalar curvature are all negative (Ahlfors 

C91). 
By means of the quasiconformal mapping 

i which we considered previously in order 
to construct the correspondence p H cp, it is 
possible to regard the Teichmiiller space as 
a space of quasi-Fuchsian groups (- 234 
Kleinian Groups). To the boundary of T,, it 
being a bounded domain in Cmcs), there corre- 
spond various interesting Kleinian groups, 
which are called tboundary groups (Bers [lo], 
Maskit [ 111). 

The definition of Teichmiiller spaces can be 
extended to open Riemann surfaces %,, and, 
further, to those with signatures. A number of 
propositions stated above are valid to these 
cases as well. In particular, the Teichmiiller 
space for the case where sl, is the unit disk is 
called the universal Teichmiiller space. It is a 
bounded domain of holomorphy in an infinite- 

dimensional Banach space and is a symmetric 
space. Every Teichmiiller space is a subspace 
of the universal Teichmiiller space. 
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417 (Vll.5) 
Tensor Calculus 

A. General Remarks 

In a tdifferentiable manifold with an taffine 
connection (in particular, in a +Riemannian 
manifold), we can define an important opera- 
tor on tensor fields, the operator of covariant 
differentiation. The tensor calculus is a differ- 
ential calculus on a differentiable manifold 
that deals with various geometric objects and 
differential operators in terms of covariant 
differentiation, and it provides an important 
tool for studying geometry and analysis on a 
differentiable manifold. 
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B. Covariant Differential 

Let M be an n-dimensional smooth manifold. 
We denote by s(M) the set of all smooth 
functions on M and by X:(M) the set of all 
smooth tensor fields of type (r., s) on M. X:(M) 
is the set of all smooth vector fields on M, and 
we denote it simply by X(M). 

In the following we assume that an afine 
connection V is given on M. Then we can 
define the covariant differential of tensor fields 
on M with respect to the connection (- 80 
Connections). We denote the covariant deriva- 
tive of a tensor field K in the direction of a 
vector field X by V, K and the covariant dif- 
ferential of K by VK. The operator V;, maps 
X:(M) into itself and has the following 
properties: 

(1) v,+,=v,+v,, V,,=fL 
(2)V,(K+K’)=V,K+V,K’, 
(3)V,(K@K’)=(V,K)@K’+K@(VxKK’), 

(4) Vx.f = XL 
(5) V, commutes with contraction of tensor 
fields, where K and K’ are tensor fields on M, 
X, YE&E(M) andj”ES(M). 

The torsion tensor T and the curvature ten- 
sor R of the afine connection V are defined by 

T(X, Y)=V,Y-v,x-[X, Y], 

RW, Y)Z=V,(V,Z)-V,(V,Z)-VI,.,lZ 

for vector fields X, Y, and Z. The torsion ten- 
sor is of type (1,2), and the curvature tensor is 
of type (1,3). Some authors define -R as the 
curvature tensor. We here follow the conven- 
tion used in [l-6], while in [7, S] the sign of 
the curvature tensor is opposite. The torsion 
tensor and the curvature tensor satisfy the 
identities 

T(X, Y) = - T( Y, X), R(X, Y) = - R( Y, X), 

R(X, Y)Z+R(Y,Z)X+R(Z,X)Y 

=(V,T)(Y,Z)+(V,T)(Z,X)+(V,T)(X, Y) 

+ T(T(X, Y), Z) + WY y, 3, w  

+ VW, w, n 

(V,R)(Y,Z)+(V,R)(Z,X)+(V,R)(X, Y) 

=R(X, T(Y,Z))+R(Y, T(Z,X)) 

+ R(Z, TM, Y)). 

The last two identities are called the Bianchi 
identities. 

The operators V, and V, for two vector 
fields X and Y are not commutative in general, 
and they satisfy the following formula, the 
Ricci formula, for a tensor field K: 

V,(V,K)-V,(V,K)-V,,,,,K=R(X, Y1.K 

where in the right-hand side R(X, Y) is re- 

garded as a derivation of the tensor algebra 

C,,,K(W. 
A moving frame of M on a neighborhood U 

is, by definition, an ordered set (e,, . . , e,) of M 
vector fields on U such that e,(p), , e,(p) are 
linearly independent at each point PE U. For 
a moving frame (eI, , , e,) of M on a neigh- 
borhood U we define n differential l-forms 
8’ , . . , 8” by O’(e,) = Sj, and we call them the 
dual frame of (el, , e,). For a tensor field K 
of type (Y, s) on M, we define rPs functions 
Kj::;:j: on U by 

Kj;:::j:=K(ejl, . ,ej,, Oil, . . . ,@) 

and call these functions the components of K 
with respect to the moving frame (t:, , , e,). 

Since the covariant differentials Vej are 
tensor fields of type (1, l), n2 differential l- 
forms w,! are defined by 

where in the right-hand side (and throughout 
the following) we adopt Einstein’s summation 
convention: If an index appears twice in a term, 
once as a superscript and once as a subscript, 
summation has to be taken on the range of 
the index. (Some authors write the above 
equation as de,=wie, or Dej=wjei.) We call 
these l-forms wj the connection forms of the 
afflne connection with respect to the moving 
frame (el, , e,). The torsion forms 0’ and 
the curvature forms Qi are defined by 

These equations are called the structure equa- 
tion of the affne connection. V. If we denote 
the components of the torsion tensor and the 
curvature tensor with respect to (e, , , e,) by 
Tk and Rj,, (= @(R(e,, e,)eJ), respectively, 
then they satisfy the relations 

Using these forms, the Bianchi identities are 
written as 

Let K be a tensor field of type (r, s) on M 
and Kj::::i be the components of K with re- 
spect to (e,, . , e,). We define the covariant 
differential DK~;:::~ and the covariant deriva- 
tive Kj:::;‘k by 
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Then Kj:;:;k,k are the components of VK with 
respect to the moving frame (e,, . . , e,). Some 
authors write VkKj::::i instead of Kj::::i [S, 61. 

Using components, the Bianchi identities 
are written as 

The Ricci formula is written as 

- ,$, R;,.,&:::o:..tj, 

Let (x’, ,x”) be a local coordinate system 
defined on a neighborhood U of M. Then 
(8/2x’, , ?/5x”) is a moving frame of M on U, 
and we call it the natural moving frame asso- 
ciated with the coordinate system (x’, ,x”). 
Components of a tensor field with respect to 
the natural moving frame (?/ax’, , Z/ax”) are 
often called components with respect to the 
coordinate system (x’, ,x”). We define an n3 
function $ on U by mj = rLjdxk, where w; are 
the connection forms for the natural moving 
frame. l-k; are called the coefficients of the 
aff’ne connection V. The components of the 
torsion tensor and the curvature tensor with 
respect to (x’, ,x”) are given by 

where 8. = d’c’x’. 
With’resdect to the foregoing coordinate 

system, the components Kj;:::‘k of the covar- 
iant differential VK of a tensor field K of type 
(r, s) are given by 

C. Covariant Differential of Tensorial Forms 

A tensorial p-form of type (r, s) on a manifold 
M is an alternating s(M)-multilinear mapping 

of X(M) x x X(M) to X:(M). A tensorial p- 
form of type (0,O) is a differential p-form in the 
usual sense. A tensorial p-form of type (1,O) is 
often called a vectorial p-form. 

lf an affme connection V is provided on M, 
we define the covariant differential of tensorial 
forms. Let a be a tensorial p-form of type (r, s). 

The covariant differential Dee of a is a tensorial 
(p + I)-form of type (r, s) and is defined by 

b+~)DGf,,...,X,,+,) 

P+l = i; (-1)‘-‘V&(X*, . . . . x, . . . . X,,,)) 
+ C ( -l)i+ja( [X,, xj ] ,  

i<j 

x, )..., zi ,...) r?, ,...) X,+1), 

where r?i means that Xi is deleted. If s( is of 
type (O,O), Da coincides with the usual exterior 
differential da. 

The simplest example of a tensorial form is 
the identity mapping of X(M), which will be 
denoted by 0. Some authors write this vec- 
torial form as dp or dx, where p or x expresses 
an arbitrary point of a manifold. We call 0 the 
canonical vectorial form of M. The torsion 
tensor T can be regarded as a vectorial 2-form, 
and we have 200 = T. The curvature tensor R 
can be regarded as a tensorial 2-form of type 
(1, I), i.e., (X, Y)+R(X, Y)E~;(M), and the 
Bianchi identities are written as DT= R A 8, 
DR =O, where the exterior product R A r of R 
and a tensorial p-form c( is defined by 

(P+~)(P+~)(RA~(X,>...,X,,,) 

=2X(-l) i+j-’ R(X,, Xj)a(X,, . . , gi,. . , zl, 
i<, 

. . ..X.,+,). 

In general, 2D’1x = R A M holds for an arbitrary 
tensorial form 1. 

Let (e, , , e,) be a moving frame of M on a 
neighborhood U and O’, . , 0” be its dual 
frames. A tensorial p-form c( of type (r, s) is 
written as 

on U, where the $:::j: are the usual differential 
p-forms on U. We call them the components of 
a with respect to (e’ , , e,). Then the compo- 
nents of Da, which we denote by Dc$:::‘~, are 
given by 

Then we have 

This is an expression of 2D2a = R A E in terms 
of components. The components of the ca- 
nonical vectorial form 0 are the dual forms 
O’,..., O”of(e ,,..., e,),andwehaveDO’=@‘, 
which means that the components of DO are 
the torsion forms 0’. 
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D. Tensor Fields on a Riemannian Manifold 

Let (M, g) be an n-dimensional Riemannian 
manifold (- 364 Riemannian Manifolds). The 
fundamental tensor g defines a one-to-one 
correspondence between vector fields and 
differential l-forms. A differential l-form c1 
which corresponds to a vector field X is de- 
fined by a(Y) = g(X, Y) for any vector field Y. 
This correspondence is naturally extended to a 
one-to-one correspondence between X;(M) and 
Xi:(M), where r + s = r’ + s’. Let (e,, , e,) be a 
moving frame of M on a neighborhood U and 
gij be the components of g with respect to the 
moving frame. Let (9”) be the inverse matrix of 
the matrix (gu). The gij are the components of 
a symmetric contravariant tensor field of order 
2. Let Xi be the components of a vector field X 
and ri be the components of the differential l- 
form c( corresponding to X. Then X’ and q 
satisfy the relations CQ = gijXj and Xi = gijocj. If 
Kf are the components of a tensor field K of 
type (1,2) (here taken for simplicity), then 

K,, = K”,g,,, K;‘= Kf;ig$ 

K*” = K;,g”‘g*‘, . , 

are the components of a tensor field of type 
(0,3), (2, l), (3,0), , respectively, all of which 
correspond to K. We call this process of ob- 
taining the components of the corresponding 
tensor fields from the components of a given 
tensor field raising the subscripts and lowering 
the superscripts by means of the fundamental 
tensor g. 

On a Riemannian manifold, we use the 
+Riemannian connection, unless otherwise 
stated. The covariant derivative with respect to 
the Riemannian connection is given by 

2gwx y,z)=xg(y,m+ yY(x,z)--g(x, Y) 

for vector fields X, Y, and Z. The coefficients 
of the Riemannian connection with respect to 
a local coordinate system (x’, ,x’) are usu- 
ally written as {:}, called the Christoffel sym- 
bols, which are given by {ij} = gi”(4gj0 + iijgka - 
&g,)/2. The curvature tensor R of the Rie- 
mannian connection satisfies the identities 

R(X, Y)Z+R(Y,Z)X+R(Z,X)Y=O, 

(V,R)(Y,Z)+(V,R)(Z,X)+(V,R)(X, Y)=O, 

R(X, Y)= -R(Y,X), 

g(R(X, Y).T W) = dR(Z, W)X, Y) 

= -g(Z NX, Y) WI, 

g(R(X, YE WI + dR(X, Z) W Y) 

+g(R(X, W)Y,Z)=O. 

In terms of the components, these identities 
are 

Rkk + Rjhi + Riij = 0, 

R$ = - Rfkj, Rhijk = Rjkhi = - Rihjkr 

where Rhijk = R$,g,,,. 
The +Ricci tensor S of the Riemannian 

manifold is a tensor field of type (0.2) defined 

by 

S(X, Y) = trace of the mapping Z+R(Z, X) Y 

for vector fields X and Y. The comlponents Sji 
of the Ricci tensor are given by Sji == Ryai. The 
+scalar curvature k of the Riemannian mani- 
fold M is a scalar on M defined by k=gjiSji. 
The Ricci tensor and the scalar curvature 
satisfy the identities 

S(X, Y)=S(Y,X) or Sji=S,, 

&j,k-&,j=RZj,a, 2gjkS,, k = a, k. 

For a moving frame of a Riemannian mani- 
fold, it is convenient to use an orthonormal 
moving frame. A moving frame (e,, . . , e,) is 
orthonormal if e,, , e, satisfy g(ei, ej) = 6,. 
Since the components of the fundamental 
tensor with respect to an orthonormal moving 
frame are 6,, raising or lowering the indices 
does not change the values of the components. 
Some authors write all the indices as sub- 
scripts. Also they write the dual l-forms, the 
connection forms, and the curvature forms as 
tIi, wji, and nji, respectively, instead of f3’, wi, 
and Qj. With respect to an orthonormal mov- 
ing frame, the connection forms CI$ and the 
curvature forms C$ satisfy 

wj+wi=O and C$+C$=O. 

On a Riemannian manifold, the divergence 
of a vector field and the operators d,6, and A 
on differential forms (- 194 Harmonic In- 
tegrals) can be expressed by using the covar- 
iant derivatives with respect to the Riemann- 
ian connection. 

If X’ are the components of a vector field 
X with respect to a local coordinate system 
(x’, ,x”), the divergence divX of X is given 
by div X = Xi,i. 

Let a be a differential p-form on M. CI is 
written locally in the form LY =( l/~!)!x~,...~~dx~l A 

A dx’p, where the coefficients CC,,,..~ are skew- 
symmetric in all the indices. We caliri,,,,i 
the components of CI with respect to the c’o- 
ordinate system. Since CL is regarded as an 
alternating tensor field of type (0, p), we can 
define the covariant differential Va of c(. 
Then the components of da, da, and Aa are 
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given by 

(A~)i,...i,= -gab c(i ,... ip,ob-u~l Si,,czai ,... b...i, 

1 

For a smooth function f and a differential l- 
form fl we have 

Af= -&(g”& irjf), 
A 

(AB)i= -g”b[hi,ob-Siofibblr 

where g =det(g,). 

E. Van der Waerden-Bortolotti Covariant 
Differential 

Let E be a finite dimensional smooth tvector 
bundle over a smooth manifold M and I(E) be 
an g(M)-module of all smooth sections of E. A 
connection V’ in E is a mapping of X(M) x 
I(E) to I(E) such that 

(1) VX5+rl)=V;,5+Vh, 

(4) v;,i =fVX 

for X, YEX(M), 5, ~EI(E), andfEX(M). Vit 
is called the covariant derivative of 5 in the 
direction X. 

An element K of q(M) @ I(E) is called a 
tensor field of type (r, s) with values in E (or 
simply an E-valued tensor field of type (r,s)). K 
can be regarded as an 3(M)-linear mapping of 
X’(M) to r(E) or an s(M)-multilinear map- 

ping of X(M) x x X(M) to X’,(M) 0 r(E). 
For a given 5 E I(E), a mapping X-Vi< de- 
tines a tensor field of type (0,l) with values in 
E which we call the covariant differential of 5, 
denoted by V’[. 

The curvature tensor R’ of V’ is a tensor 
field of type (0,2) with values in E* @ E (E* is 
the dual vector bundle of E), and is defined by 

R’(X> Y)5=V~(V;5)-V;(V;5)-V;x,r15 

for any vector fields X and Y and any tEI(E). 
If an affine connection V is given on M, we 

can define the van der Waerden-Bortolotti 
covariant derivative V,K for V and V’ of a 
tensor field K of type (r, s) with values in E. It 
is defined by 

(~~KK)(S)=V;,(K(S))-K(V*S) 

for any SEX”(M). If we regard <ET(E) as an E- 

valued tensor field of type (0, 0), we have V,< = 
Vi<. The covariant derivative V,R’ of the 
curvature tensor R’ of V’ is a tensor field of 
type (0,2) with values in E* 0 E is defined by 

(%R’)(Y, Z)t =VXR’(Y,Z)& WV, Y, Z)t 

-R’(Y,V,Z)t--R’(Y,Z)V;<. 

The Bianchi identity is written as 

(V,R’)(Y,Z)+(V,R’)(Z,X)+(V,R’)(X, Y) 

= R’(X, T( Y, Z)) + R’( Y, T(Z, X)) 

+ R’V, TN, Y)), 

where T is the torsion tensor of V. The Ricci 
formula is given by 

=R’(X, Y).K(S)-K(R(X, Y).S), 

where R is the curvature tensor of V, KE 
X;(M)@ T(E) and SEX”(M). 

In the following we assume that the fiber of 
E is of finite dimension m. A moving frame of 
E on a neighborhood U of M is an ordered set 
([,, ,&,,) of local sections t,, . . . . 5, on U such 
that c1 (p), . . , t,,,(p) are linearly independent at 
each point p of U. Let (e,, , e,) be a moving 
frame of M on U. Then an E-valued tensor 
field K of type (r, s) is locally written as 

where f3’, , 8” are the dual 1 -forms of (ei, 

“‘> e,). The n r-tsm functions Kj:;:y!: on U are 
called the components of K with respect to 

(e , , . , e,) and (5,) . . , 5,). We define the con- 
nection forms CI$ of the connection V’ by V’g, 
= C$ @ 5,. Then the curvature forms 0; are 
defined by 

where Rzji are the components of the curva- 
ture tensor R’, i.e., R’(ej, ei)& = REji<,. 

For a given tensor field K of type (r, s) 
with values in E, the mapping X+V,K de- 
fines a tensor field VK of (r, s + 1) with values 
in E which we call the van der Waerden 
Bortollotti covariant differential of K. Then if 
Kj::::~ are the components of K with respect 
to (ei, , e,) and ([,, , i;,), the components 
K~:y::~, of VK are given by 

Let f be a smooth mapping of M into a 
smooth manifold M’. The differential f,(or df) 
can be regarded as a tensor field of type (0,l) 
with values in f*T(M’). Assume that M (resp. 
M’) has a Riemannian metric g (resp. g’). We 
denote the Riemannian connection of M by V. 
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From the Riemannian connection of M’ a 
connection V’ in ,f’*T(M’) can be defined. Let 
(y’, , y”) be a local coordinate system of M’ 
on a neighborhood E/ and (x’, ,x”) be a local 
coordinate system on a neighborhood U of M 
such that f(U)c V. Put <,(p)=(S/dy”)(f‘(p)) for 
a point PE U. Then (t,, ,&,,) is a moving 
frame of f*T(M’). The components off, with 
respect to (6/3x’, , (7/axn) and (<i, ,&,,) are 
given by f‘“(p)=(8y”/dx’)(p). The Laplacian 
4f of the mapping f is a tensor field of type 
(0,O) with values in f*T(M’) and is defined 
by (Aj’f)” =gij,Lyj. If 4f = 0, the mapping f is 
called a harmonic mapping (- 195 Harmonic 
Mappings). 

F. Tensor Fields on a Submanifold 

Consider an n-dimensional smooth mani- 
fold M immersed in an (n + m)-dimensional 
Riemannian manifold (M,y). If we denote the 
immersion M+M by ,t then g=f*y is a 
Riemannian metric on M, and we denote its 
Riemannian connection by V. The induced 
bundle f* T(M) splits into the sum of the 
tangent bundle T(M) of M and the normal 
bundle T’(M). The Riemannian connection on 
M induces connections in f*T(M) and in 
T’(M) which are denoted by V and V’, re- 
spectively. The van der WaerdenBortolotti 
covariant derivative for V and V’ is denoted 
by 0. 

For vector fields X and Y on M, the tan- 
gential part of V, Y(here we regard Y as a 
section off*T(M)) is V,Y, and we denote the 
normal part of V, Y by h(X, Y). Then h is a 
symmetric tensor field of type (0,2) with values 
in L@(M), and we call h the second funda- 
mental tensor of the immersion ,1: For 5~ 
I( T’(M)), the tangential part of V,t (here 5 
is also regarded as a section of f*T(M)) is 
denoted by - A,X and the normal part of V,t 
is Vi 5. Thus we have 

VxY=VxY+h(X, Y), v,<= -A,X+V&. 

h and A are related by 

i7vG, Y), 0 =g(A,X, Y). 

We have the following formulas, called the 
equations of Gauss, Codazzi, and Ricci: 

BUW, W, W = g(R( Y, YP, W 

+ah(x,z),h(y, WI) 

-mw, w  4K X)), 

S(fW> YP, ii)=l((%h)(Y, Z), 0 

-aww, -a 0, 

?#W, Y)t> v) =dR’(X> Y)k 11) 

+dCA<> A,lX> Y)> 

for X, Y, Z, WEX(M) and 5, q~r(:r’(M)), 

where R, R, and R’ are the curvature tensors 
of V, V, and VI, respectively. 

For the manifold M immersed in M, we use 
a moving frame (e,, . , e,, <i, , <,,) such that 
(e,, . , e,) is an orthonormal moving frame of 
M on a neighborhood U and (5, , , 5,) is a 
moving frame of T’(M) on U with g(<,, <,J= 
6,,. Then we can define the conneciion forms 
w,! for V and e$ for VL. If we extend (e,, , 
e,, t,, , &,,) to an orthonormal moving frame 
(El, . . ..e.+,) of M such that ~~(p)=e,(p) (i= 1, 

. ..) n) and Zn+,(p)=<,(p) (c(= 1, . . . ,tn) for PE U, 

then the restriction ,f *@ and Fuji of the 
dual 1 -forms and the connection forms of 
M with respect to (e,, ,?“+,) satisfy the 
relations 

where h; are the components of the second 
fundamental tensor h with respect to (e,, . . , e,, 

41, “‘, 5,). 
The components /rG,k of the covariant dif- 

ferential Oh of h are defined by 

In terms of the components, the equations 
of Gauss, Codazzi, and Ricci are given by 

Rhijk = Rhijk + c (h;h& - h,“,hij), 
1 

a 

Let (x’ , . . , x”) be a local coordinate system 
on a neighborhood U of M and (y’, , y”+,) 
be a local coordinate system on a neighbor- 
hood V of M such that f(U)c V. Regarding 
the differential f, of the immersion f as a ten- 
sor field of type (0,l) with values in f *T(M), 

we denote the components off, with re- 
spect to (xi, , x”) and (y’, , y”+“) by Bf 
(i=l,...,n; A=1 , . . ..n+m). Then we have 
Bf = ayA/axi. We denote by V’ the van der 
Waerden-Bortolotti covariant derivative for V 
and V. Then the components Bfj 01‘Vlf, are 
given by 

B~j=ajB~-{;i}B,R+B;B~{&}, 

where a,= a/&?, {f}, and {&} are the Chris- 
toffel symbols of the Riemannian metrics g 
and g, respectively. 

Let (5,) , 5,) be an orthonormal moving 
frame of T’(M) on U and <l be the compo- 
nents of 5, with respect to (y’, , y”+,). Then 
we have 

Bfj=h;i’,A, 

where h, are the components of the second 



1577 418 C 
Theory of Singularities 

fundamental tensor with respect to (a/ax’, , 
?/2x”) and (t,, , 5,). 

A tensor field K with values in T’(M) can 
be regarded as a tensor field with values in 
J’*T(M), and TK is the normal component of 
V’K. For example, if we regard the second 
fundamental tensor h as a tensor field with 
values in f*T(M), the components of h with 
respect to the coordinates (x1, ,x”) and 
(y’, . , y”+“‘) are equal to i?fj, and we have 
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418 (1X.20) 
Theory of Singularities 

A. Introduction 

Let ,fi, f2,. . . ,,/i be tholomorphic functions 
defined in an open set Cl of the complex space 
C”. Let X be the analytic set fi-’ (0) n n 
,f,-’ (0). Let z,, E X, and let 9, , , gs be a sys- 
tem of generators of the ideal .a(X),0 of the 
germs of the holomorphic functions which 
vanish identically on a neighborhood of z0 in 
X. z,, is called a simple point of X if the matrix 
(?gi/zzj) attains its maximal rank, say k, at z = 
zO. In this case, X is a tcomplex manifold of 
dimension n - k near z,,. Otherwise, z0 is called 
a singular point of X. 

B. Resolution of Singularities 

Let X be a complex analytic space, and let Y 
be its singular locus. A resolution of the sin- 
gularity of X is a pair of a complex manifold r? 
and a proper surjective holomorphic mapping 
n: r?+X such that the restriction x ( R-,, s(r) is 
biholomorphic and r?: - n-l( Y) is dense in 2. 
H. Hironaka proved that there exists a reso- 
lution for any X such that TI~~( Y) is a divisor 
in R with only inormal crossings [16,17]. 

Suppose that a compact connected ana- 
lytic subset B of a complex manifold x has a 
tstrongly pseudoconvex neighborhood in r?. 
Then the contraction 8/P naturally has a 
structure of a inormal complex analytic vari- 
ety such that the projection g+r?/p is a 
resolution of r?/p (H. Grauert [14]). 

C. Two-Dimensional Singularities 

Let X be a normal 2-dimensional analytic 
space. Then the singular points of X are 
discrete. 

Among the resolutions of X, there exists a 
unique resolution rc:$+X with the following 
universal property: For any resolution 7~‘: 8’- 
X, there exists a unique mapping p: r?‘%x 
with rr’= no p. This resolution is called the 
minimal resolution. 

Let rr:r?-tX be a resolution of a singular 
pointxofX,andletA,(i=l,...,m)bethe 
irreducible components of x-‘(x). The matrix 
(Ai. Aj) of the +intersection numbers is known 
to be negative definite (P. Du Val [12]). 

The resolution n: z +X is called good if(i) 
each Ai is nonsingular, (ii) Ai n Aj (i #j) is at 
most one point and the intersection is trans- 
verse and (iii) no three Ais meet at a point. 
For a given good resolution rr:%+X, we 
associate a diagram in which the vertices ui 
(i=l,..., m)correspondtoAi(i=l ,..., m)and 
ri and uj are joined by a segment if and only if 
Ain A,#@. 

The geometric genus p&X,x) of a singular 
point xeX is the dimension of the +stalk at x 
of the first direct image sheaf R’x,0~, where 
rr: 2-X is a resolution of XEX and 0~ is the 
+structure sheaf of 8. The definition is inde- 
pendent of the choice of the resolution, and 
p&X,x) is a finite integer. 

Among the positive cycles of the form Z = 
Cy=l n,A, (i.e., n, > 0) such that Z ’ Ai < 0 for 
each i = 1, , m, there exists a smallest one Z,, 
which is called the fundamental cycle [3]. 

(1) Rational singularities. A singular point x 
of X is called rational if p&X, x) = 0. (The sin- 
gularity (X,x) is also called rational even when 
dim X > 3 if the direct image sheaf R’rc,L”g = 0 
for i>O.) 
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For a rational singularity XEX, the tmulti- 
plicity of X at x equals - Zi and the local 
embedding dimension of X at x is - Zi + 1. 
Hence a rational singularity with multiplicity 
2, which is called a rational double point, is 
a hypersurface singularity. The following 
weighted homogeneous polynomials (- Sec- 
tion D) give the complete list of the defining 
equations up to analytic isomorphism: 

A,: x”+’ + y2 + z2, 

weights (l/(n + l), l/2, l/2), n> 1; 

D,:x”-‘+xy2+z2, 

weights (l/Q-l), (n-2)/2(n-l), l/2), n>4; 

E,:x4+y3+z2, 

weights (l/4, l/3, l/2); 

E,:x3y+y3+z2, 

weights (2/9, l/3, l/2); 

E,:x5+y3+z2, 

weights (l/5, l/3, l/2), 

where the labels appearing at the left are given 
according to the coincidence of the diagram of 
the respective minimal resolutions and the 
+Dynkin diagrams. Rational double points 
have many different characterizations [l 11. 

The generic part of the singular locus of the 
unipotent variety of a tcomplex simple Lie 
group G (= the orbit of the subregular +unipo- 
tent elements in G) is locally expressed as the 
product of a rational double point and a poly- 
disk. The tuniversal deformation of a rational 
double point and its tsimultaneous resolution 
are constructed by restricting the following 
diagram on a transverse slice to the subregular 
unipotent orbit (Brieskorn [7]; [34]): 

Y-G 

I I 
T.TJW 

where T is a +Cartan subgroup of G with the 
action of the Weyl group W, G+ T/ W is the 
quotient mapping by the tadjoint action of G 
and Y= {(x, B) 1 x E G and B is a +Borel sub- 
group of G with XEB}, and other morphisms 
are defined naturally so that the diagram 
commutes. Here, Y-t T is the simultaneous 
resolution of the morphism G + T/W. 

(2) Quotient singularities. A singular point 
x E X is called a quotient singularity if there 
exists a neighborhood of x which is analyti- 
cally isomorphic to an orbit space U/G, where 
U is a neighborhood of 0 in C2 and G is a 
finite group of analytic automorphisms of U 
with the unique fixed point 0. The quotient 
singularities are rational, and their resolutions 

have been well studied [6]. U/G has a rational 
double point at 0 if and only if G is conjugate 
to a nontrivial finite subgroup of SU(2). 

(3) Elliptic singularities. The singularity 
(X, x) is called minimally elliptic if p&X,x) = 1 
and (X,x) is Gorenstein [23]. The following 
are examples of minimally elliptic singularities. 

A singular point x EX is called simply ellip- 
tic if the exceptional set A of the minima1 
resolution is a smooth telliptic curve [33]. 
When A2 = -1, -2, -3, (X,x) is a hyper- 
surface singularity given by the following 
weighted homogeneous polynomials: 

E6:X3+y3+z3+axyz, 

weights (l/3, l/3, l/3), A2= -3; 

E,:x4+y4+z2+axyz, 

weights (l/4, l/4, l/z!), A’= -2; 

E,:x6+y3+z2+axyz, 

weights (l/6, l/3, l/2), A’= -1, 

(4) Cusp singularities. A singular point x E X 
is called a cusp singularity if the exceptional 
set of the minimal resolution is either a sin- 
gle rational curve with a tnode or a cycle of 
smooth rational curves. Cusp singularities 
appear as the boundary of +Hilbert modular 
surfaces [ 1 S]. The hypersurface cusp singular- 
ities are given by the polynomials 

T ,,,,.:xP+y~+Zr+axyz, 

where l/p+l/q+ l/r< 1 and a#O. 

D. The Milnor Fibration for Hypersurface 
Singularities 

Let V be an analytic set in CN, and take a 
point Z~E V. Let S,=S(z,,&) be a (2N- l)- 
dimensional sphere in CN with center z0 and 
radius F, > 0, and let K, = V fl Se. If E is suff- 
ciently small, the topological type of the pair 
(S,, K,) is independent of E [27]. By virtue of 
this fact, the study of singular points consti- 
tutes an important aspect of the application of 
topology to the theory of functions of several 
complex variables. 

A singular point z0 of I/ is said to be isolated 
if, for some open neighborhood MT of z0 in CN, 
Wn V- {zO} is a smooth submanifold of W- 
{z,,}. In that case, K, is a closed stnooth sub- 
manifold of S,, and the diffeomorphism type 
of (S,, K,) is independent of (sufficiently small) 
8 > 0. So far, the topological study of such 
singular points has been primarily focused 
on isolated singularities. When V is a plane 
curve, that is, N = 2 and Y = 1, all l-he singular 
points of V are isolated, and the submanifold 
K, of the 3-sphere S, can be descrtbed as an 
iterated torus link, where type nu:mbers are 
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completely determined by the +Puiseaux ex- 
pansion of the defining equation f of V at the 
point z0 [S]. In 1961, D. Mumford, using a 
resolution argument, showed that if an alge- 
braic surface V is tnormal at z0 and if the 
closed 3-manifold K, is simply connected, then 
K, is diffeomorphic to the 3-sphere and z0 is 
nonsingular [29]. The following theorem in 
the higher-dimensional case is due to E. Bries- 
korn [S] (1966): 

Every thomotopy (2n - 1)-sphere (n f2) 
that is a boundary of a +n-manifold is dif- 
feomorphic to the K, of some complex hyper- 
surface defined by an equation of the form 
f(z)=zTl+ +z2{ =0 at the origin in C”+‘, 
provided that n # 2. The hypersurface of this 
type is called the Brieskorn variety. Inspired by 
Brieskorn’s method, J. W. Milnor developed 
topological techniques for the study of hyper- 
surface singularities and obtained results such 
as the Milnor fibering theorem, which can be 
briefly stated as follows: 

Suppose that V is defined by a single equa- 
tion f(z)=0 in the neighborhood of z,,~C”+i. 
Then there is an associated smooth +fiber 
bundle cp:S,- K,-+S’, where cp(z)=f(z)/(f(z)( 
for ZES,- K,. The fiber F=cp-‘(p) (PCS’) has 
the homotopy type of a finite CW-complex of 
dimension II, and K, is (n - 2))connected. 

Suppose that z0 is an isolated critical point 
of $ Then F has the homotopy type of a +bou- 
quet of spheres of dimension n [27]. The Mil- 
nor number p(f) off is defined by the nth Betti 
number of F, and it is equal to dim,6’,.+1,Z0/ 
(if/C:z,, , af/?z,,+,), where &C”+l,z, is the ring 
of the germs of analytic functions of II + 1 
variables at z = zO. The Milnor monodromy h, 
is the automorphism of H,(F) that is induced 
by the action of the canonical generator of 
the fundamental group of the base space 5’. 
The +Lefschetz number of h, is zero if z” is 
a singular point of V. Let A(t) be the charac- 
teristic polynomial of h,. Then K, is a homol- 
ogy sphere if and only if A( 1) = k 1 [27]. It is 
known that A(t) is a product of +cyclotomic 
polynomials. 

The diffeomorphism class of (S,, K,) is com- 
pletely determined by the congruence class of 
the linking matrix L(ei,ej) (1 <i,j<n(f), where 
e,, . , eacS, is an integral basis of H,(F) and 
L(ei,ej) is the .+linking number 121, lo]. 

The Milnor fibration is also described in the 
following way. Let E(E, 6) be the intersection of 
f-i(@) and B(E), the open disk of radius E 
and center z,,, whereD,* is jn~ClO<(n(<G}. 
The restriction of S to E(E, 6) is a +locally triv- 
ial fibration over D: if fi is sufficiently smaller 
than c [27]. 

Let ,f(z) be an analytic function; suppose 
that j’(O) = 0 and let C ptN”+l apzP be the Taylor 
expansion of f at z = 0. Let F+ (f) be the con- 

vex hull of the union of { p + (R+)n”} for 
/JEN”+~cR”+~ with a,#O, where R+ = {xe 
R 1 x z 0}, and let F(f) be the union of com- 
pact faces of I+(f). We call I(f) the Newton 
boundary of ,f in the coordinates z,, , z,+, 
For a closed face A of F(f) of any dimension, 

let LA(z) = C PE~apzP. We say that f has a non- 
degenerate Newton boundary if ((:Lf,lC;z,, . , 
?&/c?z,+,) is a nonzero vector for any Zen+’ 
and any Air. Suppose that f has a non- 
degenerate Newton boundary and 0 is an 
isolated critical point of $ Then the Milnor 
fibration off is determined by F(f‘) and p(f), 
and the characteristic polynomial can be ex- 
plicitly computed by F(.f) [22,38]. 

f(z) is called weighted homogeneous if there 
exist positive rational numbers r,, , r,,+, , 
which are called weights, such that a,, = 0 if 
cr&’ p,ri # 1. An analytic function f(z) with an 
isolated critical point at 0 is weighted homo- 
geneous in suitable coordinates if and only if 
,f belongs to the ideal (<f/flaz,, , af/dz,+,) (K. 
Saito [32]). Suppose that ,f(z) is a weighted 
homogeneous polynomial with an isolated 
critical point at 0. Then the Milnor iibration of 
,f is uniquely determined by the weights, and 

C:=,r,>l. 

E. Unfolding Theory 

An unfolding of a germ of an analytic func- 
tion ,f(z) at 0 is a germ of an analytic function 
F(z, t), where TV C” (m is finite) such that F(z, 0) 
=f(z). We assume that f has an isolated crit- 
ical point at 0. Among all the unfoldings of ,I; 
there exists a universal one, in a suitable sense, 
that is unique up to a local analytic isomor- 
phism. It is called the universal unfolding of ,f 
[36,37,26] (- 51 Catastrophe Theory). Ex- 
plicitly it can be given by F(z,t)=f(z)+t, q,(z) 
+ . . + t,cp,(z), where q,(z) (i= 1, ,p) are 
holomorphic functions which form a C-basis 
of the Jacobi ring Bc~+~,O/(c?flazl, . , af/i;z,+i) 

(P = Pm). 
In the universal unfolding F(z, t) of ,1; the set 

of points (z,, to) such that F(z, to) has an iso- 
lated critical point at z,, with the Milnor num- 
ber p(S) and F(z,, to) = 0 forms an analytic set 
at (z, t) = 0. The modulus number off is the 
dimension of this set at 0. This set is some- 
times called the p-constant stratum. Let g be a 
germ of an analytic function. g is said to be ad- 
jacent to ,f (denoted by f-g), if there exists a 
sequence of points (z(m), t(m)) in Cn+’ x C@ 

that converges to the origin such that the 
term of F(z, t(m)) at z(m) is equivalent to g. 
Adjacency relations are important for the 
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understanding of the degeneration phenomena 
of functions. The unfolding theory can be 
considered in exactly the same way as that for 
the germ of a real-valued smooth function 
that is finitely determined [36,26]. 

The germs of analytic functions with 
modulus number 0, 1, and 2 are called simple, 
unimodular, and bimodular, respectively. They 
were classified by V. I. Arnold [l] (- Ap- 
pendix A, Table 5.V). Simple germs corre- 
spond to the equations for the rational double 
points, and unimodular germs define simply 
elliptic singularities or cusp singularities. Every 
unimodular or bimodular germ defines a sin- 
gularity with ps = 1. 

F. Picard-Lefschetz Theory 

Let f(z) be a holomorphic function such that 
f(0) = 0 and 0 is an isolated critical point with 
the Milnor number p. Let F(z, t) be a universal 
unfolding off at 0. Let f: E(E, 6)+D,* be the 
Milnor fibration off by the second description 
in Section D. There exists a positive number r 
and a codimension 1 analytic subset A (called 
the bifurcation set) of B’(r), the open disk of 
radius r with the center 0 in the parameter 
space C”, such that for any t, E B’(r) -A, f,, = 

FI B(Ej x f0 has p different nondegenerate crit- 
ical points in B(E). Let pl, , pp be the critical 
points of ,f,,. For each pi, one can choose local 
coordinates (yl, . . . , yn+J ~0 that f;,,(Y)=f;,,(pJ 
+yy:+...+y,2+1. Such an ,f,, is called a Morsi- 
fication of j: 

Let Bi be a small disk with center pi in Cn+‘. 
Then for any qi which is near enough to f,,(pJ, 
the intersection &‘(q,) n Bi is diffeomorphic to 
the tangent disk bundle of the sphere S”. The 
vanishing cycle ei is the corresponding n- 
dimensional homology class of&‘(qi) n Bi. 
(We fix qi.) The self-intersection number of ei is 
given by 

Cei> ei> = 
1 

2( -l)ncnel)‘*, n even, 

0, n odd. 

For a sufficiently small t, E B’(r) -A, one has 
the following: (i) If;,(p,)I ~6; (ii) the restriction 
off;, to E is a fiber bundle over D’, where D’ 
={w~C~~w~<&andw#f,~(pJfori=l,...,~} 
and E =f,,’ (D’) n B(E); (iii) the restriction of 
the above tibration to {w 11 WI = 6) is equivalent 
to the restriction of the Milnor fibration off 
to{wI/wl=6}.Letw,beafixedpointofD’, 
and let F =,ft;‘(w,) n E. Then F is diffeomor- 
phic to the Milnor fiber off: Let Ii be a simple 
path from w,, to qi, and let yi be the loop 1 w  - 

S,,(PJl = Iqi-.fYn(PJl. We wwse that the 
union of the li is contractible to wO. By parallel 
translation of the vanishing cycle ei along Ii, 
we consider e,eH,(F). The collection {eil i= 

1, , p} is an integral basis of HJ F), which is 
called a strongly distinguished basis (Fig. 1). 

Now let hi be the linear transformation of 
H,(F) that is induced by the parallel trans- 
lation along 2iyilim1. The Picard-Lefschetz for- 
mula says that 

h,(e)=e-(-I)“(“-I)/* (e,ei).ei for ecH,(F) 

Here ( , ) is the intersection number in 
H,(F). For n even, hi is a treflection. 

The Milnor monodromy h, of “f is equal 
to the composition h, . . . h, under a suitable 
ordering of the hi. The subgroup of the group 
of linear isomorphisms of H,(F) generated by 
h, , . . , h, is called the total monodromy group. 

When f is a simple germ and n z 2 mod4, 
the total monodromy group is isomorphic to 
the tWeyl group of the corresponding Dynkin 
diagram. Even-dimensional simple singular- 
ities are the only ones for which the mono- 
dromy group is finite. These are also char- 
acterized as the singularities with definite 
intersection forms. 

E 

Fig. 1 

G. Stratification Theory 

The notion of Whitney stratification was first 
introduced by H. Whitney to study the sin- 
gularities of analytic varieties [39] and was 
developed by R. Thorn for the general case 

c371. 
Let X and Y be submanifolds of the space 

R”. We say that the pair (X, Y) satisfies the 
Whitney condition (b) at a point ye Y if the 
following holds: Let xi (i = 1,2, ) and yi 
(i = 1,2, . ) be sequences in X and Y, respec- 
tively, that converge to y. Suppose that the 
tangent space TxtX converges to a plane Tin 
the corresponding Grassmannian space and 
the secant X,Y, converges to a line L. Then L 
c T. We say that (X, Y) satisfies the Whitney 
condition (b) if it satisfies the Whitney con- 



1581 418 Ref. 
Theory of Singularities 

dition (b) at any point ye Y. Let h be a local 
diffeomorphism of a neighborhood of y. One 
can see that (h(X), h(Y)) satisfies the Whitney 
condition (b) at h(y) if (X, Y) satisfies it at y. 
Thus the Whitney condition can be considered 
for a pair of submanifolds X and Y of a mani- 
fold M using a local coordinate system. Let S 
be a subset of a manifold M, and let .4” be a 
family of submanifolds of M. ,Y is called a 
Whitney prestratification of S if Y is a locally 
finite disjoint cover of S satisfying the follow- 
ing: (i) For any X E Y, the frontier X-X is a 
union of YEY; (ii) for any pair (X, Y) (X, YE 
.Y), the Whitney condition (b) is satisfied. A 
submanifold X in Y is called a stratum. There 
exists a canonical partial order in 9’ that 

is defined by X < Y if and only if X c r- Y. 
Let 1/be an analytic variety, and let ,CP be 

an analytic stratification of V that satisfies 
the frontier condition (i). Then there exists a 
Whitney prestratification ,V’ that is finer than 
.Y (Whitney [39]). 

For a given Whitney prestratification Y, 
one can construct the following controlled 
tubular neighborhood system: For each X E .~Y, 
a ttubular neighborhood (T,( of X in M and 
the projection xx:1 7”I+X and a tubular func- 
tion px: 1 T,j-+R+ (= the square of a norm 
under the identification of 1 T,I with the +nor- 
ma1 disk bundle of X) are given such that the 
commutation relations 

for mgM, X< Y. 

are satisfied whenever both sides are defined. 
By virtue of this, the notions of vector fields 

and their integral curves can be defined on a 
Whitney prestratified set so that several im- 
portant results on a differentiable manifold 
can be generalized to the case of stratified sets 
For example, the following is Thorn’s first 
isotopy lemma: Let M and P be differentiable 
manifolds, and let (S, Y) be a Whitney pre- 
stratified subset of M. Let f: S+P be a con- 
tinuous mapping that is the restriction of a 
differentiable mapping from A4 to P. Suppose 
that the restriction off to each stratum X of 
,Y is a proper submersion onto P. Then f: S-t 
P is a fiber bundle [37]. 

H. b-Functions 

Let ,f(z) be a germ of an analytic function in 
Cn+’ with ,f(O) = 0. The h-function of ,f’ at 0 
is the manic polynomial b,(s) of lowest de- 
gree among all polynomials b(s) with the 
following property [4,20]: There exists a 
differential operator P(z, S/Jz, s), which is 
a polynomial in s, such that b(s)f”(z) = 
P(z, c?/fiz, .s),f”~“(z). Since b,(s) is always 

divisible by s + 1, we define &) = b,(s)/(s + 1). 
All the roots of &s) =0 are negative rational 
numbers (M. Kashiwara [20]. When f has an 
isolated critical point at 0, the set jexp(2& I r 
is a root of b,(s) = 0) coincides with the set of 
eigenvalues of the Milnor monodromy [25]. 

The name “b-function” is due to M. Sato. 
He first introduced it in the study of tprehomo- 
geneous vector spaces. Some authors call it the 
Bernstein (Bernshtein) polynomial. 

1. Hyperplane Sections 

Let V be an algebraic variety of complex di- 
mension k in the complex projective space P”. 
Let L be a hyperplane that contains the 
singular points of V. Then the trelative homo- 
topy group ni( V, Vn L) is zero for i < k. Thus 
the same assertion is true for the trelative 
homology groups (S. Lefschetz [24]; [28]). 

Let f be a holomorphic function defined in 
the neighborhood of 0 EC”” and f(0) = 0. Let 
H be the hypersurface f -’ (0). There exists a 
+Zariski open subset U of the space (= P”) of 
hyperplanes such that for each LE U, there 
exists a positive number 8 such that n,(B(r)- 
H,(B(r)-H)fIL)=Ofori<nandO<r<s, 
where B(r) is a disk of radius r (D. T. L& and 
H. Hamm [ 151). This implies the following 
theorem of Zariski: Let V be a hypersurface of 
P”, and let P2 be a general plane in P”. Then 
the fundamental group of P”- V is isomorphic 
to the fundamental group of P2 - C, where C 
= V n P2. The fundamental group of P2 - C is 
an Abelian group if C is a nodal curve [9,13]. 

Suppose that f has an isolated critical point 
at 0. Let p(“+‘) be the Milnor number p(f). 
Take a generic hyperplane L. The Milnor 
number of ,f ) L is well defined, and we let pL(“’ = 
~(fl J. Similarly one can define #) off and 
let p* = (/&“+I), #“‘, . , p(l)). Let f,(z) be a de- 
formation of ,f: Each f, has an isolated critical 
point at 0, and t is a point of a disk D of the 
complex plane. Let W= {(z, t) I f,(z) = 0) and 
D’= {0} x D. W-D’ and D’ satisfy the Whitney 
condition (b) if and only if /c*(,f,) is invariant 
under the deformation [35]. The Whitney 
condition (b) implies topological triviality of 
the deformation. 
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419 (XX.1 8) 
Thermodynamics 

A. Basic Concepts and Postulates’ 

Thermodynamics traditionally focuses its 
attention on a particular class of states of a 
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given system called (thermal) equilibrium 
states, although a more recent extension, 
called the thermodynamics of irreversible 
processes, deals with certain nonequilibrium 
states. In a simple system, an equilibrium state 
is completely specified (up to the shape of the 
volume it occupies) by the volume V (a posi- 
tive real number), the mole numbers N,, . . , N, 
(nonnegative reals) of its chemical compo- 
nents, and the internal energy U (real). (More 
variables might be needed if the system were, 
e.g., inhomogeneous, anisotropic, electrically 
charged, magnetized, chemically not inert, or 
acted on by electric, magnetic, or gravitational 
fields.) This means that any of the quantities 
associated with equilibrium states (called 
thermodynamical quantities) of a simple sys- 
tem under consideration is a function of K 
N,, . . . . N,, and U. 

When n copies of the same state are put next 
to each other and the dividing walls are re- 
moved, V, N,, , N,, and U for the new state 
will be n times the old values of these variables 
under the assumptions that each volume is 
sufficiently large and that the effects of the 
boundary walls can be neglected. Thermo- 
dynamical quantities behaving in this manner 
are called extensive. Those that are invariant 
under the foregoing procedure are called inten- 
sive. More precisely, the thermodynamic vari- 
ables are defined by homogeneity of degree 1 
and 0 as functions of K N,, , N,, and U. 

By a shift of the position of the boundary 
(called an adiabatic wall if energy and chemical 
substances do not move through it) or by 
transport of energy through the boundary 
(called a diathermal wall if this is allowed) or 
by transport of chemical components through 
the boundary (called a permeable membrane) 
(in short, by thermodynamical processes), these 
variables can change their values. If these shifts 
or transports are not permitted (especially 
for a composite system consisting of several 
simple systems, at its boundary with the out- 
side), the system is called closed. Otherwise it is 
called open. 

Those equilibrium states that do not under- 
go any change when brought into contact 
with each other across an immovable and 
impermeable diathermal wall (called a ther- 
mal contact) form an equivalence class. This 
is sometimes called the 0th law of thermo- 
dynamics. The equivalence class, called the 
temperature of states belonging to it, is an 
intensive quantity. 

The force needed to keep a movable wall at 
rest, divided by the area of the wall, is called 
the pressure. It is another intensive quan- 
tity. For a (slow) change of the volume by an 
amount dl/ under a constant pressure P, me- 
chanical work of amount - PdV is done on 

the system. Together with a possible change 
of the internal energy, say of amount dU, the 
amount 

fiQ=dU--PdV (1) 

of energy is somehow gained (if it is positive) 
or lost (if it is negative) by the system. This 
amount of energy is actually transported from 
or to a neighboring system through diathermal 
walls so that the total energy for a bigger 
closed composite system is conserved. This is 
called the first law of thermodynamics, and 6Q 
is called the heat gain or loss by the system. 

If two states of different temperatures T, 
and T2 are brought into thermal contact, 
energy is transferred from one, say T, , to the 
other (called heat transfer). This defines a 
binary class relation denoted by Ti > T2. The 
Clausius formulation of the second law of 
thermodynamics says that it is impossible to 
make a positive heat transfer from a state of 
lower temperature to another state of higher 
temperature without another change else- 
where. By considering a certain composite 
system, one reaches the conclusion that there 
exists a labeling of temperatures by posi- 
tive real numbers T, called the absolute tem- 
perature, for which the following is an exact 
differential: 

aQ/T=(dU-PdV)/T=dS. (2) 

The integral S is an extensive quantity, called 
the entropy. Furthermore, the sum of the en- 
tropies of component simple systems in an 
isolated composite system is nondecreasing 
during any thermodynamic process, and the 
following entropy maximum principle holds: 
An isolated composite system reaches an 
equilibrium at those values of extensive param- 
eters that maximize the sum of the entropies 
of component simple systems (for constant 
total energy and volume and within the set of 
allowed states under a given constraint). 

A relation expressing the entropy of a given 
system as a function of the extensive param- 
eters (specifying equilibrium states) is known 
as the fundamental relation of the system. If it 
is given as a continuous and differentiable 
homogeneous function of y N, , , N,, and U 
and is monotone increasing in U for fixed V, 
N,, . . . , N,, then one can develop the thermo- 
dynamics of the system based on the above en- 
tropy maximum principle. A relation express- 
ing an intensive parameter as a function of 
some other independent variables is called an 
equation of state. 

Another postulate, which is much less fre- 
quently used, is the Nernst postulate or the 
third law of thermodynamics, which says that 
the entropy vanishes at the vanishing abso- 
lute temperature. 
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B. Various Coefficients and Relationships 

The partial derivative c’/c’x of a function 
,f(x, y, ) with respect to the variable x 
with the variables y, fixed is denoted by 
(df//ax), ,,,,. We abbreviate N,, . . . , NV as N in 
the following. 

If the fundamental relation is written as U = 
U( V, N, , , N,, S) (instead of S being repre- 
sented as a function of the other quantities), 
then (2) implies 

(XJ/C~S),,~ = T, @U/a If),,, = - P. 

The other first-order partial derivatives of U 
are 

with 1~~ called the chemical potential (or elec- 
trochemical potential) of the jth component. 

If a system is surrounded by an adiabatic 
wall (i.e., the system is thermally isolated) and 
goes through a gradual reversible change 
(quasistatic adiabatic process), then the entropy 
has to stay constant. If a system is in thermal 
contact through a diathermal wall with a large 
system (called the heat bath) whose tempera- 
ture is assumed to remain unchanged during 
the thermal contact, then the temperature of 
the system itself remains constant (an iso- 
thermal process). The decrease of the volume 
per unit increase of pressure under the latter 
circumstance is called the isothermal compress- 
ibility and is given by 

Under constant pressure, the increase of the 
volume per unit increase of the temperature is 
called the coefficient of thermal expansion and 
is given by 

Under constant pressure, the amount of (quasi- 
static) heat transfer into the system per mole 
required to produce a unit increase of tem- 
perature is called the specific heat at constant 
pressure and is given by 

cp= N-‘T@S/dT),.., 

where N = N, f + N,. The same quantity 
under constant volume is called the specific 
heat at constant volume and is given by 

The positivity of c, is equivalent to the convex- 
ity of energy as a function of entropy for fixed 
values of V and N. 

Because of the first-order homogeneity of an 
extensive quantity as a function of other ex- 
tensive variables, one can derive an Euler 
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relation, such as 

U=TS-PV+p,N,+...+prNr, 

for a simple system. Its differential form im- 
plies the following Gibbs-Duhem relation: 

SdT-VdP+N,dp,+...+N,dp,=O. 

Because of the identity 

there arise relationships among second deriva- 
tives, known as the Maxwell relations: 

(3T/c?V), N= -(ZP/aS),,,, 

(c’V/aS),,,=(dT/~P),,,, 

(c;7S/av),.,,=(aP/;iT)“,N, 

((:‘S/aP),,,= -(~?l’/‘c’T)~,.. 

By computing the Jacobian of transformations 
of variables, further relations can be obtained. 
For example, 

cp = c, + N -’ TVct2/~r. 

C. Legendre Transform and Variational 
Principles 

The Legendre transform of a function f(.x, , . , 
y,, _. ) relative to the variables x is given by 

j 

as a function of the variables ~;‘i = ?Ifii?xj and y. 
The original variables x can be recovered as 
-xj = ay/2pj. 

In terms of Legendre transforms, the en- 
tropy maximum principle can be reformulated 
in various forms: 

Energy minimum principle: For given values 
of the total entropy and volume, the equilib- 
rium is reached at those values of uncon- 
strained parameters that minimize the total 
energy. This principle is applicable in rever- 
sible processes where the tota. entropy stays 
constant. 

Helmholtz free energy minilmum principle: 
For given values of the temperature (equal to 
that of a heat bath in thermal contact with the 
system) and the total volume, the equilibrium 
is reached at those values of the unconstrained 
parameters that minimize thz total Helmholtz 
free energy, where the Helmholtz free energy 
for a simple system is defined as a function of 

T, V, A’,, . > Nr by 

F=U-TS, 

dF= -SdT- PdV+p, dN, +p,dN,. 

Enthalpy minimum principle: For given 

values of the pressure and t’ne total entropy, 
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the equilibrium is reached at those values of 
unconstrained parameters that minimize the 
total enthalpy, where the enthalpy for a sim- 
ple system is defined as a function of S, P, 

N,,...,Nrby 

H=UfPV, 

dH=TdS+VdP+p,dN,+...+p,dN,. 

Gibbs free energy minimum principle: For 
constant temperature and pressure, the equi- 
librium is reached at those values of uncon- 
strained parameters that minimize the total 
Gibbs free energy, where the Gibbs free energy 
for a simple system is given as a function of T, 

P,N,,...,Nrby 

G=U-TS+PV, 

dG= -SdT+ VdP+p, dN, +...+p,dN,. 
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A. n-Body Problem and Classical lntegrals 

In the n-body problem, we study the motions of 
n particles Pi(xi, y,, zi) (i = 1,2, , n) with arbi- 
trary masses mi( >O) following +Newton’s law 
of motion, 

d2Wi 2u 
miz=G) i=1,2 ,..., n, 

where wi is any one of xi, yi, or z,, 

CJ = c k2mimi/r,, 
i#j 

with k2 the gravitation constant, and 

rij=J(xi-Xj)2+(yi-yj)*+(zi-zj)2. 

Although the one-body and two-body prob- 
lems have been completely solved, the prob- 

lem has not been solved for n > 2. The three- 
body problem is well known and is important 
both in celestial mechanics and in mathemat- 
ics. For n > 3 the problem is called the many- 
body problem. 

The equations (1) have the so-called ten 
classical integrals, that is, the energy integral 
Ci(mi/2)((ii)2 + (ji)2 + (ii)2)- Cl = constant 
(+ = dw/dt), six integrals of the center of mass 
Cimi*i=constant, &miwi=(CimiLiii)t+con- 

stant, and three integrals of angular momen- 
tum C, mi(uicii, - wini) = constant (u # w). Using 
these integrals and eliminating the time t and 
the ascending node by applying Jacobi’s 
method, the order of the equations (1) can be 
reduced to 6n - 12. H. Bruns proved that alge- 
braic integrals cannot be found except for the 
classical integrals, and H. Poincare showed 
that there is no other single-valued integral 
(Bruns, Acta Math., 11 (1887); Poincare [2, I, 
ch. 51). These results are called Poincare-Bruns 
theorems. Therefore we cannot hope to obtain 
general solutions for the equations (1) by 
tquadrature. General solutions for n > 3 have 
not been discovered except for certain specific 
cases. 

B. Particular Solutions 

Let ri be the position vector of the particle Pi 

with respect to the center of mass of the n- 
body system. A configuration r = {r, , , r”) 

of the system is said to form a central figure 
(or central configuration) if the resultant force 
acting on each particle Pi is proportional to 
m,r,, where each proportionality constant is 
independent of i. The proportionality con- 
stant is uniquely determined as -U/C:=‘=, m,rf 

by the configuration of the system. A con- 
figuration r is a central figure if and only if 
r is a tcritical point of the mapping r H 
U2(r)C%, mirf [S, 61. A rotation of the sys- 
tem, in planar central figure, with appropriate 
angular velocity is a particular solution of 
the planar n-body problem. 

Particular solutions known for the three- 
body problem are the equilateral triangle solu- 
tion of Lagrange and the straight line solu- 
tion of Euler. They are the only solutions 
known for the case of arbitrary masses, and 
their configuration stays in the central figure 
throughout the motion. 

C. Domain of Existence of Solutions 

The solutions for the three-body problem 
are analytic, except for the collison case, i.e., 
the case where min rij = 0, in a strip domain en- 
closing the real axis of the t-plane (Poincare, P. 
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Painlevt). K. F. Sundman proved that when 
two bodies collide at t = t,, the solution is 
expressed as a power series in (t - tO)lp in a 
neighborhood oft,, and the solution which 
is real on the real axis can be uniquely and 
analytically continued across t = t, along the 
real axis. When all three particles collide, the 
total angular momentum f with respect to the 
center of mass must vanish (and the motion is 
planar) (Sundman’s theorem); so under the 
assumption f#O, introducing s=s’(U + 1)dt 
as a new independent variable and taking it 
for granted that any binary collision is analyt- 
ically continued, we see that the solution of 
the three-body problem is analytic on a strip 
domain 1 Im s\ < 6 containing the real axis of 
the s-plane. The conformal mapping 

w  = (exp(ns/26) - l)/(exp(ns/26) + 1) 

maps the strip domain onto the unit disk 
lwI< 1, where the coordinates of the three 
particles w,, their mutual distances rk., and the 
time t are all analytic functions of w  and give a 
complete description of the motion for all real 
time (Sundman, Acta Math., 36 (1913); Siegel 
and Moser [7]). 

When a triple collision occurs at t = t,, G. 
Bisconcini, Sundman, H. Block, and C. L. 
Siegel showed that as t-t,, (i) the configura- 
tion of the three particles approaches asymp- 
totically the Lagrange equilateral triangle 
configuration or the Euler straight line con- 
figuration, (ii) the collision of the three par- 
ticles takes place in definite directions, and 
(iii) in general the triple-collision sohition 
cannot be analytically continued beyond t = t,. 

D. Final Behavior of Solutions 

Suppose that the center of mass of the three- 
body system is at rest. The motion of the 
system was classified by J. Chazy into seven 
types according to the asymptotic behavior 
when t-r +m, provided that the angular mo- 
mentum f of the system is different from zero. 
In terms of the +order of the three mutual dis- 
tances rij (for large t) these types are defined as 
follows: 
(i) H+: Hyperbolic motion. rij- t. 

(ii) HP+: Hyperbolic-parabolic motion. r13, 

r,,--andr,,-t2’3. 
(iii) HE’: Hyperbolic-elliptic motion. r,3, rz3 - t 

and r12<a (a=finite). 
(iv) P+: Parabolic motion. rij- t2’3. 

(v) PE+: Parabolic-elliptic motion. r, 3, rz3 - t2’3 

and r12 <a. 

(vi) L+: Lagrange-stable motion or bounded 

motion. rij < a. 

(vii) OS+: Oscillating motion. lim,,,suprij= co, 
l&,,, suprij< co. 

Define H-, HE-, etc. analogousl;y but with 
t+ --co. There are three classes for each of the 
motions HP, HE, and PE, depending on which 
of the three bodies separates from the other 
two bodies and recedes to infinity, denoted by 
HPi, HE,, PE, (i = 1,2,3), respectively. The 
energy constant h is positive for H- and HP- 
motion, zero for P-motion, and negative for 
PE-, L-, and OS-motion. For HE-motion, h 
may be positive, zero, or negative. 

We say that a partial capture takes place 
when the motion is H- for t+ ---CD and HE: 
for t + + cc (for h > 0), and a complete capture 
when the motion is HE; for t+ --co and L+ 
for t+ +co (for h < 0). We say also that an 
exchange takes place when HE,: for t + --co 
and HEj’ for t + +co (t #j). The probability of 
complete capture in the domain !I < 0 is zero 
(J. Chazy, G. A. Merman). 

E. Perturbation Theories 

The radius of convergence in the s-plane for 
Sundman’s solution is too small and the con- 
vergence is too slow in the w-plane to make it 
possible to compute orbits of celestial bodies, 
and for that purpose a perturbation method is 
usually adopted. When the masses m,, . , m, 

are negligibly small compared with m, for the 
n-body problem, the motion of the nth body is 
derived as the solution of the two-body prob- 
lem for m, and m, by assuming m2 = = 
m,-, = 0 as a first approximation, and then 
the deviations of the true orbit frlom the ellipse 
are derived as tperturbations. In the general 
theory of perturbations the deviations are 
derived theoretically by developing a disturb- 
ing function, whereas in the special theory of 
perturbations they are computed by numerical 
integration. In general perturbation theory, 
problems concerning convergence of the solu- 
tion are important, and it becomes necessary 
to simplify the disturbing function in deal- 
ing with the actual relations among celestial 
bodies. Specific techniques have to be devel- 
oped in order to compute perturlbations for 
lunar motion, motions of characl.eristic aster- 
oids, and motions of satellites (e.g., the system 
of the Sun, Jupiter, and Jovian satellites). 

F. The Restricted Three-Body Problem 

Since the three-body problem is very difficult 
to handle mathematically, mathematical inter- 
est has been concentrated on the restricted 
three-body problem (in particular, the planar 
problem) since Hill studied lunar theory in 
the 19th century. For the restricted three-body 
problem, the third body, of zero mass, cannot 
have any influence on the motion of the other 
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two bodies, which are of finite masses and 
which move uniformly on a circle around 
the center of mass. In the planar case, let us 
choose units so that the total mass, the angu- 
lar velocity of the two bodies about their 
center of mass, and the gravitation constant 
are all equal to 1, and let (ql, q2) be the coordi- 
nates of the third body with respect to a rotat- 
ing coordinate system chosen in such a way 
that the origin is at the center of mass and the 
two bodies of finite masses p and 1 -p are 
always fixed on the q,-axis. Then the equa- 
tions of motion for the third body are given 
by a Hamiltonian system: 

dq, 8H s- c?H 

dt dp, ’ dt aqi ’ 
i= 1,2, (2) 

with 

The equations (2) have the energy integral 
H(p, q) = constant, called Jacobi’s integral. 
Siegel showed that there is no other algebraic 
integral, and it can be proved by applying 
Poincare’s theorem that there is no other 
single-valued integral. Regularization of the 
two singular points for the equations (2) and 
solutions passing through the singular points 
were studied by T. Levi-Civita, and solu- 
tions tending to infinity were studied by B. 0. 
Koopman. 

After reducing the number of variables by 
means of the Jacobi integral, the equations (2) 
give rise to a flow in a 3-dimensional manifold 
of which the topological type was clarified by 
G. D. Birkhoff (Rend. Circ. Mat. Palermo, 39 
(1915)). Since this flow has an tinvariant mea- 
sure, the equations have been studied topo- 
logically, and important results for the re- 
stricted three-body problem, particularly on 
periodic solutions, have been obtained. 

G. Stability of Equilateral Triangular Solutions 

Suppose that the origin qi =pi = 0 is an +equi- 
librium point for an autonomous Hamiltonian 
system with two degrees of freedom: 

dqi 8H dpi aH -= -~ 
dt=api’ dt aqi ’ 

i= 1,2, 

with the Hamiltonian H being analytic at the 
origin. When the teigenvalues of the corre- 
sponding linearized system are purely imagi- 
nary and distinct, denoted by *A,, fi,, and 
i.,k,+i,k,#OforO<~k,(+(k,(<4(whereki 
is an integer), we can find suitable coordinates 

ti, 11, so that the Hamiltonian H takes the form 

+ H,+ . . . 

with ii = tiai and real cij. It is necessary that 
g,= J-1 ci for the solutions to be real. In ad- 
dition, if the condition 

is satisfied, then the origin is a tstable equi- 
librium point of the original system (V. I. 
Arnol’d, J. Moser) [7]. 

For Lagrange equilateral triangular solu- 
tions of the planar restricted three-body prob- 
lem, the eigenvalues 2 of the linearized system 
derived from (2) are given as roots of the 
equation A4 + 1,’ + (27/4)~( 1 -p) = 0 and are 
purely imaginary if ,n( I- ,n) < l/27. Applying 
the Arnol’d-Moser result, A.&M. Leontovich 
and A. Deprit and Bartholome showed that 
the Lagrange equilibrium points are stable 
for p such that O</*<p,, where pLo is the 
smaller root of 27~( 1 - /*) = 1, excluding three 
values:~1,/*2atwhichi,k,+/22k,=Olk,l+ 
(k,1<4 and p3 at which D=O. 

Arnol’d proved that if the masses mz, , m, 
are negligibly small in comparison with m,, 
the motion of the n-body system is tquasi- 
periodic for the majority of initial conditions 
for which the eccentricities and inclinations of 
the osculating ellipses are small. 
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421 (XVIII.1 1) 
Time Series Analysis 

A. Time Series 

A time series is a sequence of observations 
ordered in time. Here we assume that mea- 
surements are quantitative and the times of 
measurements are equally spaced. We consider 
this sequence to be a realization of a stochastic 
process X, (- 407 Stochastic Processes). Usu- 
ally time series analysis means a statistical 
analysis based on samples drawn from a sta- 
tionary process (- 395 Stationary Processes) 
or a related process. In what follows we denote 
the sample by X =(X1, X,, , X,)‘. 

B. Statistical Inference of the Autocorrelation 

Let us assume X, (t an integer) to be real- 
valued and weakly stationary (- 395 Station- 
ary Processes) and for simplicity EX, = 0 and 
consider the estimation of the autocorrelation 
ph = RJR, of time lag h, where R,= EX,X,+,. 
We denote the sample autocovariance of time 
lag h as 

&- * rrwt+,k,> T-lhl t=, 
and define the serial correlation coefficient 
of time lag h by p,, = &JR”,. It can be shown 
that the joint distribution of {a(, - P,,) 1 
1 <h <H} tends to an H-dimensional tnor- 
mal (Gaussian) distribution with mean vec- 
tor 0, if one assumes that X, is expressed as 
X,=Cj”-,bj[,-j, where CF-wlbjl< +co, 
xF-co Ijl’l’bi< +m, and the 5, are indepen- 
dently and identically distributed random vari- 
ables with E&=0 and E<;(< fco. 

When X, is an autoregressive process of 
order K (- Section D) and also a iGaussian 
process, it can be shown that the asymptotic 
distribution of {fi(bh--,,)l 1 <h<K} as T-t 
co is equal to the asymptotic distribution of 
{ fi(~?,, -Q,,) 11 <h < K}, where $,, is the +maxi- 
mum likelihood estimator of p,,. In general, 
it is difficult to obtain the maximum likeli- 
hood estimator of ph. The statistical properties 
of other estimators of P,,, e.g., an estimator 
constructed by using sgn(X,) (sgn(y) means 

1 (y>O), 0 (y=O), -1 (y<O)) have also been 
investigated. 

Testing hypotheses concerning autocorre- 
lation can be carried out by using the above 
results. Let us now consider the problem of 
testing the hypothesis that X, is a twhite noise. 
Assume that X, is a Gaussian process and that 
a white noise with EX: = (Y’ exists, and define 

c~=zC:ll(Xr-X)(Xr+h -X) and ;ih = c,,/cO for 
h > 0, where X T+j=Xj and X=CL, X,/T. 
Then the probability density function of 7i can 
be obtained and it can be shown that 

q-7, >y)= f(l.,-Y)'T-3J:2;, i,,, <y<i,, 

j=l , 

where pLj = cos 2?rj/T and 

(T-1)/2 
A,= fl (ibj-ik), T=3, 5 ,..., 

k=l 
(k #A 

*j=T’ff(jl-lk)Jiq, T=4, 6, . . . . 
k=l 
(k #A 

l<m<(T-3)/2 if T is odd, 

l<m$T/2-1 if T is even. 

This can be used to obtain a test of 
significance. 

C. Statistical Inference of the Spectrum 

To find the periodicities of a real-valued 
+weakly stationary process X, with mean 0, the 
statistic, called the periodogram, 

is used. If X, is expressed as 

X,= 5 {m,cos2~1,t+m;sin27-r/(,1’}+ x, 
I=1 

where {m,}, {m;}, and {x} are mutually inde- 
pendent random variables with Em, = Em; = 0 
and V(mJ = V(m;) = $ and { x} i:s independent 
and identically distributed with means 0 and 
finite variances cr’, the distribution of IT(i) 
converges to a distribution with finite mean 
and finite variance at 3. # & 1.! for 1 < 1< L 
when T tends to infinity. On the other hand, 
the magnitude of I,(n) is of the order of Tat 
i = & i,, 1 <I < L. This means th;at we can find 
the periodicities of X, by using I:,(i). When 
X, = x, we find that the distribution of 21,(L)/ 
o2 (when 1#0, &l/2) or r,(n)/a (when i=O 
or k l/2) tends to the +X2 distribution with 
degrees of freedom 2 or 1, respectively, and 
1(pi), I(pJ, . . . . I(p,) are asymptotically in- 
dependent random variables for 0 6 lpi 1 < 
I~21<...<I~LM1~1/2when T+a:.Applying 
this result, we can test for periods in the data. 
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Let f(i) be the spectral density function of a 
real-valued weakly stationary process X,. In 
general, the variance of Ix:, X,e~*“““/@I 
does not tend to 0 as T tends to infinity; hence 
I&) cannot be used as a good estimator for 
the spectral density. To obtain an estimate of 
f(;), several estimators defined by using weight 
functions have been proposed by several 
authors. Let W,(I.) be a weight function de- 
fined on (-co, co), and construct a statistic 
,?(I.) =J?& I,(p) W,(A -p)dp. Let us use y(p) 
for the estimation of f(i). w,(I) is called a 
window. An important class of B’,(I) is as fol- 
lows. Let IV(n) be continuous, IV(I) = W( - I), 
W(O)=l,(W(~)(<l,andS~,W(i)‘dl< 
+co, and let H be a positive integer depend- 
ing on T such that H+co and HIT+0 as T+ 
DJ. Putting wj= W(j/H), we define fVr(n) by 
W,.(i) = C?Il T+, wje-‘“‘j’. Then y(I) can be 
expressed $s f(;l) = C,‘-! T+l R,, w,,e- 24ih’, 
where E, = C,?;h X,+,X,/T for h > 0 and 

R,=cT=,,,+, X,+,X,/T for h < 0. Let X, be 
stationary to the fourth order (- 395 Station- 
ary Processes) and satisfy 

h I $-* IG,hJ.,l< +a, 3 , 
where G,h,l., is the fourth-order joint tcumu- 

iant of X,, X,+,, Xc+,, and X,,,. Then we have 

p2 g Km) = 2m2 s 
a W(Py di, - m 

@llV(~(~l:2))=2f(l/2)’ m 
s 

W()J2 dd, 
-m 

ii& V(&))=f(i)’ 
s 

m W(d)2di, 
-cc 

lim rCov(,J(A), ~(,u))=O, i.#p. 
T-S H (1) 

{wh} or IV,.(I) should have an optimality, e.g., 
to minimize the mean square error of J(I). But. 
generally, it is difficult to obtain such a { wh} or 

wo 
Several authors have proposed specific 

types of windows. The following are some 
examples:(i) (Bartlett) wh=(l --(hi/H) for (hi< 
H and w, = 0 for IhI > H; (ii) (Tukey) w, = 
C,%, a,cos(nlh/H) for Ihl <H and w,=O for 
IhJ > H, where the a, are constants such that 
CL2-mla,l < +m, Cl”4--,a,= 1 and al=um,. 
The Hanning and Hamming windows are a, 
=0.50, a, =u-r =0.25, and a,=0 for )1]>2 and 
a,=0.54, a, =a, =0.23, and a,=0 for (1132, 
respectively [2]. Let X,=x,: - ?i bja, -j, where 
C,Y - 5 I b, I< + a and the a, are independently 
and identically distributed random variables 

with EE~=O and Es:< +co. Let {& 1 <j<M} 
be arbitrary real numbers such that 0 <I,, < i, 
< < i, < l/2, where M is an arbitrary posi- 
tive integer. Then the joint distribution of 
{m(T((i,) - RF(&)) 11 d v < M} tends to the 
normal distribution with means 0 and covar- 
iance matrix Z, which is defined by (1). Let us 
assume, furthermore, that lim,,,(l - w(x))/]x]~ 
=CandC,“=,IhIPIRhI<+co, whereC,q,and 
p are some positive constants satisfying the 
following conditions: (i) when p > q, Hq/T-+O 
(pa 1) and H q*l-P/T+O (p> 1) as T+cc and 
lim,,, T/H2qf’ is finite; (ii) when p < q, HP/T 
+O (p> 1) and H/T-O (p< 1) as T-tco and 
limT,, T/H 2p+’ =O. Then $@?(,T(n,,)- 
.@(I.,)) in the results above can be replaced 

by J’%%.~(+-f(W. 
Estimation of higher-order spectra, partic- 

ularly the bispectrum, has also been discussed. 
Let X, be a weakly stationary process with 
mean 0, and let its spectral decomposition be 
given by X, = l!!Ti2 e 2”i’“dZ(i) (- 395 Station- 
ary Processes). We assume that X, is a weakly 
stationary process of degree 3 and put Rh,,h, 

= EX,Xt+h,X,+h2 for any integers h, and h,. 
Then we have 

l/2 
R h,,h,= 

ss 

112 
e2ni(h,I,+h212)d~(~1, I.~), 

l/2 -I,2 

Symbolically, #(A., , n,) = EdZ(i,)dZ(i,) 
dZ( - I., - 12). If F(,I, , I,) is absolutely contin- 
uous with respect to the Lebesgue measure of 
R* and c”F(i,, , I,)/d1, di, =f(3,, , n,), we call 
f(L,, i2) the bispectral density function. When 
X, is Gaussian, Rh,,h, = 0 and ,f(I, , I,) = 0 for 
any h,, h, and any II, I,. f(I,, &) can be 
considered to give a kind of measure of the 
departure from a Gaussian process or a kind 
of nonlinear relationship among waves of 
different frequencies. We can construct an 
estimator for f(i,, I.,) by using windows as in 
the estimation of a spectral density [3]. 

D. Statistical Analysis of Parametric Models 

When we assume merely that X, is a stationary 
process and nothing further, then X, contains 
infinite-dimensional unknown parameters. In 
this case, it may be difficult to develop a satis- 
factory general theory for statistical inference 
about X,. But in most practical applications of 
time series analysis, we can safely assume at 
least some of the time dependences to be 
known. For this reason, we can often use a 
model with finite-dimensional parameters. 
This means, mainly, that the moments (usually, 
second-order moments) or the spectral density 
are assumed to be expressible in terms of fmite- 
dimensional parameters. As examples of such 
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models, autoregressive models, moving average 
models, and autoregressive moving average 
models are widely used. 

A process X, is called an autoregressive 
process of order K if X, satisfies a difference 
equation C,“=, a,X,-, = [,, where the ak are 
constants, a, = 1, aK #O, and the 5, are mutu- 
ally uncorrelated with Et, = 0 and I’(&) = $ > 
0. We usually assume that X, is a weakly sta- 
tionary process with EX, = 0. We sometimes 
use the notation AR(K) to express a weakly 
stationary and autoregressive process of order 
K. Let (t,} be as above. If X, is expressed as X, 
= Cf=, bitl-r, where the hr are constants, h, = 1 
and bL # 0, X, is called a moving average pro- 
cess of order L (MA(L) process). Furthermore, 
if X, is weakly stationary with EX, = 0 and 
expressed as C,“=, akX,-k = ck, hi&?-, with a, 
= 1, h, = 1, and aK b, # 0, then X, is called an 
autoregressive moving average process of order 
(K, L) (ARMA(K, L) process). Let A(Z) and 
B(Z) be two polynomials of Z such that A(Z) 
= C,“=, a,ZKek and B(Z) = ck, b,ZLm’, and let 
{mkl 1 <k<K} and {/Iii 1<1<L} be the solu- 
tions of the associated polynomial equations 
A(Z) = 0 and B(Z) = 0, respectively, we as- 
sumethatIcckl<lforl<k<Kandl~~l<lfor 
1 < I < L. This condition implies that X, is 
purely nondeterministic. Let the observed 
sample be {X, Il< t < T}. If we assume that X, 
is Gaussian and an ARMA(K, L) process, we 
can show that the tmaximum likelihood es- 
timators {a,} and {gr} of {ak} and {b,} are 
iconsistent and asymptotically efficient when 
T+ cu (“asymptotically efficient” means that 
the covariance matrix of the distribution of 
the estimators is asymptotically equal to the 
inverse of the information matrix) [S] (- 
399 Statistical Estimation D). Furthermore, 
if X, is an AR(K) process, the joint distribu- 
tion of {fi(& - uk) 11 <k d K} tends to a K- 
dimensional normal distribution with means 0, 
and this distribution is the same as the one to 
which the distribution of the tleast-square 
estimators {ik} minimizing Q =CLK+i(Xf+ 
C,“=, akX,-,)’ tends when Tdco. If X, is a 
MA(L) or ARMA(K, L) process (L> l), the 
likelihood equations are complicated and 
cannot be solved directly. Many approxi- 
mation methods have been proposed to ob- 
tain the estimates. 

When X, is an AR(K) process with Ic(~/ < 
I for 1 <k < K, R, satisfies CkK,O uk R,-, = 0 
for h > 1. These are often called the Yule- 
Walker equations. R, can be expressed as 
R, = CjK,, C,LY~” if the elk are distinct and uK # 
0, where { Cj} are constants and determined 
byR,forO<h<K-l.WhenX,isan 
ARMA(K,L) process, ~&a,R,-,=O for 
h 3 L + 1, and the Cj of R, = C:=, CjaJ are 
determined by {R,IO<h<max(K,L)). 

The spectral density is expressed as f(1) = 
~~~B(e~“‘“)~~/~~(e~“‘“)~~. If X, is Gaussian, 
the maximum likelihood estimator of f(n) is 
asymptotically equal to the statistic obtained 
by replacing ui, {b,}, and {uk} in ~‘(1) with @, 
{b;}, and {cik}, respectively, where 8; is the 
maximum likelihood estimator of ~2, when 
T-+C0. 

When we analyze a time series ;and intend 
to fit an ARMA(K, L) model, we have to 
determine the values of K and L. For AR(K) 
models, many methods have been proposed to 
determine the value of K. Some examples are: 
(i) (Quenouille) Let (ZKA( 1/Z))2 = XT& AjZj, 
and G, = Ci!jj,O Aj(Rj/&,), where Aj is obtained 
by replacing {ak} in Aj by {a,}, and we con- 
struct the statistic x: = CL1 GK+i. Then x; has a 
+X2 distribution asymptotically with f degrees 
of freedom under the assumption that K 2 K,, 
where K, is the true order, as T+ co. Using 
this fact, we can determine the order of an AR 
model. (ii) (Akaike) We consider choosing an 
order K satisfying K, < K < K,, where K, and 
K, are minimum order and maximum order, 
respectively, specified a priori. Then we con- 
struct the statistic AIC(K)=(T--.K)log8z(K) 
+ 2K, where 

d;(K)= 5 (X,+$,X,-,+...+&X,-.)‘/T 
f=K+l 

and {a, 11 <k < K} are the least square esti- 
mators of the autoregressive coefficients of an 
AR(K) model fitting X,. Calculate AIC(K) for 
K = K,, K, + 1, , K,. If AIC(K) has the 
minimum value at K = K, we determine the 
order to be i? [6] (- 403 Statistical Models 
F). Parzen proposed another method by using 
the criterion autoregressive transfer function 
(CAT). Here CAT(K)= 1--1?~(m)l6~((K)+ K/T, 
where ci(K)=(T/(T-K))@(K) and ?(co) is 
an estimator of a2(co)=exp(~!!~,,logf(i)di) 
[7]. (iii) We can construct a test statistic for 
the null hypothesis AR(K) against the alterna- 
tive hypothesis AR(K + 1) (Jenkins) or use a 
multiple decision procedure (T. W. Anderson 

CW. 
Not much is known about the statistical 

properties of the above methods, and few 
comparisons have been made among them. 

Another parametric model is an exponential 
model for the spectrum. The spectral density is 
expressed by f(n)= C2exp{2Cf=, Qkcos(27ckl)}, 
where the (3, and C are constants. 

We now discuss some general theories of 
estimation for finite-dimensional-parameter 
models. Let X, be a real-valued Gaussian 
process of mean 0 and of spectral density f(n) 
which is continous and positive in [-l/2,1/2], 
and let the moving average representation of 
X, be X, = C&, b,<,-,, where 5, is a white noise 
and 0: = Et:. We assume that f(,t)/$ = s(1) 
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depends only on M parameters 0 = (0, , 0,) 

..‘> 0,)’ which are independent of 02. Then 
the logarithm of the tlikelihood function can 
be approximated by -(l/2) { Tlog 2no: + 
X’C;‘(@)X/$} by ignoring the lower-order 
terms in T, where r$ &(0) is the covariance 
matrix of X. Usually, it is difficult to find an 
explicit expression for each element of z;‘(0). 
Another approximation for the logarithm of 
the likelihood function is given by 

T l/Z 

-4 L 2 -l/2 

Under mild conditions on the regularity of 
g(i), the estimators 8=(Gl,, &, , t?,,,) and @, 

obtained as the solutions of the likelihood 
equations, are tconsistent and asymptotically 
normal as T tends to infinity. This means that 
the distribution of fi(di -r~j) is asymptoti- 

cally normal and fi( 8: - 0:) and fi(e^- 0) 
are asymptotically independent. The asympto- 
tic distribution of fi(r!-0) is the normal dis- 
tribution N(0, T-l), where the (k, l)-component 
r,, of F is given by u2 I‘,,=! -.- s ( i3logg(i.) dlogg(i) 

2 -112 aok > w @ 

da, 
E. Statistical Analysis of Multiple Time Series 

Let X, =(X,“), Xi’), . . , Xp)), be a complex- 
valued weakly stationary process with EX, = 0 
and EX,x:= R,-,. R,-, is the p x p matrix 
whose (k, I)-component is Rjk,,i)= EX,‘k)xi’). We 
discuss the case when t is an integer. R, has 
the spectral representation 

s l/2 
R,= eznihidF(l), 

-I,2 

where F(1) is a p x p matrix and F(1.J - F(1,), 
i., > &, is Hermitian nonnegative. Let fkv’(,I) 
be the (k, I)-component of the spectral density 
matrix f(I), i.e., F,(E.)=~,,J(p)dp, of the 
absolutely continuous part in the Lebesgue 
decomposition of Q/I). The function fk,‘@) for 
k # 1 is called the cross spectral density function. 
,f”,‘(i) represents a kind of correlation between 
the wave of frequency i included in Xjk’ and 
the one included in X”‘. 

Let X, = (Xl’), Xj’),‘. , Xlp))’ and Y, = 
(x(l), qc2), , x(q))’ be two complex-valued 
weakly stationary processes with EX, = 0, 
EY,=O, EX,X:=RE,, EY,Yi=Ry-,and 
EX,v:= RE:. We assume Y,=C,s-,, A&,, 
where A, is a y x p matrix whose components 
are constants depending on s. Put A(1) = 
C,“=-, Ase-2ziS’. A(a) should exist in the 
sense of mean square convergence with respect 
to the spectral distribution function F for X,. 

The function A(J) is called the matrix fre- 
quency response function. 

As a measure of the strength of association 
between Xjk) and X/l) at frequency i, we intro- 
duce the quantity yk,‘(n) = I,fk,f(~)12iifk.k(~),~‘,i(~~). 
Ibid’ is called the coherence. Let XT)= 
i.:- I) a$‘X~?s+ r),, where 7, is a weakly sta- 
tionary process with mean 0 and uncorrelated 
with Xsr), -a <s< cu. If E(q,l’=O, yk3’(i)= 1. 
If .E]C?, a$‘Xi!!,I’=O, yk3’(i) =O. Generally, 
we have O<y’,‘(l)< 1. 

For the estimation of F(i), A(i), and yk,‘(A), 
the theories have been similar to those for the 
estimation of the spectral density of a scalar 
time series. For example, an estimator of f‘(i) 
is given [ 1 l] in the form 

where 

Eh=‘s’X&T 
1=, 

and the w, are the same as in Section C. 
We can define an autoregressive, moving 

average, or autoregressive moving average 
process in a similar way as for a scalar time 
series. The uk and b[ in Section D should be 
replaced by p x p matrices and the associated 
polynomial equations A(Z) =0 and B(Z) =0 
should be understood in the vector sense [ 111. 
There are problems with determining the coefft- 
cients uniquely or identifying an ARMA(K, L) 
model, and these problems have been dis- 
cussed to some extent. 

F. Statistical Inference of the Mean Function 

Let X, be expressed as X, = m, + k;, where m, is 
a real-valued deterministic function of t and Y, 
is a real-valued weakly stationary process with 
mean 0 and spectral distribution function F(1). 
This means that EX, = m,. We consider the 
case when mt=C$, Cj#, where C=(C,,C,, 

“‘2 C,)’ is a vector of unknown coefficients 
and r,=(d’), cpi2), , @‘I)’ is a set of known t 
(regression) functions. 

Let us construct ilinear unbiased estimators 
{ cj = C:i, yjtX, 11 <j < M} for the coefficients 
C,, where the yjt are known constants. Put 
@ = (pr, v)~, , v)~)‘. Then the tleast squares 
estimator of C is given by t = (@‘@))‘Q’X 
when @‘@ is nonsingular. Let Z be the covar- 
iance matrix of X. Then the +best linear un- 
biased estimator is e* =(@‘~~‘cD))‘@‘Z~‘X. 
We put 1)@//$=CT ((p(jr)2 t1 f and assume that 
lim Tdcc ))@IIc= m, lim T-u: It’p’j’~I~+h/ll(P’j’l12~ 

= 1 for 1 <j< A4 and any fixed h and assume 
the existence of $~‘k’=limT-~ CL, cpp$,cpik’/ 
~~@~~rll$k)llr for I <j, k< M. We also assume 
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that F(A) is absolutely continuous and F’(n)= 
,f(jL) is positive and piecewise continuous. 
Let $h be the M x M matrix whose (j, k)- 
component is $2,“). Then $,, can be repre- 
sented by 

*I?= 
s 

l/2 
e2n1hi. dG(l.), 

-I,2 

where G(n) - G(p) is a nonnegative definite 
matrix for ,? > p. Assume that I!& = G( l/2) 
- G( -l/2) is nonsingular and put H(1) = 
$;“*G(i)t& 1’2, and for any set S, H(S) = 
js ff(dE.). Suppose further that S, , S,, . , S, 
are y sets such that H(S,) > 0, Q, H(Sj) = 
I, H(Sj)H(Sk)=O,j#k, and for any j there is 
no subset Sj’c Sj such that H(S,‘) > 0, H(Sj - Sj’) 
>0 and H(S,‘)H(S,-S,‘)=O. We have 4~ M. 
It can be shown that the spectrum of the re- 
gression can be decomposed into such disjoint 
sets S,, , .S,. Then we can show that c is 
asymptotically efficient in the sense that the 
asymptotic covariance matrix of C is equiva- 
lent to that of c* if and only if f(l.) is constant 
on each of the elements S,. Especially, if $,“I= 
t’e2airzJ, C is asymptotically efficient. 

G. Nonstationary Models 

It is difficult to develop a statistical theory for 
a general class of nonstationary time series, 
but some special types of nonstationary pro- 
cesses have been investigated more or less in 
detail. Let X, (t an integer) be a real-valued sto- 
chastic process and V be the backward dif- 
ference operator defined by VX, = X, ~ X,-, 
and VdX, = V(Vdm’X,) for d 2 2. We assume 
that X, is defined for t > t, (to a finite integer), 
and EXf < +co. For analyzing a nonstation- 
ary time series, Box and Jenkins introduced 
the following model: For a positive integer d, 
x = VdX,, t > t, + d, is stationary and is an 
autoregressive moving average process of 
order (K, L) for t > t, + d + max(K, L). They 
called such an X, an autoregressive integrated 
moving average process of order (K, d, L) and 
denoted it by ARIMA(K,d, L). The word 
“integrated” means a kind of summation; 
in fact, X, can be expressed as a sum of the 
weakly stationary process yl, i.e., 

x,=x,+(VX,)t+(V2Xo) 
( > 

i g f... 
s*=, s,=l 

+wo)Cdi~, ...s ?J 

+,$idY ---,~l xi L 
when t0 = -u’+ 1. Using this model, methods 
of forecasting and of model identification and 
estimation can be discussed [ 131. 

Another nonstationary mode1 is based on 
the concept of evolutionary spectra [14]. In 
this approach, spectral distribution functions 
are taken to be time-dependent. Let X, be 
a complex-valued stochastic process (t an 
integer) with EX, = 0 and R,,, = EX,X,. In the 
following, we write simply S for S!!:,2. We now 
restrict our attention to the class of X, for 
which there exist functions {ul(i)} defined on 
[-l/2, l/2] such that R,,, can be expressed as 
R,,,=Su,(3,)u,(~)d~(3,), where ~(2) is a measure. 
u,(n) should satisfy ~l~,(~)1~dp(i)c +co. Then 
X, admits a representation of the form X, = 
Ju,(i)dZ(l), where Z(n) is a process with 
orthogonal increments and EldZ(l)1* =dp(l). 
If u,(n) is expressed as u,(n) = y,(~.)ezniB(“)’ and 
y,(i) is of the form yr(~)=je2”““dT,(w) with 
Idr,(w)l having the absolute maximum at w  = 
0, we call u,(k) an oscillatory func:tion and 
X, an oscillatory process. The evolutionary 
power spectrum dF,(i) is defined by dF,(i) = 

Iv,G)12WJ. 
Other models, such as an autoregressive 

model whose coefficients vary with time or 
whose associated polynomial has, roots outside 
the unit circle, have also been discussed. 
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422 (IV.7) 
Topological Abelian Groups 

A. Introduction 

A commutative topological group is called a 
topological Abelian group. Throughout this 
article, except in Section L, all topological 
groups under consideration are locally com- 
pact Hausdorff topological Abelian groups 
and are simply called groups (- 423 Topolog- 
ical Groups). 

B. Characters 

A character of a group is a continuous func- 
tion x(x) (xEG) that takes on as values com- 
plex numbers of absolute value 1 and satis- 
fies I = x(x)x( y). Equivalently, x is a l- 
dimensional and therefore an irreducible 
‘unitary representation of G. Conversely 
any irreducible unitary representation of G 
is l-dimensional. Indeed, for a topological 
Abelian group, the set of its characters coin- 
cides with the set of its irreducible unitary 
representations. If the product of two char- 
acters 1, x’ is defined by xx’(x) =x(x)x’(x), then 
the set of all characters forms the character 
group C(G) of G. With tcompact-open topo- 
logy, C(G) itself becomes a locally compact 
topological Abelian group. 

C. The Duality Theorem 

For a fixed element x of G, x(x) (xEC(G)) is 
a character of C(G), namely, an element of 
CC(G). Denote this character of C(G) by x(x), 
and consider the correspondence G~x-+x(x). 
That this correspondence is one-to-one follows 
from the fact that any locally compact G has 
+sufftciently many irreducible unitary repre- 
sentations (- 437 Unitary Representations) 
and the fact that if G is an Abelian group, then 

any irreducible unitary representation of G is a 
character of G. Furthermore, any character 

of C(G) is given as one of the x(x); indeed, by 
this correspondence, we have G 2 CC(G) 
(Pontryagin’s duality theorem). 

By the duality theorem, each of G and C(G) 
is isomorphic to the character group of the 
other. In this sense, G and C(G) are said to be 
dual to each other. 

D. Correspondence between Subgroups 

Let G, G’ = C(G) be groups that are dual to 
each other. Given a closed subgroup y of G, 
the set of all x’ such that x’(x) = 1 for all x in g 
forms a closed subgroup of G’, usually denoted 
by (G’, g). The definition of (G, g’) is similar. 
Then g++(G’, g) = g’ gives a one-to-one corre- 
spondence between the closed subgroups of G 
and those of G’. If g, 3 g2, then g, Jgz and 

(G’,g2)/(G’,gI) are dual to each other. If the 
group operations of G, G’ are written in addi- 
tive form, with 0 for the identity, then x(x’) = 1 
is written as x(x’) = 0. In this sense, (G’, g) is 
called the annihilator (or annulator) of g. 

E. The Structure Theorem 

Let ‘U be the set of all groups (more precisely, 
of all locally compact Hausdorff topological 
Abelian groups). If G, , G, E%, then the direct 
product G, x G, E %, and if GE ‘% and H is a 

closed subgroup of G, then HE VI and G/H E!K 
In addition, if H is a closed subgroup of a 
group G such that H ELI and G/H E%, then 
GE%. In other words, %!I is closed under the 
operations of forming direct products, closed 
subgroups, quotient groups, and textensions 
by members of ‘II. Furthermore, the operation 
C that assigns to each element of !!I its dual 
element is a reflexive correspondence of (.?I 
onto 9I, and if G 3 H, the annihilator (C(G), H) 
of H is a closed subgroup of C(G). Also, 

C(GIH)~(C(G)>W> CW)rC(GY(C(G),H). 
Furthermore, C(G, x G,)rC(G,) x C(G,). 
Finally, H=(G,(C(G), H)) (reciprocity of 
annihilators). 

Typical examples of groups in VI are the 
additive group R of real numbers, the additive 
group Z of rational integers, the l-dimensional 
‘torus group T = R/Z, and finite Abelian 
groups F. The torus group T is also isomor- 
phic to the multiplicative group U( 1) of com- 
plex numbers of absolute value 1. The direct 
product R” of n copies of R is the vector group 
of dimension n, and the direct product T” of 
n copies of T is the torus (or torus group) 
of dimension n (or n-torus). Both T” and F 
are compact, while R” and Z” are not. We 
have C(R) = R, C(T) = Z, C(Z) =T. Any finite 
Abelian group F is isomorphic to its character 
group C(F). The direct product of a finite 
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number of copies of R, T, Z, and a finite 
Abelian group F, namely, a group of the form 
R’ x T” x Z” x F, is called an elementary topo- 
logical Abelian group. 

Any group in 91 is isomorphic to the direct 
product of a vector group of some dimension 
and the extension of a compact group by a 
discrete group (the structure theorem). Hence, 
if the effect of the operation C is explicitly 
known, then the problem of finding the struc- 
ture of groups in VI is reduced to the pro- 
blem concerning discrete groups alone. For 
the structure of groups in Si, the following 
theorem is known: If GE% is generated by a 
compact neighborhood of the identity e, then 
G is isomorphic to the direct product of a 
compact subgroup K and a group of the form 
R” x Z” (n, m are nonnegative integers). Then 
any compact subgroup of G is contained in K, 
which is the unique maximal compact sub- 
group of G. A group GE YI generated by a 
compact neighborhood of e is the +projec- 
tive limit of elementary topological Abelian 
groups. L. S. Pontryagin first proved a struc- 
ture theorem of this type and then the duality 
theorem. 

F. Compact Elements 

An element CL of a group GE% is called a com- 
pact element if the cyclic group {u”)n~Z} gen- 
erated by u is contained in a compact subset 
of G. The set C, of all compact elements of G 
is a closed subgroup of G, and the quotient 
group G/C, does not contain any compact 
element other than the identity. In particular, 
if G is generated by a compact neighborhood 
of the identity, then C, coincides with the 
maximal compact subgroup K of G. Let C, 
be the set of all compact elements of a group 
G~‘11. The annihilator (C(G), C,) is a con- 
nected component of the character group 
C(G) of G. If G is a discrete group, then a 
compact element of G is an element of G of 
finite order. 

G. Compact Groups and Discrete Groups 

Suppose that two groups G, X ~91 are dual to 
each other. Then one group is compact if and 
only if the other group is discrete. By the du- 
ality theorem, the properties of a compact 
Abelian group G can be stated, in principle, 
through the properties of the discrete Abelian 
group C(G). The following are a few such 
examples. Let G be a compact Abelian group. 
Then its tdimension is equal to the +rank of the 

discrete Abelian group C(G). A subgroup Y of 
a discrete Abelian group X is called a divisible 

subgroup if the quotient group X/l/contains 
no element of finite order other than the iden- 
tity. A compact Abelian group G is locally 
connected if and only if any finite subset of the 
character group C(G) is contained in some 
divisible subgroup of C(G) generated by a 
finite number of elements. Hence if a compact 
locally connected Abelian group G has an 
+open basis consisting of a countable number 
of open sets, then G is of the form ‘T” x F, 
where F is a finite Abelian group and T” is the 
direct product of an at most countable number 
of l-dimensional torus groups T. 

H. Dual Decomposition into Direct Products 

Let G be a compact or discrete Abelian group, 
and let 9Jl= {H, 1 c( E A} be a family of closed 
subgroups of G. Let A(W)= nztA IY,, and 
denote by C(VJl) the smallest closed sub- 
group of G containing lJxeA H,. Then, with 
R=((C(G), H,)]xE A], the relations A(Q)= 
(C(G),C(%R)) and C(R)=(C(G), A(?Dl)) hold. 
Furthermore, suppose that G is decomposed 
into the direct product G = nzEA E:r,, and for 
eachaeAput K,=Z(YJ-{H,}),X,= 
(C(G), K,). Then X, is the character group of 
Hz, and C(G) can be decomposed Into the 
direct product C(G)= nztA X,. This decompo- 
sition of C(G) into a direct product is called 
the dual direct product decompositiion corre- 
sponding to the decomposition G := nltA H,. 

I. Orthogonal Group Pairs 

Suppose that for two groups G, G’ there exists 
a mapping (x, x’)+xx’ of the Cartesian prod- 
uct G x G’ into the set U(1) of all complex 
numbers of absolute value 1 such l-hat 

(x,x*)x’=(x,x’)(xzx’), 

x(x;x;)=(xx;)(xx;). 

Then G, G’ are said to form a group pair. Sup- 
pose that G, G’ form a group pair, and con- 
sider xx’ to be a function x(x’) in x’. If two 
functions x1(x’) and x2(x’) coincide only when 
x1 =x2 and the same is true when the roles 
of G and G’ are interchanged, then G, G’ are 
said to form an orthogonal group pair. If G is 
a compact Abelian group, G’ is a discrete 
Abelian group, and G, G’ form an orthogonal 
group pair, then G, G’ are dual to leach other. 

J. Commutative Lie Groups 

~ 
An elementary topological Abelian group 
R’ x T” x Z” x F is a commutative +Lie group. 

~ Conversely, any commutative Lie group G 
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generated by a compact neighborhood of the 
identity is isomorphic to an elementary topo- 
logical Abelian group. In particular, any con- 
nected commutative Lie group G is isomor- 
phic to R’ x T” for some I and m. A closed 
subgroup H of the vector group R” of dimen- 
sion n is isomorphic to RP x Z4 (0 <p + q < n). 
More precisely, there exists a basis a,, . . , u, of 
the vector group R” such that H = { Cp=, xiai + 
C!= , p+, n,ujIx,~R,nj~Z). Hence the quo- 
tient groups of R” that are tseparated topolog- 
ical groups are all isomorphic to groups of the 
form R’ x T” (0 d I+ m d n). Any closed sub- 
group of the torus group T” of dimension II is 
isomorphic to a group of the form TP x F 
(0 <p < n), where F is a finite Abelian group. 
Hence the quotient groups of T” that are 
separated topological groups are all isomor- 
phic to T” (0 <m < n). A +regular linear trans- 
formation of the linear space R” is a continu- 
ous automorphism of the vector group R”, 
and in fact, any continuous automorphism of 
R” is given by a regular linear transformation. 
Indeed, the group of all continuous automor- 
phisms of R” is isomorphic to the tgeneral 
linear group GL(n, R) of degree n. Any continu- 
ous automorphism of the torus group T” = 
R”/Z” of dimension n is given by a regular 
linear transformation q of R” such that (p(Z”) 
= Z”. Hence the group of continuous auto- 
morphisms of T” is isomorphic to the multi- 
plicative group of all n x n matrices, with de- 
terminant k 1 and with entries in the set of 
rational integers. 

K. Kronecker’s Approximation Theorem 

Let H be a subgroup of a group GE% (not 
necessarily closed). Then (G,(C(G), H)) coin- 
cides with the closure H of H. In particular, H 
is +dense in G if and only if the annihilator 
(C(G), H) consists of the identity alone. Now 
let G=R” and let H be the subgroup of R” 
generated by 0 = (O,, ,0,,) E R” and the na- 
tural +basis e, = (I, 0, ,O), , K,, = (0, . ,O, I) 
of R”. Then H is dense in R” if and only if 
(R”, H)= (0); that is, Or, , (I”, 1 are linearly 
independent over the rational number field Q 
(Kronecker’s approximation theorem). This 
theorem implies that the torus group T” of 
dimension n has a cyclic subgroup and a l- 
parameter subgroup that are both dense in T”. 

L. Linear Topology 

Consider the discrete topology in a field 0. 
Suppose that an R-module G has a topology 
that satisfies tHausdorff’s separation axiom 
and is such that a base for the neighborhood 

system of the zero element 0 consists of R- 
submodules, and suppose that G together with 
this topology constitutes a topological Abelian 
group. Then this topology is called a linear 
topology. If a linear topology is restricted to a 
R-submodule, then it is also a linear topology. 
If G is of finite rank, then any linear topology 
is the discrete topology. The discrete topology 
on G is a linear topology. Let H be a R- 
submodule. Then the subset V= H + g of G 
obtained by translating H by an element g of 
G is called a linear variety in G. If V is a linear 
variety, then V 1s also a linear variety. If R- 
modules G, G’ have linear topologies, a homo- 
morphism of G into G’ is always assumed to 
be open and continuous with respect to these 
topologies. A linear variety V in G is said to be 
linearly compact if, for any system {V,} of 
linear varieties closed in V with the +finite 
intersection property, we have & V, # @. In 
this case V is closed in G. If linearly compact 
R-submodules can be chosen as a base for the 
neighborhood system of the zero element of 
G, we say that G is locally linearly compact. 
The set C,(G) of homomorphisms of an R- 
module G with linear topology into R is also 
an n-module. For any linearly compact R- 
submodule H ofG,let U(H)={XI&)= 
0, gE H}. Then, with (U(H)} as a base for the 
neighborhood system, a linear topology can 
be introduced in C,(G). According as G is 
discrete, linearly compact, or locally linearly 
compact, C,(G) is linearly compact, discrete, 
or locally linearly compact. Let G, H be 0- 
modules each of which has a linear topology, 
andlet 'P:G3g~(PgEC,(H),~:H3h-t~,E 
C,,(G) be homomorphisms such that q&h) = 
&(g). Then if one of cp, II/ is an isomorphism, 
so is the other. This is an analog of the Pon- 
tryagin duality theorem and is called the 
duality theorem for C&modules. In particular, 
a linearly compact &module is the direct sum 
of l-dimensional spaces (S. Lefschetz [3]). 
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A. Definitions 

If a +group G has the structure of a ttopolog- 
ical space such that the mapping (x, y)+xy 
(product) of the Cartesian product G x G into 
G and the mapping x+x -’ (inverse) of G into 
G are both continuous, then G is called a topo- 
logical group. The group G without a topo- 
logical structure is called the underlying group 
of the topological group G, and the topolog- 
ical space G is called the underlying topological 
space of the topological group G. Let G, G’ be 
topological groups. A mapping f‘ of G into G 
is called an isomorphism of the topological 
group G onto the topological group G’ if ,f 
is an tisomorphism of the underlying group 
G onto the underlying group G’ and also a 
thomeomorphism of the underlying topolog- 
ical space G onto the underlying topological 
space G’. Two topological groups are said to 
be isomorphic if there exists an isomorphism of 
one onto the other. 

B. Neighborhood Systems 

Let 5% be the +neighborhood system of the 
identity e of a topological group G. Namely, ‘3 
consists of all subsets of G each of which con- 
tains an open set containing the element e. 
Then % satisfies the following six conditions: 
(i) If UE‘% and U c c, then VE%. (ii) If U, 
VE%, then U n I/E%. (iii) If U E%, then Ed U. 
(iv) For any U E YR, there exists a WE % such 
that WW={xy~x,y~W}cU.(v)IfU~91, 
then Ue~'e!R. (vi) If UE% and UEG, then 
aUa-’ E%. Conversely, if a nonempty family % 
of subsets of a group G satisfies conditions (i)- 
(vi), then there exists a ttopology 0 of G such 
that % is the neighborhood system of e and 
G is a topological group with this topology. 
Moreover, such a topology is uniquely deter- 
mined by %. +Left translation x-ax and tright 
translation x+xa in a topological group G are 
homeomorphisms of G onto G; thus if ‘3 is the 
neighborhood system of the identity e, then 
a% = ‘%a is the neighborhood system of a, 
wherea%={uUIUE%}. 

If the underlying topological space of a top- 
ological group G is a THausdorff space, G is 
called a T,-topological group (Hausdorff topo- 
logical group or separated topological group). 
If the underlying topological space of a topo- 
logical group G is a +T,-topological space, 
then, as is easily seen, it is a +T,-topological 
space. If it is a T,-topological space, then by 
the fact that the topology may be defined by a 

+uniformity, it is a kompletely regular space, 
hence, in particular, a Hausdorff space (- Sec- 
tion G). Thus a topological group whose un- 
derlying topological space is a TO-topological 
space is a T,-topological group. 

C. Direct Product of Topological Groups 

Consider a family { Ga}aEA of topological 
groups. The Cartesian product G =- napA G, of 
the underlying groups of G, is a topological 
group with the tproduct topology Iof the un- 
derlying topological spaces of G,. This topo- 
logical group G = nasA G, is called the direct 
product of topological groups G, (a E A). 

D. Subgroups 

Let H be a subgroup of the underl:ying group 
of a topological group G. Then H is a topolog- 
ical group with the topology of a +topological 
subspace of G (+relative topology). This topo- 
logical group H is called a subgroup of G. A 
subgroup that is a closed (open) set is called a 
closed (open) subgroup. Any open subgroup is 
also a closed subgroup. For any subgroup H 
of a topological group G, the closure H of H 
is also a subgroup. If H is a normal subgroup, 
so is H. If H is commutative, so is a. In a T,- 
topological group G, the kentralizer C(M) = 
{x~Glxm=mx @EM)} of a subset M of G 
is a closed subgroup of G. In particular, the 
+center C = C(G) of a T,-topological group is a 
closed normal subgroup. 

E. Quotient Spaces 

Given a subgroup H of a topological group G, 
let G/H = { aH 1 a E G} be the set of +left cosets, 
and let p be the canonical surjection p(u) = aH 
of G onto G/H. Consider the tquotient topo- 
logy on G/H, namely, the strongest topology 
such that p is a continuous mapping. Since 
a subset A of G/H is open when p-'(A) is an 
open set of G, p is also an topen m.apping. 
The set G/H with this topology is called the 
left quotient space (or left coset space) of G by 
H. The right quotient space (or right coset 
space) H\G = {Ha 1 a E C} is defined similarly. 
The quotient space G/H is discrete if and only 
if H is an open subgroup of G. The quotient 
space is a Hausdorff space if and only if H is a 
closed subgroup. If G/H and H are both tcon- 
netted, then G itself is connected. If G/H and 
H are both icompact, then G is compact. If H 
is a closed subgroup of G and G/H, H are both 
tlocally compact, then G is locally compact. 

Suppose that H is a normal subgroup of a 
topological group G. Then the quotient group 
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G/H is a topological group with the topology 
of the quotient space G/H. This topological 
group is called the quotient group of the topo- 
logical group G by the normal subgroup H. 

F. Connectivity 

The tconnected component G, containing the 
identity e of a topological group G is a closed 
normal subgroup of G. The connected compo- 
nent that contains an element UE G is the coset 
aG, = G,u. G, is called the identity component 
of G. The quotient group G/G, is itotally dis- 
connected. A connected topological group G 
is generated by any neighborhood U of the 
identity. Namely, any element of G can be 
expressed as the product of a finite number of 
elements in U. Totally disconnected (in partic- 
ular, discrete) normal subgroups of a con- 
nected topological group G are contained in 
the center of G. 

G. Uniformity 

Let ‘X0 be the neighborhood system of the 
identity of a topological group G, and let U, 
={(x,y)~Gx Gly~xU} for UE’JI,. Then a 
tuniformity having { U, 1 U E %,} as a base is 
defined on G. This uniformity is called the left 
uniformity of G. Left translation xhux of G is 
tuniformly continuous with respect to the left 
uniformity. The right uniformity is defined 
similarly by U,= ((x,y)Jy~ Ux}. These two 
uniformities do not necessarily coincide. The 
mapping x*x-’ is a tuniform isomorphism of 
G considered as a uniform space with respect 
to the left uniformity onto the same group G 
considered as a uniform space with respect to 
the right uniformity. A topological group G 
is thus a tuniform space under a uniformity 
tcompatible with its topology, and hence it is 
a completely regular space if the underlying 
topological space is a T,-space. 

H. Completeness 

If a topological group G is +complete with 
respect to the left uniformity, then it is also 
complete with respect to the right uniformity, 
and conversely. In this case the topological 
group G is said to be complete. A locally com- 
pact T,-topological group is complete. If a T,- 
topological group G is isomorphic to a dense 
subgroup of a complete T,-topological group 
6, then 6 is called the completion of G, and G 
is said to be completable. A T,-topological 
group G is not always completable. For a T,- 
topological group G to be completable it is 
necessary and sufftcient that any +Cauchy filter 

of G considered as a uniform space with res- 
pect to the left uniformity is mapped to a 
Cauchy filter of the same uniform space G 
under the mapping X+X-‘. Then the com- 
pletion G of G is uniquely determined up to 
isomorphism. A commutative T,-topological 
group always has a completion G, and G 
is also commutative. If each point of a T,- 
topological group G has a ttotally bounded 
neighborhood, there exists a completion G, 
and i: is locally compact. 

1. Metrization 

If a +metric can be introduced in a T,- 
topological group G so that the metric gives 
the topology of G, then G is said to be metri- 
zable. For a T,-topological group G to be met- 
rizable it is necessary and sufficient that G 
satisfy the +first axiom of countability. Then 
the metric can be chosen so that it is left in- 
variant, i.e., invariant under left translation. 
Similarly, it can be chosen so that it is right 
invariant. In particular, the topology of a 
compact T,-topological group that satisfies 
the first axiom of countability can be given by 
a metric that is both left and right invariant. 

J. Isomorphism Theorems 

Let G and G’ be topological groups. If a homo- 
morphism f of the underlying group of G 
into the underlying group of G’ is a contin- 
uous mapping of the underlying topological 
space of G into that of G’, f is called a con- 
tinuous homomorphism. If ,f is a continuous 
open mapping, f is called a strict morphism (or 
open continuous homomorphism). A continuous 
homomorphism of a tparacompact locally 
compact topological group onto a locally 
compact T,-topological group is an open 
continuous homomorphism. 

A topological group G’ is said to be homo- 
morphic to a topological group G if there 
exists an open continuous homomorphism f of 
G onto G’. Let N denote the kernel f-‘(e) off: 
Then the quotient group G/N is isomorphic to 
G’, with GIN and G’ both considered as topo- 
logical groups (homomorphism theorem). Let 
f be an open continuous homomorphism of a 
topological group G onto a topological group 
G’, and let H' be a subgroup of G’. Then H = 
f-‘(W) is a subgroup of G, and the mapping 
cp defined by cp(gH)=f(g)H' is a homeomor- 
phism of the quotient space G/H onto Cl/H'. 
In particular, if H' is a normal subgroup, then 
H is also a normal subgroup and cp is an iso- 
morphism of the quotient group G/H onto 
G'/H' as topological groups (first isomorphism 
theorem). Let H and N be subgroups of a topo- 
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logical group G such that HN = NH. Then the 
canonical mapping ,f‘: h(H n N)+hN of the 
quotient space HJH n N to HN/N is a con- 
tinuous bijection but not necessarily an open 
mapping. In particular, if N is a normal sub- 
group of the group HN, then .f is a continuous 
homomorphism. In addition, if ,f is an open 
mapping, the quotient groups H/H n N and 
HNjN are isomorphic as topological groups 
(second isomorphism theorem). For example, ,f 
is an open mapping (1) if N is compact or (2) if 
G is locally compact, HN and N are closed 
subgroups of G, and H is the union of a count- 
able number of compact subsets. Let H be a 
subgroup of a topological group G and N be a 
normal subgroup of G such that H 3 N. Then 
the canonical mapping of the quotient space 
(G/N)/(If/N) onto G/H is a homeomorphism. 
In particular, if H is also a normal subgroup, 
the quotient groups (G/N)/(H/N) and G/H are 
isomorphic as topological groups (third iso- 
morphism theorem). 

K. The Projective Limit 

Let { GzjleA be a family of topological groups 
indexed by a +directed set A, and suppose that 
if x <[j, there exists a continuous homomor- 
phism ,fip:Gp-G, such that f~,=~&of& if 
ad/l<;‘. Then the collection jGil,,f$,} of the 
family {GzJrtA of topological groups together 
with the family (,f&} of mappings is called a 
projective system of topological groups. Con- 
sider the direct product nztn G, of topological 
groups {G,), and denote by G the set of all 
elements x = {xzJztn of n G, that satisfy x, = 
,&(x0) for s( d p. Then G is a subgroup of 
n G,. The topological group G obtained in 
this way is called the projective limit of the 
projective system (G&J of topological 
groups and is denoted by G = I@ G,. If each G, 
is a T,-topological (resp. complete) group, then 
G is also a T,-topological (complete) group. 

Now consider another projective system 
{G;,,f$) of topological groups indexed by the 
same A, and consider continuous homomor- 
phisms u,: G,+G: such that u, o,f& = j$ o ug 
for x < 1. Then there exists a unique continu- 
ous homomorphism u of G = I@ G, into G’ = 
l$GG: such that for any atA, u,ofz=j~ou 
holds, where ,f,(f*‘) is the restriction to G(G’) of 
the projection of n G, (n Gj) onto G,(Gk). The 
homomorphism u is called the projective limit 
of the family (uzj of continuous homomor- 
phisms and is denoted by u = I@ u,. Let G be 
a T,-topological group, and let ( HalrreA be a 
decreasing sequence (H, =J If, for SL </r) of 
closed normal subgroups of G. Consider the 
quotient group G/H,, and let .fz,, be the canon- 
ical mapping qH,<+qH, of GO to G, for x</1. 

Then {C,,,f$) is a projective system of topo- 
logical groups. Let .1; be the projecl.ion of G 
onto G, = G/H,, and let ,f= limf;. Now assume 
that any neighborhood of the identity of G 
contains some H, and that some H, is com- 
plete. Then J= 1F.f; is an isomorp hism of G 
onto I$ G/H, as topological groups. (For a 
general discussion of the topological groups 
already discussed - [ 1,4].) 

L. Locally Compact Groups 

For the rest of this article, all topological 
groups under consideration are assumed to 
be T,-topological groups. The identity com- 
ponent G, of a locally compact group G is the 
intersection of all open subgroups 1of G. In 
particular, any neighborhood of the identity of 
a totally disconnected locally compact group 
contains an open subgroup. A totally dis- 
connected compact group is a projective limit 
of finite groups with discrete topology. 

A T,-topological space L is called a local Lie 
group if it satisfies the following six conditions: 
(i) There exist a nonempty subset A4 of L x L 
and a continuous mapping p: M+L, called 
multiplication (~(a, h) is written as &). (ii) If 
((I, h), (ah, (9, (h, c), (a, hc) are all in n4, then (ah)c 
=a(&). (iii) L contains an element e, called the 
identity, such that L x {e} c M and ur = u for 
all a~,!,. (iv) There exists a nonempty open 
subset N of L and a continuous mapping V: N 
+L such that uv(a)=e for all UEN. (v) There 
exist a neighborhood U of e in L and a homeo- 
morphism f’of U into a neighborhood V 
of the origin in the Euclidean space R”. (vi) Let 
D be the open subset of V x V defined by D = 
((X>YNVX vI(.f-'(x),.f-'(Y))~~,.f-l(x), 
j’-‘(~)EU}. Then the function F:D+V defined 
by F(x,y)=,f~(f~‘(x),f’~‘(y)) is of +class C”. 

For any neighborhood U of the identity e of 
a connected locally compact group G, there 
exist a compact normal subgroup K and a 
subset L that is a local Lie group under the 
+induced topology and the group operations of 
G such that the product LK is a neighborhood 
of e contained in U. Furthermore, under (I, k) 
d/k, LK is homeomorphic to the product 
space L x K. Any compact subgroup of a 
connected locally compact group G is con- 
tained in a maximal compact subgroup, and 
maximal compact subgroups of G are +conju- 
gate. For a maximal compact subgroup K of 
G, there exists a finite number of subgroups 
H,, , H, of G, each of which is isomorphic to 
the additive group of real numbers such that G 
= KH, H,, and the mapping (k, ,!I~, , h,) 
+kh, h, is a homeomorphism of the direct 
product K x H, x x H, onto G. Any locally 
compact group has a left-invariant positive 
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measure and a right-invariant positive mea- 
sure, which are uniquely determined up to 
constant multiples (- 225 Invariant Mea- 
sures). Using these measures. the theory of 
harmonic analysis on the additive group R of 
real numbers can be extended to that on G (- 
69 Compact Groups; 192 Harmonic Analysis; 
422 Topological Abelian Groups; 437 Unitary 
Representations). 

M. Locally Euclidean Groups 

Suppose that each point of a topological 
group G has a neighborhood homeomorphic 
to an open set of a given Euclidean space. 
Then G is called a locally Euclidean group. If 
the underlying topological space of a topolog- 
ical group has the structure of a +real analytic 
manifold such that the group operation (x, y) 
-+xy -’ is a real analytic mapping, then G is 
called a +Lie group. A Lie group is a locally 
Euclidean group. 

N. Hilbert’s Fifth Problem 

Hilbert’s fifth problem asks if every locally 
Euclidean group is a Lie group (- 196 Hil- 
bert). This problem was solved affirmatively 
in 1952; it was proved that any +locally con- 
nected finite-dimensional locally compact 
group is a Lie group (D. Montgomery and L. 
Zippin [3]). In connection with this, the rela- 
tion between Lie groups and general locally 
compact groups has been studied, and the 
following results have been obtained: A neces- 
sary and sufficient condition for a locally 
compact group to be a Lie group is that there 
exist a neighborhood of the identity r that 
does not contain any subgroup (or any normal 
subgroup) other than {e). A locally compact 
group has an open subgroup that is the projec- 
tive limit of Lie groups, Hilbert’s fifth problem 
is closely related to the following problem: 
Find the conditions for a ttopological trans- 
formation group operating +effectively on a 
manifold to be a Lie group (- 43 1 Transfor- 
mation Groups). 

0. Covering Groups 

Let (5 be the collection of all +arcwise con- 
nected and tlocally arcwise connected T,- 
topological groups. Suppose that G* E 8 is a 
tcovering space of GE 8 and the ‘covering 
mapping f: G**G is an open continuous 
homomorphism, with G* and G considered as 
topological groups. Then G* (or, more pre- 
cisely, (G*,f)) is called a covering group of G. 
Then the kernel ,f-‘(e) = D of ,f is a discrete 

subgroup contained in the center of G*, and 
G*/D and G, considered as topological groups, 
are isomorphic to each other. Let 71, (G) be the 
+fundamental group of G. The natural homo- 
morphism ,f*:n, (G*)hrtr(G) induced by .f is 
an injective homomorphism, and if we identify 
nr(G*) with the subgroupf*(rr,(G*)) ofn,(G), 
we have D g rr, (G)/n, (G*). Conversely, if D is 
any discrete subgroup contained in the center 
of G* E (5, then G* is a covering group of G 
= G*/D. For any covering space (G*,f) of 
GE 6, a multiplication law can be introduced 
in G* so that G* is a topological group be- 
longing to 8 and (G*,f) is a covering group of 
G. In particular, any GE@I has a +simply con- 
nected covering group (G, cp). Then for any 
covering group (G*,f) of G, there exists a 
homomorphism ,f* :&G*, and (G,f*) is a 
covering group of G*. Furthermore, q=,fo,f*. 
Hence, in particular, any simply connected 
covering group of G is isomorphic to c, with 
G and G considered as topological groups. 
This simply connected covering group (G, cp) is 
called the universal covering group. 

Let G and G’ be topological groups, and let 
e and e’ be their identities. A homeomorphism 
f of a neighborhood U of e onto a neighbor- 
hood U’ of e’ is called a local isomorphism of G 
to G’ if it satisfies the following two conditions: 
(i) If a, h, ah are all contained in U, then /‘(ah) 
= f(a)f(h). (ii) Let f-’ =g, then if a’, h’, a’b’ 
E U’, g(u’h’) = g(a’)g(h’) holds. If there exists 
a local isomorphism of G to G’, we say that G 
and G’ are locally isomorphic. If G* is a cover- 
ing group of G, then G* and G are locally 
isomorphic. For two topological groups G and 
G’ to be locally isomorphic it is necessary and 
sufficient that the universal covering groups of 
G and G’ be isomorphic. For two connected 
Lie groups to be locally isomorphic it is neces- 
sary and sufficient that their +Lie algebras be 
isomorphic. 

Let S be a mapping of a neighborhood LT of 
the identity of a topological group G into a 
group H such that if a, b, ah are all contained 
in u, then ,f(ab)=f(u),f(b). Then .f is called a 
local homomorphism of G into H and U is 
called its domain. A local homomorphism of a 
simply connected group GE Q into a group H 
can be extended to a homomorphism of G into 
H if the domain is connected [2,4]. 

P. Topological Rings and Fields 

If a ring R has the structure of a topological 
group such that (x, y)-x + y (sum) and (x, y) 
-txy (product) are both continuous mappings 
of R x R into R, then R is called a topological 
ring. If a topological ring K is a field (not 
necessarily commutative) such that x*x-’ 
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(inverse element) is a continuous mapping of 
K* = K - {0} into K*, then K is called a topo- 
logical field. Let us assume that K is a topo- 
logical field that is a locally compact Haus- 
dorff space and is not discrete. If K is con- 
nected, then K is a tdivision algebra of finite 
rank over the field R of real numbers; hence 
it is isomorphic to the field R of real numbers, 
the field C of complex numbers, or the +qua- 
ternion field H. If K is not connected, then K 
is totally disconnected and is isomorphic to a 
division algebra of finite rank over the +p-adic 
number tield Q, or a division algebra of finite 
rank over the +formal power series field with 
coefftcients in a finite field [4]. 

For various important classes of topological 
groups - 69 Compact Groups; 249 Lie 
Groups; 422 Topological Abelian Groups; 424 
Topological Linear Spaces. 
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Topological Linear Spaces 

A. Definition 

A tlinear space E over the real or complex 
number field K is said to be a topological 
linear space, topological vector space, or linear 
topological space if E is a +topological space 
and the basic operations x + y and ax (x, ye E, 
a~ K) in the linear space are continuous as 
mappings of E x E and K x E, respectively, 
into E. The coefftcient field K may be a gen- 
eral ttopological field, although it is usually 
assumed to be the real number field R or the 
complex number field C, and accordingly E is 
called a real topological linear space or a com- 
plex topological linear space. Topological linear 
spaces are generalizations of +normed linear 
spaces and play an important role in the study 

of +function spaces, such as the tspace of dis- 
tributions, that are not +Banach spaces. 

Each topological linear space E is equipped 
with a tuniform topology in which t.ranslations 
of the neighborhoods of zero form a +uniform 
family of neighborhoods, and the addition x 
+ y and the multiplication ax by a scalar c( are 
uniformly continuous relative to this uniform 
topology. In particular, if for each x # 0 there 
is a neighborhood of the origin that does not 
contain x, then E satisfies the iseparation 
axiom T, and hence is a tcompletel:y regular 
space. The tcompletion E of E is also a topo- 
logical linear space. 

We assume in this article that K is the real 
or complex number field and E is a topological 
linear space over K satisfying the axiom of T,- 
spaces. Then E is finite-dimensional if and only 
if E has a ttotally bounded neighborhood of 
zero. The topology of E is tmetrizable if and 
only if it satisfies the Virst countability axiom. 

B. Linear Functional 

A K-valued function f(x) on E is said to be a 
linear functional if it satisfies (i) f(x i-y) =f(x) 
+f(y) and (ii) .f(ax) = af(x). A linear functional 
that is continuous relative to the topologies 
of E and K is said to be a continuous linear 
functional. (Sometimes continuous linear 
functionals are simply called linear functionals, 
while abstract linear functionals are called 
algebraic linear functionals.) The following 
three statements are equivalent for linear 
functionals f(x):(i) J(x) is continuous; (ii) the 
half-space {x E E 1 Ref(x) > 0) is open; (iii) the 
hyperplane {xcElf(x)=O} is closed. 

C. The Hahn-Banacb Theorem 

A linear functional f(x) defined on a linear 
subspace F of E can be extended to a continu- 
ous linear functional on E if and only if there 
exists an open iconvex neighborhood V of the 
origin in E that is disjoint with {XEF I,f(x) = 1). 
Furthermore, if f(x) can be extended, at least 
one extension f(x) never takes the value 1 on 
V (Hahn-Banach theorem). 

D. Dual Spaces 

The set E’ of all continuous linear functionals 
on E is called the dual space of E. It is often 
denoted by E* and is also called the conjugate 
space or adjoint space. It forms a linear space 
whenf+g and rxf(~g~E’,a~K) are defined 

by (f+d(x)=f(x)+dx) and ($)(x)=Nf(x)) 
for XEE. 
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E. Locally Convex Spaces 

A topological linear space is said to be locally 
convex if it has a family of convex sets as a 
+base of the neighborhood system of 0. It 
follows from the Hahn-Banach theorem that 
for each x #O in a locally convex space E there 
is a continuous linear functional ,f such that 
.f’(x)#O. A subset M of E is said to be circled if 
McontainscrM={ctxlxEM}wheneverlzldl. 
A set that is both circled and convex is called 
absolutely convex. In a locally convex space, a 
family of absolutely convex and closed sets can 
be chosen as a base of the neighborhood sys- 
tem of the origin. Let A and B be subsets of E. 
A is said to absorb B if there is an z > 0 such 
that aA=, B. A set V that absorbs every point 
x E E is called absorbing. Neighborhoods of 0 
are absorbing. 

F. Seminorms 

A real-valued function p(x) on E is said to be 
a seminorm (or pseudonorm) if it satisfies (i) 
O<p(x)< +co (xEE); (ii) ~(x+y)<p(x)+ 
p(y); and (iii) p(ax)=lalp(x). The relation V= 
{x 1 p(x) < 1) gives a one-to-one correspon- 
dence between seminorms p(x) and absolutely 
convex absorbing sets V whose intersection 
with any line through the origin is closed. 
In terms of seminorms, the Hahn-Banach 
theorem states: Let E be a linear space on 
which a seminorm p(x) is given. If a linear 
functional f(x) defined on a linear subspace F 
of E satisfies I,f(x)I <p(x) on F, then ,f(x) can 
be extended to the whole space E in such a 
way that the inequality holds on E. 

The topology of a locally convex space is 
determined by the family of continuous semi- 
norms on it. Conversely, if there is a family 
of seminorms {pJx)} (ILEA) on a linear space 
E over K that satisfies (iv) pi(x) = 0 for all 
i implies x = 0, then there exists on E the 
weakest locally convex topology that renders 
the seminorms continuous. This topology is 
called the locally convex topology determined 

by b,.(x)l. 
We assume that E is a locally convex space 

whose topology is determined by the family of 
seminorms (p,(x)) (SEA). Then a +net x, of E 
converges to x if and only if pl(x, -x)-+0 for 
all 1.6/Z. If f is a locally convex space whose 
topology is determined by the family of semi- 
norms {q,(y)}, then a necessary and sufficient 
condition for a linear mapping u: E-F to be 
continuous is that for every q,(y) there exist a 
finite number of i, , , i,,, E A and a constant 

C such that q,(W) 6 C(PJ.,(X) + . . . + P,~(x)) 
(x E E). 

A set is said to be bounded if it is absorbed 

by every neighborhood of zero. When the 
topology of E is determined by the family 
{ pi(x)) of seminorms a set B is bounded if and 
only if every pi is bounded on B. Totally 
bounded sets are bounded. The unit ball in 
a normed space is bounded. Conversely, a 
locally convex space is normable if it has a 
bounded neighborhood of 0. A locally convex 
space is called quasicomplete if every bounded 
closed set is complete. Since Cauchy sequences 
(x”} are totally bounded, all Cauchy sequences 
converge in a quasicomplete space (i.e., the 
space is sequentially complete). 

G. Pairing of Linear Spaces 

Let E and F be linear spaces over the same 
field K. A K-valued function B(x, y) (xGE, 
J’E F) on E x F is called a bilinear functional or 
bilinear form if for each fixed YE F (resp. XE E), 
it is a linear functional of x (resp. y). When a 
bilinear functional (x, y) on E x F is given so 
that (x,y)=O for all ~EF (all XEE) implies 
x = 0 (y = 0), then E and F are said to form a 
(separated) pairing relative to the inner product 
(x, y). A locally convex space E and its dual 
space E’ form a pairing relative to the natural 
inner product (x, x’) =x’(x) (xc E, x’ E E’). 

H. Weak Topologies 

When E and F form a pairing relative to an 
inner product (x, y), the locally convex top- 
ology on E determined by the family of semi- 
norms { 1 (x, y) 11 YE F} is called the weak top- 
ology (relative to the pairing (E, F)) and is 
denoted by rr(E, F). A net x, in E is said to 
converge weakly if it converges in the weak 
topology. When E and E’ are a locally convex 
space and its dual space, a(E, E’) is called the 
weak topology of E, and o(E’, E) the weak* 
topology of E’. The weak topology on a lo- 
cally convex space E is weaker than the orig- 
inal topology on E. Consequently, a weakly 
closed set is closed. If the set is convex, the 
converse holds, and hence a convex closed set 
is weakly closed. Also, boundedness is pre- 
served if we replace the original topology by 
the weak topology. Thus a weakly bounded 
set is bounded. 

Let E and F form a pairing relative to 
(x, y), and let A be a subset of E. Then the set 
A‘ of points ~EF satisfying Re(x,y)> -1 for 
all XE A is called the polar of A (relative to the 
pairing). If A is absolutely convex, A” is also 
absolutely convex and is the set of points y 
such that )(x,y)Jdl for all xcA. If A is a 
convex set containing zero, its (weak) closure 
is equal to the bipolar A”” =(A”)” (bipolar 
theorem). In general, let A be a subset of a 
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topological linear space E. We call the smallest 
closed convex set containing A the closed 
convex hull of A. If E is locally convex, the 
bipolar A”” relative to E’ coincides with the 
closed convex hull of A U (O}. 

A subset B of the dual space E’ is +equi- 
continuous on E if and only if it is contained 
in the polar V’ of a neighborhood V of 0 in E. 
Also, I/” is weak*- compact in E’ (Banach- 
Alaoglu theorem). 

I. Barreled Spaces and Bornological Spaces 

An absorbing absolutely convex closed set in a 
locally convex space E is called a barrel. In a 
sequentially complete space (hence in a quasi- 
complete space also), a barrel absorbs every 
bounded set. A locally convex space is said to 
be barreled if each barrel is a neighborhood of 
0. A locally convex space is said to be quasi- 
barreled (or evaluahle) if each barrel that ab- 
sorbs every bounded set is a neighborhood of 
0. Furthermore, a locally convex space is said 
to be bornological if each absolutely convex set 
that absorbs every bounded set is a neighbor- 
hood of 0. Bornological spaces are quasi- 
barreled. However, they are not necessarily 
barreled. Furthermore, barreled spaces are not 
necessarily bornological. A metrizable locally 
convex space, i.e., a space whose topology is 
determined by a countable number of semi- 
norms, is bornological. A complete metrizable 
locally convex space is called a locally convex 
Frechet space ((F)-space or simply Frechet 
space). To distinguish it from Frkchet space as 
in 37 Banach Spaces, it is sometimes called a 
FrCchet space in the sense of Bourbaki. (F)- 
spaces are bornological and barreled. 

A continuous linear mapping u: E-1F of one 
locally convex space into another maps each 
bounded set of E to a bounded set in F. Con- 
versely, if E is bornological, then each linear 
mapping that maps every bounded sequence 
to a bounded set is continuous. 

J. The Banach-Steinhaus Theorem 

In the dual space of a barreled space E, each 
(weak*-)bounded set is equicontinuous. Thus 
if a sequence of continuous linear mappings 
u, of E into a locally convex space F con- 
verges at each point of E, then u, converges 
uniformly on each totally bounded set of E, 
and the limit linear mapping is continuous 
(Banach-Steinhaus theorem). 

K. The S-Topology 

Let E and F be paired linear spaces relative 
to the inner product (x,4’). When a family S 

of (weakly) bounded sets of F generates a 
dense subspace of F, the family of seminorms 
(suP~.~ 1 (x, y) 11 BE S} determines a locally 
convex topology on E. This is calle’d the 9 
topology or topology of uniform convergence on 
members of S, because x,*x in the S-topology 
is equivalent to the uniform convergence of 
(x,,y)-(x,y) on each BES. The space E 
with the S-topology is denoted by E,. The 
weak topology is the same as the topology 
of pointwise convergence. The S-topology in 
which S is the family of all bounded sets in F 
is called the strong topology and is ‘denoted by 
/j(E, F). The dual space E’ of a locally convex 
space E is usually regarded as a locally convex 
space with the strong topology [((E’, E). It is 
called the strong dual space. The topology of a 
locally convex space E is that of uniform con- 
vergence on equicontinuous sets of E’. The 
topology of a barreled space E coincides with 
the strong topology /I(& E’). 

L. Grothendieck’s Criterion of Completeness 

Let E and F be paired spaces, and let S be a 
family of absolutely convex bounded sets of F 
such that: (i) the sets of S generate I~; (ii) if B,, 
B, E S, then there is a B, ES such that B, I B, 
and B, 2 B,. Then E, is complete if and only 
if each algebraic linear functional ,~(JJ) on F 
that is weakly continuous on every BES is ex- 
pressed as ,f(y) = (x, y) for some x ET E. When 
E, is not complete, the space of all linear func- 
tionals satisfying this condition gives the com- 
pletion &. of E,. 

M. Mackey’s Theorem 

Let E, F, and S satisfy the same conditions 
as in Section L. Then the dual space of E, is 
equal to the union of the weak completions of 
E.B, where 1” > 0 and BE S (Mackey’s theorem). 

N. The Mackey Topology 

When E and F form a pairing, the topology on 
E of uniform convergence on convex weakly 
compact sets of F is called the Mackey topol- 
ogy and is denoted by z(E, F). The (dual space 
of E endowed with a locally convex topology 
T coincides with F if and only if 7’ is stronger 
than the weak topology rr(E, F) and weaker 
than the Mackey topology t(E, F) (Mackey- 

’ 
Arens theorem). A locally convex space is said 
to be a Mackey space if the topology is equal 
to the Mackey topology z(E, E’). Every quasi- 
barreled space is a Mackey space. 
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0. Reflexivity 

Let E be a locally convex space. The dual 
space E” of the dual space E’ equipped with 
the strong topology contains the original space 
E. We call E semireflexive if E” = E, and reflex- 
ive if in addition the topology of E coincides 
with the strong topology B(E, E’). E is semi- 
reflexive if and only if every bounded weakly 
closed set of E is weakly compact. E is re- 
flexive if and only if E is semireflexive and 
(quasi)barreled. 

A barreled space in which every bounded 
closed set is compact is called a Monte1 space 
or (M)-space. (M)-spaces are reflexive, and 
their strong dual spaces are also (M)-spaces. 

Many of the function spaces that appear 
in applications are (F)-spaces or their dual 
spaces. For these spaces detailed consequences 
of the countability axiom are known [7, S]. A 
convex set C in the dual space E’ of an (F)- 
space E is weak*-closed if and only if for every 
neighborhood V of 0 in E, C n V” is weak*- 
closed (Krein-Shmul’yan theorem). The 
strong dual space E’ of an (F)-space E is 
(quasi)barreled if and only if it is bornological. 
In particular, the dual space of a reflexive (F)- 
space is bornological. 

P. (DF)-Spaces 

A locally convex space is called a (DF)-space 
if it satisfies: (i) There is a countable base of 
bounded sets (i.e., every bounded set is in- 
cluded in one of them); (ii) if the intersection 
V of a countable number of absolutely con- 
vex closed neighborhoods of 0 absorbs every 
bounded set, then V is also a neighborhood of 
0. The dual space of an (F)-space is a (DF)- 
space, and the dual space of a (DF)-space is an 
(F)-space. A linear mapping of a (DF)-space E 
into a locally convex space F is continuous if 
and only if its restriction to every bounded set 
of E is continuous. A quasicomplete (DF)- 
space is complete. 

Q. Bilinear Mappings 

A bilinear mapping h(x, y) on locally convex 
spaces E and F (x E E, y E F) to a locally convex 
space G is said to be separately continuous if 
for each fixed ~EF (x~E) it is continuous as a 
function of x (y). The linear mappings obtained 
from b(x, y) by fixing x (y) are denoted by 
b,(y) (h,(x)). We call b(x, y) hypocontinuous 
if for each bounded set B of E and B’ of F, 
{b,(y)JxEB} and jb,(x)JyEB’} are equicon- 
tinuous. A continuous bilinear mapping is 
hypocontinuous. However, the converse is 

not always true. A separately continuous bi- 
linear mapping is not necessarily hypocontinu- 
ous. If both E and F are barreled, however, 
then every separately continuous mapping 
is hypocontinuous. If E is an (F)-space and 
F is metrizable, then every separately continu- 
ous bilinear mapping is continuous. Simi- 
larly, if both E and F are (DF)-spaces, then 
every hypocontinuous bilinear mapping is 
continuous. 

R. Tensor Products 

It is possible to introduce many topologies in 
the ttensor product E @ F of locally convex 
spaces E and F. The projective topology (or 
topology n) is defined to be the strongest topol- 
ogy such that the natural bilinear mapping 
E x F-, E @ F is continuous. The dual space 
of E @,F is identified with the space B(E, F) 
of all continuous bilinear functionals on E x 
F. The completion of E @,F is denoted by 
E @ F. The topology of hiequicontinuous con- 
vergence (or topology E) is defined to be the 
topology of uniform convergence on sets V x 
I/“, where V and I/ are neighborhoods of 0 
in E and F, respectively, considering the ele- 
ments of E @ F as linear functionals on E’ @ F’ 
by the natural pairing of E @ F and E’ @ F’. 
The completion of E 0, F is denoted by E 6 
F. The dual space of E @,F coincides with 
the subspace J(E, F) of B(E, F) composed of 
the union of the absolute convex hulls of the 
products V” @ U” of equicontinuous sets. The 
elements of J(E, F) are called integral bilinear 
functionals. 

Closely related to E 6 F is L. Schwartz’s 
c tensor product E c F [ 121. (They coincide if E 
and F are complete and if E or F has the tap- 
proximation property.) E E F can be regarded 
as (i) a space of vector-valued functions if E is 
a space of functions and F is an abstract lo- 
cally convex space, especially a space of func- 
tions of two variables if E and F are, respec- 
tively, spaces of functions of one variable, and 
(ii) a space of operators G+F if E is the dual 
space G’ of a locally convex space G. 

S. Nuclear Spaces 

Let E be a locally convex space, V be an ab- 
solutely convex closed neighborhood of the 
origin, and p(x) be the seminorm correspond- 
ing to V. Then we denote by E, the normed 
space with norm p(x) obtained from E by 
identifying the two elements x and y with 
p(x - y) = 0. If U c V, then a natural linear 
mapping ‘po, V : E, + E, is defined. 

A locally convex space E is said to be a 
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nuclear space (resp. Schwartz space or simply 
@)-space) if for each absolutely convex closed 
neighborhood V of 0 there is another U such 
that q,,, is a tnuclear operator (resp. tcom- 
pact operator) as an operator of E, into the 
completion of E,. A nuclear space or @)-space 
is an (M)-space if it is quasicomplete and 
quasibarreled. A locally convex space E is a 
nuclear space if and only if the topologies n 
and E coincide on the tensor product E @ F 
with any locally convex space F. Accordingly, 
it follows that B(E, F)=J(E, F). This can be 
regarded as a generalization of Schwartz’s 
kernel theorem, which says that every sepa- 
rately continuous bilinear functional on f%* x 
% is represented by an integral with kernel 
in &@iy. The theory of topological tensor prod- 
ucts and nuclear spaces is due to Grothen- 
dieck [9]. 

A locally convex space E is a nuclear(F)- 
space if and only if E is isomorphic to a closed 
subspace of P( -co, m) (T. Komura and Y. 
Komura, 1966). An example of a nuclear(F)- 
space without basis is known (B. S. Mityagin 
and N. M. Zobin, 1974). 

T. Gel’fand Triplet 

Let H and L be Hilbert spaces. If L is a dense 
subspace of H and the injection L-t H is a 
tHilbert-Schmidt operator, then H = H’ is 
regarded as a dense subspace of L’ and the 
injection H’%L’ is a Hilbert-Schmidt operator. 
In this case, (L, H, L’) is called a Gel’fand trip- 
let (or a rigged Hilbert space). 

A subset of H is called a cylindrical set if it 
is expressed in the form P;i(B) by the ortho- 
gonal projection PF onto a finite-dimensional 
subspace F and a Bore1 subset B of F. If a 
finitely additive positive measure p with //pII i 
= 1 defined on the cylindrical sets of H satisfies 
(i) p is countably additive on cylindrical sets 
for a fixed F and (ii) for any E > 0 there exists 
a 6>0 such that 11x// <6 implies p{yEHI 
1 (x, y) I> l} <E, then p is the restriction of a 
countably additive measure p defined on the 
Bore1 subsets of L’ (Minlos’s theorem, 1959). 

Let T be a self-adjoint operator in H. Then 
T has a natural extension ? in L’ and almost 
every continuous spectrum i of T has an asso- 
ciated eigenvector xi in L’: TX, = 3,x,, .xI E L’. 

U. The Extreme Point Theorem 

Let A be a subset of a linear space E. A point 
x E A is said to be an extreme point if x is an 
extreme point of any real segment containing 
x and contained in A. If A is a compact convex 
subset of a locally convex space E, A is the 
convex closed hull of (i.e., smallest convex 

closed set containing) the set of its extreme 
points (Krein-Milman theorem). In applica- 
tions it is important to know whether every 
point of A is represented uniquely as an inte- 
gral of extreme points. For a metrizable con- 
vex compact subset A of a locally convex 
space E, the following two conditions are 
equivalent (Choquet’s theorem): (i) 11 is a sim- 
plex, i.e., if we put a = {(ix, A) 1 x E A, i > 0} 
c E x R’, the vector space A-a becomes a 
tlattice with positive cone 2; (ii) for any XE A 
there exists a unique positive measure p on 
A with ((pL((i= 1 such that l(x)={,/(y)&(y) 
(IEE’) and the support of p is contained in the 
set of extreme points of A. 

V. Weakly Compact Set 

A subset of a quasicomplete locally convex 
space is relatively weakly compact If and only 
if every sequence in the set has a weak ac- 
cumulation point (Eberlein’s theorem). If E is a 
metrizable locally convex space, every weakly 
compact set of E is weakly sequentially com- 
pact (Shmul’yan’s theorem). If E is a quasi- 
complete locally convex space, the convex 
closed hull of any weakly compact subset is 
weakly compact (Krein’s theorem). If E is not 
quasicomplete, this is not necessarily true. 

W. Permanence 

Each subspace, quotient space, direct product, 
direct sum, projective limit, and inductive limit 
(of a family) of locally convex spaces has a 
unique natural locally convex topology. These 
spaces, except for quotient spaces and induc- 
tive limits, are separated, and a quotient space 
E/A is separated if and only if the subspace A 
is closed. The limit of a sequence E, c E, c 
is said to be a strictly inductive limit if E, has 
the induced topology as a subspace of E,+i. If 
E is a strictly inductive limit of a sequence E, 
such that E, is closed in E,,, or if J: is the 
inductive limit of a sequence E 1 c E, t . such 
that the mapping E,+E,+, maps a neigh- 
borhood of 0 to a relatively weakly compact 
set, then E is separated and each bounded set 
of E is the image of a bounded set in some E,. 
If E = u E, is the strictly inductive limit of the 
sequence {E,}, then the topology of E, coin- 
cides with the relative topology of E, c E. The 
strictly inductive limit of a sequence of(F)- 
spaces is called an (LF)-space. 

Any complete locally convex space (resp. 
any locally convex space) is (resp. a dense 
linear subspace of) the projective limit of 
Banach spaces. Every (F)-space E is the projec- 
tive limit of a sequence of Banach spaces E, + 
E, +. . In particular, E is said to be a count- 
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ably normed space if the mappings E+ E, are 
one-to-one and ~~x~~,,< IIx/I,+r for all XEE with 
E considered as a subspace E,. We call E a 
countably Hilbertian space if, in particular, the 
E, are +Hilbert spaces. An (F)-space with at 
least one continuous norm is a nuclear space if 
and only if it is a countably Hilbertian space 
such that the mappings E,,, +E,, are Hilbert- 
Schmidt operators or nuclear operators. 

A locally convex space is bornological if 
and only if it is the inductive limit of normed 
spaces. A locally convex space is said to be 
ultrabornological if it is the inductive limit of 
Banach spaces, or in particular, if it is quasi- 
complete and bornological. 

Properties of spaces, such as being complete, 
quasicomplete, semireflexive, or having every 
bounded closed set compact, are inherited 
by closed subspaces, direct products, projec- 
tive limits, direct sums, and strictly inductive 
limits formed from the original spaces, and 
properties of spaces, such as being Mackey, 
quasibarreled, barreled, and bornological, are 
inherited by quotient spaces, direct sums, in- 
ductive limits, and direct products formed 
from the spaces. (For direct products of high 
power of bornological spaces, unsolved prob- 
lems still exist concerning the inheritance of 
properties.) Quotient spaces of (F)-spaces are 
(F)-spaces, but quotient spaces of general 
complete spaces are not necessarily complete. 
There are examples of a Monte1 (F)-space 
whose quotient space is not reflexive and a 
Monte1 (DF)-space whose closed subspace is 
neither a Mackey space nor a (DF)-space. The 
property of being a Schwartz space or a nu- 
clear space is inherited by the completions, 
subspaces, quotient spaces of closed subspaces, 
direct products, projective limits, direct sums 
of countable families, and inductive limits of 
countable families formed from such spaces. 
Tensor products of nuclear spaces are nuclear 
spaces. Y. Komura gave an example of a non- 
complete space that is quasicomplete, borno- 
logical, and nuclear (and hence a Monte1 
space). 

X. The Open Mapping Theorem and the 
Closed Graph Theorem 

Let E and F be topological linear spaces. The 
statement that every continuous linear map- 
ping of E onto F is open is called the open 
mapping theorem (or homomorphism theorem), 
and the statement that every linear mapping of 
F into E is continuous if its graph is closed in 
F x E is called the closed graph theorem. These 
theorems hold if both E and F are complete 
and metrizable (S. Banach). 

A locally convex space is said to be B- 

complete (or fully complete) if a subspace C of 
E’ is weak*-closed whenever C n 1/” is weak*- 
closed for every neighborhood 1/ of 0 in E. (F)- 
spaces and the dual spaces of reflexive (F)- 
spaces are B-complete. B-complete spaces are 
complete, and closed subspaces and quotient 
spaces by closed subspaces of B-complete 
spaces are B-complete. If E is B-complete and 
F is barreled, then the open mapping theorem 
and the closed graph theorem hold (V. Ptak). 

Both theorems hold also if F is ultraborno- 
logical and E is a locally convex space ob- 
tained from a family of (F)-spaces after a finite 
number of operations of taking closed sub- 
spaces, quotient spaces by closed spaces, direct 
products of countable families, projective 
limits of countable families, direct sums of 
countable families, and inductive limits of 
countable families. This was conjectured by 
Grothendieck and proved by W. Slowikowski 
(1961) and D. A. Raikov. Later, L. Schwartz, 
A. Martineau, M. De Wilde, W. Robertson, 
and M. Nakamura simplified the proof and 
enlarged the class of spaces E [ 151. 

(LF)-spaces, the dual spaces of Schwartz (F)- 
spaces, and the space 9’ of distributions are 
examples of spaces E described in the previous 
paragraph. 

Y. Nonlocally Convex Spaces 

The space L, for 0 < p < I shows that non- 
locally convex spaces are meaningful in func- 
tional analysis. Recently, the Banach-Steinhaus 
theorem, closed graph theorems, etc. have 
been investigated for nonlocally convex topo- 
logical linear spaces [ 131. 

Z. Diagram of Topological Linear Spaces 

The spaces in Fig. 1 are all locally convex 
spaces over the real number field or the com- 
plex number field and satisfy the separation 
axiom T,. The notation A +B means that 
spaces with property A have property B. Main 
properties of dual spaces are listed in Table I. 
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Fig. 1 
Topological linear spaces. 
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425 (11.16) 
Topological Spaces 

A. Introduction 

Convergence and continuity, as well as the 
algebraic operations on real numbers, are 
fundamental notions in analysis. In an abstract 
space too, it is possible to provide an ad- 
ditional structure so that convergence and 
continuity can be defined and a theory analo- 
gous to classical analysis can be developed. 
Such a structure is called a topological struc- 
ture (for a precise definition, - Sect.ion B). 
There are several ways of giving a topology to 
a space. One method is to axiomatize the 
notion of convergence (M. Frechet [l], 1906; 
- 87 Convergence). However, defining a 
topology in terms of either a neighborhood 
system (due to F. Hausdorff [3], 19 14), a clo- 
sure operation (due to C. Kuratowski, Fund. 
Math., 3 (1922)) or a family of open sets is 
more common. 

B. Definition of a Topology 

Let X be a set. A neighborhood system for X is 
a function 11 that assigns to each point x of X, 
a family U(x) of subsets of X subject to the 
following axioms (U): 
(1) XE U for each U in U(x). 
(2) If U, , U, E U(x), then U, n U, E II(x). 
(3) If u/~1I(x) and UC I’, then k’~U(x). 
(4) For each U in U(x), there is a member W of 
IL(x) such that UcU(y) for each y in W. 

A system of open sets for a set X 1s a family 
C of subsets of X satisfying the following 
axioms (0): 



1607 425 D 
Topological Spaces 

(1) x, 0ED. 
(2) If O,,O,EO, then 0, nO,Efk 
(3) If O,EO (SEA), then UI,,O,~C. 

A system of closed sets for a space X is a 
family 3 of subsets of X satisfying the follow- 
ing axioms (F): 

(1) x, 0E3. 
(2)IfF,,F,E~,thenF,UF,E~. 
(3)IfFA~g((jL~A), then nA-,,,F,~z. 

A closure operator for a space X is a func- 
tion that assigns to each subset A of X, a 
subset A” of X satisfying the following axioms 

((2: 
(1) 0”=0. 
(2)(AUB)“=A”UB”. 
(3) AcA”. 
(4) A”=A”“. 

An interior operator for a space X is a func- 
tion that assigns to each subset A of X a 
subset A’ of X satisfying the following axioms 

(1): 
(1) x’=x. 
(2)(A nB)i=.4in~'. 
(3) A’c A. 
(4) Aii=Ai. 

Any one of these five structures for a set X, 
i.e., a structure satisfying any one of(U), (0) 
(F), (C), or (I), determines the four other struc- 
tures in a natural way. For instance, assume 
that a system of open sets 0 satisfying (0) is 
given. In this case, each member of 0 is called 
an open set. A subset Li of X is called a neigh- 
borhood of a point x in X provided that there 
is an open set 0 such that XE 0 c U. If U(x) is 
the family of all neighborhoods of x, the func- 
tion x+U(x) satisfies (U). The complement of 
an open set in X is called a closed set. The 
family 3 of all closed sets satisfies (F). Given a 
subset A of X, the intersection A” of the family 
of all closed sets containing A is called the 
closure of A, and each point of A” is called an 
adherent point of A. The closure A” is the 
smallest closed set containing A, and the func- 
tion A+ A” satisfies (A). The closure A“ is 
also denoted by A or Cl A. Dually, there is a 
largest open subset A’ of A. The set A’ (also 
denoted by A0 or Int A) is called the interior of 
A, and each point of A” is called an interior 
point of A. The closure and interior are related 
by A”=X-(X-A)and A=X-(X-AA)O. 
The correspondence A-t A0 satisfies (I). Con- 
versely, open sets can be characterized vari- 
ously as follows: 

A is open* A E U(x) for each x in A 
~X-AE~ 
e(X-A)=X-A 
oA”=A. 

When a structure satisfying(U), (F), (C), or 
(I) is given, one of the four characterizations of 
open sets can be used to define a system of 

open sets satisfying (0) and hence the other 
structure. 

A topological structure or simply a topology 
for a space X is any of these five structures for 
X. If two topologies ~r and z2 for X give rise 
to identical systems of open sets, then or and Q 
are considered to be identical. For this reason 
“topology” frequently means simply “system of 
open sets” in the literature. A topological space 
is a set X provided with a topology T and is 
denoted by (X, z) or simply X when there is no 
ambiguity. 

C. Examples 

(1) Discrete Topology. Let X be a set, and let 
the system U of open sets be the family of all 
subsets of X. The resulting topology is called 
the discrete topology, and X with the discrete 
topology is a discrete topological space. In this 
space, A= A0 = A for each subset A, and A is a 
neighborhood of each of its points. 

(2) Trivial Topology. The trivial (or indiscrete) 
topology for a set X is defined by the system of 
open sets which consists of X and 0 only. If 
A$X, then A”=O, and if A#@, then A=X. 
Each point of X has only one neighborhood, 
X itself. 

(3) Metric Topology. Let (X, p) be a tmetric 
space, i.e., a set X provided with a tmetric p. 
For a positive number 8, the s-neighborhood 
of a point x is defined to be the set U,(x) = 
{yl):~X,~(x,y)<~}. Let U(x) be the family 
of all sets V’ such that u,(x) c V for some E; 
then the assignment x+U(x) satisfies (U) and 
hence defines a topology. This topology is the 
metric topology for the metric space (X, p). 

(4) Order Topology. Let X be a set tlinearly 
ordered by <. For each point x in X, let U(x) 
be the family of all subsets li such that XE 
( y 1 a < y < bJ c U for some a, b. The function 
x+Lt(x) satisfies (U) and defines the order 
topology for the linearly ordered set X. 

(5) Convergence and Topology. We can define 
the notion of convergence in a topological 
space, and conversely we can define a topology 
using convergence as a primitive notion (- 87 
Convergence). In particular, for a metric space, 
the metric topology can be defined in terms of 
convergent sequences (- 273 Metric Spaces). 

D. Generalized Topological Spaces 

When a space X is equipped with a closure 
operator that does not satisfy all of(C), the 
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space is called a generalized topological space 
by some authors. Topological implications of 
each axiom in (C) have been investigated for 
such spaces. 

E. Local Bases 

Let X be a topological space, and let x be a 
point of X. A collection U,(x) of neighbor- 
hoods of x is called a base for the neighborhood 
system (fundamental system of neighborhoods 
of a point x or local base at x) if each neigh- 
borhood of x contains a member of U,(x). Let 
{U,(x) 1 x E X} be a system of local bases; then 
the system has the following properties (U,): 
(1) For each V in II,(x), XE V c X. 
(2) If V,, V2~UO(x), then there is a V, in U,(x) 
such that V, c VI f7 V,. 
(3) For each V in U,(x), there exists a W c V 
in U,(x) such that for each y in W, V contains 
some member of U,(y). 

Conversely, suppose that {U,(x) 1 x E X} is 
a system satisfying (U,). For each x in X, 
let U(x) consist of all subsets V of X such 
that V 3 U for some U in U,(x). Then the sys- 
tem {U(x) 1 x E X} satisfies (U) and therefore 
defines a topology for X. This topology is 
called the topology determined by the system 
{U,(X)(XEX). 

For instance, in a metric space X, the set of 
s-neighborhoods of X(E > 0) is a local base at x 
with respect to the metric topology. In an 
arbitrary topological space, the collection of 
all open sets containing x, i.e., the open neigb- 
borboods of x, is a local base at x. 

Two systems satisfying (U,) are called 
equivalent if they determine the same topology. 
For systems {U,(x)lx~X} and {%,Jx)lx~X} 
to be equivalent it is necessary and sufficient 
that for each x in X each member of U,(x) 
contain a member of B,(x) and each member 
of&,(x) contain a member of U,(x). 

Sometimes the word “neighborhood” stands 
for a member of a local base or for an open 
neighborhood. However, this convention is 
not used here. 

F. Bases and Subbases 

A family 0, of open sets of a topological space 
X is called a base for the topology (base for the 
space, or open base) if each open set is the 
union of a subfamily of 0,. A base D, for the 
topology of a topological space X has the 
following properties (0,): 
(1) uo,=x. 
(2) If W,, W,E~), and XE W, n W,, then there is 
a W,inD,suchthatxEW,cW,flW,. 

Conversely, if a family 0, of subsets of a set 

X satisfies (0,) then D0 is a base fear a unique 
topology. A member of 0, is called a basic 
open set. 

A family O,, of open sets of a topological 
space X is a subbase for the topology (or sub- 
base for the space) if the family of all finite 
intersections of members of De, is a base for 
the topology. If Do0 a subbase for the topol- 
ogy of a topological space X, then U O,, =X. 
Conversely, if De, is a family of subsets of a 
set X such that U De, =X, then the family of 
all finite intersections of members of D,, is a 
base for a unique topology r. A subset of X is 
open for z if and only if it is the umon of a 
family of finite intersections of members of 
De,. The system of open sets relative to r is 
said to be generated by the family De,. Thus 
any family of sets defines a topology for its 
union. 

A set 3 of subsets of a topological space is 
called a network if for each point x and its 
neighborhood U there is a member FE 5 such 
that x~Fc U (A. V. Arkhangel’skiT, 1959). If 
all FE 5 are required to be open, the network 
5 is exactly an open base. 

G. Continuous Mappings 

A mapping f on a topological space X into a 
topological space Y is called continuous at a 
point a of X if it satisfies one of the following 
equivalent conditions: 
(1) For each neighborhood 1/ of f(Li), there is a 
neighborhood U of a such that f( C’) c T/. (1’) 
For each neighborhood I’ of f(a), the inverse 
image f-‘(V) is a neighborhood of a. 
(2) For an arbitrary subset A of X such that 

a E A, .f(a) E.04. 
Continuity can also be defined in terms of 

convergence (- 87 Convergence). 
If f is continuous at each point of X, f is 

said to be continuous. Continuity off is equiv- 
alent to each of the following conditions: 
(1) For each open subset 0 of Y, the inverse 
image f-‘(O) is open in X. 
(1’) The inverse image under f of ea.ch member 
of a subbase for the topology of Y is open in 
X. 
(2) For each closed subset F of Y, the inverse 
image f-‘(F) is closed. 
(3) For each subset A of X, f(x)cf’(A). 

The image f(X) of X under a continuous 
mapping f is called a continuous image of X. 
Let X, Y, and Z be topological spaces, and let 
f: X -+ Y and g : Y-Z be mappings. If ,f is con- 
tinuous at a point a of X and g is continuous 
at f(a), then the composite mapping g o,f: X 
+Z is continuous at the point a. Hence iff 
and g are continuous, so is g of: 

When a continuous mapping ,f: X + Y is 
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tbijective and f-’ is continuous, the mapping 
,f is called a homeomorphism (named by H. 
Poincart, 1895) or topological mapping. Two 
topological spaces X and Yare homeomorphic, 
X zz Y, if there is a homeomorphism .f: X+ Y. 

The relation of being homeomorphic is an 
tequivalence relation. A property which, when 
held by a topological space, is also held by 
each space homeomorphic to it is a topological 
property or topological invariant. The problem 
of deciding whether or not given spaces are 
homeomorphic is called the homeomorphism 
problem. 

A mapping S: X-t Y is called open (resp. 
closed) if the image under ,f of each open (resp. 
closed) subset of X is open (closed) in Y. A 
continuous bijection that is either open or 
closed is a homeomorphism. 

A continuous surjection f: X --t Y is called a 
quotient mapping if U c Y is open whenever 
f -’ (U) is open (- Section L). If moreover 
f’l ,f -l(S) is quotient for each S c Y as a map- 
ping from the subspace (- Section J) f-‘(S) 
onto the subspace S, then f is called a hered- 
itarily quotient mapping. Open or closed con- 
tinuous mappings are hereditarily quotient 
mappings. 

H. Comparison of Topologies 

When a set X is provided with two topologies 
TV and Q and the identity mapping: (X, T,) 
+(X, r2) is continuous, the topology 7l is said 
to be stronger (larger or finer) than the topol- 
ogy r2, r2 is said to be weaker (smaller or 
coarser) than z,, and the notation TV > Q or 
7z < z1 is used. Let Di, si, I&, and a, be the 
system of open sets, system of closed sets, 
neighborhood system, and closure opera- 
tion for X relative to the topology 5i (i = 1,2), 
respectively. Then each of the following is 
equivalent to the statement r1 > z2: 

(1) Dl I&. 
wz,=152. 
(3) For each x in X, ll,(x)~Uuz(x). 
(4) A”1 c A‘Q for each subset A of X. 

Let S be the family of all topologies for X. 
Then S is ordered by the relation 2. The 
discrete topology is the strongest topology for 
X. If {T,(IEA] is a subfamily of S, then among 
the topologies stronger than each 7>,, there is a 
weakest one 7, =sup{r,l ~.EA). Similarly, 
among the topologies weaker than each T?,, 

there is a strongest one z2 = infjr, (SEA}. In 
fact, let L3, be the family of all open sets rela- 
tive to r,; then the system of open sets for 71 is 
generated by u2,,,,Di, and the system of open 
sets for z2 is precisely nA-El\Di,. The family S is 
therefore a tcomplete lattice. 

I. Induced Topology 

Let f be a mapping from a set X into a topo- 
logical space Y. Then the family {f-‘(O) ( 0 is 
open in Y) satisfies axioms (0) and defines a 
topology for X. This topology is called the 
topology induced by ,f (or simply induced topol- 
ogy), and it is characterized as the weakest 
one among the topologies for X relative to 
which the mapping f is continuous. 

J. Subspaces 

Let (X, Z) be a topological space and A4 be a 
subset of X. The topology for A4 induced by 
the inclusion mapping ,f: M+X, i.e., the 
mapping f defined by f(x) = x for each x in M, 
is called the relativization of z to M or the 
relative topology. The set M provided with the 
relative topology is called a subspace of the 
topological space (X, 7). Topological terms, 
when applied to a subspace, are frequently 
preceded by the adjective “relative” to avoid 
ambiguity. Thus a relative neighborhood of a 
point x in M is a set of the form M n U, where 
lJ is a neighborhood of x in X. A relatively 
open (relatively closed) set in M is a set of the 
form A4 n A, where A is open (closed) in X. For 
a subset A of M, the relative closure of A in M 
is M n A, where A ts the closure of A in X. A 
mapping f : X + Y is called an embedding if ,f’ is 
a homeomorphism from X to the subspace 
f(X), and in this case X is said to be embedded 
into Y. A property P is said to hold locally on 
a topological space X if each point x of X has 
a neighborhood U such that the property P 
holds on the subspace U. A subset A of X is 
locally closed if for each point x of X, there 
exists a neighborhood V’ of x such that Vn A is 
relatively closed in V. A subset of X is locally 
closed if and only if it can be represented as 
0 n F, where 0 is open and F is closed in X. 

K. Product Spaces 

Let X be a set, and for each member 1, of an 
index set A, let fi. be a mapping of X into a 
topological space X,. Then there is a weakest 
topology for X that makes each fi. continuous. 
In fact, this topology is sup{z,,), where zh is the 
topology for X induced by ,fi.. In particular, let 
{X,1 SEA} be a family of topological spaces, 
and let X be the Cartesian product nit,, X,. 
Then the weakest topology for X such that 
each projection pr,:X*X, is continuous is 
called the product topology or weak topology. 
The Cartesian product ndt,, X, equipped with 
the product topology is called the product 
topological space or simply the product space 
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or direct product of the family {X,) 1.~ A} of 
topological spaces. If C is the family of all 
open subsets of X,, the union urpr;‘(C,) 
is a subbase for the product topology. If 
x= (.x;,i is a point of X, then sets of the type 

fly=, pr; ‘cq)=nkL,, r,x, x u, x .” x u, 
form a local base at x for the product to- 
pology, where A,, ,&E/Z and U, is a neigh- 
borhood of .x’.~. Each projection prj,: X+X?, is 
continuous and open, and a mapping ,f from a 
topological space Y into the product space 
n, X, is continuous if and only if pri of: Y 
+X, is continuous for each i. Given a family 
( fi,) of continuous mappings ,f,: X,+ YA, the 
product mapping l&J,: n,X,-n, Y, is con- 
tinuous with respect to the product topologies. 

For the Cartesian product n, X, of a family 
(X, 1 i6A) of topological spaces, there is an- 
other topology called the box topology (or 
strong topology). A base for the box topology 
is the family of all sets n,O,, where 0, is open 
in X, for each i. For a point x = {x1], the 
family of all sets of the form n, U, is a local 
base at x relative to the box topology, where 
U, is a neighborhood of xi, for each i”. With 
respect to the box topology, each projection 
pri,:n,X,-X, is continuous and open, and 
the product mapping n,f;:n,X,-n, Y, of a 
family {,/j,i of continuous mappings fI:Xn-+ q, 
is continuous. For a finite product of topolog- 
ical spaces, the product topology agrees with 
the box topology, but for an arbitrary product 
the product topology is weaker than the box 
topology. For the Cartesian product of topo- 
logical spaces the usual topology considered is 
the product topology rather than the box 
topology. 

L. Quotient Spaces 

Let ,f be a mapping of a topological space 
X onto a set Y. The quotient topology for Y 
(relative to the mapping ,f) is the strongest 
topology for Y such that fis continuous. A 
subset 0 of Y is open relative to the quotient 
topology if and only if ,f’-‘(0) is open. Given 
an equivalence relation - on a topological 
space X, the ‘quotient set Y = X/ - provided 
with the quotient topology relative to the 
projection 4”: X + Y is called the quotient topo- 
logical space (or simply quotient space). A 
mapping .f’ from the quotient space Y= Xl- 
into a topological space is continuous if and 
only if J’o cp is continuous. 

A partition of a space X is a family {A j, 1 i, E 
A) of pairwise disjoint subsets of X such that 
ui Ai. = X. A partition {A,] of a topological 
space X determines an equivalence relation - 
on X such that the family {A,] is precisely 

the family of all equivalence classes under -, 
and therefore the partition determines the 
quotient space Y = X/ - This space is called 
the identification space of X by the given par- 
tition. Each member A, of the partition can 
be regarded as a point of Y, and the projec- 
tion cp:X-+Y satisfies p(x)= A, whenever XE 
A,. A partition {A, 11~12) of a topological 
space is called upper semicontinuous if for 
each A, and each open set U containing A,, 
there is an open set V such that A,, c V c U, 
and I/ is the union of members of (A, 12 E A}. 
A partition {A, 1 ~.EA} is upper semicontinu- 
ous if and only if the projection cp X+ Y= 
(A, I i E A} is a closed mapping. 

M. Topological Sums 

Let X be a set, and for each member i of an 
index set A, let ,f’ be a mapping of a topo- 
logical space X, to X. Then the family { 0 c 
X ( .fA-’ (0) is open for any 3.) satisfies the 
axioms of the open sets. This topology 5 is 
characterized as the strongest one for X that 
makes each ,& continuous. A mapping g on X 
with T to a topological space Y is continuous if 
and only if gof,:X,+ Y is continuous for each 
de A. The simplest is the case where X is the 
disjoint union of X, and fI is the Inclusion 
mapping. Then we call the topological space X 
the direct sum or the topological sum of {X,} 
and denote it by OX, or UX,. More gener- 
ally let the set X be the union of topological 

spaces {Xj.l,,, such that for each i, and p E A 
the relative topologies of X, fl X, from X, and 
X, coincide. Then we call the top’ology 7 the 
weak topology with respect to {X,l}. If X,n X, 
is closed (resp. open) in X, for an:y p, then X, 
is closed (resp. open) in X and the original 
topology of X, coincides with the relative 
topology. If, moreover, for each subset r of A, 
F’U ierX, is closed and the weak topology 
of F with respect to {X,},,, coincides with the 
relative topology induced by 7, then X with 7 

is said to have the hereditarily weak topology 
with respect to {X,} (or to be dorninated by 
IX,}). A topological space has the hereditarily 
weak topology with respect to any locally 
finite closed covering, and every CW-complex 
(- 70 Complexes) has the hereditarily weak 
topology with respect to the covering of all 
finite subcomplexes. 

When {X,} is an increasing sequence of 
topological spaces such that each X, is a sub- 
space of X,,, , then the union X := u X, with 
the weak topology is called the inductive limit 
of {X,) and is denoted by I$ X,. Each X, may 
again be regarded as a subspace of X. 
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N. Baire Spaces 

For a subset A of a topological space X, the 
set X -A 1s called the exterior of A, and the set 
A 0 X - A is called the boundary of A, de- 
noted by Bd A, Fr A, or ZA. A point belonging 
to the exterior (boundary) of A is an exterior 
point (boundary point or frontier point) of A. If 
the closure of A is X, then A is said to be dense 
in X. When X-A is dense in X, i.e., when the 
interior of A is empty, A is called a boundary 
set (or border set), and if the closure A IS a 
boundary set, A is said to be nowhere dense. 
The union of a countable family of nowhere 
dense sets is called a set of the first category 
(or meager set). A set that is not of the first 
category is called a set of the second category 
(or nonmeager set). The complement of a set of 
the first category is called a residual set. In the 
space R of real numbers, the set Q of all ra- 
tional numbers is of the first category, and the 
set R-Q of all irrational numbers is of the 
second category. Both Q and R -Q are dense 
in X and hence are boundary sets. The union 
of a finite family of nowhere dense sets is no- 
where dense, and the union of a countable 
family of sets of the first category is also of the 
first category. A subset A of X is nowhere 
dense in X if and only if for each open set 0, 
0 n A is not dense in 0. 

A topological space X is called a Baire space 
(Baire, 1899) if each subset of X of the first 
category has an empty interior. Each of the 
following conditions is necessary and sufficient 
for a space X to be a Baire space: 
(1) Each nonempty open subset of X is of the 
second category. 
(2) If F, , F,, is a sequence of closed subsets 
of X such that the union IJz, F, has an inte- 
rior point, then at least one F, has an interior 
point. 
(3) If 0, , 0,) . . . is a sequence of dense open 
subsets of X, then the intersection n,:& 0, is 
dense in X. 

An open subset of a Baire space is a Baire 
space for the relative topology. A topological 
space that is homeomorphic to a complete 
metric space (- 436 Uniform Spaces I) is a 
Baire space (Baire-Hausdorff theorem). A 
locally compact Hausdorff space (- Section 
V) is also a Baire space. The class of Tech- 
complete completely regular spaces (- Section 
T) includes both of these spaces, but there are 
also Baire spaces that are not in the class. A 
subset A of a topological space is said to sat- 
isfy Baire’s condition or to have the Baire 
property if there exist an open set 0 and sets 
P,, P2 of the first category such that A = 
(0 U PI)- Pz. A +Borel set satisfies Baire’s 
condition. 

0. Accumulation Points 

A point x is called an accumulation point, or a 
cluster point of a subset A of a topological 
space X if x E A - {x} The set of all accumula- 
tion points of a set A is called the derived set 
of A and is denoted by A’ or Ad. A point x 
belongs to A’ if and only if each neighborhood 
of x contains a point of A other than x itself. A 
point belonging to the set A” = A -A’ is called 
an isolated point of A, and a set A consisting of 
isolated points only, i.e., A = A”, is said to be 
discrete. If each nonempty subset of A contains 
an isolated point, then A is said to be scat- 
tered; and if A does not possess an isolated 
point, i.e., A c A’, then A is said to be dense in 
itself. The largest subset of A which is dense in 
itself is called the kernel of A. If A = A’, then A 
is called a perfect set. 

If x is an accumulation point of A, then for 
each neighborhood U of x, U n (A - {x}) # 0. 
Furthermore, it is possible to classify an ac- 
cumulation point of A according to the +car- 
dinality of U n (A - {.x}). A point x is called a 
condensation point of a set A if for each neigh- 
borhood U of x, the set U fl A is uncountable. 
A point x is a complete accumulation point of 
A if for each neighborhood U of x, the set 
U n A has the same cardinality as A. 

P. Countability Axioms 

A topological space X satisfies the first count- 
ability axiom if each point x of X has a coun- 
table local base (F. Hausdorff [3]). Metric 
spaces satisfy the first countability axiom. In 
fact, the family of (l/n)-neighborhoods (n = 
1,2, ) of a point is a local base of the point. 
The topology of a topological space that 
satisfies the first countability axiom is com- 
pletely determined by convergent sequences. 
For instance, the closure of a subset A of such 
a space consists of all limits of sequences in A 
(- 87 Convergence). A topological space X is 
said to satisfy the second countability axiom or 
to be perfectly separable if there is a countable 
base for the topology. iEuclidean spaces satisfy 
the second countability axiom. If X contains a 
countable dense subset, X is said to be sepa- 
rable. A space that satisfies the second count- 
ability axiom satisfies the first and is also a 
separable Lindeliif space (- Section S). How- 
ever, the converse is not true. Each of the 
following properties is independent of the 
others: separability, the first countability 
axiom, and the Lindeliif property. If a metric 
space is separable, then it satisfies the second 
countability axiom. There are metric spaces 
that are not separable. 
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Q. Separation Axioms 

Topological spaces that are commonly en- 
countered usually satisfy some of the following 
separation axioms. 

(T,) Kolmogorov’s axiom. For each pair of 
distinct points, there is a neighborhood of one 
point of the pair that does not contain the 
other. 

(T,) The first separation axiom or Frechet’s 
axiom. For each pair x, y of distinct points, 
there are neighborhoods Cl of x and V of y 
such that x $ V and y $ U. 

Axiom (T,) can be restated as follows: 
(T’,) For each point x of the space, the sin- 

gleton {x} is closed. 
(T2) The second separation axiom or Haus- 

dorff’s axiom [3]. For each pair x, y of dis- 
tinct points of the space X, there exist disjoint 
neighborhoods of x and y. 

Axiom (T,) is equivalent to the following: 
(T;) In the product space X xX the diago- 

nal set A is closed. 
(TX) The third separation axiom or Vietoris’s 

axiom (Monatsh. Math. Pkys., 3 1 (1921)). 
Given a point x and a subset A such that x # .& 
there exist disjoint open sets 0, and 0, such 
that x E 0, and A c 0,. (In this case, the sets 
{x) and A are said to be separated by open 
sets.) 

Axiom (T3) can be restated as (Tj) or (T’;): 
(T;) For each point x of the space, there is a 

local base at x consisting of closed neighbor- 
hoods of x. 

(T”) An arbitrary closed set and a point not 
belonging to it can be separated by open sets. 

(T4) The fourth separation axiom or Tietze’s 
first axiom (Math. Ann., 88 (1923)). Two dis- 
joint closed sets F, and F, can be separated by 
open sets, i.e., there exist disjoint open sets 0, 
and 0, such that F, c 0, and F2 c 0,. 

(T5) Tietze’s second axiom. Whenever two 
subsets A, and A, satisfy A, n A, = A, n A, = 
@, A, and A, can be separated by open sets. 

It is easily seen that (T5) =z= (TJ, (T,,) and 
(T3) 3 (TJ, (TJ and (T,) 3 (TJ. Axiom (T4) is 
equivalent to each of (Tk) and (TI;): 

(Tk) Whenever F, and Fz are disjoint closed 
subsets, there exists a continuous function f on 
the space into the interval [0, l] such that f is 
identically 0 on F, and 1 on F2. 

(TI;) Each real-valued continuous function 
defined on a closed subspace can be extended 
to a real-valued continuous function on the 
entire space. 

The implications (T4) 3 (Tk) and (T4) - (TI;) 
are known as Uryson’s lemma (Math. Ann., 
94 (1925)) and the Tietze extension theorem’ 
(J. Reine Angew. Math., 145 (1915)), respec- 
tively. In addition, there are two more related 
axioms: 

(T3;) Tikhonov’s separation axiom. For each 
closed subset F and each point x not in F, 
there is a real-valued continuous function f on 
the space such that ,f(x) = 0 and f is identically 
1 on F. 

(Tb) (N. Vedenisov). For each closed subset 
F, there is a real-valued continuous function f 
on the space such that F = {x 1 f(x) = 0). 

Axioms (T5) and (T6) are equivalent to the 
following (TLJ and (T6), respectively: 

(T;) Each subspace satisfies (TJ 
(TJ X satisfies (TJ and each closed set is a 

+G,-set. 
The following implications are valid: (T3;) + 

(TJ, (Td * (TJ, (‘h) and (T,) * (T3$ 
Table 1 gives a classification of topological 

spaces by the separation axioms. Each line 
represents a special case of the preceding line. 

A tmetrizable space is perfectly normal, but 
the converse is false (for metrization theorems 
- 273 Metric Spaces). Among the spaces 
satisfying the second countability axiom, 
regular spaces are normal (Tikhonov’s theo- 
rem, Math. Ann., 95 (1925)) and metrizable 
(Tikhonov-Uryson theorem; P. Uryson, Mutk. 
Ann., 94 (1925)). 

Table 2 shows whether various topological 
properties are preserved in subspaces, product 
spaces, and quotient spaces. The topological 
properties considered are T,, T, = Hausdorff, 
T, = regular, CR = completely regular, T4 = 
normal, T, = completely normal, M = metriz- 
able, C, = first axiom of countability, C,, = 
second axiom of countability, C = compact, 
S = separable, and L = Lindelof. Each position 
is filled with 0 or x according as the prop- 
erty (say, P) listed at the head of the column 
is preserved or not in the sort of space listed 
on the left obtained from space(s) all having 
property P. 

R. Coverings 

A family cJJ1= {M,},,, of subsets of a set X is 
called a covering of a subset A of X if A c 
U,Mj,. If (331 f ‘t ( is mt e countable), it is called 
a finite covering (countable covering). An open 
(closed) covering is a covering consisting of 
open (closed) sets. 

A family 9.R of subsets of a topological space 
X is said to be locally finite if for each point x 
of X, there is a neighborhood of x which inter- 
sects only a finite number of members of 9.R. If 
moreover {M,),,, is disjoint, then YJI is called 
discrete. %)I is called star-finite if each mem- 
ber of ‘JJ1 intersects only a finite number of 
members of YII. A cr-locally finite or u-discrete 
family of subsets of X is respectively the union 
of a countable number of locally finite or dis- 
crete families of subsets of X. A covering %II 
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Table 1. Separation Axioms 

Axioms Spaces Satisfying the Axioms 

(To) T,,-space (Kolmogorov space) 

(J-1) T,-space (Kuratowski space) 

(Tz) T,-space (Hausdorff space, separated space) 

CT,) and (TJ T,-space (regular space) 

VI 1 and CT,;) Completely regular space (Tikbonov space) 

VJ and CL) T,-space (normal space) 

VI 1 and CT,) T,-space (completely normal space, hereditarily normal space) 

CT,) and (T,) T,-space (perfectly normal space) 
- 

Table 2. Topological Properties and Spaces 

Space T, T, T, CR T, T, M C, C,, C S L 

Subspace ooooxooooxxx 
Closed subspace 0 0 0 0 0 0 0 0 0 0 X 0 

Open subspace 0 0 0 0 x 0 0 0 0 x 0 x 
Product 0 0 0 0 x x x x x 0 x x 
Countable product 0 0 0 0 X X 0 0 0 0 0 X 
Quotient space xxxxxxxxxooo 

is called point-finite if each infinite number 
of members of VJI has an empty intersection. A 
covering ‘33l is a refinement of a covering VI 
(written W<VI) if each member of W is con- 
tained in a member of 9L. The order of the 
covering VJ1 is the least integer r such that any 
subfamily of VJI consisting of Y + 1 members 
has an empty intersection. 

Let VJi be a covering of X, and let A be a 
subset of X. The star of A relative to $V.JI, de- 
noted by S(A, m), is the union of all members 
of W whose intersection with A is nonempty. 
Let ‘VJI’ denote the family {S( {x), VJI)},,, and 
VJl* the family (S(M,VJI)),,,. Then ‘VJtA and 
VJZ* are coverings of X, and VJI-=$JIA<VJ~*< 
‘WA”. A covering tJ31 is a star refinement of a 
covering V> if ‘VJi*<V>, and %7l is a barycentric 
refinement (or A-refinement) of V1 if VJl’<VI. 

A sequence VJ1,, %II,, _. of open coverings of 
a topological space is called a normal sequence 
if VJii+, <VJ$,forn=1,2,...,andanopen 
covering VJu1 is said to be a normal covering if 
there is a normal sequence VJJJ1 r, VJl,, such 
that WI -0JI. The support (or carrier) of a 
real-valued function ,f on a topological 
space X is defined to be the closure of the set 
{xl,f(x)#O}. Let {f,iaEa be a family of con- 
tinuous nonnegative real-valued functions on 
a topological space X, and for each s( in A, let 
C, be the support of .f%. The family {,f,}z.n is 
called a partition of unity if the family {Cs}GCA 
is locally finite and C,f,(x) = 1 for each x in X. 
If the covering { CziaoA is a refinement of a 
covering V& the family { ,fh},,a is called a par- 
tition of unity subordinate to the covering 9X. A 
partition of unity subordinate to a covering VJ1 

exists only if VJ1 is a normal covering (- Sec- 
tion X). If p is a continuous tpseudometric on 
a T,-space X, then define a covering M, for 

each natural number n by M,, = { U(x; 2-‘“)},,x, 
where Li(x;s)={y(p(x,y)<sj. Then the se- 
quence VJIr, VJJJ1,, . is a normal sequence of 
open coverings. Conversely, given a normal 
sequence VJl, ,VJI,, of open coverings of X, 
there exists a continuous pseudometric p such 
that p(x,y)<2-” whenever ~ES(~,‘VJL,), and 
p(x,y)>2-‘-’ whenever x$S(y,VJL,,). If in 
addition for each x the family {S(x, VJ&) ( II = 
1,2, } is a local base at .Y, then the metric 
topology of p agrees with the topology of X. 

S. Compactness 

If each open covering of a topological space X 
admits a finite open covering as its refinement, 
the space X is called compact; if each open 
covering of X admits a countable open refine- 
ment, X i.s said to be a Lindeliif space (P. Alek- 
sandrov and P. Uryson, Verh. Akad. Wetensch., 
Amsterdam, 19 (1929)); if each open covering 
of X admits a locally finite open refinement, X 
is called paracompact (J. Dieudonne, J. Math. 
Pures Appl., 23 (1944)); and if each open cover- 
ing of X admits a star-finite open refinement, 
X is said to be strongly paracompact (C. H. 
Dowker, Amer. J. Math., 69 (1947)) or to have 
the star-finite property (K. Morita, Math. 
Japonicae, 1 (1948)). The space X is compact 
(Lindelof) if for each open covering VJL of X, 
there is a finite (countable) subfamily of VJI 
whose union is X. 

The following properties for a topological 
space X are equivalent: (1) The space X is 
compact. (2) If a family {F,),,, of closed sub- 

sets of X has the finite intersection property, 
i.e., each finite subfamily of jFj.JLE,, has non- 
empty intersection, then nz F?. # a. (3) Each 
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infinite subset of X has a complete accumu- 
lation point. (4) Each +net has a convergent 
+subnet. (5) Each tuniversal net and each 
+ultrafilter converge. 

If a subset A of X is compact for the relative 
topology, A is called a compact subset. A 
subset A of X is said to be relatively compact if 
the closure of A in X is a compact subset. A 
closed subset of a compact topological space is 
compact, and a compact subset of a Hausdorff 
space is closed. A continuous image of a com- 
pact space is compact, each continuous map- 
ping of a compact space into a Hausdorff space 
is a closed mapping, and a continuous bijec- 
tion of a compact space onto a Hausdorff 
space is a homeomorphism. The product space 
of a family {X,},,, of topological spaces is 
compact if and only if each factor space is 
compact (Tikhonov’s product theorem, Math. 
Ann., 102 (1930)). A compact Hausdorff space 
is normal. A compact Hausdorff space is 
metrizable if and only if it satisfies the second 
countability axiom. A metric space or a +uni- 
form space is compact if and only if it is 
+totally bounded and +complete. A subset of a 
Euclidean space is compact if and only if it is 
closed and bounded. In a discrete space only 
finite subsets are compact. The cardinality of a 
compact Hausdorff space with the first count- 
ability axiom cannot exceed the power of the 
continuum (Arkhangel’skii). 

There are a number of conditions related to 
compactness. A topological space is sequenti- 
ally compact if each sequence in X has a con- 
vergent subsequence. A space X is countably 
compact (M. Frechet Cl]) if each countable 
open covering of X contains a finite subfamily 
that covers X. A space X is pseudocompact (E. 
Hewitt, 1948) if each continuous real-valued 
function on X is bounded. Some authors use 
compuct and hicompuct for what we call coun- 
tably compact and compact, respectively. N. 
Bourbaki [9] uses compact and quasicompact 
instead of compact Hausdorff and compact, 
respectively. A T,-space is countably compact 
if and only if each infinite set possesses an 
accumulation point. If X is countably com- 
pact, then X is pseudocompact, and if X is 
normal, the converse also holds. If a tcomplete 
uniform space is pseudocompact, then it is 
compact. A space satisfying the second counta- 
bility axiom is compact if and only if it is 
sequentially compact. If X is sequentially 
compact, then X is countably compact, and if 
X satisfies the first countability axiom, the 
converse is true. 

T. Compactification 

A compactification of a topological space X 
consists of a compact space Y and a homeo- 

morphism of X onto a dense subspace Xi of Y. 
We can always regard X as a dense subspace 
of a compactification Y. If X is completely 
regular, then there is a Hausdorff compac- 
tification Y such that each bounded real- 
valued continuous function on X can be 
extended continuously to Y. Such a compacti- 
fication is unique up to homeomorphism; it is 
called the Stone-Tech compactification of X 
(E. tech, Ann. Math., 38 (1937); hl. H. Stone, 
Trans. Amer. Math. Sot., 41 (1937)) and is 
denoted by b(X). Let {fh}i,Eh be the set of all 
continuous functions on a completely regular 
space X into the closed interval I = [0, 11. 
Then a continuous mapping cp of X into a 
parallelotope IA = n, I, (I, = I) is defined by 

&4= {fn(-u))i,A> and the mapping cp is a 
homeomorphism of X onto the subspace q(X) 
of I“ (Tikhonov’s embedding theorem, Math. 
Ann., 102 (1930)). The closure q(X) of q(X) in 
I” is the Stone-Tech compactihcation of X. 
The natural mapping fi(X, x X,)-+fl(X,) x 
p(X,) is a homeomorphism if ant! only if X, x 
X, is pseudocompact (I. Glicksberg, 1959). 

For a topological space X, let lx, be a point 
not in X, and define a topology on the union 
XU{~}asfollows:AsubsetUofXU{co}is 
open if and only if either x # U amd U is open 
in X, or m E U and X - U is a compact closed 
subset of X. The topological space X U {a) 
thus obtained is compact, and if X is not 
already compact, the space X U {‘m} is a com- 
pactihcation of X called the one-point com- 
pactification of X (P. S. Aleksandrov, C. R. 
Acud. Sci. Paris, 178 (1924)). The one-point 
compactification of a Hausdorff s,pace is not 
necessarily Hausdorff. The one-point compac- 
tification of the n-dimensional Euclidean space 
R” is homeomorphic to the n-dimensional 
sphere S”. 

A completely regular space X is a +G,-set in 
the Stone-Tech compactification p(X) if and 
only if it is a G&-set in any Hausdorff space Y 
which contains X as a dense subspace. Then X 
is said to be Tech-complete. 

U. Absolutely Closed Spaces 

A Hausdorff space X is said to be absolutely 
closed (or H-closed; P. Aleksandrov and P. 
Uryson, 1929) if X is closed in each Hausdorff 
space containing it. A compact HLausdorff 
space is absolutely closed. A Hausdorff space 
is absolutely closed if and only if for each open 
covering {N,},,, of X, there is a finite sub- 
family of {N,},,, that covers X. ‘The product 
space of a family of absolutely closed spaces is 
absolutely closed. Each Hausdorff space is a 
dense subset of an absolutely closed space. 
Similarly, a regular space X is said to be r- 
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closed if X is closed in each regular space 
containing it (N. Weinberg, 1941). 

V. Locally Compact Spaces 

A topological space X is said to be locally 
compact if each point of X has a compact 
neighborhood (P. Aleksandrov and P. Uryson, 
1929). A +uniform space X is said to be uni- 

.formly locally compact if there is a member Cl 
of the ‘uniformity such that U(x) is compact 
for each x in X (- 436 Uniform Spaces). A 
noncompact space X is locally compact and 
Hausdorff if and only if the one-point com- 
pactihcation of X is Hausdorff, and this is the 
case if and only if X is homeomorphic to an 
open subset of a compact Hausdorff space. A 
locally compact Hausdorff space is completely 
regular, and for each point of the space, the 
family of all of its compact neighborhoqds 
forms a local base at the point. A locally 
closed, hence open or closed, subset of a lo- 
cally compact Hausdorff space is also locally 
compact for the relative topology. If a sub- 
space A of a Hausdorff space X is locally 
compact, then A is a locally closed subset of X. 
The Euclidean space R” is locally compact, 
and hence each locally Euclidean space, i.e., a 
space such that each point admits a neighbor- 
hood homeomorphic to a Euclidean space, is 
locally compact. A topological space is called 
g-compact if it can be expressed as the union 
of at most countably many compact subsets. 

W. Proper (Perfect) Mappings 

A mapping ,f of a topological space X into a 
topological space Y is said to be proper (N. 
Bourbaki [9]) (or perfect [ 143) if it is con- 
tinuous and for each topological space Z, the 
mapping ,f x I :X x Z-t Y x Z is closed, where 
(,f x 1)(x, z) = (,f’(x), z). A continuous mapping 
1‘: X-r Y is proper if and only if it is closed and 
f‘-‘( { y}) is compact for each y in Y. Another 
necessary and sufficient condition is that if 
(~~}~t is a +net in X such that its image (f(x,)J 
converges to ye Y, then a subnet of (x,) con- 
verges to an x~,f~‘(y) in X. A continuous 
mapping of a compact space into a Hausdorff 
space is always proper. For a compact Haus- 
dorff space X, a quotient space Y is Hausdorff 
if and only if the canonical projection cp: X--f 
Y is proper. 

For a continuous mapping J’ of a locally 
compact Hausdorff space X into a locally 
compact Hausdorff space Y, the following 

three conditions are equivalent: (1) f is proper. 
(2) For each compact subset K of Y, the in- 
verse image f-‘(K) is compact. (3) If XU [Y * 1 

and YU(y.1 are the one-point compactifi- 
cations of X and Y, then the extension ,f, of 
,f’ such that ,1; (x,) = y 1 is continuous. 

The composition of two proper mappings is 
proper and the direct product of an arbitrary 
number of proper mappings is proper. 

X. Paracompact Hausdorff Spaces 

A paracompact Hausdorff space (often called 
simply a paracompact space) is normal. For a 
Hausdorff space X, the following five con- 
ditions are equivalent: (1) X is paracompact. 
(2) X is fully normal (J. W. Tukey [S]), i.e., 
each open covering of X admits an open 
barycentric refinement. (3) Each open covering 
has a partition of unity subordinate to it. (4) 
Each open covering is refined by a closed 
covering {F,) a E A} that is closure-preserving, 
i.e., U{F,J/IEB) is closed for each Bc A. (5) 
Each open covering { rl, 1 x E A) has a cushioned 
refinement (V,[~EA\, i.e., CI(U { V,,[fl~B))c 

U ( ufl 1 [I E B) for each B c A. The implication 
(l))(2) is Dieudonne’s theorem. The implication 
(2)+( 1) is A. H. Stone’s theorem (1948) from 
which it follows that each metric space is para- 
compact. The implications (5)+(4)+(l) is 
Michael’s theorem (1959, 1957). 

For normal spaces, the following weaker 
versions of (2) and (3) hold: A T,-space X is 
normal if and only if each finite open covering 
of X admits a finite open star refinement (or 
finite open barycentric refinement). For each 
locally finite open covering of a normal space, 
there is a partition of unity subordinate to it. 

For a regular space X the following three 
conditions are equivalent: (1) X is paracom- 
pact. (2) Each open covering of X is refined by 
a a-discrete open covering. (3) Each open 
covering of X is refined by a a-locally finite 
open covering. Tamano’s product theorem: For 
a completely regular space X to be paracom- 
pact it is necessary and sufficient that X x /I(X) 
be normal (1960). 

For a ‘connected locally compact space X, 
the following conditions are equivalent: (1) X 
is paracompact. (2) X is a-compact. (3) In the 
one-point compactification X U {“c}, the point 
a admits a countable local base. (4) There is a 
locally finite open covering {r/i; Ith of X such 
that ii, is compact for each 1.. (5) X is the 
union of a sequence (U,,} of open sets such 
that U,iscompactand&?ncLi,+,(n=1,2,...). 
(6) X is strongly paracompact. 

Every +F,-set of a paracompact Hausdorff 
space is paracompact (Michael, 1953). When a 
T,-space X has the hereditarily weak topology 
with respect to a closed covering {F,), then X 
is paracompact Hausdorff (normal, completely 
normal or perfectly normal) if and only if each 
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FL is (Morita, 1954; Michael, 1956). In par- 
ticular, every CW-complex is paracompact 
and perfectly normal (Morita, 1953). 

Y. Normality and Paracompactness of Direct 
Products 

A topological space X is discrete if X x Y is 
normal for any normal space Y (M. Atsuji and 
M. Rudin, 1978). There are a paracompact 
Lindelsf space X and a separable metric space 
Y such that the product X x Y is not normal 
(Michael, 1963). The following are conditions 
under which the products are normal or 
paracompact. Let m be an infinite icardinal 
number. A topological space X is called m- 
paracompact if every open covering consisting 
of at most m open sets admits a locally finite 
open covering as its refinement. When III is 
countable, it is called countably paracompact. 
If X has an open base of at most m members, 
m-paracompact means paracompact. The 
following conditions are equivalent for a topo- 
logical space X: (1) X is normal and count- 
ably paracompact; (2) The product X x Y is 
normal and countably paracompact for any 
compact metric space Y; (3) X x I is normal, 
where I= [0, l] (C. H. Dowker, 1951). Rudin 
(1971) constructed an example of a collection- 
wise normal space (- Section AA) that is not 
countably paracompact. When m is general 
the following conditions are equivalent: (1) X 
is normal and m-paracompact; (2) If Y is a 
compact Hausdorff space with an open base 
consisting of at most m sets, then X x Y is 
normal and m-paracompact; (3) X x I’” is 
normal; (4) X x { 0, 1 )“’ is normal (Morita, 
1961). In particular, the product X x Y of 
a paracompact Hausdorff space X and a 
compact Hausdorff space Y is paracompact 
(DieudonnC, 1944). 

A topological space X is called a P-space if 
it satisfies the following conditions: Let 0 be 
an arbitrary set and {G(E,, . . . . ala,, . . . cci~R, 
i=l 2 , , } be a family of open sets such that 
G(cc,, . . . . cc,)cG(cx,, . . . . z~,c(~+,). Then there is a 
family of closed sets (F(a,, . , xi)1 rl, ,cci~Q, 
i=1,2,...) such that F(x ,,..., ~~)cG(x, ,..., ai) 
and that if U,E~ G(a, , , C(~) = X for a se- 
quence {Ed), then lJ& F(cc,, , mi)=X. Per- 
fectly normal spaces, countably compact 
spaces, Tech-complete paracompact spaces 
and a-compact regular spaces are P-spaces. 
Normal P-spaces are countably paracom- 
pact. A Hausdorff space X is a normal (resp. 
paracompact) P-space if and only if the prod- 
uct X x Y is normal (resp. paracompact) for 
any metric space Y (Morita, Math. Ann., 154 
1964). 

The product X x Y of locally compact Haus- 
dorff spaces X and Y is a locally compact 
Hausdorff space. If, in this case, X and Y are 
paracompact, then so is the product. If the 
direct product space n,X, of metric spaces is 
normal, then X, are compact excl:pt for at 
most countably many i, and hence the prod- 
uct space is paracompact (A. H. Stone, 1948). 

A class V of topological spaces is called 
countably productive if for a sequence Xi of 
members of V their product n X, is again a 
member of %. The classes of (complete) (sepa- 
rable) metric spaces form such examples. The 
class of paracompact and Tech-complete 
spaces is countably productive (2. Frolik, 
1960). A topological space X is called a p- 
space if it is completely regular and there 
is a sequence 9J& of families of open sets in 
the Stone-Tech compactification b(X) such 
that, for each point XE X, x E n SI(X, Wi) c X 
(Arkhangel’skii, 1963). X is called an M-space 
if there is a normal sequence !IJii of open 
coverings of X such that if K 1 3 K, I.. is a 
sequence of nonempty closed sets and Ki c 
S(x,~.Ri),i=1,2 ,..., foranx~X,thennK,# 
@ (Morita, 1963). The class of paracompact 
p-spaces and that of paracompac-t Hausdorff 
M-spaces are the same and are countably pro- 
ductive. For a covering 3 of X and an x E X 
we set C(X, 5) = n {F 1 XEFE~}. X is called a 
E-space if X admits a sequence zi of locally 
finite closed coverings such that if K 1 3 K, 3 

is a sequence of nonempty closed sets and 
K,cC(x,3,),i=1,2 ,..., foranx~:X,then 
n Ki#@ (K. Nagami, 1969). C-spaces are 
P-spaces. The class of all paracompact Z- 
spaces is also countably productive. Among 
the above classes each one is always wider 
than its predecessors. Yet the product X x Y of 
a paracompact Hausdorff P-space X and a 
paracompact Hausdorff C-space Y is paracom- 
pact. Other examples of countably productive 
classes are the Suslin spaces and the Luzin 
spaces (- Section CC) introduced by Bour- 
baki (1958), the stratifiable spaces by J. G. 
Ceder (1961) and C. J. R. Borges (1966), the h’,- 
spaces by Michael (1966) and the o-spaces by 
A. Okuyama (1967). 

Z. Strongly Paracompact Spaces 

Regular Lindelijf spaces are strongly paracom- 
pact. Conversely, if a connected regular space 
is strongly paracompact, then it is a LindelGf 
space (Morita, 1948). Hence a connected non- 
separable metric space is not strongly para- 
compact. Paracompact locally compact Haus- 
dorff spaces and uniformly locally compact 
Hausdorff spaces are strongly paracompact. 
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These classes of spaces coincide under suitable 
tuniform structures. 

AA. Collectionwise Normal Spaces 

A Hausdorff space X is called a collectionwise 
normal space if for each discrete collection 
{F, Ias.4) of closed sets of X there exists a 
disjoint collection { LJ% ( CIE A} of open sets with 
F,c U, (a~.4) (R. H. Bing, 1951). If X satisfies 
an analogous condition for the case where 
each F, is a singleton, X is called a collection- 
wise Hausdorff space. Paracompact Hausdorff 
spaces are collectionwise normal (Bing). Every 
point-finite open covering of a collectionwise 
normal space has a locally finite open refine- 
ment (Michael, Nagami). 

A topological space X is called a developable 
space if it admits a sequence IL,, i = 1,2, , of 
open coverings such that, for each point x6X, 
{S(x,U,)li= 1,2, . ..} forms a base for the 
neighborhood system of x (R. L. Moore, 1916). 
A regular developable space is called a Moore 
space. The question of whether or not every 
normal Moore space is metrizable is known 
as the normal Moore space problem (- 273 
Metric Spaces K). Collectionwise normal 
Moore spaces are metrizable (Bing). 

BB. Real-Compact Spaces 

A completely regular space X is called real- 
compact if X is complete under the smallest 
+uniformity such that each continuous real- 
valued function on X is uniformly continuous 
(- 422 Uniform Spaces). This notion was 
introduced by E. Hewitt (Trans. Amer. Math. 
Sot., 64 (1948)) under the name of Q-space, 
and independently by L. Nachbin (Proc. Inter- 
nutional Congress of Mathematicians, Cam- 
bridge, Mass., 1950). 

A Lindeliif space is real-compact. If X, and 
X, are real-compact spaces such that the rings 
C(X,) and C(X,) of continuous real-valued 
functions on X, and X, are isomorphic, then 
X, and X, are homeomorphic (Hewitt). If X is 
real-compact, then X is homeomorphic to a 
closed subspace of the product space of copies 
of the space of real numbers, and conversely. 

CC. Images and Inverse Images of Topological 
Spaces 

Each continuous mapping f: X + Y is decom- 
posed into the product i o ho p of continuous 
mappings p:XjX/-, h:X/- -f(X) and i: 
f(X)* Y, where - is the equivalence relation 
such that x1 -x2 if and only if f(xI)=f(x2). 

The mapping J is open (resp. closed) if and 
only if these mappings are all open (resp. 
closed). Then h is a homeomorphism. The 
image of a paracompact Hausdorff space 
under a closed continuous mapping is para- 
compact (Michael, 1957). 

Let f: X+ Y be a perfect surjection. Then Y 
is called a perfect image of X and X a perfect 
inverse image of Y. If, in this case, one of X 
and Y satisfies a property such as being com- 
pact, locally compact, o-compact, Lindelof, or 
countably compact, then the other also satis- 
fies the property. When X and Y are com- 
pletely regular, the same is true with regard 
to Tech completeness. Properties such as 
regularity, normality, complete normality, 
perfect normality, and the second countability 
axiom are preserved in perfect images; but 
complete regularity and strong paracompact- 
ness are not. Perfect images of metric spaces 
are also metrizable (S. Hanai and Morita, A. 
H. Stone, 1956). Conversely, perfect inverse 
images of paracompact spaces are paracom- 
pact. If a Hausdorff space is a perfect inverse 
image of a regular space (resp. k-space; - 
below), then it is a regular space (resp. k- 
space). Every paracompact Tech-complete 
space is a perfect inverse image of a tcomplete 
metric space (Z. Frolik, 1961). A completely 
regular space is a paracompact p-space if and 
only if it is a perfect inverse image of a metric 
space (Arkhangel’skii, 1963). A mapping f: X --t 
Y is called quasi-perfect if it is closed and 
continuous and the inverse image ,f-r(y) of 
each point ye Y is countably compact. A topo- 
logical space X is an M-space if and only if 
there is a quasi-perfect mapping from X onto 
a metric space Y (Morita, 1964). Let ,f: X + Y 
be a quasi-perfect surjection. If one of X and 
Y is a C-space, then the other is also a C-space 
(Nagami, 1969). 

A topological space X is called a F&bet- 
Uryson space (or a FrCcbet space) if the closure 
of an arbitrary set A c X is the set of all limits 
of sequences in A (Arkhangel’skii, 1963). X is 
called a sequential space if A c X is closed when- 
ever A contains all the limits of sequences in 
A (S. P. Franklin, 1965). X is called a k’-space 
if the closure of an arbitrary set A is the set of 
all points adherent to the intersection An K 
for a compact set K in X (Arkhangel’skii, 
1963). X is called a k-space if A c X is closed 
whenever A n K is closed in K for any compact 
set K (- Arkhangel’skii, Trudy Moskou. Mat. 
Ohshch., 13 (1965)). Spaces satisfying the first 
countability axiom are Frechet-Uryson spaces. 
The Frechet-Uryson spaces (resp. sequential 
spaces) are characterized as the images under 
hereditarily quotient (resp. quotient) mappings 
of metric spaces or locally compact metric 
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spaces. Similarly the k’-spaces (resp. k-spaces) 
coincide with the images under hereditarily 
quotient (resp. quotient) mappings of locally 
compact spaces. The image of a metric space 
under a closed continuous mapping is called a 
Lashnev space. Any subspace of a Frechet- 
Uryson space is a Frechet-Uryson space. Con- 
versely, a Hausdorff space is a Frechet-Uryson 
space if any of its subspaces is a k-space. Cech- 
complete spaces are k-spaces. A Hausdorff 
space is called a Suslin space (resp. Luzin space) 
if it is the image under a continuous surjection 
(resp. continuous bijection) of a complete 
separable metric space (Bourbaki [9]; also - 
22 Analytic Sets). 

In Figs. 1, 2, and 3, the relationships be- 

Fig. 1 

Fig. 2 

:ween the various properties are indicated 
my the arrows. 

Fig. 3 
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426 (1X.1) 
Topology 

The term topology means a branch of mathe- 
matics that deals with topological properties 
of geometric figures or point sets. A classical 
result in topology is the Euler relation on 
polyhedra: Let Q, x,, and x2 be the numbers 
of vertices, edges, and faces of a polyhedron 
homeomorphic to the 2-dimensional sphere; 
then g,, - x1 + a2 = 2 (+Euler-Poincark formula 
for the 2-dimensional case; actually, the for- 
mula was known to Descartes). It is one of the 
earliest results in topology. In 1833, C. F. 
Gauss used integrals to define the notion df 
ilinking numbers of two closed curves in a 
space (- 99 Degree of Mapping). It was in 
J. B. Listing’s classical work I/i,rstudien zur 
Topologie (1847) that the term topology first 
appeared in print. 

In the 19th century, B. Riemann published 
many works on function theory in which topo- 
logical methods played an essential role. He 
solved the homeomorphism problem for com- 
pact surfaces (- 410 Surfaces); his result is 
basic in the theory of algebraic functions. In 
the same period, mathematicians began to 
study topological properties of n-dimensional 
polyhedra. E. Betti considered the notion of 
+homology. H. PoincarC, however, was the first 
to recognize the importance of a topological 

approach to analysis in general; he defined the 
+homology groups of a complex Cl]. He ob- 
tained the famous +PoincarC duality theorem 
and defined the tfundamental group. He con- 
sidered tpolyhedra as the basic objects in top- 
ology, and deduced topological properties 
utilizing rcomplexes obtained from polyhedra 
by +simplicial decompositions. He thus con- 
structed a branch of topology known as com- 
binatorial topology. 

In its beginning stages combinatorial top- 
ology dealt only with polyhedra. In the late 
192Os, however, it became possible to apply 
combinatorial methods to genera1 tcompact 
spaces. P. S. Alexandrov introduced the con- 
cept of approximation of a +compact metric 
space by an inverse sequence of complexes and 
the definition of homology groups for these 
spaces. His idea had a precursor in the notion 
of ‘simplicial approximations of conlinuous 
mappings, which was introduced by L. E. J. 
Brouwer in 1911. In 1932, E. i‘lech defined 
homology groups for arbitrary spaces utilizing 
the tinductive limit of the homology groups of 
polyhedra; and tcech cohomology groups for 
arbitrary spaces were also defined. S. Eilenberg 
established tsingular (co)homology theory 
using +singular chain complexes (1944). The 
axiomatic approach to (co)homology theory is 
due to Eilenberg and Steenrod, who gave 
axioms for (co)homology theory in a most 
comprehensive way and unified various (co)- 
homology theories (1945) (- 201 Homology 
Theory. 

The approach using algebraic methods has 
progressed extensively in connection with the 
development of homology theory. This branch 
is called algebraic topology. In the 1920s and 
193Os, a number of remarkable results in alge- 
braic topology, such as the TAlexander duality 
theorem, the TLefschetz fixed-point theorem, 
and the +Hopf invariant, were obtained. In the 
late 193Os, W. Hurewicz developed the theory 
of higher-dimensional thomotopy groups (- 
153 Fixed-Point Theorems, 201 Homology 
Theory, 202 Homotopy Theory). J. H. C. 
Whitehead introduced the concept of +CW 
complexes and proved an algebraic charac- 
terization of the homotopy equivalence of CW 
complexes. N. Steenrod developed tobstruc- 
tion theory utilizing tsquaring operations in 
the cohomology ring (1947). Subsequently, 
the theory of tcohomology operations was 
introduced (- 64 Cohomology Operations, 
305 Obstructions). The theory of +spectral 
sequences for +fiber spaces was originated by 
J. Leray (1945) and J.-P. Serre (1951) and was 
successfully applied to cohomology operations 
and homotopy theory by H. Cartan and Serre 
(1954) (- 148 Fiber Spaces, 200 Homological 
Algebra). The study of the combinatorial 
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structures of polyhedra and tpiecewise linear 
mappings has flourished since 1940 in the 
works of Whitehead, S. S. Cairns, and others. 
S. Smale and, independently, J. Stallings 
solved the tgeneralized Poincarir conjecture in 
1960. The +Hauptvermutung in combinatorial 
topology was solved negatively in 1961 by B. 
Mazur and J. Milnor. E. C. Zeeman proved 
the unknottedness of codimension 3 (1962). 
The recent development of the theory in con- 
junction with progress in tdifferential topol- 
ogy is notable. The Hauptvermutung for com- 
binatorial manifolds was solved in 1969 by 
Kirby, Siebenmann, and Wall. In particular, 
there exist different combinatorial structures 
on tori of dimension > 5, and there are topo- 
logical manifolds that do not admit any com- 
binatorial structure (- 65 Combinatorial 
Manifolds, I14 Differential Topology, 235 
Knot Theory). 

The global theory of differentiable manifolds 
started from the algebraic-topological study of 
‘fiber bundles and tcharacteristic classes in the 
1940s. R. Thorn’s fundamental theorem of 
tcobordism (1954) was obtained through ex- 
tensive use of cohomology operations and 
homotopy groups. Milnor (1956) showed that 
the sphere S’ may have differentiable struc- 
tures that are essentially distinct from each 
other by using +Morse theory and the iindex 
theorem of Thorn and Hirzebruch. These 
results led to the creation of a new field, +dif- 
ferential topology (- 56 Characteristic Classes, 
1 I4 Differential Topology). 

Since 1959, A. Grothendieck, M. F. Atiyah, 
F. Hirzebruch, and J. F. Adams have devel- 
oped +K-theory, which is a generalized coho- 
mology theory constructed using stable classes 
of tvector bundles (- 237 K-Theory). 

+Knot theory, an interesting branch of top- 
ology, was one of the classical branches of 
topology and is now studied in connection 
with the theory of low-dimensional manifolds 
(- 235 Knot Theory). 

On the other hand, G. Cantor established 
general set theory in the 1870s and introduced 
such notions as taccumulation points, topen 
sets, and iclosed sets in Euclidean space. The 
first important generalization of this theory 
was the concept of ttopological space, which 
was proposed by M. FrCchet and developed by 
F. Hausdorff at the beginning of the 20th 
century. The theory subsequently became a 
new field of study, called general topology or 
set-theoretic topology. It deals with the topo- 
logical properties of point sets in a Euclidean 
or topological space without reference to 
polyhedra. There has been a remarkable devel- 
opment of the theory since abount 1920, nota- 
bly by Polish mathematicians S. Janiszewski, 
W. Sierpifiski, S. Mazurkiewicz, C. Kuratow- 

ski, and others. The contributions of R. L. 
Moore, G. T. Whyburn, and K. Menger are 
also important (- 382 Shape Theory, 425 
Topological Spaces). 

Topology is not only a foundation of vari- 
ous theories, but is also itself one of the most 
important branches of mathematics. It consists 
of +homology theory, thomotopy theory, idif- 
ferential topology, tcombinatorial manifolds, 
tK-theory, ttransformation groups, ttheory of 
singularities, tfoliations, tdynamical systems, 
icatastrophe theory, etc. It continues to de- 
velop in ,interaction with other branches of 
mathematics (- 51 Catastrophe Theory, 126 
Dynamical Systems, 154 Foliations, 418 Theory 
of Singularities, 431 Transformation Groups). 
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427 (IX.1 2) 
Topology of Lie Groups and 
Homogeneous Spaces 

A. General Remarks 

Among various topological structures of tLie 
groups and thomogeneous spaces, the struc- 
tures of their +(co)homology groups and 
thomotopy groups are of special interest. Let 
G/H be a homogeneous space, where G is a 
Lie group and H is its closed subgroup. Then 
(G, G/H, H) is a +fiber bundle, where G/H is 
the base space and H is the fiber Thus homol- 
ogy and homotopy theory of fiber bundles 
(ispectral sequences and thomotopy exact 
sequences) can be applied. The +cellular de- 
composition of +Stiefel manifolds, +Grassmann 
manifolds, and +K%hler homogeneous spaces 
are known. Concerning tsymmetric Riemann- 
ian spaces, we have various interesting meth- 
ods, such as the use of invariant differential 
forms in connection with real cohomology 
rings and the use of +Morse theory in order to 
establish relations between the diagrams of 
symmetric Riemannian spaces G/H and homo- 
logical properties of their +loop spaces and 
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some related homogeneous spaces [4,5]. Lie 
groups can be regarded as special cases of 
homogeneous spaces or symmetric spaces, 
although their group structures are of partic- 
ular importance. A connected Lie group is 
homeomorphic to the product of one of its 
compact subgroups and a Euclidean space 
(+Cartan-Mal’tsev-lwasawa theorem). Hence 
the topological structure of a connected Lie 
group is essentially determined by the topolog- 
ical structures of its compact subgroups. 

B. Homology of Compact Lie Groups 

Let G be a connected compact Lie group. 
Since G is an +H-space whose multiplication is 
given by its group multiplication h, H*(G; k) 
and H,(G; k) are dual +Hopf algebras for any 
coefficient field k. Also, H*(G; k) is isomorphic 
as a igraded algebra to the tensor product of 
telementary Hopf algebras (- 203 Hopf Alge- 
bras), but no factor of the tensor product is 
isomorphic to a polynomial ring because G is 
a finite tpolyhedron. In particular, if k = R 
(the field of real numbers), then H*(G; R)g 
Aa(xr, . ,x,) (the exterior (Grassmann) alge- 
bra over R with generators x1,. , xr of odd 
degrees). Here we can choose generators xi 
such that h*(xJ = 1 0 xi + xi 0 1. 1 <i < 1. The 
xi that satisfy this property are said to be 
primitive. Since in this case the tcomultiplica- 
tion h* is commutative, the multiplication h, 
is also commutative and the Hopf algebra 
HJG; R) is an exterior algebra generated 
by elements yi having the same degree as 
xi (i = 1, . , I). When the characteristic of the 
coefficient field k is nonzero, h, need not be 
commutative. 

The dimension of a tmaximal torus of a 
connected compact Lie group G is indepen- 
dent of the choice of the maximal torus and is 
called the rank of G. The rank of G coincides 
with the number 1 of generators of H*(G; R). E. 
Cartan studied H*(G; R) by utilizing invariant 
differential forms. The cohomology theory of 
Lie algebras originated from the method he 
used in his study. H*(G; R) is invariant under 
+local isomorphisms of groups G. For +class- 
ical compact simple Lie groups G, R. Brauer 
calculated H*(G; R), while C.-T. Yen and C. 
Chevalley calculated H*(G; R) for +exceptional 
compact simple Lie groups (- Appendix A, 
Table 6.N). The degrees of the generators 
have group-theoretic meaning. Suppose that 
the degree of the ith generator is 2m, - 1, 1 < 
i,<l,andthatm,gm,<...gm,.WhenGis 
simple, there is a relation m, + m,-,+l = const- 
ant (Chevalley’s duality). We have a proof for 
this property that does not use classification. 

The cohomology groups N*(G; Z,) (where p 

is a prime and Z, = Z/pZ) have been deter- 
mined as graded algebras for all compact 
simple Lie groups by A. Borel, S. Araki, and P. 
Baum and W. Browder (- Appendix A, Table 
6.N). 

C. Cohomology of Classifying Spaces 

Let (E,, B,, G) be a tuniversal bundle of a 
connected compact Lie group G and p a prime 
or zero. Suppose that the integral cohomology 
of G has no p-torsion (no torsion when p = 0). 
Then H*(G; ZJ= Az,(x’, , . . . ,x;) (H*(G; Z)= 
Az(x; , , xi) when p = 0), an exterior alge- 
bra with degxj=2m,- 1, 1 <i<l, and the 
generators xi can be chosen to be ttransgres- 
sive in the spectral sequence of the universal 
bundle. Let y, , . , y, be their transgression 
images. Then deg yi = 2m,, 1 d i < 1, and the 
cohomology of the tclassifying space B, over 
Z, (resp. Z) is the polynomial algebra with 
generators y,, . . , y,. Let T be a maximal torus 
of G. Then B,= E,/T is a classifying space of 
T, the +Weyl group W= N(T)/T of G with 
respect to T operates on BT by +right transla- 
tions, and H*( T; Z) has no torsion and is an 
exterior algebra with 1 generators of degree 1. 
Thus H*(B,; Z) = Z [u 1, . , u,], deg ui = 2. Let 
I, be the subalgebra of H*(B,; Z) consisting 
of W-invariant polynomials, and let p be the 
projection of the bundle (Br, B,, G/T). Then 
under the assumption that G has no p-torsion 
(no torsion), the cohomology mapping p* over 
Z,,(Z) is monomorphic, and p* : H*(B,; Z,) g 
I, @ Z, (H*(B,;Z)rI,) [l]. In the case of 
real coefficients, we have H*(BG; R)z I, @ 
R for all G, and m,, . , m, are the degrees 
of generators of the ring I, of W-invariant 
polynomials. 

Example (1) G= U(n): I=n and G has no 
torsion. W operates on H*(B,; Z) as the group 
of all permutations of generators ur, . . . , u,. 
Thus generators of I, are the telementary 
symmetric polynomials or, , a, of u,, , u,. 
Let c, , , c, be the iuniversal Chern classes; 
then p*(ci)=ci and H*(B,(,,;Z)=Z[c,, . . . ,c,,]. 

Example (2) G = SO(n): I= [n/2] and G 
1 has no p-torsion for p # 2. W operates on 

H*(By;Z) as the group generated by the per- 
mutations of generators u,, . , ur and by the 
transformations g(ui) = eiuj, ei = k 1, where the 
number of ui for which e, = -1 is arbitrary for 
odd n and even for even n. Thus the generators 
of I, are the elementary symmetric poly- 
nomialso; ,..., oiofuf ,..., $foroddnand 
U; ,.,., ai-, andu,...u,forevenn.Letp ,,..., p, 
be the iuniversal Pontryagin classes and x be 
the iuniversal Euler-Poincarc class in the case 
of even n. Then p*(pi) = a: and p*(x) = u1 u, 
for integral cohomology. Denote the mod p 
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reduction of pi and ): by pi and 2, respectively. 

Then ~~*(~soc21+l,; Z,)=Z,[p,, ,jTJ and 

H*(Kso(*l,~ Z,)=Z,CY,,...,p,~,,~l (p=Oor 
> 2). 

Example (3) G = O(n): If we use the subgroup 
Q consisting of all diagonal matrices instead of 
r, then we can make a similar argument for 
Z,-cohomology. Since Q=(Z,y, H*(Bg; 
Zz)=~2[~:,,...,v,](22[~~,,...,~~,] is a 
polynomial ring with deg ri = I), and W, = 
N(Q)/Q operates on B, by right translations 
and on H*(Bg; Z,) as the group of all permuta- 
tions of L’, , , r:,. Let 1,1 be the subalgebra 
of H*( B,; Z,) consisting of all W,-invariant 
polynomials. Then I,2 is a polynomial ring 
generated by the elementary symmetric poly- 
nomials o;, ,D: of ui, , u,,. The projec- 

tion p2 : B,+ b(,, induces a monomorphic 
cohomology mapping pz over Z,, and p; : 

H*(4,,,,; Z,)E lwl. Let w,, , ~1” be the +uni- 
versa1 Stiefel-Whitney classes. Then &(wi) = 
c:’ and H*(B,,,~,;Z,)=Z,[w,,...,w,J [2]. 

D. Grassmann Manifolds 

The following manifolds are called Grass- 
mann manifolds: The manifold M,+,,,(R) con- 
sisting of all n-subspaces of R”+m; the mani- 
fold iii ,+,,,(R) consisting of all oriented n- 
subspaces of R”+“‘; and the manifold M,+,,,(C) 
consisting of all complex n-subspaces of C”‘“. 
These are expressed as quotient spaces as 
follows: M,+,,“(R)=O(n+m)/O(n) x O(m), 
Ii2 ,+,,.(R)=SO(n+m)/SO(n) xSO(m), and 
M ,,+,,,(C)= U(n+m)/U(n) x u(m). They admit 
cellular decompositions by +Schubert varieties 
from which their cohomologies can be com- 
puted (- 56 Characteristic Classes). M,+,,,(R) 
and iii .+,,,(R) have no p-torsion for p # 2, and 
M .+,,,(C) has no torsion. These spaces are m-, 
m-, and (2m-t 1)-classifying spaces of O(n), 
SO(n), and V(n), respectively. Hence their 
cohomologies are isomorphic to those of B, 
(G = O(n), SO(n), Li(n)) in dimensions cm, 
cm, and < 2m, respectively; and they are poly- 
nomial rings generated by suitable univer- 
sal characteristic classes in low dimensions. 

E. Cohomologies of Homogeneous Spaces G/U 
(Rank G=Rank U) 

Let G be a compact connected Lie group and 
U a closed subgroup of G with the same rank 
as G. Denote the degrees of generators of 
H*(G; R) and H*( U; R) by 2m, - 1, ,2m, - 1, 
and 2n, - 1, ,2n, - 1, respectively. Then the 
real-coefficient +Poincare polynomial PO of the 
homogeneous space G/U is given by P,,(G/U, t) 
= ni( 1 - t2”g)/( 1 - r2”r) (G. Hirsch). When G, U, 
and G/U have no p-torsion, the same formula 

is valid for the Z,-coefhcient Poincare poly- 
nomial [I]. When U is the +centralizer of a 
torus, G/U has a complex analytic cellular 
decomposition [3]. Hence G/U has no torsion 
in this case. This was proved by R. Bott and 
H. Samelson by utilizing Morse theory [5] 
(- 279 Morse Theory). The case li = T has 
also been studied. 

F. Homotopy Groups of Compact Lie Groups 

The ifundamental group 7~~ (G) of a compact 
Lie group G is Abelian. Furthermore, n,(G) = 
0. If we apply Morse theory to G, the varia- 
tional completeness of G can be utilized to 
show that the loop space RG has no torsion 
and that its odd-dimensional cohomologies 
vanish [4]. Consequently, when G is non- 
Abelian and simple, we have rccj(G) s Z. A 
+periodicity theorem on +stable homotopy 
groups of classical groups proved by Bott is 
used in K-theory (- 202 Homotopy Theory; 
237 K-Theory). (For explicit forms of homo- 
topy groups - Appendix A, Table 6.VI). 

Homotopy groups of Stiefel manifolds are 
used to define characteristic classes by +ob- 
struction cocycles (- 147 Fiber Bundles; Ap- 
pendix A, Table 6.VI). 
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A. Pfaff’s Problem 

A total differential equation is an equation of 
the form 

0) = 0, (1) 
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where (11 is a tdifferential l-form x1=, a,(x)dx; 
on a manifold X. A submanifold M of X is 
called an integral manifold of (1) if each vector 
< of the itangent vector space T,(M) of M at 
every point x on M satisfies (u(c) = 0. We de- 
note the maximal dimension of integral mani- 
folds of (1) by m(m). J. F. Pfaff showed that 
m(co) 3(n- 1)/2 for any w. The problem of 
determining m(m) for a given form m is called 
Pfaff’s problem. This problem was solved by 
G. Frobenius, J. G. Darboux, and others as 
follows: Form an ialternating matrix 

('ij)l <i,j<n (2) 

from the coefficients of the texterior derivative 
of w, 

where aii = &lj/(:xi -&,/fix,. Suppose that the 
rank of (2) is-2t. Then the rank of the matrix 

is 2t or 2t + 2. In the former case m(to) = n - t, 

and w  can be expressed in the form 

by choosing a suitable coordinate system 
(u,. , u,). In the latter case m(w) = n - t - 1, 
and o can be expressed in the form 

by choosing a suitable coordinate system 
(u, , , u,). This theorem is called Darboux’s 
theorem. 

A 1 -form w  is called a Pfaffian form, and 
equation (1) is called a Pfaffan equation. A 
system of equations cui=O (1 <i,<s) for l-form 
(0, is called a system of Pfaffian equations or a 
system of total differential equations [6,12,26]. 

B. Systems of Differential Forms and Systems 
of Partial Differential Equations 

Let n be a system of differential forms (I$‘, 
O<p<n, 1 di<v,,, on X, where CI$’ is a p-form 
on X. A submanifold M of X is called an 
integral manifold of R = 0 if for each p (0 d p < 
dim M), any p-dimensional subspace E, of 
T,(M) satisfies c$(EO) = 0 (1 d i < v,) at every 
point x on M. Denote the maximal dimension 
of integral manifolds of R = 0 by m(Q). The 
problem of determining m(Q) for a given sys- 
tem R is called the generalized Pfaff problem, 

and will be explained in later sections. By 
fixing a local coordinate system of X and 

dividing it into two systems (x,, ,x,) and 
( )I~, , p,) (m = n-r), we can consider the 
problem of finding an integral manifold of R 
= 0 delined by 

y, = Y&X 1, 3 XI), l,<E<nl 

This problem can be reduced to solving a 
system of partial differential equations of the 
first order on the submanifold N with the local 
coordinate system (x1, , x,). 

Consider a system of partial differential 
equations @ = 0 of order I: 

qTI,(Xi, ya, &“) = 0, 1 Gi,ds, (3) 

with l<i<r, ldcr,~~~m,,jl+...+jl~I,where 

(4) 

A submanifold defined by yz = y,(x 1 , , x,), 
1 <c( < m, is called a solution of 0 = 0 if it satis- 
fies (3) identically. The problem of determining 
whether a given system @ = 0 has a solution 
was solved by C. Riquier, who showed that 
any system can be prolonged either to a pas- 
sive orthonomic system or to an incompatible 
system by a finite number of steps. A system 
of partial differential equations is called a 
prolongation of another system if the former 
contains the latter and they have the same 
solution. A passive orthonomic system is one 
whose general solution can be parametrized by 
an infinite number of arbitrary constants. A 
solution containing parameters is called a 
general solution if by specifying the parameters 
we can obtain a solution of the +Cauchy prob- 
lem for any initial data. A system (3) is said to 
be incompatible if it implies a nontrivial rela- 
tion f(x 1, ,x,) = 0 among the xi. 

The problem of solving a system @ = 0 of 
partial differential equations can be reduced to 
that of finding integral manifolds of a system 
of differential forms Z as follows: Let J’ be a 
manifold with the local coordinate system 

(q,y,,pi’+ 1 di<r, 1 <cc, fi<m, 

j, +...+j,<l), 

and C be a system of O-forms ~~ (I ,< i. < s) and 
1 -forms 

dy, - i Pj dx,, 
i=l 

dp; 1.” i,- i P;l...j’+l...‘rdx, 

k=1 

(1 < z, fl< m, j, + + j, < 1). Then an integral 
manifold of C = 0 of the form 
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gives a solution y, = ycl(x,, , x,), 1 < c( <m, of 
@ = 0, and y, and pil...‘r satisfy (4). 

Conversely, a solution y, = y,(x,, ,x,), 
I d x d m, of 0 = 0 gives an integral manifold 
of C = 0 if we define pjl...“(x i, , x,) by (4) 
[23,24,26]. 

C. Systems of Partial Differential Equations of 
First Order with One Unknown Function 

Consider a system of independent +vector 
fields on N: 

We solve a system of inhomogeneous 
equations 

L,Y-f,(X)Y-gy,(x)=O, 163,<s, (5) 

for a given system of ,fi.(x) and g,(x). The sys- 
tem (5) is called a complete system if each of 
the expressions 

is a linear combination of the left-hand sides of 
(5), where [L,L,] means the +commutator of 
L, and L,. This condition is called the com- 
plete integrability condition for (5). Suppose 
that the homogeneous system 

L,y=O, 1 <ids, (7) 

is complete. Then it has a system of tfunction- 
ally independent solutions y,, . . , Y,~,~, and any 
solution y of (8) is a function of them: y= 
$(yi , , y,-,). If the inhomogeneous system 
(5) is complete, then the homogeneous system 
(7) is complete. This notion of a complete 
system is due to Lagrange and was extended 
to a system of nonlinear equations by Jacobi 
as follows (- 324 Partial Differential Equa- 
tions of First Order C). 

Consider a system of nonlinear equations 

F,(x,,...,x,,Y,P,,...,P,)=o, 1 dl,<s, (8) 

where pi = ?y/Zx,. The system (8) is called an 
involutory system if each of [F>,, F,], 1 <i < 
p d s, is a linear combination of F, , , F,. 
Here ilagrange’s bracket [F, G] is defined by 

Suppose that the system (8) is involutory and 
F,, , F, are functionally independent. Then, 
in general, we can solve the following Kauchy 
problem for an (r -s)-dimensional submani- 

fold N,-, of N: Given a function j on N,-,, find 
a solution y of (8) satisfying y=f on N,-,. We 
can construct a solution by integrating a sys- 
tem of ordinary differential equations called a 
‘characteristic system of differential equations. 
Hence the solution of these problems may be 
carried out in the C”-category (-- 322 Partial 
Differential Equations (Methods Iof Integra- 
tion) B) [7,11]. 

D. Frobenius’s Theorem 

Let X be a tdifferentiable manifold of class C” 
and R be a system of independem l-forms cuir 
1 < i < s, on X. Then the system of PfalIian 
equations R = 0 is called a completely inte- 
grable system if at every point x of X, 

.5 
dw; = c 0, A wj, 1 <i<S, 

j=l 

for 1 -forms 0, on a neighborhood of x. Sup- 
pose that R=O is completely integrable. Then 
at every point x of X, there exists a local co- 
ordinate system (.f,, ,,fi,x,+, , , x,,) in a 
neighborhood U of x for which a tangent vec- 
tor 5 of X at ZE U satisfies wi(<) = 0, 1 < i < s, 
if and only if {f; = 0, 1 < i < s. In this case, each 
of the dfi is a linear combination of wi , . , u,, 
and conversely, each of the wi is a linear com- 
bination of &, . , &. In general, a function ,f 
for which !f is a linear combination of 
wi, , w, is called a first integral of Q = 0. 

The theorem of the previous paragraph 
is called Frobenius’s theorem, which can be 
stated in the dual form as follows: Let D(X) be 
a +subbundle of the itangent bundle T(X) over 
X. The mapping X sx+D,(X) is called a dis- 
tribution on X. It is said to be an involutive 
distribution if at every point x of X we can 
find a system of independent vector fields Li 
(1 < i < s) on a neighborhood U 01‘ x such that 
the L,(z) (1 d i < s) form a basis of D,(X) at 
every z E U and satisfy [ Li, Lj] = 0 (L, , , L,), 
1 < i < j < s, on U. A connected su bmanifold M 
of X is called an integral manifold of D(X) if 
T,(M) = D,(X) at every point x of M. Suppose 
that D(X) gives an involutive distribution on 
X. Then every point x of X is in a maximal 
integral manifold M that contains any integral 
manifold including x as a submanifold. 

E. Cartan-Kffhler Existence Theorems 

Let X be a +real analytic manifold. Denote the 
+sheaf of rings of differential forms on X by 
A(X) and its subsheaf of G(X)-modules of p- 
forms on X by A,,(X), 1 < p < M, where O(X) is 
the sheaf of rings of O-forms on X. A subsheaf 
of ideals C is called a differential iideal if it is 
generated by C,, 0 <p < II, and contains dC, 
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where C,, = C n A,(X). Consider a differential 
ideal C on X. Denote the +Grassmann mani- 
fold of p-dimensional subspaces of T,(X) with 
origin xsX by G,(x), and the Grassmann 
manifold UxeX G(x) over X by G,(X). An 
element E, of G,(x) is called a p-dimensional 
contact element with origin x. An element E, 
of G,(x) is called an integral element of ZP if 
a,(E,) = 0 at x for any p-form (0 in C; further- 
more, E, is called an integral element of C 
if any element E, contained in E,, 0 d q d p, is 
an integral element of 2,. In particular, O- 
dimensional and l-dimensional integral ele- 
ments are called integral points and integral 
vectors, respectively. It can be proved that an 
element E, is an integral element of Z if and 
only if it is an integral element of 2,. The polar 
element H(E,) of an integral element E, with 
origin x is defined as the subspace of T,(X) 
consisting of all vectors that generate with E, 
an integral element of Z. Let (C,)‘, 0 d p < n, be 
the subsheaf of (i(X)-modules in @(G,(X)) 
consisting of all O-forms 

1 
l<i,<...cip<n 

'i ,... ipzif...il 

on G,,(X) derived from a p-form 

C *i,...i, 
,<i,<...<i,4n 

dxi,/\...r\dx,,+,, 

where zi,...i, is the +Grassmann coordinate of 
E,. An integral element Ei is called a regular 
integral element if the following two conditions 
are satisfied: (i) (Z,,)” is a regular local equation 
of ICP at Ei, where lCP is the set of all integral 
elements of Z,,; (ii) dim H(E,) = constant around 
EE on III,. This definition, due to E. Kahler, is 
different from that given by E. Cartan [4]. 

Here, in general, a subsheaf Q of O(X) is 
called a regular local equation of I@ at an 
integral point x0 if there exists a neighborhood 
U of x,, and +cross sections cp r, , cp, of @ on 
U that satisfy the following two conditions: (i) 
dq r , , dq, are linearly independent at every x 
on U; (ii) a point x of U is an integral point of 
0 if and only if cp r (x) = = v,(x) = 0. 

First existence theorem. Suppose that we are 
given a p-dimensional integral manifold M 
with a regular integral element T,(M) at a 
point x on M. Suppose further that there exists 
a submanifold F of X containing M such that 
dimF=n-t,,,, dim(T,(F)flH(E,))=p+ 1, 
where E,= T,(M) and t,,, =dimH(E,)-p- 1. 
Then around x there exists a unique integral 
manifold N such that dim N = p + 1 and F 3 
NIM. 

This theorem is proved by integrating a 
system of partial differential equations of 
Cauchy-Kovalevskaya type. E. Cartan [2%4] 
also tried to obtain an existence theorem by 
integrating a system of ordinary differential 
equations. 

A chain of integral elements E, c E, c 
c E, is called a regular chain if each of E, ! 
(0 <p < r) is a regular integral element. For a 
regular chain E, c E, c c E,, define t,,, by 
t P+l =dimH(E,)-p- I, Odp<r, and defines,, 
bys,,=t,-t,+- 1 (O<p<r), s,= t,, where to 
= dim Ix,. Then we have s,, 3 0 (0 < p d r), so 
+ + s, = to-r, and we can take a local co- 
ordinatesystem@, ,..., x,,y, ,..., y,,,),m=n-r, 
around E, that satisfies the following four 
conditions: 
(i) ICoisdefinedbyy,O-,+l=...=y,=O; 

(ii) H(E,)= 
a a 

-, . ...-, 
ax, ax, 

a a 

-1 aY.yo+...+sp ,+l '""a~~,-~ ' 

O<p<r; 

(iii) E, ={&,...,&}, ldp<r; 

(iv) E,=(O ,..., 0,O ,..., 0). 
The integers s,,, , s, are called the characters 
of the regular chain E, c . c E,. 

Second existence theorem. Suppose that a 
chain of integral elements E, c c E, is regu- 
lar, and take a local coordinate system satisfy- 
ing (i)-(iv). Consider a system of initial data 

fi?...>f,“. 

&+,(x,), r,f;,+s,(Xl)r 

s”+s,+L(X1,XZ),“‘,.~,,+s,+.s,(X1rX*), f 

Then if their values and derivatives of the 
first order are sufhciently small, there exists 
a unique integral manifold defined by y, = 

y,(x,, . . ..x.), y,=O, I BaGto-r</ldm, 
such that 

Y&1 > ., Xpr 0, > 0) =.I&-, 1 ., Xp), 

SO+...+Sp~l <c(~so+...+s~, O<p<r. 

This theorem is proved by successive appli- 
cation of the first existence theorem. These 
two theorems are called the Cartan-Kiihler 
existence theorems. Z is said to be involutive at 
an integral element E, if there exists a regular 
chain E. c . . c E,. An integral manifold pos- 
sessing a tangent space at which C is involutive 
is called an ordinary integral manifold or ordi- 
nary solution of C. An integral manifold that 
does not possess such a tangent space is called 
a singular integral manifold or singular solution 
of G. 

Cartan’s definition of ordinary and regular 
integral elements is as follows: An integral 
point Ei is an ordinary integral point if Lo is a 
regular local equation of III0 at Ei. An ordi- 
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nary integral point Ei is a regular integral 
point if dimH(E,) is constant on I& around 
I$. Inductively, an integral element EE is 
called an ordinary integral element if (C,)” 
is a regular local equation of IZ,, at Ej and 
E,” contains a regular integral element EE-, 

An ordinary integral element Ei is a regular 
integral element (in the sense of Cartan) if 
dimH(E,) is constant on IZ,, around Ej. It can 
be proved that C is involutive at an integral 
element E, if and only if E, is an ordinary 
integral element of Z. An integral manifold 
possessing a tangent space that is a regular 
integral element of C is called a regular in- 
tegral manifold or regular solution of Z. Let 
mP+r be the minimal dimension of H(E,), 

where E, varies over the set of p-dimensional 
ordinary integral elements, and g be an integer 
such that m,,>p (1 <p<g) and mg+l =p. Then 
this integer g is called the genus of ,,!I. It is the 
maximal dimension of ordinary integral mani- 
folds of C. However, in general, it is not the 
maximal dimension of integral manifolds of Z. 

D. C. Spencer and others have been trying 
to obtain an existence theorem in the C”- 
category analogous to that of Cartan and 
Kahler. (For a system of linear partial dif- 
ferential equations - [2,4,11,13,25,27].) 

F. Involutive Systems of Partial Differential 
Equations 

To give a definition of an involutive system of 
partial differential equations, we define an 
involutive subspace of Hom( V, W), where I/ 
and W are hnite-dimensional vector spaces 
over the real number field R. Let A be a sub- 
space of Hom( V, W). For a system of vectors 
~‘r, , cP in V, A(u,, , Q) denotes the sub- 
space of A that annihilates u,, , u,,. Let gP 
be the minimal dimension of A(u,, _. , u,) as 
(v,, , I+) varies, where O<p<r=dim V. A 
basis (u,, , II,) of V is called a generic basis if 
it satisfies gP = dim A(v,, , up) for each p. 

There exists a generic basis for any A. Let W@ 
S2( V*) be the subspace of Hom( V, Hom( k’, W)) 
consisting of all elements 5 satisfying t(u)0 = 
<(u)u for any u and u in V. Then the prolonga- 
tion pA of A is defined by pA = Hom( V, A) n 

W 0 S2( V*). For any basis (II,, , v,) of V, we 

have the inequality 

dimpA< i dimA(u,, . . . . 0,). 
g=o 

The subspace A is called an involutive subspace 
of Hom( V, W) if dim pA = CL=, g,,. This notion 
of an involutive subspace was obtained by V. 
W. Guillemin and S. Sternberg [ 131. 

A triple (X, N; z) consisting of two mani- 
folds X, N and a projection 71 from Xonto N is 
called a fibered manifold if the tdifferential TZ* 

is surjective at every point of X. Take the set 
of all mappings f from a domain in N to X 
satisfying n o,f= identity for a fibered manifold 
(X, N; 7~). Then an tl-jet j:(f) is an equivalence 
class under the equivalence relation defined as 
follows: j:(f) = j:(g) if and only if x = u, f(x) = 

duX and 

i,+...+i,<I,where(x ,,..., x,)isalocalco- 
ordinate system of N around x = u (- 105 
Differentiable Manifolds X). 

Denote the space of all /-jets of a fibered 
manifold (X, N; n) by J’(X, N; n) or simply J’. 
Then a subsheaf of ideals @ in Co(P) is called a 
system of partial differential equations of order 
1 on N. A point z of J’ is called an integral 
point of @ if v(z)=0 for all cp~@,. The set of all 
integral points of @ is denoted by IQ. Let 7~’ be 
the natural projection of J’ onto J”. Then at 
a point z of Jr, we can identify Ker 71: with 
Hom(T,(N), Ker rrk), where x = 7cn ’ &z. The 
principal part C,(a) of @ is defined as the sub- 
space of Kern; that annihilates @. The pro- 
longation p@ of CD is defined as the system 
of order 1+ 1 on N generated by @b and a,@,, 
1 <k <dim N, where d, is the formal derivative 
with respect to a coordinate xk of .N: 

((iiio7)(j:~‘(f)l=a~(i:(.li), CPEW’). 
k 

Let w  be an integral point of p@ and z be 
&+l w. Then we have the identity 

PC,(@) = C,(P@). 

The following definition of an involutive 
system is due to M. Kuranishi [ 191: @ is invo- 
lutive at an integral point z if the following two 
conditions are satisfied: (i) Q, is a regular local 
equation of I@ at z; (ii) there exists a neighbor- 
hood U of z in J’ such that (&+r))’ U n I(p@) 
forms a fibered manifold with base U fl I@ and 
projection 7-c’+‘. 

A system of partial differential equations is 
said to be involutive (or involutory) if it has an 
integral point at which it is involutive. Fix a 
system of independent variables (or, . , yN) in 
X. Then a system of differential forms is said 
to be involutive (or involutory) if it has an in- 
tegral element at which it is involutive and 
dy, A.. A dy, # 0. It can be proved that these 
two definitions of involutive system are equiva- 
lent [19,25]. 

G. Prolongation Theorems 

Cartan gave a method of prolongation by 
which we can obtain an involutive system 
from a given system with two independent 
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variables, if it has a solution. He proposed the 
following problem: For any r > 2, construct a 
method of prolongation by which we can 
obtain an involutive system from a given sys- 
tem with r independent variables, if it has a 
solution. To solve this problem, Kuranishi 
prolonged a given system CD successively to 
p’@, t = 1, 2, 3, , and proved the following 
theorem: Suppose that there exists a sequence 
of integral points z’ of p’@ with n’+‘z’=z’-‘, 
t = 1,2, 3, , that satisfies the following two 
conditions for each t: (i) p’@ is a regular local 
equation of I(p’@) at z’; (ii) there exists a 
neighborhood V’ of z’ in I(p’@) such that 
z’+’ V’ contains a neighborhood of zfml in 
I@-‘@) and forms a fibered manifold 
(V’, 7?+ V’; z*“). Then p’@ is involutive at zf 
for a sufficiently large integer t. 

This prolongation theorem gives a powerful 
tool to the theory of tinfinite Lie groups. How- 
ever, if we consider a system of partial dif- 
ferential equations of general type, there exist 
examples of systems that cannot be prolonged 
to an involutive system by this prolongation, 
although they have a solution. To improve 
Kuranishi’s prolongation theorem, M. Mat- 
suda [22] defined the prolongation of the 
same order by po@ = p@ fl Lo(J’) for a system @ 
of order 1. This is a generalization of the classi- 
cal method of completion given by Lagrange 
and Jacobi. Applying this prolongation suc- 
cessively to a given system @, we have Y = 

UZl PO” @. Define the p,-operation by p* = 
lJ2ZI pzp. Then applying this prolongation 
successively to Y, we have the following theo- 
rem: suppose that there exists a sequence of 
integral points zf of pi’%’ with z’+‘z’=z~~~, 
t = 1,2, 3, . , that satisfies the following two 
conditions for each t: (i) p:Y is a regular local 
equation of I(p:Y) at z’; (ii) dimpC(p:Y) is 
constant around zf on 1(&Y). Then p:Y is 
involutive at 2’ for a sufficiently large integer t. 

To prove this theorem Matsuda applied the 
following theorem obtained by V. W. Guil- 
lemin, S. Sternberg, and J.-P. Serre [25, ap- 
pendix]: suppose that we are given a sub- 
space A, of Hom( V, W) and subspaces A, of 
Hom(V,A,-,) satisfying A,c~A,-~, t= 1, 2, 
3, . Then A, is an involutive subspace of 
Hom( V, A,-1) for a sufficiently large integer t. 
Thus Cartan’s problem was solved aflirma- 
tively. To the generalized Pfaff problem these 
prolongation theorems give another solution, 
which differs from that obtained by Riquier. 

H. Pfaffian Systems in the Complex Domain 

Consider a linear system of Pfaffian equations 

du,= i f a:(x)ujdx,, i=l, . . ..m. 
k=l j=l 

where x=(x,, . . . . x,) is a local coordinate of a 
complex manifold X and ai are meromor- 
phic functions on X. If we put u = ‘(u, , , u,,,) 
and A“(X) = (a:(x)), k = 1, , n, the system is 
written as 

du=($A*(x)dx,)u. 

System (9) is completely integrable if and only 
if 

$-$=[A’,Aj], j,l=l,..., n. 

Suppose that (9) is completely integrable. If the 
Ak(x) are holomorphic at x”=(x~, . . ..xji)~X. 
there exists for any u” E C” one and only one 
solution of (9) that is holomorphic at x0 and 
satisfies u(x”) = u”. This implies that the solu- 
tion space of (9) is an m-dimensional vector 
space; the basis of this space is called a funda- 
mental system of solutions. Therefore any 
solution is expressible as a linear combination 
of a fundamental system of solutions and can 
be continued analytically in a domain where 
the Ak(x) are holomorphic. A subvariety of X 
that is the pole set of at least one of the Ak(x) 

is called a singular locus of (9), and a point on 
a singular locus is called a singular point. 

R. Gkard has given a definition of regular 
singular points and an analytic expression of a 
fundamental system of solutions around a 
regular singular point, and he studied systems 
of Fuchsian type [S; also 9, 301. 

Let Q= Xi=1 Ak(x)dxk. Then the system (9) 
can be rewritten as 

(d-Q)u=O. 

If we consider a local coordinate (x, u) of a 
fiber bundle over X, the operator d-Q in- 
duces a meromorphic linear connection V over 
X. Starting from this point of view, P. Deligne 
[S] introduced several important concepts and 
obtained many results. 

The first results for irregular singular points 
were obtained by GCrard and Y. Sibuya [lo], 
and H. Majima [20] studied irregular singular 
points of mixed type. 

The systems of partial differential equations 
that are satisfied by the hypergeometric func- 
tions of several variables are equivalent to 
linear systems of Pfafian equations [ 11. This 
means that such systems of partial differential 
equations are tholonomic systems. M. Kashi- 
wara and T. Kawai [ 151 studied holonomic 
systems with regular singularities from the 
standpoint of microlocal analysis. Special 
types of holonomic systems were investigated 
by T. Terada [28] and M. Yoshida [29]. 

Consider a system of Pfaffian equations 

uJ,=o, j=l , . . ..I. (10) 
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where (,,,=C;I-, u,,(x)dx, and x=(x1, ,xn). 
Suppose that (lik are holomorphic in a domain 
DofC”andthatrloJ,r\cu,r\...r\m,=OinD. 
Denote by’ S the zero set of (0, A A (tic), = 0. A 
point of S is called a singular point of (10). If 
the codimension of S is > I, then system (10) is 
completely integrable in D-S. The following 
theorem was proved by B. Malgrange [21]: 
Let x0 ES, and suppose that the codimen- 
sion of S is > 3 around x0; then there exist 
functionsfi,,j=l,..., r,andgjy,j,k=l ,.__, r, 

that are holomorphic at x0 and satisfy (ui = 

C;=l gjk& and det(.y&‘))#O. 
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429 (X1.6) 
Transcendental Entire 
Functions 

A. General Remarks 

An entire function (or integral function) f(z) is a 
complex-valued function of a complex variable 
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z that is holomorphic in the finite z-plane, 
z # n;. If f(z) has a pole at m, then ,172) is a 
polynomial in z. A polynomial is called a 
rational entire function. If an entire function is 
bounded, it is constant (+Liouville’s theorem). 
A transcendental entire function is an entire 
function that is not a polynomial, for example, 
expz, sin z, cos z. An entire function can be 
developed in a power series C;%Ou,~n with 
infinite radius of convergence. If j’(z) is a tran- 
scendental entire function, this is actually an 
infinite series. 

B. The Order of an Entire Function 

If a transcendental entire function j’(z) has a 
zero of order m (m > 0) at z = 0 and other zeros 
at xl, x2 ,..., ~1, ,... (O<Ia,IdIcc,l~<)131~...~ 
x), multiple zeros being repeated, then ,j’(z) 
can be written in the form 

where g(z) is an entire function, .yk(z) = (z/x~) + 

(1/2)(zl~k)Z + (1/3)(&Y + “. + (~lP,)w,)P’, 
and pl, pr, are integers with the property 
that C,‘=, /z/x,1 pk+’ converges for all z (Weier- 
strass’s canonical product). 

E. N. Laguerre introduced the concept of 
the genus of a transcendental entire function 
,f(z). Assume that there exists an integer p for 
which C& Ic(~I -WI) converges, and take the 
smallest such p. Assume further that in the 
representation for ,f(z) in the previous para- 
graph, when p1 = p2 = = p, the function g(z) 
reduces to a polynomial of degree q; then 
max(p, 4) is called the genus of f(z). For tran- 
scendental entire functions, however, the order 
is more essential than the genus. The order p 
of a transcendental entire function f(z) is de- 
fined by 

p = lim sup log log M(r)/log r, 

where M(r) is the maximum value of l,j’(z)I on 
IzI =r. By using the coefficients ofj’(z)=Cu,,z”, 
we can write 

The entire functions of order 0, which were 
studied by Valiron and others, have prop- 
erties similar to polynomials, and the en- 
tire functions of order less than l/2 satisfy 
lim ,,,-~ min,z,Z,m l,jjz)I = m for some increasing 
sequence r,Tx (Wiman’s theorem). Hence 
entire functions of order less than l/2 cannot 
be bounded in any domain extending to intin- 
ity. Among the functions of order greater than 

112 there exist functions bounded in a given 
angular domain D: x <argz < a+ x/p. If I,f(z)I 

< exp r* (p < p) and ,f(z) is bounded on the 
boundary of D, then f’(z) is bounded in the 
angular domain (- 272 Meromorphic Func- 
tions). In particular, if the order p of j’(z) is an 
integer p, then it is equal to the genus, and 
g(z) reduces to a polynomial of degree <p (J. 
Hadamard). These theorems originated in the 
study of the zeros of the tRiemann zeta func- 
tion and constitute the beginning of the theory 
of entire functions. 

There is some difference between the prop- 
erties of functions of integral order and those 
of others. Generally, the point z at which ,f(z) 
= w  is called a w-point of f(z). If {z,,} consists 
of w-points different from the origin, the in- 
limum pi(w) of k for which C l/lz,lk converges 
is called the exponent of convergence off‘- w. 
If the order p of an entire function is integral, 
then pI (w) = p for each value w  with one pos- 
sible exception, and if p is not integral, then 
p1 (w) = p for all w  (E. Borel). Therefore any 
transcendental entire function has an infinite 
number of w-points for each value w  except for 
at most one value, called an exceptional value 
of j’(z) (Picard’s theorem). In particular, ,f(z) 
has no exceptional values if p is not integral. 
For instance, sin z and cos z have no excep- 
tional values, while e* has 0 as an exceptional 
value. Since transcendental entire functions 
have no poles, a can be counted as an excep- 
tional value. Then we must change the state- 
ment in Picard’s theorem to “except for at 
most two values.” Since the theorem was ob- 
tained by E. Picard in 1879, problems of this 
type have been studied intensively (- 62 
Cluster Sets, 272 Meromorphic Functions). 

After Picard proved the theorem by using 
the inverse of a +modular function, several 
alternative proofs were given. For instance, 
there is a proof using the Landau-Schottky 
theorem and +Bloch’s theorem and one using 
+normal families. Picard’s theorem was ex- 
tended to meromorphic functions and has also 
been studied for analytic functions defined in 
more general domains. There are many fully 
quantitative results, too. For instance, Valiron 
[3] gave such results by performing some 
calculations on neighborhoods of points where 
entire functions attain their maximum ab- 
solute values. 

Thereafter, the distribution of w-points in a 
neighborhood of an essential singularity was 
studied by many people, and in 1925 the Ne- 
vanlinna theory of meromorphic functions was 
established. The core of the theory consists of 
two fundamental theorems, +Nevanlinna’s first 
and second fundamental theorems (- 272 
Meromorphic Functions). Concerning com- 
posite entire functions F(z)=f(g(z)), P6lya 
proved the following fact: The finiteness of the 
order of F implies that the order of ,f should 
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be zero unless g is a polynomial. This gives 
the starting point of the factorization theory, 
on which several people have been working 
recently. Several theorems in the theory of 
meromorphic functions can be applied to 
the theory. One of the fundamental theorems 
is the following: Let F(z) be an entire func- 
tion, which admits the factorizations F(z) = 
P,(f,(z)) with a polynomial P, of degree m 
and an entire function f, for all integers m. 
Then F(z) = A cos JH(z) + B unless F(z) = 
A exp H(z) + B. Here, H is a nonconstant entire 
function and A, B are constant, A #O. 

C. Julia Directions 

Applying the theory of +normal families of 
holomorphic functions, G. Julia proved the 
existence of Julia directions as a precise form 
of Picard’s theorem [5]. A transcendental 
entire function f(z) has at least one direction 
arg z = f3 such that for any E > 0, f(z) takes on 
every (finite) value with one possible exception 
infinitely often in the angular domain 0 -E < 
arg z < 0 + E. This direction arg z = e is called 
a Julia direction of f(z). 

D. Asymptotic Values 

tAsymptotic values, tasymptotic paths, etc., 
are defined for entire functions as for mero- 
morphic functions. In relation to +Iversen’s 
theorem and +Gross’s theorem for inverse 
functions and results on tcluster sets, tordinary 
singularities of inverse functions hold for entire 
functions in the same way as for meromorphic 
functions. Also, as for meromorphic functions, 
ttranscendental singularities of inverse func- 
tions are divided into two classes, the tdirect 
and the tindirect transcendental singularities. 

The exceptional values in Picard’s theorem 
are asymptotic values of the functions, and 
cz is an asymptotic value of any transcenden- 
tal entire function. Therefore f(z)- co along 
some curve extending to infinity. Between 
the asymptotic paths corresponding to two 
distinct asymptotic values, there is always an 
asymptotic path with asymptotic value 03. By 
+Bloch’s theorem, A. Bloch showed that the 
+Riemann surface of the inverse function of a 
transcendental entire function contains a disk 
with arbitrarily large radius. Denjoy conjec- 
tured in 1907 that p < 2p, where p is the order 
of an entire function and p is the number of 
distinct finite asymptotic values of the func- 
tion, and L. V. Ahlfors gave the first proof 
(1929). This result contains Wiman’s theorem. 
There are transcendental entire functions with 
p = 2~. It was shown by W. Gross that among 
entire functions of infinite order there exists 

an entire function having every value as its 
asymptotic value. 
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430 (v.11) 
Transcendental Numbers 

A. History 

A complex number (x is called a transcendental 
number if c( is not talgebraic over the field of 
rational numbers Q. C. Hermite showed in 
1873 that e is a transcendental number. Fol- 
lowing a similar line of thought as that taken 
by Hermite, C. L. F. Lindemann showed that 
n is also transcendental (1882). Among the 23 
problems posed by D. Hilbert in 1900 (- 196 
Hilbert), the seventh was the problem of estab- 
lishing the transcendence of certain numbers 
(e.g., 2*). This stimulated fruitful investiga- 
tions by A. 0. Gel’fond, T. Schneider, C. L. 
Siegel, and others. The theory of transcen- 
dental numbers is, however, far from complete. 
There is no general criterion that can be uti- 
lized to characterize transcendental numbers. 
For example, neither the transcend.ence nor 
even the irrationality of the +Euler constant 
C=lim .,,(l -t- l/2+ . . . + l/n-log,l) has been 
established. A survey of the development of 
the theory of transcendental numbers can be 
found in [18], in which an extensive list of 
relevant publications up to 1966 is given. 

B. Construction of Transcendental Numbers 

Let a be the field of talgebraic numbers. Sup- 
pose that CI is an element of 0 that satisfies the 
irreducible equation f(x)= a,~“+ a1 xX-l+ 
+ a,, =O, where the ai are rational integers, 
a,, # 0, and a,, a,, . , a, have no common 
factors. Then we define H(Z) to be rhe maxi- 
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mum of lail (i=O, . . ..n) and call it the height 
of X. J. Liouville proved the following theorem 
(1844): Let 5 be a real number (<$Q). If 
inf{q”l<-p/qIIp/qEQ}=Ofor any positive 
integer n, then 5 is transcendental. 

Transcendental numbers having this prop- 
erty are called Liouville numbers. Examples 
are: (i) < = C,“=, g -“, where g is an integer not 
smaller than 2. (ii) Suppose that we are given 
a sequence Ink} of positive integers such that 
nk+a (k*co). Let 5 be the real number 
expressed as an tinfinite simple continued frac- 
tion h, + l/h, i l/h, i Let B, be the denomi- 
nator of the Ith iconvergent of the continued 
fraction. If b,,k+, > B,“:- ’ for k > 1, then < is a 
Liouville number. 

On the other hand, K. Mahler [S, 91 proved 
the existence of transcendental numbers that 
are not Liouville numbers. For example, he 
showed that if f(x) is a nonconstant inte- 
gral polynomial function mapping the set 
of positive integers into itself, then a number 
< expressed, e.g., in the decimal system as 
Oy,y,y, is such a number if we put y,=f(n), 
n= 1, 2, 3, . . . (In particular, from f(x) = x we 
get the non-Liouville transcendental number 5 
=0.123456789101112.. .) Mahler proved this 
result by using +Roth’s theorem (1955) (- 182 
Geometry of Numbers). Both Liouville and 
Mahler utilized the theory of +Diophantine 
approximation to construct transcendental 
numbers. 

On the other hand, Schneider [lo- 121 and 
Siegel [3] constructed transcendental num- 
bers using certain functions. Examples are: 
expa (~EQ, cc#O); xp (~EQ, a#O, I; fi~Q-Q); 
J(r), where J is the +modular function and z 
is an algebraic number that is not contained 
in any imaginary quadratic number field; 
y(27ci/~), where 5” is the Weierstrass w- 
function, n E Q, and CI # 0; and B(p, q), where B 
is the iBeta function and p, q E Q - Z. 

Since e = exp I and I = exp 2zi, the tran- 
scendence of e and 71 is directly implied by the 
transcendence of exp a (a E Q, x # 0). 

C. Classification of Transcendental Numbers 

(I) Mahler’s classification: Given a complex 
number 5 and positive integers n and H, we 
consider the following: 

w,(t) = w, =li; yp( - log w,W, O/logH), 

w(t)=w=limsupw,([)/n, 
n--r 

and let p = the first number n for which w,, is 
x. Then we have the following four cases: 
(i)w=O,p=~;(ii)O<w<nc,p=co;(iii)w= 
p = m; (iv) w  = “o, p < w, corresponding to 
which we call 5 an A-number, S-number, T- 
number, or U-number. The set of A-numbers 
is denoted by A, and similarly we have the 
classes S, T, and U. It is known that A = a. 
If two numbers 5 and q are talgebraically 
dependent over Q, then they belong to the 
same class. If r belongs to S, the quantity a(<) 
=sup{w,(5)/nIn= 1,2, . ..} is called the type of 
4 (in the sense of Mahler). Mahler conjectured 
that almost all transcendental numbers (except 
a set of Lebesgue measure zero) are S-numbers 
of the type 1 or l/2 according as they belong 
to R or not. Various results were obtained 
concerning this conjecture (W. J. LeVeque, J. 
F. Koksma, B. Volkmann) until it was proved 
by V. G. Sprindzhuk in 1965 [ 14,151. The 
existence of T-numbers was proved by W. M. 
Schmidt (1968) [ 161. All Liouville numbers are 
U-numbers [7]. On the other hand, logcl (xEQ, 
a > 0, 2 # 1) and n are transcendental numbers 
that do not belong to U. 

(2) Koksma’s classification: For a given 
transcendental number 5 and positive numbers 
n and H, we consider the following: 

w,*(H,5)=min{l5-cxIIaEQ, 

H(4 G H, CQ(4: Ql d n), 

w,*(5) = ti = Iif s;p( - log(Hw,*W, 5)Ylog HI, 

w*(<)=w*=limsupw,*(<)/n, 

and let p* = the first number n for which w,* is 
co. Then we have the following three cases: (i) 
w*<m,p*= x; (ii) w* =p* = co; (iii) w* = m, 
p* < co. We call 5 an S*-number, T*-number, 
or U*-number according as (i), (ii), or (iii) holds 
and denote the set of S*-numbers by S*, etc. If 
i; belongs to S*, we call 0*(<)=sup{w:(t)/nIn 
= 1,2, . } the type of 5 (in the sense of Kok- 
sma). It can be shown that S = S*, T = T*, and 
U=U*, and that if <ES, then O*(t)<O(<)< 
e*(t)+ 1. 

D. Algebraic Independence 

Concerning the algebraic relations of tran- 
scen.dental numbers, we have the following 
three principal theorems: 

(I) Let sl, . . . . x,,, be elements of Q that 
are linearly independent over Q. Then 
exp z(1) , exp urn are transcendental and alge- 
braically independent over Q (Lindemann- 
Weierstrass theorem). 

(2) Let J,(x) be the tBessel function and CI a 
nonzero algebraic number. Then Jo(a) and 
J;(Z) are transcendental and algebraically 
independent over Q (Siegel). 
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(3) Let x1, , r*,, be nonzero elements of 0 
such that log z 1, , log x, are linearly inde- 
pendent over Q. Then 1, log cc,, , logx, are 
linearly independent over 0 (A. Baker). 

Besides these theorems, various related 
results have been obtained by A. B. Shidlovskii, 
Gel’fond, N. I. Fel’dman, and others. A quanti- 
tative extension of theorem (3), also by Baker, 
will be discussed later. 

First we give more detailed descriptions 
of theorems (1) and (2). Let a,, , E, be 
as in theorem(l), s=[Q(cc,, . . . . a,):Q], 
P(X,, ,X,) be an arbitrary polynomial in 
Q[X,, ..,,X,] ofdegree II, and H(P) be the 
maximum of the absolute values of the coeffi- 
cients of the polynomial P. Then there exists a 
positive number C determined only by the 
numbers c(, , , a, and n( = deg P) such that 

1 P(e”l , . . ..e’m)I>CH(P) 
-2~(2(2~~y*+~)-l) 

In particular, if CI is a nonzero algebraic 
number, then exp a belongs to S and Il(exp a) 
< 8s2 + 6s. 

(2’) Let a be a nonzero algebraic number, 
s=[Q(n):Q], PEQ[X~,XJ, degP=n. Then 
there exists a positive number C determined 
only by a and II such that )P(J,(a), &(a))\ z 
CH(P) -SZs’n”, 

Theorems (1) and (2) are actually special 
cases of a theorem obtained by Siegel. To state 
this theorem, the following terminology is 
used: An entire function ,f(z) = C40 C; z”/n! 
is called an E-function defined over an +alge- 
braic number field K of finite degree if the fol- 
lowing three conditions are satisfied: (i) Cn6 K 
(n = 0, 1,2, ). (ii) For any positive number F, 
C,, = O(n’“). (iii) Let 4, be the least positive 
integer such that C,q, belongs to the ring Q of 
algebraic integers in K (0 <n, 0 <k d n). Then 
for an arbitrary positive number E, q, = O(n’“). 

A system { fi(z), &,(z)} of E-functions 
defined over K is said to be normal if it satis- 
fies the following two conditions: (i) None of 
the functions j;(z) is identically zero. (ii) If the 
functions w, =,fk(z) (k = 1, , m) satisfy a sys- 
tem of thomogeneous linear differential equa- 
tions of the first order, then w;= C:, Qk,(z)w,, 
where the Qkl(z) are rational functions of z, 
with coefficients in the ring 0. The matrix (Qkl) 
can be decomposed by rearranging the order 
of the indices k, I if necessary into the form 

(7 ;), 

where 

The decomposition is unique if we choose r 
as large as possible, in which case we call 
W,, , W, the primitive parts of (QJ. The 
requirement is that the primitive parts q are 
independent in the following sense: If there are 
numbers C,,E K and polynomial functions 
PJz)E K[z] such that 

&C,,...Cmt,)M: plliz) =o, 

I I Pn&) 

then C,, = 0, Pkl(z) = 0. 
Let N be a positive integer. A normal sys- 

tem {,1;(z), &(z)} of E-functions is said to 
be of degree N if the system {Fn,,,,,,,,(z)= 
,f, (z)“l i,(z)nm 1 ni > 0, CE”=, n, < N} is also 
a normal system of E-functions. Then the 
theorem obtained by Siegel [4] is: Let N be an 
arbitrary positive integer and { ,fl(z), J,,,(z)) 
be a normal system of E-functions of degree 
N defined over an algebraic number field of 
finite degree K satisfying the system of differen- 
tial equations f;(z) = C$, Qk,(z),fr(~), where 
QkI(z)~D(z), 1 Sk < m. If CI is a nonzero alge- 
braic number that is not a tpole of any one 
of the functions Qk,(z), then f;(a), ,,f,(a) are 
transcendental numbers that are arlgebraically 
independent over the field Q. 

Theorem (3) at the beginning of this sec- 
tion implies, for example, the following: (i) If 
c(~, . , CX,, and /jl, , /?” all belong to Q and 
g=~,log~,+...+a,log/3,#O,then~istran- 
scendental. (ii) If x,, . . , CI,,, &, &, , li; are 
nonzero algebraic numbers, then e%x{l x/n 
is transcendental. (iii) If al, , rn are alge- 
braic numbers other than 0 and 1. and /il, 
. ..) & also belong to 0, with 1, fl,. , /I” 
linearly independent oyer Q, then a{~ z,$ 
is transcendental. 

Baker [17] also obtained a quantitative 
extension of theorem (3): Suppose that we 
are given integers A 3 4, d > 4 and nonzero 
algebraic numbers x1, , a, (n > 2 I whose 
heights and degrees do not exceed A and rl, 
respectively. Suppose further that 0 < 6 < 1, 
andletloga,,..., logsc, be the principal values 
of the logarithms. If there exist rational in- 
tegers b,, , b, with absolute value at most H 
such that 

then 

This theorem has extensive applications in 
various problems of number theory, including 
a wide class of +Diophantine problems [19]. 

A number of new, interesting results on the 
algebraic independence of values of exponen- 
tial functions, elliptic functions, and some 
other special functions have been obtained 
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recently by D. Masser, G. V. Chudnovskii, M. 
Waldschmidt, and other writers. In particular, 
ChudnovskiI (1975) obtained the remarkable 
result that I( l/3) and F( l/4) are transcenden- 
tal numbers. See [20&24]. 
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431 (IX.1 9) 
Transformation Groups 

A. Topological Transformation Groups 

Let G be a group, A4 a set, and ,f a mapping 
from G x M into M. Put f(g,x)=g(x) (gcG, 
x E M). Then the group G is said to be a trans- 
formation group of the set M if the following 
two conditions are satisfied: (i) e(x) = x (x6 n/l), 
where e is the identity element of G; and (ii) 
(gh)(x)=g(h(x)) (xEM) for any g, hcG. In 
this case the mapping x-g(x) is a one-to-one 
mapping of M onto itself. 

Let G be a transformation group of M. If G 
is a topological group, M a topological space, 
and the mapping (g,x)+g(x) a continuous 
mapping from G x M into M, then G is called 
a topological transformation group of M. In 
this case x-g(x) is a homeomorphism of M 
onto itself. The mapping (g,x)+g(x) is called 
an action of G on M. The space M, together 
with a given action of G, is called a G-space. 

For a point x of M, the set G(x) = {g(x) 1 
9 E G} is called the orbit of G passing through 
the point x. Defining as equivalent two points 
x and y of M belonging to the same orbit, we 
get an equivalence relation in M. The quotient 
space of M by this equivalence relation, de- 
noted by M/G, is called the orbit space of 
G-space M. 

If G(x) = {x}, then x is called a fixed point. 
The set of all fixed points is denoted by M". 
For a point x of M, the set G,={gEGlg(x)= 
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x\ is a subgroup of G called the isotropy 
subgroup (stabilizer, stability subgroup) of G at 
the point x. A conjugacy class of the subgroup 
G, is called an isotropy type of the transforma- 
tion group G on M. 

The group G is said to act nontrivially (resp. 
trivially) on M if M #MC (resp. M = M”). The 
group G is said to act freely on M if the iso- 
tropy subgroup G, consists only of the identity 
element for any point x of M. 

The group G is said to act transitively on M 
if for any two points x and y of M, there exists 
an element g E G such that g(x) = 4’. 

Let N be the set of all elements gE G such 
that g(x) = x for all points x of M. Then N is a 
normal subgroup of G. If N consists only of 
the identity element e, we say that G acts effec- 
tively on M, and if N is a discrete subgroup of 
G, we say that G acts almost effectively on M. 
When N # {e), the quotient topological group 
G/N acts effectively on M in a natural fashion. 

An equivariant mapping (equivariant map) 
(or a G-mapping, G-map) h: X + Y between G- 
spaces is a continuous mapping which com- 
mutes with the group actions, that is, &J(X) = 
g(h(x)) for all gsG and x6X. An equivariant 
mapping which is also a homeomorphism is 
called an equivalence of G-spaces. 

For a G-space M, an equivalence class of the 
G-spaces G(x), XE M, is called an orbit type of 
the G-space M. 

B. Cohomological Properties 

We consider only tparacompact G-spaces and 
+Cech cohomology theory in this section. We 
shall say that a topological space X is finitistic 
if every open covering has a finite-dimensional 
refinement. The following theorems are useful 
[l-3]. 

(1) If G is finite, X a finitistic paracompact 
G-space, and K a field of characteristic zero or 
prime to the order of G, then the induced 
homomorphism rt*: H*(X/G; K)+H*(X; K)G 
is an isomorphism. Here, n is a natural projec- 
tion of X onto X/G. The group G acts natu- 
rally on H*(X; K), and H*(X; K)G denotes the 
fixed-point set of this G-action. 

(2) Let X be a finitistic G-space and G cyclic 
of prime ordor p. Then, with coefftcients in 
ZjpZ, we have 

(a) for each II f rank Hi(XG)< f rank H’(X), 
i=fl i=n 

W x(X)+(P-~)X(X’)=PX(XIG). 

Here the +Euler-Poincare characteristics x( ) 
are defined in terms of modp cohomology. 

(3) Smith’s theorem: If G is a p-group (p 
prime) and if x is a finitistic G-space whose 
modp cohomology is isomorphic to the n- 

sphere, then the mod p cohomology of the 
fixed-point set XG is isomorphic to that of the 
r-sphere for some - 1 d r ,< n, where (-l)- 
sphere means the empty set. 

(4) Let Tk denote the k-dimensional toral 
group. Let X be a Tk-space whose rational 
cohomology is isomorphic to the n-sphere, and 
assume that there are only a finite number of 
orbit types and that the orbit spaces of all 
subtori are finitistic. Let H be a subtorus of Tk. 
Then by the above theorem the rational coho- 
mology of XH is isomorphic to that of the 
r(H)-sphere for some - 1 <r(H) < 11. Assume 
further that there is no fixed point of the Tk- 
action. Then, with H ranging over all subtori 
of dimension k - 1, we have 

nt 1 =z(r(H)+ 1). 
H 

C. Differentiable Transformation Groups 

Suppose that the group G is a transformation 
group of a tdifferentiable manifold M, G is a 
+Lie group, and the mapping (y, x)-g(x) of 
G x M into M is a differentiable mapping. 
Then G is called a differentiable transformation 
group (or Lie transformation group) of M, and 
M is called a differentiable G-manifold. 

The following are basic facts about compact 
differentiable transformation groups [3,4]: 

(5) Differentiable slice theorem: Let G be a 
compact Lie group acting differentiably on a 
manifold M. Then, by averaging an arbitrary 
+Riemannian metric on M, we may have a G- 
invariant Riemannian metric on M. That is, 
the mapping x+g(x) is an tisometry of this 
Riemannian manifold M for each g E G. For 
each point XE M, the orbit G(x) through x is a 
compact submanifold of M and the mapping 
gHg(x) defines a G-equivariant diffeomor- 
phism G/G,gG(x), where G/G, is the left quo- 
tient space by the isotropy subgroup G,. G, 
acts orthogonally on the ttangent space T, M 
at x (resp. the tnormal vector space N, of the 
orbit C(x)); we call it the isotropy representa- 
tion (resp. slice representation) of G, at x. Let E 
be the tnormal vector bundle of the orbit G(x). 
Since G acts naturally on E as a bundle map- 
ping, the bundle E is equivalent to the bundle 
(C x NJ/G, over G/G, as a +G-vector bundle, 
where G, acts on N, by means of the slice 
representation and G, acts on G by the right 
translation. We can choose a small positive 
real number E such that the texponential 
mapping gives an equivariant tdiffeomorphism 
of the s-disk bundle of E onto an invariant 
itubular neighborhood of G(x). 

(6) Assume that a compact Lie group G acts 
differentiably on M with the orbit :space M* = 
M/G connected. Then there exists a maximum 
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orbit type G/H for G on A4 (i.e., H is an iso- 
tropy subgroup and H is conjugate to a sub- 
group of each isotropy group). The union Mo, 
of the orbits of type G/H is open and dense in 
M, and its image M&, in M* is connected. 

The maximum orbit type for orbits in M 
guaranteed by the above theorem is called the 
principal orbit type, and orbits of this type are 
called principal orbits. The corresponding 
isotropy groups are called principal isotropy 
groups. Let P be a principal orbit and Q any 
orbit. If dim P > dim Q, then Q is called a sin- 
gular orbit. If dim P = dim Q but P and Q are 
not equivalent, then Q is called an exceptional 
orbit. 

(7) Let G be a compact Lie group and M a 
compact G-manifold. Then the orbit types are 
finite in number. 

By applying (5) and (6) we have that an iso- 
tropy group is principal if and only if its slice 
representation is trivial. 

The situation is quite different in the case 
of noncompact transformation groups. For 
example, there exists an analytic action of 
G = SL(4, R) on an analytic manifold M such 
that each orbit of G on M is closed and of 
codimension one and such that, for x, J’E M, 
G, is not isomorphic to G, unless x and 4’ lie 
on the same G-orbit [S]. 

D. Compact Differentiable Transformation 
Groups 

Many powerful techniques in idifferential 
topology have been applied to the study of 
differentiable transformation groups. For 
example, using the techniques of isurgery, we 
can show that there are infinitely many free 
differentiable circle actions on thomotopy 
(2n + I)-spheres (n > 3) that are differentiably 
inequivalent and distinguished by the rational 
+Pontryagin classes of the orbit manifolds 
(W. C. Hsiang [6]). Also, using +Brieskorn 
varieties, we can construct many examples of 
differentiable transformation groups on homo- 
topy spheres [3,4,7]. Differentiable actions 
of compact connected Lie groups on homol- 
ogy spheres have been studied systematically 
(Hsiang and W. Y. Hsiang [4]). 

The Atiyah-Singer +index theorem has 
many applications in the study of transfor- 
mation groups. The following are notable 
applications: 

(8) Let M be a compact connected ioriented 
differentiable manifold of dimension 4k with 
a tspin-structure. If a compact connected 
Lie group G acts differentiably and nontriv- 
ially on M, then the A-genus (<d(M), [M]) 
of M vanishes (where d(M) denotes the +A^- 
characteristic class of M) (M. F. Atiyah and F. 

Hirzebruch [S], K. Kawakubo [9]). For fur- 
ther developments, see A. Hattori [IO]. 

(9) Let M be a closed oriented manifold with 
a differentiable circle action. Then each con- 
nected component Fk of the fixed point set 
can be oriented canonically, and we have 

k 

where I( ) denotes the +Thom-Hirzebruch 
index [S, 93. 

Let G be a compact Lie group and G- 
EG-BG the tuniversal G-bundle. Then the 
+singular cohomology H*(EG x cX) is called 
equivariant cohomology for a G-space X and is 
an H*(BG)-module. Let G= U(l), M a dif- 
ferentiable U( 1)-manifold, F = MC, and i: F-1 
M the inclusion mapping. Then the tlocaliza- 
tion of the induced homomorphism 

S-‘i*:S-‘H*(EG x &+S~‘H*(BGx F) 

is an isomorphism, where S-’ denotes the 
localization with respect to the multiplicative 
set S = {atk} with a, k ranging over all posi- 
tive integers and t the generator of H’(BG). 
Theorems (8) and (9) can be proved by the 
above localization isomorphism. 

Let M be a differentiable manifold. The 
upper bound N(M) of the dimension of all the 
compact Lie groups that acts effectively and 
differentiably on M is called the degree of 
symmetry of M. It measures, in some crude 
sense, the symmetry of the differentiable mani- 
fold M. The number N(M) depends heavily on 
the differentiable structure. For example, 
N(S”‘) = m(m + 1)/2 for the standard m-sphere, 
but N(C”‘) <(m+ 1)2/16 + 5 for a thomotopy 
m-sphere (m B 300) that does not bound a 
+n-manifold [ 111. Also, N(P,(C)) = n(n + 2) 
for the complex projective n-space P.(C), but 
N(hP,(C))<(n+ l)(n+2)/2 for any homotopy 
complex projective n-space hP,(C) (n > 13) 
other than P.(C) (T. Watabe [12]). 

Let X be a differentiable closed manifold 
and h : X + P,(C) be an orientation-preserving 
thomotopy equivalence. There is a conjec- 
ture about the total A-classes that states: If X 
admits a nontrivial differentiable circle action, 
then d(X)= h*.d(P,,(C)) (T. Petrie [13]). It is 
known that if the action is free outside the 
fixed-point set, then the conjecture is true 
(T. Yoshida [ 141). 

1 E. Equivariant Bordism 

Fix a compact Lie group G; a compact ori- 
ented G-manifold ($, M) consists of a compact 
toriented differentiable manifold M and an 
orientation-preserving differentiable G-action 
$:GxM+Mon M. 
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Given families F 2 F’ of subgroups of G, a 
compact oriented G-manifold ($, M) is (F, F’)- 
free if the following conditions are satisfied: (i) 
if XE M, then the isotropy group G, is conju- 
gate to a member of F; (ii) if x~aM, then G, is 
conjugate to a member of F’. 

If F’ is the empty family, then necessarily 
dM is empty and M is closed. In this case we 
say that ($, M) is F-free. 

Given ($,M), define -($,M)=($, -M) 
with the structure precisely the same as (II/, M) 
except for torientation. Also define a($, M) = 
($, i;M). Note that if (I/J, M) is (F, F’)-free, then 
(r/j, c?M) is F-free. Define ($, M) and (I/?, M’) to 
be isomorphic if there exists an equivariant 
orientation-preserving diffeomorphism of M 
onto M’. 

An (F, F’)-free compact oriented n- 
dimensional G-manifold ($, M) is said to bord 
if there exists an (F, F)-free compact oriented 
(n + 1)-dimensional G-manifold (Q, W) to- 
gether with a regularly embedded compact n- 
dimensional manifold M, in aIVwith M, 
invariant under the G-action @ such that 
(0, M,) is isomorphic to ($, M) and G, is con- 
jugate to a member of F’ for x E i’ W - M, 
Also, M, is required to have its orientation in- 
duced by that of W. 

We say that ($,, M,) is bordant to ($2, M2) if 
the disjoint union ($,, M,)+($,, - M2) bords. 
Bordism is an equivalence relation on the class 
of (F, F’)-free compact oriented n-dimensional 
G-manifolds. The bordism classes constitute 
an Abelian group Oz(F, F’) under the oper- 
ation of disjoint union. If F’ is empty, denote 
the above group by Of(F). The direct sum 

O;(F,F’)=@O,G(F,F’) 
n 

is naturally an R-module, where Q is the 
ioriented cobordism ring. If F consists of all 
subgroups of G, then O:(F) is denoted by 0:. 

Suppose now that F =) F’ are fixed families 
of subgroups of G. Every F’-free G-manifold 
is also F-free, and so this inclusion induces 
a homomorphism z:Oz(F’)+Of(F). Simi- 
larly every F-free G-manifold is also (F, F’)- 
free, inducing a homomorphism /J’:O~(F)+ 
Of(F, F’). Finally, there is a homomorphism 
?:O:(F, F’)+O:-,(F’) given by a($, M)= 
(I/?, ciM). Then the following sequence is exact 
[15]: 

. ..~O~(Fr)~O.G(F)~O~(F,F’)~O~~,(F’)%,.... 

A weakly almost complex compact G- 
manifold (+, M) consists of a r-weakly almost 
complex compact manifold M and a differ- 
entiable G-action II, : G x M + M that preserves 
the weakly almost complex structure on M. 
U$(F, F’), Uz are defined similarly, and they 
are U,-modules, where U, is the tcomplex 

cobordism ring of compact weakly almost 
complex manifolds. 

To study 0: and U,“, (co)bordism theory is 
introduced (P. E. Conner and E. E. Floyd 
[16]), which is one of the +generalized (co)- 
homology theories. Miscellaneous results are 
known, in particular, for G a cyclic group of 
prime period. By means of the eqmvariant 
+Thom spectrum, equivariant cobordism 
theory can be developed (T. tom Dieck [ 171); 
this is a multiplicative generalized ecohomology 
theory with Thorn classes (- 114 Differential 
Topology; also - 201 Homology -Theory, 56 
Characteristic Classes). 

F. Equivariant Homotopy 

Let G be a compact Lie group. On the category 
of closed G-manifolds, we say that two objects 
M, N are X-equivalent if I( MH) = x( N”) for all 
closed subgroups H of G, where x( ) is the 
+Euler-Poincare characteristic. On the set of 
equivalence classes A(G), a ring structure is 
imposed by disjoint union and the Cartesian 
product. We call A(G) the Burnside ring of G. 
If G is finite, A(G) is naturally isomorphic to 
the classical Burnside ring of G [ 181. 

Denote by S( I’) the unit sphere of an or- 
thogonal G-representation space I: Let I’, 
W be orthogonal G-representation spaces. 
The equivariant stable homotopy group 
[[S(V), S(W)]], which is defined as the direct 
limit of the equivariant homotopy sets [S( I/+ 
U), S( W+ U)], taken over orthogonal G- 
representation spaces U and suspensions, is 
denoted by cu, for CI= V- WERO(G). The 
+smash product of representatives induces a 
bilinear pairing w, x LC)P~W,+~. Then w, is a 
ring, and w, is an w,-module. The ring w0 is 
isomorphic to the Burnside ring of G, and w, is 
a +projective w,-module of rank one. The a,,- 
module w, is free if and only if S( I’) and S(W) 
are stably G-homotopy equivalent [lS]. 

Let E be an orthogonal G-vector bundle 
over a compact G-space X. Denote by S(E) the 
sphere bundle associated with E. Let E, F be 
orthogonal G-vector bundles over X. Then E 
and F have the same spherical G-fiber bomo- 
topy type if there exist fiber-preserving G- 
mappings ,f:S(E)-tS(F), .f’:S(F)-tS(E) and 
fiber-preserving G-homotopies h,: S(E)+S(E), 
k;:S(F)+S(F) such that h,=.f’of; h, =identity, 
&=,fo,f’, h’i =identity. Let KO,(X) be the 
+equivariant K-group of real G-vector bundles 
over X. Let T,(X) be the additive subgroup of 
KO,(X) generated by elements of the form [E] 
-[F], where E and F are orthogonal G-vector 
bundles having the same spherical G-fiber 
homotopy type. The factor group Jc(X)= 
KO,(X)/T,(X) and the natural projection 
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J,: KO,(X)+J,(X) are called an equivariant 
J-group and an equivariant J-homomorphism, 
respectively (- 237 K-Theory). 

In particular, J,( (x0}) is a factor group of 
the real representation ring RO(G). +Adams 
operations on representation rings are the 
main tools for studying the group JG( {x0}) 

1181. 

G. Infinitesimal Transformations 

Let j’: G x M-tM be a differentiable action of 
a Lie group G on a differentiable manifold M. 
Let X be a ileft invariant vector field on G. 
Then we can define a differentiable vector field 
.f’(X) on M as 

for each q~ M and any differentiable function 
h defined on a neighborhood of 4. It is easy 
to see that ,j”(X), = 0 if and only if q is a 
fixed point of the one-parameter subgroup 
(exp(tX)}. A vector field ,f’(X) is called an 
infinitesimal transformation of the differenti- 
able transformation group G. 

The set R of all infinitesimal transformations 
of G forms a finite-dimensional tLie algebra 
(the laws of addition and tbracket product are 
defined from those for the vector fields on M). 
If G acts effectively on M, 9 is isomorphic to 
the Lie algebra of the Lie group G (- 249 Lie 
Groups). In fact, the correspondence X4 
,f”(X) defines a Lie algebra homomorphism 
,f’ from the Lie algebra of all left invariant 
vector fields on G into the Lie algebra of all 
differentiable vector fields on M [19]. 

The following fact [20] is useful for the 
study of noncompact real analytic transfor- 
mation groups. Let 9 be a real tsemisimple 
Lie algebra and p:g+L(M) be a Lie algebra 
homomorphism of g into a Lie algebra of real 
analytic vector fields on a +real analytic mani- 
fold M. Let p be a point at which the vector 
fields in the image p(g) have common zero. 
Then there exists an analytic system of coordi- 
nates (U; u, , , u,) with origin at p in which 
all the vector fields in p(g) are linear. Namely, 
there exists aijcg* = Hom,(g, R) such that 

The correspondence X+(u,(X)) defines a Lie 
algebra homomorphism of g into sl(m, R). 

For example, we can show that a real ana- 
lytic SL(n, R) action on the m-sphere is charac- 
terized by a certain real analytic vector field on 
(m-n+ l)-sphere (5<n<m<2n-2) [21]. In 
particular, there are infinitely many (at least the 
cardinality of the real numbers) inequivalent 

real analytic SL(n, R) actions on the m-sphere 
(3,<n<m). 

Conversely, let g be a finite-dimensional Lie 
algebra of vector fields on M. Although there 
is not always a differentiable transformation 
group G that admits g as its Lie algebra of 
infinitesimal transformations, the following 
local result holds. Let G be the tsimply con- 
nected Lie group corresponding to the Lie alge- 
bra g. Then for each point x of M, there exist 
a neighborhood 0 of the identity element e 
of G, neighborhoods V, W (V c W) of x, and a 
differentiable mapping ,j” of 0 x V into W with 
the following properties. Putting .f‘(s, y) = y(y) 
(g~o,y~ V), we have: (i) For all J’E V, e(y)=y. 
(ii) If 9, h E 0, Y E V, then (d4~) = dh(y)), pro- 
vided that gh~ 0, hi I/. (iii) Let X be an 
arbitrary element of g. Put g, = exp( - tX), the 
corresponding one-parameter subgroup of G. 
If e > 0 is taken small enough, then we have 
~,/,~~forItl<~sothat&(y)(ltl<~,y~1/)iswell 
defined. Therefore g1 determines a vector field 
x on V by the formula 

The vector field 8 coincides with the restric- 
tion of X to V. This local proposition is often 
expressed by the statement that g generates a 
local Lie group of local transformations, which 
is called Lie’s fundamental theorem on local 
Lie groups of local transformations. 

H. Criteria 

It is important to know whether a given trans- 
formation group is a topological or a Lie 
transformation group. The following theorems 
are useful for this purpose [22,23]: 

(IO) Let G be a transformation group of a 
+locally compact Hausdorff space M. If we 
introduce the tcompact-open topology in 
G, then G is a topological transformation 
group of M when M is locally connected or M 
is a tuniform topological space and G acts 
+equicontinuously on M. 

(1 I) Suppose that M is a +C’-manifold and 
G is a topological transformation group of M 
acting effectively on M. If G is locally compact 
and the mapping x-g(x) of M is of class C’ 
for each element 9 of G, then G is a Lie trans- 
formation group of M. 

(I 2) Assume that G is a transformation 
group of a differentiable manifold M and G 
acts effectively on M. Let g be the set of all 
vector fields on M defined by one-parameter 
groups of transformations of M contained in G 
as subgroups. If g is a fmite-dimensional Lie 
algebra, then G has a Lie group structure with 
respect to which G is a Lie transformation 
group of M, and then g coincides with the Lie 
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algebra formed by the infinitesimal transfor- 
mations of G. 

By applying theorems (lo), (1 I), and (12) we 
can show that the following groups are Lie 
transformation groups: the group of all +iso- 
metries of a +Riemannian manifold; the group 
of all aftine transformations of a differentiable 
manifold with a tlinear connection (generally, 
the group of all transformations of a differenti- 
able manifold that leave invariant a given 
+Cartan connection); the group of all analytic 
transformations of a compact complex mani- 
fold (this group is actually a complex Lie 
group); and the group of all analytic (holomor- 
phic) transformations of a bounded domain 
in C”. 

For related topics - 105 Differentiable 
Manifolds, 114 Differential Topology, 122 
Discontinuous Groups, 153 Fixed-Point 
Theorems, 427 Topology of Lie Groups and 
Homogeneous Spaces, etc. 
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432 (Vl.8) 
Trigonometry 

A. Plane Trigonometry 

Fix an orthogonal frame O-X Y in a plane, and 
take a point P on the plane such that the angle 
POX is c(. Denote by (x, y) the coordinates of 
P, and put OP = r (Fig. 1). We call the six ratios 
sin cI = y/r, cos a = x/r, tan a = y/x, cot a =x/y, 
set a = r/x, cosec a = r/y the sine, cosine, tan- 
gent, cotangent, secant, and cosecant of a, re- 
spectively. These functions of the angle a are 
called trigonometric functions or circular func- 
tions (- 131 Elementary Functions). They 
are periodic functions with the fundamental 
period rc for the tangent and cotangent, and 27r 
for the others. The relation sin’s + cos* a = 1 
and the addition formulas sin(a + /3) = sin a cos /I 
* cos a sin p, cos(a * p) = cos a cos /I F sin a sin p 
follow from the definitions (- Appfendix A, 
Table 2). Given a plane triangle ABC (Fig. 2) 
we have the following three propert.ies: (i) a = 
h cos C + c cos B (the first law of cosines); 
(ii) a2 = h* + c* - 2bccos A (the second law of 
cosines); (iii) u/sin A = b/sin B = c/sin C = 2R, 
where R is the radius of the circle circum- 
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scribed about &4BC (laws of sines) (- Ap- 
pendix A, Table 2). Thus we obtain relations 
among the six quantities a, b, c, L A, L B, and 
L C associated with the triangle ABC. The 
study of plane figures by means of trigono- 
metric functions is called plane trigonometry. 
For example, if a suitable combination of 
three of these six quantities (including a side) 
associated with a triangle is given, then the 
other three quantities are uniquely determined. 
The determination of unknown quantities 
associated with a triangle by means of these 
laws is called solving a triangle. 

Fig. 1 

Fig. 2 

B. Spherical Trigonometry 

The part ABC of a spherical surface bounded 
by three arcs of great circles is called a spber- 
ical triangle. Points A, B, C are called the 
vertices; the three arcs a, b, c are called the 
sides; and the angles formed by lines tangent 
to the sides and intersecting at the vertices are 
called the angles of the spherical triangle (Fig. 
3). If we denote the angles by A, B, C, we have 
the relation A+B+C-n=E>O, and E is 
called the spherical excess. Spherical triangles 
have properties similar to those of plane trian- 
gles: sin u/sin A = sin b/sin B = sin c/sin C (laws 
of sines), and cos a = cos b cos c + sin b sin c cos A 
(law of cosines). The study of spherical figures 
by means of trigonometric functions, called 
spherical trigonometry, is widely used in astron- 
omy, geodesy, and navigation (- Appendix 
A, Table 2). 
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C. History 

Trigonometry originated from practical prob- 
lems of determining a triangle from three of 
its elements. The development of spherical 
trigonometry, which was spurred on by its 
applications to astronomy, preceded the devel- 
opment of plane trigonometry. In Egypt, 
Babylon, and China, people had some knowl- 
edge of trigonometry, and the founder of 
trigonometry is believed to have been Hippar- 
thus of Greece (fl. 150 B.C.). In the Almagest 
of Ptolemy (c. 150 A.D.) we find a table for 
2sincc for c(=O, 30’, I”, 1”30’, that is exact 
to five decimal places, and the addition for- 
mulas. The Greeks calculated 2 sin CI, which is 
the length of the chord corresponding to the 
double arc. Indian mathematicians, on the 
other hand, calculated half of the above quan- 
tities, that is, sin CI and 1 - cos CI for the arc CI. 
In the book by Aryabhatta (c. 500 A.D.) we 

find laws of cosines. The Arabs, influenced by 
Indian mathematicians, expressed geometric 
computations algebraically, a technique also 
known to the Greeks. AbtiI Wafa (in the latter 
half of the 10th century A.D.) gave the correct 
sines of angles for every 30’ to 9 decimal places 
and studied with Al Battani the projection 
triangle of the sundial, thereby obtaining the 
concepts of sine, cosine, secant, and cosecant. 
Later, a table of sines and cosines for every 
minute was established by the Arabs. Regio- 
montanus (d. 1476), a German, elaborated on 
this table. The form he gave to trigonometry 
has been maintained nearly intact to the pre- 
sent day. Various theorems in trigonometry 
were established by G. J. Rhaeticus, J. Napier, 
J. Kepler, and L. Euler (1748). Euler treated 
trigonometry as a branch of analysis, gen- 
eralized it to functions of complex variables, 
and introduced the abbreviated notations that 
are still in use (- 13 1 Elementary Functions). 
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433 (XX.1 2) 
Turbulence and Chaos 

Turbulent flow is the irregular motion of fluids, 
whereas relatively simple types of flows that 
are either stationary, slowly varying, or peri- 
odic in time are called laminar flow. When 
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a laminar flow is stable against external dis- 
turbances, it remains laminar, but if the flow is 
unstable, it usually changes into either another 
type of laminar flow or a turbulent flow. 

A. Stability and Bifurcation of Flows 

The velocity field u(x, t), x being the space 
coordinates and t the time, of a flow of an 
incompressible viscous fluid in a bounded 
domain G is determined by the +Navier-Stokes 
equation of motion, 

&I 
Z+(u.grad)u-vAu+IgradpO, 

P 

and the equation of continuity, 

divu=O, (2) 

with the prescribed initial and boundary con- 
ditions, where A denotes the Laplacian, p the 
pressure, p the density, and v the kinematic 
viscosity of the fluid. Suitable extensions must 
be made in the foregoing system of equations if 
other field variables, such as the temperature 
in thermal-convection problems, are to be 
considered. 

The stability of a fluid flow is studied by 
examining the behavior of the solution of 
equations (1) and (2) against external distur- 
bances, and, in particular, stability against 
infinitesimal disturbances constitutes the linear 
stability problem. The stability characteristics 
of the solution of equations (1) and (2) depend 
largely upon the value of the +Reynolds num- 
ber R = ULJv, U and L being the representa- 
tive velocity and length of the flow, respec- 
tively. Let a stationary solution of equations 
(1) and (2) be uO(x, R). If the perturbed flow 
is given by uO(x, R)+v(x, R)exp(crt), v being 
the perturbation velocity, and equation (1) is 
linearized with respect to v, we obtain a +linear 
eigenvalue problem for g. The flow is called 
linearly stable if max(Rerr) is negative, and 
linearly unstable if it is positive. For small 
values of R, a flow is generally stable, but it 
becomes unstable if R exceeds a critical value 
R,, which is called the critical Reynolds num- 
ber [I]. 

The instability of a stationary solution gives 
rise to the ibifurcation to another solution 
at a tbifurcation point X, of the parameter R. 
If Im g = 0 for an eigenvaiue (T at R = R,, a 
stationary solution bifurcates from the solu- 
tion u0 at R,, and if Im D # 0, a time-periodic 
solution bifurcates at R,. The latter bifurca- 
tion is called the Hopf bifurcation. A typical 
example of stationary bifurcation is the gener- 
ation of an axially periodic row of Taylor 
vortices in Couette flow between two rotating 
coaxial cylinders, which was studied by G. I. 

Taylor (1923), with excellent agreement be- 
tween theory and experiment [2]. Hopf bifur- 
cation is exemplified by the generation of 
Tollmien-Schlichting waves in the laminar 
+boundary layer along a flat plate, which was 
predicted theoretically by W. Tollmien (1929) 
and H. Schlichting (1933) and later confirmed 
experimentally by G. B. Schubauer and H. K. 
Skramstad (1947) [3]. 

In either type of bifurcation (Imu= or #O) 
the bifurcation is called supercritica.l if the 
bifurcating solution exists only for R > R,, 
subcritical if it exists only for R < R,, and 
transcritical if it happens to exist on both sides 
of R,. The amplitude of the departure of the 
bifurcating solution from the unperturbed 
solution u0 tends to zero as R+ R,. The be- 
havior of the bifurcating solution around the 
bifurcation point R, is dealt with systemat- 
ically by means of bifurcation analysis. In 
supercritical bifurcation, the bifurca.ting solu- 
tion is stable and represents an equtlibrium 
state to which the perturbed flow approaches 
just as in the cases of Taylor vortices and 
Tollmien-Schlichting waves. On the other 
hand, for subcritical bifurcation the bifurcat- 
ing solution is unstable and gives a critical am- 
plitude of the disturbance above which the 
linearly stable basic flow (R < R,) becomes 
unstable. In this case, the instability of the 
basic flow gives rise to a sudden change of the 
flow pattern resulting in either a stationary 
(or time-periodic) or even turbulent flow. The 
transition to turbulent flow that takes place 
in Hagen-Poiseuille flow through a circular 
tube and is linearly stable at all values of R 
(R, = a) may be attributed to this type of 
bifurcation. 

The concept of bifurcation can be extended 
to the case where the flow u0 is nonstationary, 
but the bifurcation analysis then becomes 
much more difficult. 

B. Onset of Turbulence 

The fluctuating flow resulting from an insta- 
bility does not itself necessarily constitute a 
turbulent flow. In order that a flow be turbu- 
lent, the fluctuations must take on some irreg- 
ularity. The turbulent flow is usually defined 
in terms of the long-time behavior of the flow 
velocity u(x, t) at a fixed point x in space. The 
flow is expected to be turbulent if the fluctuat- 
ing velocity 6u(x,t)=u(x,t)-pll - s 7 u(x, t)dt (3) 

0 

satisfies the condition 

lim lim L 
s 

T 

r-r T-cc T 
&$(x, t)6ui(x, t + T)& = 0, 

o (4) 
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where the subscripts label the components. 
Condition (4) implies that the idynamical 
system of a fluid has the mixing property. This 
condition also states that the velocity fluctu- 
ation Csu, has a continuous frequency spectrum. 
In practical situations the frequency spectrum 
of a turbulent flow may contain both the line 
and continuous spectra, in which case the flow 
is said to be partially turbulent. 

L. D. Landau (1959) and E. Hopf (1948) 
proposed a picture of turbulent flow as one 
composed of a tquasiperiodic motion, u(t) = 
f(w, t,w,t, . . ,o,t), with a large number of 
rationally independent frequencies w, , , w, 
produced by successive supercritical bifurca- 
tions of Hopf type. This picture of turbulence 
is not compatible with the foregoing definition 
of turbulence, since it does not satisfy the 
mixing property (4). The fact that the gener- 
ation of real turbulence is not necessarily 
preceded by successive supercritical bifurca- 
tions casts another limitation on the validity 
of this picture. 

The concept of turbulence is more clearly 
exhibited with respect to a dynamical system 
of finite dimension. Although we are without 
a general proof, it is expected that the Navier- 
Stokes equation with nonzero viscosity v can 
be approximated within any degree of ac- 
curacy by a system of finite-dimensional Virst- 
order ordinary differential equations 

dX 
x= F(X). 

Thus the onset and some general properties of 
turbulence are understood in the context of 
the theory of tdynamical systems. Turbulence 
is related to those solutions of equation (5) 
that tend to a +set in the +phase space that 
is neither a ttixed point, a iclosed orbit, nor a 
itorus. A set of such complicated structure is 
called a nonperiodic tattractor or a strange 
attractor. Historically, the strange attractor 
originates from the strange Axiom A attrac- 
tor that was found in a certain class of dy- 
namical systems called the Axiom A systems. 
However, this term has come to be used in a 
broader sense, and it now represents a variety 
of nonperiodic motions exhibited by a system 
that is not necessarily of Axiom A type. The 
above-mentioned Landau-Hopf picture of 
turbulence was criticized by D. Ruelle and F. 
Takens (1971) who proved for the dynamical 
system (5) that an arbitrary small perturbation 
on a quasiperiodic +flow on a k-dimensional 
torus (k >, 4) generically (in the sense of residual 
sets) produces a flow with a strange Axiom A 
attractor [4]. 

There exist a number of examples of first- 
order ordinary differential equations of rela- 
tively low dimension whose solutions exhibit 

nonperiodic behavior. An important model 
system related to turbulence is the Lorenz 
model (1963) of thermal convection in a hori- 
zontal fluid layer. This model is obtained by 
taking only three components out of an in- 
finite number of spatial +Fourier components 
of the velocity and temperature fields. The 
model is written as 

dX 
- -aX+aY, 

t- 

dY 
-=-XZ+rX-Y, 
dt 

dZ 
-= XY-bZ, 
dt 

(6) 

where g (> b + 1) and b are positive constants 
and r is a parameter proportional to the Ray- 
leigh number. Obviously, equations (6) have 
a fixed point X = Y= Z = 0 representing the 
state of thermal convection without !luid flow. 
For r < 1, this fixed point is stable, but it be- 
comes unstable for r > 1, and a pair of new 
fixedpointsX=Y=+Jbo,Z=r-1 
emerges supercritically. This corresponds to 
the onset of stationary convection at r = 1. At a 
still higher value of r = o(r~ + b + 3)/(0-b - l), a 
subcritical Hopf bifurcation occurs with re- 
spect to this pair of fixed points, and for a 
certain range of r above this threshold the 
solutions with almost any initial conditions 
exhibit nonperiodic behavior. This corre- 
sponds to the generation of turbulence. The 
property 

g+$+g= -(o+b+ l&O, 

where the dots denote time derivatives, shows 
that each volume element of the phase space 
shrinks asymptotically to zero as the time 
increases indefinitely. This property is char- 
acteristic of dynamical systems with energy 
dissipation, in sharp contrast to the imeasure- 
preserving character of THamiltonian systems 

CSI- 
For a certain class of ordinary differen- 

tial equations, the bifurcation to nonperiodic 
motion corresponds neither to the bifurcation 
of tori, just as in the Ruelle-Takens theory, nor 
to subcritical bifurcation, as in the Lorenz 
model. Such a bifurcation takes place when 
nonperiodic motion emerges as the conse- 
quence of an infinite sequence of supercritical 
bifurcations at each of which a periodic orbit 
of period T bifurcates into one of period 2T. 
If we denote the nth bifurcation point by r,, 
the distance r,,, - r,, between two successive 
bifurcation points decreases exponentially with 
increasing n, and eventually the bifurcation 
points accumulate at a point r,, beyond which 
nonperiodic motion is expected to emerge. It is 
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not yet clear if any of the above three types of 
bifurcation leading to nonperiodic behavior is 
actually responsible for the generation of real 
turbulence. 

Some important properties of a dynamical 
system with a nonperiodic attractor, which 
may be either a flow or a tdiffeomorphism, can 
be stated as follows: 
(i) The distance between two points in the 
phase space that are initially close to each 
other grows exponentially in time, so that the 
solutions exhibit a sensitive dependence on the 
initial conditions. 
(ii) The nonperiodic attractor has +Lebesgue 
measure zero, and such a system is expected to 
have many other tergodic tinvariant measures. 

The irregular behavior of a deterministic 
dynamical system is also called chaos, but this 
concept is more abstract and general than 
that of turbulence, and covers phenomena ex- 
hibited by systems such as nonlinear electric 
circuits, chemical reactions, and ecological 
systems. 

C. Statistical Theory of Turbulence 

The statistical theory of turbulence deals with 
the statistical behavior of fully developed 
turbulence. The turbulent field is sometimes 
idealized for mathematical simplicity to be 
homogeneous or isotropic. In homogeneous 
turbulence the statistical laws are invariant 
under all parallel displacements of the coordi- 
nates, whereas in isotropic turbulence invar- 
iance under rotations and reflections of the 
coordinates is required in addition. 

where E(k) is the energy spectrum function, 
representing the amount of energy included in 
a spherical shell of radius k in the wave num- 
ber space. The energy of turbulence d per unit 
mass is expressed as 

‘=~(lul’)=~rlii(O)=~ @ii(k)dk 
s 

s 
m = E(k)dk. (11) 

0 

The instantaneous state of the fluid motion 
is completely determined by specifying the 
fluid velocity u at all space points x and can 
be expressed as a phase point in the inlinite- 
dimensional tphase space spanned by these 
velocities. The phase point moves with time 
along a path uniquely determined by the solu- 
tion of the Navier-Stokes equation. In the 
turbulent state the path is unstable to the 
initial disturbance and describes an irregular 
line in the phase space. In this situation the 
deterministic description is no longer useful 
and should be replaced by a statistical treat- 
ment. Abstractly speaking, turbulence is just a 
view of fluid motion as the random motion of 
the phase point u(x) (- 407 Stochastic Pro- 
cesses). The equation for the tcharacteristic 
functional of the random velocity u(x) was first 
given by E. Hopf (1952). An exact solution 
obtained by Hopf represents a tnormal distri- 
bution associated with a white energy spec- 
trum, but so far no general solution has been 
obtained [6]. 

The state of turbulence is characterized by 
the Reynolds number R = E$2/(vkh’2), where E, 
and k, are representative values of E(k) and k, 
respectively. For weak turbulence of small R, 
E(k) is governed by a linear equation with the 
general solution 

E(k, t)= E(k,O)exp( -2vk2t), (12) 

E(k, 0) being an arbitrary function. Thus E(k) 
decays in time due to the viscous dissipation. 
For strong turbulence of large R, it is difficult 
to obtain the precise form of E(k), and this is 
usually done by way of some assumption that 
allows us to approximate the nonl-inear effects 

c71. 
Some of the similarity laws governing the 

energy spectrum and other statistical functions 
can be determined rigorously but not neces- 
sarily uniquely. For 3-dimensional incompress- 
ible turbulence, the energy spectrum satisfies 
an inviscid similarity law 

E(k)/&, = ~e(klk,) (13) 

in the energy-containing region k == O(k,) char- 
acterized by a wave number k,, and a viscous 
similarity law 

Besides the formulation in terms of the E(k)/E,= R-5’4F,(k/(R3’4k,)), 

tprobability distribution or the characteristic 
functional, there is another way of ‘describing 
turbulence by tmoments of lower orders. This 
is the conventional statistical theory originated 
by G. I. Taylor (1935) and T. von E&man 
(1938), which made remarkable progress after 
World War II. The principal moments in this 
theory are the correlation tensor, whose (i, j)- 
component is the mean of the product of two 
velocity components ui at a point x. and uj at 
another point x + r, 

B,(r) = <“i(x)uj(x + r)), (8) 

and its +Fourier transform, or the energy spec- 
trum tensor, 

1 
@$1=-S Bij(r)exp( -J-l k r) dr. (9) 

In isotropic turbulence Qij is expre:ssed as 

k=:lkl, (10) 

(14) 
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in the energy dissipation region k = O(R314k,), 
where F, and Fd denote dimensionless func- 
tions generally dependent on the initial con- 
dition and the time [6]. 

If an assumption is made to the effect that 
the statistical state in the energy-dissipation re- 
gion depends only upon the energy-dissipation 
rate E = - dd/dt besides the viscosity v (or R), 
then (14) becomes Kolmogorov’s equilibrium 
similarity law (1941): 

E(k)=e”4v5’4F(k/(2’4v-3’4)), (15) 

where F is a dimensionless function. For 
extremely large R (or small v) there exists 
an inertial subregion between the energy- 
containing and energy-dissipation regions such 
that the viscous effect vanishes and (15) takes 
the form 

E(k) = Kiz2’3km5’3, (16) 

where K is an absolute constant. Kolmogorov’s 
spectrum (16) has been observed experimen- 
tally several times, and now its consistency 
with experimental results at large Reynolds 
numbers is well established [S]. 

Kolmogorov (1962) and others modified (16) 
by taking account of the fluctuation of E due 
to the intermittent structure of the energy- 
dissipation region as 

E(k)=K’c2’3k-5’3(Lk)-“‘9, (17) 

where E is now the average of the fluctuating E, 
fi is the covariance of the log-normal distribu- 
tion of E, and L is the length scale of the spatial 
domain in which the average of E is taken [S]. 
A similar modification, with the exponent 
--p/3 in place of -p/9, is obtained using a 
fractal model of the energy-cascade process. 
These corrections to E(k), based upon the 
experimentally estimated p of 0.3-0.5, are 
too small to be detected experimentally, 
but the deviation is expected to appear more 
clearly in the higher-order moments [S-lo]. 
It should be noted that Kolmogorov’s spec- 
trum (16) itself does not contradict the notion 
of intermittent turbulence and gives one 
of the possible asymptotic forms in the limit 
R+CD. 

The l-dimensional Burgers model of tur- 
bulence satisfies the same similarity laws as 
(13) and (14), but it has an inviscid spectrum 
E(k)= k m2 instead of (16). Two-dimensional 
incompressible turbulence has no energy- 
dissipation region, and hence Kolmogorov’s 
theory is not valid for this turbulence. It has 
an inviscid spectrum E(k)cckm3, first derived 
by R. H. Kraichnan (1967), C. E. Leith (1968), 
and G. K. Batchelor (1969). These inviscid 
spectra for l- and 2-dimensional turbulence 
have been confirmed by numerical simulation 

Llll. 
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Unified Field Theory 

A. History 

Unified field theory is a branch of theoretical 
physics that arose from the success of tgen- 
era1 relativity theory. Its purpose is to dis- 
cuss in a unified way the fields of gravitation, 
electromagnetism, and nuclear force from the 
standpoint of the geometric structure of space 
and time. Studies have continued since 1918, 
and many theories of mathematical interest 
have been published without attaining, how- 
ever, any conclusive physical theory. 

A characteristic feature of relativity theory is 
that it is based on a completely new concept of 
space and time. That is, in general relativity 
theory it is considered that when a gravita- 
tional field is generated by matter, the struc- 
ture of space and time changes, and the flat 
TMinkowski world becomes a 4-dimensional 
TRiemannian manifold (with signature (1,3)) 
having nonvanishing curvature. The tfunda- 
mental tensor gij of the manifold is interpreted 
as the gravitational potential, and the basic 
gravitational equation can be described as a 
geometric law of the manifold. It is character- 
istic of general relativity theory that gravita- 
tional phenomena are reduced to space-time 
structure (- 359 Relativity). The introduction 
of the Minkowski world in tspecial relativity 
theory was a revolutionary advance over the 
3-dimensional space of Newtonian mechanics. 
But the inner structure of the Minkowski 
world does not reflect gravitational phenom- 
ena. The latter shortcoming is overcome by 
introducing the concept of space-time repre- 
sented by a Riemannian manifold into general 
relativity theory. 

When a coexisting system of gravitational 
and electromagnetic fields is discussed in gen- 
eral relativity theory, simultaneous equations 
(Einstein-Maxwell equations) must be solved 
for the gravitational potential gij and the 
electromagnetic field tensor Fij. Thus the 
gravitational potential gij is affected by the 
existence of an electromagnetic field. As the 
validity of general relativity began to be ac- 
cepted, it came to be expected that all physical 
actions might be attributed to the gravita- 
tional and electromagnetic fields. Thus various 
extensions of general relativity theory have 
been proposed in order to devise a geometry 
in which the electromagnetic as well as the 
gravitational field directly contributes to the 
space-time structure, and to establish a uni- 
tied theory of both fields on the basis of the 
geometry thus obtained. These attempts are 
illustrated in Fig. 1. 

Fig. 1 

B. Weyl’s Theory 

The first unified field theory was proposed by 
H. Weyl in 1918. In Riemannian geometry, 
which is the mathematical framework of gen- 
eral relativity theory, the tcovariant derivative 
of the tfundamental tensor gij vanishes, i.e., 

vigjk = ag,,/ax i - gj, l-i - gak l-G = 0, (1) 

where rjik is the +Christoffel symbol derived 
from gij. Conversely, if r;ik is considered as the 
coefficient of a general taffine connection and 
(1) is solved with respect to r/k under the con- 
dition qk = rkj, then the Christoffel symbol 
derived from gij coincides with I$. In this 
sense, (1) means that the space-time manifold 
has Riemannian structure. On the other hand, 
Weyl considered a space whose structure is 
given by an extension of(l), 

Vitljk=zAigj,, (2) 

and developed a unified field theory by regard- 
ing Ai as the electromagnetic potential. This 
theory has mathematical significance in that it 
motivated the discovery of Cartan’s geometry 
of connection, but it has some unsatisfactory 
points concerning the derivation of the field 
equation and the equation of motion for a 
charged particle. 

The scale transformation given by gij= p2gij 
is important in Weyl’s theory. If in addition to 
this transformation, Ai is changed to 

Ai = Ai - i; log p/ax’, (3) 

then (2) is left invariant and the space-time 
structure in Weyl’s theory remains unchanged. 
We call (3) the gauge transformation, cor- 
responding to the fact that the electromagnetic 
potential Ai is determined by the electro- 
magnetic field tensor Fij up to a gradient vec- 
tor. In the +field theories known at present, the 

i gauge transformation is generalized to various 
~ fields, and the law of charge conservation is 
i derived from the invariance of field equations 

under generalized gauge transformation. 

1 C. Further Developments 

A unified field theory that appeared after 
Weyl’s is Kaluza’s Sdimensional theory (Th. 
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Kaluza, 1921). This theory has been criticized 
as being artificial, but it is logically consistent, 
and therefore many of the later unified field 
theories are improved or generalized versions 
of it. The underlying space of Kaluza’s theory 
is a 5-dimensional Riemannian manifold with 
the fundamental form 

ds2 =(dx4+ A,dxa)’ +~~,,ds”d~“, 

where Ai and gi, are functions of xi alone (u, h, 
. , i, j=O, I, 2,3). The field equation and the 

equation of motion of a particle are derived 
from the variational principle in general re- 
lativity theory. The field equation is equivalent 
to the Einstein-Maxwell equations, The trajec- 
tory of a charged particle is given by a geo- 
desic in the manifold, and its equation is re- 
ducible to the Lorentz equation in general 
relativity. 

After the introduction of Kaluza’s theory, 
various unilield field theories were proposed, 
and we give here the underlying manifolds or 
geometries of some mathematically interesting 
theories: a manifold with +aftine connection 
admitting absolute parallelism (A. Einstein, 
1928); a manifold with +projective connec- 
tion (0. Veblen, B. Hoffman. 1930 [4]; J. A. 
Schouten, D. van Dantzig, 1932); wave geome- 
try (a theory based on the linearization of the 
fundamental form; Y. Mimura, 1934 [3]); a 
nonholonomic geometry (G. Vranceanu, 1936); 
a manifold with tconformal connection (Hoff- 
man, 1948). 

The investigations since 1945 have been 
motivated by the problem of the representa- 
tion of matter in general relativity theory. 
Einstein first represented matter by an energy- 
momentum tensor 7;, of class Co, which must 
be determined by information obtained from 
outside relativity. Afterward he felt that this 
point was unsatisfactory and tried to develop 
a theory on the basis of field variables alone, 
without introducing such a quantity as 7$. 
This theory is the so-called unitary field theory, 
and a solution without singularities is required 
from a physical point of view. His first attempt 
was to remove singularities from an exterior 
solution in general relativity by changing the 
topological structure of the space-time mani- 
fold. This idea was then extended to a unified 
field theory by J. A. Wheeler, and an interpre- 
tation was given to mass and charge by apply- 
ing the theory of iharmonic integrals (1957) 

lx. 
Einstein’s second attempt was to propose 

a nonsymmetric unified field theory (1945) 
[l, Appendix II; 61. The fundamental quantities 
in this theory are a nonsymmetric tensor gij 
and a nonsymmetric affine connection I$. 
The underlying space of the theory can be con- 
sidered a direct extension of the Riemannian 

manifold, since (1) is contained in the field 
equations (notice the order of indices in this 
equation). E. Schrodinger obtained field equa- 
tions of almost the same form by taking only 
F;k as a fundamental quantity (1947) [S]. 
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435 (11.23) 
Uniform Convergence 

A. Uniform Convergence of a Sequence of 
Real-Valued Functions 

A sequence of real-valued functions {,/A(x)} 
defined on a set B is said to be uniformly con- 
vergent (or to converge uniformly) to a function 
,f(x) on the set B if it converges with respect 
tothetnorm IIcp/(=sup{1~(~)1Ix~B},i.e., 
lirn,-~~~fn-fii =0 (- 87 Convergence). In 
other words, {f.(x)} converges uniformly to 
,f‘(x) on B if for every positive constant c we 
can select a number N independent of the 
point x such that If,(x) -f(x)1 <E holds for all 
II > N and x E B. By the tcompleteness of the 
real numbers, a sequence of functions {,f,(r)) 
converges uniformly on B if and only if we can 
select for every positive constant E a number N 
independent of the point x such that I,fm(x)- 
,f”(x)\ <E holds for all m, n > N and x E B. 
The uniform convergence of a series C&x) or 
of an infinite product n,&(x) is defined by the 
uniform convergence of the sequence of its 
partial sums or products. If the series of the 
absolute values C, 1 ,f,(x)l converges uniformly, 
then the series C,&(x) also converges uni- 
formly. In this case the series 2, fn(x) is said to 
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be uniformly absolutely convergent. A sequence 
of (nonnegative) constants M, satisfying 
[ ,fJx)I < M, is called a dominant (or majorant) 
of the sequence of functions (Jti(x)). A series of 
functions C,,fJx) with converging majorant 
series 2, M, is uniformly absolutely conver- 
gent (Weierstrass’s criterion for uniform 
convergence). 

Let {j..(x)) be another sequence of functions 
on B. The series C,, j.,(x) f,(x) is uniformly 
convergent if either of the following conditions 
holds: (i) The series C,f,(x) converges uni- 
formly and the partial sums of the series 
C,(i.,(x) - i.,,,, (x)[ are uniformly bounded, i.e., 
bounded by a constant independent of x E B 

and of the number of terms; or (ii) the series 

Cnl&b-jbntl (x)1 converges uniformly, the 
sequence {i.,(x)) converges uniformly to 
0, and the partial sums of x”lfJx)I are 
uniformly bounded. 

B. Uniform Convergence and Pointwise 
Convergence 

Let { .jJx)l be a sequence of real-valued func- 
tions on B, and let .f’(x) be a real-valued func- 
tion also defined on B. If the sequence of 
numbers (,f;,(x,)j converges tof‘(x,) for every 
point X~E B, we say that {,f.(x)} is pointwise 
convergent (or simply convergent) to the func- 
tion,f(x). Pointwise convergence is, of course, 
weaker than uniform convergence. If we repre- 
sent the functionf’(x) by the point &&x)= 
[j’] of the icartesian product RB = nxtRR, 
then the pointwise convergence of (,f,(x)) to 
,j’(x) is equivalent to the convergence of the 
sequence of points { [,f,] 1 to [,j”] in the iprod- 
uct topology of RB. 

When B is a +topological space and every 
,f,(x) is continuous, the pointwise limitf’(x) of 
the sequence {,/j,(x)) is not necessarily con- 
tinuous. However, if the sequence of continuous 
functions {.fJx)) converges uniformly tof(x), 
then the limit functionf’(x) is continuous. On 
the other hand, the continuity of the limit does 
not imply that the convergence is uniform, If 
the set B is ‘compact and the sequence of 
continuous functions (,fJx)) is monotone (i.e., 
.fn(x)S.fn+,(x) for all n orS,(x)>.Jn+,(x) for all n) 
and pointwise convergent to a continuous 
function,f(x), then the convergence is uniform 
(Dini’s theorem). 

C. Uniform Convergence on a Family of Sets 

Let 3 be a topological space. We say that a 
sequence of functions {,fJx)) is uniformly 
convergent in the wider sense to the function 
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J‘(x), depending on circumstances, in either of 
the following two cases: (i) Every point x,, E B 

has a neighborhood U on which the sequence 
{f.(x)} converges uniformly to,f(x); or (ii) 
{ ,fJx)j converges uniformly tof’(x) on every 
compact subset K in B. If B is tlocally com- 
pact, the two definitions coincide. The term 
uniform convergence on compact sets is also 
used for (ii). 

In general, given a family 9 of subsets in B, 

we may introduce in the space .F of real- 
valued functions on B a family of tseminorms 
~l~IIK=sup{I,f(x)(Ix~K) foreveryset KEY. 
Let T be the topology of .9 defined by this 
family of seminorms (- 424 Topological 
Linear Spaces). A sequence { f,(xl i is called 
uniformly convergent on 9 if it is convergent 
with respect to 7: In particular, when 9 coin- 
cides with {B}, {{x) ( XE: B}, or the family of all 
compact sets in B, then uniform convergence 
on .Jp coincides with the usual uniform conver- 
gence, pointwise convergence, or uniform 
convergence on compact sets, respectively. If .Jp 
is a countable set, the topology ‘r is tmetri- 
zable. Most of these definitions and results 
may be extended to the case of functions 
whose values are in the complex number field, 
in a +normed space, or in any +uniform space. 

D. Topology of the Space of Mappings 

Let X, Y be two topological spaces. Denote by 
C(X, Y) the space of all continuous mappings 
,f: X --f Y This space C(X, Y), or a subspace S 
of C(X, Y), is called a mapping space (or func- 
tion space or space of continuous mappings) 
from X to Y A natural mapping @: 9 x X-t Y 
is defined by ~(,f;x)=f(x)(,f~~~,x~X). We 
define a topology in .F as follows: for a com- 
pact set K in X and an open set U in Y, put 
W(K,U)=(J~p\,f(K)~Uj,andintroducea 
topology in 9 such that the base for the to- 
pology consists of intersections of finite num- 
bers of W(K,, r/,). This topology is called the 
compact-open topology (R. H. Fox, Bull. Amer. 

Math. Sot., 5 I (1945)). When X is a tlocally 
compact Hausdorff space and Yis a +Haus- 
dorff space, the compact-open topology is the 
iweakest topology on p for which the func- 
tion @ is continuous. If, in this case, 9 is 
compact with respect to the compact-open 
topology, then the compact-open topology 
coincides with the topology of pointwise 
convergence. 

In particular, when Y is a imetric space (or, 
in general, a tuniform space with the uniform- 
ity LO, the compact-open topology in .p coin- 
cides with the topology of uniform conver- 
gence on compact sets. A family .S is called 
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equicontinuous at a point XE X if for every 
positive number I: (in the case of uniform 
space, for every II&) there exists a neighbor- 
hood U of x such that p(j’(x),,f( p)) < E (f(x), 
,f( p))~ I’) for every point PE t/ and for every 
functionf‘E~9 (G. Ascoli. 188331884). If X is a 
+locally compact Hausdorff space, a necessary 
and sufficient condition for .p to be relatively 
compact (i.e., for the closure of 9 to be com- 
pact) with respect to the compact-open top- 
ology (i.e., to the topology of uniform conver- 
gence on compact sets) is that 9 be equicon- 
tinuous at every point XEX and that the set 
{ ,f(x) l,fe~F} be relatively compact in Y for 
every point XE X (Ascoli’s theorem). In partic- 
ular, when X is a a-compact locally compact 
Hausdorff space and Y is the space of real 
numbers, a family of functions .f that are 
equicontinuous (at every point XEX) and 
uniformly bounded is relatively compact. 
Hence, for any sequence of functions { ,jj,} 
in .f, we can select a subsequence (,f,(,,) 
which converges uniformly on compact sets 
(Ascoli-Arzeld theorem). 

E. Normal Families 

P. Monte1 (1912) gave the name normal family 
to the family of functions that is relatively com- 
pact with respect to the topology of uniform 
convergence on compact sets. This terminol- 
ogy is used mainly for the family of complex 
analytic functions. In that case, it is customary 
to compactify the range space and consider Y 
to be the +Riemann sphere. Using this notion, 
Monte] succeeded ‘in giving a unified treatment 
of various results in the theory of complex 
functions. 

A family of analytic functions .B on a hnite- 
dimensional +compIex manifold X is a normal 
family if it is uniformly bounded on each com- 
pact set (Monte13 theorem). Another criterion 
is that there are three values on the Riemann 
sphere which no function ,fe,p takes. More 
generally, three exceptional values not taken 
by f E,F may depend on,f; if there is a positive 
lower bound for the distances between these 
three values on the Riemann sphere. This gives 
an easy proof of the +Picard theorem stating 
that every ttranscendental meromorphic func- 
tionf(z) in lzl< io must take all values except 
possibly two values. In fact the family of func- 
tions,l;l(z) =,f(z/2”), n = 1,2,3, , in { 1 < Izl 
<2j cannot be normal. Using a similar proce- 
dure, G. Julia obtained the results on ‘Julia’s 
direction. 

F. Marty introduced the notion of spherical 

derivative \,f’(z)]/(l +\.1’(z)\‘) for the analytic 
or meromorphic function,f(z) and proved that 

for a family J = { ,f(z)} of analytic functions to 
be normal, it is necessary and sufficient that 
the spherical derivatives offE9 be uniformly 
bounded. This theorem implies Montel’s 
theorem and its various extensions, including, 
for example, quantitative results concerning 
+Borel’s direction. 

A family 9 of analytic functions of one 
variable defined on X is said to form a quasi- 
normal family if there exists a subset P of X 
consisting only of isolated points such that 
from any sequence ( ,fj} (f, E p) we can select a 
subsequence { j&,} converging uniformly on 
X-P. If P is finite and consists of p points, 
the family .F is called a quasinormal family of 
order p. For example, the family of at most +p- 
valent functions is quasinormal of order p. 

The theory of normal families of complex 
analytic functions is not only applied to +value 
distribution theory, as above, but also used to 
show the existence of a function that gives the 
extremal of functionals. The extremal function 
is usually obtained as a limit of a subsequence 
of a sequence in a normal family. A typical 
example of this method is seen in the proof of 
the +Riemann mapping theorem. This is per- 
haps the only general method known today in 
the study of the iteration of +holomorphic 
functions. By this method, Julia (1919) made 
an exhaustive study of the iteration of mero- 
morphic functions; there are several other in- 
vestigations on the iteration of elementary 
transcendental functions. On the other hand, 
A. Wintner (Comm. Math. Heln., 23 (1949)) 
gave the implicit function theorem for analytic 
functions in a precise form using the theory of 
normal families of analytic functions of several 
variables. 
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Uniform Spaces 

A. Introduction 

There are certain properties defined on +metric 
spaces but not on general ttopological spaces, 
for example, tcompleteness or +uniform con- 
tinuity of functions. Generalizing metric spaces, 
A. Weil introduced the notion of uniform 
spaces. This notion can be defined in several 
ways [3,4]. The definition in Section B is that 
of Weil [l] without the +separation axiom for 
topology. 

We denote by Ax the diagonal ((x, x) 1 x E X ) 
of the Cartesian product X x X of a set X with 
itself. If U and I/are subsets of X x X, then the 
composite Vo U is defined to be the set of all 
pairs (x, y) such that for some element z of X, 
the pair (x, z) is in U and the pair (z, y) is in V 
The inverse U ml of Cl is defined to be the set of 
all pairs (x, y) such that (y, X)E U. 

B. Definitions 

Let %I be a nonempty family of subsets of 
X x X such that (i) if U E?/ and U c V, then 
VE+?(; (ii) if U, VE ‘&, then U f’ VE J&; (iii) if 
U E &, then Ax c U; (iv) if U E V, then U -’ E 

“I/; and (v) if U E@, then Vo Vc U for some 
l/e&. Then we say that a uniform structure 
(or simply a uniformity) is defined on X by 
J#. If a uniformity is defined on X by ‘%/, then 
the pair (X,J%) or simply the set X itself is 
called a uniform space, and @ is usually called 
a uniformity for X. 

A subfamily .8 of the uniformity %I is called 
a base for the uniformity ‘ti if every member of 
‘2 contains a member of 2. If a family .% of 
subsets of X x X is a base for a uniformity ///, 
then the following propositions hold: (ii’) if 
U, VE%, then there exists a I&g such that 
WC U n V; (iii’) if U E.%, then Ax c U; (iv’) if 
U ~98, then there exists a Ve.iA such that 
Vc U-I; (v’) if U ~9, then there exists a I/~28 

such that Vo Vc U. Conversely, if a family 9 
of subsets of a Cartesian product X x X satis- 
fies (ii’)-( then the family 02 = { U 1 U c X x X, 
Vc U for some VE.%} defines a uniformity on 
X and 98 is a base for 12. Given a uniform 
space (X, %), a member Vof % is said to be 
symmetric if V= V -‘. The family of all sym- 
metric members of %Y is a base for J&. 

C. Topology of Uniform Spaces 

Given a uniform space (X, J?/), an element 
xEX,and U~‘ti,weput U(x)=(yly~X,(x,y) 

E U ). Then the family &(x) = {U(x) 1 U E ‘M} 

forms a neighborhood system of x E X, which 
gives rise to a topology of X (- 4.25 Topo- 
logical Spaces). This topology is called the 
uniform topology (or topology of the uni- 
formity). When we refer to a topology of a uni- 
form space (X, ‘I,), it is understood to be the 
uniform topology; thus a uniform space is 
also called a uniform topological space. If J is 
a base for the uniformity of a uniform space 
(X,/k), then S#(x)={U(x)\ U~23} is a base for 
the neighborhood system at each point x E X. 
Each member of ‘2 is a subset of the topolog- 
ical space X x X, which is supplied with the 
product topology. The family of all open 
(closed) symmetric members of %G forms a 
base for /?/. A uniform space (X, %) is a +T, - 
topological space if and only if the intersection 
of all members of “I/ is the diagonal Ax. In this 
case, the uniformity of (X, %2) is called a T, - 
uniformity, and (X, %V) is called a T, -uniform 
space. A T, -uniform space is always tregular; a 
fortiori, it is a T,-topological space. Hence a 
T, -uniform space is also said to be a Haus- 
dorff uniform space (or separated uniform 
space). Moreover, a uniform topology satisfies 
+Tikhonov’s separation axiom; in particular, a 
T, -uniform space is tcompletely regular. 

D. Examples 

(1) Discrete Uniformity. Let X be a nonempty 
set,andlet%Y={UIA,cUcXxX}.Then 
(X, #) is a T, -uniform space and ,I = {Ax} is a 
base for @. This uniformity is called the dis- 
crete uniformity for X. 

(2) Uniform Family of Neighborhood System. 
A family { U,(x)},,,(xeX) of subsets of a set X 
is called a uniform neighborhood system in X if 
it satisfies the following four requirements: (i) 
x E U,(x) for each a E A and each x E X; (ii) if x 
and y are distinct elements of X, then y# Un(.u) 

for some EEA; (iii) if x and p are two elements 
of A, then there is another element YE A such 
that U?(x) c U=(x) n U,(x) for all x E X; (iv) if 3 
is an arbitrary element in A, then there is an 
element fl in A such that ye U,(x) whenever x, 
ye U&z) for some z in X. If we denote by 
U,(S(E A) the subset of X x X consisting of all 
elements (x, y) such that xcX and y6 U,(x), 

then the family { U,) C(E A} satisfies all the 
conditions for a base for a uniformity. In par- 
ticular, it follows from (ii) that nnpA r/, = Ax, 
which is a stronger condition than (iii’) in 
Section B. For instance, if {U, I x(~ A} is a base 
for the neighborhood system at the identity 

element of a T,-topological group G, then we 
have two uniform neighborhood systems 
(U!Jx)) and {U/,‘(x)), where U~(X)=~~U, and 
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U:(x) = U,x. Two uniformities derived from 
these uniform neighborhood systems are called 
a +left uniformity and a +right uniformity, 
respectively. Generally, these two uniformities 
do not coincide (- 423 Topological Groups). 

(3) Uniform Covering System [4]. A family 

PaL of tcoverings of a set X is called a 
uniform covering,system if the following three 
conditions are satisfied: (i) if U is a covering 
of X such that U<U, for all LYE A, then U 
coincides with the covering A = { {x} }x.x; 
(ii) if cz, BE A, then there is a YE A such that 
U,<U, and U,<U,; (iii) if UEA, then there 
is a IJEA such that U, is a +A-refinement of 
U, ((I$JA<U,). For an example of a uni- 
form covering system of X, suppose that we 
are given a uniform neighborhood system 

CW4},,A (=W. Let %={W)L (=A). 
Then PUsA is a uniform covering system. 
On the other hand, for a covering U = {U,),,,, 
let S(x, U) be the union of all members of 
U that contain x. If {Ua)asA is a uniform 
covering system and UU(x) = S(x, U,), then 
{ U,(x)jaaA (xEX) is a uniform neighborhood 
system. Hence defining a uniform covering 
system of X is equivalent to defining a T, - 
uniformity on X. 

(4). In a metric space (x, d) the subsets U, = 
{(x, y) 1 d(x, Y) < T}, r > 0, form a base of uni- 
formity. The uniform topology defined by this 
coincides with the topology defined by the 
metric. 

E. Some Notions on Uniform Spaces 

Some of the terminology concerning topolog- 
ical spaces can be restated in the language of 
uniform structures. A mappingffrom a uni- 
form space (X, a) into another (X’, W) is said 
to be uniformly continuous if for each member 
U’ in W there is a member U in u2! such that 
(,f(x),f(y))~ U’ for every (x,~)E U. This con- 
dition implies thatfis continuous with respect 
to the uniform topologies of the uniform 
spaces. Equivalently, the mapping is uniformly 
continuous with respect to the uniform neigh- 
borhood system { Ub((x)JLIEA if for any index [I 
there is an index tl such that YE U,(x) implies 
flu&“). Iff:X+X’andg:X’+X” are 
uniformly continuous, then the composite 
gof:X-tX” is also uniformly continuous. A 
bijectionfof a uniform space (X,@) to another 
(X’, W) is said to be a uniform isomorphism if 
bothfandf-’ are uniformly continuous; in 
this case (X, 0s) and (X’, W) are said to be 
uniformly equivalent. A uniform isomorphism 
is a homeomorphism with respect to the uni- 
form topologies, and a uniform equivalence 

defines an equivalence relation between uni- 
form spaces. 

If 02, and 0&Z are uniformities for a set X, we 
say that the uniformity Q, is stronger than the 
uniformity 4, and uZ2 is weaker than %, if the 
identity mapping of (X,oaI) to (X,“u,) is uni- 
formly continuous. The discrete uniformity is 
the strongest among the uniformities for a set 
X. The weakest uniformity for X is defined by 
the single member X x X; this uniformity is 
not a T,-uniformity unless X is a singleton. 
Generally, there is no weakest T,-uniformity. 
A uniformity Q, for X is stronger than an- 
other 021, if and only if every member of ez is 
also a member of @, 

Iffis a mapping from a set X into a uniform 
space (x Y) and g is the mapping of X x X into 
Y x Y defined by g(x, y) = (f(x),f( y)), then 
?8 = {g-‘(V) ( V’E V} satisfies conditions (ii’)- 
(v’) in Section B for a base for a uniformity. 
The uniformity % for X determined by 99 is 
called the inverse image of the uniformity V- 
for Y by f; % is the weakest uniformity for X 
such thatfis uniformly continuous. Hence a 
mappingffrom a uniform space (X, q) into 
another (x Y) is uniformly continuous if and 
only if the inverse image of the uniformity V 
underfis weaker than the uniformity a. If A is 
a subset of a uniform space (X, a), then there 
is a uniformity ^Y- for A determined as the 
inverse image of % by the inclusion mapping 
of A into X. This uniformity V for A is called 
the relative uniformity for A induced by %, or 
the relativization of % to A, and the uniform 
space (A, Y) is called a uniform subspace of 
(X,@). The uniform topology for (A, V) is the 
relative topology for A induced by the uniform 
topology for (X, a). 

If {(&>“~A)~AsA is a family of uniform 
spaces, then the product uniformity for X = 
II,,,X, is defined to be the weakest uni- 
formity @ such that the projection of X 
onto each X, is uniformly continuous, and 
(X, 0%~) is called the product uniform space of 
{(XJ,,%!J}le,,. The topology for (X,%) is the 
product of the topologies for (X,, aA) @ELI). 

F. Metrization 

Each tpseudometric d for a set X generates a 
uniformity in the following way. For each 
positive number Y, let &,,={(x,y)~X x 
X 1 d(x, y) cr.). Then the family {V,,, 1 r > 0} 
satisfies conditions (ii’)- in Section B for a 
base for a uniformity 02. This uniformity is 
called the pseudometric uniformity or uniform- 
ity generated by d. The uniform topology for 
(X, q) is the pseudometric topology. A uni- 
form space (X, “u) is said to be pseudometrizable 
(metrizable) if there is a pseudometric (metric) 
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d such that the uniformity ‘1/ is identical with 
the uniformity generated by d. A uniform 
space is pseudometrizable if and only if its 
uniformity has a countable base. Conse- 
quently, a uniform space is metrizable if and 
only if its uniformity is a T, -uniformity and 
has a countable base. For a family P of 
pseudometrics on a set X, let G,, = [(x, y)~ 
X x X 1 d(x, y) < Y) for d E P and positive r. 
The weakest uniformity containing every 
V,,, (d E P, r > 0) is called the uniformity gen- 
erated by P. This uniformity may also be de- 
scribed as the weakest one such that each 
pseudometric in P is uniformly continuous on 
X x X with respect to the product uniformity. 

Each uniformity ‘I/ on a set X coincides 
with the uniformity generated by the family P, 
of all pseudometrics that are uniformly con- 
tinuous on X x X with respect to the product 
uniformity of JL/ with itself. It follows that each 
uniform space is uniformly isomorphic to a 
subspace of a product of pseudometric spaces 
(in which the number of components is equal 
to the cardinal number of Px) and that each 
T,-uniform space is uniformly isomorphic to a 
subspace of a product of metric spaces. A 
topology 7 for a set X is the uniform topology 
for some uniformity for X if and only if the 
topological space (X, z) satisfies +Tikhonov’s 
separation axiom; in particular, the uniformity 
is a T,-uniformity if and only if (X, z) is tcom- 
pletely regular. 

G. Completeness 

If (X, “II) is a uniform space, a subset A of X is 
called a small set of order U( U E &) if A x A c 
U. A ifilter on X is called a Caucby filter 
(with respect to the uniformity u#) if it contains 
a small set of order U for each U in J&. If a 
filter on X converges to some point in X, then 
it is a Cauchy filter. If,f‘is a uniformly con- 
tinuous mapping from a uniform space X into 
another X’, then the image of a base for a 
Cauchy filter on X under,fis a base for a 
Cauchy filter on X’. A point contained in the 
closure of every set in a Cauchy filter 3 is the 
limit point of 3. Hence if a filter converges to 
x, a Cauchy filter contained in the filter also 
converges to x. 

A +net x(91) = {x,},,~>~ (where QI is a directed 
set with a preordering <) in a uniform space 
(X, ‘II) is called a Caucby net if for each U in W 
there is a y in 91 such that (x,, X~)E U for every 
z and b such that y < x(, y < [j. If % is the set N 
of all natural numbers, a Cauchy net {x,},,~ 
is called a Caucby sequence (or fundamental 
sequence). Given a Cauchy net {x,},,~~,, let A, 
={~~~/~>~).Then~B={A,~~~YI}isabasefor 
a filter, and the filter is a Cauchy filter. On the 

other hand, let B be a base for a Cauchy filter 
3. For U, VE%, we put U d I/if and only if 
U 3 I/: Then ‘B is a directed set with respect to 
6. The net {xUjCtB, where xL, is an arbitrary 
point in U, is a Cauchy net. A proposition 
concerning convergence of a Cauchy filter is 
always equivalent to a proposition concerning 
convergence of the corresponding Cauchy net. 

A Cauchy filter (or Cauchy net) in a uni- 
form space X does not always converge to a 
point of X. A uniform space is said to be com- 
plete (with respect to the uniformity) if every 
Cauchy filter (or Cauchy net) converges to a 
point of that space. A complete uniform space 
is called for brevity a complete space. A closed 
subspace of a complete space is complete with 
respect to the relative uniformity. A pseudo- 
metrizable uniform space is complete if and 
only if every Cauchy sequence in the space 
converges to a point. Hence in the case of a 
metric space, our definition of completeness 
coincides with the usual one (- 2’73 Metric 
Spaces). 

A mapping j’ from a uniform space X to an- 
other X’ is said to be uniformly continuous on 
a subset A of X if the restriction off’to A is 
uniformly continuous with respect to the rela- 
tive uniformity for A. Iffis a uniformly con- 
tinuous mapping from a subset A of a uniform 
space into a complete T,-uniform space, then 
there is a unique uniformly continuous exten- 
sion ,f of ,f on the closure A. 

Each T,-uniform space is uniformly equiva- 
lent to a dense subspace of a complete T,- 
uniform space; this property is a generaliza- 
tion of the fact that each metric space can be 
mapped by an isometry onto a dense subset of 
a complete metric space. A completion of a 
uniform space (X, &) is a pair (,I; (X*, I&*)), 
where (X*,&*) is a complete space and ,f is 
a uniform isomorphism of X onto a dense 
subspace of X*. The T,-completion of a 
T,-uniform space is unique up to uniform 
equivalence. 

H. Compact Spaces 

A uniformity O/L for a topological space (X, z) is 
said to be compatible with the topology z if the 
uniform topology for (X,0&) coincides with T. 
A topological space (X, z) is said to be unifor- 
mizable if there is a uniformity compatible 
with r. If (X, z) is a compact Hausdorff space, 
then there is a unique uniformity V/ compa- 
tible with z; in fact, ‘Id consists of all neighbor- 
hoods of the diagonal Ax in X x X; and the 
compact Hausdorff space is complete with this 

uniformity. Hence every subspace of a com- 
pact Hausdorff space is uniformizable, and 
every tlocally compact Hausdorff space is 
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uniformizable. Any continuous mapping from 
a compact Hausdorff space to a uniform space 
is uniformly continuous. A uniform space 
(X, @) is said to be totally bounded (or precom- 
pact) if for each U E % there is a finite covering 
consisting of small sets of order U; a subset of 
a uniform space is called totally bounded if it is 
totally bounded with respect to the relative 
uniformity. A uniform space X is said to be 
locally totally bounded if for each point of X 
there is a base for a neighborhood system 
consisting of totally bounded open subsets. A 
uniform space is compact if and only if it is 
totally bounded and complete. Iffis a uni- 
formly continuous mapping from a uniform 
space X to another, then the imagef(A) of 
a totally bounded subset A of X is totally 
bounded. 

I. Topologically Complete Spaces 

A topological space (X, z) is said to be topo- 
logically complete (or Dieudonnk complete) if it 
admits a uniformity compatible with 7 with 
respect to which X is complete. Each +para- 
compact Hausdorff space is topologically 
complete. Actually such a space is complete 
with respect to its strongest uniformity. A 
Hausdorff space which is homeomorphic to 
a +G,-set in a compact Hausdorff space is 
said to be tech-complete; A metric space is 
homeomorphic to a complete metric space if 
and only if it is Tech-complete. A Hausdorff 
space X is paracompact and Tech-complete if 
and only if there is a tperfect mapping from X 
onto a complete metric space. 

References 

[l] A. Weil, Sur les espaces B structure uni- 
forme et sur la topologie gtntrale, Actualitts 
Sci. Ind., Hermann, 1938. 
[2] J. W. Tukey, Convergence and uniformity 
in topology, Ann. Math. Studies, Princeton 
Univ. Press, 1940. 
[3] J. L. Kelley, General topology, Van Nos- 
trand, 1955. 
[4] N. Bourbaki, ElCments de mathkmatique, 
III. Topologie g&n&ale, ch. 2, ActualitCs Sci. 
Ind., 1142d, Hermann, fourth edition 1965; 
English translation, General topology, 
Addision-Wesley, 1966. 
[S] J. R. Isbell, Uniform spaces, Amer. Math. 
Sot. Math. Surveys, 1964. 
[6] H. Nakano, Uniform spaces and trans- 
formation groups, Wayne State Univ. Press, 
1968. 
[7] R. Emgelking, General topology, Polish 
Scientific Publishers, 1977. 

[S] Z. Frolik, Generalization of the G,- 
property of complete metric spaces, Czech. 
Math. J., IO (1960), 359-379. 

437 (IV.17) 
Unitary Representations 

A. Definitions 

A homomorphism U of a ttopological group G 
into the group of tunitary operators on a 
+Hilbert space sj ( # {0}) is called a unitary 
representation of G if Li is strongly continuous 
in the following sense: For any element x E $, 
the mapping g+ Ugx is a continuous mapping 
from G into sj. The Hilbert space $j is called 
the representation space of U and is denoted 
by B(U). Two unitary representations U and 
U’ are said to be equivalent (similar or isomor- 
phic), denoted by U r U', if there exists an 
tisometry T from s(U) onto 5( U’) that satis- 
fies the equality To U, = Ub o T for every g in 
G. If the representation space sj( U) contains 
no closed subspace other than sj and (0) that 
is invariant under every U,, the unitary repre- 
sentation U is said to be irreducible. An element 
x in $j( U) is called a cyclic vector if the set of 
all finite linear combinations of the elements 
U,x( g E C) is dense in b(U). A representation 
U having a cyclic vector is called a cyclic 
representation. Every nonzero element of the 
representation space of an irreducible repre- 
sentation is a cyclic vector. 

Examples. Let G be a ttopological transfor- 
mation group acting on a +locally compact 
Hausdorff space X from the right. Suppose 
that there exists a tRadon measure p that is 
invariant under the group G. Then a unitary 
representation Rp is defined on the Hilbert 
space $ = L’(X, p) by the formula (Rif)(x) 
=f(xg) (f~.$x~x, LEG). The representation 
Rp is called the regular representation of G 
on (X, p). If G acts on X from the left, then 
the regular representation L" is defined by 
(L;f)(x)=f(g-‘x). In particular, when X is 
the +quotient space H\G of a tlocally compact 
group G by a closed subgroup H, any two 
invariant measures p, p’ (if they exist) coincide 
up to a constant factor. Hence the regular 
representation Rp on (X, p) and the regular 
representation R"' on (X, p’) are equivalent. In 
this case, the representation Rv is called the 
regular representation on X. When H = {e}, a 
locally compact group G has a Radon measure 
p # 0 that is invariant under every right (left) 
translation h+hg (/I*@) and is called a right 
(left) +Haar measure on G. So G has the regu- 
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lar representation R (L) on G. R (L) is called 
the right (left) regular representation of G. 

B. Positive Definite Functions and Existence 
of Representations 

A complex-valued continuous function cp on a 
topological group G is called positive definite 
if the matrix having (p(gzT1gj) as the (i,j)- 
component is a tpositive semidefinite Her- 
mitian matrix for any finite number of ele- 
ments gi, . , gn in G. If U is a unitary repre- 
sentation of G, then the function rp(g) = (U,x, x) 
is positive definite for every element x in b(U). 
Conversely, any positive definite function cp(g) 
on a topological group G can be expressed as 
q(g) = ( Usx, x) for some unitary representation 
U and x in sj( U). Using this fact and the 
+Krein-Milman theorem, it can be proved that 
every locally compact group G has sufficiently 
many irreducible unitary representations in the 
following sense: For every element g in G other 
than the identity element e, there exists an 
irreducible unitary representation U, generally 
depending on g, that satisfies the inequality 
U, # 1. The groups having sufficiently many 
finite-dimensional (irreducible) unitary repre- 
sentations are called tmaximally almost 
periodic. If a connected locally compact group 
G is maximally almost periodic, then G is the 
direct product of a compact group and a vec- 
tor group R”. On the other hand, any non- 
compact connected isimple Lie group has no 
finite-dimensional irreducible unitary repre- 
sentation other than the unit representation 

cl-+1 (- 18 Almost Periodic Functions). 

C. Subrepresentations 

Let U be a unitary representation of a topo- 
logical group G. A closed subspace % of sj(U) 
is called U-invariant if % is invariant under 
every U, (gE G). Let VI # {0} be a closed invar- 
iant subspace of $3(U) and V, be the restric- 
tion of U, on ‘R Then V is a unitary represen- 
tation of G on the representation space % and 
is called a subrepresentation of U. Two unitary 
representations L and A4 are called disjoint if 
no subrepresentation of L is equivalent to a 
subrepresentation of M; they are called quasi- 
equivalent if no subrepresentation of L is dis- 
joint from M and no subrepresentation of M is 
disjoint from L. 

D. Irreducible Representations 

Let U be a unitary representation of G, M 
be the +von Neumann algebra generated by 
{U, 1 g E G}, and M’ be the tcommutant of M. 

Then a closed subspace % of $j( U) is invariant 
under U if and only if the tprojection operator 
P corresponding to ‘$I belongs to M’. There- 
fore U is irreducible if and only if M’ consists 
of scalar operators {al 1 cr~C} (Scbur’s lemma). 
A representation space of a cyclic or irreduc- 
ible representation of a tseparable topological 
group is tseparable. 

E. Factor Representations 

A unitary representation U of G is called a 
factor representation if the von Neumann 
algebra M = {U, 1 gE G} is a tfactor, that is, 
MflM’={al Ic(EC}. Two factor representa- 
tions are quasi-equivalent if and only if they 
are not disjoint. U is called a factor represen- 
tation of type I, II, or III if the von Neumann 
algebra M is a factor of ttype I, II, or III, 
respectively (- 308 Operator Algebras). A 
topological group G is called a group of type I 
(or type I group) if every factor representation 
of G is of type I. Compact groups, locally 
compact Abelian groups, connected tnilpotent 
Lie groups, connected tsemisimple Lie groups, 
and real or complex tlinear algebraic groups 
are examples of groups of type I. There exists a 
connected solvable Lie group that is not of 
type I (- Section U), but a connected solvable 
Lie group is of type I if the exponential map- 
ping is surjective (0. Takenouchi). A discrete 
group G with countably many elements is a 
type I group if and only if G has an Abelian 
normal subgroup with finite index (E. Thoma). 

F. Representation of Direct Products 

Let G, and G, be topological groups, G the 
tdirect product of G, and G, (G = G, x G,), and 
Ui an irreducible unitary representation of Gi 
(i = 1,2). Then the ttensor product representa- 
tion U, 0 U, : (gi, gJ-* U,, @ Ua2 is an irreduc- 
ible unitary representation of G. Conversely, 
if one of the groups G, and G, is of type I, then 
every irreducible unitary representation of G 
is equivalent to the tensor product U, @ U, 
of some irreducible representations Vi of Gi 
(i= 1,2). 

G. Direct Sums 

If the representation space !+j of a unitary 
representation U is the tdirect sum &, $(c() 
of mutually orthogonal closed invariant sub- 

spaces {B(cOl.,I, then U is called the direct 
sum of the subrepresentations U(E) induced on 
5j(tx) by U, and is denoted by U = (& U(a). 
Any unitary representation is the direct sum of 
cyclic representations. A unitary representa- 
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tion U is called a representation without multi- 
plicity if U cannot be decomposed as a direct 
sum U, @ U2 unless U, and U, are disjoint. If 
U is the direct sum of { U(cc)},,, and every U(a) 
is irreducible, then U is said to be decomposed 
into the direct sum of irreducible representa- 
tions. Decomposition into direct sums of 
irreducible representations is essentially 
unique if it exists; that is, if U = &, U(a) 
= eflEJ V(p) are two decompositions of U 
into direct sums of irreducible representations, 
then there exists a bijection cp from I onto J 
such that U(x) is equivalent to V(cp(cc)) for 
every a in I. A factor representation U of type 
I can be decomposed as the direct sum U = 
&, U(a) of equivalent irreducible represen- 
tations U(a). In general, a unitary representa- 
tion U cannot be decomposed as the direct 
sum of irreducible representations even if U is 
not irreducible. Thus it becomes necessary to 
use direct integrals to obtain an irreducible 
decomposition. 

H. Direct Integrals 

Let U be a unitary representation of a group G 
and (X, p) be a tmeasure space. Assume that 
the following two conditions are satisfied by 
U: (i) There exists a unitary representation 
U(x) of G corresponding to every element x 
of X, and sj( U) is a ‘direct integral (- 308 
Operator Algebras) of @(U(x)) (x6X) (written 
!&U) = Sx sj( U(x))&(x)); (ii) for every g in G, 
the operator U, is a decomposable operator 
and can be written as CJg=ix U,(x)dp(x). Then 
the unitary representation U is called the 
direct integral of the family {U(x)},,, of uni- 
tary representations and is denoted by U = 
lx U(x)&(x). If every point of X has mea- 
sure 1, then a direct integral is reduced to a 
direct sum. 

I. Decomposition into Factor Representations 

We assume that G is a locally compact group 
satisfying the kecond countability axiom, and 
also that a Hilbert space is separable. Every 
unitary representation U of G can be decom- 
posed as a direct integral U =sx U(x)&(x) 
in such a way that the center A of the von 
Neumann algebra M” = {V, 19 E G}” is the set 
of all tdiagonalizable operators. In this case 
almost all the U(x) are factor representations. 
Such a decomposition of U is essentially 
unique. There exists a +null set N in X such 
that for every x and x’ in X - N (x # x'), U(x) 
and U(x') are mutually disjoint factor repre- 
sentations. Hence the space X can be identified 
with the set G* of all quasi-equivalence classes 

of factor representations of G endowed with a 
suitable structure of a measure space. The 
space G* is called the quasidual of G. The 
measure p is determined by U up to tequiva- 
lence of measures. 

J. Duals 

A topology is introduced on the set G of all 
equivalence classes of irreducible unitary rep- 
resentations of a locally compact group G in 
the following way. Let H, be the n-dimensional 
Hilbert space l,(n) and 1, the set of all irreduc- 
ible unitary representations of G realized on 
H, (1 <II < co). We topologize I, in such a way 
that a +net { U"}l,, in I, converges to U if and 
only if (Uix, y) converges uniformly to (U,x, y) 
on every compact subset of G for any x and y 
in H,,. Equivalence between representations in 
I, is an open relation. Let G” be the set of all 
equivalence classes of n-dimensional irreduc- 
ible unitary representations of G with the 
topology of a quotient space of I, and G = 
u. G” be the direct sum of topological spaces 
G”. Then the topological space G is called the 
dual of G. G is a locally compact +Baire space 
with countable open base, but it does not 
satisfy the +Hausdorff separation axiom in 
general. If G is a compact Hausdorff topolog- 
ical group, then G is discrete. If G is a locally 
compact Abelian group, then G coincides with 
the +character group of G in the sense of 
Pontryagin. If G is a type I group, then there 
exists a dense open subset of G that is a locally 
compact Hausdorff space. The to-additive 
family generated by closed sets in G is denoted 
by 9. In the following sections, a measure on 
G means a measure defined on d. 

K. Irreducible Decompositions 

In this section G is assumed to be a locally 
compact group of type I with countable open 
base. For any equivalence class x in G, we 
choose a representative U(X)EX with the rep- 
resentation space H( U(x)) = j2(n) if x is n- 
dimensional. For any measure p on G, the 
representation Ue=Se U(x)&(x) is a unitary 
representation without multiplicity. Con- 
versely, any unitary representation of G with- 
out multiplicity is equivalent to a Up for some 
measure p on G. Moreover, U@ is equivalent to 
U" if and only if the two measures p and v are 
equivalent (that is, p is absolutely continuous 
with respect to v, and vice versa). A unitary 
representation U with multiplicity on a sepa- 
rable Hilbert space $ can be decomposed as 
follows: There exists a countable set of mea- 
sures p,, p2,. , p, whose supports are mutu- 
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ally disjoint such that U r Ji: U(x)@,(x) 0 

$7 U(x)d~c,(x) 0 0 ~0s~ U(xhh,(x). 
The measures p,, pZ, , & are uniquely 
determined by U up to equivalence of mea- 
sures. Any unitary representation U on a 
separable Hilbert space Sj of an arbitrary 
locally compact group with countable open 
base (even if not of type I) can be decomposed 
as a direct integral of irreducible representa- 
tions. In order to obtain such a decompo- 
sition, it is sufficient to decompose Q as a 
direct integral in such a way that a maximal 
Abelian von Neumann subalgebra A of M 
= { CJq 1 g E GJ ’ is the set of all diagonalizable 
operators. In this case, however, a different 
choice of A induces in general an essentially 
different decomposition, and uniqueness of the 
decomposition does not hold. For a group of 
type I, the irreducible representations are the 
“atoms” of representations, as in the case of 
compact groups. For a group not of type I, it 
is more natural to take the factor represen- 
tations for the irreducible representations, 
quasi-equivalence for the equivalence, and the 
quasidual for the dual of G. Therefore the 
theory of unitary representations for a group 
not of type I has different features from the 
one for a type 1 group. The theory of unitary 
representation for groups not of type I has not 
yet been successfully developed, but some 
important results have been obtained (e.g., L. 
Pukanszky, Ann. Sci. Ecole Norm. Sup., 4 
(1971)). 

Tatsuuma [l] proved a duality theorem for 
general locally compact groups which is an 
extension of both Pontryagin’s and Tannaka’s 
duality theorems considering the direct in- 
tegral decomposition of tensor product 
representations. 

L. The Plancherel Formula 

Let G be a unimodular locally compact group 
with countable open base, R(L) be the right 
(left) regular representation of G, and M, N, 
and P be the von Neumann algebras generated 
by {R,}, {L,}, and {R,, Lg}, respectively. Then 
M’=N,N’=M,andP’=MflN.Ifwedecom- 
pose 9 into a direct integral in such a way 
that P’ is the algebra of all diagonalizable 
operators, then M(x) and N(x) are factors for 
almost all x. This decomposition of sj pro- 
duces a decomposition of the two-sided regu- 
lar representation {R,, L,} into irreducible 
representations and a decomposition of the 
regular representation R(L) into factor repre- 
sentations. Hence the decomposition is realized 
as the direct integral over the quasidual G* of 
G. Moreover, the factors M(x) and N(x) are of 
type I or II for almost all x in G*, and there 

exists a +trace t in the factor M(x). For any f 
and y in L 1 (G) n L,(G), the Plancherel formula 

j-Gfbkl(sjds=jG* wg*(x)~f~4M4 (1) 

holds, where L$(x) = Jcf(s) U,(x)ds and U* is 
the tadjoint of U. The inversion formula 

h(s)= 
s 

t(W-~)Wx))44x) (2) 
G* 

is derived from (1) for a function i? =.f* g 
(,f;g~Li(G)flL,(G)). In (1) and (2) because of 
the impossibility of normalization of the trace 
t in a factor of type II,, the measure p cannot 
in general be determined uniquely. However, if 
G is a type I group, then (1) and (2) can be 
rewritten as similar formulas, where the repre- 
sentation U(x) in (1) and (2) is irreducible, the 
trace t is the usual trace, and the domain of 
integration is not the quasidual G* but the 
dual G of G. The revised formula (1) is also 
called the Plancherel formula. In this case the 
measure p on G in formulas (1) and (2) is 
uniquely determined by the given Haar mea- 
sure on G. The measure g is called the Plan- 
cherel measure of G. The support Gr of the 
Plancherel measure p is called the reduced dual 
of G. The Plancherel formula gives the direct 
integral decomposition of the regular repre- 
sentation into the irreducible representations 
belonging to Gr. Each U in 6, is contained in 
this decomposition, with the multiplicity equal 
to dim $(U). 

M. Square Integrable Representations 

An irreducible unitary representation U of a 
unimodular locally compact group G is said to 
be square integrable when for some element 
x # 0, in 5j( U), the function cp(g) =: ( Usx, x) 
belongs to L’(G, dg), where dg is t-he Haar 
measure of G. If U is square integrable, then 
cp,,,(g)=(U,x,y) belongs to L’(G,dg) for any x 
and y in b(U). Let U and U’ be the two square 
integrable representations of G. Then the 
following orthogonality relations hold: 

(Ugx,y)Wbu,4dg 
G 

0 if U is not 
zz equivalent to U’, (3) 

d;‘(x,u)(v,y) if U= U’. 

When G is compact, every irreducible unitary 
representation U is square integrable and 
finite-dimensional. Moreover, the scalar d, in 
(3) is the degree of U if the total measure of G 
is normalized to 1. In the general case, the 
scalar d, in (3) is called the formal degree of U 
and is determined uniquely by the given Haar 
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measure dg. Let y be an element in e(U) with 
norm 1 and I/ be the subspace { (PX,~ 1 x E $( U)} 
of L’(G). Then the linear mapping T:x+Jd, 
v~,~ is an isometry of sj(U) onto V. Hence U is 
equivalent to a subrepresentation of the right 
regular representation R of G. Conversely, 
every irreducible subrepresentation of R is 
square integrable. Thus a square integrable 
representation is an irreducible subrepresen- 
tation of R (g L). Therefore, in the irreducible 
decomposition of R, the square integrable 
representations appear as discrete direct sum- 
mands. Hence every square integrable repre- 
sentation U has a positive Plancherel measure 
v(U) that is equal to the formal degree d,. 
There exist noncompact groups that have 
square integrable representations. An example 
of such a group is SL(2, R) (- Section X). 

N. Representations of L, (G) 

Let G be a locally compact group and L,(G) 
be the space of all complex-valued integrable 
functions on G. Then L,(G) is an algebra over 
C, where the convolution 

(.f‘*g)(s)= .fW’MW s G 
is defined to be the product of ,f and g. Let A 
be the tmodular function of G. Then the map- 
pingf(s)*f*(s)=A(s-‘)S(s-‘)is an tinvol- 
ution of the algebra L,(G). Let U be a unitary 
representation of G, and put U; = lG U,f(s) ds. 
Then the mapping f-U> gives a nondegen- 
crate representation of the 3anach algebra 
L,(G) with an involution, where nondegenerate 
means that { U;XI~EL,(G), x~5j(U)}’ reduces 
to {O}. The mapping U + U’ gives a bijection 
between the set of equivalence classes of uni- 
tary representations of G and the set of equiv- 
alence classes of nondegenerate representa- 
tions of the Banach algebra L,(G) with an 
involution on Hilbert spaces. U is an irreduc- 
ible (factor) representation if and only if U’ is 
an irreducible (factor) representation. There- 
fore the study of unitary representations of G 
reduces to that of representations of L,(G). If 
Vi is a tcompact operator for every f in L,(G), 
then U is the discrete direct sum of irreducible 
representations, and the multiplicity of every 
irreducible component is finite. (See [2] for 
Sections A-N.) 

0. Induced Representations 

Induced representation is the method of con- 
structing a representation of a group G in a 
canonical way from a representation of a 
subgroup H of G. It is a fundamental method 

of obtaining a unitary representation of G. Let 
G be a locally compact group satisfying the 
second countability axiom, L be a unitary 
representation on a separable Hilbert space 
b(L) of a closed subgroup H of G, and m, n, 
A, and 6 be the right Haar measures and the 
modular functions of the groups G and H, 
respectively. Then there exists a continuous 
positive function p on G satisfying p(hg) = 
a(h’p(g) for every h in H and g in G. 
The +quotient measure p=(prn)/n is a quasi- 
invariant measure on the coset space H\G (- 
225 Invariant Measures). Let sj be the vector 
space of weakly measurable functions f on G 
with values in b(L) satisfying the following 
two conditions: (i) f(hg) = &f(g) for every h in 

H and g in G; and (ii) llfl12=~H~,~ Ilf(sH’ 4-G) 
< + co, where 4 represents the coset Hg. By 
condition (i), the norm IIf 11 is constant on a 
coset Hg = 4 and is a function on H\G, so the 
integral in condition (ii) is well defined. Then sj 
is a Hilbert space with the norm defined in (ii). 
A unitary representation U of G on the Hilbert 
space 5 is defined by the formula 

U is called the unitary representation induced 
by the representation L of a subgroup H and is 
denoted by U = UL or Indg L. Induced repre- 
sentations have the following properties. 

(1) UL,@L 2g ULl @ UL2 or more generally, 
U~“(x)du(x) 2 j UL(“)dp(x). Therefore if UL is 
irreducible, L is also irreducible (the converse 
does not hold in general). 

(2) Let H, K be two subgroups of G such 
that H c K, L be a unitary representation of H, 
and A4 be the representation of K induced by 
L. Then two unitary representations UM and 
UL of G are equivalent. 

An induced representation UL is the repre- 
sentation on the space of square integrable 
sections of the tvector bundle with fiber H(L) 
tassociated with the principal bundle (G, H\ 
G, H) (- G. W. Mackey [3], F. Bruhat [4]). 

P. Unitary Representations of Special Groups 

In the following sections we describe the fun- 
damental results on the unitary representa- 
tions of certain special groups. 

Q. Compact Groups 

Irreducible unitary representations of a com- 
pact group are always finite-dimensional. 
Every unitary representation of a compact 

group is decomposed into the direct sum of 
irreducible representations. Irreducible unitary 
representations of a compact connected Lie 
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group are completely classified. The characters 
of irreducible representations are calculated in 
an explicit form (- 69 Compact Groups; 249 
Lie Groups). Every irreducible unitary repre- 
sentation U of a connected compact Lie group 
G can be extended uniquely to an irreducible 
holomorphic representation UC of the com- 
plexification G“ of G. U’ is holomorphically 
induced from a l-dimensional representation 
of a Bore1 subgroup B of G’ (Borel-Weil 
theorem; - R. Bott [S]). 

R. Abelian Groups 

Every irreducible unitary representation of 
an Abelian group G is 1 -dimensiona!. Stone’s 
theorem concerning one-parameter groups 
of unitary operators, U, = JTx eiL’dE,, gives 
irreducible decompositions of unitary repre- 
sentations of the additive group R of real 
numbers. +Bochner’s theorem on tpositive 
definite functions on R is a restatement of 
Stone’s theorem in terms of positive definite 
functions. The theory of the +Fourier trans- 
form on R, in particular +Plancherel’s theorem, 
gives the irreducible decomposition of the 
regular representation of R. The theorems of 
Stone, Bochner, and Plancherel have been 
extended to an arbitrary locally compact 
Abelian group (- 192 Harmonic Analysis). 

S. Representations of Lie Groups and Lie 
Algebras 

Let U be a unitary representation of a Lie 
group G with the Lie algebra r~. An element x 
in $j( U) is called an analytic vector with respect 
to U if the mapping g--$ U,x is a real analytic 
function on G with values in b(U). The set of 
all analytic vectors with respect to U forms a 
dense subspace % = 2L( U) of .$( U). For any 
elements X in q and x in ‘U(U), the derivative 
at t = 0 of a real analytic function UelptXx is 
denoted by V(X)x. Then V(X) is a linear 
transformation on %, and the mapping k’: X 
j V(X) is a representation of 9 on %. We call 
V the differential representation of U. The rep- 
resentation I/ of R can be extended uniquely 
to a representation of the tuniversal en- 
veloping algebra B of 9. Two unitary repre- 
sentations U”’ and U”’ of a connected Lie 
group G are equivalent if and only if there 
exists a bijective bounded linear mapping T 
from $j( I/(‘)) onto $(Uc21) such that T maps 
%(I/"') onto Vl(U(2)) and satisfies the equality 

(To V”‘(X))X =( V2’(X)o T)x 

forallXingandxin~U(U”‘).LetX,,...,X, 
be a basis of q and U be a unitary representa- 
tion of G. Then the element A = Xf + +X,’ 

in the universal enveloping algebra B of B is 
represented in the differential representation V 
of U by an tessentially self-adjoint operator 
V(A). Conversely, if to each element X in q 
there corresponds a (not necessarily bounded) 
+skew-Hermitian operator p(x) that satisfies 
the following three conditions, then there 
exists a unique unitary representation U of the 
simply connected Lie group G with the Lie 
algebra g such that the +closure of V(X) coin- 
cides with the closure of p(X) for every X in g: 
(i) There exists a dense subspace C contained 
in the domain of p(X)p( Y) for every X and Y 
in g; (ii) for each X and Yin g, u and h in R, 
andxinO, p(aX+hY)x=ap(X)x+bp(Y)x, 
p([X, Y])x=(p(X)p(Y)--p(Y)p(X))x; (iii) the 
restriction of p(X,)’ + + p(XJ2 to B is an 
essentially self-adjoint operator if X, , , X, is 
a basis of 9 (E. Nelson [6]). 

T. Nilpotent Lie Groups 

For every irreducible unitary representation of 
a connected nilpotent Lie group G, there is 
some l-dimensional unitary representation of 
some subgroup of G that induces it. Let G be a 
simply connected nilpotent Lie group, B be the 
Lie algebra of G, and p be the contragredient 
representation of the adjoint representation of 
G. The representation space of p is the dual 
space CJ* of g. A subalgebra h of 9 is called 
subordinate to an element fin g* iff annihi- 
lates each bracket [X, Y] for every X and Yin 
h: (,h [X, Y])=O. When 1) is subordinate to ,J, a 
l-dimensional unitary representation L of the 
analytic subgroup H of G with the Lie algebra 
h is defined by the formula I.Jexp X) = e2nr(f,X) 
(X E h). Every l-dimensional unitary represen- 
tation iLf of H is defined as in this formula by 
an element f in g* to which h is subordinate. 
The unitary representation of G induced by 
such a S is denoted by U(J h). The represen- 
tation U(,L b) is irreducible if and only if h has 
maximal dimension among the subalgebras 
subordinate to ,f: Two irreducible represent- 
ations U(L h) and U(J 6’) are equivalent if and 
only if ,/ and f’ are conjugate under the group 
p(G). Therefore there exists a bijection be- 
tween the set of equivalence classes of the 
irreducible unitary representations of a simply 
connected nilpotent Lie group G and the set of 
orbits of p(G) on r~* (A. A. Kirillov [7]). 

U. Solvable Lie Groups 

Let G be a simply connected solvable Lie 
group. If the exponential mapping is bijective, 
G is called an exponential group. All results 
stated above for nilpotent Lie groups hold for 
exponential groups except the irreducibility 
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criterion. In this case the representation U(,J h) 
is irreducible if and only if h is of maximal 
dimension among subordinate subalgebras 
and the orbit 0 = p(G),f contains the affme 
subspace~+h’=f+{gIg(h)=O} (Pukanszky 
condition). 

The situation is more complicated for gen- 
eral solvable Lie groups. The isotropy sub- 

group Gf={~~GlpMf=,f) at,fEg* kin 
general, not connected. A linear form f is 
called integral if there exists a unitary charac- 
ter qr of G, whose differential is the restriction 
of 27rlf to gf (the Lie algebra of G,). Using the 
notion of “polarization,” an irreducible unitary 
representation of G is constructed from a pair 
(J; ns) of an integral form fgg* and a character 
nr. If G is of type I, then every irreducible 
unitary representation of G is obtained in this 
way. A simply connected solvable Lie group G 
is of type I if and only if(i) every ,fe CJ* is in- 
tegral and (ii) every G-orbit p(G),f in g* is 
locally closed (Auslander and Kostant [S]). 

As an example, let n be an irrational real 
number. Then the following Lie group G is not 

oftype I:G= {[r !iat Fj it~R,z,w~C}. 

V. Semisimple Lie Groups 

A connected semisimple Lie group is of type I. 
The character x = xc7 of an irreducible unitary 
representation U of G is defined as follows: Let 
C;(G) be the set of all complex-valued C”- 
functions with compact support on G. Then 
for any function f in C;(G), the operator U, 
=jG UJ(g)dg belongs to the ttrace class, and 
the linear form x : f- T, Uf is a idistribution in 
the sense of Schwartz. The distribution x is 
called the character of an irreducible unitary 
representation U. A character x is invariant 
under any inner automorphism of G and is a 
simultaneous eigendistribution of the algebra 
of all two-sided invariant linear differential 
operators on G. Two irreducible unitary repre- 
sentations of G are equivalent if and only if 
their characters coincide. The distribution ): is 
a tlocally summable function on G and coin- 
cides with a real analytic function on each 
connected component of the dense open sub- 
manifold G’ consisting of regular elements in 
G. In general, x is not real analytic on all of G 
(Harish-Chandra [9, III; lo]. 

W. Complex Semisimple Lie Groups 

There are four series of irreducible represen- 
tations of a complex semisimple Lie group G. 

(1) A principal series consists of unitary 
representations of G induced from l- 

dimensional unitary representations L of a 
+Borel subgroup B of G. L is uniquely deter- 
mined by a unitary character VE Hom(A, U(1)) 
= A* of the +Cartan subgroup A of G con- 
tained in B. Hence the representations in the 
principal series are parametrized by the ele- 
ments in the character group A* of the Cartan 
subgroup A. If we denote lJL by U’, two repre- 
sentations U” and U”‘(v, V’E A*) are equivalent 
if and only if v and v’ are conjugate under the 
+Weyl group W of G with respect to A. 

(2) A degenerate series consists of unitary 
representations induced by l-dimensional 
unitary representations of a tparabolic sub- 
group P of G other than B. (A parabolic sub- 
group P is any subgroup of G containing a 
Bore1 subgroup B.) 

(3) A complementary series consists of irre- 
ducible unitary representations UL induced by 
nonunitary l-dimensional representations 
L of a Bore1 subgroup B. In this case, con- 
dition (ii) in the definition of UL (- Section 0) 
must be changed. When L is a nonunitary 
representation, then the operator ‘/k is not a 
unitary operator with respect to the usual L,- 
inner product (ii). However, if L satisfies a 
certain condition, then Uk leaves invariant 
some positive definite Hermitian form on the 
space of sufficiently nice functions. Completing 
this space, we get a unitary representation UL. 
The representations thus obtained form the 
complementary series. 

(4) A complementary degenerate series con- 
sists of irreducible unitary representations 
induced by nonunitary l-dimensional repre- 
sentations of a parabolic subgroup P # B. 

Representations belonging to different series 
are never equivalent. It seems certain that any 
irreducible unitary representation of a con- 
nected complex semisimple Lie group is equiv- 
alent to a representation belonging to one of 
the above four series, but this conjecture has 
not yet been proved. Moreover, E. M. Stein 
[ 1 l] constructed irreducible unitary repre- 
sentations different from any in the list ob- 
tained by I. M. Gel’fand and M. A. Naimark 
(Neumark) [12]. These representations belong 
to the complementary degenerate series. The 
characters of the representations in these four 
series are computed in explicit form. For ex- 
ample, the character xy of the representation 
U” in the principal series can be calculated as 
follows: Let 1 be a linear form on a Cartan 
subalgebra a such that v(exp H) = e*(‘) for 
every H in a, let D be the function on A de- 
fined by D(exp H) = &]er(“ri2 -e-a(H)i2)2, 
where LY runs over all positive roots. Then the 
character xy of a representation U” in the 
principal series is given by the formula 

%,,(exp H) = D(exp H)-’ 1 .c?~(~). 
SEW 
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In the irreducible decomposition of the regular 
representation of G, only irreducible represen- 
tations belonging to the principal series arise. 
Hence the right-hand side in the Plancherel 
formula is an integral over the character group 
A* of a Cartan subgroup A. Under a suitable 
normalization of the Haar measures in G and 
A*, the Plancherel measure p of G can be 
expressed by using the Haar measure dv of A*: 

d~L(v)=w-1~l(~,a)/(~,a)12dv, 
a 

where w  is the order of the Weyl group, p is 
the half-sum of all tpositive roots, and 51 runs 
over all positive roots (Gel’fand and Naimark 

c1211. 

X. Real Semisimple Lie Groups 

As in the case of a complex semisimple Lie 
group, a connected real semisimple Lie group 
G has four series of irreducible unitary repre- 
sentations. However, if G has no parabolic 
subgroup other than a minimal parabolic 
subgroup B and G itself, then G has no repre- 
sentation in the degenerate or complementary 
degenerate series. Examples of such groups are 
SL(2, R) and higher-dimensional +Lorentz 
groups. In general, the classification of irreduc- 
ible unitary representations in the real semi- 
simple case is more complicated than in the 
complex semisimple case. Irreducible unitary 
representations arising from the irreducible 
decomposition of the regular representation 
are called representations in the principal 
series. The principal series of G are divided 
into a finite number of subseries corresponding 
bijectively to the conjugate classes of the +Car- 
tan subgroups of G. 

A connected semisimple Lie group G has a 
square integrable representation if and only if 
G has a compact Cartan subgroup H. The set 
of all square integrable representations of G is 
called the discrete series of irreducible unitary 
representations. The discrete series is the sub- 
series in the principal series corresponding to a 
compact Cartan subgroup H. The representa- 
tions in the discrete series were classified by 
Harish-Chandra. Let f~ be the Lie algebra of 
H, P the set of all positive roots in b for a fixed 
linear order, 7~ the polynomial lJllEP H,, and 
F the set of all real-valued linear forms on 

J--b. 1 Moreover, let L be the set of all linear 
forms i, in F such that a single-valued char- 
acter {A of the group H is defined by the for- 
mula tl(exp X) = eAcX), and let L’ be the set 
of all 1 in L such that ~(1) # 0. Then for each 
1 in L’, there exists a representation w(I) of 
G in the discrete series, and conversely, every 
representation in the discrete series is equivalent 
to w(n) for some 3, in 15’. Two representations 

~(2,) and w(&) (&, I, EL’) are equivalent if 
and only if there exists an element s in W, = 
N(H)/H such that & = si,, where N(H) is the 
normalizer of H in G ( W, can act on 9 as a 
linear transformation group in the natural 
way). The value of the character x,!.on the 
subgroup H of the representation #w(I) (MEL’) 
is given as follows: Let c(i) be the signature of 

744 = rIa.P ,l(H,), and define q and A by 4 = 
(dim G/K)/2 and A(exp H) = IIapp(ea(H)i2 - 
e-a(H)/2). Then the character xi of the repre- 
sentation o(i) has the value ( -l)q~:(I)~l(h) = 

A(h)-’ C,,, &det s)&,(h) on a regular element 
h in H. The formal degree d(w(i)) of the 
representation w(n) is given by the formula 
d(w(l))=Cm’[W,]In(I)I, where C is a positive 
constant (not depending on A) and [W,] is the 
order of the finite group W, (Harish-Chandra 
[ 131). A formula expressing the character xi on 
the whole set of regular elements in G has been 
given by T. Hirai [14]. The representations in 
discrete series are realized on L2-cohomology 
spaces of homogeneous holomorphic line 
bundles over G/H (W. Schmid [ 151). They are 
also realized on the spaces of harmonic spinors 
on the +Riemannian symmetric space G/K 
(M. Atiyah and Schmid [16]). They are also 
realized on the eigenspaces of a Casimir opera- 
tor acting on the sections of vector bundles 
on G/K (R. Hotta, J. A4ath. Sot. Japan, 23; 
N. Wallach [ 171). An irreducible unitary rep- 
resentation is called integrable if al least one 
of its matrix coefficients belongs to L’(G). 
Integrable representations belong to the dis- 
crete series. They have been characterized by 
H. Hecht and Schmid (Math. Ann.. 220 (1976)). 
The theory of the discrete series is easily ex- 
tended to reductive Lie groups. 

The general principal series representations 
of a connected semisimple Lie group G with 
finite center are constructed as follows. Let K 
be a maximal compact subgroup of G. Then 
there exists a unique involutive automorphism 
Q of G whose fixed point set coincides with K. 
H is called a Cartan involution of G. Let H be a 
o-stable Cartan subgroup of G. Then H is the 
direct product of a compact group T= H n K 
and a vector group A. The centralizer Z(A) of 
A in G is the direct product of a reductive Lie 
group M = 6(M) and A. M has a compact 
Cartan subgroup T. Hence the set A, of the 
discrete series representations of ?vf is not 
empty. Let a be an element of the dual space 
a* of the Lie algebra a of A and put 9, = 
{XEgI[H,X]=a(H)X(VHca)} and A= 
{rEa*)g,#{Of}.LetA+bethesetofposi- 
tive elements of A in a certain order of a* and 
put n = J&+ 9, and N = expn. Then P = MAN 
is a closed subgroup of G. P is called a cuspidal 
parabolic subgroup of G. Let D E A, and v E a*. 
Then a unitary representation D @ ei” of P 
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is defined by (D @ e’“) (man) = D(rn)eiv(“‘gO) 
(m E M, a E A, n E N). The unitary representation 
n,,, of G induced by D 0 eiy is independent of 
the choice of A+ up to equivalence. Thus 7-rD,+ 
depends only on (H, D, v). The se; of represen- 
tations {Q, y ) D E fi,,, v E a*} is called the prin- 
cipal H-series. If v is regular in a* (i.e., (v, c() #O 
for all LYS A), then I-Q,, y is irreducible. Every Q, y 
is a finite sum of irreducible representations. 
The character 0,. y of or,, y is a locally sum- 
mable function which is supported in the 
closure of Uqccg(MA)g-‘. If two Cartan 
subgroups H, and H, are not conjugate in G, 
then every HI-series representation is disjoint 
from every HZ-series representation. Choose 
a complete system {H,, . , H,} of conjugacy 
classes of Cartan subgroups of G. Then every 
H, can be chosen as O-stable, The union of the 
principal Hi-series (1 < i < r) is the principal 
series of G. The right (or left) regular represen- 
tation of G is decomposed as the direct integral 
of the principal series representations. Every 
complex-valued (Y-function on G with com- 
pact support has an expansion in terms of the 
matrix coefficients of the principal series repre- 
sentations. Harish-Chandra [ 181 proved these 
theorems and determined explicitly the Plan- 
cherel measure by studying the asymptotic 
behavior of the Eisenstein integral [ 19,201. 

Y. Spherical Functions 

Let G be a locally compact tunimodular group 
and K a compact subgroup of G. The set of all 
complex-valued continuous functions on G 
that are invariant under every left translation 
L, by elements k in K is denoted by C(K\G). 
The subset of C(K\G) that consists of all two- 
sided K-invariant functions is denoted by 
C(G, K). The subset of C(G, K) consisting of all 
functions with compact support is denoted by 
L =L(G, K). L is an algebra over C if the prod- 
uct of two elements f and g in L is defined by 
the convolution. 

Let i be an algebra homomorphism from L 
into C. Then an element of the eigenspace F(I) 
={$~C(K,G)(f*Il/=A(f)ll,(VfeL)}iscalled 
a spherical function on K\G. If F(I) contains a 
nonzero element, then F(l) contains a unique 
two-sided K-invariant element o normalized 
by w(e) = 1, where e is the identity element 
in G. This function w  is called the zonal spher- 
ical function associated with i. In this case, 
the homomorphism ;1 is defined by n(f) = 
lGf(g)co(g-‘)dg. Hence the eigenspace F(I) 
is uniquely determined by the zonal spherical 
function o. A function w  # 0 in C(G, K) is a 
zonal spherical function on K\G if and only 
if w  satisfies either of the following two con- 
ditions: (i) The mappingft-+ [f(g)w(g-‘)dg is 
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an algebra homomorphism of L into C; (ii) o 
satisfies the functional equation 

s w(gkh)dk=w(g)w(h). 
K 

When G is a Lie group, every spherical func- 
tion is a real analytic function on K\G. 

Z. Expansion by Spherical Functions 

In this section, we assume that the algebra L 
of two-sided K-invariant functions is com- 
mutative. In this case there are sufliciently 
many spherical functions of K\G, and two- 
sided K-invariant functions are expanded by 
spherical functions. An irreducible unitary 
representation V of G is called a spherical 
representation with respect to K if the represen- 
tation space $j(U) contains a nonzero vector 
invariant under every Q., where k runs over K. 
By the commutativity of L, the K-invariant 
vectors in !+j(U) form a l-dimensional sub- 
space. Let x be a K-invariant vector in Sj( U) 
with the norm //x/J = 1. Then w(g)=(U,x,x) is 
a zonal spherical function on K\G, and for 
every y in $j( U), the function q,,(g) = (U,x, y) 
is a spherical function associated with w. 
Moreover, in this case the zonal spherical 
function o is a positive definite function on G. 
Conversely, every positive definite zonal spher- 
ical function w  can be expressed as w(g) = 
(U,x, x) for some spherical representation U 
and some K-invariant vector x in sj(U). 

The set of all positive definite zonal spher- 
ical functions becomes a locally compact space 
Q by the topology of compact convergence. 
The spherical Fourier transform f^of a function 
fin L,(K\G) is defined by fW= f(gMg-‘)dg. s G 

There exists a unique +Radon measure p on 
Q such that for every fin L, fbelongs to 
L,(Q, p). Also, the Plancherel formula 

holds for every f and g in L, and an inversion 
formula f(s) = In f(co)co(s)dp(co) holds for a 
sufficiently nice two-sided K-invariant func- 
tion f [21]. Identifying a positive definite zonal 
spherical function with the corresponding 
spherical representation, we can regard 0 as 
a subset of the dual (? of G. The Plancherel 
formula for two-sided K-invariant functions is 
obtained from the general Plancherel formula 
on G by restricting the domain of the integral 
from G to Q When G is a Lie group and L is 
commutative, a spherical function on K\G can 
be characterized as a simultaneous eigenfunc- 
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tion of G-invariant linear differential operators 
on K\G. 

AA. Spherical Function on Symmetric Spaces 

The most important case where the algebra 
L=L(G, K) is commutative is when K\G is a 
tweakly symmetric Riemannian space or, in 
particular, a tsymmetric Riemannian space 
When K\G is a compact symmetric Riemann- 
ian space, a spherical representation with 
respect to K is the irreducible component of 
the regular representation Ton K\G, and 
a spherical function on K \G is a function 
that belongs to the irreducible subspaces in 
L,(K\G). In particular, if G is a compact con- 
nected semisimple Lie group, the highest 
weights of spherical representations of G with 
respect to K are explicitly given by using the 
Satake diagram of K\G. The Satake diagram 
of K\G is the +Satake diagram of the noncom- 
pact symmetric Riemannian space K\G, dual 
to K\G or the Satake diagram of the Lie alge- 
bra of G,. If a symmetric space is the under- 
lying manifold of a compact Lie group G, then 
G can be expressed as G = K\(G x G), where K 
is the diagonal subgroup of G x G. In this case, 
a zonal spherical function w  on G = K\(G x G) 
is the normalized character of an irreducible 
unitary representation U of G: w(g) = 
(deg U)-’ T,U,. The explicit form of w  is 
given by tWeyl’s character formula (- 249 
Lie Groups). 

The zonal spherical functions on a sym- 
metric Riemannian space K\G of noncompact 
type are obtained in the following way: Let G 
be a connected semisimple Lie group with 
finite center, K be a maximal compact sub- 
group of G, and G= NA, K be an TIwasawa 
decomposition. Then for any g in G there 
exists a unique element H(g) in the Lie algebra 
a+ of A+ such that g belongs to N expff(g)K. 
Let a be a Cartan subalgebra containing a,, P 
be the set of all positive roots in a, and p = 
(C,,,, ~)/2. Then for any complex-valued linear 
form v on a + , the function 

is a zonal spherical function on the symmetric 
Riemannian space K\G. Conversely, every 
zonal spherical function w  on K\G is equal to 
w, for some v. Two zonal spherical functions 
w, and w,, coincide if and only if v and v’ are 
conjugate under the operation of the Weyl 
group W, = N,(A)/Z,(A) of K\G (Harish- 
Chandra [22], S. Helgason [23]). If v is real- 
valued, then w, is positive definite. Such a 
zonal spherical function w, is obtained from 
a spherical representation belonging to the 

principal A-series. Let R, be the set of all 
zonal spherical functions w, associated with 
the real-valued linear form v. The-n the support 
of the Plancherel measure p on K\G is con- 
tained in R,. We can choose v as a parameter 
on the space R,. Then the right-hand side of 
the Plancherel formula can be expressed as an 
integral over the dual space L of a+. More- 
over, the Plancherel measure p is absolutely 
continuous with respect to the Lebesgue mea- 
sure dv on the Euclidean space L .and can be 
expressed as 

under suitable normalization of p and dv. The 
problem of calculating the function c(v) can be 
reduced to the case of symmetric spaces of 
rank 1 and can be solved explicitl:y. Let p, be 
the multiplicity of a restricted root c( and I(v) 
be the product 

1 

where x runs over all positive restricted roots 
and B is the +beta function. Then I:(V) = I(&)/ 
I(p) [20,24]. Every spherical function .I’ on 
K\G is expressed as the Poisson integral of 
its “boundary values” on the Martin boundary 
P\G of K\G, where P= MA+ N is a minimal 
parabolic subgroup of G. The boundary values 
of ,f form a hyperfunction with values in a line 
bundle over P\G (K. Okamoto et al. [25]). 

BB. Spherical Functions and Special Functions 

Some important special functions are obtained 
as the zonal spherical functions on a certain 
symmetric Riemannian space M =: K\G (G is 
the motion group of M). In particular when 
M is of rank 1, then the zonal spherical func- 
tions are essentially the functions of a single 
variable. For example, the zonal spherical 
functions on an n-dimensional Euclidean space 
can be expressed as 

where 2m = n - 2 and J, is the +Bessel function 
of the mth order. The zonal spherical function 
on an (n - 1)-dimensional sphere Y-’ = 
SO(n- l)\SO(n) is given by 

co,(O)=ryv+ l)r(n-2)I-(v+n-2)~~‘C,“(cosO) 

(v=O, 1,2, .‘.,, 

where C:(z) is the +Gegenbauer polynomial. 
The zonal spherical functions on an (n - l)- 
dimensional Lobachevskii space can be ex- 
pressed as 

~IJ,,(~)=~~-“~I-(vI+ 1/2)sinh-mf”21 

x ‘pl/f,;!!‘m+v (cash t) 
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using a generalized ‘associated Legendre func- 
tion ‘$3,“. Many properties of special functions 
can be proved from a group-theoretic point of 
view. For example, the addition theorem is 
merely the homomorphism property U,, = 
Ug V, expressed in terms of the matrix com- 
ponents of U. The differential equation satis- 
fied by these special functions is derived from 
the fact that a zonal spherical function w  is an 
eigenfunction of an invariant differential oper- 
ator. The integral expression of such a special 
function can be obtained by constructing a 
spherical representation U in a certain func- 
tion space and calculating explicitly the inner 
product in the expression o(~)=(U~x,x) (N. 
Ya. Vilenkin [26]). 

CC. Generalization of the Theory of Spherical 
Functions 

The theory of spherical functions described in 
Sections Y-BB can be generalized in several 
ways. First, spherical functions are related to 
the trivial representation of K. A generaliza- 
tion is obtained if the trivial representation of 
K is replaced by an irreducible representation 
of K. The theory of such zonal spherical func- 
tions is useful for representation theory [20]. 
For example, the Plancherel formula for 
SL(2, R) can be obtained using such spherical 
functions (R. Takahashi, Japan. J. Math., 31 
(1961)). Harish-Chandra’s Eisenstein integral 
is such a spherical function on a general semi- 
simple Lie group G. He used it successfully to 
obtain the Plancherel measure of G. Another 
generalization can be obtained by removing 
the condition that K is compact. In particu- 
lar, when K\,G is a symmetric homogeneous 
space of a Lie group G, the algebra 9 of all G- 
invariant linear differential operators is com- 
mutative if the space K\G has an invariant 
volume element. In this case, a spherical func- 
tion on K\G can be defined as a simultaneous 
elkenfunction of 9. The character of a semi- 
simple Lie group is a zonal spherical func- 
tion (distribution) in this sense. The spherical 
functions and harmonic analysis on sym- 
metric homogeneous space have been studied 
by T. Oshima and others. T. Oshima and J. 
Sekiguchi [27] proved the Poisson integral 
theorem (- Section AA) for a certain kind of 
symmetric homogeneous spaces. 

The spherical functions and unitary repre- 
sentations of topological groups that are not 
locally compact are studied in connection with 
probability theory and physics. For example, 
the zonal spherical functions of the rotation 
group of a real Hilbert space are expressed by 
Hermite polynomials. 

DD. Discontinuous Subgroups and 
Representations 

Let G be a connected semisimple Lie group 
and r be a discrete subgroup of G. Then the 
regular representation T of G on T\G is de- 
fined by (T,f)(x)=f(xg) (feL’(r\G)). The 
problem of decomposing the representation T 
into irreducible components is important in 
connection with the theory of tautomorphic 
forms and number theory. First assume that 
the quotient space T\G is compact. Then for 
every function fin L,(G), the operator T(f) is 
a compact operator. Hence the regular repre- 
sentation T on r\G can be decomposed into 
the discrete sum T=z,“=, Tck) of irreducible 
unitary representations T@), and the multiplic- 
ity of every irreducible component is finite. 
The irreducible unitary representation U of G 
is related to the automorphic forms of r in the 
following way: Let x be a nonzero element in 
the representation space .!j = sj( U) of U. $ is 
topologized into a tlocally convex topological 
vector space 6, by the set N, of tseminorms: 

N,= {PC(~) = maxgEc I(q,x,y)l}, where C runs 
over all compact subsets in G. The topology 
,KX of sj, is independent of the choice of x 
provided that dim{ Tx) kc K} < m, where K is 
a maximal compact subgroup of G. Let sj* be 
the completion of sj, with respect to the topo- 
logy TX (the completion is independent of 
the choice of x). $* contains the original Hil- 
bert space $j as a subspace. Then the repre- 
sentation U of G on 5.j can be extended to a 
representation I/* of G on the space .Q*. An 
element fin $* invariant under UF for every ;J 
in r is called an automorphic form of r of type 
U. Then the multiplicity of an irreducible 
representation U in the regular representation 
T on T\G is equal to the dimension of the 
vector space consisting of all automorphic 
forms of type U. This theorem is called the 
Gel’fand-Pyatetskii-Shapiro reciprocity law 
[28]. Let T=C,“=, T@) be the irreducible de- 
composition of T and xk be the character of 
the irreducible unitary representation T@). 
Then for a suitable function f on G, the in- 
tegral operator K, on sj( T) = Z,‘( T\G) with 
kernel k/(x, y) = CYerf(xml yy) belongs to the 
trace class. By calculating the trace of K, in 
two ways, the following trace formula is 
obtained: 

where {v} is the conjugate class of y in r and 
D, is the quotient space of the centralizer G, of 
1~ in G by the centralizer Q of y in r. 

When the groups G and r are given ex- 
plicitly, the right-hand side of the trace for- 
mula can be expressed in a more explicit form, 
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and the trace formula leads to useful conse- 
quences. A similar trace formula holds for the 
unitary representation UL induced by a fmite- 
dimensional unitary representation L of r 
instead of the regular representation Ton 
T\G. When the quotient space T\G is not 
compact, the irreducible decomposition of the 
regular representation Ton IY\G contains not 
only the discrete direct sum but also the direct 
integral (continuous spectrum). A. Selberg 
showed that even in this case, there are explicit 
examples for which the trace formula holds for 
the part with discrete spectrum. Also, the part 
with continuous spectrum can be described by 
the tgeneralized Eisenstein series. Analytic 
properties and the functional equation of the 
generalized Eisenstein series have been studied 
by R. Langlands [30]. Recent developments 
are surveyed in [3 11. 

EE. History 

Finite-dimensional unitary representations of 
a finite group were studied by Frobenius and 
Schur (1896-1905). In 1925, +Weyl studied the 
finite-dimensional unitary representation of 
compact Lie groups. The theory of infinite- 
dimensional unitary representation was init- 
iated in 1939 by E. P. Wigner in his work on 
the inhomogeneous Lorentz group, motivated 
by problems of quantum mechanics. 

In 1943, Gel’fand and D. A. Raikov proved 
the existence of suficiently many irreducible 
unitary representations for an arbitrary locally 
compact group. The first systematic studies of 
unitary representations appeared in 1947 in 
the work of V. Bargmann on SL(2, R) [31] 
and the work of Gel’fand and Neumark on 
SL(2, C). Gel’fand and Naimark established 
the theory of unitary representation for com- 
plex semisimple Lie groups [ 121. 

Harish-Chandra proved theorems concern- 
ing the unitary representations of a general 
semisimple Lie group; for instance, he proved 
that a semisimple Lie group G is of type I [7] 
and defined the character of a unitary repre- 
sentation of G and proved its basic properties 
[9, III; lo]. Harish-Chandra also determined 
the discrete series of G and their characters. 
Harish-Chandra [ 181 proved the Plancherel 
formula for an arbitrary connected semisimple 
Lie group G with finite center. Hence har- 
monic analysis of square integrable functions 
on G is established. 

Further studies on harmonic analysis on 
semisimple Lie groups have been carried out. 
In particular, Paley-Wiener-type theorems, 
which determine the Fourier transform image 

of the space C?(G) of ?-functions with com- 
pact support, have been proved for the group 
PSL(2, R) (L. Ehrenpreis and F. Mautner 
[33]), complex semisimple Lie groups (Zhelo- 
benko [34]), and two-sided K-invariant func- 
tions on general semisimple Lie groups (R. 
Gangolli [35]). A. W. Knapp and E. M. Stein 
[36] studied the intertwining operators. 

Concerning the construction of irreducible 
representations, G. W. Mackey [3:] and Bruhat 
[4] developed the theory of induced represen- 
tations of locally compact groups and Lie 
groups, respectively. B. Kostant [37] (see 
Blattner’s article in [38]) noticed a relation 
between homogeneous tsymplectic manifolds 
and unitary representations and proposed a 
method of constructing irreducible unitary 
representations of a Lie group. Selberg’s re- 
search [29] revealed a connection between 
unitary representations (or spherical functions) 
and the theory of automorphic forms and 
number theory. A number of pape-rs along 
these lines have since appeared [31]. In con- 
nection with number-theoretic investigations 
of an ialgebraic group defined over an alge- 
braic number field, unitary representations of 
the tadele group of G or an algebraic group 
over a +p-adic number field have been studied 
(- [31,38], Gel’fand, M. I. Grayev, and I. I. 
Pyatetskii-Shapiro [39], and H. M. Jacquet 
and R. P. Langlands [40]). 

For the algebraic approach to the iniinite- 
dimensional representations of semisimple Lie 
groups and Lie algebras - [41]. 

For surveys of the theory of unitary repre- 
sentations - [2,19,20,31,38]. 
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438 (X1.5) 
Univalent and Multivalent 
Functions 

A. General Remarks 

A single-valued tanalytic function f(z) defined 
in a domain D of the complex plane is said to 
be univalent (or simple or schlicht) if it is injec- 
tive, i.e., if ,f(zI) #,f(zZ) for all distinct points z,, 

52 in D. A multiple-valued function ,f(z) is also 
said to be univalent if its distinct function 
elements always attain distinct values at their 
centers. The derivative of a univalent function 
is never zero. The limit function of a tuni- 
formly convergent sequence of univalent func- 
tions is univalent unless it reduces to a con- 
stant. When f(z) is single-valued, the univalent 
function MI= f(z) gives rise to a one-to-one 
+conformal mapping between D and its image 

S(D). 

B. Univalent Functions in the Unit Disk 

A systematic theory of the family of functions 
+holomorphic and univalent in the unit disk 
originates from a distortion theorem obtained 
by P. Koebe (1909) in connection with the 
uniformization of analytic functions. In gen- 
eral, distortion theorems are theorems for 
determining bounds of functionals, such as 
If(z)/, If’(z)I, argf”(z), within the family under 
consideration. In particular, distortion theo- 
rems concerning the bounds of the arguments 
of f(z) and j”(z) are also called rotation theo- 
rems. Though results were at first qualitative, 
they were made quantitative subsequently by 
L. Bieberbach (1916), G. Faber (1916), and 
others. Any univalent function f(z) holo- 
morphic in the unit disk and normalized by 
,f(O) = 0 and ,f’(O) = 1 satisfies the distortion 
inequalities 

IZI IZI 
(1 + lzl) 

2~lfw(,+)2~ 

1-h l+lzl 
(1 +lzO ~~lf’w(l~,z,)“. 

Here the equality holds only if f(z) is of the 
form z/( 1 - EZ)‘() cl= 1). In deriving these in- 
equalities, Bieberbach centered his attention 
on the family of +meromorphic functions g(c) 
=[+C,20h,[m” univalent in Iii> 1. He es- 
tablished the area theorem C,“=, vlb,12 d 1, 
which illustrates the fact that the area of the 
complementary set of the image domain is 
nonnegative. Bieberbach, R. Nevanlinna 
(1919-1920), and others constructed a sys- 

tematic theory of univalent functions in the 
unit disk based on this theorem. 

After the area theorem, the chief tools in 
the theory of univalent functions have been 
LGwner’s method, the method of contour 
integration, the variational method, and the 
method of the extremal metric. In contrast to 
the theory of univalent functions based on 
Bieberbach’s area theorem, K. LGwner (1923) 
introduced a new method. In view of a theo- 
rem on the domain kernel (C. Carathkodory, 
1912), it suffices to consider an everywhere 
dense subfamily in order to estima.te a con- 
tinuous functional within the family of univa- 
lent functions holomorphic in the unit disk. 
LGwner used the subfamily of functions map- 
ping the unit disk onto the so-called bounded 
slit domains. Namely, the range of a member 
of this subfamily consists of the unit disk slit 
along a Jordan arc that starts at a periphery 
point and does not pass through the origin. 
A mapping function of this nature is deter- 
mined as the integral f(z, to) of LSwner’s dif- 
ferential equation 

with the initial condition S(z, 0) = z, where ti(t) 
is a continuous function with absolute value 
equal to 1. Any univalent function f(z) holo- 
morphic in the unit disk and satisfying ,f(O) = 
0, S’(O) = 1 has an arbitrarily close approxi- 
mation by functions of the form e’:f‘(z, to). By 
means of this differential equation LGwner 
proved that la,1 < 3 for any univalent function 
,~(z)=z+CP~U~Z” ([zl<l) and also derived 
a decisive estimate concerning a coefficient 
problem for the inverse function [2]. 

G. M. Golusin (1935) and 1. E. Nazilevich 
(1936) first noticed that Lijwner’s method is 
also a powerful tool for deriving several distor- 
tion theorems. They showed that classical 
distortion theorems can be derived in more 
detailed form (Golusin, Mat. Sb., 2 (1937), 685); 
in particular, Golusin (1938) obtained a precise 
estimate concerning the rotation theorem, i.e., 

I argf’(z)l 

LGwner’s method was also investigated by A. 
C. Schaeffer and D. C. Spencer (19,15) [S]. 

The method of contour integration was 
introduced by H. Grunsky. It starts with some 
2-dimensional integral which can be shown to 
be positive. Transforming it into a boundary 
integral and using the iresidue theorem, we 

obtain an appropriate inequality by means of 
this integral. By this method Grunsky estab- 
lished the following useful inequality (Math. 
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Z.,45 (1939)). For g([)=<+C,“=,b,[-“, which 
is univalent in ICI> I, let 

The coefficients c,, are polynomials in the 
coefficients b,, of g. Then Grunsky’s inequality 
is: For each integer N and for all complex 
numbers /?, , , E.,, 

It is known that if this inequality holds for 
an arbitrary integer N and for all complex 
numbers i Ir , &,, then g(c) is univalent in 
Ill > 1. There are several generalizations of 
Grunsky’s inequality [ 131. 

The variational method was first developed 
by M. Schiffer for application to the theory of 
univalent functions. He first used boundary 
variations (hoc. London Math. Sot., 44 (1938)) 
and later interior variations (Amer. J. Muth., 
65 (1943)). The problem of maximizing a given 
real-valued functional on a family of univalent 
functions is called an extremal problem, and a 
function for which the functional attains its 
maximum is called an extremal function. The 
variational method is used to uncover charac- 
teristic properties of an extremal function by 
comparing it with nearby functions. Typical 
results are the qualitative information that the 
extremal function maps the disk Iz( < 1 onto 
the complement of a system of analytic arcs 
satisfying a differential equation and that the 
extremal function satisfies a differential equa- 
tion. Following Schiffer, Schaeffer and Spen- 
cer [S] and Golusin (Math. Sb., 19 (1946)) gave 
variants of the method of interior variations. 

H. Griitzsch (1928-1934) treated the theory 
of univalent functions in a unified manner 
by the method of the textremal metric. The 
idea of this method is to estimate the length 
of curves and the area of some region swept 
out by them together with an application 
of +Schwarz’s inequality (- 143 Extremal 
Length). After Griitzsch, the method of the ex- 
tremal metric has been used by many authors. 
In particular, 0. Teichmiiller, in connection 
with this method, formulated the principle 
that the solution of a certain type of extremal 
problem is in general associated with a tqua- 
dratic differential, although he did not prove 
any general result realizing this principle in 
concrete form. J. A. Jenkins gave a concrete ex- 
pression of the Teichmiiller principle; namely, 
he established the genera1 coefficient theo- 
rem and showed that this theorem contains 
as special cases a great many of the known 
results on univalent functions [I I]. 

Univalence criteria have been given by 
various authors. In particular, Z. Nehari (Bull. 
Amer. Math. Sot., 55 (1949)) proved that if 
~(f(z),z}~~2(1-~z~2)~2in~z~<l,thenf(z)is 
univalent in IzI < 1, and E. Hille (Bull. Amer. 
Math. Sot., 55 (1949)) proved that 2 is the best 
possible constant in the above inequality. 
Here, {f(z), z} denotes the tschwarzian deriva- 
tive of f(z) with respect to z: 

C. Coefficient Problems 

In several distortion theorems Koebe’s ex- 
tremal function z/( 1 - EZ)~ = C,“=, n&“-l z’( 1~1 = 
1) is extensively utilized. Concerning this, 
Bieberbach stated the following conjecture. If 
,f(z) = z + Cz2 a,,~” is holomorphic and univa- 
lentinlzl<l,thenla,l<n(n=2,3,...),with 
equality holding only for Koebe’s extremal 
function z/(1 -EZ)’ (l&l = 1). This conjecture 
was solved affirmatively by L. de Branges in 
1985 after enormous effort by many mathema- 
ticians, as described below. 

Bieberbach(1916,[l])provedlazl<2asa 
corollary to the area theorem. This result can 
be proved easily by most of the methods. In 
1923 LGwner [2] proved la,/ 63, introducing 
his own method. Schaeffer and Spencer gave a 
proof of la,) < 3 by the variational method 
(Duke Math. J., 10 (1943)). Furthermore, Jen- 
kins used the method of the extremal metric to 
prove a coefficient inequality that implies 
/a,[ < 3 (Analytic Functions, Princeton Univ. 
Press, 1960). The problem of the fourth coefi- 
cient remained open until 1955, when P. R. 
Garabedian and Schiffer [3] proved Ia,1 ~4 by 
the variational method. Their proof was ex- 
tremely complicated. Subsequently, Z. Char- 
zynski and Schiffer gave an alternative brief 
proof of la,1 <4 by using the Grunsky inequal- 
ity (Arch. Rational Me& Anal., 5 (1960)). M. 
Ozawa (1969, [4]) and R. N. Pederson (1968, 
[S]) also used the Grunsky inequality to prove 
la,1 Q 6. In 1972, Pederson and Schiffer [6] 
proved la, I < 5. They applied the Garabedian- 
Schiffer inequality, a generalization of the 
Grunsky inequality which Garabedian and 
Schiffer had derived by the variational method. 

On the other hand, W. K. Hayman [7] 
showed that for each fixed f(z) = z + x:2 a,~“, 

with the equality holding only for Koebe’s 
extremal function z/(1 -EZ)’ (IsI = 1). Further, 
it was shown that Koebe’s extremal function 
z/( 1 - z)~ gives a local maximum for the nth 
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coefficient in the sense that Re{a,} <n when- 
ever Ju2 - 21~ 6, for some S, > 0 (Garabedian, 
G. G. Ross, and Schiffer, J. Math. Mech., 14 
(1964); E. Bombieri, Znuentiones Math., 4 
(1967); Garabedian and Schiffer, Arch. Ra- 
tional Math. Anal., 26 (1967)). 

In the most general form, the coefficient 
problem is to determine the region occupied 
by the points (a,, . . , a,) for all functions f(z) = 
z+Cz,a,z” univalent in Iz] < 1. Schaeffer 
and Spencer [S] found explicitly the region for 

(a2, 4. 
For the coefficients of functions g(c) = [ + 

X:0 b,<-’ univalent in Ill > 1, the following 
results are known: lb, I< 1 (Bieberbach Cl]), 
1 b2 I< 2/3 (Schiffer, Bull. Sot. Math. France, 66 
(1938); Golusin, Mat. Sb., 3 (1938)), Jb,l< l/2+ 
eF6 (Garabedian and Schiffer, Ann. Math., 
(2) 61 (1955)). 

D. Other Classes of Univalent Functions 

We have discussed the general family of func- 
tions univalent in the unit disk. There are also 
several results on distortion theorems and 
coefficient problems for subfamilies deter- 
mined by conditions such as that the images 
are bounded, tstarlike with respect to the 
origin, or tconvex. For instance, if f(z) = z + 
Cz2 a,z” is holomorphic and univalent in 
]zI < 1 and its image is starlike with respect to 
the origin, then 1 a, I <n (n = 2,3, . . ). If the im- 
age of f(z) is convex, then f(z) satisfies (a,( < 
1 (n = 2,3, . ) and the distortion inequalities 

I4 IZI ---<If( G-- 
l+lzl 1 -lzI’ 

1 1 

(1 +bV My1 -lzl)* 

Here the equality sign appears at z0 (0 < IzO( < 
1) if and only if f(z) is of the form z/( 1 + EZ) 
with a= f lz,l/zO. 

On the other hand, problems on conformal 
mappings of multiply connected domains 
involve essential difficulties in comparison 
with the simply connected case. Although 
Bieberbach’s method is unsuitable for multi- 
ply connected domains, Liiwner’s method, 
the method of contour integration, the varia- 
tional method, and the method of the ex- 
tremal metric remain useful (- 77 Con- 
formal Mappings). 

E. Multivalent Functions 

Multivalent functions are a natural generaliza- 
tion of univalent functions. There are several 
results that generalize classical results on 
univalent functions. 

A function f(z) that attains every value at 
most p times and some values exactly p times 
in a domain D is said to be p-valent in D and is 
called a multivalent function provided that p > 
1. In order for ,f(z) = CE,, a,,~“, holomorphic 
in IzI < 1, to be p-valent there, it is sufficient 
that it satisfies 

p-1 <W~f’(W(~))<p+ 1 

on Iz]= 1. Hence it suffices to have 

If,f(z)=(l +a,z+a,z2+ . ..)/z” is holomorphic 
and p-valent in 0 < I z I < 1, then 

I F(lf(re’ )l)dB<O 

for any increasing function F(p) in p > 0. In 
particular, if F(p)=p’, this becomes an area 
theorem from which follow coefficient esti- 
mates, etc., for p-valent functions. 

Various subfamilies and generahzed families 
of multivalent functions have been considered. 
Let f(z) be p-valent in I), and co + c r z + + 
cP-i zP-’ + c,f(z) be at most p-valent in D 
for any constants co, cl, . . . , cP. Then f(z) is 
said to be absolutely p-valent in D. If a function 
f(z) holomorphic in a convex domain K satis- 
ties Re(e’“f@)(z)) > 0 for a real constant a, then 
f’(z) is absolutely p-valent in K. If f(z) is ab- 
solutely p-valent in D, then 

p-1 
z k + bpf(4 1 CkZk + c,f(::) 

k=O > 

is at most p-value in D for any constants bk 
and ck. 

If f(z) is p-valent in the common part of a 
domain D and the disk centered at each point 
of D with a fixed radius p, then f(z) is said to 
be locally p-valent in D, and p is cahed its 
modulus. A necessary and sufficient condi- 
tion for f(z), holomorphic in D, to be at most 
locally p-valent is that f’(z), ,f@)(z) not 
vanish simultaneously. In order for f(z), holo- 
morphic in D, to be locally absolutely p-valent 
it is necessary and sufficient that fcP’(z) #O. 
Let the number of Re”-points of f(z) in D be 
n(D, Re’O”). If f(z) satisfies 

n(D, Re”+‘)dv <p, 

for any R > 0, it is said to be circumferentially 
mean p-valent in D. If f(z) satisfies 

n(D,Re”+‘)RdRdrpdpzR’, 

it is said to be areally mean p-valent in D. If 
f(z)” with q > 1 is areally mean p-valent in D, 
then f(z) is areally mean p/q-valent in D. For 
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f(z)=(l +a,z+a,z2+ . ..)/z” holomorphic and 
areally mean A-valent in O< Iz] < 1, the follow- 
ing area theorem holds: 

Let E be a set containing at least three 
points. If f(z) in D attains every value of E at 
most p times and a certain value of E exactly p 
times (it may attain values outside E more 
than p times), then f(z) is said to be quasi-p- 
valent in D. If w  =f(z) is p-valent in D and g(w) 
is quasi-q-valent in f(D), then g(f(z)) is at 
most quasi-pq-valent in D. 

The first success in obtaining sharp inequal- 
ities for multivalent functions was attained 
by Hayman. In his work, an essential role was 
played by the method of tsymmetrization. For 
instance, he obtained the following result. If 
f(z) = zp + up+, zp+’ + . . is holomorphic and 
circumferentially mean p-valent in IzI < 1, then 
la,+,]<2p,andforlzl=r,O<r<l, 

rp rp 

(1+r)2p ww(,+’ 

If ‘(4~ PU +r) 
r(l--T)l.f(Z)I ~~;“~)~p::‘. 
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ties the following three conditions, where I- is 
the multiplicative group of positivl: real num- 
bers: (i) w(a) = 0 if and only if a = 0; (ii) w(ab) 
= w(a)w(b);‘and (iii) w(a +b) <C(M)(~)+ w(b)), 
where C is a constant (independent of the 
choice of a and b, but dependent on the choice 
of w). 

The value group of w  is defined to be 
{w(a)/ UE K - {O}}. Extensions of a valuation 
and equivalence of valuations are defined as in 
the case of additive valuations. Thus w’ is 

A. Introduction 

There are two related kinds of valuations, 
additive (- Section B) and multiplicative (- 
Section C). The notion of valuations, originally 
defined on (commutative) +fields, has been 
extended to more general cases (- Section K); 
however, we first consider the case of fields. equivalent to w  if and only if there is a positive 

r such that for all UE K, w(a) = w’(a)l. In each 

B. Additive Valuations 

In this article, we mean by an ordered additive 
group a totally ordered additive group, namely, 
a commutative group whose operation is 
addition, which is a +totally ordered set satisfy- 
ing the condition that a 2 b and c > d imply a 
+c>b+dand --ad-b.Supposethatweare 
given a field K, an ordered additive group G, 
and an element co defined to be greater than 
any element of G. Then a mapping v: K --t 
G U {co} is called an additive valuation (or 
simply a valuation) of the field K if u satisfies 
the following three conditions: (i) u(a) = 00 if 
and only if n = 0; (ii) v(ab) = u(a) + v(b) for all a, 
b#O; and (iii) u(u+b)~min{u(u),u(b)}. 

The set {u(a) 1 UE K - (0) } is a submodule of 
G and is called the value group of v, while the 
set R,= {a~ K ) v(a)>,O} is a subring of K and 
is called the valuation ring of v. The ring R, has 
only one tmaximal ideal {u (u(u) > 0), called the 
valuation ideal of v (or of R,), and the tresidue 
class field of R, modulo the maximal ideal is 
called the residue class field of the valuation v. 
We have v(a) < u(b) if and only if uR, 3 bR,. 
Two valuations u and u’ of the field K are said 
to be equivalent when u(u) < u(b) if and only if 
V’(U) < v’(b); hence v and v’ are equivalent if and 
only if R, = R,. The rank of v is defined to be 
the +Krull dimension of the valuation ring R,, 
and the rational rank of u to be the maximum 
(or supremum) of the numbers of linearly 
independent elements in the value group. An 
extension (or prolongation) of v in a field K’ 
containing K is a valuation u’ of K’ whose 
restriction on K is v; such an extension exists 
for any given u and K’. Sometimes a valuation 
of rank 1 is called a special valuation (or ex- 
ponential valuation), and a valuation of a gen- 
era1 rank is called a generalized valuation. On 
the other hand, if k is a subfield of K such that 
v(u) = 0 for every nonzero element a of k, then 
u is called a valuation over the subfield k. 

C. Multiplicative Valuations 

A multiplicative valuation (or valuation) of a 
field K is a mapping w  : K -tT U {0} that satis- 

condition (iii) can be taken to be 1. A valu- 
ation w  is said to be a valuation over a subfield 
k if w(a) = 1 for any nonzero element a of k. 

We call w  an Archimedean valuation if for 
any elements a, b E K, a # 0, there exists a 
natural number n such that w(m) :s w(b); 
otherwise, w  is said to be a non-Arcbimedean 
valuation. If w  is an Archimedean valuation of 
a field K, then there is an injection (r from K 
into the complex number field C such that w  is 
equivalent to the valuation w’ defined by w’(a) 
=la(a)l. If w  is a non-Archimedean valuation 
of a field K, then w(a+ b)<max{wl(u), w(b)}. 
Hence in this case we get an additive valuation 
u of K when we define t)(a)= -logw(u) (a~ K), 
and either v is of rank 1 or v(K) = { 1,O) (in the 
latter case, v is called trivial). Conversely, every 
additive valuation of rank 1 of K ia equivalent 

equivalence class of valuations of al field, there 

to an additive valuation obtained in this way 

exists a valuation for which the constant C in 

from a non-Archimedean valuation. (This is 
why an additive valuation of rank 1 is called 
an exponential valuation.) Therefore a non- 
Archimedean valuation determines a valuation 
ring and valuation ideal in a natural manner. 
Thus we can identify a non-Archimledean 
valuation with an additive valuation of rank 1. 

D. Topology Defined by a Valuation 

Let w  be a multiplicative valuation of a field 
K. When the tdistance between two elements 
a, b of K is defined by w(a - b), K becomes a 
ttopological field. (Although this distance may 
not make K into a tmetric space, there exists a 
valuation w’ equivalent to the valuation w  
such that K becomes a metric space with 
respect to the distance ~‘(a - b) between a and 
b (a, be K).) If K is tcomplete under the topol- 
ogy, then we say that K is complete with 
respect to w  and w  is complete on h:. On the 
other hand, suppose that w’ is an extension of 
w  in a field K’ containing K. If w’ is complete 
and K is tdense in K’ under the topology de- 
fined by w’, then we say that the valuatiori w’ 
is a completion of w  and that the field K’ is a 
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completion of K with respect to w. For any w, 
a completion exists and is unique up to iso- 
morphism. When w  is a non-Archimedean 
valuation, the valuation ring of the completion 
of w  is called the completion of the valuation 
ring of w. 

When v is an additive valuation of a field K, 
we can introduce a topology on K by taking 
the set of all nonzero ideals of the valuation 
ring R, of v as a tbase for the neighborhood 
system of zero. Important cases are given by 
valuations of rank 1, which are the same as 
those given by non-Archimedean valuations. 

If w  is a complete non-Archimedean valu- 
ation of a field K, then the valuation ring R, 
of w  is a +Hensel ring, which implies that if K’ 
is a finite algebraic extension of K such that 
[K’: K] = n, then w  is uniquely extendable to a 
valuation w’ of K’ and w’(a)” = w(N(a)), where 
N is the +norm NKPIK. 

E. Discrete Valuations 

For a non-Archimedean valuation (or an 
additive valuation of rank 1) w, if the valuation 
ideal of w  is a nonzero tprincipal ideal gen- 
erated by an element p, then we say that p is a 
prime element for w, w  is a discrete valuation, 
and the valuation ring for w  is a discrete valu- 
ation ring. The condition on the valuation 
ideal of w  holds if and only if the value group 
of w  is a discrete subgroup of the (multiplica- 
tive) group I of positive real numbers: In the 
terminology of additive valuations, a valuation 
w  is discrete if and only if it is equivalent to a 
valuation w’ whose value group is the additive 
group of integers. Such a valuation w’ is called 
a normalized valuation (or normal valuation). 
However, we usually mean normalization of a 
discrete non-Archimedean valuation as in 
Section H. Sometimes an additive valuation 
whose value group is isomorphic to the direct 
sum of a finite number of copies of Z (the 
additive group of integers) with a natural 
tlexicographic order is called a discrete valu- 
ation. Concerning a complete discrete valu- 
ation w, it is known that if the valuation ring 
of w  contains a field, then it is isomorphic to 
the ring of tformal power series in one variable 
over a field (for other cases - 449 Witt Vec- 
tors A). 

F. Examples 

(1) Trivial valuations of a field K are the addi- 
tive valuation u of K such that v(a) = 0 for all 
UE K - (0) and the multiplicative valuation w  
of K such that w(a)= I for all aEK - {O}. 

(2) If K is isomorphic to a subfield of the 
complex number field, then we get an Archi- 

medean valuation using the absolute value, 
and as stated in Section C, every Archimedean 
valuation of K is equivalent to a valuation 
obtained in this way. 

(3) Let p be a tprime ideal of a +Dedekind 
domain R, ~LEP be such that n$p2, and K be 
the field of quotients of R. Then each nonzero 
element c( of K can be expressed in the form 
arob-’ (r~Z;a,h~R;a,b$p), where r, the degree 
of a with respect to p, is uniquely determined 
by a. Hence, letting c be a constant greater 
than 1, we obtain a non-Archimedean valu- 
ation w  defined by w(c()=c?. This valuation w  
is called a p-adic valuation. We also get an 
additive valuation u defined by V(X) = r, called 
a p-adic exponential valuation. The completion 
K, of K with respect to v is called the p-adic 
extension of K. If K is a finite talgebraic num- 
ber field, the K, is called a p-adic number field. 
If p is generated by an element p, then “p-adic” 
is replaced by “p-adic.” For instance, given a 
rational prime number p, we have a p-adic 

valuation of the rational number field Q, and 
we obtain the p-adic extension Q, of Q, which 
is called the p-adic number field. Every non- 
zero element tl of Q, can be written as a 
uniquely determined expansion Czr anpn 
(a,#O,r~Z,a,EZ,O~aa,<p). Then we obtain a 
valuation v of Q, defined by v(a) = r. This 
valuation u is a discrete additive valuation, 
and Q, is complete with respect to u. The 
valuation ring of u is usually denoted by Z,, 

which is called the ring of p-adic integers. Each 
element of Q, (Z,) is called a p-adic number (p- 
adic integer). 

(4) Consider the field of +power series k((t)) 
in one variable t over a field k. For 0 #a E 
k((t)), we define u(tl)=r if ~(=X$,a,t” (a,~k, 
a,#O). Then v is a discrete valuation of k((t)), 
and k((t)) is complete with respect to this 
valuation. 

(5) Let v be an additive valuation of a field 
K with the valuation ring R,, and the valuation 
ideal M,. Let v’ be an additive valuation of the 
field R&n, with the valuation ring R,,. Then 
R” = {a E R, 1 (a mod m,) E R,.} is a valuation 
ring of K. A valuation v” whose valuation ring 
coincides with R” is called the composite of u 

and VI. 

G. The Approximation Theorem and the 
Independence Theorem 

The approximation theorem states: Let 
wi , , w,, be mutually nonequivalent and 
nontrivial multiplicative valuations of a field 
K. Then for any given II elements a,, , a, of 
K and a positive number E, there exists an 
element a of K such that wi(a - ai) < a (i = 
1,2 )..., n). 
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From this follows the independence theorem: 
Let e , , . . . , e, be real numbers, and let wi and 
K be as in the approximation theorem. If 
niwi(a)‘i=l forallaEK-{O},thene,=... 
=e,=O. 

Similar theorems hold for additive valu- 
ations. The following independence theorem is 
basic: Let u,, , v, be additive valuations of a 
field K, R,, , R, their valuation rings, and 
111 1, . , m, their maximal ideals. Let D = ni Ri, 
pi = m, n D, and consider the rings of quotients 
Doi. Then D,i = Ri. If Ri $ R, (for i Zj), then D 
has exactly n maximal ideals p,, . , p,. 

H. Prime Divisors 

Let K be an talgebraic number field (algebraic 
function field of one variable over a field k). An 
equivalence class of nontrivial multiplicative 
valuations (over k) is called a prime divisor 
(prime spot) of K. 

If K is an algebraic number field of degree n, 
there are exactly n mutually distinct injections 
0, , , o, of K into the complex number field 
C. We may assume that pi(K) is contained in 
the real number field if and only if i < rl and 
racy+, and or, +,(a) are conjugate com- 
plex numbers (n - r1 > i > 0, a E K). For i < rl, 
let v,(a)=I~~(u)I, and for 1 <i<(n-r,)/2, let 

vrl+~(u)=l~rl+i (u)l’. Then L’, , . . , u,,+,~ (r2 = 
(n - r,)/2) is a maximal set of mutually non- 
equivalent Archimedean valuations of K. 
Equivalence classes of v, , , v,, are called real 
(infinite) prime divisors, and those of upI +1, , 
c,> +li are called imaginary (infinite) prime 
divisors; all of them are called infinite prime 
divisors. An equivalence class of non- 
Archimedean valuations of K is called a finite 
prime divisor. 

An Archimedean valuation of K is said to 
be normal if it is one of the valuations v,. If v is 
non-Archimedean, then v is a p-adic valuation, 
where p is a prime ideal of the principal order 
o of K (- Section F, example (3)). Hence if a is 
an element of K, there exists a constant c (c > 
1) such that v(u) = c -I, where r is the degree 
of a with respect to p. In particular, if c is the 
norm of p (i.e., c is the cardinality of the set 
o/p), then the valuation u is called normal. Any 
finite prime divisor is represented by a normal 
valuation. Then we have the product formula 
n, w(u)= 1 for all UE K - {0}, where w  ranges 
over all normal valuations of K. 

For a function field, a normal valuation is 
defined similarly, using er instead of the norm 
of p, where e is a fixed real number greater 
than 1 and ,f is the degree of the residue class 
field of the valuation over k. In this case we 
also have the product formula. 

I. Extending Valuations to an Algebraic 
Extension of Finite Degree 

Assume that a field K’ is a finite algebraic 
extension of a field K. Let u be an additive 
valuation of K and v’ be an extension of L’ to 
K’. We denote the valuation rings, valuation 
ideals, and value groups of v and v’ by R,, R,., 
m,, m,., and G, G’, respectively. Then the 
degree of the extension f,, = [R,./m,. : RJm,] is 
called the degree of v’ over v. The group index 
eV. = [G’: G] is called the ramification index of 
t” over u. If u’ ranges over all extensions of v in 
K’, then the sum C&e”. is not greater than 
[K’: K] and the equality holds when v is a 
discrete valuation and either K’ is iseparable 
over K or v is complete. 

J. Places 

Let k, K, and L be fields, and suppose that k 
cK.LetfbeamappingofKontoLU{m} 
such that f(ab) =f(u)f(b) and f(a + b) =f(u) 
+,f(b), whenever the right member is meaning- 
ful, and such that the restriction off to k is an 
injection. Here co is an element adjoined to L 
and satisfying cw +a=u+ cu = m, cou=aa 
= co (for any nonzero element a tof K), l/a 
= 0, and l/O = co. Then f is called a place of K 
over k. In this case R={xeK If(:c)#oo} is a 
valuation ring of K containing k. Let nr be the 
maximal ideal of R. Then f can b’e identified 
with the mapping g: K *R/m U { (x)} defined as 
follows: If UER, then g(a)=(umodm); other- 
wise, g(a) = co. Places of K over /i can be 
classified in a natural way, and there exists a 
one-to-one correspondence between the set 
of classes of places of K over k and the set 
of equivalence classes of additive valuations 
over k. When K is an ialgebraic function field, 
we usually consider the case where k is the 
tground field. Then if a,, , a,,~ 17, (a,, . , a,) 
-(g(ul), . , g(u,)) gives a +specialization of 
points over k. Conversely, if ui, hj~ K are 
such that (ulr , u,)+(b,, , b,) is a speciali- 
zation over k, then there is a place f of K 
over k such that (b, , , b,) is isomorphic to 
(,f(ul), . . ,,f(a,)) (usually there are infinitely 
many such f’s). 

K. Pseudovaluations 

A pseudovaluation cp of a ring A (not neces- 
sarily commutative) is a mapping of A into the 
set of nonnegative real numbers satisfying the 
following four conditions: (i) q(a) = 0 if and 
only if a = 0; (ii) q(ub) < cp(u)cp(b); (iii) cp(a + b) < 

q~(a)+cp(b); and (iv) cp(--a)=&~). These con- 
ditions are weaker than those for multipli- 
cative valuations, but with them a topology 
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can be introduced into A as in Section D, with 
respect to which A becomes a topological ring. 

L. History 

The theory of valuations was originated by K. 
Hensel when he introduced p-adic numbers 
and applied them to number theory [ 11. J. 
Kiirschak (J. Reine Angew. Muth., 142 (1913)) 
first treated the theory of multiplicative valu- 
ations axiomatically; it was then developed 
remarkably by A. Ostrowski (Acta Math., 41 

(1918)). However, in their theory condition (iii) 
(- Section C) was given only in the case C = 1, 
thus excluding the normal valuation of an 
imaginary prime divisor in an algebraic num- 
ber field. A valuation with general C was 
introduced by E. Artin [3]. The theory of ad- 
ditive valuations was originated by W. Krull 
(J. Reine Angew. Math., 167 (1932)), although 
the concept of exponential valuations existed 
before. The theory of valuations is used to 
simplify +class field theory and the theory of 
algebraic function fields in one variable. For 
these purposes, the notion of multiplicative 
valuations is sufficient (- 9 Algebraic Curves; 
59 Class Field Theory). The idea is also used 
in the theory of normal rings and in alge- 
braic geometry, for both of which the con- 
cept of additive valuations is also necessary. 
Pseudovaluations were used by M. Deuring 
(Erg. Math., Springer, 1935) in the arithmetic 
of algebras. 
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440 (X.35) 
Variational Inequalities 

A. Introduction 

Variational inequalities arise when we con- 
sider extremal problems of functionals under 
unilateral constraints. Some problems in 
physics and engineering are studied by for- 
mulating them as elliptic, parabolic, and 
hyperbolic variational inequalities [l-8]. 

B. Stationary Variational Inequality 

Let D be a bounded domain in m-dimensional 
Euclidean space and ,feL,(D) be a given real- 
valued function. Consider the variational 
problem of minimizing the following func- 
tional J with the argument function D: 

J[u]= 
j 

lgradvl’dx-2 .f~dx. 
” i D 

Here, we suppose the set of admissible func- 
tions to be the closed convex subset 

K={usH,‘(D)) u<O a.e. in D) 

of the Hilbert space H,‘(D) (- 168 Function 
Spaces). It can be shown by choosing a mini- 
mizing sequence that there exists a minimum 
value of J which is realized by a unique UE K. 

Since the stationary function u belongs to 
Hd (D), it can be shown that the boundary 
condition u 1 FD = 0 is satisfied in the sense that 
the +trace y,u~H”*(i;D) (- 224 Interpolation 
of Operators) of u on t3D vanishes a.e. on SD. 

In view of the fact that J[u] <J[u] is valid for 
any UE K, it can be verified that the stationary 
variational inequality 

-Au-f<0 

Ll<O 

I 

(1) 

(-Au-j).u=O 

is satisfied in D in the sense of differentiation 
of distributions (- 125 Distributions and 
Hyperfunctions). The problem (1) is a Dirichlet 
problem with obstacle. Moreover, we can prove 
the regularity of UEH*(D) under an assump- 
tion of suitable smoothness for c3D by estab- 
lishing the boundedness of the solutions U, in 
H’(D) of the penalized problems associated 
with (1): 

-Au,+;u; =f (s>O), 

u,(;,=O. 

Here we note that the u, are the stationary 
functions of the ordinary variational problems 
of minimization in H;(D) of the functionals 

J,[v]= 
s 

lgradol’dx-2 
ID Fs 

fudx+! Iu+l*dx 
D 

with the penalty term (the third term of the 
right-hand side of the equality above). We 
have thus found that the stationary variational 
inequality (1) is the Euler equation of a con- 
ditional problem of variation (- 46 Calculus 
of Variations). 

C. Variational Inequality of Evolution 

Let $E H’(D) be a given function on D such 
that I/J 1 CD 3 0 and A$ E L,(D). The variational 
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inequality of evolution 

.(I.-$)=O (t>O,xED), 

u(0, x) = a(x) (x E D), 

4Lx)I,w=O (t>O) 

can be formulated as an abstract Cauchy 
problem (- 286 Nonlinear Functional Analy- 
sis X) 

du 
-E Au 
dt 

(t >O), 

u(+O)=a 

in a Hilbert space with a multivalued operator 
A = - C;cp, where &p is the subdifferential of the 
following lower semicontinuous proper convex 
function on the Hilbert space L,(D): 

ifaEHt(D) and v,<$, 

otherwise. 

Thus the solution u is given by the vector- 
valued function 

Here etA is the inonlinear semigroup generated 
by A (- 88 Convex Analysis, 378 Semigroups 
of Operators and Evolution Equations). 

D. Optimal Stopping Time Problem and 
Variational Inequalities 

Let iXJtao be an m-dimensional Brownian 
motion (- 45 Brownian Motion) and consider 
the problem of finding a tstopping time 0 that 
minimizes 

under the restriction that 0 <D 8 oiD, where 
oiD is the +hitting time for the boundary aD. 
Let us define 

u(x) = min J,[a]. 
CT 

Then the tprinciple of optimality in dynamic 
programming gives the stationary varia- 
tional inequality (1) with A replaced by )A, 
and we can show by the tDynkin formula that 
an optimal stopping time 8 is the hitting time 
for the set {x~Q\u(x)=O} (- 127 Dynamic 
Programming). We can systematically discuss 
problems in mathematical programming and 

operations research by introducing quasivaria- 
tional inequalities, which are sligh,t generaliza- 
tions of variational inequalities (-A 227 Inven- 
tory Control, 408 Stochastic Prog,ramming). 
The above-mentioned facts are applicable to 
general tdiffusion processes described by +sto- 
chastic differential equations (- 115 Diffusion 
Processes, 406 Stochastic Differential Equa- 
tions). We have thus found the relation 

free boundary problem-variational inequality 
‘I optlmal stopping time problem $ 

(- 405 Stochastic Control and Stochastic 
Filtering). 

E. Numerical Solution of Variational 
Inequalities 

Since the solution u of the variational inequal- 
ity (1) is the stationary function for the vari- 
ational problem, we can apply to the evalu- 
ation of the function u numerical methods 
based on the direct method of the calculus of 
variations (- 300 Numerical Methods). The 
+finite element method, which can be regarded 
as a type of Ritz-Galerkin method, is exten- 
sively employed to calculate numerical solu- 
tions. In view of the unilateral constraint 
u ~0, iteration methods, such as tlhe Gauss- 
Seidel iteration method, are used ,with modili- 
cations. An algorithm of relaxation with pro- 
jection is proposed in [3] (- 304 Numerical 
Solution of Partial Differential Equations). 
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441 (XX.3) 
Variational Principles 

A. General Remarks 

Among the principles that appear in physics 
are those expressed not in terms of differen- 
tial forms but in terms of variational forms. 
These principles, describing the conditions 
under which certain quantities attain ex- 
tremal values, are generally called variational 
principles. Besides Hamilton’s principle in 
classical mechanics (- Section B) and Fermat’s 
principle in geometric optics (- Section C), 
examples are found in telectromagnetism, 
irelativity theory, tquantum mechanics, +field 
theory, etc. Independence of the choice of 
coordinate system is an important character- 
istic of variational principles. Originally these 
principles had theological and metaphysical 
connotations, but a variational principle is 
now regarded simply as a postulate that pre- 
cedes a theory and furnishes its foundation. 
Thus a variational principle is considered to 
be the supreme form of a law of physics. 

B. Mechanics 

In 1744 P. L. Maupertuis published an almost 
theological thesis, dealing with the principle 
of least action. This was the beginning of the 
search for a single, universal principle of me- 
chanics, contributions to which were made 
successively by L. Euler, C. F. Gauss, W. R. 
Hamilton, H. R. Hertz, and others. 

Let {qr} be the igeneralized coordinates of a 
system of particles, and consider the integral of 
a function L(y,, Q,, t) taken from time t, to t, 
If we compare the values of the integral taken 
along any arbitrary path starting from a lixed 
point PO in the coordinate space at time t, and 
arriving at another fixed point P, at time t,, 
then the actual motion q,(t) (which obeys the 
laws of mechanics) is given by the condition 
that the integral is an textremum (tstationary 
value), that is, 6s:; Ldt =O, provided that the 
function L is properly chosen. This is Hamil- 
ton’s principle, and L is the +Lagrangian func- 
tion. In TNewtonian mechanics, the tkinetic 
energy T of a system of particles is expressed 
as a tquadratic form in 4,. Furthermore, if the 
forces acting on the particles can be given by 
-grad V, where the potential V does not de- 
pend explicitly on 4,, we can choose L = T- 
V. Also, for a charged particle in tspecial rela- 
tivity, we can take L = -m,c’(l - u2/c2)l12 - 
etp + e(v . A), where m, is the rest mass of the 
particle, e is the charge, v is the velocity (with 
~1 its magnitude), c is the speed of light in 

vacuum, and cp and A are the scalar and 
vector potentials of the electromagnetic field, 
respectively. 

In general relativity theory, the motion of a 
particle can be derived from the variational 
principle 6 jds = 0 (ds is the Riemannian line 
element). Hence, geometrically, the particle 
moves along a tgeodesic curve in 4-dimen- 
sional space-time. 

C. Geometric Optics 

The path of a light ray between two points PO 
and P, (subject to reflection and refraction) is 
such that the time of transit along the path 
among all neighboring virtual paths is an 
extremum (stationary value). This is called 
Fermat’s principle. If the index of refraction 
is n, Fermat’s principle can be expressed as 
6 s;(; n ds = 0 (ds is the Euclidean line element). 
The laws of reflection and refraction of light, 
as well as the law of rectilinear propagation of 
light in homogeneous media, can be derived 
from this principle. 

D. Field Theory 

Not only the equations of motion of a system 
of particles, but also various field equations 
(+Maxwell’s equations of the electromagnetic 
field, +Dirac’s equation of the electron field, the 
meson field equation, the gravitational field 
equation, etc.) can be derived from variational 
principles in terms of appropriate Lagrangian 
functions. In +field theory the essential virtue 
of the variational principle appears in the fact 
that the properties of various possible fields as 
well as conservation laws can be systematically 
discussed by assuming relativistic invariance 
and gauge invariance of the Lagrangian func- 
tions adopted. In particular, for an electro- 
magnetic field in vacuum, the Lagrangian 
function density is L = (Hz -E2)/2, and the 
integration is carried out over a certain 4- 
dimensional domain. 

E. Quantum Mechanics 

If H is the tHamiltonian operator for any 
quantum-mechanical system, the eigenfunc- 
tion Ic, can be determined by the variational 
principle 

6 $Hijdz=O, 
s 

with 
s 

$$dz= 1, 

where $ is the complex conjugate of $ and dz 
is the volume element. Based on this varia- 
tional principle, the +direct method of the 
calculus of variations is often employed for 
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an approximate numerical calculation of the 
energy eigenvalues and eigenfunctions. In par- 
ticular, by restricting the functional form of 
$ to the product of one-body wave functions, 
we can obtain Hartree’s equation. A further 
suitable symmetrization of $ leads to Fock’s 
equation. 

F. Statistical Mechanics 

Let cp be a statistical-mechanical state of a 
system, and let S(q) and E(v) be the state’s 
entropy and energy (mean entropy and mean 
energy for an infinitely extended system); T 
is the thermodynamical temperature, and 
f(cp) = E(q) - 7X((p) is the free energy. Then the 
equilibrium state for T> 0 is determined as the 
state cp that gives the minimum value of f(cp) 
(maximum for T< 0). 
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442 (VI.1 2) 
Vectors 

A. Definitions 

The vector concept originated in physics from 
such well-known notions as velocity, acceler- 
ation, and force. These physical quantities are 
supplied with length and direction; they can be 
added or multiplied by scalars. In the Euclid- 
ean space E” (or, in general, an taffine space), 
a vector a is represented by an oriented seg- 
ment ~3. Two oriented segments p14; and 
Prq; are considered to represent the same 
vector a if and only if the following two con- 
ditions are satisfied: (1) The four points pl, q,, 

p2, q2 lie in the same plane n. (2) plql/ /p2q2 

and p,q2/lq,q,. Hence a vector in E” is an 
equivalence class of oriented segments ~3, 

where the equivalence relation plq; -px2 

is defined by the two conditions just given. 

Hereafter, we denote the vector by [g], or 
simply p<. The points p and q are called the 
initial point and terminal point of the vector fi. 

Given a vector a =pJ and a real number /1., 
we define the scalar multiple la as the vector 
~7, where r is the point on the straright line 
containing both p and q such that the ratio 
[jZ:p3] is equal to 1 (if p = q, then we put Y = 
p). The operation (I,a)+ia is called scalar 
multiplication. Given two vectors a = pJ and 
h = @, the vector c = $ is called the sum of a 
and h and is denoted by c = a + h. The vector 
m = 0 is called the zero vector. If a = pq, we put 
-a=qT. 

Scalar multiplication and addition of vec- 
tors satisfy the following seven conditions: (1) 
a+ h= h+a (commutative law); (2) a+(h+c)= 
(a + b) + c (associative law); (3) a + 0 = a; (4) 
for each a there is -a such that a +(-a) = 0; 
(5) i(a + b) = Ia + 2b, (I. + p)a = ia + pa (dis- 
tributive laws); (6) 3,(pa)=(,l+)a (associative 
law for scalar multiplication); and (7) la=a. 
Hence the set V of all vectors in K’ forms a 
+real linear space. Sometimes, a set satisfying 
(l)-(T), that is, by definition, a linear space, is 
called a vector space, and its elements are 
called vectors. 

The pair consisting of a vector @ and a 
specific initial point p of p? is sometimes called 
a fixed vector. An illustration of this is given 
by the force vector with its initial point being 
where the force is applied. By contrast, a vec- 
tor py is sometimes called a free tector. If we 
fix the origin o in E”, then for any point p in 
E”, the vector ?$ is called the position vector of 

P. 
If two vectors a = ?$J and b = 04’ are tlinearly 

dependent, they are sometimes said to be 
collinear. If there vectors a = 07, b = @, and 
c = Z are linearly dependent, they are some- 
times said to be coplanar. 

If a set of vectors e,, . . . , e, forms a +basis of 
a vector space V, then the vectors e, are called 
fundamental vectors in V. Each vector a6 V is 
uniquely expressed as a = C cliei (PER). We 
call (n, , , a,) the components of rhe vector 
a with respect to the fundamental vectors 
e ,,..., e,. 

B. Inner Product 

In the Euclidean space E”, the len,gth of the 
line segment p? is called the absolute value (or 
magnitude) of the vector a = p? an#d is denoted 
by [al. A vector of length one is called a unit 
vector. For two vectors a = 03 and b = 03, the 
value(a,b)=~a~~h~cosHiscdlled theinner 
product (or scalar product) of a and b, where (I 
is the angle ~poq. Instead of (a, bj, the nota- 
tions a * b, or ab are also used. If neither vec- 
tor a nor vector b is equal to 0, then (a, b) = 0 
implies L poq = n/2, that is, the orthogonality 
of the two vectors Z$ and ?x$ If W~Z take an 
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+orthonormal basis (e,, , e,) in E” (i.e., a set 
of fundamental vectors with (eil = 1, (e,, ej) = 0 
(i #,j)), the inner product of vectors a = C a,e,, 
b= C /3,e, is equal to Cr=, r*,&. The inner 
product has the following three properties (i) 
(x, x) > 0 and is zero if and only if x = 0; (ii) 

(x,y)=(y,x);(iii)(x,+x2,y)=(xl,y)+(x2,y), 
(ax, y) = x(x, y) (a E R). Similar linearity holds 
for y. 

Generally, an R-valued tbilinear form (x, y) 
on a linear space 1/ satisfying the previous 
three conditions is also called an inner prod- 
uct. If a linear space T/ is equipped with an 
inner product, the space is called an inner 
product space (- 256 Linear Spaces H; 197 
Hilbert Spaces). If V is an inner product space, 
the absolute value 1x1 of XE V is defined to be 

JtGi 

C. Vector Product 

In the 3-dimensional Euclidean space E3, we 
take an orthonormal basis e,, e,, e3. Let a and 
b be vectors in E” whose components with 

respect to e,, ez, e, are (xl, x2. cd, (B13 B2, &I. 
The vector 

which is symbolically written as 

is called the exterior product or vector product 
of a and b and is denoted by [a, b] or a x b. 
The vector [a, b] is determined uniquely up to 
its sign by a and b and is independent of the 
choice of the orthonormal basis. 

Suppose that we have a = 07, b = 07. Then 
/[a,b]I=la[.Iblsin0, whereO= Lpoq. Also 
I [a, b] I is equal to the area of the parallel- 
ogram determined by a and b. To illustrate the 
orientation of [a, b], we sometimes use the idea 
of a turning screw. That is, the direction of a 
right-handed screw advancing while turning at 
o from p to q (within the angle less than 180”) 
coincides with the direction of [a, b] (Fig. 1). 
The exterior product has the following three 
properties: (1) [a, b] = -[b, a] (antisymmetric 
law); (2) [Aa, b] = ;.[a, b] (associative law for 

Fig. 1 

scalar multiplication); (3) [a, b + c] = [a, b] + 
[a, c] (distributive law). The vector product 
does not satisfy the associative law, but it does 
satisfy the +Jacobi identity [a, [b, c]] + [b, 
[c, a]] + [c, [a, b]] = 0. The vector [a, [b, c]] is 
sometimes called the vector triple product, 
and for this we have Lagrange’s formula [a, 
[b, c]] = (a, c)b - (a, b)c. 

Let a, b, c be vectors in E3 whose compo- 
nents with respect to an orthonormal funda- 
mental basis are (a,, c(~, c(~), (/c$, b2, b3), and 

(r, , y2, y3). Then (a, Cb, cl) = (b, Cc, al I= k [a, bl) 
= [a. b, c], and the common value is equal to 
the determinant of the 3 x 3 matrix 

The value denoted by [a, b, c] is called the 
scalar triple product of a, b, c and is equal to 
the volume of the parallelotope whose three 
edges are a = 03, b = oq, and c = o? with com- 
mon initial point o. The triple a, b, c is called a 
right-hand system or a left-hand system ac- 
cording as [a, b, c] is positive or negative. We 
have [a, b, c] = 0 if and only if a, b and c are 
coplanar. (For the texterior product of vectors 
in E” and the concept of Tp-vectors - 256 
Linear Spaces 0.) 

D. Vector Fields 

In this section we consider the case of a 3- 
dimensional Euclidean space E3 (for the gen- 
eral case - 105 Differentiable Manifolds). A 
scalar-valued or a vector-valued function 
defined on a set D in E3 is called a scalar field 
or a vector field, respectively. The continuity 
or the differentiability of a vector field is de- 
fined by the continuity or the differentiability 
of its components. 

For a differentiable scalar field f(x, y, z), 
the vector field with the components (af/Zx, 
c7flc3y, &/flaz) is called the gradient of ,f and 
is denoted by grad5 For a differentiable vec- 
tor field V(x, y, z) whose components are 
(u(x, y, z), u(x, y, z), w(x, y,z)), the vector field 
with components 

( 

aw au au aw a~ au 
ay aZ' az ax' ax ay > 

is called the rotation (or curl) of V and is de- 
noted by rot V (or curl V). Also, for a differenti- 
able vector field V, the scalar field defined by 
&~/ax +&lay + 3wJdz is called the divergence 
of V and is denoted by divV. Utilizing the 
vector operator V having differential operators 
(2/2x, ajay, (;:/a~) as its components, we may 
write simply gradf=P’L divV=(V,V), rotV= 
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[V, V]. The symbol V is called nabla, atled 
(inverse of delta), or Hamiltonian. 

A vector field V with rot V =0 is said to be 
irrotational, (lamellar, or without vortex). A 
vector field V with div V = 0 is said to be sole- 
noidal (or without source). Thus gradfis irro- 
tational and rot V is solenoidal. In a small 
neighborhood or in a +simply-connected do- 
main, an irrotational field is a gradient, a 
solenoidal field is a rotation, and an arbitrary 
vector field V is the sum of these two kinds of 
vector fields: V = grad q + rot u (Helmholtz 
theorem); the function cp is called the scalar 
potential of V, and the vector field u is called 
the vector potential of V. Furthermore, the 
operator V2 = VV = div grad = a2/Bx2 + a2/(iy2 
+ (?2/&z is called the Laplace operator (or 
Laplacian) and is denoted by A. A function 
that satisfies Acp = 0 is called a tharmonic 
function. Locally, an irrotational and solenoi- 
dal vector field is the gradient of a harmonic 
function. If A is a vector field whose compo- 

nents are (vl, v2, e) (i.e., A(v) =(cplW, (Pi, 
opt)), we can let A operate on A by setting 
AA = (A(p, , A(p2, A(p3). We then have AA = 
V2A = graddiv A -rot rot A. 

Suppose that we are given a vector field V 
and a curve C such that the vector V(p) is 
tangent to the curve at each point p E C. The 
curve C is the tintegral curve of the vector field 
V and is called the vector line of the vector 
field V. The set of all vector lines intersecting 
with a given closed curve C is called a vector 
tube. Given a closed curve C and a vector field 
V, the tcurvilinear integral s(V, ds) (where ds is 
the line element of C) is called the circulation 
(of V) along the closed curve C. A vector field 
is irrotational if its circulation along every 
closed curve vanishes; the converse is true in a 
simply connected domain. Further, let u, be 
the tnormal component of a vector field V 
with respect to a surace S, and let dS be the 
volume element of the surface. We put ndS = 
dS, where n is the unit normal vector in the 
positive direction of the surface S. Then the 
tsurface integral j u,dS = s(V, dS) is called the 
vector flux through the surface S. A vector 
field whose vector flux vanishes for every 
closed surface is solenoidal. (For the corre- 
sponding formulas - 94 Curvilinear Integrals 
and Surface Integrals. For generalizations to 
higher-dimensional manifolds - 105 Dif- 
ferentiable Manifolds; 194 Harmonic Integrals; 
Appendix A, Table 3.) 
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443 (X11.8) 
Vector-Valued Integrals 

A. General Remarks 

Integrals whose values are elements (or sub- 
sets) of +topological linear spaces are gen- 
erally called vector-valued integrals or vec- 
tor integrals. As in the scalar case, there are 
vector-valued integrals of Riemann type (- 37 
Banach Spaces K) and of Lebesgue type. In 
this article we consider only the latter. There 
are cases where integrands are vector-valued, 
where measures are vector-valued, and where 
both are vector-valued. The methods of inte- 
gration are also divided into the strong type, 
in which the integrals are defined by means of 
the original topology of the topological linear 
space X, and the weak type, in which they 
are reduced to numerical integrals by apply- 
ing continuous linear functionals on X. Com- 
bining these we can define many kinds of 
integrals. 

Historically, D. Hilbert’s ispectral resolution 
is the first example of vector-valued integrals, 
but the general theory of vector-valued inte- 
grals started only after S. Bochner [I] defined 
in 1933 an integral of strong type for functions 
with values in a Banach space wit-h respect to 
numerical measures. Then G. Birlkhoff [2] 
defined a more general integral by replacing 
absolutely convergent sums with uncondi- 
tionally convergent sums. At approximately 
the same time, N. Dunford introduced inte- 
grals equivalent to these. Later, R. S. Phillips 
(Trans. Amer. Math. Sot., 47 (1940)) general- 
ized the definition to the case where values 
of functions are in a +locally convex topolog- 
ical linear space, and C. E. Rickart (Trans. 
Amer. Math. Sot., 52 (1942)) to the case where 
functions take subsets of a locally convex 
topological linear space as their values. The 
theory of integrals of weak type for functions 
with values in a Banach space and numerical 
measures was constructed by I. M. Gel’fand 
[3], Dunford [4], B. J. Pettis [S], and others 
(193661938). N. Bourbaki [6] dealt with the 
case where integrands take values in a locally 
convex topological linear space. As for inte- 
grals of numerical functions by vector-valued 



1681 

measures, a representative of strong type inte- 
grals is the integral of R. G. Bartle, Dunford, 
and J. T. Schwartz [7] (1955). Weak type 
integrals have been discussed by Bourbaki [6], 
D. R. Lewis (Pacific J. Math., 33 (1970)) and 
I. Kluvanek (Studia Math., 37 (1970)). The 
bilinear integral of Bartle (Studia Math., 15 
(1956)) is typical of integrals in the case where 
both integrands and measures are vector- 
valued. For interrelations of these integrals - 
the papers by Pettis and Bartle cited above 
and T. H. Hildebrandt’s report in the Bulletin 
ofthe American Mathematical Society, 59 
(1953). 

Since the earliest investigations [l-3] the 
main aim of the theory of vector-valued inte- 
grals has been to obtain integral representa- 
tions of vector-valued (set) functions and 
various linear operators [S]. However, there is 
the fundamental difficulty of the nonvalidity of 
the Radon-Nikodym theorem. Whatever de- 
finition of integrals we take, the theorem does 
not hold for vector-valued set functions un- 
conditionally. Many works sought conditions 
for functions, operators, or spaces such that 
the conclusion of the theorem would be re- 
stored; the works of Dunford and Pettis [9] 
and Phillips (Amer. J. Math., 65 (1943)) marked 
a summit of these attempts. Later, after A. 
Grothendieck’s investigations (1953-1956), 
this problem began to be studied again, begin- 
ning in the late 1960s by many mathemati- 
cians (- J. Diestel and J. J. Uhl, Jr., Rocky 
Mountain J. Math., 6 (1976); [lo]). 

Recently, integrals of multivalued vector- 
valued functions have also been employed in 
mathematical statistics, economics, control 
theory, and many other fields. Some contri- 
butions are, besides Rickart cited above, G. B. 
Price (Trans. Amer. Math. Sot., 47 (1940), H. 
Kudo (Sci. Rep. Ochanomizu Univ., 4 (1953)) 
H. Richter (Math. Ann., 150 (1963)), R. J. Au- 
mann [ 111, G. Debreu [ 123, and M. Huku- 
hara (Funkcial. Ekvac., 10 (1967)). Further- 
more, C. Castaing and M. Varadier [13] have 
defined weak type integrals of multivalued 
functions and introduced many results con- 
cerning them. In the following we shall give 
explanations of typical vector-valued integrals 
with values in a Banach space only. 

B. Measurable Vector-Valued Functions 

Let x(s) be a function defined on a +rr-finite 
measure space (S, s,p) with values in a 
Banach space X. This is called a simple func- 
tion or finite-valued function if there exists a 
partition of S into a finite number of mutually 

disjoint measurable sets A,, A,, , A, in each 
of which x(s) takes a contant value cj. Then 
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x(s) can be written as Cj”=, cjxAj(s), where I,.#) 
is the tcharacteristic function of Aj. A func- 
tion x(s) is said to be measurable or strongly 
measurable if it is the strong limit of a se- 
quence of simple functions almost everywhere, 
that is, lim,,, 11x,,(s)-x(s)(( =0 a.e. Then the 
numerical function IIx(s)II is measurable. If p is 
a +Radon measure on a compact Hausdorff 
space S, then the measurable functions can be 
characterized by +Luzin’s property (- 270 
Measure Theory I). 

A function x(s) is said to be scalarly measur- 
able or weakly measurable if the numerical 
function (x(s), x’) is measurable for any +con- 
tinuous linear functional x’EX’. A function x(s) 
is measurable if and only if it is scalarly mea- 
surable and there are a +null set E, c S and a 
tseparable closed subspace Yc X such that 
X(S)E Y whenever s$ E, (Pettis measurability 
theorem). 

C. Bocbner Integrals 

A measurable vector-valued function x(s) is 
said to be Bocbner integrable if the norm 
~~x(s)~~ is tintegrable. If x(s) is a Bochner inte- 
grable simple function 2 cjxA,(s), then its Boch- 
ner integral is defined by 

s X(S)dP =I P(AJCj, s 
For a general Bochner integrable func- 
tion x(s) there exists a sequence of simple 
functions satisfying the following condi- 
tions: (i) lim,,, 11x,(s) - x(s) I( = 0 a.e. (ii) 
lim,,, is II x,(s) -x(s) II dp = 0. Then is x,(s) dp 
converges strongly and its limit does not de- 
pend on the choice of the sequence {x”(s)}. We 
call the limit the Bochner integral of x(s) and 
denote it by jsx(s)dp or by (Bn)j,x(s)dp to 
distinguish it from other kinds of integrals. 
A Bochner integrable function on S is Boch- 
ner integrable on every measurable subset 
of S. The Bochner integral has the basic prop- 
erties of Lebesgue integrals, such as linear- 
ity, tcomplete additivity, and tabsolute con- 
tinuity, with absolute values replaced by 
norms. +Lebesgue’s convergence theorem and 
+Fubini’s theorem also hold. However, the 
Radon-Nikodym theorem does not hold in 
general (- Section H). Let T be a +closed 
linear operator from X to another Banach 
space Y. If both x(s) and TX(S) are Bochner 
integrable, then the integral of x(s) belongs 
to the domain of T and 

T(~sx(s)dll)=~sTx(s)d/l. 

If, in particular, T is bounded, then the as- 
sumption is always satisfied. If p is the +Le- 
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besgue measure on the Euclidean space R”, 
then Lebesgue’s differentiability theorem 
holds for the Bochner integrals regarded as 
a set function on the regular closed sets (- 
380 Set Functions D). 

D. Unconditionally Convergent Series 

Let CJE, xi be a series of elements xj of a 
Banach space X. It is said to be absolutely 
convergent if C ~~xj~~ < cci. It is called uncon- 
ditionally convergent if for any rearrangement 
r the resulting series C x,(~) converges strongly. 
Then the sum does not depend on ~1. Clearly, 
an absolutely convergent series is uncondition- 
ally convergent. If X is the number space or is 
finite-dimensional, then the converse holds. 
However, if X is infinite-dimensional, there 
is always an unconditionally convergent 
series which is not absolutely convergent 
(Dvoretzky-Rogers theorem). 

A series C xj is unconditionally convergent 
if and only if each subseries converges weakly 
(Or&-Pettis theorem). If C xj is an uncon- 
ditionally convergent series, then C.(xj, x’) 
converges absolutely for any continuous linear 
functional X’E X’. If X is a Banach space con- 
taining no closed linear subspace isomorphic 
to the +sequence space cO, then conversely a 
series C xj converges unconditionally when- 
ever C I( xj, x’) I< a for any x’ E X’ (Bessaga- 
Pelczyhski theorem). A Banach space that is 
tsequentially complete relative to the weak 
topology, such as a treflexive Banach space, 
and a separable Banach space that is the dual 
of another Banach space, such as I, and the 
+Hardy space H, (R”), satisfy the assump- 
tion, while cO, I,, and L,(R) for an infinitely 
divisible R do not. The totality of absolutely 
convergent series (resp. unconditionally con- 
vergent series) in X is identified with the ttopo- 
logical tensor product I, @ X (resp. I, 6 X) 
(Grothendieck). 

E. Birkhoff Integrals 

We say that a series C Bj of subsets of X con- 
verges unconditionally if for any xj~ Bj the 
series C xj converges unconditionally. Then 
C B, denotes the set of such sums. A vector- 
valued function x(s) is said to be Birkhoff 
integrable if there is a countable partition A: 
S=U,Z,Aj(Aj~6,AjflA,=0(j#k),p(Aj)< 
ic) such that the set x(Aj) of values on Aj are 
bounded and Cp(Aj)x(Aj) converges uncon- 
ditionally and if the sum converges to an ele- 
ment of X as the partition is subdivided. The 
limit is called the Birkhoff integral of x(s) 
and is denoted by (Bk){,x(s)& or simply by 

Jsx(s)dp. A Birkhoff integrable function is 
Birkhoff integrable on any measurable set. The 
Birkhoff integral has, as a set function, com- 
plete additivity and absolute continuity in p. 
It is linear in the integrand but Fubini’s theo- 
rem and the Radon-Nikodim theorem do not 
hold. A Bochn’er integrable function is Birk- 
hoff integrable, and the integrals coincide. The 
converse does not hold. 

F. Gel’fand-Pettis Integrals 

A scalarly measurable function x(s) is said to 
be scalarly integrable or weakly integrable if 
for each x’EX’, (x(s),x’) is integrable. Then 
the linear functional x* on X’ defined by 

s s(x(s),x’)dp=(x’,x*) 
is called the scalar integral of x(s). Gel’fand [3] 
and Dunford [4] proved that x* belongs to 
the bidual X”. Hence scalarly integrable func- 
tions are often called Dunford integrable and 
the integrals x* the Dunford integrals. More 
generally, Gel’fand [3] showed that if x’(s) 
is a function with values in the dual X’ of a 
Banach space X such that (x,x’(s)) is inte- 
grable for any x E X, then there is an X’E X’ 
satisfying 

s (x3 x’(s)) dP = (x,x’>. s 
This element is sometimes called t.he Gel’fand 
integral of x’(s). A scalarly integrable func- 
tion x(s) is scalarly integrable on any measur- 
able subset A. If the scalar integral is always in 
X, i.e., for each A there is an xA E X such that 

s A(X,x’(s))d~=(XA,X’),x’EX’, 
then x(s) is said to be Pettis integrable or 
Gel’fand-Pettis integrable and xA is called the 
Pettis integral or Gel’fand-Pettis integral on A 
and is denoted by (P)lAx(s)dp or simply by 
sA x(s) dp. The Pettis integral has complete 
additivity and absolute continuity as a set 
function, similarly to the Birkhoff integral. 
Again, Fubini’s theorem and the Radon- 
Nikod$m theorem do not hold. The scalar 
integral on measurable sets of a scalarly inte- 
grable function x(s) is completely additive and 
absolutely continuous with respect to the 
tweak* topology of X” as the dual to X’. It is 
completely additive or absolutely continuous 
in the norm topology if and only if x(s) is 
Pettis integrable (Pettis [S]; [lo]). If x(s) is 
Pettis integrable and f’(s) is a numerical func- 
tion in L,(S), then the product ,f(,~)x(s) is 
Pettis integrable. Birkhoff integrable functions 
are Pettis integrable, and the integrals coin- 
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tide. Conversely, if a measurable function is 
Pettis integrable, then it is Birkhoff integrable 
When X satisfies the Bessaga-Pelczynski con- 
dition (- Section D), a measurable scalarly 
integrable function is Pettis integrable. 

G. Vector Measures 

Let @ be a set function defined on a com- 
pletely additive class S of subsets of the space 
S and with values in a Banach space X. It is 
called a finitely additive vector measure (resp. a 
completely additive vector measure or simply a 
vector measure) if @(A, UA,)=@(A,)+@(A,) 
whenever A, and A, E S are disjoint (resp. 
@(u,2i Aj)=&Cl @(Aj) in the norm topology 
for all Ajtz a such that AjfY A, = 0 (,j # k)). We 
remark that the latter sum always converges 
unconditionally. A set function @ is completely 
additive if and only if (@(A), x’) is completely 
additive for all X’E X’ (Pettis complete additiv- 
ity theorem). 

Let @ be a finitely additive vector measure 
and E be a measurable set. The total variation 
of 0 on E and the semivariation of @ on E are 
defined by 

v(@)(E)=suP i ll@(Aj)ll 
j=l 

and 

(1) 

(2) 

respectively, where the suprema are taken over 
all finite partitions of E: E = U A, (Aj~ 6, Aj f’ 
A,=@(j#k)) and all numbers xj with 1~,1< 1. 
If V(@)(S)< s, then @ is called a measure of 
bounded variation. ll@,ii(S) < cx if and only if 
sup{ II@(A)11 1 AEG] < m. Then Q, is said to 
be bounded. The function V(@)(E) of E is 
finitely additive but ll@ll(E) is only subaddi- 
tive: ll@ll(AUB)< ll@ll(A)+ ll@ll(L?). If@ is a 
vector measure of bounded variation, then 
V(O) is a positive measure. Every vector mea- 
sure is bounded. A completely additive vector 
measure on a ifinitely additive class 52 can 
uniquely be extended to a vector measure on 
the completely additive class G generated by 
L! (Kluvanek). 

Let /J be a positive measure and @ be a 
vector measure. Then we have @(A)+0 as 
p(A)+0 if and only if 0 vanishes on every A 
with p(A)=O. Then @ is said to be absolutely 
continuous with respect to p. For every vector 
measure @ there is a measure p such that 
lI@,ll(A)+O as p(A)+0 and that O<p(A),< 
li@,ll(A) (Bartle, Dunford, and Schwartz). As a 
set function, the Bochner integral is a vector 
measure of bounded variation and the Pettis 
integral is a bounded vector measure. Both 

are absolutely continuous with respect to the 
integrating measure. Let X be L&O, 1) for 
1 <cp< x, and define @(E) for a Lebesgue 
measurable set E to be the characteristic func- 
tion of E. If p = 1,O is a vector measure of 
bounded variation. If 1 cp < x, Q is a bounded 
vector measure, but it is not of bounded varia- 
tion on any set E with p(E) > 0. If p = co, then 
@ is no longer completely additive. These vec- 
tor measures are absolutely continuous with 
respect to the Lebesgue measure, but they 
cannot be represented as the Bochner integral 
or the Pettis integral. 

Let @ be a vector measure on 5. An G- 
measurable numerical function ,f(s) is said to 
be @-integrable if there exists a sequence of 
simple functions ,f,(s) such that f”(s)-tf(s) a.e. 
and that for each E E 8, J,&(S) d@ converges 
in the norm of X. Then the limit is indepen- 
dent of the choice of J,. It is called the Bartle- 
Dunford-Schwartz integral and is denoted 
by lJ(s)d@,. Lebesgue’s convergence theo- 
rem holds for this integral. If @ is absolutely 
continuous with respect to the measure p, 
then every ,f~ L,(p) is @integrable, and the 
operator that maps 1‘ to J,fd@ is continuous 
with respect to the weak* topology in L,(/c) 
and the weak topology of X. Hence it is a 
tweakly compact operator. In particular, the 
range of a vector measure is relatively compact 
in the weak topology [7]. If @ is the vector 
measure of the Pettis integral of a vector- 
valued function x(s), then the above integral is 
equal to the Pettis integral of f(s)x(s). 

A vector measure @ is said to be nonatomic 
if for each set A with @(A) #O there is a subset 
B of A such that @(B)#O and @(A\B)#O. If X 
is finite-dimensional, then the range of a non- 
atomic vector measure is a compact convex set 
(Lyapunov convexity theorem). This has been 
generalized to the infinite-dimensional case in 
many ways, but the conclusion does not hold 
in the original form (- Kluvanek and G. 
Knowles [ 151; [lo]). 

H. The Radon-Nikodjm Theorem 

As the above examples show, the tRadon- 
Nikodym theorem does not hold for vector 
measures in the original form. From 1967’ 
to 1971, M. Metivier, M. A. Rieffel, and S. 
Moedomo and Uhl improved the classical 
result of Phillips (1943) and proved the follow- 
ing theorem. 

Radon-Nikodym theorem for vector mea- 
sures. The following conditions are equivalent 
for ,u-absolutely continuous vector measures @ 

defined on a finite measure space (S, 5, p): (i) 
There is a Pettis integrable measurable func- 
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tion x(s) such that 

@(A)=(P) x(s)&. 
s A 

(ii) For each E > 0 there is an E E 6 such that 
i~(S\E)cc: and such that {Q(A)/~(A)IAE~, 
A c E} is relatively compact. (iii) For each EE 
6 with p(E) > 0 there is a subset F of E with 
p(F)>0 such that {@(,4)/p(A)] AEG, AcF} 
is relatively weakly compact. Then @ is of 
bounded variation if and only if x(s) is Boch- 
ner integrable. 

On the other hand, since Birkhoff and 
Gel’fand it has been known that for special 
Banach spaces X every p-absolutely continu- 
ous vector measure of bounded variation 
with values in X can be represented as a Boch- 
ner integral with respect to p. Such spaces are 
said to have the Radon-Nikodfm property. 
Separable dual spaces (Gel’fand, Pettis; Dun- 
ford and Pettis), reflexive spaces (Gel’fand, 
Pettis, Phillips), and 1, (a), R arbitrary, etc., 
have the Radon-Nikodym property, while 
L,(O, 1) (Bochner), c,, (J. A. Clarkson), .!,,(n) 
on a nonatomic Q (Clarkson, Gel’fand), and 
C(Q) on an infinite compact Hausdorff space 
0, etc., do not. Gel’fand proved that L,(O, 1) 
(and cO) is not a dual by means of this fact. 
From 1967 to 1974, Riefell, H. B. Maynard, 
R. E. Huff, and W. J. Davis and R. P. Phelps 
succeeded in characterizing geometrically the 
Banach spaces with the Radon-Nikodym 
property. We know today that the following 
conditions for Banach spaces X are equivalent 
[lo]: (i) X has the Radon-Nikodym property. 
(ii) Every separable closed linear subspace of 
X has the Radon-Nikodym property. (iii) 
Every function f: [0, l] +X of bounded 
variation is (strongly or weakly) differentiable 
a.e. (iv) For any finite measure space (S, 6, p) 
and bounded linear operator T: L, (S)-+X, 
there is an essentially bounded measurable 
function x(s) with values in X such that 

(v) Each nonvoid bounded closed convex set K 
in X is the tclosed convex hull of the set of its 
strongly exposed points, where a point x0 E K 
is called a strongly exposed point of K if there 
is an X’E X’ such that (x,, x’) > (x,x’) for all 
XE K \{x,,} and that any sequence X,E K with 
lim(x,, x’) = (x0, x’) converges to x0 strongly. 

A Banach space X is said to have the Krein- 
Mil’man property if each bounded closed 
convex set in X is the closed convex hull of its 
textreme points. A Banach space X with the 
Radon-Nikodym property has the Krein- 
Mil’man property (J. Lindenstrauss). If X is a 
dual space, then the converse holds (Huff and 
P. D. Morris). A Banach space with the Krein- 

Mil’man property clearly has no closed linear 
space isomorphic to cO, but there are Banach 
spaces that do not contain c0 and do not have 
the Krein-Mil’man property. The: dual X of 
a Banach space Y has the Radon-Nikodym 
property if and only if the dual of every sepa- 
rable closed linear subspace of Y is separable 
(Uhl, C. Stegall). 

I. Integrals of Multivalued Vector Functions 

Let F(s) be a multivalued function defined on 
a a-finite complete measure space (S, 6, p) with 
values that are nonempty closed subsets of a 
separable Banach space X. The inverse image 
of a subset E of X under F(s) is, by definition, 
the set of all s such that F(s) n E 7~ 0. F(s) is 
said to be measurable or strongly measurable if 
the inverse image of each open set in X under 
F(s) belongs to G. Let S(X) be the +Borel field 
of X, and 6 x 23(X) be the product completely 
additive class, that is, the smallest completely 
additive class containing all direct products 
AxBofAE5andBE%(X).Thenthemea- 
surability of F(s) is equivalent to each of the 
following: (i) The graph {(s, x) 1 XE I(s), SE G} 
of F(s) belongs to 6 x b(X). (ii) The inverse 
image of every Bore1 set in X under F(s) be- 
longs to 6. (iii) For each XEX, the distance 
d(x,F(s))=inf{ Ilx-yli [y~F(s)} b’etween x 
and I(s) is measurable as a function on S. 

A measurable function x(s) on S with values 
in X is called a measurable selection of I(s) if 
x(s) is in I(s) for all s. (X being separable, we 
need not discriminate between strong and 
weak measurability.) The measur.ability of 
F(s) is also equivalent to the following impor- 
tant statement on the existence of measurable 
selections of F(s): (iv) There are a countable 
number of measurable selections {x.(s)} of I(s) 
such that the closure of the set {x.(s) 1 n = 
1,2,. . . } coincides with F(s) for all SE S. F(s) 
is said to be scalarly measurable or weakly 
measurable if the support function 8(x’, I(s)) = 
sup { (x, x’) 1 XE F(s)} is measurable on S for 
all x’EX’. The strong measurability of F(s) 
clearly implies the weak one. If the values of 
F(s) are nonempty weakly compact convex 
sets, then the measurabilities are Iequivalent. 
Hereafter we shall assume that Fts) takes the 
values in the weakly compact convex sets. If 
the support function 8(x’, F(s)) is integrable on 
S for all x’EX’, then F(s) is said to be scalarly 
integrable. Then the scalar integral of F(s) is 
defined to be the set in X” of all scalar inte- 
grals of its measurable selections, i.e., 

~sF(s)&={~sx(s)dalx(s)isameasurable 

selection of rts) 
i 
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If IjI(s)J1 =sup{jjx~~ (x~I(s)} is integrable, 
then every measurable selection is Bochner 
integrable and the integral ss r(s)dp becomes 
a nonempty weakly compact convex set in 
X. When the values of I(s) are nonempty 
compact convex sets, there is another method, 
by G. Debreu, of defining the integral. Let 
L! be the class of all nonempty compact con- 
vex sets in X and 6 be the Hausdorff met- 
ric, i.e., for K, and K2~e define S(K,, K2)= 
maxCsup{d(x,K,)l~EK~},supjd(x,K,)lx~ 
K,}]. Further, for K,, KZ~p and a>0 define 
the sum and the nonnegative scalar multiple 
by K,+K,={x,+x,Ix,EK~,x~EK~} and 
a.K, = (axJx6K,}, respectively. Then Q en- 
dowed with the Hausdorff metric and the 
above addition and scalar multiplication is 
isometrically embedded in a closed convex 
cone in a separable Banach space Y by the 
Radsrom embedding theorem (Proc. Amer. 
Math. Sot., 3 (1952)). Let cp be this isometry. 
Then the (strong) measurability and the (strong) 
integrability of F(s) are defined by the measur- 
ability and the Bochner integrability of the Y- 
valued function cp(I(s)), respectively, and its 
(strong) integral as the inverse image of the 
Bochner integral of &F(s)) under cp: 

This definition of integral for strongly measur- 
able I(s) is shown to be compatible with that 
mentioned before. It is clear by the definition 
that the integral value in this case is a non- 
empty compact convex set and that most prop- 
erties of Bochner integrals also hold for this 
integral. 
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Francois Viete (1540-December 13, 1603) was 
born in Fontenay-le-Comte, Poitou, in western 
France. He served under Henri IV, first as a 
lawyer and later as a political advisor. His 
mathematics was done in his leisure time. He 
used symbols for known variables for the first 
time and established the methodology and 
principles of symbolic algebra. He also sys- 
tematized the algebra of the time and used it 
as a method of discovery. He is often called the 
father of algebra. He improved the methods of 
solving equations of the third and fourth de- 
grees obtained by G. Cardano and L. Ferrari. 
Realizing that solving the algebraic equation 
of the 45th degree proposed by the Belgian 
mathematician A. van Roomen can be reduced 
to searching for sin(a/45) knowing sin x, he 
was able to solve it almost immediately. How- 
ever, he would not acknowledge negative roots 
and refused to add terms of different degrees 
because of his belief in the Greek principle of 
homogeneity of magnitudes. He also contri- 
buted to trigonometry and represented the 
number n as an infinite product. 
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Studien zur Gesch. Math., (B) 3 (1934) 18 
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Von Neumann, John 

John von Neumann (December 28, 19033 
February 8, 1957) was born in Budapest, 
Hungary, the son of a banker. By the time he 
graduated from the university there in 1921, he 
had already published a paper with M. Fekete. 
He was later influenced by H. Weyl and E. 
Schmidt at the universities of Zurich and 
Berlin, respectively, and he became a lecturer at 
the universities of Berlin and Hamburg. He 
moved to the United States in 1930 and in 
I933 became professor at the Institute for 
Advanced Study at Princeton. In 19.54 he was 
appointed a member of the US Atomic Energy 
Commission. The fields in which he was first 
interested were tset theory, theory of +func- 
tions of real variables, and tfoundations of 
mathematics. He made important contribu- 
tions to the axiomatization of set theory. At 
the same time, however, he was deeply inter- 
ested in theoretical physics, especially in the 
mathematical foundations of quantum me- 
chanics. From this field, he was led into re- 
search on the theory of +Hilbert spaces, and 
he obtained basic results in the theory of +oper- 
ator rings of Hilbert spaces. To extend the the- 
ory of operator rings, he introduced tcontinu- 
ous geometry. Among his many famous works 
are the theory of talmost periodic functions 
on a group and the solving of THilbert’s fifth 
problem for compact groups. In his later years, 
he contributed to +game theory and to the 
design of computers, thus playing a major role 
in all fields of applied mathematics. 
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446 (XX.1 3) 
Wave Propagation 

A disturbance originating at a point in a 
medium and propagating at a finite speed in 
the medium is called a wave. For example, a 
sound wave propagates a change of density or 
stress in a gas, liquid, or solid. A wave in an 
elastic solid body is called an elastic wave. 
Surface waves appear near the surface of a 
medium, such as water or the earth. When 
electromagnetic disturbances are propagated 
in a gas, liquid, or solid or in a vacuum, they 
are called electromagnetic waves. Light is a 
kind of electromagnetic wave. According to 
+general relativity theory, gravitational action 
can also be propagated as a wave. 

It many cases waves can be described by the 
wave equation: 

Here t is time, x, y, z are the Cartesian coordi- 
nates of points in the space, c is the propaga- 
tion velocity, and $ represents the state of the 
medium. 

If we take a closed surface surrounding the 
origin of the coordinate system, the state 
11/(0, t) at the origin at time f can be determined 
by the state at the points on the closed surface 
at time t-r/c, with r the distance of the point 
from the origin. More precisely, we have 

Here n is the inward normal at any point of 
the closed surface, and the integral is taken 
over the surface, while the value of the inte- 
grand is taken at time t -r/c. This relation is 
a mathematical representation of Huygens’s 
principle, which is valid for the 3-dimensional 
case but does not hold for the 2-dimensional 
case (- 325 Partial Differential Equations of 
Hyperbolic Type). 

A plane wave propagating in the direction 
of a unit vector n can be represented by tj = 
F(t -n * r/c), where F is an arbitrary function 
and r(x, y, z) is the position vector. The sim- 
plest case is given by a sine wave (sinusoidal 
wave): Ic, = A sin(wt - k*r +6). Here A(ampli- 
tude) and 6 (phase constant) are arbitrary con- 
stants, k is in the direction of wave propaga- 
tion and satisfies the relation ) kJc = Q. w  is the 
angular frequency, 0427~ the frequency, k the 
wave number vector, IkJ the wave number, 27c/o~ 

the period, and 27r/lkj the wavelength. The 
velocity with which the crest of tlhe wave ad- 
vances is equal to w/l kl = c and is called the 
phase velocity. 

A spherical wave radiating from the origin 
can generally be represented by 

where cp, is the +solid harmonic of order n. 
Waves are not restricted to those governed 

by the wave equation. In general. t/j is not a 
scalar, but has several components (e.g., $ may 
be a vector), which satisfy a set of simulta- 
neous differential equations of various kinds. 
Usually they have solutions in the form of 
sinusoidal waves, but the phase velocity c = 
0)/I kl is generally a function of the wa?elength 
j.. Such a wave, called a dispersive wave, has a 
propagation velocity (velocity of propagation 
of the disturbance through the medium) that 
is not equal to the phase velocity. A distur- 
bance of finite extent that can be approxi- 
mately represented by a plane wave is propa- 
gated with a velocity c-1&/&., (called the 
group velocity. Often there exists a definite 
relationship between the amplitude vector 
A (and the corresponding phase constant 6) 
and wave number vector k, in which case the 
wave is said to be polarized. In particular, 
when A and k are parallel (perpendicular), 
the wave is called a longitudinal (transverse) 
wave. Usually equations governing the wave 
are linear, and therefore superposition of two 
solutions gives a new solution (tprinciple of 
superposition). Superposition of 1 wo sinusoi- 
dal waves traveling in opposite directions gives 
rise to a wave whose crests do not move (e.g., 
$ = A sin wt sin k * r). Such a wave is called a 
stationary wave. Since the energy of a wave is 
proportional to the square of $, the energy of 
the resultant wave formed by superposition 
of two waves is not equal to the sum of the 
energies of the component waves. This phe- 
nomenon is called interference. When a wave 
reaches an obstacle it propagates into the 
shadow region of the obstacle, where there is 
formed a special distribution of energy de- 
pendent on the shape and size of the obtacle. 
This phenomenon is called diffraction. 

For aerial sound waves and water waves, 
if the amplitude is so large that the wave 
equation is no longer valid, we are faced with 
tnonlinear problems. For instance, shock 
waves appear in the air when surfaces of dis- 
continuity of density and pressure exist. They 
appear in explosions and for bodies traveling 
at high speeds. Concerning wave mechanics 
dealing with atomic phenomena -- 351 Quan- 
tum Mechanics. 
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Karl Weierstrass (October 31, 181%February 
19, 1897) was born into a Catholic family in 
Ostenfelde, in Westfalen, Germany. From 1834 
to 1838 he studied law at the University of 
Bonn. In 1839 he moved to Miinster, where he 
came under the influence of C. Gudermann, 
who was then studying the theory of elliptic 
functions. From this time until 1855, he taught 
in a parochial junior high school; during this 
period he published an important paper on 
the theory of analytic functions. Invited to the 
University of Berlin in 1856, he worked there 
with L. Kronecker and E. E. Kummer. In 
1864, he was appointed to a full professorship, 
which he held until his death. 

His foundation of the theory of analytic 
functions of a complex variable at about the 
same time as Riemann is his most fundamental 
work. In contrast to Riemann, who utilized 
geometric and physical intuition, Weierstrass 
stressed the importance of rigorous analytic 
formulation. Aside from the theory of analytic 
functions, he contributed to the theory of 
functions of real variables by giving examples 
of continuous functions that were nowhere 
differentiable. With his theory of tminimal 
surfaces, he also contributed to geometry. His 
lectures at the University of Berlin drew many 

listeners, and in his later years he was a re- 
spected authority in the mathematical world. 
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Hermann Weyl (November 9,1885-December 
8, 1955) was born in Elmshorn in the state of 
Schleswig-Holstein in Germany. Entering the 
University of Gottingen in 1904, he also au- 
dited courses for a time at the University of 
Munich. In 1908, he obtained his doctorate 
from the University of Gottingen with a paper 
on the theory of integral equations, and by 
1910 he was a lecturer at the same university. 
In 1913, he became a professor at the Federal 
Technological Institute at Zurich; in 1928- 
1929, a visiting professor at Princeton Univer- 
sity; in 1930, a professor at the University of 
Gottingen; and in 1933, a professor at the 
Institute for Advanced Study at Princeton. He 
retired from his professorship there in 1951, 
when he became professor emeritus. He died in 
Zurich in 1955. 

Weyl contributed fresh and fundamental 
works covering all aspects of mathematics and 
theoretical physics. Among the most notable 
are results on problems in tintegral equations, 
tRiemann surfaces, the theory of tDiophantine 
approximation, the representation of groups, 
in particular compact groups and tsemisimple 
Lie groups (whose structure he elucidated), the 
space-time problem, the introduction of taffine 
connections in differential geometry, tquantum 
mechanics, and the foundations of mathemat- 
ics. In his later years, with his son Joachim he 
studied meromorphic functions. In addition to 
his many mathematical works he left works in 
philosophy, history, and criticism. 
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A. General Remarks 

Let I be an iintegral domain of character- 
istic 0, and p a fixed prime number. For each 
infinite-dimensional vector x =(x0, xi , ) 
with components in I, we define its ghost com- 
ponents x”‘), x(’ ‘, by .x’“) =x0, .x(n) =x{” + 
px;“-’ + + pnx,. We define the sum of the 
vectors x and y=(y”,y,,...) to be the vector 
with ghost components ~‘~)+y(~‘, .x(“+y(‘), 
. ..) and their product to be the vector with 
ghost components x(“y”), x”)y(“, The sum 
and product are uniquely determined vectors 
with components in I. Writing their first two 
terms explicitly, we have 

x + y 

[ 
p-1 1 

= xo+Y,,x, +y, - 
P 

4) 
P-v .x;y, ,... , 

,m=, p v 1 
In general, it can be proved that the nth 

components o,,(x, y) and rt[,(x, y) of the sum and 
product are polynomials in xo,yo,x,, y,, , 
x,,, y,, whose coefficients are rational integers. 
With these operations of addition and multi- 
plication, the set of these vectors forms a +com- 
mutative ring, of which the zero element is 
(O,O, _. ) and the unity element is (l,O, ). 
Let k be a field of characteristic p. For vectors 
(to, t,, .), and (qo, vi,. ) with components 
in k, we define their sum and product by 

(50,~l,...)+(rlo,~l,...)=(...,~,(5,s),...) and 
(to, t, , )(rlo, fh, ) = ( 1~,(53 4, ‘1. Since 
the coefficients of rr, and rc, are rational in- 

tegers, these operations are well defined. With 
these operations, the set of such vectors be- 
comes an integral domain W(k) of character- 
istic 0. Elements of W(k) are called Witt vec- 
tors over k. 

Ifweput V(to,< ,,... )=(O,to,tl ,... )and 

(to,<,,... )“=(<i,<f, . ..). we get the formula 
p{ = If<“. (Note that this 5” is not the pth 
power of < in W(k) in the usual sense.) There- 
fore, if we put ((I= pm” for a vector l whose 
first nonzero component is &,, then this abso- 
lute value 1 1 gives a tvaluation of W(k). In par- 
ticular, when k is a iperfect field, deenoting the 
vector (tq, 0, ) by (to} we get (5,,, i;, , ) = 
Cp’{&c), and W(k) is a +complete valu- 
ation ring with respect to this valuation. 
Therefore the +field of quotients of W(k) is a 
complete valuation field of which p is a prime 
element and k is the iresidue class field. Con- 
versely, let K be a field of characteristic 0 that 
is complete under a idiscrete valuation o, o be 
the valuation ring oft’, and k be the residue 
class field of c. Assume that k is a perfect field 
of characteristic p. If p is a prime element of o, 
then D= W(k). If c(p)=u(n’) (e> 1) with a 
prime element 71 of c), we have II = W(k) [TC], 

and n is a root of an +Eisenstein polynomial 
X”+u,X’~‘+...+a,(u,~pW(k),n,~p~W(k)). 

In this way we can determine explicitly the 
structure of a +p-adic number field (- 257 
Local Fields). 

B. Applications to Ahelian p-Extensions and 
Cyclic Algebras of Characteristic ,n 

Next we consider v,(k)= W(k)/V”W(k). The 
elements of W,(k) can be viewed as the n- 
dimensional vectors (to, , &i), but their 
laws of composition are defined as in the pre- 
vious section. They are called Witt vectors of 
length n. We define an operator p; by $15 = 
<“- 5. Using it, we can generalize the theory 
of +Artin-Schreier extensions (- 172 Galois 
Theory) to the case of Abelian extensions of 
exponent p” over a field of characteristic p, 

Indeed, let k be a field of characteristic p and 
< =(to, , &,) an element of W(k). If q= 
(‘lo, , r,-,) is a root of the vect0.r equation 
@X - 5 = 0, then the other roots a.re of the 
form q + a(~ =(x0,. , zn-i), a+F,J. In partic- 
ular, if ~o$~c~k=jaP-zlx~k), the field K= 
k(qo, , r,-,) is a cyclic extension of degree 
p” over k, and conversely, every cyclic extension 
of k of degree p” is obtained in this way. Let 
(l/(.7)( denote the set of all roots of ~JX ~ 
5 =O. Then more generally, any finite Abelian 
extension of exponent p” of k can be obtained 
as K = k(( l/r,,)< 1 ~EH) with a suitable finite 
subgroup H/q,) W,(k) of W,(k)/+) M/,(k), and 
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the Galois group of K/k is isomorphic to 
Hi@ W,(k). 

Moreover, for a tcyclic extension K = 
k((l/(J)fl) of exponent p” over k and for 
XE k(sc #O), we can define a +cyclic algebra 
(a. /j] generated by an element u over K by the 
fundamental relations up” = z, (JO= 8, I.&-’ 
=O+(l,O ,..., O)(wherefI=(O,, ,..., (I,~,),u(Iu-’ 
=(uO,u -’ , , uO,-,a-‘)), and (a,fi] is a central 
simple algebra over k. 

Using these results, we can develop the 
structure theory of the +Brauer group of expo- 
nent p” of a +tield of power series in one vari- 
able with coefficients in a finite field F, (of a 
+field of algebraic functions in one variable 
over F,) exactly as in the case of a p-adic field 
(of an algebraic number field) (E. Witt [l]; 
- 29 Associative Algebras G). 

On the other hand, W,(k) is a commutative 
+algebraic group over k and is important in the 
theories of algebraic groups and tformal 
groups (- 13 Algebraic Groups). 
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450 (V.19) 
Zeta Functions 

A. Introduction 

Since the 19th century, many special functions 
called [-functions (zeta functions) have been 
defined and investigated. The four main prob- 
lems concerning [-functions are: (1) Methods 
of defining i-functions. (2) Investigation of 
the properties of i-functions. Generally, <- 
functions have the following four properties 
in common: (i) They are meromorphic on the 
whole complex plane; (ii) they have +Dirichlet 
series expansions; (iii) they have Euler product 
expansions; and (iv) they satisfy certain func- 
tional equations. Also, it is an important prob- 
lem to find the poles, residues, and zeros of ;- 
functions. (3) Application to number theory, in 
particular to the theory of decomposition of 
prime ideals in finite extensions of algebraic 
number fields (- 59 Class Field Theory). (4) 
Study of the relations between different [- 
functions. 

Most of the functions called [-functions or 
L-functions have the four properties of prob- 
lem (2). The following is a classification of the 
important types of {-functions that are already 
known, which will be discussed later in this 
article: 

(I) The c- and L-functions of algebraic num- 
ber fields: the Riemann [-function, Dirichlet L- 
functions (study of these functions gave im- 
petus to the theory of i-functions), Dedekind 
i-functions, Hecke L-functions, Hecke L- 
functions with +Gr&sencharakters, .4rtin L- 
functions, and Weil L-functions. (2) The p-adic 
L-functions related to the works of H. W. 
Leopold& T. Kubota, K. Iwasawa, etc. (3) The 
i-functions of quadratic forms: Epstein <- 
functions, i-functions of indefinite quadratic 
forms (C. L. Siegel), etc. (4) The <- and L- 
functions of algebras: Hey i-functions and 
the i-functions given by R. Godement, T. 
Tamagawa, etc. (5) The i-functions associated 
with Hecke operators, related to the work of 
E. Hecke, M. Eichler, G. Shimura, H. Jacquet, 
R. P. Langlands, etc. (6) The congruence <- 
and L-functions attached to algebraic varieties 
defined over finite fields (E. Artin, A. Weil, A. 
Grothendieck, P. Deligne), [- and L-functions 
of schemes. (7) Hasse i-functions attached to 
the algebraic varieties defined over algebraic 
number fields. (8) The i-functions attached to 
discontinuous groups: Selberg [-functions, the 
Eisenstein series defined by A. Selberg, Gode- 
ment, and 1. M. Gel’fand, etc. (9) Y. Ihara’s [- 
function related to non-Abelian class field 
theory over a function field over a finite field. 

(10) i-functions associated with prehomoge- 
neous vector spaces (M. Sato, T. Shintani). 

B. The Riemann (-Function 

Consider the series 

i(s)= I+;+;+ . ..+.+ . . . . 

which converges for all real numbers s> 1. It 
was already recognized by L. Euler that i(s) 
can also be expressed by a convergent infinite 
product n,,(l -pm’)-‘, where p runs over all 
prime numbers (W?rke, ser. I, vol VII, ch. XV, 
4 274). This expansion is called Euler’s infinite 
product expansion or simply the Euler product. 
However, Riemann was the first to treat c(s) 
successfully as a function of a complex variable 
s (1859) [R 11; for this reason, it is called the 
Riemann [-function. As can be seen from its 
Euler product expansion, i(s) is holomorphic 
and has no zeros in the domain Res > 1. 
Riemann proved, moreover, that it has an 
analytic continuation to the whole complex 
plane, is meromorphic everywhere, and has 
a unique pole s = 1. The functions (s - 1)((s) 
and l(s) - l/(s - 1) are iintegral functions of 
s. This can be seen by considering the integral 
expression 

From this last formula, we also obtain an 
equality 

i’(s)=<(l -s), 

where 

This equality is called the functional equation 
for the c-function. The residue of i(s) at s= 1 is 
1, and around s= 1, 

i(s)=;~;+c+o(,s- 1 I), 

where C is +Euler’s constant. This is called the 
Kronecker limit formula for i(s). 

The function i(s) has no zeros m Res> 1, 
and its only zeros in Re s < 0 are simple zeros 
at s= -2, -4, . . . . -2n, But i(s) has i,n- 
finitely many zeros in O< Res< 1, which are 
called the nontrivial zeros. B. Riemann conjec- 
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tured that all nontrivial zeros lie on the line 
Res= l/2 (1859). This is called the Riemann 
hypothesis, which has been neither proved nor 
disproved (- Section I). 

If N(T) denotes the number of zeros of i(s) 
in the rectangle O<Res< l,O<Ims< T, we 
have an asymptotic formula 

M(T)=;TlogT- 1 tlog27t 
____ T+ O(log T) 

2n 

(H. von Mangoldt, 1905). Also, i(s) has the 
following infinite product expansion: 

(s-l);(s)=;e”s~ 
r;+1 p 

( > 

rI( -1) 1 ; es/p, 

where h is a constant and p runs over all non- 
trivial zeros of l(s) (J. Hadamard, 1893). 
Hadamard and C. de La Vallke-Poussin 
proved the tprime number theorem, almost 
simultaneously, by using some properties of 

i(s) (- 123 Distribution of Prime Numbers B). 
The following approximate functional equa- 

tion is important in investigating the values of 
i(s): 

where cp is +Euler’s function, and c(s) = 
q(s)[(l -s), s=o+it, 27rxy=Itl, and the 
approximation is uniform for -h < 0 < h, 
x > k, y > k with h and k positive constants 
(G. H. Hardy and J. E. Littlewood, 1921). 

Euler obtained the values of c(s) for positive 
even integers s: 

<(2m) = 
22m-1 +HB 

Zm 

(2m)! 

(m = 1,2,3, , and the B,, are +Bernoulli 
numbers). The values of c(s) for positive odd 
integers s, however, have not been expressed 
in such a simple form. The values of c(s) for 
negative integers s are given by <(O)=B,(O) 

=-f,[(l-n)=- B”(O) 
-, n=2, 3 ,..., where 

n 
the B,(x) are +Bernoulli polynomials. 

As a slight generalization of i(s), A. Hurwitz 
(1862) considered 

1 
((s,a)= f ~ 

n=o(n+a)“’ 
O<adl 

This is called the Hurwitz [-function. Thus 
[(s, l)=[(s), and [(s, l/2)=(2”- l)[(s). This 
function [(s, a) can also be continued analyti- 
cally to the whole complex plane and satisfies 
a certain functional equation. But in general it 
has no Euler product expansion. 

C. Dirichlet L-Functions 

Let m be a positive integer, and classify all 
rational integers modulo m. The set of all 
classes coprime to m forms a multiplicative 
Abelian group of order h = q(m). Let x be a 
+character of this group. Call (n) the residue 
class of n mod m, and put x(n) = x((n)) when 
(n, m) = 1 and x(n) = 0 when (n, m) # 1. Now, the 
function of a complex variable s defined by 

L(s) = L(s, x) = “E, Jp 

is called a Dirichlet L-function. This function 
converges absolutely for Res > 1 and has an 
Euler product expansion 

us>X)=n, plI;p)p-s. 
P 1 

If there exist a divisor f of m (f#m) and a 
character x0 module ,f such that x(n) = x0(n) 
for all n with (n, m) = 1, we call x a nonprimitive 
character. Otherwise, x is called a primitive 
character. If x is nonprimitive, there exists such 
a unique primitive x0. In this situation, the 
divisor f of m associated with x0 is called the 
conductor of x (and of 1’). We have 

us, xl = us, x0) n (1 - x0(&J -1. 

Let 1 be primitive. If the conductor ,f= 1, 
then ): is a trivial character (I= l), and L(s) is 
equal to the Riemann i-function i(s). On the 
other hand, if f> 1, then L(s) is an entire func- 
tion of s. In particular, if x is a nontrivial 
primitive character, L( 1) = L( 1, x) is finite and 
nonzero. P. G. L. Dirichlet proved the theorem 
of existence of prime numbers in arithmetic 
progressions using this fact (- 123 Distri- 
bution of Prime Numbers D). 

L(s, x) has a functional equation similar to 
that of i(s); namely, if x is a primitive character 
with conductor f and we put 

ish x) = w4@w + 4/2)L(s, x), 

wherea=OforX(-l)=l anda= 
-1, then we have 

a% x) = W%)5( 1 ~ s, XL 

where 

1 for x(-l)= 

W(X)=(--i)4f-“‘7(X), 7(x)= C x(n)&! 
nmodf 

(cs=exp(2ni/f)). The latter sum is called the 
Gaussian sum. Note that 1 W(x)) = 1. 

The values of L(s) for negative integers 
s are given by L( 1 -m, x) = -B,,,/m (m = 
1,2,3, ), where the B,,, are defined by 

c s zcr,““=$o B&rn. 
@=, efr-1 
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Moreover, if x( -1) = -1, we have 

L(l,,)=;F i (-x(x).x) 
X=1 

= Wx)Bw. 1, 

andifX(-l)=l,X#l,wehave 

In certain cases, the functional equation can be 
utilized to obtain the values of L(m, 1) from 
those of L( 1 - m, x). Actually, if x( - 1) = 1, m = 
2n = 2,4,6, . . , we have 

andifX(-l)=-l,m=2n+l=3,5,7 ,..., we 
have 

Wn + 1, xl 

=(-QxjY _r 
t-1)” 27c 2n+‘~(x)(-B 

0 
) ,z,*n+1 

Dirichlet L-functions are important not only 
in the arithmetic of rational number fields but 
also in the arithmetic of quadratic or cyclo- 
tomic fields. 

D. [-Functions of Algebraic Number Fields 
(Dedekind [-Functions) 

The Riemann [-function can be generalized to 
c-functions of algebraic number fields (- 14 
Algebraic Number Fields). Let k be an alge- 
braic number field of degree n, and let a run 
over all integral ideals of k. Consider the se- 
quence ik(s) = C, N(a) -‘. This sequence con- 
verges for Re s > 1 and has an Euler product 
expansion &)=&(l -N(p))“))‘, where p 
runs over all prime ideals of k. This function, 
which is continued analytically to the whole 
complex plane as a meromorphic function, is 
called a Dedekind c-function. Its only pole is 
a simple pole at s= 1, with the residue hkKk. 
Here h, is the +class number of k, and K~ = 
2’1”2~‘2R/(wld11’*), where r, (2r2) is the number 
of isomorphisms of k into the real (complex) 
number field, w  is the number of roots of unity 
in k, d is the tdiscriminant of k, and R is the 
tregulator of k (R. Dedekind, 1877) [Dl]. 

The function &(s) has no zeros in Re s > 1, 
while in Re s < 0 it has zeros of order r2 at -1, 
-3, -5, . . . . zeros of order rl +r, at -2, -4, 
-6,...,andazerooforderr,+r,-lats=O. 
All other zeros lie in the open strip O< Res< 1, 
which actually contains infinitely many zeros. 
It is conjectured that all these zeros lie on the 
line Re s = l/2 (the Riemann hypothesis for 
Dedekind [-functions). To obtain a generali- 

zation of the functional equation for the 
Riemann c(s) to the case of &Js), we put 

ThenE.,(s)=&(l-s)(Hecke, 1917)IfKisa 
Galois extension of k, then [K(s)/(:L(s) is an 
integral function (H. Aramata, 1933; R. Brauer, 
1947). 

E. Hecke L-Functions 

As a generalization of Dirichlet l,-functions to 
algebraic number fields, Hecke (19 17) defined 
the following L-function L,(s, x): Let k be an 
algebraic number field of finite degree, and let 
tii =mnp, be an tintegral divisosr (m the finite 
part, np, the +inlinite part). Consider the 
tideal class group of k modulo tIi and its char- 
acter x (here we put x(a)= 0 for (a, m) # 1). 
Then the L-functions are defined by 

L(s, xl =c x(4/N(a) 
a 

[H2], where a runs over all integral ideals of k. 
L,(s, x) is called a Hecke L-function. It con- 
verges for Re s > 1 and has an Euler product 
expansion 

Here p runs over all prime ideals of k. If there 
is a divisor 71 rit (7~ TI?) and a character x0 
modulo ? such that x0(a) = x(a) for all a with 
(a, m) = 1, then x is called nonprimitive: other- 
wise, x is called a primitive character. In gen- 
eral, there exist unique such i and x0. In this 
situation, i is called the conductor of x. If x is 
primitive and the conductor? is (l), then x is 
a trivial character and L,(s, 1) coincides with 
ck(s). If x is primitive and x # 1, then L,(s, x) 
is an integral function of s, and Lk( 1, x) #O. 
Utilizing this fact, it can be proved that there 
exist infinitely many prime ideals in each class 
of the ideal class group module an integral 
divisor 1st of k. 

Let x be a primitive character with the con- 
ductor 7, d be the discriminant of k, cl, . , or, 
be all distinct isomorphisms of k into the real 
number field R, and f be the finite part of y. 
Then if 5 is an integer of k such that 5 = 1 
(mod f), we have 

x((~))=(sgn<“1)“~..:(sgn~“~~)“~, 

where a, (m = 1, , rJ is either 0 or 1, depend- 
ing on x. By putting 

Sk(.% xl = 
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we have the following functional equation for 
the Hecke L-function: 

where W(x) is a complex number with ab- 
solute value 1 and the exact value of W(x) is 
given as a Gaussian sum. Just as some prop- 
erties concerning the distribution of prime 
numbers can be proved using the Riemann [- 
function and Dirichlet L-functions, some prop- 
erties concerning the distribution of prime 
ideals can be proved using the Hecke L- 
functions (-- 123 Distribution of Prime Num- 
bers F). 

T. Takagi used Hecke L-functions in found- 
ing his tclass field theory. In the other direc- 
tion, this theory implies L( 1, x) #O (x # 1). 

Let K be a +class field over k that corre- 
sponds to an ideal class group H of k with 
index h. By using class field theory, we obtain 
[&) = n, L,(s, x), where the product is over all 
characters x of ideal class groups of k, such 
that x(H) = 1. This formula can be regarded as 
an alternative formulation of the decompo- 
sition theorem of class field theory (- 59 Class 
Field Theory). By taking the residues of both 
sides of the formula at s = 1, we obtain hKtiK 

= h,x,II /fl Ml> x). 
In particular, if k = Q (the rational number 

field) and K is a quadratic number field Q(d) 
(d is the discriminant of K), then we have 

where (d/n) is the +Kronecker symbol, and we 
put (d/n) = 0 when (n, d) # 1. From this, we 
obtain the class number formula for quadratic 
number fields (- 347 Quadratic Fields). A 
similar method is used for computation of 
class numbers of cyclotomic fields K (- 14 
Algebraic Number Fields L). 

In general, the computation of the relative 
class number h,/h, when K/k is an Abelian 
extension is reduced to the evaluation of 
L( 1, x). This computation has been made suc- 
cessfully for the following cases (besides for the 
examples in the previous paragraph): k is 
imaginary quadratic and K is the absolute 
class field of k or the class field corresponding 
to tray S(m); k is totally real and K is a totally 
imaginary quadratic extension of k. H. M. 
Stark and 1‘. Shintani made conjectures about 
the values of L(l,x) [S25,Sl9]. 

Let L(s, x) be a Hecke L-function for the 
character x. Then it follows from the func- 
tional equation that the values of L(s, x) at s 
=O, -1, -2, -3,... are zero if k is not totally 
real. Furthermore, if k is a totally real finite 
algebraic number field, then these values of 
L(s, x) are algebraic numbers (C. L. Siegel, H. 
Klingen, T. Shintani). 

F. Hecke L-Functions with Griissencharakters 

E. Hecke (19 18, 1920) extended the notion 
of characters by introducing the +Grdssen- 
charakter x and defined L-functions with 
such characters: 

L,(s,x)=C~. ” 
He also proved the existence of their Euler 
product expansions and showed that they 
satisfy certain functional equations [H3]. 
Moreover, by estimating the sum CN(p,)<Y x(p), 
he obtained some results on the distribution of 
prime ideals. 

Later, Iwasawa and J. Tate independently 
gave clearer definitions of the Grossencharak- 
ter 1 and L,(s, x) by using harmonic analysis 
on the adele and idele groups of k (- 6 Adeles 
and Ideles) [L3]. 

Let J, be the idele group of k, Pk be the 
group of tprincipal ideles, and C, = Jk/Pk be 
the idele class group. Then a Griissencharakter 
is a continuous character x of C,, and x in- 
duces a character of J,, which is also denoted 
by x. Let J, = J, x J, be the decomposition 
of J, into the infinite part J, and the finite 
part J,. Let U, be the unit group of JO, and 
for each integral ideal m of k, put Uln,O = 
{u~UaIu= 1 (modm)}, so that {U,t,,O} forms 
a base for the neighborhood system of 1 in JO. 

Put Jr,,,, ={a~JaIa~=l forallplm},andwith 
each a E J,n,O, associate an ideal 5 = I& p’p’“), 
where a =(a,) and the ideal in k, generated 
by ap is equal to p”y’“‘. Then the mapping 
a-+; gives a homomorphism of J,,,, into the 
group G(m)={cl(a,m)= 1}, and its kernel is 
contained in U,n,O. Since x is continuous, 
x(U,,,,) = 1 for some m. The greatest common 
divisor f of all such ideals nt is called the con- 
ductor of x. For each aE Ji,O, x(a) depends 
only on the ideal 5 (E G(f)); hence by putting 
x(a) = i(a), we obtain a character i of G(f). 
Now put L,(s, x) = C i(?i)/N(s)“, where the sum 
is over all integral ideals 6 E G(f). This is called 
a Hecke L-function with Griissencharakter x. 
For x# 1, it is an entire function. On the other 
hand, if we restrict x to J, = R*‘l x C*‘2, then 
foru=(a, ,..., a,,,n,,+, ,..., ~,~+,~)EJ,,wehave 

r1+12 
X(U)= n lujl”~Jm’. fi (sgnaj)‘j. ,yfi:, z ‘I, 

j=l j=l ,( > 

where ej = 0 or 1, e,E Z, ijs R. The numbers ej, 
e,, j.j are determined uniquely by x. Putting 

x  ‘ff r(s+l’.,l+:~\-l),(s.r); 

,=*,+I 
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we have a functional equation 

where W(x) is a complex number with ab- 
solute value I. 

We can express <,(s, 1) by an integral form 
on J, as 

where V(r) is the +total volume of the idele r, ( 
is a constant that depends on the +Haar mea- 
sure d*r of J,, and (p(r) is defined by 

q,(~)=r”“‘“‘~‘, x~(bf)y’, 

=o, x 4(bf),l P finite. 

Hence (bf),;’ is the n-component (- 6 Adeles 
and Ideles B) of the ideal (bf)-’ (b is the +dif- 
ferent of k/Q) and i(x) is an additive character 
of k,, defined as follows. Q, is the +p-adic 
field, Z, is the ring of p-adic integers, i., is the 
mapping Q,,-Q,/Z, c Q/Z c R/Z, and i. = 
i, 0 Pi\,, u BY putting x(r) = II, 11&y,), r = 
( xp ),“we have 

where p runs over all prime divisors of k, finite 
or infinite. Moreover, with a constant C,, we 
have 

s 
‘Pp, ~(x)%,,,,,(,~)1/;,,,,(x)~“d*x 

%, ,I 
=c, ,,; n o+\ l/,+c,Jz 

xT((s+&l ii+e,)/2), k, ,,., =R, 

=Cp,,;P7) ,5 t (\& I /.,+lr,l)b2) 

xT(.s+(~~.,+Ieil)/2), k,,<,,=C, 

=c,N((L~f),)‘T,(%,)~~L(ui.p)~ PI f, 

Here T,,(x&,) is a constant called the local 
Gaussian sum, and p( Ui,J is the volume of 
ju~k,(u= 1 (modf)j. These integrals over k,, 
are the r-factors and Euler factors of &(s, z), 
according as p is infinite or finite. The func- 

tional equation is obtained by applying the 
‘Poisson summation formula for q(x) and its 
.+Fourier transform on the adele group A, (- 6. 
Adeles and Ideles). 

Let D, be the connected component of I in 
C,. If x(Dk) = I, the corresponding i is a char- 
acter of an ideal class group of k with a con- 
ductor f. Conversely, all such characters can 
be obtained in this manner. 

As stated in Section E, the Hecke L- 
functions with characters (of ideal class 
groups) can be used to describe the decom- 
position law of prime divisors in class field 
theory. However. for L-functions with G&s- 
sencharakter, such arithmetic implications 
have not been found yet, except that in the 
case of Griissencharakters of A, type, Y. 
Taniyama discovered, following the suggestion 
of A. Weil, that the L-function has a deep 
connection with the arithmetic of a certain 
infinite Abelian extension of k [T2, W7]. In 
particular, when L(s, 1) is a factor of the 
+Hasse i-function of an Abelian variety A with 
+complex multiplication, it describes the arith- 
metic of the field generated by the coordinates 
of the division points of A. 

G. Artin L-Functions 

Let K be a finite Galois extension of an alge- 
braic number field k (of degree n), G = G(K/k) 

be its Galois group, o-+A(o) be a matrix 
representation (characteristic 0) of G, and x 
be its character. Let p be a prime ideal of k, 

and define L&s, 1) by 

logqs,%)=m~l $g> Res> 1, 

with ~(p”)=(l/r)~,,~~(a”~), where T is the 
‘inertia group of p, 1 TI = e, and CT is a +Frobe- 
nius automorphism of p. Then we have 

In particular, if T= { 1 i (i.e., p is +unramified in 
K/k), then 

L,(s,~)=det(E-A(a).N(p))“))‘. 

Now put 

L(s,%,K/k)=nL,(.s,%), Res>l, 
P 

and call L(s, x, K/k) an Artin L-fuuction [A2]. 
(1) The most important property of L(s, 1, 

K/k) is that if K/k is an Abelian extension 
and 1 is a linear character, it follows from class 
field theory that x(p) is the character of the 
ideal class group of k (modulo the tconductor 

1 of K/k) and that the Artin L-function equals 
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a Hecke L-function. This equality is equivalent 
to Artin’s treciprocity law, and in fact Artin 
obtained his reciprocity law after he conjec- 
tured the equality. 

(2) If K’= K = k and K’,‘k is a Galois exten- 
sion, then L(s, 1, K/k) = L(s, z, K’lk). 

(3) If K ZJQ 3 k and $ is a character of 
G(K/Cl), then L(s, $, K/Q) = L(s, xv, K/k), where 
xu is the character of G(K/k) +induced from $. 

(4) If;li = I, then L(s,x,, K/k)=[,(s). 

(5) Lb,x1 +xz,Klk)=L(s,~,,Klk)~ 

Lb, xz, K/k). 
Conversely, the Artin L-function L(s, x, K/k) 

is characterized by properties (l)-(5). 
(6) If xx is the +regular representation of G. 

then L(s, xR, K/k) = I&); hence 

;tAs) = ids) ,Q, Us, i[, WY”‘, 

where 1 runs over all irreducible characters 
# 1 of G. 

(7) Every character of a finite group G can 
be expressed as x = C mixu, (at, E Z), where each 
x,,, is an iinduced character from a certain 
linear character ii of an elementary subgroup 
of G (Brauer’s theorem). (Here an elementary 
subgroup is a subgroup that is the direct 
product of a cyclic group and a p-group for 
some prime p.) Hence (3) and (5) imply that an 
Artin L-function is the product of integral 
powers (positive or negative) of Hecke L- 
functions L,,(s, $,): 

L(.s,%, K/k)=n L,,(s, I/J;)“‘. 

Hence an Artin L-function is a univalent 
meromorphic function defined over the whole 
complex plane. Artin made the still open con- 
jecture that if x is irreducible and x # 1, then 
L(s, %, K/k) is an entire function (Artin’s 
conjecture). 

This conjecture holds obviously if all m, are 
nonnegative. Except for such a case, Artin’s 
conjecture had no affirmative examples until 
1974, when Deligne and Serre [D9] proved 
that each “new cusp form” of weight 1 gives 
rise to an entire Artin L-function L(s, 1, K/k) 
with x(1)=2 and x(p)=O(p is the complex 
conjugation); by this method, some nontrivial 
examples were computed by J. Tate and J. 
Buhler (Lecture notes in muth. 654 (1978)). 
Then R. P. Langlands [LS] constructed non- 
trivial examples of Artin’s conjecture for cer- 
tain 2-dimensional representations 

by using ideas of H. Saito and T. Shintani 
[Sl, S203. This method works for all represen- 
tations for which the image of the A(a) in 

PGL(2,C) is the +tetrahedral group. It also 
works for some +octahedral cases, but a new 
idea is needed in the ticosahedral case. 

(8)Letp.,i(i=l,...,r,+r2)betheinlinite 
primes of k. Put 

=(r(s/2)r((.s+ 1)/2))“(l) 

for complex p x ,i, 

= ~(,/2)‘X’l )+x(a))/2 l-((s + 1)/2)‘X’l )k.Y(~))P 

for real p,,,, 

where rr~ G is the complex conjugation deter- 
mined by a prime factor of p, ,i in K. Next we 
introduce the notion of the conductor f, with 
the group character x defined by Artin (J. 
Reirw Angew. Math., 164 (1931)). First, for any 
subset m c G, we put z(m) = C,,,,,, x(m); then 
f, is given by 

f, = f(x, K/k) = n p”“‘, 
I’ 

where 

and where V, , VZ, , are the higher +ramifi- 
cation groups of prime factors of p in K (in 
lower numbering) and p’l= 1 Fl (- 14 Alge- 
braic Number Fields I). 

Now put 

’ n Yts3%,f7x,,i, KJk) L(s, x, K/k). 
I-‘,., 

Then the functional equation is written 

((1 --s> Z K/k)= Wx)t(s, )I> K/k), I Wxh = 1 

The known proof of this functional equation 
depends on (7) and the functional equations of 
Hecke L-functions discussed in Section E. As 
for the constants W(x), there are significant 
results by B. Dwork, Langlands, and Deligne 

ml. 
(9) There are some applications to the 

theory of the distribution of prime ideals. 

H. Weil L-Functions 

Weil dehned a new L-function that is a gen- 
eralization of both Artin L-functions and 
Hecke L-functions with Grossencharakter 
[WS]. Let K be a finite Galois extension of an 
algebraic number field k, let C, be the idele 
class group K;/K ’ of K, and let xRlke 
If ‘(Gal( K/k), C,) be the icanonical coho- 
mology class of +class field theory. Then this 
xh. k determines an extension W, k of Gal(K/k) 
by C,: I dC,+ IV, ,-tGal(K/k)+l (exact), and 
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the transfer induces an isomorphism W$ 
7 C,, where a6 denotes the topological com- 
mutator quotient. If L is a Galois extension 
of k containing K, then there is a canonical 
homomorphism WLjk+ W,,,. Hence we define 
the Weil group W, for E/k as the tprojective 
limit group proj,lim W,,, of the WKIL. It is 
obvious that we have a surjective homomor- 
phism cp: W,-*Gal(E/k) and an isomorphism 
r,: C,-t Wf”, where Wib is the maximal Abelian 
Hausdorff quotient of W,. For WE W,, let // w  11 
be the adelic norm of r;‘(w). 

If k, is a tlocal field, then we define the Weil 
group W,,, for &/k, by replacing the idele class 
group CK with the multiplicative group Kz 
in the above definition, where K, denotes a 
Galois extension of k,. If k, is the completion 
of a finite algebraic number field k at a place u, 
then we have natural homomorphisms k,” -C, 
and Gal(&./k,,)~Gal(k/k). Accordingly, we 
have a homomorphism W,, --, W, that com- 
mutes with these homomorphisms. 

Let W, be the Weil group of an algebraic 
number field k, and let p: W,+GL(V) be a 
continuous representation of W, on a complex 
vector space I/. Let u = p be a finite prime of k, 
and let pt, be the representation of W,,, induced 
from p. Let @be an element of W,,, such that 
c?(Q) is the inverse Frobenius element of p in 
Gal(k,/k,), and let I be the subgroup of W,, 
consisting of elements w  such that q(w) be- 
longs to the tinertia group of p in Gal(k,/k,). 
Let 1/’ be the subspace of elements in V fixed 
by p,(Z), let Np be the norm of p, and let 

L,(V;s)=det(l -(Np)-“p,(Q)1 V’)-l. 

We can define L,( V, s) for each Archimedean 
prime u also, and let 

L( 

Then this product converges for s in some 
right half-plane and defines a function L( V, s). 
We call L( V, s) the Weil L-function for the 
representation p : W, + GL( V). This function 
L( V, s) can be extended to a meromorphic 
function on the complex plane and satisfies the 
functional equation 

L(v,s)=E(v,s)L(v*, 1 -s) 

(T. Tamagawa), where V* is the dual of V, and 
E( V, s) is an exponential function of s of the 
form ah” [T6]. 

P. Deligne generalized these results in the 
following manner: Let WL be a +group scheme 
over Q which is the tsemidirect product of W, 
by the additive group G,, on which W, acts by 
the rule wxu’ ml = 11 w  11 x. We can define the 
notion of representations of W; and the L- 
functions of them in the natural manner [T6]. 

1. The Riemann Hypothesis 

As mentioned in Section B, the Riemann 
hypothesis asserts that all zeros of the Rie- 
mann i-function in 0 < Re s < 1 lile on the line 
Res= l/2. In his celebrated paper [RI], Rie- 
mann gave six conjectures (including this), 
and assuming these conjectures, proved the 
+prime number theorem: 

s x dx 
rr(x)-x-Li(x)= ~ 

logx * logx’ 
x-00. 

Here n(x) denotes the number of prime num- 
bers smaller than x. Among his six conjectures, 
all except the Riemann hypothesis have been 
proved (a detailed discussion is given in [Ll]). 
The prime number theorem was proved inde- 
pendently by Hadamard and de La Valltte- 
Poussin without using the Riema.nn hypothesis 
(- Section B; 123 Distribution of Prime Num- 
bers B). 

R. S. Lehman showed that there are exactly 
2,500,OOO zeros of [(cr + it) for which 0 < t < 
170,571.35, all of which lie on the critical 
line r~ = l/2 and are simple (Math. Comp., 20 
(1966)). Later R. P. Brent extended this com- 
putation up to 75,000,OOO first zeros (1979). 

Hardy proved that there are infinitely many 
zeros of c(s) on the line Res= l/2 (1914). Fur- 
thermore, A. Selberg [S6] proved that if N,(T) 
is the number of zeros of c(s) on the line with 0 
<Ims<T,thenN,(T)>ATlogJ”(Aisaposi- 
tive constant) (1942). Thus if N( 7’) is the num- 
ber of zeros of i(s) in the rectangle 0 < Re s < I, 
0 < Im s < T, then lim inf,,, N,,( 7’)/N(T) > 0. 
N. Levinson proved lim inf,,, N,,( T)/N( T) 
> l/3 (Advances in Math., 13 (1974)). If N,(T) 
is the number of zeros of c(s) in 112 -E < Re s 
<l/2+&, O<Ims< T, then lim,,,N,(T)/N(T) 
= 1 for any positive number E (H. Bohr and E. 
Landau, 1914). Bohr studied the distribution 
of the values of i(s) in detail and mitiated the 
theory of +almost periodic functions (I 925). 

D. Hilbert remarked in his lecture at the 
Paris Congress that the Riemann hypothesis 
is equivalent to 

~(x)=Li(x)+O(~logx), x+c0 

(H. von Koch, 1901). It is also equivalent to 

$ &I)=O(N”*+~), N+m, 

for any E > 0, where p(n) is the Mijbius func- 
tion. Assuming the Riemann hypothesis, we 

get 

1 +log2n 
N(T)=;rlugT-T T-t o(log T) 

(Littlewood, 1924). 
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The computation of the zeros of the [- 
functions and the L-functions of general alge- 
braic number fields is more difficult, but con- 
jectures similar to the Riemann hypothesis 
have been proposed. 

Weil showed that a necessary and sufficient 
condition for the validity of the Riemann hypo- 
thesis for all Hecke L-functions L(s, 1) is that 
a certain ‘tdistribution on the idele group J, be 
positive definite [Wl (1952b)]. 

It is not known whether the general [- and 
L-functions of algebraic number fields have 
any zeros in the interval (0,l) on the real axis 
(see the works of A. Selberg and S. Chowla). 
Similar problems are considered for the vari- 
ous [-functions given in Sections P, Q, and T. 

J. p-Adic L-Functions 

Let x be a tprimitive Dirichlet character with 
conductor L and let L(s, x) be the +Dirichlet L- 
function for x. Then the values L( 1 -n, x) of 
L(s,x) at nonpositive integers 1 --n (n= 1,2,...) 
are algebraic numbers (- Section E). Let p 
be a prime number, let Q, be the +p-adic num- 
ber field, and let C, be the completion of the 
algebraic closure a, of Q,. It is known that 
C, is also algebraically closed. Since Q c Qp, 
we fix an embedding Q c 0, and consider 
jL( 1 -n, x)},“=, as a sequence in C,. 

Let 1 I,, be the extension to C, of the stan- 
dard p-adic valuation of Q,. Let q be p or 4 
according as p # 2 or p = 2, and let w  be the 
primitive Dirichlet character with conductor q 
satisfying w(n) = n (mod q) for any integer n 
prime to p. Then T. Kubota and H. W. Leo- 
poldt proved that there exists a unique func- 
tion L,(s, x) satisfying the conditions [KS]: 

(1) L,(s,%)=~+ : a,(s-1)” (a,EC,); 
It=0 

(2) a-, =0 if x# 1 and the series Cz&a,(s 
- 1)” converges for Is- 1 Ip< Iq-lpl’cp-l’l,; 
(3) L&i --?&x)=(1 -xw-“p’-“)L(l -i&XU”) 
holds for II = 1,2,3, 

The function L,(s, x) satisfying these three 
conditions is called the p-adic L-function for 
the character x. It is easy to see that L,(s, x) is 
identically zero if x( -1) = -1, but L,(s, x) is 
nontrivial if x(-l)= 1. 

Let B, be the Bernoulli number. Then B, 
satisfies the conditions: (I) B,/n is p-integral if 
(p- l)ln (von Staudt) and (2) (l/n)B,-(l/(n+p 
- l))B,+,.., (modp) holds in this case (Kum- 
mer). The generalization of these results for 
the generalized Bermoulli number B,., was 
obtained by Leopoldt. Since L( 1 -n, x) = 

-w4~,,“~ such p-integrabilities and con- 
gruences can be naturally interpreted and 

generalized in terms of the p-adic L-functions 

Lh xl. 
We assume x(-l)= 1. Then L,(O,x)=(l - 

xw-‘(p))L(O,xw-‘) and xw-‘( -l)= -1. 
Hence we can express the first factor hi 
of the class number of a cyclotomic field 
Q(exp(2nilN)) as a product of some L,(O, 1)‘s. 
By using this fact, K. Iwasawa proved [I73 
that the p-part pe” of the thirst factor hNp” 
(NE N) satisfies 

for any suficiently large n. Here Iwasawa 
conjectured p = 0, which was proved by B. 
Ferrer0 and L. Washington [Fl]. Also, we can 
obtain some congruences involving the first 
factor hi of Q(exp(2nilN)) from this formula. 

Let x be a nontrivial primitive Dirichlet 
character with conductor ,L let 

z(x)= f: ~(a)e2”i”‘S 
‘7=1 

be the +Gaussian sum for x, and let log,, be the 
p-adic logarithmic function. Then Leopoldt 
[L6] calculated the value L( 1, x) and obtained 

L,(l, xl 

X(P) z(x) f 
= - 1-p f C X(a)log,(l -e-2nini/) 

( > a 1 

As an application of this formula, Leopoldt 
obtained a p-adic +class number formula for 
the maximal real subfield F = Q(cos(27c/N)) of 
Q(exp(2nilN)): Let [,(s, F) be the product of 
the L&s, x) for all primitive Dirichlet characters 
x such that (1) x( -1) = 1 and (2) the conductor 
of x is a divisor of N. We define the p-adic 
regulator R, by replacing the usual log by the 
p-adic logarithmic function log,. Let h be the 
class number of F, m = [F: Q], and let d be the 
discriminant of F. Then the residue of i,(s, F) 
ats=l is 

Hence [,(s, F) has a simple pole at s = 1 if and 
only if R, # 0. In general, for any totally real 
finite algebraic number field F, Leopoldt con- 
jectured that the p-adic regulator R, of F is 
not zero (Leopoldt’s conjecture). This conjec- 
ture was proved by J. Ax and A. Brumer for 
the case when F is an Abelian extension of Q 
[A4, B7]. 

By making use of the Stickelberger element, 
Iwasawa gave another proof of the existence 
of the p-adic L-function [17]. In particular, he 
obtained the following result: Let x be a primi- 
tive Dirichlet character with conductor ,f: Then 
there exists a primitive Dirichlet character 0 
such that the p-part of the conductor of 0 is 
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either 1 or q and such that the conductor and 
the order of 10~ ’ are both powers of p. Let o0 
be the ring generated over the ring Z, of p- 
adic integers by the values of 0. Then there 
exists a unique element ,f‘(x, 0) of the quotient 
field of o(,[ [xl] depending only on 0 and 
satisfying 

L,(s, x) = 2.f(i(l + 4”)” - I, 0). 

where q, is the least common multiple of q and 
the conductor of II, and 5 =x( 1 + yo)-‘. Fur- 
thermore, IwaSawa proved that ,f(x, 0) belongs 
to oH[[x]] if 0 is not trivial. 

Let P = Q(exp(2nilq)) and, for any n > 1, let 
P,, = Q(exp(2nilyp”)). Let P, = u,,>, Pfi. Then 
I’, is a Galois extension of Q satisfying 
Gal(P, /Q): Z; (the multiplicative group of p- 
adic units), and P is the subfield of PT/Q cor- 
responding to the subgroup I +qZ, of Zi 

Let $ be a C,-valued primitive Dirichlet 
character such that (1) $(-I)= -1 and (2) the 
p-part of the conductor ,f8, of $ is either 1 or 
q. Let K,, be the cyclic extension of Q corre- 
sponding to $ by class field theory. Let K = 
K,!;P, K,=K.P,,and K,=K.P,.Let A, 
be the p-primary part of the ideal class group 
of K,, let A,!+A,, (n>m) be the mapping in- 
duced by the irelative norm NkmIK,,,, and let X, 
= I@ A,. Since each A, is a finite p-group, X, 
is a Z,-module. Let VK = X, @z, C,,, and let 

Let q. be the least common multiple off;, and 
q, and let y. be the element of Gal( K ,,JK) 
that corresponds to 

1 +qOE 1 +qZ,=Gal(P,x/P) 

by the restriction mapping Gal(K,/K) 
c*Gal(P,/P). Let,&.(x) be the characteristic 
polynomial of y. - 1 acting on V,,. Hence &(x) 
is an element of o,,,[x]. 

We assume that rni ’ is not trivial. Let 
f(x, w$ -‘) be as before. Then .f‘(x, o$ -‘) is an 
element of ov;. [xl]. Iwasawa conjectured that 
,&(x) and f’(x, w$ -‘) coincide up to a unit of 
o,.[[x]] (Iwasawa’s main conjecture). This con- 
jecture was proved recently by B. Mazur and 
A. Wiles in the case where $ is a power of w. 

Let F be a totally real finite algebraic num- 
ber field, let K be a totally real Abelian exten- 
sion of F, and let i: be a character of Gal(K/F). 
Let L(s, x) be the +Artin L-function for x. Then 
we can construct the p-adic analog L&s, x) of 
L(s, 1) (J.-P. Serre, J. Coates, W. Sinnott, P. 
Deligne, K. Ribet, P. Cassou-Nogues). But, 
at present, we have no formula for Lp( 1, x). 
Coates generalized Iwasawa’s main conjecture 
to this case, but it has not yet been proven. 

P-adic L-functions have been defined in 
some other cases (e.g. - [K3, M 1, M3]). 

K. ;-Functions of Quadratic Forms 

Dirichlet defined a Dirichlet series associated 
with a binary quadratic form and also consid- 
ered a sum of such Dirichlet series extended 
over all classes of binary quadratic forms with 
a given discriminant D, which is actually 
equivalent to the Dedekind i-function of a 
quadratic field. Dirichlet obtained a formula 
for the class numbers of binary quadratic 
forms. The formula is interpreted nowadays as 
a formula for the class numbers of quadratic 
fields in the narrow sense. 

According as the binary quadratic form 
is definite or indefinite, we apply different 
methods to obtain its class number. 

Epstein c-functions: P. Epstein generalized 
the definition of the c-function of a positive 
definite binary quadratic form to the case of n 
variables (Math. Ann., 56 (1903), 63 (1907)). Let 
V be a real vector space of dimension m with a 
positive definite quadratic form Q. Let M be a 
+lattice in V, and put 

&&,M)= c -L 
?;;?;: Q(xy ' Res+ 

This series is absolutely convergent in Res > 
m/2, and 

( > 0 
-I 

lim s-z 5a(~,M)=D(M)~“27im’Zr T , 
\-!?I,2 

D(W=detlQ(xi,xJ, 

where x ,,..., x,isabasisofMandQ(x,y) 

=(Q(x+Y)-Q(x)-QQ(~‘))/~. If the Q(x) 
(xc M, x #O) are all positive integer<, we can 
write 

where u(n) is the number of distinct x E M with 
Q(x) = n. In general, let x,, ,.x, be a basis of 
the lattice M and XT, , x:~ be its dual basis 
(Q(xi, xi*)= 6,). Call M* = J$xTZ the dual 
lattice of M. If we consider the s-series (+theta 
series) 

$Ju,M)= 1 exp(-lruQ(x)) (Ren>O), 

then 

xs.w 

:J,(u,M)=(U~“‘2D(M)-“2),~~(u-‘,hl*). 

With &(s, M)= n-‘r(s)[,(s, M), the displayed 
equality leads to the functional equation 

i”Q(s,M)=D(M)-“2.<, ;-s,M*). ( 
In general, &(s, M) has no Euler product 
expansion. 

I 

Consider the case where M = C Zxi (.yi = 
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(0 ,..., O,l,O ,..., O)),Q(x)=C:,uf,forx= 
(u, , , u,). If we put l,(s) = iu(s, M), L(s)= 
C,“=, (-4/n)n-“, then we have 

C,(s) = 2((2s), 

~z(s)=4~(,s)~L(s)=4 

x (the Dedekind i-function of Q(G)), 

;4(s)=8(1-22~2~)~(s)~(s- I). 

&(s)= -4(<(.s)L(s-2)-4c(s-2)L(s)). 

&Js)= 16(1 -2’ ~’ + 24- 2”)~(s)~(s- 3), 

il&)=(4/5)(~(s)L(.~-4)+4~~(.s-4)L(s)) 

i”~2(S)=c,2~“~(S);(S-5)(2b~2b ‘) 

+c2ollJm), 

where cp{ m ) is the Dirichlet series corre- 
sponding lo m by the ‘Mellin transform 
and A(z)=zjn,$,(l -z’)j’” with z=e2nir. 
i,(s) has zeros on the line Re s = (r = m/4, given 
explicitly for m=4, 8 as follows: 

m=4: s=- 1 +17ri/log2, I= 1,2, .,., 

m=8: s=:2+(i/log2)(2/71f_arctan vR 

l=O, &1, 

Regarding the Epstein i-function of binary 
quadratic forms 

;Q(“) = 1’ Q(m, M) -\, 
m.n 

with 

Q(x, y) = ux2 + hx); + c4.2, 

a,h,c~R,a~O,~~0,A=41~~-h~>0, 

we have the Chowla-Selberg formula (1949): 

where crJn~ = Cd,,,@ and i(s) is the Riemann <- 
function. By using this formula, we can give 
another proof of the following result of H. 
Heilbronn: Let h( - A) be the class number of 

the imaginary quadratic field with discrimi- 
nant -A. Then /I( - A)+ x (A- r;). 

The following generalization of this result 
was obtained by C. L. Siegel [S22]: Let k be a 
fixed finite algebraic number field. Let K be a 
finite Galois extension of k, and let d = d(K), 
II = h(K), and R = R(K) be the discriminant of 
K, the class number of K, and the regulator of 
K, respectively. We assume that K runs over 
extensions of k such that [K: k]/logd-0; then 
we have 

log(hR) - logVm. 

Siegel i-functions of indefinite quadratic 
forms: Siegel defined and investigated some <- 
functions attached to nondegenerate indefinite 
quadratic forms, which are also meromorphic 
on the whole complex plane and satisfy certain 
functional equations [S24]. 

The case of quadratic forms with irrational 
algebraic coefficients was treated by Tama- 
gawa and K. G. Ramanathan. 

L. (-Functions of Algebras 

K. Hey detined the [-function of a %imple 
algebra A over the rational number field Q 
(M. Deuring [DlO]) (- 27 Arithmetic of As- 
sociative Algebras). Consider an arbitrary 
+maximal order II of A, and let 

‘;‘(s’=Z,I,,;, Re.s> 1, 
0 

with the summation taken over all left integral 
ideals a of D. Then in is independent of the 
choice of a maximal order o. Let k be the 
+center of A, and put [A : k] = n2. First, 5, is 
decomposed into Euler’s infinite product 
expansion i,,(s) = n,, Z,(s) (t, runs over the 
prime ideals of k). For p not dividing the dis- 
criminant b of A, Z,(s) coincides with the p- 
component of nyl; &(ns - j). Hence i,(s) 
coincides with n;:h ik(ns -j) up to a product 
of p-factors for p 1 D which are explicit rational 
functions of N(p)- “‘, 

Moreover, if A is the total matrix algebra of 
degree r over the division algebra 5, then we 
have i,(s) = n;ib ir(rs-j), and i&s) satisfies a 
functional equation similar to that of i,(s) 
(Hey). Also, ia is meromorphic over the 
whole complex plane, and at s = 1, (n - I)/ 
n, , l/n, it has poles of order 1. Using analy- 
tic methods, M. Zorn (1931) showed that the 
simple algebra A with center k such that A, is 
a matrix algebra over k, for every finite or in- 
finite prime divisor p of k is itself a matrix 
algebra over k (- 27 Arithmetic of Associative 
Algebras D). A purely algebraic proof of this 
was given by Brauer, H. Hasse, and E. 
Noether. G. Fujisaki (1958) gave another proof 
using the Iwasawa-Tate method. As a direct 
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application of the [-function, the computation 
of the residue at s = 1 of [,,, leads to the formula 
containing the class number of maximal order 
a. 

Godement defined the <-function of fairly 
general algebras [Gl], and Tamagawa inves- 
tigated in detail the explicit [-functions of 
division algebras, deriving their functional 
equations [Tl]. 

Let 2 = I-& A, be the adele ring of A, and let 
G = n; G,, be the idele group (of A). We take a 
maximal order 3, of A,, and a maxima1 com- 
pact subgroup UP of G,. Let wP be a tzonal 
spherical function of G, with respect to U,,; 
that is, wp is a function in G, and satisfies 

~pbw)=~pM (4 UE up,, w,(l)= 1, 

In addition, we define the weight function ‘pp 
on A, by 

the 

1 

characteristic function of C& 
when p is finite, 

cpp(x) = 
exp( - nT,(xx*)) 
when p is infinite, 

where 5 is the treduced trace of AJR and * is 
a positive tinvolution. Tamagawa gave an 
explicit form of the local [-function with the 
character wP defined by iph wp) = s cpp(g)wp(g~‘)INp(g)ls,dg, 

CP 

where NP is the treduced norm of A,/k,, and 
1 Ip is the valuation of k,. Then o = npwp is 
the zonal spherical function of G with respect 
to n Up = U. In particular, if w  is a positive 
definite zonal spherical function belonging to 
the spectrum of the discrete subgroup I = A* 
= {all the invertible elements of A} of G, then 
the Tamagawa (‘-function with character o is 
given by 

P s G 

where cp(g)= I-l cp,(g,) and 11 II is the volume 
of the element g of G. When A is a division 
algebra, [(s, w) is analytically continued to a 
meromorphic function over the whole complex 
plane and satisfies the functional equation. 
The Tamagawa c-function may also be consid- 
ered as one type of [-function of the Hecke 
operator. When A is an indefinite quaternion 
algebra over a totally real algebraic number 
field a’, the groups of units of various orders of 
A operate discontinuously on the product of 
complex upper half-planes. Thus the spaces of 
holomorphic forms are naturally associated 
with A. The investigation of c-functions asso- 

ciated with these holomorphic automorphic 
forms was initiated by M. Eichler and ex- 
tended by G. Shimura, H. Shimizu, and others. 
Eichler investigated the case cf, = Q, and 
Shimura and Shimizu investigated the case for 
an arbitrary totally real field @ by d!etining 
genera1 holomorphic automorphic forms, 
Hecke operators, and corresponding [- 
functions. The functional equations of these [- 
functions were proved by Shimizu. :Shimizu 
generalized Eichler’s work and found relations 
among <-functions of orders of various quater- 
nion algebras belonging to different discrimi- 
nants and levels [SlO]. For the related results, 
see, e.g., the work of K. Doi and H. Naganuma 
[D12]. 

M. [-Functions Defined by Hecke (Operators 

The [-functions of algebraic number fields, 
algebras, or quadratic forms, and the L- 
functions are all defined by Dirichlet series, are 
analytically continued to univalent functions 
on the complex plane, and satisfy functional 
equations. One problem is to characterize the 
functions having such properties. 

(1) H. Hamburger (1921- 1922) characterized 
the Riemann c-function (up to constant multi- 
ples) by the following three properties: (i) It 
can be expanded as [(s)=C~la,/nF (Res>>O); 
(ii) it is holomorphic on the complex plane 
except as s = 1, and (s - l)[(s) is an entire func- 
tion of finite tgenus; (iii) C(s) = G( 1 --s), where 
G(s) = 71 -“‘2r(s/2)~(s). 

(2) E. Hecke’s theory [H4]: Fixing 1. > 0, k > 
0, y = +l, and putting 

for an analytic function q(s), we ma.ke the 
following three assumptions: (i) (s - k)cp(s) is 
an entire function of finite genus; (ii) R(s) = 
yR(k - s); (iii) v(s) can be expanded as q(s) = 
x,“r an/n’ (Res>cr,). Then we call (p(s) a 
function belonging to the sign (A, k, y). 

The functions ((2s) L(2s), and L(2s- 1) 
satisfy assumptions (i)-(iii), where I, may be 
either a Dirichlet L-function, an L-function 
with Grossencharakter of an imaginary qua- 
dratic field, or an L-function with class charac- 
ter of a real quadratic form whose l--factors 
are of the form I(s/2)I((s + 1)/2)-l?(s). If q(s) 
belongs to the sign (A, k, y), then nPcp(s) be- 
longs to the sign (nn, k, y). To each Dirichlet 
series p(s) = C,“r an/n’ with the sign (A, k, y), 
we attach the series f(r) = a, + C.“=i a,,ezZinriA, 
where 

ao=y(27c/i)-k~(k)Res,,k(cp(s)) 

= y Res,,,(R(s)). 

This correspondence cp(s)+f(t) may also be 
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realized by the tMellin transform 

K(s)‘~~(~~U”e-2T.Yi*)y~-~~y 

s 
m = WY) -GJY"-' &4 0 f(iy)-a& 

27ci s R(s)y-"ds. 
kS=Oo 

In this case, (i) f(7) is holomorphic in the 
upper half-plane and f(r + 1) =f(z), (ii) 
f( -l/z)/( - i~)~ = yf(r), and (iii) f(x + iy) = 
O(y’“““‘) (y-+ +O) uniformly for all x. 

Conversely, the Dirichlet series p(s)= 
C,“=r a,nP formed by the transformation in 
the previous paragraph from f(z) satisfying (i)) 
(iii) belongs to the sign (1, k, y). We also say 
that the function f(z) belongs to the sign 

(1, k, Y). 
If k is an even integer, then the functions f(z) 

belonging to (1, k, ( - l)k’Z) are the tmodular 
forms of level 1 and weight k. A necessary and 
sufficient condition for a function rp(s) belong- 
ing to (1, k, ( -l)k’2) to have an Euler product is 
that the corresponding modular form f(z) be a 
simultaneous eigenfunction of the ring formed 
by the tHecke operators T, (n = 1,2,. . . ). In this 
case, the coefficient a, of cp(s) = C a&” coin- 
cides with the eigenvalue of T,. Namely, if fl T, 
= t,f; we have cp(s)=a,(C,“=, t,,n-‘), and this 
is decomposed into the Euler product q(s) = 

a,l-I,(l --t,pms+p k-1-2s)-1. We call cp(s)/ai a 
(-function defined by Hecke operators (Hecke 
[H5]). For example, c(s). c(s - k + 1) and the 
Ramanujan function 

$, z(n)n~“=n(l--(p)p~“+p”-2”)-’ 
P 

are c-functions defined by Hecke operators. 
Hecke applied the theory of Hecke operators 
to study the group I(N) [H5]; the situation 
is more complicated than the case of I(1) = 
SL(2, Z). The space of automorphic forms of 
weight k belonging to the tcongruence 
subgroup 

is denoted by ‘%tk(T,(N)). The essential part of 
%n,(I,(N)) is spanned by the functions f(r)= 
C aneZninr satisfying the conditions: (1) q(s) = 
C u,nP has the Euler product expansion 

cp(s)=n(l-“,p~s)-i 
PIN 

x n (1 -a,pm”+pk-‘-2s)-‘. 
P+N 

(2) The functional equation R(s) = yR(k - s) 
holds, where R(s)=(2~/JN)-“T(s)cp(s). (3) 
When x is an arbitrary primitive character of 
Z such that the conductor f is coprime to N, 

then 

extends to an entire function satisfying the 
functional equation R(s,~)=wR(k-s,x) (/WI= 
1) (Shimura). Conversely, (2) and (3) charac- 
terize the Dirichlet series q(s) corresponding to 
f(r)~%n~(I,#V)) (Weil [Wl (1967a)l). 

Considering the correspondence f(r) = 
Ca,q”-+cp(s)=Cu,n -’ not as a Mellin trans- 
formation but rather as a correspondence 
effected through Hecke operators, we can 
derive the c-function defined by Hecke op- 
erators. When the Hecke operator T, is de- 
fined with respect to a discontinuous group 
I and we have a representation space 9-R of the 
Hecke operator ring X, we denote the matrix 
of the operation of T. E X on YJI by (T,) = 
(T,), and call the matrix-valued function 

C,G9d-s the c-function defined by Hecke 
operators. The equation q(s) = C u,,n-’ is a 
specific instance of the correspondence in the 
first sentence, where I = I(N), YJI c!I.Rk(I,,(N)), 
dim 9JI = 1. One advantage of this definition is 
that it may be applied whenever the concept of 
Hecke operators can be defined with respect to 
the group I (for instance, even for the Fuchs- 
ian group without a tcusp). Thus when I is a 
Fuchsian group given by the unit group of a 
quaternion algebra @ over the rational num- 
ber field Q and YJI is the space of automor- 
phic forms with respect to I, the c-function 
C(T,)C is defined (Eichler). Moreover, by 
using its integral expression over the idele 
group J, of a’, we can obtain its functional 
equation following the Iwasawa-Tate method 
(Shimura). Furthermore, by algebrogeometric 
consideration of T., it can be shown that 

~ i(s)i(s- lWt(C(K)~2nmS) 

=&)i(s- INet n(l -(Tp)G2~-s 
P 

+(&JGZP1m2”)-1 
> 

coincides (up to a trivial factor) with the Hasse 
c-function of some model of the Riemann 
surface defined by I when 9.X is the space G, 
of all tcusp forms of weight 2 (Eichler [El], 
Shimura [S12]). 

The algebrogeometric meaning of 
det(C(T,)eln-“), when %R is the space (Zk of all 
cusp forms of weight k, has been made clear for 
the case where I is obtained from I,(N), I(N), 
and the quaternion algebra (M. Kuga, M. 
Sato, Shimura, Y. Ihara). From these facts, it 
becomes possible to express (T&,, the decom- 
position of the prime number p in some type of 
Galois extension (Shimura [S14], Kuga), in 
terms of Hecke operators. These works gave 
the first examples of non-Abelian class field 
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theory. Note that this type of i-function may 
be regarded as the analog (or generalization) 
of L-functions of algebraic number fields, as 
can be seen from the comparison in Table I. 

Table 1 

Algebraic 
Ideal 

number k Character y. C,y(n)n -8 

fxld 
group 

I I I I 
Algebraic Hecke Representation 

G 
group ring space ‘ut C(T,)@ -s 

As for special values of i-functions defined 
by Hecke operators, the following fact is 
known: Let ,f(s) = C LI,~“E\JJ~~(SL(~, Z)) be a 
common eigenfunction of the Hecke operators, 
and let cp(.s) = 2 a,rl-’ be the corresponding 
Dirichlet series. Let Kf be the field generated 
over the rational number field Q by the coeffi- 
cients u,, of ,f: Then, for any two integers m and 
111’ satisfying 0 <in, m’ < k and m = m’ (mod 2), 
the ratio (K(m): R(d)) of the special values of 

at m and 111’ belongs to the field K,. 
G. Shimura discovered this fact for Rama- 

nujan’s function A(T) (J. Math. Sot. Jupun, 11 
(1959)), and then Yu. I. Manin generalized it 
to the above case and, by constructing a p-adic 
analog of (p(s) from it, pointed out the impor- 
tance of such results [Ml]. R. M. Damerell 
also used such results to study special values 
of Hecke’s L-function with Griissencharakter 
of an imaginary quadratic field (Acta Arith., 

17 (1970), 19 (1971)). Furthermore, Shimura 
generalized these results to congruence sub- 
groups of SL(2, Z) (Comm. Pure Appl. M&h., 

29 (1976)), and to Hilbert modular groups 
(Ann. Math., 102 (1975)). The connection 
between special values of i-functions and the 
periods of integrals has been studied further by 
Shimura, Deligne. and others. 

In addition, in connection with nonholo- 
morphic automorphic forms H. Maass consid- 
cred L-functions of real quadratic fields (with 
class characters) having r(.~/2)~ or I-((s + 1)/2)2 
as r-factors. Furthermore, T. Kubota studied 
the relation of i-functions ik(s) of an arbitrary 
algebraic field k or i-functions of simple rings 
to (nonanalytic) automorphic forms of several 
variables and considered the reciprocity law 
for the Gaussian sum from a new viewpoint. 

N. L-Functions of Automorphic 
Representations (I) 

R. P. Langlands reconstructed the theory of 
+Hecke operators from the viewpoint of repre- 

sentation theory.and defined very general L- 

functions. He proposed many con.jectures 
about them in [L4], and he and Hi. Jacquet 
proved most of them in [Jl] for the case G 
=GL,. 

First Langlands defined the L-group LG for 
any connected reductive algebraic group G 
defined over a field k in the following manner 

WI. 
There is a canonical bijection between iso- 

morphism classes of connected ‘reductive alge- 
braic groups defined over a fixed algebraically 
closed field i; and isomorphism classes of troot 
systems. It is defined by associating to G the 
root data ‘P(G) = (X*( T), @,, X,( T), @I‘), where 
T is a +maximal torus of G, X*(T) (X,(T)) the 
group of characters (+l-parameter subgroups) 
of T, Q, (a”) the set of roots (coroots) of G with 
respect to T. 

Since the choice of a +Borel sub:group B of 
G containing T is equivalent to that of a basis 
A of CD, the aforementioned bijection yields 
one between isomorphism classes of triples 
(G, B, T) and isomorphism classes of based 
root data ‘u,(C) =(X*(T), A, X,(T), A“). There 
is a split exact sequence 

1 +Int G-Aut G+AutY’,(G)+ 1. 

and this mapping induces a canonical bijection 
AutY’,(G)z;Aut(G,B, T, {x,),,~) if .Y,EG, (EEA) 
are fixed. 

Let G be a connected reductive algebraic 
group defined over k. Let T be a maximal 
torus of G, and let B be a Bore] subgroup of G 
containing T. Let yl,(G)=(X*(T),A,X,(T), A“) 
be as before. Then there is a connected reduc- 
tive algebraic group ‘Go over C such that 
‘r,(G)” =(X,(T), A”, X*(T), A) corresponds to 
the triple (LG”, ‘,B”, LT”), where LBo and LT” 
are a Bore] subgroup of LG” and the maxi- 
mal torus of LBo. For example, (1) if G = CL,,, 
then ‘,G” = GL,,(C); (2) if G = Sp,,, then LG” = 
so 2.+,(C). 

We assume that x is the algebraic closure of 
k and G is defined over k. Then y~:Gal(k/k) 
induces an automorphism of the h-group 
G x kk. Hence ;I defines an elemem of 
Aut(LGo, LBo, LT”) because it is a holomorphic 
image of Aut\Y,(G x,k)=AutY’,(G xkk)“. 

Hence we can define the tsemidirect product 
LG = LG” xiGal(k/k), and call it the L-group 
of G. 

Let k be a +local field, and let G be a connec- 
ted reductive algebraic group defined over k. 

We identify G with the group of its k-rational 
points. Let WL be the Weil-Deligne group of 
k (- Section H), and let a(G) be the set of 
homomorphisms cp: WL+LG over Gal(k/k). Let 
U(G) be the set of infinitesimal equivalence 
classes of irreducible admissible representations 
of G. If k is a non-Archimedean field, then 
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77(G) is the set consisting of equivalence classes 
of irreducible representations 71: G- Aut V on 
complex vector spaces V such that the space 
VK of vectors invariant by K is finite dimen- 
sional for every compact open subgroup K of 
G and such that V= U V’, where K runs over 
the compact open subgroups of G. If k is an 
Archimedean field, then 77(G) is the set consist- 
ing of equivalence classes of representations T[ 
of the pair (g, K) of the Lie algebra g of G and 
a maximal compact subgroup K satisfying 
similar conditions [B6]. Then Langlands 
conjectured that we can parametrize 77(G) 
by Q(G) as 77(G)= U,,,n(G),. Let n~77(G), 
(LEO), and let r be a representation of I-G. 
Then we can define the L-function L(s, TC, r) and 
the c-factor c(s, n, r) of K by 

L(s,7c,r)=L(s,rocp), B(.s,7[,r)=E(S,ro~,~), 

where the right-hand sides are those of the 
Weil-Deligne group (- Section H) and II, is a 
nontrivial character of k. 

Let G be a connected reductive group over a 
global field k (i.e., an algebraic number field of 
finite degree or an algebraic function field of 
one variable over a finite field), let 7~ be an 
irreducible admissible representation of G,, 
where G, is the group of rational points of G 
over the +adele ring k, of k, and let r be a 
finite-dimensional representation of LG. Let $ 
be a nontrivial character of k, which is trivial 
on k. For any place L’ of k, let r,. be the rcpre- 
scntation of the L-group of G,. = G x k k,, in- 
duced by r, and let th,, be the additive character 
of k, associated with I). It is known that 7~ is 
decomposed into the tensor product 0~~ of 
x,.~I7(G(k,.)) [B6]. Hence we put 

L(s, 7r, r) = n L(s, n,., r,.), 
I 

c(s, 71, r) = 11 c(s, 7c,, rJ 

The local factor L(s, z,,, r,.) is in fact defined 
if c is Archimedean, or G is a ‘torus, or cp is 
unramified (i.e., G,. is quasisplit and splits over 
an unramified extension of k, , and G(o,.) is a 
special maximal compact subgroup of G(k,,), 
and n,, is of class one with respect to G(o,;), 
where 0,. is the integer ring of k,,). It follows 
that the right-hand side n L(s, n,., r,,) is defined 
up to a finite number of non-Archimedean 
places r. Furthermore, Langlands proved that 
n ~(s, T[,>, r,.) is in fact a finite product, and the 
infinite product n L(s, 7-c,., r,,) converges in some 
right half-plane if 71 is automorphic (i.e., if z is 
a subquotient of the right regular representa- 
tion of G, in Gk\GA). It is conjectured that 
L(s, 7t, r) admits a meromorphic continuation 
to the whole complex plane and satisfies a 
functional equation 

L(s, T(,Y)=c(.s, n,r)L( I -s, 7?,r) 

if 71 is automorphic, where il is the tcontragre- 
dient representation of n. Furthermore, if G = 
CL, and r is the standard representation of 
GL,, then we can construct L(s, n, r) and 
c(s, n, r) by generalizing the Iwasawa-Tate 
method. We can also show in this case that 
L(.s, 71, r) is entire if K is cuspidal. The conjec- 
tures are studied in some other cases [B6]. 

0. L-Functions of Automorphic 
Representations (II) 

A. Weil generalized the theory of +Hecke 
operators and the corresponding L-functions to 
the case of tautomorphic forms (for holomor- 
phic and nonholomorphic cases together) of 
CL, over a global field [WS]. Then H. Jacquet 
and Langlands developed a theory from the 
viewpoint of +representation theory [Jl, 521). 
They attached L-functions not to automorphic 
forms but to tautomorphic representations of 
CL:(k). 

Let k be a non-Archimedean local field, and 
let ok be the maximal order of k. Let 3, be 
the space of functions on G,=GL,(k) that are 
locally constant and compactly supported. 
Then X, becomes an algebra with the convol- 
ution product 

where dg is the +Haar measure of G, that 
assigns I to the maximal compact subgroup 
K, = G&(c)~). Let rc be a representation of X, 
on a complex vector space V. Then we say that 
TC is admissible if and only if 7~ satisfies the 
following two conditions: (I) For every c in V, 
there is an ,f in Yk so that rr( f‘)u = c’; (2) Let (T, 
(i = 1, . r) be a family of inequivalent irreduc- 
ible finite-dimensional representations of K,, 
and let 

c(g)= i dim(rr,)~ltr~i(~~‘) 
i=, 

Then 5 is an idempotent of X,. We call such a 
< an elementary idempotent of-W,. Then for 
every elementary idempotent 5 of -;Y,, the 
operator ~(5) has a finite-dimensional range. If 
7~ is an admissible representation of GL2(k) (- 
Section N), then 

JCL 

gives an admissible representation of .Yi’k in 
this sense. Furthermore, any admissible repre- 
sentation of .)lf, can be obtained from an ad- 
missible representation of GL2(k). 

Let k be the real number field. Let .Y, be the 
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space of infinitely differentiable compactly 
supported functions on Gk( = CL,(k)) that are 
Kk( = O(2, k)) finite on both sides, let J?~ be the 
space of functions on K, that are finite sums 
of matrix elements of irreducible represen- 
tations of K,, and let -y/” = Z1 @ #Z. Then 
X1, ,X’,, and J?~ become algebras with the 
convolution product. Let 7t be a representation 
of Xk on a complex vector space V. Then n is 
admissible if and only if the following three 
conditions are satisfied: (1) Every vector u in V 
is of the form u=~~=, n(,fi)ui with ,fie&?, and 
QE V; (2) for every elementary idempotent 
~(s)=~~=, dim(r$’ troi(g-‘), where the gi 
are a family of inequivalent irreducible repre- 
sentations of K,, the range of n(t) is finite- 
dimensional; (3) for every elementary idempo- 
tent 5 of ~Fk and for every vector u in ~(5) V, 

the mapping f~n(f)u oft&‘, 5 into the finite- 
dimensional space n(t) V is continuous. We 
can define the Hecke algebra Xk and the no- 
tion of admissible representations also in the 
case k = C. In these cases, an admissible repre- 
sentation of ,XZ comes from a representation 
of the iuniversal enveloping algebra of CL,(k) 

but may not come from a representation of 
CL,(k). It is known that for any local field k, 

the tcharacter of each irreducible representa- 
tion is a locally integrable function. 

Let k be a global field, Gk = CL,(k), and let 
G, = GL,(k,) be the group of rational points 
of G, over the adele ring k, of k. For any place 
u of k, let k,. be the completion of k at u, let G, 
= GL,(k,), and let k, be the standard maximal 
compact subgroup of G,.. Let & be the Hecke 
algebra yl”k,, of G,, and let E, be the normalized 
Haar measure of K,. Then E, is an elementary 
idempotent of yi”. Let ,Y? = BEr XV be the 
restricted tensor product of the local Hecke 
algebra X,, with respect to the family {e,}. We 
call .%f the global Hecke algebra of G,. 

Let 71 be a representation of X on a com- 
plex vector space K We define the notion of 
admissibility of n as before. Then we can show 
that, for any irreducible admissible represen- 
tation rt of X and for any .place u of k, there 
exists an irreducible admissible representation 
nt, of 2” on a complex vector space V, such 
that (1) for almost all u, dim r/;,? = 1 and (2) x is 
equivalent to the restricted tensor product 
@ n,. of the 7~, with respect to a family of 
nonzero X,E VoKp. Furthermore, the factors {n,} 
are unique up to equivalence. 

Let k be a local field, let $ be a nontriv- 
ial character of k, and let yl”k be the Hecke 
algebra of G, = CL,(k). Let 7~ be an infinite- 
dimensional admissible irreducible represen- 
tation of &. Then there is exactly one space 
lV(n, $) of continuous functions on C;, with 
the following three properties: (1) If W is in 

lV(n, $), then for all g in G, and for all x in k, 

(2) W(n, I/J) is invariant under the right trans- 
lations of Sk,, and the representation on 
W(n, $) is equivalent to 7~; (3) if k IS Archi- 
medean and if W is in W(x, $), then there is 
a positive number N such that 

w:, y ( > )=WIN) 
as ItI + co. We call W(rr, $) the Whittaker 
model of 7~. The Whittaker model exists in the 
global case if and only if each factor 7-c” of 7t = 
@ 7~” is infinite-dimensional. 

Let k be a local field, and let z be as before. 
Then the L-function L(s, 7~) and thle E-factor 
E(S, Z, $) are defined in the following manner: 
Let w  be the quasicharacter of kx (i.e., the 
continuous homomorphism kx ---) C “) defined 

by 

Then the tcontragredient representation 7? of 7-c 
is equivalent to 0-I @n. For any g in Gk and 
W in W(7c, $), let 

‘W,s, W)=j-x w((; ~)gW1~zdxu, 

Q(g,s, W)=Ikx W((; ~)g),ill”-“‘wl(a)d”a. 

Then there is a real number sO such that these 
integrals converge for Re(s) > sO for any g E Gk 
and WE W(n, $). If k is a non-Archimedean 
local field with F, as its residue field, then 
there is a unique factor L(s, n) suc.h that 
L(s, 7-c-l is a polynomial of q-” with constant 
term 1, 

WY, s, w  = wg, s, W-Q, 4 

is a holomorphic function of s for all g and W, 

and there is at least one W in W(n, $) so that 
@(e, s, W) = as with a positive constant a. If k is 
an Archimedean local field, then we can define 
the gamma factor L(s, Z) in the same manner. 
Furthermore, for any local field k, if 

ws, s, WI = N7, s,‘W~(s, 4, 

then there is a unique factor E(S, $, 7~) which, as 
a function of s, is an exponential such that 

for all gE Gk and WE W(n, tj). 

Let 71 and 7~’ be two infinite-dimensional 
irreducible admissible representations of Gk. 
Then 71 and 7-c’ are equivalent if and only if the 
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quasicharacters w  and w’ are equal and 

L(l-s,X-‘Ojt)E(S,XO~,~) 

UC x 0 4 

L(l-S,X-‘Ojil)E(S,XO~‘,~) 
= 

us, ,y 0 n’) 

holds for any quasicharacter il. In particular, 
the set {L(s, x 0 rc) and E(S, x 0 n, $) for all x} 
characterizes the representation rr. 

Let k be a global field, G, = G&(k), G, = 
GL,(k*), and let K, = n K, be the standard 
maximal compact subgroup of G,. Then the 
iglobal Hecke algebra X acts on the space of 
continuous functions on G,\G* by the right 
translations. Let cp be a continuous function 
on G,\G,. Then cp is an automorphic form if 
and only if (1) cp is K,-finite on the right, (2) 
for every ielementary idempotent 5 in 2, the 
space (~.J?)u, is finite-dimensional, and (3) cp is 
slowly increasing if k is an algebraic number 
field. An automorphic form cp is a cusp form if 
and only if 

for all g in G,. Let .d be the space of automor- 
phic forms on G,\G,, and let -dO be the space 
of cusp forms on G,\G,. They are 3Cu-modules. 
Let $ =n $, be a nontrivial character’of k\k,, 
and let T[ be an irreducible admissible repre- 
sentation n = 0” rr, of the global Hecke al- 
gebra X = BE,, XV. If n is a iconstituent of the 
X-module .d, then we can define the local 
factors L(s, n,) and E(S, n,,, $,) for all u, al- 
though rr,, may not be infinite-dimensional. 
Further, the infinite products 

L(s, rr)= J-J L(s, n,) and L(s, rt) = n L(s, it,) 

converge absolutely in a right half-plane, and 
the functions L(s, n) and L(s, 5) can be analyti- 
cally continued to the whole complex plane as 
meromorphic functions of s. If n is a constitu- 
ent of&0, then all n, are infinite-dimensional, 
L(s, rr) and L(s, 5) are entire functions, and rc is 
contained in &‘,, with multiplicity one. If k is 
an algebraic number field, then they have only 
a finite number of poles and are bounded at 
infinity in any vertical strip of finite width. If k 
is an algebraic function field of one variable 
with field of constant F,, then they are rational 
functions of 4 -‘. In either case, E(S, 71,, $,) = 1 
for almost all u, and hence 

E(S, n) = n &, n,, $,) 

is well defined. Furthermore, the functional 
equation 

L(s, n) = E(S, n) L( 1 -s, 77) 

is satisfied. 

As for the condition for n being a constitu- 
ent of %dr,, we have the following: Let I[ = @ n, 
be an irreducible admissible representation of 
X. Then r-r is a constituent of S&0 if and only if 
(1) for every u, rr, is infinite-dimensional; (2) the 
quasicharacter ‘1 defined by 

is trivial on k”; (3) 7-c satisfies a certain con- 
dition so that, for any quasicharacter w  of 
k x \ki, L(s, w  0 n) = n L(s, w, 0 rr,) and 
L(s, urn1 0 it,) = n L(s, co;’ 0 7?,) converge on a 
right half-plane; and (4) for any quasicharacter 
w  of k x \ki, L(s, w  @ 7-c) and L(s, w-i 0 ii) are 
entire functions of s which are bounded in 
vertical strips and satisfy the functional 
equation 

P. Congruence [-Functions of Algebraic 
Function Fields of One Variable or of 
Algebraic Curves 

Let K be an talgebraic function field of one 
variable over k = F, (finite field with 4 ele- 
ments). The i-function of the algebraic function 
field K/k, denoted by cK(s), is defined by the 
infinite sum &i/V(%)-“, where the summation 
is over all integral divisors ‘LI of K/k and where 
the norm N(‘%) equals qdeg(“‘). Equivalently, 
iK(s) is defined by the infinite product n,( I - 
N(P)-~))‘, where p runs over all prime divi- 
sors of K/k. By the change of variable u = q-9 
iK(s) = Z,(u) becomes a formal power series in 
IA. cK(s) and Z,(u) are sometimes called the 
congruence c-functions of K/k. 

The fundamental theorem states that (i) 
(Rationality) Z,(u) is a rational function of u 
of the form Z,(u) = P(u)/( 1 - u)( 1 - qu), where 
P(u)eZ[u] is a polynomial of degree 29, g 
being the genus of K; (ii) (Functional equation) 
Z,(u) satisfies the functional equation 

and (iii) if P(u) is decomposed into linear fac- 
tors in C [u]: P(u) = n:!, (1 - xiu), then all the 
reciprocal roots c(r are complex numbers of 
absolute value A. Statement (iii) is the analog 
of the Riemann hypothesis because it is equiva- 
lent to saying that all the zeros of i,(s) = 
Z,(q-‘) lie on the line Res= l/2. 

The congruence i-function was introduced 
by E. Artin [Al (1924)] as an analog of the 
Riemann or Dedekind c-functions. Of its fun- 
damental properties, the rationality (i) and 
the functional equation (ii) were proven by 
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F. K. Schmidt (193 l), using the +Riemann- 
Roth theorem for the function field K/k. The 
Riemann hypothesis (iii) was verified first in 
the elliptic case (9 = 1) by H. Hasse [H 1] and 
then in the general case by A. Weil [W2 
(1948)]. For the proof of (iii), it was essential 
to consider the geometry of algebraic curves 
that correspond to given function fields. 

Let C be a nonsingular complete curve over 
k with function field K. Then Z,(u) coincides 
with the i-function of C/k, denoted by Z(u, C), 
which is defined by the formal power series 
exp(C$, N,um/m). Here N,,, is the number of 
rational points of C over the extension k, of k 

of degree m. The rationality of Z,(u) is then 
equivalent to the formula 

2cl 
N,,,=l+q”--ccc; @EN), 

i=, 

and the Riemann hypothesis for Z,(u) is 
equivalent to the estimate 

(*I IN,- 1 --q”1<2g p (m E N). 

Now if F is the 4th power morphism of C to 
itself (the Frobenius morphism of C relative to 
k), then an important observation is that N, is 
the number of fixed points of the mth iterate 
F” of F. In other words, N, is equal to the 
intersection number of the graph of F” with 
the diagonal on the surface C x C, and is re- 
lated to the “trace” of the Frobenius corre- 
spondence. Then (*) follows from +Castel- 
nuovo’s lemma in the theory of correspon- 
dences on a curve. This is Weil’s proof of the 
Riemann hypothesis in [W2]; compare the 
proof by A. Mattuck and J. Tate (Ahh. Math. 

Sem. Humhurg 22 (1958)) and A. Grothendieck 
(J. Reine Angew. Math., 200 (1958)) using the 
Riemann-Roth theorem for an algebraic 
surface. 

On the other hand, let J be the +Jacobian 
variety of C over k. For each prime number I 
different from the characteristic of k, let M,(r) 
denote the tl-adic representation of an endo- 
morphism x of J obtained from its action on 
points of J of order 1” (n = 1,2, ). Letting 71 
be the endomorphism of J induced from F 
(which is the same as the Frobenius morphism 
of J), we have P(u) = det( 1 - M,(n)u), i.e., the 
numerator of the <-function coincides with the 
characteristic polynomial of Ml(~). In this 
setting, the Riemann hypothesis is a conse- 
quence of the positivity of the Rosati antiauto- 
morphism [El]. This is the second proof given 
by Weil [WZ], and applies to arbitary Abelian 
varieties. 

Recently E. Bombieri, inspired by Stepa- 
nov’s idea, gave an elementary proof of (*) 
using only the Riemann-Roth theorem for a 
curve (S&n. Bourhaki, no. 430 (1973)). 

Q. <-Functions of Algebraic Varieties over 
Finite Fields 

Let I/ be an algebraic variety over the finite 
field with 4 elements F,, and let N,,, be the 
number of Fqm-rational points of 1’. Then the 
(-function of V over F, is the formal power 
series in Z[ [u]] defined by 

.W, V)=ev(l$, N,,~“‘h); 
alternatively it can be defined by the infinite 
product &( 1 - udeg P, -I, where P runs over 
the set of prime divisors of I/ and deg P is the 
degree of the residue field of P over F, (in 
other words, P runs over prime ralional O- 
cycles of V over F,). 

Weil Conjecture. In 1949, the following prop- 
erties of the i-function were conjectured by 
Weil [W3]. Let V be an n-dimensional com- 
plete nonsingular (absolutely irreducible) 
variety over F,. Then (1) Z(u, V) is a rational 
function of u. (2) Z(u, V) satisfies the functional 
equation 

z((q”u)--1, V)= ~p2uxz(u, V), 

where the integer x is the intersectjon number 
(the degree of A,, A,,) of the diagonal sub- 
variety A,, with itself in the product V x V, 

which is called the Euler-Poincarb character- 
istic of V. (3) Moreover, we have 

Z(u, V) = 
Pl(U).P,(U). .P2n-l(u) 

P”(U).P,(U)~...‘P,,(U) ’ 

where P,,(u) = n,“=h, (1 - $)u) is a polynomial 
with Z-coefficients such that UP’ are algebraic 
integers of absolute value qhj2 (O< h d 2n); the 
latter statement is the Riemann hypothesis for 
V/F,. (4) When V is the reduction mod p of a 
complete nonsingular variety V* of character- 
istic 0, then the degree B, of P,,(u) is the hth 
Betti number of V* considered as a complex 
manifold. 

This conjecture, called the Weil conjecture, 
has been completely proven. To give a brief 
history, first B. Dwork [Dl3] proved the 
rationality of the c-function for any (not neces- 
sarily complete or nonsingular) variety over 
F,. Then A. Grothendieck [A3, G:!, G3] devel- 
oped the I-adic t-tale cohomology theory with 
M. Artin and others, and proved the above 
statements (l)-(4) (except for the Riemann 
hypothesis) with Ph(u) replaced by some 
Ph,l(~)~QI[~]; and S. Lubkin [L7] obtained 
similar results for liftable varieties Finally 
Deligne [D4] proved the Riemann hypothesis 
and the independence of I of Ph,Ju). More 
details will be given below. Before the final 
solution for the general case was obtained, the 
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conjecture had been verified for some special 
types of varieties. For curves and Abelian 
varieties, its truth was previously shown by 
Weil (- Section P). In the paper [W3] in 
which he proposed the above conjecture, Weil 
verified it for Fermat hypersurfaces, i.e., those 
defined by the equation u,,xt + + a,,, x,“+, 
= 0 (ai F,“); in this case, the i-function is of 
the form Pan’)“” /n&,(1 -qju) with a poly- 
nomial P(u) that can be explicitly described 
in terms of Jacobi sums. Dwork [D14] studied 
by p-adic analysis the case of hypersurfaces in 
a projective space, verifying the conjecture for 
them except for the Riemann hypothesis. Fur- 
ther nontrivial examples were provided by +K3 
surfaces (Deligne [D2], Pyatetskii-Shapiro, 
Shafarevich [Pl]) and cubic 3-folds (E. Bom- 
bieri, H. Swinnerton-Dyer CBS]); in these 
cases the proof of the Riemann hypothesis was 
reduced to that of certain Abelian varieties 
naturally attached to these varieties. It can be 
said that the Weil conjecture has greatly in- 
fluenced the development of algebraic geome- 
try, as regards both the foundations and the 
methods of proof of the conjecture itself; see 
the expositions by N. Katz [K2] or B. Mazur 

CW. 

Weil Cohomology, I-Adic Cohomology. The 
Weil conjecture suggested the possibility of 
a good cohomology theory for algebraic 
varieties over a field of arbitrary characteristic. 
We first formulate the desired properties of a 
good cohomology (S. Kleiman [K4]). Let z be 
an algebraically closed field and K a field of 
characteristic 0, which is called the coefficient 
field. A contravariant functor V+H*(V) from 
the category of complete connected smooth 
varieties over k to the category of augmented 
Z+-graded finite-dimensional anticommuta- 
tive K-algebras (cup product as multiplication) 
is called a Weil cohomology with coefficients in 
K if it has the following three properties. (1) 
Poincark duality: If n = dim V, then a canonical 
isomorphism H2”( V)? K exists and the cup 
product Hj( V) x Hznmj( V)+H2”( V) 2 K in- 
duces a perfect pairing. (2) Kiinneth formula: 
For any VI and V2 the mapping H*( V,) 0 
H*(V,)+H*( Vi x V2) defined by a 0 b+ 
ProjT(a). Projz(b) is an isomorphism. (3) Good 
relation with algebraic cycles: Let Cj( V) be the 
group of algebraic cycles of codimension j on 
V. There exists a fundamental-class homomor- 
phism FUND: Ci( V)-+H2j( V) for all j, which 
is functorial in V, compatible with products 
via Kiinneth’s formula, has compatibility of 
the intersection with the cup product, and 
maps 0-cyclec C”( V) to its degree as an ele- 
ment of K z Hzn( V). If a Weil cohomology 
theory H exists for the V’s over k, we can 

prove the Lefschetz fixed-point formula: 

((graph of F) (diagonal)), x v 

for a morphism F: I/+ V. 
If k= C (the field of complex numbers), the 

classical cohomology V+H*( V”“, Q), where 
V’” denotes the complex manifold associated 
with U: gives a Weil cohomology. If k is an 
arbitrary algebraically closed field and if I is a 
prime number different from the characteristic 
of k, then the principal results in the theory of 
the &tale cohomology state that the I-adic 
cohomology V+H&( V, Q,) is a Weil coho- 
mology with coefficient field Ql (the field of I- 
adic numbers) [A3, D5, G3, M4]. In defining 
this, Grothendieck introduced a new concept 
of topology, which is now called Grothendieck 
topology. In the &tale topology of a variety V, 
for example, any Ctale covering of a Zariski 
open subset is regarded as an “open set.” With 
respect to the &tale topology, the cohomology 
group H*( V, Z/n) of V with coefficients in Z/n 
is defined in the usual manner and is a finite 
Z/n-module. If 1 is a prime number as above, 
l@“H*( V, Z/l”) is a module over Z, =l$,Z/1” 
of finite rank, and 

H~(V,Q~)=(l~_m,H*(V,ZZ/1')) 0 z,Qi 

defines the 2-adic cohomology group, giving 
rise to a Weil cohomology. 

For the characteristic p of k, p-adic Ctale 
cohomology does not give Weil cohomology; 
but the crystalline cohomology (Grothendieck 
and P. Berthelot [B2, B3]) takes the place of p- 
adic cohomology and is almost a Weil coho- 
mology: in this theory the fundamental class is 
defined only for smooth subvarieties. 

Now fix a Weil cohomology for k = F,, an 
algebraic closure of a finite field F,. Given an 
algebraic variety V over F,, let V = V 0 k 
denote the base extension of V to k; then F,m- 
rational points of V can be identified with the 
fixed points of the mth iterate of the Frobenius 
morphism F of V relative to F,. Then the 
Lefschetz fixed-point formula implies the 
rationality of Z(u, V); more precisely, letting 
e(u) = det( 1 - uF* 1 Hj( V)) be the characteristic 
polynomial of the automorphism F* of Hj( v) 
induced by F, we have 

Z(u, V) = fi quy -‘)‘+‘. 
j=O 

The functional equation of the c-function then 
follows from the Poincare duality. This proves 
(l), (2), and a part of (3) in the statement of 
the Weil conjecture. Further, in the case of 
I-adic cohomology, (4) means that deg e(u) = 
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dim&( v, Q,) is equal to thejth Betti num- 
ber of a lifting of V to characteristic 0; this 
follows from the comparison theorem of M. 
Artin for the l-adic cohomology and the class- 
ical cohomology, combined with the invariance 
of I-adic cohomology under specialization. 

Proof of the Riemann Hypothesis. In 1974, 
Deligne [D4, I] completed the proof of the 
Weil conjecture for projective nonsingular 
varieties by proving that, given such a V over 
F,, any eigenvalue of F* on Hk,( v, Qi) is an 
algebraic integer, all the conjugates of which 
are of absolute value qj/‘. (This implies that 
4(u) =det( 1 - uF* 1 Hi, (v, Qr)) is in Z[u] and 
is independent of 1.) The proof is done by 
induction on n = dim V; by the general results 
in I-adic cohomology (the weak Lefschetz 
theorem on a hyperplane section, the Poin- 
care duality, and the Kiinneth formula), the 
proof is reduced to the assertion that (*) any 
eigenvalue u of F* on HZ,( v, Q3 is an alge- 
braic integer such that Iu’~ < q(n-t1)12 for all 
conjugates a’ of a. The main ingredients in 
proving (*) are (1) Grothendieck’s theory of L- 
functions, based on the etale cohomology with 
compact support and with coefficients in a Q,- 
sheaf [G2, G33; (2) the theory of Lefschetz 
pencils (Deligne and Katz [DD]), and the 
Kajdan-Margulis theorem on the monodromy 
of a Lefschetz pencil (J. L. Verdier, S&r. Bour- 
b&i, no. 423 (1972)); and (3) Rankin’s methods 
to estimate the coefficients of modular forms, 
as adapted to the Grothendieck’s L-series. By 
means of these geometric and arithmetic tech- 
niques, Deligne achieved the proof of the 
Riemann hypothesis for projective nonsingular 
varieties. For the generalization to complete 
varieties, see Deligne [D4, II]. 

Applications of the (Verified) Weil Conjecture. 
(1) The Ramanujan conjecture (- 32 Auto- 
morphic Functions D): The connection of this 
conjecture and the Weil conjecture for certain 
fiber varieties over a modular curve was ob- 
served by M. Sato and partially verified by Y. 
Ihara [Ill and then established by Deligne 
[D3]. The Weil conjecture as proven above 
implies the truth of the Ramanujan conjecture 
and its generalization by H. Petersson. 

(2) Estimation of trigonometric sums: Let q 

be the power of a prime number p. Then 

c 27-G 

(I,,...,xJEF~ 
evg trFq:Fp(F(xl, . ,x,)) 

<(d- l)“q@, 

where F(X,, . . . , X,)eF,[X,, . . ..X.] is a poly- 
nomial of degree d that is not divisible by p, 
and the homogeneous part of the highest 
degree of F defines a smooth irreducible 

hypersurface in Pnmr. This is a generalization 
of the Weil estimation of the Kloosterman sum 
([D4, Wl (1948c)]; - 4 Additive Number 
Theory D). 

(3) The hard Lefschetz theorem: Let L E 
H*(V) be the class of a hyperplane section 
of an n-dimensional projective nonsingular 
variety V over an algebraically closed field. 
Then the cup product by L’:H”-‘( V)+H”+i( V) 
is an isomorphism for all i < n. Deligne 
[D4, II] proved this for I-adic cohomology, 
from which N. Katz and W. Messing [Kl] 
deduced its validity in any Weil cohomology 
or in the crystalline cohomology. 

Also some geometric properties of an alge- 
braic variety V are reflected in the properties 
of Z(u, V). The c-function Z(u, A) of an Abelian 
variety A determines the isogeny class of A 
[T4]. For any algebraic integer a, Ievery conju- 
gate of which has absolute value q”‘, there 
exists an Abelian variety A/F, such that a is a 
root of det(1 -uF* 1 H’(A))=0 [Htj]. J. Tate 
[T3] conjectured that the rank of t-he space 
cohomology classes of algebraic cycles of 
codimension r is equal to the order of the pole 
at u = l/q’ of Z(u, V). This conjecture is still 
open but has been verified in certain nontrivial 
cases, e.g., (1) products of curves and Abelian 
varieties, r = 1 (Tate [T4]), (2) Ferrnat hyper- 
surfaces of dimension 2r with some condition 
on the degree and the characteristic (Tate 
[T3], T. Shioda, Proc. Japan Acad. 55 (1979)), 
and (3) elliptic K3 surfaces, r = 1 (R/I. Artin and 
Swinnerton-Dyer, lnventiones Mar/r. 20 (1973)). 

R. [- and L-Functions of Schemes 

Let X be a tscheme of finite type over Z, and 
let 1x1 denote the set of closed points of X; for 
each XE IX 1, the residue field k(x) is finite, and 
its cardinality is called the norm R’(x) of x. The 
c-function of a scheme X is defined by the 
product [(s,X)=n,,,,,(l -N(x))“))‘. This 
converges absolutely for Re s > dim X, and it is 
conjectured to have an analytic continuation 
in the entire s-plane (Serre [S7]). It reduces to 
the Riemann (resp. Dedekind) c-function if X 
= Spec(Z) (resp. Spec(o), o being the ring of 
integers of an algebraic number field), and to 
the c-function Z(q -‘, X) (- Section Q) if X 
is a variety over a finite field F4. The case of 
varieties defined over an algebraic number 
field is discussed in Section S. 

Let G be a finite group of automorphisms of 
a scheme X, and assume that the quotient Y 
=X/G exists (e.g., X is quasiprojective). For 
an element x in [XI, let y be its image in 1 YI, 
and let D(x)={g~Glg(x)=x}, the decompo- 
sition group of x over y. The natural mapping 
D(x)+Gal(k(x)/k(y)) is surjective, and its 
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kernel I(x) is called the inertia group at x. An 
element of D(x) is called a Frobenius element 
at x if its image in Gal(k(x)/k(y)) corresponds 
to the N(y)th-power automorphism of k(x). 
Now let R be a representation of G with char- 
acter 1. The Artin L-function L(s, X,x) is de- 
tined by 

Us, X3 xl = ev 
> 

=igy,det(l -W,)N(Y)Y-‘, 

where I denotes the mean value of x on the 
nth power of Frobenius elements F, at x (x 
any point of 1x1 over y), and similarly R(F,) 
denotes the mean value of R(F,); it converges 
absolutely for Res > dim X. Again this is re- 
duced to the usual Artin L-function (- Sec- 
tion G) if X is the spectrum of the ring of 
integers of an algebraic number field. The 
Artin L-functions of a scheme have many 
formal properties analogous to those of Artin 
L-functions of a number field (Serre [S7]). 

Let us consider the case where X is an alge- 
braic variety over a finite field F, and ele- 
ments of G are automorphisms of X over F2; 
in this case, L(s, X, x) is a formal power series 
in u=q-“, which is called a congruence Artin 
L-function. For the case where X is a complete 
nonsingular algebraic curve and x is an irre- 
ducible character of G different from the trivial 
one, Weil [W2] proved that L(s, X, 1) is a 
polynomial in u = q -“; thus the analog of 
tArtin’s conjecture holds here. More generally, 
for any algebraic variety X over F,, Grothen- 
dieck [G2, G3] proved the rationality of 
L-functions together with the alternating 
product expression by polynomials in u, as in 
the case of c-functions, by the methods of l- 
adic cohomology. Actually, Grothendieck 
treated a more general type of L-function 
associated with l-adic sheaves on X, which 
also play an important role in Deligne’s proof 
of the Riemann hypothesis (- Section Q). 

S. Hasse C-Functions 

For a nonsingular complete algebraic variety 
V defined over a finite algebraic number field 
K, let VP be the reduction of V modulo a prime 
ideal p of K, K, be the residue field of p, and 
Z(u, VP) be the c-function of VP over K,. The 
i-function [(s, V) of the complex variable s, 
determined by the infinite product (exclud- 
ing the finite number of p’s where VP is not 
defined), 

its, VI = n’ z(N(P)-“> v,)? 
P 

is called the Hasse c-function of V over the 
algebraic number field K. For this function, 

we have Hasse’s conjecture [W4]: [(s, V) is a 
meromorphic function over the whole complex 
plane of s and satisfies the functional equation 
of ordinary type. Sometimes it is more natural 
to consider 

cj(s, V)=n’q(N(p)-“, VP)-’ (O<j<2dimV), 
D 

where Pj(u, VP) is the jth factor of Z(u, VP), and 
we have a similar conjecture for them. For the 
definition of cj(s, V) taking into account the 
factors for bad primes and the precise form of 
the conjectural functional equation, see Serre 
[SS]. Note that [Js, V) converges absolutely 
for Re s > j/2 + 1 as a consequence of the Weil 
conjecture. 

Hasse’s conjecture remains unsolved for the 
general case, but has been verified when V is 
one of the following varieties: 

(I,) Algebraic curves defined by the equation 
ye= yxs + 6 and Fermat hypersurfaces (Weil 

CW61). 
(I,) Elliptic curves with complex multiplica- 

tion (Deuring [Dll]). 
(I,) Abelian varieties with complex multiplica- 

tion (Taniyama [T2], Shimura and Taniyama 
[Sll], Shimura, H. Yoshida). 

(Id) Singular K3 surfaces, i.e., K3 surfaces 
with 20 Picard numbers (Shafarevich and 
Pyatetskii-Shapiro [Pl], Deligne [D2], T. 
Shioda and H. Inose [S21]). 

(II,) Algebraic curves that are suitable 
models of the elliptic modular function fields 
(Eichler [El], Shimura [S12]). 

(II,) Algebraic curves that are suitable 
models of the automorphic function fields 
obtained from a quaternion algebra (Shimura 
[S13,S15]). 

(II,) Certain fiber varieties of which the base 
is a curve of type (II,) or (II,) and the fibers are 
Abelian varieties (Kuga and Shimura [K6], 
Ihara [Ill, Deligne [D3]). 

(II,) Certain Shimura varieties of higher 
dimension (Langlands and others; - [B6]). 

In these cases, [(s, V) can be expressed by 
known functions, i.e., by Hecke L-functions 
with GrGssencharakters of algebraic number 
fields in cases (I) or by Dirichlet series corre- 
sponding to modular forms in cases (II). This 
fact has an essential meaning for the arithme- 
tic properties of these functions. For example, 
the extended +Ramanujan conjecture concern- 
ing the Hecke operator of the automorphic 
form reduces to Weil’s conjecture on varieties 
related to those in cases II. Moreover, for 
(II,)-(II,) the essential point is the congruence 
relation F0=Z7+17* (Kronecker, Eichler [El], 
Shimura). In particular, for (II,) this formula is 
related to the problem of constructing class 
fields over totally imaginary quadratic exten- 
sions of a totally real field F utilizing special 
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values of automorphic functions and class 
fields over F. Actually, the formula is equiva- 
lent to the reciprocity law for class fields 
(Shimura). 

One of the facts that makes the Hasse [- 
function important is that it describes the 
decomposition law of prime ideals of algebraic 
number fields when V is an algebraic curve or 
an Abelian variety (Weil, Shimura [Sl4], 
Taniyama [T2], T. Honda [H6]). In that case, 
its Hasse [-function has the following arithme- 
tic meaning. 

Let C be a complete, nonsingular algebraic 
curve defined over an algebraic number field 
K, and let J be the Jacobian variety of C de- 
fined over K. For a prime number 1, fix an 
I-adic coordinate system C, on J, and let 
K(J, I”) be the extension field of K obtained 
by adjoining to K all the coordinates of the 
l’th division points (v = 1,2, ) of J. Then 
K(J, l”)/K is an infinite Galois extension of K. 
The corresponding Galois group E(J, rm) has 
the I-adic representation rr+M,*(a) by the l- 
adic coordinates ,&. Almost all prime ideals p 
of K are unramified in K(J, I”)/K. Thus when 
we take an arbitrary prime factor ‘$3 of p in 
K(J, I”), the Frobenius substitution of G$, 

‘T‘~= [yq 

is uniquely determined. Furthermore, the 
characteristic polynomial det( 1 - M:(os)u) is 
determined only by p and does not depend on 
the choice of the prime factor 5I3; we denote 
this polynomial by P&u, C). In this case, for 
almost all p, P&u, C) is a polynomial with 
rational integral coefficients independent of I; 
namely, the numerator of the i-function of the 
reduction of C mod p. Thus 

~l(s,c)=~‘Pp(N(p)~“,c)-’ 
P 

-n’det(l --M:(cr,)N(p)-“))I. 

Here the iroduct n’det(1 -MT(cT,)N(~)-“)-I 
has the same expression as the Artin L- 
function if we ignore the fact that MT is the I- 
adic representation and K(J, I”) is the infinite 
extension. Thus if we can describe ((s, C) ex- 
plicitly, then the decomposition process of the 
prime ideal for intermediate fields between 
K(J, l”) and K can be made fairly clear. In 
fact, this is the case for examples (&,-(I,) and 
(II,))(II,), from which the relations between 
the arithmetic of the field of division points 
K(J, I”)/K and the eigenvalues of the Hecke 
operator have been obtained. Thus for curves 
and Abelian varieties, ((s, V) is related to the 
arithmetic of some number fields; but it is not 
known whether similar arithmetical relations 
exist for other kinds of varieties except in a few 
cases. 

Tate’s Conjecture. For a projective nonsin- 
gular variety V over a finite algebraic number 
field K, let 91r( V) denote the group of algebraic 
cycles of codimension r on V= VQDKC modulo 
homological equivalence and let Xr( V) be the 
subgroup of ‘rI*( v) generated by algebraic 
cycles rational over K. Then Tate [T3] conjec- 
tured that the rank of 9I’( V) is equal to the 
order of the pole of &(s, V) at s = r + 1. This 
conjecture is closely connected with Hodge’s 
conjecture that the space of rational coho- 
mology classes of type (r, r) on V IS spanned by 
91”(v); in fact, the equivalence of these conjec- 
tures is known for Abelian varieties of tCM 
type (H. Pohlmann, Ann. Math., 88 (1968)) and 
for Fermat hypersurfaces of dimension 2r 
(Tate [T3], Weil [W6]). Thus, when r = 1, 
Tate’s conjecture for these varieties holds by 
Lefschetz’s theorem, and when r > 1, it holds in 
certain cases where the Hodge conjecture is 
verified (Shioda, Math. Ann., 245 (1979); Z. 
Ran, Compositio Math., 42 (198 1)). Further 
examples are given by K3 surfaces with large 
Picard numbers (Shioda and Inose [S21]; T. 
Oda, hoc. Japan Acad., 56 (1980) I. 

L-Functions of Elliptic Curves. Let E be an 
elliptic curve (with a rational poim) over the 
rational number field Q, and let N be its con- 
ductor; a prime number p divides ,V if and 
only if E has bad reduction modp (Tate ITS]). 
The L-function of E over Q is defined as 
follows: 

Us, 4 

=B’l -“/-I n (1 -a,p-“+p’-z”)-‘, 
PlN 

where s,,=O or fl and 1 --a,u+pu’= 
PI (u, E mod p). There are many interesting 
results and conjectures concerning L(s, E) 
[T5]: 

(1) Functional equation. Let 

((s, E) = NS’2(2n)-“I-(s)L(s, E). 

Then it is conjectured that ((s, E) is holo- 
morphic in the entire s-plane and satisfies the 
functional equation ((s, E) = k ((2 -s, E). This 
is true if E has complex multiplication (Deur- 
ing) or E is a certain modular curve (Eichler, 
Shimura). 

(2) Taniyama-Weil conjecture. Weil [WI 
(1967a)] conjectured that, if L(s, E) 
=c;L1 u,nP, then f(r) = 29, une2nini is a cusp 
form of weight 2 for the congruence subgroup 
I,,(N) which is an eigenfunction for Hecke 
operators; moreover E is isogenous to a factor 
of the Jacobian variety of the modular curve 
for I,(N) in such a way that f(~)d:: corre- 
sponds to the differential of the first kind on E. 
If this conjecture is true, then the statements in 
(1) follow. 
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(3) Birch-Swinnerton-Dyer conjecture. As- 
suming analytic continuation of L(s, E), B. 
Birch and H. Swinnerton-Dyer [B4] conjec- 
tured that the order of the zero of L(s, E) at s 
= 1 is equal to the rank r of the group E(Q) of 
rational points of E which is finitely generated 
by the Mordell-Weil theorem. They verified 
this for many examples, especially for curves of 
the type 4” =x3 --ax. J. Coates and A. Wiles 
(Inuentiones Math., 39 (1977)) proved that if E 

has complex multiplication and if r > 0 then 
L(s, E) vanishes at s = I. This conjecture has a 
refinement which extends also to Abelian 
varieties over a global field (Tate, SPm. Bour- 

haki, no. 306 (1966)). 
(4) Sato’s conjecture. Let 

1 -uu,u+pu2=(l -7r&(l -E/$), 

with rrp = & e”‘p (0 < Or, < n). When E has 
complex multiplication, the distribution of 0, 
for half of I> is uniform in the interval [0, n], 
and 0, is n/2 for the remaining half of p. Sup- 
pose that E does not have complex multipli- 
cation. Then Sato conjectured that 

(the number of prime numbers p 
lim less than x such that (&E[x, b]) 

x-1 (the number of prime 
numbers less than x) 2 fl = ~ s sin2(Id0 (O<c1<B<71) 

n 31 

(Tate [T3]). 

H. Yoshida [Y 11 posed an analog of Sato’s 
conjecture for elliptic curves defined over 
function fields with finite constant fields and 
proved it in certain cases. 

(5) Formal groups. Letting L(s, E)= Ca,n-’ 

as before, set ,f(x)= C,“=, u,~“/n. Honda [H6] 
showed that .I’-‘(,f’(x)+,J‘(y)) is a +formal (Lie) 
group with coefficients in Z and that this 
group is isomorphic over Z to a formal group 
obtained by power series expansion of the 
group law of E with respect to suitable tlocal 
uniformizing coordinates at the origin. Such 
an interpretation of the i-function also applies 
to other cases in which [-functions of tgroup 
varieties may be characterized as Dirichlet 
series whose coefficients give a normal form of 
the group law; e.g., the case of algebraic tori 
(T. Ibukiyama, J. Fuc. Sci. Univ. Tokyo, (IA) 21 
(1974)). 

T. Selberg [-Functions and [-Functions 
Associated with Discontinuous Groups 

Let I c SL(2, R) be a ‘Fuchsian group operat- 
ing on the complex upper half-plane H = {z = 
x + iy ] y > 0). When the two eigenvalues of 
an element YE I are distinct real numbers 5,) 

t2 (5, r2 = 1, <, < t2), we call 7 thyperbolic. Then 
the number <i is denoted by N(j) and is called 
the norm of y. When 7 is hyperbolic, 7” (n = 
1,2,3,. ) is also hyperbolic. When +- y is not a 
positive power of other hyperbolic elements, 1’ 
is called a primitive hyperbolic element. The 
elements conjugate to primitive hyperbolic 
elements are also primitive hyperbolic ele- 
ments and have the same norm as y. Let P,, 
P2, be the conjugacy classes of primitive 
hyperbolic elements of I, and let “J,E Pi be their 
representatives. Suppose that a matrix repres- 
entation ;t*M(y) of I is given. Then the analy- 
tic function given by 

Z,(s, M)= n fi det(l- M(y,)N(:,,))-“) 
i n=o 

is called the Selberg [-function (Selberg [SS]). 
When I\H is compact and I is torsion-free, 
then Zr(s, M) has the following properties. 

(1) It can be analytically continued to the 
whole complex plane of s and gives an tin- 
tegral function of genus at most 2. 

(2) It has zeros of order (2n + 1)(29 - 2)~ at 
-n (n = 0, 1,2,3, ). Here 9 is the genus of the 
Riemann surface I’\,H and v is the degree of 
the representation M. All other zeros lie on the 
line Res= l/2, except for a finite number that 
lie on the interval (0,l) of the real axis. 

(3) It satisfies the functional equation 

Zr(1 -s, M)=Z&, M) exp -vA(I\H) 

s s-1,2 

X utan(7m)du , 
0 > 

where 

A(I-\H)= -=271(29-2), x+iyEH. 

Property (2) shows that the Riemann hy- 
pothesis is almost valid for Z,(s, M). The proof 
is based on the following fact concerning the 
eigenvalue problem for the variety T\H: The 
eigenvalue i of the equation 

cannot be a negative number. 
Using this function, T. Yamada (1965) inves- 

tigated the unit distribution of real quadratic 
fields. 

Selberg c-functions are defined similarly 
when I\G has finite volume but is noncom- 
pact. In this case, however, the decomposition 
of L,(I\G) into irreducible representation 
spaces has a continuous spectrum; hence the 
properties of the Selberg c-function of I are 
quite different from the case when T\G is 
compact. Selberg defined the generalized 
Eisenstein series to give the eigenfunctions of 
this continuous spectrum explicitly. When I = 
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SL(2, Z), the series is given by 

This type of generalized Eisenstein series is 
also defined for the general semisimple alge- 
braic group G and its arithmetic subgroup. 
It has been studied by Selberg, Godement, 
Gel’fand, Harish-Chandra, Langlands, D. 
Zagier, and others. 

U. Ihara [-Functions 

Let k, be a p-adic field, oD the ring of integers 
in k,, and G= I’S&(R) x PSL,(k,). Suppose 
that I is a subgroup of G such that (1) I is dis- 
crete, (2) F\G is compact, (3) F has no torsion 
element except the identity, (4) Fa (the projec- 
tion of I in PSL,(R)) is dense in l?%,(R), and 
(5) I-r (the projection of I in PSL,(k,)) is dense 
in PSL,(k,). Then FrF,gr,. Let X=(x+ 
iy 1 y > 0) be the upper half-plane, and let F 
act on X via Ia. The action of I on X is 
not discontinuous, but the subgroup I0 = 
{y~rlprojection of y to r,EPsL2(op)} oper- 
ates on X properly discontinuously. For 
each ZEX, define FI={l/EIIY(z)=z}. Then 
I: is isomorphic to Z or { 1). Let P(r) = 
{z~XIr,zZ}. The group r acts on P(F), 
since I, and F?= are conjugate in I’. Let P(r) 
=P(I)/I. Suppose that PEP(F) is represented 
by z6X. Choose a generator 7 of I, and pro- 
ject y to Fp. Then y is equivalent to a diagonal 

1 0 
matrix 

( > 0 I”-’ 
with 1.~ k,. We denote the 

valuation of k, by ord, and consider lord,(l)]. 
This value depends only on P and we denote it 
by deg(P). The Ihara i-function of I is defined 

by 

Z,(u)= n (1 -udeg(p))-‘. 
PtP(r) 

Ihara proved that 

fi(l-rr$)(l -xiu) 
Z,(u) Ei=l 

(I -u)(l -q2u) 
(1 -U)“, 

where q is the number of elements in the re- 
sidue class field of p, and g is the genus of the 
Riemann surface 10\X and H = (g - l)q(q - 1). 
Similar results hold even if I has torsion ele- 
ments and the quotient I\G is only assumed 
to have finite volume. 

Aside from the factor (1 -u)“, this looks like 
Weil’s formula for the congruence c-function 
of an algebraic curve defined over F,,. Ihara 
conjectured that the first factor of Z,(u) is 
always the congruence <-function of some 
algebraic curve over Fq2, and furthermore that 
I could be regarded as the fundamental group 
of a certain Galois covering of this curve 
which describes the decomposition law of 

prime divisors in this covering [12.13,14]. 
He verified the conjecture in the case I = 
PGL,(Z[l/p]) by using the tmoduli of elliptic 
curves. Related results have been obtained by 
Shimura, Ihara, Y. Morita, and others. 

V. [-Functions Associated with 
, Prehomogeneous Vector Spaces 

M. Sato posed a notion of prehomogeneous 
vector spaces and defined [-functions as- 
sociated with them. Sato’s program has been 
carried on by himself and T. Shintani [S2, S3, 
Sl7, SlS]. Let G be a linear algebraic group, V 
a finite-dimensional linear space of dimension 

, n, and p a rational representation mG+GL( V), 
where G, V. and p are defined over Q. The 
triple (G, p, V) is called a prehomogeneous 
vector space if there exists a proper algebraic 
subset S of V, such that V, - S is a single Gc- 
orbit. The algebraic set S is called the set of 
singular points of V. We also assume that G is 
reductive and S is an irreducible hypersurface 
of V. Let V* be the dual vector space of V, 
and p* the dual (contragredient) representa- 
tion of G. Then (G,p*, V*) is again a pre- 
homogeneous vector space, and we denote 
its set of singular points by S*. There are 
homogeneous polynomials P and Q of the 
same degree d on V and V*, respectively, 
such that S={XEX)P(X)=O’, and S*={X*E 
V* 1 Q(x*) =O}. P and Q are relative invariants 

of G, i.e., p(p(g)x) = xW’(x) and C!(p*(dx*) 
=~(g))‘Q(x*)(forgeG,x~V,and x*eV*) 
hold with a rational character x of G. Put 
G’=ker~={g~G\~(g)= 1). Denote by Gi 
the connected component of 1 of t!he Lie 
groupG,.Let Va-S=V,U,..Ur/;, Q-S*= 
Vc U . . U &* be the decompositions of V, -S 
and Vi-S* into their topologically con- 
nected components. Then < and Vi* are Gi- 
orbits. We further assume that VR I1 S decom- 
poses into the union of a finite number of GA- 
orbits. Set F = Gin G$, and take I-invariant 
lattices L and L* in V, and V& respectively. 
Consider the following functions in s: @i(.Ls)= f(x)lWl”dx, s K 
@,T(Js)= f*(x*)IQ(x*)l”dx*, 

s “7 
and 
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where f and f* are trapidly decreasing func- 
tions on V, and Vi, respectively, dx and dx* 

are Haar measures of V, and Vi, respectively. 
and dg is a Haar measure of G. Then the 
ratios 

ziut L, 4 -= tits> L), Wf;s-n/d) 
zy(f*, L*, s) 

-= (i*(,s, L*) 
‘I’tj*(f*,s-n/d) 

are independent of the choice of ,p and f* and 
are Dirichlet series in s. These Dirichlet series 
ti(s, L) and <T(s, L*) are called <-functions 
associated with the prehomogeneous space. 
Considering Fourier transforms of IP(x and 
IQ(x*)l‘, we obtain functional equations for ti 
and (7 under some additional (but mild) con- 
ditions on (G, p, V) as follows. The Dirichlet 
series ti and <f are analytically continuable to 
meromorphic functions on the whole s-plane, 
and they satisfy 

u(L*)tT(n/d -s, L*) 

=y(s--/d)(2n)-d”lho!“exp(ndfls/2) 

with a r-factor y(s) = n$, I-(s - ci + 1). 
Here uu(s) (1 < i, j < I) are polynomials in 
exp( - 7cJ-r s) with degree <d, and h, and ci 
are constants depending only on (G, p, V). 

Epstein’s [-functions and Siegel’s Dirichlet 
series associated with indefinite quadratic 
forms are examples of the above-defined I- 
functions. Shintani defined such [-functions 
related to integral binary cubic forms and 
obtained asymptotic formulas concerning the 
class numbers of irreducible integral binary 
cubic forms with discriminant n, which are 
improvements on the results of Davenport 
[S17]. 

Recently M. Sato studied c-functions of pre- 
homogeneous vector spaces without assuming 
the conditions that G is reductive and S is 
irreducible. In this case, [-functions of several 
complex variables are obtained. For examples 
and classification of prehomogeneous vector 
spaces - [S4]. 
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1. Algebraic Equations (- lo Algebraic Equations) 

(I) Quadratic Equation ax2 + bx + c = 0 (a+01 

The roots are 

x= 
-bzj/b=-&c = -b’kvi=i 

2a a 
(bE2b’). 

The discriminant is b2 - 4ac. 

(II) Cubic Equation ax3 + bx2 + cx + d= 0 (a+O) 

By the translation 5=x + b/3a, the equation is transformed into t3+3pt+ q=O, where 

p = (3ac - b2)/9a2, q = (2b3 - 9abc + 27a2d)/27a3. 

Its discriminant is - 27(q2 + 4~~). The roots of the latter equation are 

[=+i+fi, wz/Y+o=fi, w=&+l&, 

where 

w  = e2ni/3 = -1+tii - qk j/q=+4p3 
2 , ;= 

I 2 
(Cardano’s formula). 

Casus irreducibilis (the case when q2 + 4p3 < 0). Putting a = reie ( /? = ?i), the roots are 

E=2% cos(0/3), 2% cos[(0+2m)/3], 2% cos[(@+4a)/31. 

(III) Quartic Equation (Biquadratic Equation) ax4 + bx3 + cx2 + dx + e = 0 (a+O) 

By the translation [= x + b/4a, the equation is transformed into 

[4+p[2+q[+r=0. 

The cubic resolvent of the latter is t3 -pt2- 4rt + (4pr - q2) = 0. If te is one of the roots of the 
cubic resolvent, the roots 5 of the above equation are the solutions of two quadratic equations 

5=” viz [5-4/m,-p)]+@=O (Ferrari’s formula). 

2. Trigonometry 

(I) Trigonometric Functions (- 432 Trigonometry) 

(1) In Fig. 1, OA= OB= OP= 1, and 

MP=sin8, OM = cost), AT= tan0, 

BL = cot 8, OT=secl3, OL = cosecll. 
(2) sin28 + cos2Q = 1, 

tan0= sin0/cos8, cot@= l/tan0, set 8 = 1 /cos 0, 

cosecO= l/sin8, 1 + tan2 B = sec2 8, 1 +cot28=cosec28. 
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VT 

ti+1 1 
2 2 4 

- sina 
v9 

2?r/5 3n/8 n/3 3?r/lO n/4 J 
72” 67.5” 60” 54” 45” a 

(5) Addition Formulas 

sin(a~/3)=sinacos~~cosasin/3, cos(akP)=cosacosP7sinasin/3, 

tan(a~+)=(tana~tan~)/(l7tanatan/3). 

(6) sinfa=2sinacosa, cos 2a = C0S2a - sin’s = 2 cos2a - 1 = 1 - 2 sin2a, 

tan 20 = 2 tan a/( 1 - tan2a). 

sin3a=3sina-4sin3a, cos3a=4c0s3a-3cosa, 

tan3a ‘(3 tana - tan3a)/(1 -3 tan2a). 

sinna=““~1(2~~1)(-l)isinzi+1~cosn-(zi+1)~, 

WI * 
cosna= 1 i=. 2i ( -1)‘sin2iacos”-2ia. 

0 

(7) sin2(a/2)=(1 -cosa)/2, c0s2(a/2)=(1+cosa)/2, 

tan2(a/2)=(1-cosa)/(l+cosa). 

(8) 2sinacosp=sin(a+P)+sin(a-/3), 2cosasinfi=sin(a+p)-sin(a-p), 

2cosacos~=cos(a+~)+cos(a-pp), -2sinasinp=cos(a+fi)-cos(a-P). 

sina+sinfi=2sin[(a+/3)/2]cos[(a-/3)/2], 

sina-sin~=2cos[(a+P)/2]sin[(a-/?)/2], 

cosa+cos/3=2cos[(a+&/2]cos[(a-P)/2], 

cosa-cos/3= -2sin[(a+j3)/2]sin[(a-/3)/2]. 

(II) Plane Triangles 

As shown in Fig. 2, we denote the interior angles of a triangle ABC by a, p, y; the corresponding 
side lengths by a, b, c; the area by S; the radii of inscribed, circumscribed, and escribed circles 
by r, R, r,, respectively; the perpendicular line from the vertex A to the side BC by AH; the 
midpoint of the side BC by M; bisector of the angle A by AD; and the lengths of AH, AM, AD 
by hA, WI,, fA, respectively. Similar notations are used for B and C. Put s z (a + b + c)/2. The 
symbol . . . means similar formulas by the cyclic permutation of the letters A, B, C, and corre- 
sponding quantities. 

a b c ?cT=2R 
7-- = sinp sma siny (law of sines). 

a=bcosy+ccos& . . . (the first law of cosines). 

a2=b2+c2-2bccosa, . . . (the second law of cosines). 

sin2(a/2)=(s-b)(s-c)/bc, . . . . cos2(a/2)=s(s-a)/bc, . . . . 

(b+c)sin(a/2)=acos[(p-u)/2], . . . . (b-c)cos(a/2)=asin[(p-y)/2], . . . 

a+b tan[(a+P)/21 -= 
a-b tant(a-P)/21’ “’ 

(Napier’s rule). 
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= rs=rA(s-a)=* 

= j//s(s-- a)(.~- b)(s- c) (Heron’s formula). 

r=(s- a)tan(a/2)=4Rsin(a/2)sin( P/2)sin(y/2). 

r,=stan(a/2)=(s-b)cot(y/2)=4Rsin(a/2)cos(P/2)cos(y/2). 

llr=(l/h,)+(l/h,)+(llh,). 

rnj =(2b2+2c2-a2)/4=(b2+c2+2bccosa)/4. 

f- =2bccos(a/2)/(b+c)=2j&&j /(b+c). 

fafB&=8abcrs2/(b+c)(c+a)(a+b). 

Fig. 2 

(III) Spherical Triangles 

We denote the interior angles of a spherical triangle by a, /3, y; the corresponding sid’es by a, b, 
c; the area by S; and the radius of the supporting sphere by p. We have 

sina:sinb:sinc=sina:sinp:siny (law of sines). 

cosa=cosbcosc+sinbsinccosa, . . . . costs= -cos/3cosy+sinj?sinycosa, . . . 

(law of cosines). 

sinacosR=cosbsinc-sinbcosccosa, . . . (law of sines and cosines). 

cotasinb=cosbcosy+cotasiny, . . . (law of cotangents). 

tan[(a+ b)/2]/tan[(a- b)/2]= tan[(a+p)/2]/tan[(a-/3)/2], . . . (law of tangents). 

tan[(a + R)/2]tan(y/2)=cos[(a- b)/2]/cos[(a+ b)/2], . . . ; 

tan[(a-/3)/2]tan(y/2)=sin[(a- b)/2]/sin[(a+ b)/2], . . . ; 

tan[(a + b)/2]cot(c/2) = cos[(a - /3)/2]/cos[(a + /3)/2], . . . ; 

tan[(a- b)/2]cot(c/2)=sin[(a-P)/2]/sin[(a+/I)/2], . . . (Napier’s anal,ogies). 

S=(cc+/?+Y-7r)p2=2P2arccos 
cos2(a/2R)+cos2(b/2R)+cos2(c/2R) 

2cos(a/2R)cos(b/2R)cos(c/2R) 
(Heron’s formula). 

For a right triangle (y = 7r/2), we have Napier’s rule of circular parts: taking the subscripts 
module 5 in Fig. 3, 
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For example, we have 

cosc=cosacosb=cotcucot/3, 

cosfl=tanacotc=cosbsina, 

sina=tanbcot/3=sincsina. 

3. Vector Analysis and Coordinate Systems 

We denote a 3-dimensional vector by As(A,,A,,,A,)= A,i+ Ayj+ A,k, 1-41 ={A=. 

(I) Vector Algebra (- 442 Vectors) 

Scalar product A*BrAB~(A,B)=A,B,+A,B,+A,B,=~A(~B~cos8 
(where 0 is the angle between A and B). 

Vector product 

i j k 
AXBf[A,B]=(A,B,-A,B,)i+(A,B,-A,B,)j+(A,B,-A,B,)k= Ax AY AZ . 

Bx By 4 

(A x B( = [A( IBlsinB. 

A*B=B*A. A*A=A2=IAJ2. AxA=O. A*(AxB)=O. (AxB)2=IA)21B)2-(A.B)2. 

Ax(BxC)=(A*C)B-(A*B)C. Ax(BxC)+Bx(CxA)+Cx(AxB)=O. 

(AxB)*(CxD)=A.(Bx(CxD)}=(A*C)(B*D)-(B*C)(A*D). 

Scalar triple product [ABC]=A*(BxC)=B*(CxA 

[BCD]A+[ACD]B+[ABD]C=[ABC]D. [ABC][EFG]= 

A, Ay 4 
=C*(AxB)= B, By B, . 

cx cy cz 

A*E A*F A*G 
B-E B-F B-G . 
C-E C-F C-G 

(II) Differentiation of a Vector Field (- 442 Vectors) 

a a a V=iz +jav +kz (Nabla), 

gradq-VT= k k acp 
Q+ $3 + zk (gradient of cp), 

rotAEVxA=(2-%)i+(%-$)j+(%-$)k (rotationofA), 

divA_DA=!$+~+~ (divergence of A), 

Acp-V2q-divgradq= $ + $ + 3 (Laplacian of cp). 

grad (v#> = 9 grad4 + $ gradv, 

grad (A l B) = (B * grad)A + (A l grad)B + A X rot B + B X rot A, 

rot(cpA)=cprotA-AXgradq, rot(Ax B) = (Be grad)A - (A l grad)B+ AdivB- Bdiv A, 

div(cpA)=cpdivA+A*gradcp, div(AxB)=B.rotA-A*rotB. 

rotgradcp=O, divrotA=O. AA=graddivA-rotrotA. 

A(foc~)=(dfld~)Arp+(d2fld~~)(gradcp)*, A(qn/)=qArC,+#Aq1+2(gradcp*gradJ/). 
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(III) Integration of a Vector Field (- 94 Curvilinear Integrals and Surface Integrals, 
442 Vectors) 

Let D be a 3-dimensional domain, B its boundary, dV the volume element of D, dS the surface 
element of B, and dS=n dS, where n is the outer normal vector of the surface B. We have 

Gauss’s formula 
sss D 

divAdV=jkS.A= jL(n*A)dS, 

o-1 
rotAdV= dSxA= 

D JJ J-1 
(n x A) dS, 

B B 

J./l 
gradcpdV= 

D 1.i 
cpds; 

B 

Green’s formula 

‘%(xo)=- jjL%+ jL( f;-rp;(f))dS, 
where r is the distance from the point x0. 

Let B be a bordered surface with a boundary curve I-, ds the line element of r, dS the surface 
element of B, and ds = tds, dS = n dS, for t the unit tangent vector of r and under the proper 
choice of the positive direction for the surface normal n. We have 

Stokes’s formula JjBdS*rotA= +rA.ds= $2. A)ds, jjBdS xgradcp= $rqds. 

If the domain D is simply connected, and the vector field V tends sufficiently rapidly to 
0 near the boundary of D and at infinity, we have 

Helmholtz’s theorem V=gradcp+rotA, cp= - A= jjjDysdV. 

(IV) Moving Coordinate System 

Denote differentiation with respect to the rest and the moving systems by d/dt, d*/dt, respec- 
tively. Let the relative velocity of the systems be v. Then we have 

dP, d*v --J = 7 -v-gradcp, dA d*A -- dt = dt [v*gradA-(A*grad)vl. 

With respect to rotating coordinates we have 

v=wXr. 

$ = $$ + [w+A-((wXr)*grad)A] 

When the domain of integration is also a function of t, 

%JA.ds=j[!$ +grad(v*A)-vXrotA ads, 
I 

-$jjA*dS= jj( $ +rot(AXv)+vdivA 
1 

l dS, 

+(v*gradq)+rpdivv)dV= jjj$dY+jjrpv.dS. 

(V) Curvilinear Coordinates (- 90 Coordinates) 

Let (x1 , . . .,x,J be rectangular coordinates in an n-dimensional Euclidean space. If 

xj=cpi(u*, . ..) 24,) (j= 1, . ..) n), J=det(a~j/&+)#O, 

the system (q, . . . , u,,) may be taken as a coordinate system of an n-dimensional space, and the 
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original space is a Riemannian manifold with the first fundamental form 

* 3% aTi 

gjk= c -- auj auk (j,k= 1, . ..) n), 
i=l 

When the metric is of the diagonal form gjk = g,zli# the coordinate system (u,, . . . , u,,) is called 
an orthogonal curvilinear coordinate system or an isothermal curvilinear coordinate system. In 
such a case we have J = g, . .g,,, and the line element is given by ds* = Z:, , g,?du,F. 

For a scalar f and a vector [= ([i, . . . ,&,), we have 

When n = 2, the rot may be considered a scalar, rot t= (rot&2, and when n = 3, the rot may be 
considered a vector, with components 

The following are examples of orthogonal coordinates. 
(1) Planar Curvilinear Coordinates. In the present Section (1) we put 

x,=x, xz=y, u, = u, u*=v, g, =P> g2=9* 

ds*=p*dx*+ q*dy*, 
- 

.ka(x,y)/a(U,u)=Vlpq. 
Planar orthogonal curvilinear coordinates may be represented in the form x + iy =.F( U + iv), 
F being a complex analytic function, by suitable choice of the functions U = U(u), V= V(v). 
(i) Polar Coordinates (r,e) (Fig. 4). 

x=rcosO, y=rsin0; x+iy=exp(logr+iB). 

r- v 2 
x +Y 9 B=arctan(y/x). 

p=l, q=r, J=r, ds*=dr’+r*dO*. 

atf 1 af I a7 
Af=a,z+;z+7,eZ. 

Y 

P 

r 
Y 

IA- 0 
0 z z 

Fig. 4 

(ii) Elliptic Coordinates ( ,u, V) (Fig. 5). Among the family of confocal tonics 

x2 ; Y2 -=1 (a>b), 
a*+p b*+p 

there are two values of p for which the curve passes through a given point P (x,y). Denote the 
two values of p by p and v, where p > - b* > v > - a*. The curve corresponding to p = p or p = v 

is an ellipse or a hyperbola, respectively. Then we have the relations 

~*=((1.+a*)(v+a*)/(a*-b*), y*=(p+b*)(v+b*)/(b*-u*). 

Let the common foci be (+ c,O) (c* = a* - b*). Then we have 

where r,, r2 are the distances from the two foci as in Fig. 5, and 

4(~*+~)=(r,+r~)~, 4(u*+v)=(r,-r,)*. 

p=+jlx> q=Qlx 

(iii) Parabolic Coordinates ((u, p) (Fig. 6). Among the family of parabolas y* = 4p(x + p) with the 
focus at the origin and having the x-axis as the principal axis, there are two values of p for which 
the curve passes through a given point P (xJ). Denote the two values of p by (Y, /3 (a > 0 > p). 
We have x = -(a+/q,y=~. 
(iv) Equilateral (or Rectangular) Hyperbolic Coordinates (u,v) (Fig. 7). This is a system that 
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replaces x/2, y/2 in (iii) by - y and x, respectively, with & = u, fl= v. The relations are 

x=uv, y=(uZ-v2)/2; x+iy=i(u-iv)‘/2, u2, v’=Jw&y, p=q=fl+v2. 

The curves x = constant or y = constant are equilateral hyperbolas. 
(v) Bipolar Coordinates (5, n) (Fig. 8). These coordinates represent a point P (x,y) on a plane as 
the intersection of the family of circles passing through two fixed points (+ a,O) and t.he family 
of loci on which the ratio of distances from the same two fixed points (k a,O) is constant. The 
latter is the set of Apollonius’ circles. The relations are 

a sinht 
x= cosh[+cosn ’ Y= 

a sinq 
cosh[+cosn (-co<~<co,O~Tj<2a). 

a 
p=q= cosh[+cosq ’ 

(2) Curvilinear Coordinates in 3-Dimensional Space. In the present Section (2), we put x1 =x, 
x*=y, x3=2. 
(i) Circular Cylindrical Coordinates (Cylindrical Coordinates) (p,cp,z) (Fig. 9). 

x=pcosq, y=psinq, z=z. 

ds2=dp2+p2dq2+dz2, J=p. 

(ii) Polar Coordinates (Spherical Coordinates) (Fig. 9). 

x=rsinBcosq, y=rsinesincp, t=rcose. 

r= j/x=+y2+z2 ) 91=arctan(y/x), e=arctan(Vm /z), 

Fig. 5 

Fig. 7 

Jx 
Fig. 9 

Fig. 6 

Fig. 8 

Fig. 10 
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The angles 9, and 19 are called azimuth and zenith angle, respectively. We further have 

ds2=dr2+r2dt12+r2sin20dty2, J= r2sin0. 

(iii) Euler’s Angles (Fig. IO). Let (x,y,z) and ([,n,[) be two linear orthogonal coordinate systems 
with common origin 0. Denote the angle between the z-axis and the l-axis by 0; the angle 
between the zx-plane and the z[-plane by cp; and the angle between the q-axis and the intersec- 
tion OK of the xy-plane and the &-plane (or the angle between the &axis and the intersection 
OL of the z[-plane and the [n-plane) by #. The angles 13, cp, and + are called Euler’s angles. The 
direction cosines of one coordinate axis with respect to the other coordinate system are as 
follows: 

x Y Z 

5 coscpcos0cosJ,-sinp,sinrC, sincpcos0cos#+coscpsin# -sintIcos+ 
P -coscpcosfIsin#-sincpcosq -sincpcos0sinrl,+coscpcoslC, sin 0 sin I/I 
5 cos cp sin tr sincpsin0 cos e 

(iv) Rotational (or Revolutional) Coordinates (u, o, p). Let (u, u) be curvilinear coordinates (Sec- 
tion (1)) on the zp-plane. The rotational coordinates (u, u,p) are given by the combination of 
x = p coscp, y = p sincp with the coordinates on the zp-plane. We have 

ds2=p2du2+q2du2+p2d~2, 

where p, q are the corresponding values for the coordinates (u,u). 
(v) Generalized Cylindrical Coordinates (u,u,z). These are a combination of curvilinear coordi- 
nates (u,u) on the xy-plane with z. We have 

ds2=p2du2+q2du2+dz2. 

For various selections of (u,u) we have coordinates as follows: 

(U>U) 
Rotational 

Coordinate System 

Generalized 
Cylindrical 

Coordinate Svstem 

Linear rectangular 
coordinates 

Circular cylindrical 
coordinates 

Linear rectangular 
coordinates 

Polar coordinates 
((l)(i)) 

Elliptic coordinates 
((WN 

Spherical coordinates 

Spheroidal coordinates(‘) 

Circular cylindrical 
coordinates 

Elliptic cylindrical 
coordinates 

Parabolic coordinates Rotational parabolic Parabolic cylindrical 

(( l)W) coordinatesc2) coordinates 

Equilateral hyperbolic Rotational hyperbolic Hyperbolic cylindrical 
coordinates (( l)(iv)) coordinates coordinates 

Bipolar coordinates Toroidal coordinates(3) Bipolar cylindrical 

((l)(v)) Bipolar coordinatesQ coordinates 

Notes 
(1) When the p-axis is a minor or major axis, we have prolate or oblate spheroidal coordi- 

nates, respectively. 
(2) We take the z-axis as the common principal axis of the parabolas. 
(3) Where the line passing through two fixed points is the p-axis. 
(4) Where the line passing through two fixed points is the z-axis. 

(vi) Ellipsoidal Coordinates (h, p, V) (Fig. 11). Among the family of confocal quadrics 

-1 (a>b>c>O), 
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there are three values of p for which the surface passes through a given point P(x,y,z). Denote 
the three values of p by X, p, v, where X > - c2 > p > - b2 > v > - a*. The surfaces corresponding 
to p = X, p = p, and p = v are an ellipsoid, a hyperboloid of one sheet, and a hyperboloid of two 
sheets, respectively. We have 

* h(a) 

g3= j/(v--hp- 1,’ 
2P( I 

\” P, 
-; 
V) 

p(t)-j/(t+a2)(t+b2)(t+c2) . 

Fig. 11 

4. Differential Geometry 

(I) Classical Differential Geometry (- 111 Differential Geometry of Curves and Surfaces) 

(1) Plane Curves (Fig. 12). At a point P(x,,ye) on a curvey =f(x), the equation of the: tangent 
line is y -~c=f’(xe)(x - x0), 

and the tangential shadow TM=yo/yb. The equation of the normal line isy(x,-,)(y -ye)+(x- 
x0) = 0, 

PN=ly,q/+yb2 1, 

and the normal shadow MN =y,&. The slope of the tangent is tana =f’(xe) =J$,. The curvature 
at P is 

K= l/pQ=f”(X,,)/[ 1 +y(X,$]3’2 

The coordinates of the center of curvature Q are 

(xcf’M[ 1 +f’(xo)2]lS”hJ. f(xo)+ 11 +I’hJ21/f”(xo)). 

Fig. 12 

(2) Space Curves xi = xi(t) (i = 1,2,3), or x = x(t). The line element of a curve x=x(t) is 

dx,)2+(dx2)2+(dx3)2 = 

The curvature is 

For t = s (arc length), the curvature is K = and the torsion is r = [det (x;, xl, 

~:‘?,-~,2,d/~*, where ‘= d/ds. When we denote Frenet’s frame by (&q,{), we have 5=x’, 
9 ‘Q/K, {=[x g (vector product). 
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The Frenet-Serret formulas are 

f=q, lJ’= -K(+$, l’= -79. 

(3) Surface in 3-Dimensional Space X, = x,(u,, UJ (a = 1,2,3). The first fundamental form of the 
surface is 

3 ax ax 
gjk= c “> (j,k=1,2). g=det(gjk)>O. 

IX=1 
auj auk 

Let (gj”) be the inverse matrix of ( qk). The tangent plane at the point x(z) is given by 

det ( x, - xp), (axm/auJo), (ax,/au2)(0)) =o. 

The normal line at the point xi’) is given by x, - x(O)= tv:‘), where t is a parameter, and V~ is the LI 
unit normal vector, given by 

The second fundamental form is 

3 

hjk Z 2 Va $f& = - 
3 aV, ax, 

c 
a=1 LX=1 

au,au,. h=det(hjk). 

The principal radii of curvature R,, R, are the roots of the quadratic equation 

-- 112 jk lx g”hjk; + t =o. 

The mean curvature (or Germain’s curvature) is 

and H = 0 is the condition for the given surface to be a minimal surface. The Gaussian curvature 
(or total curvature) is 

K-L=& 
R,R, g’ 

and K=O is the condition for the surface to be developable. 
We use the notations of Riemannian geometry, with gik the fundamental tensor: 

s = i ( >] 2 + hjkva (Gauss’s formula). 
0-l 

Rijk, = hj,hjk - hjkhil (Gauss’s equation). hjk;, = hjl; k (Codazzi-Mainardi equation). 

av, c ax, -=- 
auj hjkg “q (Weingarten’s formula). 

k,l 

The third fundamental form is given by 

3 av av 
Gk=z e<= 2 gS’hl,hkr=2Hhjk-KGk. det(Gk)=K2g=Kh. 

a=1 J k s,, 

(4) Geodesic Curvature. Let C : ui = u,(s) be a curve on a surface S and p be the curvature 
of C at a point P. Let B be the angle between the osculating plane of C and the plane tangent 
to S. The geodesic curvature ps of C at P is given by 

p,=pcosB=~ det 
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4 = 0 is the condition for C to be a geodesic. Let D be a simply connected domain on the 
surface S, whose boundary r consists of n smooth curves. Let 0, be the outer angle at the 
intersection of two consecutive curves ((Y = 1, . . . , n).Then we have the Gauss-Bonnet formula: 

KdS=2n- i 0,. 
a=1 

(II) Riemannian Geometry, Tensor Calculus (- 417 Tensor Calculus) 

In the present section, we use Einstein’s convention (omission of the summation symbol). 

(1) Numerical Tensor. 

Kronecker’s 8 ajkr SJk, 8:= 
1 (j=k) 

0 (j#k). 

0 ({j,Il+{k,l)l 
SL;::t =det(6$) p,Y=l,...,p +l ({jP}={kVJ and( ;)’ J is an even permutation of (k,)), 

- 1 ({ j,} = {k,}) and (j,,) is an odd permutation of (k,). 

Eddington’s E ~j,,,,~, = S.‘...V 
J,...J,,’ 

cjl...jn=S{;::?. 

i$:l:::jpip+l..dn =(n-P)!gjl...& 

’ kpJp+-l...jn k,...kp’ 
det (a,“) p,“‘I, . ...” 

=,j~...&!~? J, ,,...ai=Ej ,,,, jna{laQ...a:. 

(2) Fundamental Objects in Riemannian Geometry. Let gik be the fundamental tensor, and ( gJk) 
be the inverse matrix of (&). We put g-det( gk). 

The Christoffel symbol is 

which has the transformation rule 

under a coordinate transformation. 
A geometrical object Tj, with a similar transformation rule is called the coefficient of the 

affine connection. The torsion tensor is 

Sjk s rj, - rg. 

The equation of a geodesic is 

The covariant derivative of a tensor of weight W with respect to a coefficient of affine connec- 
tion T’jk is given by 

For the Christoffel symbol, we denote the covariant derivative by ; 1. Then we have the following 
formulas: 

gjk;$=O, gjk,,=O, s/;,=o, JggEjl,..j”;l=o, (l/&‘-+0. 

For a scalar f gradf = (&I> 
for a covariant vector vi rot v=(v~;~-v~;~)= (avjjaxk-avk/axj), 

and for a contravariant vector vj divvcvj. .=/i a(‘hvi 
2' & ad . 

Beltrami’s differential operator of the first kind is 

A,fSgjkf.. f. .I ,k’ 



1733 App. A, Table 4.11 
Differential Geometry 

Beltrami’s differential operator of the second kind is 

1 a(~% gwf/w) 
A2 j=divgradj= ~ 

6 axj 
For a domain D with sufficiently smooth boundary l?, we denote the directional derivative 

along the inner normal by a/ an, the volume element by dk’, and the surface element on I by dS. 
Then we have Green’s formulas, 

We denote the curvature tensor with respect to the coefficients of a general affine connection 

l$ by K$, and by Rj’, when I’$ = We have the following formulas: 

a'&, ~ - ~ _ - 
axax k I 

Bianchi’s first identity R;;, + Rkcj i- R,j, = 0, 

- (Bji, + Bj$ + B;.k ) = 2( ,$i,, + S;,,j +s~,,)+4(s$$,4+s~~s;+s~s,“,); 

Bianchi’s second identity Riik[;,+Rj;,;k+R~~k;,=o, 

Bj$, + Bjmlk + B& = - 2(BjmS,4+ BjikaS&+ B;&,); 

Ricci’s tensor Rjk E - R& = Rkj; 

scalar curvature R G gjkRjk ; 

Ricci’s formula TJ I .jp - Tjl .lp 

k,...k,lslr k, . ..k.lrls 

where S and B are the torsion and curvature tensors given above, respectively, and W is the 
weight of the tensor T. 
(3) Special Riemannian Spaces (- 364 Riemannian Manifolds). In the present Section (3) n 
means the dimension of the space. 
(i) Space of Constant Curvature Rj,, = p(gj,& -gj,6(); p = R/n@ - l), 
(ii) Einstein Space Rjk = pgj,, p = R/n, for n > 3, where R is a constant. 
(iii) Locally Symmetric Riemannian Space R&!,,,, = 0. 
(iv) Projectively Flat Space. Weyl’s projective curvature tensor is defined by 

The condition for the space to be projectively flat is given by B$ = 0, Rjkfl = Rjlfk. 
If n 2 3, the latter condition follows from the former condition, and the space reduces to a 

space of constant curvature. If n = 2, the former condition W = 0 always holds. 

(v) Concircularly Flat Space Zj,, = Rj,, + 

space of constant curvature. 

&(gjl 8; - gj,Sh) = 0. This space reduces to a 

(vi) Conformally Flat Space. Weyl’s conformal curvature tensor is defined by 

~~~,_R;,,+i(Rj~a:-Rj~~~+gj~R~-gj~R~)- R(gjk6,‘-gj,$) 
(n-l)(n-2) ’ 

Rjk Rgjk 
“, -(n-2)+2(n-l)(n-2). 

The condition for the space to be conformally flat is given by Cikl = 0, D,,,, = Z$,. 
If n > 4, the latter condition follows from the former condition, and if n = 3, the former condi- 

tion C = 0 always holds. 
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5. Lie Algebras, Symmetric Riemannian Spaces, and 
Singularities 

(I) The Classification of Complex Simple Lie Algebras and Compact Real Simple Lie Algebras 
(- 248 Lie Algebras) 

(1) Lie Algebra. The unitary restriction of a noncommutative finite-dimensional comple:lc simple 
Lie algebra g is a compact real simple Lie algebra gu, and g is given by the complexification 9.’ 
of g”. There exists a bijective correspondence between the classifications of these two kinds of 
Lie algebras. Using Dynkin diagrams, the classification is done as in Fig. 14 (- 248 Lie Algebras). 
The system of fundamental roots (cI~, . . , o+} of a simple Lie algebra g is in one-to-one corre- 
spondence with the vertices of a Dynkin diagram shown by simple circles in Fig. 14. The number 
of simple circles coincides with the rank 1 of g. The double circle in Fig. 14 means -1 times the 
highest root 8. Sometimes we mean by the term “Dynkin diagram” the diagram without the 
double circle and the lines issuing from it. Here we call the diagram with double circle representing 
- 8 the extended Dynkin diagram. Corresponding to the value of the inner product with respect 
to the Killing form - 2(ai, o~~)/(oL~, 01~) (i #j) (which must be 0, 1, 2, or 3), we connect two vertices 
representing a, and aj as in Fig. 13. When the value is 0, we do not connect cci and aj. In .Fig. 13, 
the left circle corresponds to tli and the right circle to ozj. 

Fig. 13 

$) & 
1 1 1 1 1 1 1 

c/ 2 2 2 2 2 1 
(123) -y " O------ 

1 1 2 3 2 
& 

--I- 2 

-"B 

2345642 
ER 0 = = = = 

-9 

Fig. 14 We have relations B, = C, = A,, C, =B,, and D, =A,. (D2 =Al + A,, which is not simple.) In this ligure, 
the number at each vertex means the coefficient mi in 0 =x miai. 

From Fig. 14, we have the following information. 
(i) The quotient group of the automorphism group A(g) of g with respect to the inner automor- 
phism group I(g) is isomorphic to the automorphism group of the corresponding Dynkin dia- 
gram. The order of the latter group is 2 for A, (I > 2) since the diagram is symmetric. It is also 
2 for D, (I > 5) and for E6, and it is 6 (= 3!) for D,. For all other cases, the order is 1. 
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(ii) The order of the center of the simply connected Lie group associated with g is equal to the 
index of the subgroup consisting of elements stabilizing - 0 in the group of automorphisms of 
the extended Dynkin diagram of g (S. Murakami). This index is equal to the order of the 
fundamental group of the adjoint group of g and the number of connected Lie groups, whose 
Lie algebra is 8. 
(iii) Any parabolic Lie subalgebra of g is isomorphic to a subalgebra generated by the root vector 
X, (and elements of the Cartan subalgebra) such that (Y = Eniai, where {a,, . . . ,a,) is a system 
of fundamental roots, ni > 0 (i = 1, . . . , I) or n, < 0 (i = 1 , . . . , I), and nj = 0 for aj belonging to a 
fixed subset S of ( aI, . . .,a,}. 

Hence, isomorphism classes of parabolic Lie subalgebras are in one-to-one correspondence 
with the set of subsets S of {a,, . . . . a/}. 
(iv) Maximal Lie subalgebra f of g with the same rank I as a. The Lie subalgebra f is classified 
by the following rule. First we remove a vertex ai from the Dynkin diagram. If the number mi 
attached to the vertex is 1, f is given by the product of the simple Lie algebra corresponding to 
the Dynkin diagram after removing the vertex a, and a one-dimensional Lie subalgebra. If mi > 1, 
f is given by the diagram after removing a, from the extended Dynkin diagram. 

(2) Lie Groups. The classical complex simple Lie groups of rank n represented by A, B, C, D (in 
Cartan’s symbolism) are the complex special linear group SL(n + 1, C), the complex special 
orthogonal group SO(2n + 1, C), the complex symplectic group Sp(n, C), and the complex special 
orthogonal group S0(2n, C), respectively. The classical compact simple Lie groups of rank n 
represented by A, B, C, D are the special unitary group SU(n+ l), the special orthogonal group 
SO(2n + l), the unitary-symplectic group Sp(n), and the special orthogonal group S0(2n), respec- 
tively (- 60 Classical Groups). 

Cartan’s 
Symbol 

All 
B, 
C” 

D, 
G2 

F‘l 
E6 

E7 

E8 

Complex 
Form 

SL(n + 1,C) 
SO(2n+ l,C) 

SP(% C) 
S0(2n,C) 

Aut 0’ 
Autz 

Compact 
Form 

SU(n + 1) 
SO(2n + 1) 

Sp(n) 
SO(2n) 
Aut 0 
Autz 

Dimension 

(n+l)*-1 
2n2+n 
2n2+n 

2n2-n 
14 
52 
78 
133 
248 

Rank 

n 

n 
n 

; 
4 
6 
7 
8 

Here Q is the Cayley algebra over R, &’ is the complexification of B, $ is the Jordan algebra 
of Hermitian matrices of order 3 over &, y is the complexification of 3, and AutA is the 
automorphism group of A. 

(II) Classification of Noncompact Real Simple Lie Algebras 

Classical Cases 

Cartan’s Symbol Noncompact Real Maximal Compact 
Simple Lie Algebra g Lie Algebra of g 

AI Il(p+l;R) MP + 1) 
AI1 bI(n; H) %O) 
AI11 WP,% C) WP) + Wq) 
BI Wp,q; R) B0(p)+So(q) (p+q=2m+l) 

BII lo(l,n- l;R) r;o(n-1) (n=2m+l) 
CI 3.4~; R) U(P) 
CII u(p,q; H) f%(P) + @J(q) 
Dl Wp,q; R> wP)+Mq) (p+q=Zm) 
DII Bo(l,n- l;R) $o(n-1) (n=2m) 

DIII $4~; H) U(2P) 
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Here the field F is the real field R, the complex field C, or the quaternion field H (R c C c H). 
H is an algebra over R. For a quaternion x=xo+xli+x2j+xjk(~o,x,,~2,~3ER), we put 

2=x0--x,i-x,j-x,k, 
x*=x,,+x,i-x,j+xjk. 

Then al (n; F) = {set of all square matrices over F of order n), 

5o(p,q;F)={AEal(p+q;F)('A*Z,,,+Z,,,A=O}, 

where IJ,~ is the symmetric transformation of the Euclidean space RJ’+q with respect to RP, i.e., 

Al11 
we..- 

El11 09 

EN --I-- 

FII - 

Fig. 15 



1737 App. A, Table 5.111 
Lie Algebras, etc. 

ZP,q is the diagonal sum of the unit matrix ZP of order p and - 19. We have 

ijo(n;F)=50(n,O;F), 

u(p,q;F)= {A W(p+q;~)( ‘x&q+$,qA =o}, 

u(n;F)=u(n,O;F), 

~~(n;F)={AEg1(2n;F)pz+.L4=0}, 

where J is the matrix of an alternating form ZZy= ,(xi yi+n - xi+,, yi) of order 2n. 
A noncompact real simple Lie algebra g is classified by the relation of the complex 

conjugation operator u with respect to the complexification gc of g. The results are given by 
Satake’s diagram (Fig. 15). 

In the diagram, the fundamental root corresponding to a black circle is multiplied by - 1 
under u for a suitable choice of Cartan subalgebra, and the arc with an arrow means that two 
elements corresponding to both ends of the arc are mutually transformed by a specia! transfor- 
mation p such that u =pw (w E W). 

(III) Classification of Irreducible Symmetric Riemannian Spaces (- 412 Symmetric Riemannian 
Spaces and Real Forms) 

A simply connected irreducible symmetric Riemannian space M = G/K is either a space in the 
following table or a simply connected compact simple Lie group mentioned in (I). The noncom- 
pact forms uniquely corresponding to the compact symmetric Riemannian space are in one-to- 
one correspondence with the noncompact real simple Lie algebras mentioned in (II). 

Cartan’s 
Symbol 

AI 
AI1 
AI11 
BDI 
BDII 
DIII 
CI 
CII 
EI 
EII 
EIII 
EIV 
EV 
EVI 
EVII 
EVIII 
EIX 
FI 
FII 
G 

Notes 

G/K=M Dimension Rank 

SU(n)/SO(n> (n>2) 
W2n)I5m) (n > 1) 

U(p+q)/U(p)xU(q) (P>421) 
So(P+q)lSo(P)xSo(q) (p>q>2,p+q+4) 

SO(n+l)/SO(n) (n>2) 
SO(21)/ U(1) (1 > 4) 
Sp(n)l U(n) (n > 3) 

SP(P + 4)/SP(P)X Sp(q) (P 2 4 2 1) 
Ed SP (4) 

E,/SU(2).SU(6) 
E,/Spin(lO).S0(2) 

ES/F4 
&/SU@) 

E,/Spin(l2).SU(2) 
-%I-%. SW) 
EJSpin(l6) 

E,IE,.SU(2) 
FdSP(3). SU(2) 

F41WnP) 
&P(4) 

(n- l)(n+2)/2 
(n - 1)(2n + 1) 

2Pq 
P4 

l(ln_ 1) 
n(n+ 1) 

4Pq 
42 
40 
32 
26 
70 
64 
54 
128 
112 
28 
16 
8 

n-l 
n-1 

4 
4 

hl 
n 

: 
4 
2 
2 
7 
4 
3 
8 
4 
4 
1 
2 

The group G = U(p + q) in AI11 is not effective, unless it is replaced by SU(p + q). To be 
precise, K = Sp(4) in El should be replaced by its quotient group factored by a subgroup of order 
2 of its center. K in EII is not a direct product of simple groups; the order of its fundamental 
group zi(K) is 2. To be precise, K in EV or EVIII should be replaced by its quotient group 
factored by a subgroup of order 2 of its center. The K’s in EII, EIII, EVI, EVIL EIX, and FI are 
not direct products. The fundamental group rt i (K) of K is the infinite cyclic group Z for EIII, 
EVII; for all other cases, the order of n,(K) is 2. 

In EIII, EVII, the groups E,, E, are adjoint groups of compact simple Lie algebras. In other 
cases, E6 and E, (Es, F4 and Gz also) are simply connected Lie groups. 

The compact symmetric Riemannian space M is a complex Grassmann manifold for AIII, 
a real Grassmann manifold for BDI, a sphere for BDII, a quaternion Grassmann manifold for 
CII, and a Cayley projective plane for FII. 
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(IV) Isomorphic Relations among Classical Lie Algebras 

The isomorphic relations among the classical Lie algebras over R or C are all given in the 
following table. In the table, we denote, for example, the real form of type AI of the complex Lie 
algebra with rank 3 by As1 in Cartan’s symbolism. When there are nonisomorphic real forms of 
the same type and same rank (e.g., in the case of DJ) we distinguish them by the rank of the 
corresponding symmetric Riemannian space and denote them by, e.g., DJ,, where p is the index 
of total isotropy of the sesquilinear form which is invariant under the corresponding Lie algebra. 

Cartan’s Symbol 

A,=B,=C, 
Bz=G 

A,=Ds 
A,I=A,III=B,I=C,I 

B212 = C21 
B21, = C,II 
A,1 = D,I, 
As11 = DsI, 

A,III, = DJ2 
A,III, = DsIII 
D.J, = D,III 

D2=AixAl* 
D,I,=A,IxA,I 

D,III=A, xA,I* 
D21, =A,* 

Isomorphisms among Classical Lie Algebras 

~i1(2,C)-cso(3,C)--sP(l,C); h(2)--o(3)-~(1) 
80 (5, C) = sp (2, C); 50 (5) = bP (2) 
sI(4, C) = go (6, C); Bu (4) = 50 (6) 

51(2,R)-su(l,l;C)-80(2,1;R)-@(l;R) 
r;o(3,2;R)=so(2,R) 

50(4,1;R)-u(l,l;H) 
sl(4,R)--0(3,3;R) 
%(2,H)-Go(5,l;R) 

%(2,2;C)=50(4,2;R) 
~w(3,1;C)-~o(3;H) 
1;o(6,2;R)--lo(4,H) 

lo (4, C) = OI(2, C) x 51(2, C); 50 (4) = ial (2) x al (2) 
~0(2,2;R)-81(2,R)xs1(2;R) 

i?o(2;H)-~u(2)x~1(2;R) 
so(3,l;R)s51(2,C) 

Note 
(*) In these 3 cases, there are isomorphisms given by the replacement of Sl(2., C) 

or mu by isomorphic Lie algebras of type B, or type C, due to the isomorphism 
A,=Bi=Ci. 

(V) Lists of Normal Forms of Singularities with Modulus Number m = 0, 1, and 2 (- 4!18 Theory 
of Singularities) 

Letters A , . . . , Z stand here for stable equivalence classes of function germs (or families o’f function 
germs). 

(1) Simple Singularities (m = 0). There are 2 infinite series A, D, and 3 “exceptional” singularities E,, 

4, Es: 

Notation Normal form 

A, x”+l+y2+z2 
D” x”-‘+xy2+z2 
45 x4+y3+z2 
E, x3y+y3+z2 
47 x5+y3+z2 

Restrictions 

n>l 
n>4 

(2) Unimodular Singularities (m = 1). There are 3 families of parabolic singularities, one iseries of 
hyperbolic singularities (with 3 subscripts), and 14 families of exceptional singularities. 

The parabolic singularities 
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The hyperbolic singularities 

Notation 1 Normal form 1 Restrictions 

1 1 1 
T P4’ xp+y*+z’+axyz a#O,p+q+;<l 

The 14 exceptional families 

Gabrielov Dolgach8v 

Normal form numbers numbers Notation Normal form 

~~ 

x3+y’+z2+axy5 237 237 43 I x4+xy4+r2+ay6 

x3+xy5+r2+ay8 238 245 Q 10 x3+y4+yz2+nxy3 

x”+y8+z2+axy6 239 334 Q11 X3+y2Z+XZ3+aZ= 

x3y+ys+z2+axy4 245 238 QL2 x3+y’+yz2+czxy4 
x3y+xy4+z2+ax*y3 246 246 s,, X4+y*r+Xz’+aX3Z 

X”y+y6+r2+(IXy5 241 335 s,, x”y+y2r+xz3+ar” 

x4+y5+z2+(Ix2y3 255 255 4, x3+y3+r4+axyr’ 

(3) Bimodular Singularities (m = 2). There are 8 infinite series and 14 exceptional families. In all the 
formulas, a = a0 + al y. 

The 8 infinite series of bimodular singularities 

Notation Normal form 

J 3,O 

J 3.P 

z 1.0 

Z 1.P 

W 1.0 

W 

+:,-1 
K% 

:::; 
s 1.0 

S 

s?:q-l 

sl?, 

u 

eq-1 

u 1.a 

x3+bx2y3+yg+z2+cxy7 
x3+x~yJ+z~+uyg+p 
y(x3+dx*y2+cxy5+y6)+z2 
y(X3+2y*+uy6+p)+zZ 
x4+ux*y3+y6+z2 
x4+x2y3+uy6+p+z2 
(x2 + yJ)Z + uxy4+q + z2 
(x2 + yy + ux2y3+q + z2 
x3+yz2+ux2y2+xy4 
x3+yz2+x~y~+uz6+p 
x2z+yz2+y5+uzy3 
XZz+yz2+XZy*+uy5+p 
xZz+yz~+Zy3+uxy~+q 
x2z+yz2+zy3+ux2y2+q 
x3+xz2+xy3+uy3z 
X3+xZ2+xy3+uy’+qz2 
x3+xz2+Xy3+uyJ+qz 

The 14 exceptional families 

Restriction 

4b3+27#0 
p>o, a,#0 
4d3+27#0 
p>o, a,#0 
a;#4 
p>o, a,#0 
q>o, a,#0 
q>o, U,#O 
a;#4 
p>o, a,#0 
a;#4 
p>o, a,#0 
q>o, a,#0 
q>o, a,#0 
a,(a~+l)#O 
q>o, a,#0 
q>o, a,#0 

Notation 

E 18 
E 19 

E 20 

Z 17 

Z 18 

Z 

4: 

x3+yi1+z2+uxy8 
x3y+y8+z2+uxy6 

) Normal form 

x4+y7+z2+ux*y4 
x3+yz*+y7+z2+uxy5 
x3+yz2+xy5+z2+uy8 
x3+yz*+y8+z2+uxy6 
x*z + yz2 + xy4 + z2 + uy6 
x2z+yz2+y6+Z*+uzy4 
x3+xz2+y5+z2+ux2y2 

Milnor number 

16 
16+p 
15 
15+p 
15 
15+p 
15+2q-1 
15+2q 
14 
14+p 
14 
14+p 
14+2q-1 
14+2q 
14 
14+2q- 1 
14+2q 



App. A, Table 6 
Topology 

1740 

Adjacency relations between simple and simply elliptic singularities 

Adjacency relations among unimodular singularities 

References 

[l] V. I. Arnol’d, Singularity theory, Lecture note ser. 53, London Math. Sot., 1981. 
[Z] E. Breiskorn, Die Hierarchic der 1-modularen Singularitaten, Manuscripta Math., 27 (1979), 
183-219. 
[3] K. Saito, Einfach elliptische Singularitlten, Inventiones Math., 23 (1974), 289-325. 

6. Topology 

(I) h-Cobordism Groups of Homotopy Spheres and Groups of Differentiable Structures on 
Combinatorial Spheres 

(1) The Structure of the h-Cobordism Group 19, of n-Dimensional Homotopy Spheres. In the 
following table, values of 0, have the following meanings: 0 means that the group consists only 
of the identity element, an integer.1 means that the group is isomorphic to the cyclic group of 
order I, 2’ means that the group is the direct sum of I groups of order 2, + means the <direct sum, 
and ? means that the structure of the group is unknown. 

n 12345678 9 10 11 12 13 14 15 16 17 18 

23 or 2” or 

O,,- 0 0 ? 0 0 0 28 2 4+2 6 992 0 3 2 8128+2 2 4+22 8+2 

(2) The Group I, of Differentiable Structures on the n-Dimensional Combinatorial Sphere. 

r,-0, (n#3), r,=o. 

(II) Adem’s Formula Concerning Steenrod Operators Sq and B (- 64 Cohomology Operations) 

For the cohomology operators Sq and 8, we have 

Sq”+b-‘Sqc (a<2b). 
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Y”Bb= c (-l).+c 
(b-c)(p-1)-l 

P+b-cP (a<pb), 
t=O a-pc 

Y&Yb= X(-l) ;t a+((-;!;; l)>&pa+b-cg,c 

(a<pb). 

Several simple cases of the formula above are as follows. 

Sq’Sq2” = sqZ”+‘, Sq’ sq2”+’ = 0, 

sqzsq4”=sq4”+2 +sqb”+‘sq’, sqZsq4”+‘=Sq4”+2Sq’, 

SqZsq4”+2=Sq4”+3Sql, Sq2~q4”+3=~q4n+S+~q4n+4~qI, 

Sq4Sq8”=Sq~“+4+Sqs”+3Sq1+Sq~“+2SqZ, sq4sq*“+’ = sq*“+4sq’ + sq*“+3sq2, 

sq4sq 8nC2 = s 8n+4sq2 9 1 sq4sq 
8n+3=sq8n+5sq2, 

sq4sq 8”+4=~~8n+7~~1+~~8n+6~~2, sq4sq 
8n+5=~~8n+9+~~8n+8~~1+~~8”+7~~2, 

sq4sq En+6 = sq8n+10 + sq8n+8sq2, sq4sq8”+7 = sq8n+l 1 + sq8n+9sq2, 

8’8” =(n + l)P”+l, 

~‘6~“=?2~68”+‘+B”+‘6. 

(III) Cohomology Ring H*( r, n ; Z,) of Eilenberg-Mac Lane Complex (- 70 Complexes) 

Z means the set of integers, and ZP = Z/pZ, where p is a prime number. 
(1) The case p = 2, r = Z or Z,I (f > 1). The degree of a finite sequence I = (i,, i,- ,, . . , il) of 
positive integers is defined by d(1) = i, + i, + . + i,. If such a sequence satisfies ik+, > 2ik (k = 
1 , . . . , r - l), it is called admissible, and we define its excess by 

e(l)=(i,-2i,-,)+ .,. +(i,-2r,)+i,=2i,-d(Z). 

Further, we put Sqr = SqirSqir-l . Sq’l. Then we have H*(Z,f, n; Z,) = Z,[Sq’u, ( 1 is admissible, 
e(I)<n], H*(Z,n;Z,)=Z,[Sq’u,)I is admissible, e(l)<n, i, > 11. 

Here, u,~H”(n, n; Z,) is the fundamental cohomology class. I = @ (empty) is also admissible, 
and for this case we put n(I) = e(1) = 0, Sq’ = 1. Due to the Kenneth theorem, we have 

H*(a+n’,n;Z,)=H*(~,n;Z,)~~*(~‘,n;Z,) 

if n is finitely generated. In particular, we have 

H*(Z,,2; Z,) =z*[ u~,sq1u~,.sq2sq’u2, . .,sq2xq2’-1 . . .Sq’u, ,... 1, 

H*(Z~,3;Z2)=z2[U~,Sq~~q~‘--...Sq’U~,Sq~~’+’~~’Sq~~‘+‘~~‘-’... 

% 2’+ ‘sq*‘- ’ . ..Sq’u.lr>O, s>O]. 

(2) The case p # 2, Q = Z or Zp/ (f > 1). We define the degree of a finite sequence I = (i,, i,- ,, 
. . , i,, io) of nonnegative integers by d(Z) = i, + . . . + i, + i,. The sequence I is called admissible 
if it satisfies the following conditions: 

ik = 2Ak (p - 1) + .ek (A, is a nonnegative integer, Ed = 0 or 1 (0 < k $ r)), and 

i,=Oor 1, i,>2p-2, ik+l>pik (l<k<r-1). 

We define its excess by e(I)=pi, -(p - 1)d (I). Further, we put 9’ = 6E*??x+. .6’1~?“16’“, and 
assume that u, E H”(vr,n; Z) is the fundamental cohomology class. Then we have 

H*(Z,,,n; Z,)=Z,[@u,( I is admissible, e(I)<n(p- l), n+d(Z) is even] 

@ ~z,(9”u, ( I is admissible, e(1) < n(p - l), n + d(I) is odd). 

H*(Z,n; Z) is given by the above formula when the admissible sequence is I with i,=O. 
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(IV) Cohomology Ring of Compact Connected Lie Groups (- 427 Topology of Lie Groups and 
Homogeneous Spaces) 

(1) General Remarks. Let G be a compact connected Lie group with rank 1 and dimer,sion n. 
We have H*(G; R) z r\a(x,, . . ,x,), where AK(x,, . . . , x,) means the exterior algebra over K of a 

linear space I/= Kx, + . . + Kx, with the basis {x,, . . . , x,} over K. We define a new degree in 

A&, . ..t x,) by putting degxi = mi (mi is odd) (1 < i < I), where m, + . . . + m, = n. The z means 
isomorphism as graded rings. 
(2) Classical Compact Simple Lie Groups. We set degxi = i. 

H*(U(~);R)-A\R(X+~, . . ..+n-.h 

H*(SU(~);R)--/~\II(X~,X~, . . ..x~n-.), 

H*(SP(~);R)--~(X~,X,, . . ..xq.-,)a 

H*(SO(r~);Z~)=(Havingx,,x,, . . . . x, _ , as a simple system of generators) 

=z2Lx,,x3, . ..) X*“‘-,l/(Xi2”“~i=l, . . ..n’) 

(n’=[n/21, s(i) is th e 1 east integer satisfying 2”(‘)(2i - 1) > n ) 

H*(SO(2n);K)-A,(x,,x,, . . ..~4n-+2n-.), 

H*(SO(2n- l);K)zA,(xs,x,, . . . . x+s), where K is a commutative field whose 

characteristic is not 2. 

For SO(n), Sq”(.q)=(~)x,+~. For Su(n), p”(x2i-,)=( i11)x2i-1+zo(p-l). 

For Sp(n), P(xdi-,)=(-- I)0’p-“‘2( 2’; 1)xq,-,+2.0,-,,. 

(3) Exceptional Compact Simple Lie Groups. n and mi (1 < i < I) given in (1) are as follows. 

G2: n=14, m,=3, 11. 

F4: n=52, mi=3, 11, 15, 23. 

E,: n=78, m,=3, 9, 11, 15, 17, 23. 

E,: n= 133, m,=3, 11, 15, 19, 23, 27, 35. 

E,: n=248, m,=3, 15, 23, 27, 35, 39, 47, 59. 

(4) p-Torsion Groups of Exceptional Groups. Thep-torsion groups of exceptional Lie groups 
are unit groups except when p = 2 for G,; p = 2, 3 for F4, E,, E,; and p = 2, 3, 5 for E,. The 
cohomology ring of Zp as a coefficient group in these exceptional cases is given as follows. Here 
we put degx, = i. 
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(V) Cobomology Rings of Classifying Spaces (- 56 Characteristic Classes, 427 Topology of Lie 
Groups and Homogeneous Spaces C) 

(1) Let H*(G;K)=A,(x,,x,, . . . . xn). Then the degxi are odd and the xi may be assumed to be 
transgressive. yi being its image, the following formula holds: 

H*W;K)=KCY,,Y~, . . ..y.l (Borel’s theorem). 

(2) H*(BU(n))=H*(BGL(n,C))=Z[c,,c,,...,cn], 

H*(BSU(n))=H*(BSL(n, C))=Z[c2, . . . ,C”], 

ff*wPb)) = zcq,, q2, .‘. 9 4.1, 

H*(BO(n); K,) =H*(BGL(n, R); Z,) = K,[w,, w2, . . . , w.], 

H*(BSO(n); K,) = H*(BSL(n, R); Z,)= K,[w,, . . , w,], 

H*(BSO(2m+l);K)=KCp,,p,,...,p,l, 

Here, K denotes a field of characteristic # 2, and K, is the field of characteristic 2. The ci denote 
the ith Chern classes and the qi the ith symplectic Pontryagin classes, the wi the ith Stiefel-Whitney 
classes. Moreover, the pi denote the ifh Pontryagin classes, and x the Euler class. Their degrees are 
given as follows: deg ci = 2i, deg qi = degpi = 4i, deg wi = i, and deg 2 = 2m. 

(3) Wu’s Formula. Let H’(BSO(n); Z,) = Z, [w,, . . . , w,] and H*(BU(n), Z,) = Z, [c,, c2, . . , c.]. 
We have 

Here the symbol (g) denotes the binomial coefficient for a > b; (@ = 1, and (g) = 0 otherwise. 

(VI) Homotopy Groups of Spheres (- 202 Homotopy Theory) 

Table of the (n + k)th Homotopy Group z”+~ (S”) of the n-Dimensional Sphere S”. The table 
represents Abelian groups. 0 stands for the unit group; integer 1 the cyclic group of order 1; cc the 
infinite cyclic group; 2’ the direct sum of I groups of order 2; and + means the direct sum. 

- 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

II 

I2 

13 

I4 

>I5 

L- 

<o 0 12 3 4 5 6 7 8 9 IO II 12 13 

0 ’ ,m 0 0 0 0 0 0 0 0 0 0 0 0 0 
L-- 

0 m 
P-, 

2 2 12 2 2 

0 m 2,2 I2 2 2 3 
-- 

0 00 2 2,m+l2 22 22 24+3 

----I 
0 m 2 2 24 2 2 

L-- 
2 

0 m 2 2 24 0,~ 2 

I 

0 00 2 2 24 0 0 L2--, 

0 cc 2 2 24 0 0 2 

0 cc 2 2 24 0 0 2 

3 15 2 

I5 2 22 

15 2 23 

30 2 23 

60 24+2 2’ 

120 23 24 

co+120 24 25 

---1 
240 , 23 24 ---, 

22 12+2 84+2= 22 

12+2 84+22 2= 6 

120+12+2 84+25 2” 24+6+ 

72+2 504+22 2’ 6+2 

72+2 504+4 240 6 

24+2 504+2 0 6 

24+24+2 504+2 0 6+2 

24+2 504+2 ,o 6 

0 cc 2 2 24 0 0 2 240 2= ;m+23 12+2 504 I2 6 
__- 

’ 0 cc 2 2 24 0 0 2 240 22 2’ 
I- 

-v2- 504 2 6+2 
-, 

0 cc 2 2 24 0 0 2 240 22 2’ 6 lLW_+ “, 2= 6+2 

0 cc 2 2 24 0 0 2 240 2= 23 6 504 
I 

2 6 

----I 
0 m 2 2 24 0 0 2 240 22 23 6 504 0 I co+3 

---- 

0 m 2 2 24 0 0 2 240 22 2’ 6 504 0 3 
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Table of the (n + k)th Homotopy Group rr” + k (S”) of the n-Dimensional Sphere S” (Continued) 

,- 
k 5 n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

> 24 

14 15 16 17 18 19 20 21 22 

0 0 0 0 0 0 0 0 0 

6 30 30 6+2 12+22 12+2* 132+2 22 2 

30 30 6+2 12+22 12+22 132+2 22 2 210 

2520+6+2 30 6+6+2 24-b 12+4+2l 120+ 12+25 132+25 26 24+22 9240+6+2 

6+2 30+2 22 4+22 24+2= 264+2 6+2= 6-b2 90+22 

12+2 60+2 504+22 24 24+6+2 1056+8 480+ 12 6 l8O+22 

24+4 120+23 24 24 24+2 264+2 24 6+2 72+23 

240+24+4 120+25 27 6+24 504+24+2 264+2 24+3 12+23 1440+24+24 

16+4 240 + 2’ 24 24 24+2 264+2 24 6+2= 144+23 

16+2 240+ 2* 240+2 23 24+2= 264+6 504+24 6+2= 144+6+2 

16+2 240+2 2 23 8+4+2 264+23 24+22 24 48+2* 

48+4+2 240+2 2 24 480+4+4+2 264+25 24+25 6+24 2016+12+22 

16+2 480+2 2 24 8+8+2 264+23 24+23 4+2’ 16+22 

8+2 480~2 24+2 24 8+8+2 264+4+2 240+24 4+2= 16+22 

4+2 480+2 23 25 8+8+2 264+2= 24 23 16+2’ 

---1 2+2 ,m+480+2 24 26 24+8+8+2 264+2= 24 24 240+ 16+23 

---1 2+2 480+2 23 25 8+8+2 264+2= 24 23 16+2’ 
L--l 

2+2 480+2 22 co+24 8+4+2 264+2 24+ 12 23 16+2l 
L----- 

2+2 480+2 22 24 8+22 264+2 24+2 24 16+2l 

- - -1 
2+2 480+2 22 24 8+2 , m+264+2 24+2= 24 16+22 

----1 2+2 480+2 22 24 8+2 26‘+2 , 24+2 23 8+22 

1 2+2 480+2 22 24 8+2 261+2 24 m+2= 
L-- 

4+22 

-1 2+2 480+2 22 24 8+2 264+2 24 22 23 
L------ 

2+2 480+2 22 24 8+2 264+2 24 22 22 

Remarks 
(1) When n > k + 1 (below the broken line in the table), T,,+~ (S”) is independent of IZ and is 
isomorphic with the kth stable homotopy group G,. 
(2) Let hnE?r,,(S”) be the identity on S”; q2~7r3(S2), v4~n7(S4), a8~mls(S8) be the Hopf 
mapping S 3* S 2, S ‘j S 4, S 15_t S 8 (induced mapping in the homotopy class), respectively; and 

[12m, ~2ml E 774m - 1 (S2m) (m # 1,2,4) be the Whitehead product of tZrn. These objects g,enerate 
infinite cyclic groups which are direct factors of 7, + k( S”) corresponding to the original map- 
pings. 

(3) V1n+2=E”172, v,,+~= E”v,, u,,+~= Ena (n > 1) (E is the suspension) are the generator 
for rn+k(Sn), which contains the mappings. 
(4) The orders of the following compositions are 2:gs,+7 

(VII) The Homotopy Groups a,(G) of Compact Connected Lie Groups G 

Here the group G is one of the following: 

SO(n) (n > 2), Spin(n) (n > 3), u(n) (n > I), su(n) (n ~ 2), 

8’(n) (n 2 11, G2, F4, E,, E,, E,. 

(1) The Fundamental Group r,(G). 

r,(G)- 2 (G=SO(n) (n>3)), 

1 

w  (G= U(n) (n> l), s0(2)), 

0 (for all other groups G). 

(2) Isomorphic Relations (k > 2). 

Tk(“(n))-~k(su(n)) (n>2), 
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?r~(U(l))^I71k(S0(2))~0. 

~~((Spin(n))--nk(SO(n)) (n>3), 

~~(Spin(3))--Ilk(SP(l))~--=~(SU(2))-~~(S3), 

71k(Spin(4))r?rk(Spin(3))+71k(S3), 

~Wfl(5))--dS~(2)), 

7+(Spin(6))--?rk(SU(4)). 

(3) The Homotopy Group rk(G) (k > 2). 

n,(G)gO. 

a,(G)r ~0 (G#SO(Z), U(l), SO(4), S@(4)), 7c3(~O(4))g co + co. 

I 

2+2 (G=SO(4), S@(4)), 

a4(G)- 2 (GE Q(n), SU(2), SO (3), SO (5), Spin(3), Spin(5)), 

0 (G=SU(n)(n>3), SO(n>(n>6>, G,, F4, E6, E,, Es). 

1 

2+2 (G=SO(4), @h(4)), 
2 

r5(G)z 
(G= G(n), SU(2), S0(3), SO(~) spin(3), spin(s)), 

co (G= SU(n> (n > 3), SO (6), Spin(6)), 
0 (G=SO(n>, Spin(n) (n>7), G,, F4, E6, E,, Es). 

Q(G), k>6. 

Gk 6 7 8 9 10 11 12 13 14 15 

@(I) 12 2 2 3 15 2 22 12+2 84+22 22 
- 

0 To- -o- 
- - Sp(2) --l 

0 120 2 22 4+2 1680 2 
Sp(3) 0 co 0 0 L-------------T 0 co 2 2 L-------2-- 10080 
Sp(4) 0 cc 0 0 0 cc 2 2 0 00 

W(2) 12 2 2 3 15 2 22 12+3 84+2’ 22 
W(3) 6 0 12 3 30 4 60 6 84+2 36 
W(4) ----1 0 * I -24 - 2 120+2 4 60 4 1680+2 72+2 
SU(5) 0 cc 0 
W(6) 0 co 0 

co l L--- 120 : 3;; f 1680 6 --- 
co 0 lL 5O40+2 6 _ - _ 

W(7) 0 cc 0 co 0 03 0 03 7 5040 0 L--------- 
W(8) 0 co 0 cc 0 co 0 co 0 co 

SO(5) 0 cc 0 0 120 2 22 4+2 1680 2 
SO(6) 0 co 24 2 120+2 4 60 4 1680+2 72+2 
SO(7) 0 22 
SO (8) -0-l CA 23 I--- 

22 8 00+2 0 2i 2520+8+2 24 
23 24+8 co+2 0 2520+120+8+2 27 

SO(9) 0 co:22 22 8 co+2 0 2 8+2 ca+23 
SO(10) 0 cc -2: co+2 4 co 12 2’2 8 00+22 --- 
SO(11) 0 w  2 2 -iLl- * 8 co+2 
SO(12) 0 co 2 
SO(13) 0 00 2 

2 0 lLE+yc 2"2 "2' 24+4 co+2 
2 0 co ', -2- 8 co+2 

SO(14) 0 co 2 2 0 co 0 :-EL 4 co 
SO(15) 0 co 2 2 0 cc 0 0 l-2- co 
SO(16) 0 cc 2 2 0 co 0 0 O I -00_+_00- 
SO(17) 0 co 2 2 0 co 0 0 0 cc 

G2 3 0 2 6 0 co+2 0 0 168+2 2 

F4 0 0 2 2 0 co+2 0 0 2 co 
E6 0 0 0 co 0 co 12 0 0 cc 

4 0 0 0 0 0 co 2 2 0 co 

Es 0 0 0 0 0 0 0 0 0 co 
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(4) Stable Homotopy Groups. For sufficiently large n for fixed k, the homotopy groups for 
classical compact simple Lie groups G = @(n), SU(n), SO(n) become stable. We denote them 
by the following notations. Here we assume k > 2. 

?Tk(SP) = dSp(n)) (n >(k- 1)/4), 

71k(U)=~~((U(n))--~(SU(n)) (n>(k+1)/2), 

~k(o)=~kw(~)) (n>k+2). 

Bott periodicity theorem 

00 (k-3,7 (mod8)), 

2 (k=4,5 (mod8)), 

0 (k=O,1,2,6 (mod8)). 

co (k-3,7 (mod8)), 

2 (kzO,l (mod8)), 

6 (k=2,4,5,6 (mod8)). 

q,(U)= 
co (kz 1 (mod2)), 

0 (k-0 (mod2)). 

(5) Metastable Homotopy Groups. 

(a,b) means the greatest common divisor of two integers a and b. 

?r2,(SU(n))- n!. 

(n+1)!+2 (n even, 24) 
(n+ 1)!/2 (n odd). 

%+‘l(SU(n))- 
(n + 2)!(24, n)/48 (n even, > 4) 
(n+2)!(24, n+3)/24 (n odd). 

~2,+5(SU(n))--azn+s(U(n+ 1)). 

77Zn+6(SU(n))- 
“2n+6(Ub+ 1)) (n=2,3 (mod4), n > 3), 

~r~~+~(U(n+ 1))+2 (n=O,l (mod4)). 

Ql+s(G(n))- (24, n+2) 

i 

(24, n+2)+2 (n even), 
(n odd). 

%+6(%(~))= 
(2n+3)!(24, n+2)/12 (n even), 
(2n+3)!(24, n+2)/24 (n odd). 
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The homotopy groups v,, + i (SO (n)) f or n > 16, 3 > i > - 1 are determined by the isomorphism 

n,+i(SO(n))=~“+i(0)+n,+i+I(l/i+,+n,i+~(R)) 

and the homotopy groups of I/,+,,(R) given below. 

(6) Homotopy Groups of Real Stiefel Manifolds V,,,+.,,(R) = 0 (m + n)/Z,,, x 0 (n). 

%+!A ~n+l,l I= %+!f(S” 1. 

%-k(~m+n,m)=o (ka 1). 

%wm+,,,>= l 2 (n=2s-1, m>2), 

CQ (n=2s). 

%+!f(l/m+n,m ) (k = 1,2,3,4,5) are given in the following table. 

m 
n 12 3 4 5 6 Ss-1 8s 8s+l 8s+2 8s+3 8s+4 8s+5 8sc6 

2 0 a* 2 2+cc 2 2+m 2 2+m 2 2+0, 2 2+m 2 2+m 

n.,, >3 0 m 0 22 2 4 0 2= 2 4 0 2’ 2 4 

2 co 22 4 22 4 22 4 22 4 22 4 22 4 22 

IT”,2 3 co= 2 2+m 22 4+m 2 2+m 2= 4+cu 2 2+m 22 4+m 2 

>4m 0 2 22 8 0 2 22 8 0 2 22 8 0 

2 2 22 2 m+12+2 22 24+2 2= 24+2 22 24+4 2= 24+2 2= 24+2 

3 22 2 2 m+12+4 2’ 12+2 22 24+4 23 12+2 22 24+4 2’ 12+2 

n,+3 42m 2 m=+12+4 2= 12+m 22 24+4+m 2= 12+00 22 24+4+m 2= 12+co 

z-50 0 2 12+4+m 2 12 2 24+8 2 I2 22 4+48 2 12 

2 2 122 m-+2 2=+24 2= 24 2 24 2 24 2 24 2 24 

3 22 0 co+4 24 2’ 2 4 2= 22 2 4 2= 22 2 

nn+4 4 2 0 4+m 25 2= 2 8 23 2 2 8 23 2 2 

5 Co 0 4+m= 24 2+m 2 8+m 2= m 2 8+00 2= m 2 

>6 0 0 4+m 23 2 0 8 2 0 2 16 2 0 0 

2 12 22 2 2’ 0 cc 0 0 0 0 0 0 0 0 

II.+5 3 122 co 2+24 24 24 co+2 24 2 24 2 24 2 24 2 

4 0 m 2’ 25 2 co+4 22 2= 2 4 22 22 2 4 

(VIII) Immersion and Embedding of Projective Spaces (- 114 Differential Topology) 

We denote immersion by c , and embedding by E . P”(A) is an n-dimensional real or complex 
projective space where A = R or C, k{P”(A)} is the integer k such that P”(A) c Rk and P”(A)+ 
R’-‘, and k{P”(A)} is the integer k such that P”(A)&Rk and P”(A)$Rk-‘. 

In the table, for example, numbers 9- 11 in the row k{P”(R)} for n = 6 mean P6(R) (f Rs, 
P6(R)cR”. 

n 1234 5 6 7 8 9 10 11 12 

k{P”(R)} 2 4 5 8 9 9-11 9-12 16 17 17-19 . . . . . . 
k{P”(W} 2 3 4 7 7 7 8 15 15 16 16 17-19 
k(P”(C)} 3 7 9 15 17 22 22-25 31 33 38 38-41 . . . 
k{P”(C)} 3 7 8-9 15 16-17 22 22-25 31 32-33 38 38-41 . . . 

2’ 2’+1 2’+2 2’+3 2’+2” (r>s>O) 

&V’“(R)) 2n 2n-1 2n-3-2n-1 . . . . . . 
k P’“Wl 2n-1 2n-3 2n-4 2n-6 . . . 
k P”(C)) 4n-1 4n-3 4n-2 .., 4n-2 
k F’“(C)) 4n-1 4n-4-4n-3 4n-2 . . . 4n-2 
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7. Knot Theory (- 235 Knot Theory) 

Let k be a projection on a plane of a knot K. We color the domains separated by k, white and 
black alternatively. The outermost (unbounded) domain determined by k is colored white. In 
Fig. 16, hatching means black. Take a point (a black point in Fig. 16) in each black domain. The 
self-intersections of k are represented by white points (Fig. 16). Through each white point we 
draw a line segment connecting the black points in the black regions meeting at the white point. 
In Fig. 16, we show this as a broken line. We assign the signature + if the torsion of IY at the 
intersection of k has the orientation of a right-hand screw (as in Fig. 17, left), and the signature - 
if the orientation is opposite (as in Fig. 17, right). The picture of the line segments with signatures 
is called the graph corresponding to the projection k of the knot K. Given such a graph, we can 
reconstruct the original knot K. 

Fig. 18 shows the classification table of knots for which the numbers of intersections of k are 
3 to 8 when we minimize the intersections. The projection of k is described by a solid line, and 
the graph by broken lines. We omit the signatures since for each graph from 3, to 8,s they are 
all + or all - . Such knots are called alternating knots. 

8. lneqUditkS (- 88 Convex Analysis, 211 Inequalities) 

(1) (a+ bl G (a(+ PI, 

l~-~lw4+ll. 
For real a,, we have Zaz > 0, and the equality holds only if all a, = 0. 
(2) n! < n”<(n!)2 (n > 3). 

e” > n”/n!. 

n’/n<31’3 (nf3). 
(3) 2/7r < (sinx)/x < 1 (0< x < m/2) (Jordan’s inequality). 
(4) Denote the elementary symmetric polynomials of positive numbers a,, . . . ,a, > 0 by S, 
(r=l, . . ..n). Then 

s,/(;)>[ S2/(f> . . . )[$/(:)]“r> . . . >[Sn/($ 
If at least one equality holds, then a, = . . . = a,. In particular, from the two external terms, we 
have the following inequalities concerning mean values: 

+il%2( g%)“‘>./ i: 1. “Cl 4 
For weighted means, we have 

i: X,a,> fi a;p (cI)(y=l, &,>O). 
V=l V=l 

(5) When u”>O, b,>O,p> 1, q> 1, (l/p)+(l/q)= 1, 

[ z, (cz”)~~[ z, (b.)‘r* > j, a& (Holder’s inequality). 

The equality holds only if (a,)p = c(b,)q (c is a constant). 
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8, 

Fig. 18 
Classification table of knots. The signatures from 3, to 8,s are all + or all - . 

When p = 4 = 2, the inequality is called Cauchy’s inequality, the Cauchy-Schwarz inequality, 
or Bunyakovskii’s inequality. As special cases, we have 

When 0 <p < 1, we have an inequality by reversing the inequality sign in HGlder’s inequality. 
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(6) When a, > 0, b, > 0, p > 0, and {a,} and {b,} are not proportional, we have 

[ p”+bY]‘y ~~wj”+[ ;,(b”Y]“p (p 2 1) (Minkowski’s inetquality). 

The integral inequality corresponding to (5) or (6) has the same name. 

(7) Ifa,,>O, i: aPy= i: apy=l, b,>O, 
p=l v=l 

In particular, for the determinant A = det(u,), 

The equality in this holds only if all rows are mutually orthogonal. If all ~u,,~I < M, we have 

IA\ < n”‘*M” (Hadamard’s estimation). 

(8) Suppose that a function j(x) is continuous, strictly monotone increasing in x IP 0, and 
f(O)=O. Denote the inverse function off by f-‘. For u,b >O, we have 

ub<lo”f(~)dx+J~/-‘(x)dx (Young’s inequality), 

and the equality holds only if b=f(u). 
In particular, for f(x) = XJ’-’ (p > l), we have 

up bq 

7 +gXub, 

where (l/p)+(l/q)= 1. 

(9) Ifp,q>l, (l/p)+(l/q)=l, a,>& b,>O, 

(Hilbert’s inequality), 

and the equality holds only when the right-hand side vanishes. 

(10) For a continuous function f(x) > 0 (0 < x < cc), we put 

and assume that p > 1. Then 

Jc”[ F]‘dx <( +)p~m[f(x)~p~x (Hardy’s inequality), 

and the equality holds only if f(x) is identically 0. 
Further, if f(x) > 0, 

“logf(t)dt dx<e ] (Carleman’s inequality). 

(ll)Letu<x<5<b,p>l,and 

‘f(t)dt=@(x). 

Then 

j-bk+)lpdx < 2( ~)p~b\f(x)lpdx (Hardy-Littlewood supremum theorem). 
a (I 

(12) If f(x) is piecewise smooth in 0 < x < ?r and f(0) =f(n) =0, 

clf’(x)f dx > [[ f (x)f dx (Wirtinger’s inequality), 

and the equality holds only if f(x) is a constant multiple of sinx. 
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9. Differential and Integral Calculus 

(I) Derivatives and Primitive Functions (- 106 Differential Calculus, 216 Integral Calculus) 

- 
cup, + /3Ic, (cy,j3 constants) 

v.4 

v/J, (#ZO) 

1WlPl (CpfO) 
Q(q) (composite) 

c (constant) 

X” 

x”+‘/(n + 1) 

logI- 

bhl 

x(logx - 1) 

expx=eX 

ax (a>O) 

XX 

(x - l)e’ 

sinx 

cosx 

tan x 

cotx 

secx 

cosec x 

sinhx=(e”- e-“)/2 

coshx=(e”+e-“)/2 

tanhx = sinhxlcoshx 

cothx =coshx/sinhx 

sechx= l/coshx 

cosech x = 1 /sinh x 

arcsinx (IFI < a/2) 

arccosx (O< F< a) 

arctanx (IFI < r/2) 

arccotx (IFI <a/2) 

arcsecx (O< F< 7r) 

arccosecx (IFI <a/2) 

arc sinhx = log(x + vx* + 1 ) 

arc coshx = log(x + m ) 

arc tanhx (I4 < 1) 
arc coth x (I-4 > 1) 

arc sech x 

arc cosech x 

f(x)= F’(x) 

4 + lw 
v’J/ + Pt’ 

(cp’# - (Pu/4* 
cp’/cp (logarithmic differentiation) 

(d@lWTJ 
0 

tlX”--’ 

x” (n#-1) 

l/X 

OwA/x 

logx 

expx=e” 

axloga 

x”(l+logx) 

xex 

cosx 

-sinx 

sec*x 

- cosec*x 

secx tanx 

- cosecx cot x 

coshx 

sinhx 

sech*x 

- cosech’x 

- sech x tanh x 

- cosech x coth x 

l/vi7 

-l/Vi? 

1/(1+x2) 

-1/(1+x2) 

l/jxjLGT 

- l/lxl~x*- 1 

1/m 

l/G=T 

1 
1-x* 

-l/x41-x* 

- l/jxjW 
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(l/a)arctan(x/a) 

(xd 1 - x2 + arcsinx)/2 

[xl/x*-t 1 2 log(x + Vx2t 1 )]/2 

-log~cosx~ 

log 1 sinxl 

log 1 tanxj 

log I W(n/4)+ (x/2)11 
log I Wx/2)1 

(x/2)-(1/4)sin2x 

sinx-xcosx 

cosx+xsinx 

n sin mx sin nx + m cos mx cos nx 

n2-m* 
(n*# m2) 

ebXbsinax-acosax 
a*+ b2 

ebXbcosax+asinax 
a*+ b* 

xarcsinx+ VIQ? 

xarctanx-(1/2)log(l+x2) 

det(cpjdj,k=I,...,, 

(II) Recurrence Formulas for Indefinite Integrals 

(m is a positive integer). 

1 
‘,= 2m-2 (1+t2)m-1 + g&l (m > 2); 

f(x)= F’(x) 

1 

x*--a* 

1 /(x2 + a*) 

d/1- 

VFZT 

tan x 

cotx 

l/sinxcosx 

secx 

cosec x 

sin’x 

xsinx 

xcosx 

sin mx cos nx 

e’“sinax 

e bx cos ax 

arc sin x 

arc tan x 

~det(cpjl...~j,-~~J,~“.+-y.,, 

. ..(Pjn)j=l....,n 

I, =arctanx. 

dx (m is an integer, a # 0). 

The case m < 0 is reduced to the case m > 0 by the change of variable 1 /x = t. 

dlax*+bx+c -~ 
~ (2m-1)b Z (m- 1)c 

2ma m-l - -----Z,-, (m > 1); ma 

z = (I/fi)log12ax+b+2& vax*+bx+c 1 (a>O), 

0 
-& arcsin 2ax + b 

vF=G 
(a<O); 

In this case, for the integrand to be a real function it is necessary that b*-4ac >O. 

(3) I,=( x”‘e”dx (m is an integer). 

1 =x”e”-ml m ,,-,; zo=ex, I-,=Eix, 
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where Ei is the exponential integral function (- Table 19X.3, this Appendix). 

(4) Z,,,=/x”(logx)“dx (m,n are integers, n>O). 

I*,, = $logx)“-*z~,“-l: z/s (m#-1),z~,,“=(logx)“+‘/(n+1). 

(5) I*=/ xm sinxdx, J,,, = 
s 

xm cosxdx (m is a nonnegative integer). 

Z,= -xmcosx+mJ~-,=xm-‘(msinx-xcosx)-m(m-1)1,-a, 

Jm=xmsinx-ml,-,=xm-t (xsinx+mcosx)-m(m-l)J,,,-z; 

z,= -cosx, 

J,,=sinx, 

(6) I,,, = s sin”‘x~cos”xdx (m,n are integers). 

L,, = 
sinm + lx cos* - ix 

m+n +szm,.-a 1 

i 

(m+nfO), 

Zrn,” = 
-sinme’xcos”+‘x + m- 1 

m+n m+nzm-2,n 

zm,, = 
-sinm+‘xcosn+‘x + m+n+2z 

n+l n+l m,n+2 (n+ - l), 

Z m,n= 
sinm+‘xcos”+‘x + m+n+2 z 

m+l m+l m+2,n Cm+ - 1); 

Z,,,=(sin2x)/2, I,,,= -cosx, I,,-,= -loglcosxl, Za,,=sinx, Za,, =x, 

Z,,...,=logl tan[(x/2)+(a/4)11, Z-i,i=loglsinxl, 

I-,,,=logltan(x/2)1, I-,,-,=logltanxl. 

(III) Derivatives of Higher Order 

f(x) 

Xk 

(x+a) 

exp x 

aX(a>O) 

logx 

sinx 

cosx 

e ax cos bx 

arc sin x 

arc tanx 

T 

f ‘“‘(4 

(Leibniz’s formula) 

n-1 

n (k- v)xk--n 

v=o 

n! 

exp x 

a”(loga) 

(- l)n-‘(n - l)!/x” 

sin[x + (na/2)] 

cos[x+(na/2)] 

r”e”cos(bx + n0) (wherea=rcosB, b=rsin@) 
n-l 

-J-- &-l)‘(y) 
2”--’ v=o 

(2v-1)!!(2n-2v-3)!!(1+x)-(1~2~-‘(l-~)(’~Z)-”+’ 

(where(2v-1)!!=1.3.5...:(2v-l),(-l)!!=l) 

(- l)n-‘(n - l)!sinY?sinnZl (where x = cot Z3) 

= fjff’f” - fjj’3 -f zf’t’ 

f4 . 
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Higher-order derivatives of a composite function g(t) Ef(X,(t), . . . ,x,,(t)) 

$g$$ s=,ig$Q&gg 

i j k=, axiaxjaxk dt dt dt . 1 

For a function z = z (x, , . . .,x,,) determined implicitly by F(z; x1, . . . ,x,,)= 0, we have 

aZ For a zz F F&,z + F,F,z F,F F x. x. zz 
-=-- -=- 

-F+ axi F, 3 axiaxj I F,’ 
-I. 

F: 

Schwarzian derivative: 

‘vlx)-( $)/( g)-;[ ($)/( $)]‘a {~;X)=o~~=(ux+b)/(cx+d), 

(IV) The Taylor Expansion and Remainder 

If f(x) is n times continuously differentiable in the interval [a,!~] (i.e., of class Cn), 

f(b)= y Qy&(u)+Rn (Taylor’s formula), 
v=o 

R, is called the remainder, and is represented as follows: 

=~(l-Ed-Rf’“‘(a+B(h-a)) (n>p>O, O<fI<l, a<t<b, t=a+B(b--a)) 

(Roche-Schlomilch remainder); 

= ; (b - a)“f(“)(~) (Lagrange’s remainder); 

=- 
(A)! 

(b - a)(b - t)“-’ f’“‘([) (Cauchy’s remainder). 

If f(x,y) is m times continuously differentiable in a neighborhood of a point (.x+,,J~), 

= 
c ’ hpk” 

o< p+“<m--l;p,“>o m 

a~+yf(x,~~,) + R 

axway” mr 

mj(xo+Oh,yo+Bk) (O<e<l). 

If all partial derivatives up to order m - 1 are totally differentiable, 

wherethe~meansthesumforv,,...,v,inthedomainO~~,+...+v,~m-l;u,,...,v,>O. 
The remainder R, is expressed as 
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(V) Definite Integrals [4] 

In the following formulas, we assume that m, n are positive integers. a,,,, is Kronecker’s delta 
(6,,,, = 0 or 1 for m # n or m = n), I is the gamma function, B is the beta function, and C is the 
Euler constant. 

For simplicity, we put 

1 

1.3.5.... *(m-2)~m=2(“+‘w[(m/2)+ l]/fi =m!/2(m-‘)‘*[(m- 1)/2]! 

ml!!- (m is odd), 

2.4.6. . . . ~(m-2)~m=2”~2~[(m/2)+1]=2m~2(m/2)! 

(m is even). 

In an n-dimensional real space, the volume of the domain 

Ix,lP+ . ..+Ix.lp< 1 (p>O) is 
2"bxl/P)l" 

P ~-SZ~(PZ/~) ’ 

For p = 2, this is the volume of the unit hypersphere, which is 

r”/2 1 (27r)“‘*/n!! (n is even), 

r[(n/2)+ 11 = ~Q~)(“-L)/*/~!! (n is odd). 

The surface area of the (n - I)-dimensional unit hypersphere 

1x,1*+ . . . 
2742 

+lx,12= 1 is - = 
(25Y/(n -2)!! (n is even), 

w/2) 2077) @-“‘*/(n-2)!! (n is odd). 

(Rep,Req> -1). 

I 
‘xP-‘(l-x)q-‘dx= O” x 

0 J 
p-1 

0 (l+x)p+q 
dxs B(p,q)= ;;;b4’. 

s 

00 Xa dx,l r[(~+l)/clr[b-{(a-c+l)/c}] 
0 (l+Xc)‘+b c r(1 + 6) 

a-c+1 Rec>O;Rea,Reb> -l;Reb>Re---- C > 

s 

.(a-~)‘-‘(x-b)~-‘~~~ (a-b)p+q-’ 

0 (x- cp+q la-C\4)b-C\P B(p’q) 

(O<c<b<a or O<b<a<c;Rep,Req>O). 

s 
m 1 

dx= 
77(2n)! (2n - l)!! 

-cc (1+x2)“+’ -== (2n)!! . 22”(n!)* 

s 
M XZm ___ dx = P 

cc 1+x2” 
(2m+ 1<2n). - n sinL(2m + l)n/2n] 

m @X2dx _ vii 
2lal . s (2n- l)!!G /2”+’ (p=2n), 

0 n!/2 (p=2n+ 1). 

~“(~-““x’-e-b’/xi)dx=(b-~)~ (a,b >O). ~m+(l/X)l’dx- v; . 

I 

m 
e -X2-(a2/X’)dx = e 

0 
T (~20). s,“eaX+le-aXdx=& 

s 
cc X 

0 eax- eeax 
dx= $ (u>O). 

s 
m dx= 

0 
ex-xe-x 
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11%(1/X) 
rdx=;. 

dx=j- “‘*logsinxdx= - 5 log2. 
0 

s 1 log(l+x) 

0 1+x* 

dx= ; log2. / 1 -dx=- logx 

0 1+x* 

s 
m (lo&TX)* 

0 1+x+x* 
dx= -$. J,‘$$$dx=logs (p,q> - 1). 

L’logl]ogxidx= ime -‘logtdt= -C= -0.57721... . 

s 

97 
sin mx sin nx dx = 

I 
ncosmxcosnxdx=6 B 

0 0 
lPl?lT’ 

s 
57 . sin mx cos nx dx = 

[l-C-l)“+“]* (m#n>; 

0 0 (m=n). 

s 
n/* sinPxcosqxdx=!jB 

p+1 q+l 
- - 

0 2 ’ 2 Rep,Req> -i); 

(a/2)(p- l)!!(q- l)!!/(p+q)!! (p,q are even positive integers), 
(p-l)!!(q-l)!!/(p+q)!! 

(p, q are positive integers not both even). 

s 
n/2 smpx dx = 

s 
77/* cosPxdx= fi r[(p+1)‘21 

2 Jl(P/2) + 11 
(Rep> -1); 

0 0 

(m/2)(2n- 1)!!/(2n)!! (p=2n), 
(2n)!!/(2n+ l)!! (p=2n+ 1). 

s 
O” sin(x*)dx= co cos(x*) dx = (Fresnel integral). 

-co s --m 

s 0 
m?!!f?&dxc; (a>()), ~“+dx=; 

take Cauchy’s principal value at x == 
( 2)). 

n + 1 7~ 

s 
m sinZn + ‘x T (2n- l)!! 

0 X dx=z (2n)!! . s 0 
““;“z”“=;. j- m sin(x*) 

x* 0 

-dx=;. 
X 

s 
*f!!!$?dxc nqp-’ 

2rh)sinbP) 
(O<p<2). 

0 

s 
m?!.?dX= ;e-‘P’s irn$ 

0 1+x* 
dx= t(l+e-2u) (a>O). 

s owx~~~2, dx=;(l-e-‘) (a>O). i”zdx=;e-O (a>O). 

* sinZm + Ix cos**x dx= 
m sin2m+1XC0S2n-1X dx= 17 (2m- 1)!!(2n- l)!! 

X X 2 (2m+2n)!! ’ 

s 
m sin ax cos bx 

n/2 (a>b>O), 

0 X 
dx= 77/4 

i 

(a=b>O), (Dirichlet’s discontinuous factor) 

0 (b>a>O) 

s 277 1 
0 1+acosx dx= (14 < 1). ~g’2 a2pos2x~ b2sin2x dx= & (ab+O)* d 
n xsinx dx=$. 

1 +cos*x 
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s 
* cos nx dx = 

1 

ran/c1 - 4 (Ial < l), 
0 l-22acosx+a~ ~/U”(U2- 1) ([al > 1). 
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10. Series (- 379 Sefies) 

(I) Finite Series 

(1) q=lk+2k+ . . . +nk (k is an integer). For k > 0, we have 

S,= 
&+,(n+l)-&+1(l) 

k+l 
= $ (-l~i(k:l)~zi(nk+:ilf’-‘, 

i=o 

where BI is a Bernoulli number and B,(x) is a Bernoulli polynomial. In particular, 

S,=n, S,=n(n+1)/2, S2=n(n+1)(2n+1)/6, &=n2(n+1)2/4, 

S,=n(n+1)(2n+1)(3n*+3n-1)/30. 

Fork<Oandk=-I, 

s-,=c,- [<- 1)‘/(1- l)!][d’logr(x)/dx’]X_n+, 

1 --+ 2 (-l)i- 1 Bz(i+,j (l+i- l)! 
= c, - 

1 

(I-l)(n+l)‘-’ 2(n+1)’ ;=I (i+ l)! (I- l)! (n+ l)‘+i’ 

For I= 1, the second term in the latter formula is replaced by log[ l/(n + l)]. Here F is the gamma 
function, and the constants c, are 

c, = 
C (Euler constant) (I= l), 

{(I) (5 is the Riemann zeta function) (I > 2). 

(2) i i(i+l)...(i+m-l)E i 
(i+m- l)! 1 (n+m)! 

i=l icl (i-l)! =- m+l (n-i)! ’ 

i !-l)! l 
1 TZ! 

i=l (z+m-l)! =- [ 
___- 

m-1 (m-l)! (n+m-l)! 1 (m > 2h 

i: i!i=(n+ l)!- 1, 
i-l 

i i(y)=n2”-‘, 
i=l 

i ui, u(““-l)l(u-l) Ca fl) (geometric progression) 
i=l ( n (a= 1) 

n 

2 (u+jd)=(n+l)u+ 
n(n+ 1) -d= 

2 
q(u+u+nd) (arithmetic progression) 

j-0 
n 

x sin(a+jb)=sin(a+ 5 p)sin(“cIIp/sin;, 
j=O 
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i COS(a+j@)=coS(a-t 5 /3)sinv /sin:, 
j-0 

2 cosec24x=cot(ol/2)-cot2%. 
j=O 

(II) Convergence Criteria for Positive Series X a, 

In the present Section II, we assume that a, 2 0. 
Cauchy’s criterion: The series converges when lim sup fi < 1 and it diverges when 
limsup*> 1. 
d’Alembert’s criterion: The series converges when lim supa,+,/a, < 1 and diverges when 
liminfa,+,/a,> 1. 
Raabe’s criterion: The series converges when lim inf n [ @,/a,+,) - l] > 1 and diverges when 
limsupn[(a,/a,+,)- l] < 1. 
Kummer’s criterion: For a positive divergent series C( l/b,), the series Z a, converges when 
liminf[(bnan/un+,)-b,,,] >O and diverges when limsup[(b,a,/a,+,)-b,,,] <O diverges. 
Gauss’s criterion: Suppose a,/a,+l = 1 + (k/n) + (on/n”), where i > 1 and { 0,) is bounded. 
Then the series C a, converges when k > 1; and diverges when k < 1. 
Schliimilch’s criterion: For a decreasing positive sequence aJ0, let n, be an increasing sequence 
of positive integers and suppose that (n,,, - n,+,)/(n,+, -n,) is bounded. Then the two series 
Z n, and C(n,+l -n,)~,~ converge or diverge simultaneously. 
Logarithmic criterion: For a positive integer k, we put 

log,x~log(log,~, x), log, x=logx. 

Then for sufficiently large n we have 
The first logarithmic criterion: If 

a,- l/(nlog, n...log,-, n(log,n)P) 
< 0, p > 1 then I: a, converges, 

2 0, p < 1 then X a, diverges. 

The second logarithmic criterion: If 

-%+I 
--- .: 

low 
a, 1 log,(n+ 1) ... logl::::;: 1) ( lo$,:;Z 1)) 

GO, p>l then Za, converges, 

>o, p<l then Za, diverges. 

(III) Infinite Series 

iz, g = s (Leibniz’s formula), 

g (29! 1 r 
-=- $-log(l+f)) i;-o 22’(i9* 2i+ 1 2 ’ = C (C is Euler’s constant). 

Putting 

S(n)= $ $, a(n)= f ___ 
m (-,)(-I m (-I)‘-’ 

i=l i=l &n3 B(n’=;z, i” ’ E(n)=i?, (2r-1)“’ 
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we have 

s (2n) = gB2n, a(2n) = (2;(; ‘;“n B2,, 
n ! 

P(2n)= w1-1h2”B r2n+l 

(2n)! 2n7 eon+ l)= 22”+2(2n)! E 2n. 

where B, is a Bernoulli number, and En is an Euler number. 

{(2)=a2/6, {(4)=~~/90, {(6)=~+/945. 

(Y (2) = r2/8, (Y (4) = r4/96, a(6) = &/960. 

P(2)=n2/12, p(4)=7r4/720, ,8(6)=31n6/30240. 

~(1)=71/4, ~(2)=0.915965594177219 015054603514932... (Catalan’s constant), 

e(3)=7r3/32, e(5)=5$/1536, e(7)=611r7/92160. 

(IV) Power Series (- 339 Power Series) 

(1) Binomial Series (1 + xy = ~~=e g 
( > 

xi. This converges always in Ix/< 1. If (Y > 0, it converges 

in - 1 < x $ 1, and if - 1 < (Y < 0, it converges in - 1 < x < 1. When (Y is 0 or a positive integer, 
it reduces to a polynomial and converges in 1x1~ cc. 

c = 2 (- lY(2i)! x; (IX,< 1), 
i=O (2i- l)22i(i!)2 

* = i!. ‘;2;;i,:;;Ji xi (I-4 < 1). 
I. 

(2) Elementary Transcendental Functions (- 13 1 Elementary Functions). 

eX=expx= 2 $= lim (I+:)‘, 
i=. I. fl+m a”=exp(xloga) (1x1 <co). 

m (-$1 
log(l+x)= x 7x1 (-l<x<l), logx=25 -‘(“-‘)‘i+r 

i=. 2z+l x+1 (O<x<w). 
i=l 

2i (Ix, < 1 
co. 

m 22’(22’- 

tanx= 2 
lM2, 

i=l (2i)! 
x2’-’ (InI<;) (Bi is a Bernoulli number), 

(E, is an Euler number), 

cosecx=l+ 1 K. 
X 

m (2”-2)B2ixzi-l (o<lxl< ) 
i=l (2i)! 

m (2i)! x2i+l 

arcsinx= x -~ m (WY zi+, 

i=o 22’(i!)2 2i+l (Ix’ ’ ‘)’ 
arctanx= ;?. 2i+lx (I-4 6 ‘1. 



App. A, Table 10.V 
Series. 

1760 

(V) Partial Fractions for Elementary Functions 

tanx= $ 8x 

n=o (2n+ l)*?i’-4x2’ 

OY (-1)“(2n-1)n 
secx-4 2 

n=, (2~1)?+4x*’ 

cotx=$+2x 2 +, 
n=l x*-n 

* (-1)” 
cosec x = ++2x 2 ___ 

n=, x 2 $2’ -n 

cc 

sec*x= 2 
1 

n=--m [x+((2n:‘)n,2)]2~ cosec2x=n=~ca (x+n?iq2 

(VI) Infinite Products (- 379 Series F) 

$,A=- 1 (Wallis formula), 

(C is Euler’s constant). 

j,(l-&)(1+&)=VG /r(1+$($-;). 

fll/(l--p-‘)={(s) (prangesoverallprimenumbers,s>l), 
P 

I” (I--&)=%. 5 cos$=s$+ 5 (1- (2n~;)b’)=cosx. 
PI-1 n-1 ?I==1 

For )q\<l, putting q,= fi (l+q’“), q2- E (l+q*“-‘), qs- z (l-.q2nr1), 
n=l ?I==1 n=l 

m 

q4= n (1-q’“) we have q,q2q3= 1. 
n=l 

Further, putting q = eim, we have the following formulas concerning a-functions (-- 134 Elliptic 
Functions): 

Q4 (0, T) = q4q:, 9, co,71 = 2q”4q,q:, 93 (0,7) = 444:, 8; co,71 = 2nq”4q:. 

11. Fourier Analysis 

(I) Fourier Series (- 159 Fourier Series) 

(1) Fourier coefficients a0 = k i’j(x) dx, a, = i ~uf(x)cos y dx 

2 
b,, = - 

I a 0 

‘j(x)sinE dx. 
a 

m 
Fourier cosine series a,+ 2 a,cosy = 

( 

f(x) (O<x<ah 

n=l d-x) (-a<x<O). 

Fourier sine series -ipx) ~-~~~~b) 

The next table shows the Fourier coefficients of the functions F(x) directly in the following 
manner from a given function f(x) on the interval [0, a]. For x in [ - a, 0] and when the cosine 
series {a,) is in question, we setf(x) =f( - x ) , and when the sine series {b,} is in question we 
setf(x) = -f( - x). Thusf(x) is extended in two ways to functions on [ - a,a]. The functions 
F(x) are the periodic continuations of such functions. We remark that the sum of the Fourier 
series given by the Fourier coefficients in the right hand side has, in general, some singularities 
(discontinuity of the function or its higher derivatives, for example) at the points given by the 
integral multiples of a. We assume that p is not an integer. 
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f(x) a0 a, (n=1,2, . ..) b,, (n=l,2,...) 

1 1 

; 

a2 
3- 

eka-1 
ka 

sin pl.n 
P” 

1 -cosp 
w 

1 

0 

[l+(- 1)“+qs 

[I+(-1)“+‘]2a/nn 

X (- l)“+lg 

X2 

ekx 

(- lY$ 
2ka[(-l)neka-l] 

k2a2+ n’~= 

(-l)+-[I+(-l)“t’]$ 

2na[l-(-l)“]ek” 

k2a2+n2n2 

case 

2 [<- l)“COS/LV l] 
- 

a n p2-n2 

sin5 
2 ~[l-(-l)nCOS~n] 
- 
71 jL2- n2 

(-1)2E+ 

l-h2 
1-2Acos(sx/a)+h= 

2h” (IAl < 1) 

hsin(7rx/a) 
l-2Acos(ax/a)+X= A” (IAl < 1) 

B2m(x/2a) 0 (- l)m+‘2(2m)!/(2n?r)2 

B 2m+ L(x/u) (- l)m+‘2(2m + 1)!/(2n#m+’ 

logsin(ax/2a) - log2 -l/n 

(1/2)cot(5Tx/2a) l(1) 

Note 
(l)The Fourier series does not converge in the sense of Cauchy, but it is summable, for example, 
by the Cesko summation of the first order. 

(2) 5 (-1)“-lEy m sinnx 1 

n=l 
=log(2cos~) (-a<x<?r), nz, yy-= #r-x) (O<x<277). 

m cos(2n - 1)x 
2 2n-1 = $oglcot$I (O<X<2T, XfTf), 

n-l 

m sin(2n - 1)x x (O<x<n), 

n=l 
2n-1 = i 

n/4 
- a/4 (%< x < 27r). 

O” cosnx 
2 

n-1 
--=$(x-*)2-~ (O<x<2a), 

n2 

m sinnx 
22 

n-1 
p= -xlog2-~xlog(sin~)dt (O<x<2a). 

n2 

5 $cosnx=eYcosXcos(usinx)-1, a!, $sinnx=e’coSXsin(asinx). 
n-1 

$-l~-~~=w-I (--D<x,<m), 
2a sman 2a2 

gl(- lp?$P$ = s (-s<x<s). 

In the final two formulas, we assume that a is not an integer. 

(II) Fourier Transforms (- 160 Fourier Transform) 

The Fourier transform P[f] and the inverse Fourier transform F[g] for integrable functions f 
and g are defined as 
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2q-f(x)]=sqfJ(~)=(27c-“‘* 
s 

Rnf(x)e-iX~dx, 

F[g(cg]=qg](x)=(2n)-“‘2 
s 

s(5kix’d5> x5=x,5,+x,5,+...+x,5.. 
R” 

In some textbooks the factor (27~)“/’ is deleted or the symbols i and -i are switched when 
defining 5 and @. However, conversion of the formulas above to ones due to other definitions 
is straightforward. These transforms are also defined for some nonintegrable functions, or even 
more generally for ttempered distributions. The Fourier transform 5 and the inverse Fourier 
transform @ defined on the space of tempered distributions Y’= Y’(R”) are linear homeomorphic 
mappings from Y’ to itself. Useful formulas of these transforms are given in the table below, 
wherecc=(ol,,a, ,..., a,)(ccj=0,1,2 ,... ),laJ=cc,+a,+...+cr,,CistEuler’sconstant,I~~C,and 
z, ={mEZ(m~0}. 
Case 1. n = 1. First we explain the meaning of the symbols appearing in the table: 

x+ = max(x, 0) (the positive part of x), 

x- = max( - x, 0) (the negative part of x), 

x: and x! are understood in the sense of finite parts (- 125 Distributions and Hyperfunctions), 

(x + it+ = exp[1 Log(x + k)] (E # 0; Log is the principal value of log) 

=(~~+~~)‘/~exp[iiArg(x+ie)] (-x<Argz<n), 

(x + i0)” = lim (x * ie)” (limit in the sense of distributions). 
EL0 

Then the following formula holds: 

(x*iO)‘=x$ +eki”“xl 

Pfx”=x,“+(-l)“x”(moZ) (Pf is the finite part). 

In the special case m= -1, Pfx-’ coincides with Cauchy’s principal value p.v.x-i. 

T(E~“) 

w 
P(x) (polynomial) 

p.v. l/x 
Pfx-” 

4 

x: 
-In x+ 

Xl 

X!! 

(x + iO)l 

(x - i0)” 

(x f qrn = x” 

x-‘loglxl 
e@/u 

i 

eCax (x>O) 
0 (XGO) 

PCTI (E V 

&” 
~Wi~W) 

I[ 2 isgn 

~[(-i)“/(m-l)!]r”-‘sgn~ (m~N,2) 

w+ l)Ce-‘“‘“+l”25-“-l ~ + +ei~(~+lv2~~A-l] 

[ 

w+ 1) -in(l+l,,*(( +io)-“-l 
=yzTe 1 @c+Z) 

(im/~)[n~c”‘-i(-l)mm! Pft-‘-‘I (mEZ+) 

[J2n ei”“‘2/r(-n)]<;A-1 (Igz,) 
[JIG e-inA’2/r( -l)]l:A-l (Aqz,) 
&ii i”6’“) (mGZ+) 

Jn/2 isgnt~(Cflogl50 

Ja/2 emnSzi4 (a > 0) 
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T (EY”) 

X2+2 
log- 

x2+bZ 

arctan(x/a) 

sin ax 

Ix\‘-’ 

cos ax 

Ix\‘-” 

sin ax 

x 

1 

l/(a2-xy+“” (Ixl<a) 

0 (1x174 

i 

0 (Ixl-+ 
1/(x2-az)v+‘1i2) (Ixl>a) 

1 
(X2 + a2)v+wz) 

--------K,(am) (a>O,b>O) 

-@(e-“b?l~l) (a>O,b>O) 
141 

-Jlr/2isgna.(e -“‘li;‘/() (a~R,a#0) 

(v&Z) 

1r((I/2)-v) g “J-,(ajtj) 
Ji 0 

(Reu<l/2, a70) 

(-1/2c:Revc1/2, a>O) 

%.b Kl y ____ - 
0 r(v+(1/2) 2a 

K,(al<I) (Rev>-l/2, a>O) 

Case2.n>1.Letr=Jx:+x:+...+X,2andp=~r:+~~+...+r,2,wherex=(xi)ER”and 
E, = (&) E R”. If fc L, (R”) depends only on r, then 9[jJ depends only on p and is expressed as 

The constant C in the table stands for Euler’s number. 

T&Y”) 

&4 
P(x) (polynomial) 

Pfr” 

r 2m 

pffn-2m 

(1 +r’)” 

(l+r’)” 

Pfr”logI 

r2*logr 

T st[T](EYy 

(27r)“‘Z 
(2n)“/‘P(i8/8&5([) 

1+-n-2z ) + 

(27~)“‘~( -A)“&lf) (meZ+) 

(-l)mpZ” 
2(“i2~+2m13(n/2)+m)m! 1 WZ+) 

P-~(n'2)+11K~,,*)+l(P) 
2-“-‘I( --a) (GZ+) 

(27r)‘@(l -A)“S(l) (msZ+) 
2(n12)+Ar((n + 1)/2) 

r( - w) 

Y((n+i)/2)+Jr’(-A/2) 
r((n+1)/2) 2 r(-112) 1 
@42Z+, 1$-n-22+) 

f-l)m-12(n/Z)+Zm-1 m! r((n/2)+m)Pfp-“-2m 

The Fourier transform mentioned above is a transformation in the family of complex-valued func- 
tions or distributions. Similar transformations in the family of real-valued functions are frequently 
used in applications: 
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Fourier cosine transform f,(u) = 
s 

m F(t)cos ut dt. 
0 

Inverse transform 

s 

m 
Fourier sine transform f,(u) = F(t)sin ut dt. 

0 

Inverse transform i omf,(u)sinutdu= 
s 

F(t) (t > Oh 
-F(-t) (t<o). 

The Fourier transform can be expressed in terms of these transforms. For example (in IS’), 

mflb)= l 2n 
J- s 

om[f(t)+f(-t)]cosutdt-~ om[f(t)-f(-t)]sinutdt. 
r s 

f’(r) 

1 (O<r<a) 
0 (Q<f) 

t-1 

ta-’ (O<a< 1) 

l/(a2+ t*) 
e - at 

eehr2 (ReX > 0) 

e -AI; 

sinut 
- (a>O) t 

tanh(mt/2) 

sech(mt/2) 

J,(r) (Rev > - 1) 

Jd4 

No(t) 

K,(t) 

Notes 

f,(u) 

sinuu 
u 

(diverges) 

rya)cos(ma/2)u-” 

ne -+ 20 / 

u/(u’+ 22) 

$$Ci e - u2/4A 

( 
77/2 (O<u<u) 

0 (U<U) 

sech u 

I 

cos( v arc sin u) 

67 

_ (u-Gc)” 
sinE 

vlu2-1 2 

1 0 

- 
Ai 

T/26 1+ u2 

1 - COSUU 
U 

(n/Wgn u 

E(a)sin(ncY/2)u-” 

[e-O”Ei(uu)- e”“Ei( - ~u)]/u(~) 

u/(u2+ 2) 

e-U2/4Arp(u/2VT )/\/X (3) 

G$iX (u/4X)e-U’!/4A 

cosech u 

sin( v arc sin u) 

d/1- 
(O<U<l) 

(u- \luz-l)” 
vlu2-1 c-y (1 c u) 

0 (O<u<u) 

l/&*-u* (a< u) 

2 arc (o<u<l) 
?r Vl-u2 

2 log(u-Vu*-1 ) 

Q vu2_1 
(l<u) 

(arc sinh u)/ \/ I+ u2 

(2) Ei is the exponential integral function (- Table 19.11.3, this Appendix). 

(3) We put q(x)= ~xe’2dr. 

12. Laplace Transforms and Operational Calculus 
(I) Laplace Transforms (- 240 Laplace Transform) 

Laplace transform v(p)= Sowe -P’F(t)dt (Rep >O). 

Inverse transform (Bromwich integral) & ~ctimep’V(p)djr = F(f) (t >O), 
C--iCC 0 (f <Oh 
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F(r) 

1 

l(f-a)= 
i 

0 (O<r<a) 

1 (a<t) 

[x/a] (integral part) 

ram’ (Rea>O) 

e-at 

e-“‘ra-’ (RecY>O, a>O) 

e-“F(t) (a>O) 

(1 --e-y/t 

(W 
l/Ze-x’/4t 

logt 

sin at 

cosat 

sin(xV/; ) 

r -‘/2cos(x~/1) 

t-‘sinxf 

x-‘(l-cosax) 

sinh at 

cash af 

V(P) 

l/P 

eewlp 

I/p(@- 1) 

U4/P’ 

ll(p+a) 

V(P + a) 

log(1 +p-‘) 

p-‘/2e-“G (x >O) 

- oogp + 0/P(‘) 

al(p2+ a2) 

p/(p2+a2) 

G x --e -x2,4* 

2 p3/2 

vjnlp c-x=/4P 

arc tan(x/p) 

f w1+ GJ2/P2,1 

al(P2- a2) 

Pl(P2- a2) 

Notes 
(1) C is Euler’s constant. 
(2) L,(t) is a Laguerre polynomial. 
(3) H,,(t) is a Hermite polynomial. 
(4) (2n + l)! ! = (2n + 1)(2n - 1)(2n - 3). . .5.3.1. 

F(r) 

J,(r) (Rev > - 1) 

iJ,(at) (Rev >O) 

t”J,(af) Rev> -i 
( > 

I~/~J~(x\/; ) 

(Rev>-1) 

Jo(t) 
J,(xvt ) 

No(t) 

L”(t)(2) 

t =Lp( 1) 

H 2n+ IN/; Y3) 

V(P) 

(\/l+pi -p)’ 

VI +p2 

(G&7 -p)’ 

vu” 

(2a)Mv+(1/2)1 
\/;; (P2+a2)‘+(“*) 

x” -c-X=/4P 

2?Jv+’ 

(1 +p2)-‘/2 

e -“‘/4P/p 

2 log(~l+p2 -p) 
- 
77 di%pz 

1 P--l ” -- 
( 1 P .P 

Y(a+n+l) 1 p-l n 
n! -zi--- 

P ( 1 P 

T 

(I-p)” (4) 
; (2n+l)!!- 

p “+(3/a 

(II) Operational Calculus (- 306 Operational Calculus) 

Heaviside function (unit function) l(t)= 0 (t<O) 
1 (t>/O). 

Dirac delta function (unit impulse function) 8(t)= li~ip(t+e)-l(t-e)]. 

When an operator O(p) operates on l(t) and the result is A (t) we write @)1(t) = A (t). 
In the following table (i) of general formulas, we assume the relations !C?,(p)l(t)=A,(r) 

(i= 1,2). 

Carson’s integral Q(P)=PJTome -J”A (t) dt (Rep > 0). 

Laplace transform Q(P) 
V(p)= p = ~“CptA(t)dt. 
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(i) General Formulas (i 

Q(P) 
4(P) + Q2(P) 

aWp) 
P&(P) 

+6(P) 

Wap) 

[P/(P + a)lfh(p + a) 

$WP)MP) 

- 
9 

l- 

A (0 Q(P)=Pv(P) 

A l(l) + AZ(~) P 

aA ,(4 I/p” (n=O, 1,2, . ..) 

A ,(W(r) + A;(t) p/(p+ a) 

P2/(P2+ a’) 

s o’A ,(lW aPl(P2+ a2) 

A,(t/a) 

e-“‘A,(t) (Rea > 0) a,+ % +: + . . . 
P 

s 

I 
A,(T)A~(z-T)~T 

0 

= 
I 

k ,(t - T)A~(T)~T 
0 

T  

Examples 

A(t) 
S(l) 

(t”/n!)U t) 

(eea’)l(t) 

(cosat)l( t) 

(sinat)l(t) 

( 

I pz 
~,+a,~ +a,F- + . . . 

) 
l(t) 

$, $@kt-- 1)1(t) 

=R(0)l(t)+k~L~e”r: 

13. COtlfOiTlla~ Mappings (- 77 Conformal Mappings) 

Original Domain Image Domain Mapping Function 

)zj < 1 (unit disk) 

Imz > 0 (upper half-plane) 

Imz > 0 (upper half-plane) 

O<argz<a 
(angular domain) 

(z(< l,Imz>O 
(upper semidisk) 

O<argz<o, 

I4 < 1 
(fan shape) 

z-p a<arg- 
z-4 <P 

(circular triangle) 

O<Imz<q 
(parallel strip) 

Rez<O, 
O<Imz<q 

(semiparallel strip) 

y2> 42(x + 2), 
z=x+iy, c>o 

(exterior of a parabola} 

y2 < 4c2(x + c2), 

z=x+iy, c>O 
(interior of a parabola) 

14 < ’ 
z - zo 

w= E- 
l - &)z ’ 

jze( < 1, 1.51 = 1 (general form) 

I4 < 1 
z - zo 

W-E-, 
z - &j 

Imz, > 0, I&l= 1 (general form) 

Imw>O az+b w=- a,b,c,darereal; ad-bc>O 
cz+d’ 

(general form) 

Imw>O w=zn/a 

Imw>O 

Imw>O 

O<argw<y 

Imw>O 

Imw>O, IwI<l 

Imw>O 

Imw>O 

w = enr/l) 

w = en4” 

w=ti -ic 

\r w=isecE 
2ic 
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Original Domain Image Domain Mapping Function 

z=x+iy, c>l 
(exterior of an ellipse) 

IwI>c 

x2 Y2 <4 

cos=a sin2a 

z=X+iy, 
O<a<n/2 

(exterior of a hyperbola) 

Imw>O 

x= Y2 >4 

co& sin2a 

x>o, 
z=x+iy, 

o<a<mp 

(right-hand side interior 
of a hyperbola) 

Imw>O 

lzl<l 
Slit domain with boundary 

/Rewl<2, Imw=O 

lzI< 1 
Slit domain with boundary 

IwI > l/4, argw=X 

Slit domain with boundary 

Id< 1 
/WI > 1/41/p 

argw=X+(2jr/p), 
j=o, . . ..p- 1 

- n/2 < Rez < 71/2 Slit domain with boundary 

(parallel strip) lRewl> 1, Imw=O 

- 7r<Imz<7r Slit domain with boundary 
(parallel strip) Rew< -l,Imw=+a 

Arbitrary circle 
or half plane 

Arbitrary circle 
or half-plane 

Interior of an n-gon 

Exterior of an n-gon 

Imz>O Interior of an 
equilateral triangle 

Imz>O Interior of an 
isosceles right triangle 

1 )$I=- 
2i 

w= z+Gz 1 
2 ’ 

z=w+; 

w= e-ia 

( 

z + $q =(r-*4 

2 1 

[(z+yi)~ 

+ ( 
z-v/22_4 $ 

2 
) 1 

1 
w=z+- 

Z 

Z 
w= 

(1 +e-l”z)2 

Z 
w= 

(l+e-iPXzP) 2/P 

w=sinz 

w=z+e’ 

w=c * 
ID 

i~,(t-zj)‘ldt+c~ (CfO, 

c’ are constants), where the inverse image 
of the vertex with the inner angle ojr (j = 
1 ,..., n)isz=z,.Whenz,=co,weomitthe 

factor (t - z,)*n - i ( Schwarz-Christoffel 
transformation) 

w=c 
s 

=(t-p)-2 fi (t-zr,)‘-w+C 
j=l 

(c#O, c’ are constants), where the inverse 
image of the vertex with the inner angle ojr 
(j= 1 , . . , n) is z = zj, and the inverse image 
of cc is z=p 

W=J= &qdt 

s 
z 1 

w= 
0 $qiq 

dt 
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Original Domain Image Domain Mapping Function 

Imz>O Interior of a right triangle 
with one angle r/‘/6 

IA< 1 
O<Rez<w,, 
O<Imz<+/i 

(rectangle) 

-K<Rez<K, 
O<Imz< K’ 

(rectangle) (1) 

Interior of a 
regular n-gon 

Imw>O 

Imw>O 

u<lzI<l 
Imz<O 

(upper half- 
ring domain) 

logq<Rew<O, 
O<Imw<s 
(rectangle) 

w= o=(l-‘~)-*%~ 
s 

w = P (z12~,,24 ( B is the Weierstrass B- 

function) 
w =sn(z,k), 

1 
dl 

(1 - t2)( 1 - kT) 

(sn is Jacobi’s sn function) 

w = logz 

IA< 1 

Imz>O 

IA<1 

Imz>O 

WC 

I 
1 

Interior of an t-5-&(1-t) -f+t(,-,++t, 

equilateral circular triangle 0 

with inner angle The vertices are the images of 

r/k, l<k<cc z = 1, e*ni/3, and e&i/3; and 

dw 
1 I 

I’[(5/6) + (1/2k)]I(;!/3) 
z z-o= I’j(1/6)+(1/2k)]I(4/3) 

Interior of a circular 
I 

1 

triangle with inner 0 I- 

I+m;#+r(l- &q.yl +-Vdt 

angles no, $3, rry, w= 

cr+P+y<lQ) s olt- I+=: + 
B + t) 

-?;I;@+l(l-t+zf)-‘-m:8-7dt 

ITI> 1, 
- 1/2<ReT<O 

“‘+“‘<,, 
A* B* 
w=u+v, A>B>O; 
(interior of an ellipse) 

interior of a 
circular polygon 

{w;z,,$qJz=R(z) 
(R (z) is a rational function) 

Z 
s 

‘t-t-t(&t) 
-!+I -t+f(,-z3t) 6 a‘ dt 

0 

- _  ̂1mJ >U 
J=J(T), 7=03/o,, .I= g:/(g:-27&)(the 
absolute invariant of the elliptic modular 
function); J(e2”i/3)=0, J(i)= 1, J(m)= cc) 

IT+ l/21 < l/2, 
-l<ReT<O 

ImA< 

h=X(7), 7=03/w1,X=(e2-e3)/‘(el--e3); 

J(T)=-+ [ 
A(T)~-X(T)+ 112 

27 X(T)~[X(T)-~]~ ' 

Notes 

A(-l)=co, X(O)= 1, h(co)=O 

(1) K, K’, k’ are the usual notations in the in the theory of elliptic integrals: 

1 
4 

1 
dt, k* + k-l* = 1, 

(1 - t*)( 1 - k*t*) (l-t2)(1-kY) 

(2) When a + /3 + y = 1, the circular triangle is mapped into the ordinary linear triangle by 
a suitable linear transformation, and we can apply the Schwarz-Christoffel transformation. 
When (Y + j3 + y > 1, we have a similar mapping function replacing the integral representa- 
tions of hypergeometric functions in the formula by the corresponding integral representa- 
tions of the hypergeometric functions converging at (Y, p, and y. 
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14. Ordinary Differential Equations 

(1) Solution by Quadrature 

a,b,c, . . . are integral constants. 

(1) Solution of the First-Order Differential Equations (- 313 Ordinary Differential Equations). 
(i) Separated type dy/ dx = X(x) Y(y). The general solution is 

s Y 4 -= 
Y(Y) s xX(x)dx+c. 

(ii) Homogeneous ordinary differential equation dy / dx =f( y / x). Putting y = ux, we have 
du/dx =[f(u)- u]x, and the equation reduces to type (i). The general solution is 

x=cexp[ I’&] (u= G). 

(iii) Linear ordinary differential equation of the first order. dy/dx +p(x)y + q(x) = 0. The general 
solution is 

Y =[c-14(x)P(x)dx]/P(x), 

where 

P(x)=exp[ /p(x)dx]. 

(iv) Bernoulli’s differential equation dy/dx +p(x)y + q(x)ya=O (af0, 1). Putting z =ylmcr, the 
equation is transformed into 

dz/dx+(l-a)p(x)z+(l-a)q(x)=O, 

which reduces to (iii). 
(v) Riccati’s differential equation dy/dx + ay* = bxm. If m = - 2,4k/(l- 2k) (k an integer), this 
is solved by quadrature. In general, it is reduced to Bessel’s differential equation by uy = u’/ u. 
(vi) Generalized Riccati differential equation dy/dx +p(x)y’+ q(x)y + r(x)=O. If we know one, 
two, or three special solutions y =yi(x), the general solution is represented as follows. When y,(x) 
is one known special solution, 

y=v,(x)+PcX)/[~p(x)p(x)dx+c], 

where 

P(x)=exp 
[ 

-I{q(x)+2p(x)yl(x)}dx 1 
When y,(x), y*(x) are the known solutions, 

Y -Yl (xl 

y-yz(x) =cexp 
dx){ydx)-yh)}dx . 1 

When y,(x), yz( x), ys( x) are known solutions, 

Y-Y,(x) Y3(x)-YI(x) 

Y-Y*(X) =c Y3(X) -Yz(X) . 

(vii) Exact differential equation P(x,y)dx + Q (x,y)dy =O. If the left-hand side is an exact 
differential form, the condition is aP/ ay = aQ/ ax. The general solution is 

sPdx+j(Q-$/Pdx)dy=c. 

(viii) Integrating factors. A function M (x,y) is called an integrating factor of a differential 
equation P (x,y)dx + Q (x,y)dy = 0, if M (x,y)[P (x,y)dx + Q (x,y)dy] is an exact differential 
form dq(x,y). If we know an integrating factor, the general solution is given by cp(x,y)= c. If we 
know two independent integrating factors M and N, the general solution is given by M/N = c. 
(ix) Clairaut’s differential equation y = xp +f(~) (p = &/dx). The general solution is the family 
of straight linesy = cx +f(c), and the singular solution is the envelope of this family, which is 
given by eliminating p from the original equation and x +Y(P) -0. 
(x) Lagrange’s differential equation y = xv(p) + q(p) (p z dy/dx). Differentiation with respect 
to x reduces the equation to a linear differential equation [q(p) -p](dx/ dp) + cp’(p)x + I/J’(~) = 0 
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with respect to x, p (see (iii)). The general solution of the original equation is given by eliminating 
p from the original equation and the solution of the latter linear equation. The parameterp may 
represent the solution. If the equation p = q(p) has a solutionp =pO, we have a solutiony =p,,x + 
JI(pe) (straight line). This solution is sometimes the singular solution. 
(xi) Singular solutions. The singular solution of f(x,y,p) = 0 is included in the equation resulting 
from eliminatingp fromf= 0 and af/ ap = 0, though the eliminant may contain various curves 
that are not the singular solutions. 
(xii) System of differential equations. 

eq. (1) dx:dy:dz=P:Q:R. 

A function M(x, y, z) is called a Jacobi’s last multiplier for eq. (1) if M is a solution of a partial 
differential equation (aMPI&) + (aMQ/ay) + (aMR/az) = 0. If we know two independent last 
multipliers M and N, then M/N = c is a solution of eq. (1). If we know a last multiplier M and 
a solution S= a of eq. (l), we may find another solution of (1) as follows: solving f= a with re- 
spect to z and inserting the solution into eq. (l), we see that M(Qdx - Pdy)/f= is an exact differen- 
tial form &3(x, y, a) in three variables x, y, and a. Then G(x, y,f(x, y, z)) = b is another solution of 
eq. (1). 

(2) Solutions of Higher-Order Ordinary Differential Equations. The following (i)-(iv) are several 
examples of depression. 
(i)f(x,y@),y@+‘), . . ..y(“))=O (O<k < n). Setytk)= z; the equation reduces to one of the (n - 
k)th order in z. 
(ii) ~(Y,Y’,Y” , . . . ,y (“)) = 0. This is reduced to (n - l)st order if we consider y’ =p as a variable 
dependent on y. 
(iii) y” =f(y). The general s01ut+~ is given by 

x=a+- 
G J 

2 f(y)dy+b 1 dr. 

We have a similar formula for y(n)=f(y(“-2)). 
(iv) Homogeneous ordinary differential equation of higher order. If the left-hand side of I;(x,y, 
y’, . . . ,y (“I) = 0 satisfies the homogeneity relation F(x, py, py’ , . . . . py(“))=paF(x,y,y’, . . . . y(“)), the 
equation is reduced to one of the (n- l)st order in u by u=y’/y. 

If FsatisfiesF(px,p’y,p’-‘y’, . . . . pi-ny(“))=paF(x,y,y’, . . . . y(“)), thenu=y/x’, t=logx 
reduces the equation to one of type (ii) not containing t. 
(v) Euler’s linear ordinary differential equation. 

p”(X)Xny(“)+pn-,(X)X”-ly(n-‘)+ . ..+Pl(x)xY’+Po(x)Y=q(X) 

is reduced to a linear equation by t = logx. 
(vi) Linear ordinary differential equations of higher order (exact equations). A necessary and 
sufficient condition that L[ y]z ZTcOpj(x) y (j)= X(x) is an exact differential form is 
Z;,,,( - l)$y)=O, and then the first integral of the equation is given by 

n-l n-j-1 

2 2 (-l)“p~~j+,y”‘=IX(x)dx+c. 
j-0 k=O 

(vii) Linear ordinary differential equation of higher order (depression). 

LLylr i: pj(x>y”‘=x(x). 
j=O 

If we know mutually independent special solutionsy,(x) , . . . ,y, (x) for the homogeneous linear 
ordinary differential equation L[ y] = 0, the equation is reduced to the (n - m)th linear ordinary 
differential equation with respect to z by a transformation z = A ( y), where A ( y) == 0 is the mth 
linear ordinary differential equation with solutions y,(x) , . . . ,y,(x). For example, if m = 1, the 
equation is reduced to the (n - l)st linear ordinary differential equation with respect to z by the 
transformation 

Also, if n = m = 2, the general solution is 

Y=C,Y,+CZYZ-YI / Dzdx+y, Tyldx, s 

where T(x)=X(x)/[y, (x)y;(x)-y2(x)y;(x)]. The denominator of the last expression is the 
Wronskian of y, and y2. 
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(viii) Regular singularity. For a linear ordinary differential equation of higher order, 

eq.(l) x”y(“)+x”-‘pl(x)y(“-‘)+ . . . +~~(x)y=O, 

the point x = 0 is its regular singularity if p,(x), . . . ,p,(x) are analytic at x = 0. 
We put po= 1 and 

If p is a root of the characteristic equation&(p) =0 and p+ l,p+2, . . . are not roots, we can 
determine the coefficients c, uniquely from 

m 
eq. (2) 2 q,L-,(P+v)=O (m= 1,2, . ..>. 

v=o 

starting from a fixed value c,, (#O), and the series y = x~Z~~o=ocVxy converges and represents a 
solution of eq. (1). If the differences of all pairs of roots of the determining equation are not 
integers, we have n linearly independent solutions of eq. (1) applying the process for each 
characteristic root. 

If there are roots whose differences are integers (including multiple roots), we denote such a 
system of roots by pi, . . ..pI. We arrange them in increasing order, and denote the multiplicities 
of the roots bye,, . . . . e,, respectively. Put qk = pk -pi (k = 1,2, . . . , I; 0 = q, < q2 < . . . < 4,). Take 
N > q, and a constant c (# 0). Let X be a parameter, and starting from cc= co(X)- eIIz=, fo(X + 
k), we determine c, = c,(h) uniquely by the relation (2). Putting 

mk-ek+ek+l+ . . . +e, (k= 1, . . ..I) forhin m,+,<h<m,-1, 

the series 

eq. (3) 

converges and gives e, independent solutions of eq. (1). Hence for k = 1, . . ,I, we may have 
C’ k- ,ek = m, mutually independent solutions of (1). Applying this process to every characteristic 
root, we have finally n independent solutions of (1) (Frobenius method). 

In the practical computation of the solution, since it is known to have the expression (3) we 
often determine its coefficients successively by the method of undetermined coefficients. 

(3) Solution of Linear Ordinary Differential Equations with Constant Coefficient (-- 252 Linear 
Ordinary Differential Equations). Let cui, ojk be constants. We consider the following linear 
ordinary differential equation of higher order (eq. (1)) and system of linear ordinary differential 
equations (eq. (2)). 

eq. (1) i: qy(‘)=X(x). 
i=O 

eq. (2) yj= i ajok+Xj(x) (j=l, . . ..n). 
k=l 

(i) The general solution of the homogeneous equation (cofactor) is given by the following 
formulas: 

for eq. (1) y=xjexp&x (j=O,l,,..., e,-l;k=l,..., m), 

for eq. (2) Yjtx)= 2 pjk(x)expAkx (j-1, . . ..n). 
k=l 

where h ,, . . . ,A,,, are the roots of the characteristic equation of eq. (1) or eq. (2) given by 

eq. (1’) i aJi=O, 
i=O 

eq. (2’) det( ojk - Mjk ) = 0, 

respectively. We denote the multiplicities of the roots by e,, . . , e, (e, + . . . + e, = n); pjk(x) is a 
polynomial of degree at most e, - 1 containing ek arbitrary constants. 

If all the coefficients in the original equation are real, and the root 1, = pk + iv, is imaginary, 
then ;ik = pk - iv, is also a root with the same multiplicity. Then we may replace exp 1,x and 
exp & x by exp pk x cos v, x and exp pk x sin V~ x, and in this way we can represent the solution using 
real functions. 
(ii) Inhomogenous equation. The solution of an inhomogeneous linear ordinary differential equa- 
tion is given by the method of variation of parameters or by the method described in Section 
(2)(vii). 
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We explain the method of variation of parameters for eq. (2). First we use (i) to find a funda- 
mental system of n independent solutions y, = Q(X) (k = 1, . . . , n) by (i)). Insertingyj =: 
Cz_ ,c~(x)~~~(x) into eq. (2) we have a system of linear equations in the c;(x). Solving for the 
c;(x) and integrating, we have Q(X). 

Special forms of X(x) or Xj(x) determine the form of the solutions, and the parameters may 
be found by the method of undetermined coefficients. The following table shows somle examples 
of special solutions for eq. (1). In the table, a, k, a, b, c, are constants, p,, q, are polynomials of 
degree r, and I, is the operator defined by 

cosax.F(x)dx-cosaxJsinax.F(x)dx 1 (a#O). 

X(x) 

p,(x) 
kea* 

e”%(x) 

Condition 

X = 0 is an m-tuple root of( 1’) 
X= a is anm-tuple root of (1’) 
h= a is anm-tuple root of (1’) 

Special Solution 

x mqr(x) 
cx”e*” 

xmq,Wear 
cos( ax + b) 

sin( ax + b) 

(l’)=cp(X*)+h$(h’), and 

cp(-a*)+aQ(-a*)#0 
c,cos(ax+ b)+ c,sin(ax+ b) 

cos(ax + b) 

sin( ax + b) 

(1’) = g(Q/.f(~*) andfG*) 
is divisible by (X2 + a2)m 

(but not by (X2 + a2)m+1) 

cos(ax+ b) 
c(lJrn sin( ax + b) 

(II) Riemann’s P-Function and Special Functions (- 253 Linear Ordinary Differential 
Equations (Global Theory)) 

(1) Some Examples Expressed by Elementary Functions. A,B are integral constants. 

(x-a)‘-‘(x-b)“-‘(x-CC)“-‘dx (h+f.~+v=l). 

These are for finite a, b, c. If c = co, x - c should be replaced by 1. 

p[e op x/z[ Ae”“+B&” (a+(~‘), 
eDLX(Ax+B) ((Y=(Y)). 

=A+B e”“x”-‘dx 
I 

(a#O). 

Riemann’s P-function is reduced to Gauss’s hypergeometric function with parameters a =h + )J 
+ v, p =X + p + v’, y = 1 +X+x’ by transforming a, b, c to 0, 1, co by a suitable linear transforma- 
tion and by putting z = x-“(x - I)-py. 

(2) Representation of Special Functions by Riemann’s P-function. 
(i) Gauss’s hypergeometric differential equation x( 1 - x) y ” + [ y - (a + /? + 1)x] y’ - & = 0. 

y=P ; 

i 

1 00 
0 a x. 

1-y v-a-P P 1 

A special solution is F(a,,&y; x) (- 206 Hypergeometric Functions). 
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(ii) Confluent hypergeometric differential equation xy” -(x - p)y’ - Xy = 0. 

y=joh ,E, x/. 

A special solution is 

* r(X+k) Up) Xk 
,F,(&P;x)= 2 ___ k=() I-(h) r(=+ 

(iii) Whittaker’s differential equation y” + 
1 k (1/4)-n’ 

- 4 + x + 
X2 1 y=o. 

1 
cc 0 

y=P lk‘ 1/2+n x . 
-l/2 -k 1/2-n 1 

Special solutions are M/c,,, (X>, w,,,(X). 

(iv) Bessel’s differential equation x5” + xy’ +(x2 - v2)y = 0. 

Special solutions are J,(x), N,(x) (- 39 Bessel Functions). When m = 0, 1,2, . . , Jm-1,2(~) = 
(-l)m2m+1’2.-1’2xm-1’zdm(cos~)/d(x2)m. 
(v) Hermite’s different equation (parabolic cylindrical equation) y” - 2xy’ + 2ny = 0. 

y-‘[;p2 ,b /II. 

When n = 0, 1,2, . . . , the Hermite polynomial Hn(x)=( - l)“2-“/2ex2d”(e-xz)/dx” is the solu- 
tion. 
(vi) Laguerre’s differential equation xy” + (I- x + 1)~’ + ny = 0. 

i 

00 0 
y=P b 0 0 x’ 

1 I+;:1 -1 I 

When n = 0, 1,2, . . , the Laguerre polynomial L!,(x) = (l/n!)x-‘e”d”(x”+‘e-“)/dx” is the 
solution. 
(vii) Jacobi’s differential equation x(1 -x)y” + [q -(p+ l)x]y’+ n(n+p)y=O. 

y=P l-q q$ *El x 
1 

0 

0 0 -n I 

When n=0,1,2, . . . . the Jacobi polynomial 

G,(p,q;x)= 
r(q)x l-q(lvx)q-P d”[Xq+“-l(l-X)P+n-q] 

r(n + 4) dx” 

is the solution. 
(viii) Legendre’s differential equation (1 - x2)y” - 2xy’ + n(n + 1)y = 0. 

y=p :, -ol O” 
i 

n+l x 
0 0 -n i 

When n=0,1,2, . . . . the general solution is 

A(x2- 1)“+l?(x2- 1)” 
. 

The Legendre polynomial P,(x)=[d”{(x2- l)“}/dx”]/2%! is a special solution. 
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(3) Solution by Cylindrical Functions of Ordinary Linear Differential Equations of th’e Second 
Order. We denote cylindrical functions by C,(x) (- 39 Bessel Functions). 

Equation I Solution 

y” + 
I-2a 
-y--y’+ ( pyxq2+ 

[ 

lx=- v=y= 

X2 1 
y=o y=x”c”‘(pxy 

I-2a 
2 2 

y”+ 7 
[ 

-2fiyixY-l y’+ 

1 [ 

“‘,: ’ -&(y-2a)ixym2 y=O y=x”exp(iPxY)CV(fixY) 1 
y”+ +- 

[ 

2u(x) y’+ 1- 5 + u(x)‘- U!(X)- 1 i ~~y~o ( y =exp[ Ju(r)dx]C,(x) 
L A 

y”+ (gyp-=y =o y = vi c,,/2”(ax”) 

y" + (e2x - v2)y = 0 
y = Cp(ex) 

Y = cc Px) 
y = C,(ix) (modified 

Bessel function) 

(III) Transformation Groups and Invariants 

of a given continuous transformcation group 

be that of its extended group. 

We have 

We put 

4 
P=x’ 

d=r r=-. 
dx= 

Let (Y, /3 and y be invariants of the Oth, first, and second order, respectively. The general form 
of the diffferential equation of the first or of the second order invariant under U is given by 
@(o,P)=O (or P=F(cr)), and \I’(cu,p,y)=O (or y= G((Y,~)), respectively, where F, 49, \k, G 
denote arbitrary functions of the corresponding variables. 

Group With Infinitesimal 
Transformation U T 

0 
1 

9 

1 
0 

-Y X 

0 Y 
X 0 

X Y 
X -Y 

CL-X VY 
P V 

0 h(x) 

k(y) 0 

0 
0 

1 +p= 

P 
-P 

0 

-2P 
(v- P)P 

0 

h’(x) 

- k’(y)p= 

0 k(y) k’(y)p 

4x1 0 - h’(x)p 

0th 

X 

Y 

x=+y= 
X 

Y 

Y/X 
XY 

V/X” 
‘X - w  

X 

Y 

X 

Y 

Invariants 

1st 

P 
P 

(Y - xp)l(x +YP) 
P/Y 
xP 

P 
X’P 

x’-‘/~ orpx/y 

P 

h(x)p - h’(x)y 
1 k’(y) 

P-koX 

4x)p 

2nd 

r 
r 

r/(1 +pq3/;: 

r/Y 
x2r 

xr 
x3r 

v/x 
v-p-1 

r 

h(x)r- h”(x) y 
L + k”(y) -- 
P3 k’(y)P 

k’b)p2 ---- 
k;.) [k(y)12 

:h(x))=r+ h(x)h’(x)p 

r 1 Note 

(1) 
(1) 

(2) 
(3) 

(3) 

(4) 

(5) 

(6) 
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Group With Infinitesimal 
Transformation U Invariants Note 

4 7) 

0 4X)WY) 

xh(x) yh(x) 

Y X 

3 

h’(xMy) 
+ h(xP’(y)p 

h’(x)(y - XP 1 

1 -p= 

( 1 
p-f h(x) (&-l)W 

+ h’(x) 

x=-y= 
l-p x+y 

i-qx-y Or (1 -pTz)J/z 

(x-YP)lU +P)(x -v) 

Notes 
(1) Parallel translation. 
(2) Rotation. 
(3) Affine transformation. 
(4) Similar transformation; the equation is a homogeneous differential equation. 
(5) Linear differential equation. 
(6) Separated variable type. 
(7) When k(y)=y”, the equation is Bernoulli’s differential equation. 

Reference 

[l] A. R. Forsyth, A treatise on differential equations, Macmillan, fourth edition, 1914. 

15. Total and Partial Differential Equations 

(I) Total Differential Equations (- 428 Total Differential Equations) 

Suppose we are given a system of total differential equations 
n 

dzj= 2 Pjk(x;z)dxk (j= 1,2, . . . . m). 
k=l 

A condition for complete integrability is given by 

apjk (X;z) 
+ c azi P,[(x;Z)= 

apj, tx; z> 
+c 

@j, (x;z) 
I azi 

Under this condition, the solution with the initial condition (xy, . . , xz; zy, . . , zi) is obtained as 
follows: First, solve the system of differential equations dzj/dx, = q1 (x1,x!, . . . , x,“; z) in x1 with 
the initial condition zj(xy) = z;, and denote the solution by zj = cpj(x,). Next, considering x1 as a 
parameter, solve the system of differential equations dzj/dx, =&(x1, x2,x$, . , xt; z) in x1 with 
the initial condition zj(x4 = cpj(x,), and denote the solution by zj = cpj(x,, x2). Repeat the pro- 
cess, until we finally have zj = cpi(x,, . . . , x”), which is the solution of the original equation. Or, 
if we have m independent first integrals fj(x; z) =cj of the equation dzj/dx, = Pjl(x; z), we may 
transform the equation into duj= C;=r Qjk(x; u)dx, by the transformation uj=fi(x; z). Since the 
Qjk(x; u) do not involve x1 and the equation is a completely integrable total differential equation, 
we have reduced the number of variables. We obtain the general solution by repeating this 
process n times. 

For 

P(x,y,z)dx+Q(x,,,z>dy+~(x,y,z)dz=O 

(n = 3,m = l), the complete integrability condition is 
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(II) Solution of Partial Differential Equations of First Order (- 322 Partial Differential 
Equations (Methods of Integration), 324 Partial Differential Equations of First Order) 

Let z be a function of x and y, and 

p_=az/ax, q=az/ay, Ea2z/ax2, ssa*z/axay, tra2z/ay2. 

We consider a partial differential equation of the first order F(x,y,z,p,q)=O. 

(1) The Lagrange-Charpit Method. We consider the auxiliary equation 

dx dy dz - d! -4 -=-= 
Fp F4 pFp + qF4 

=-=-2 
4 + PF, Fy + qFz 

which is a system of ordinary differential equations. Let G(x,y,z,p,q)= a be the solution of the 
auxiliary equation. Using this together with the original equation F = 0, we obtain p = P (x,y, z, a), 
q= Q (x,y,z,a), and the complete solution by integrating dz = P dx+ Q&. If we know another 
solution of the auxiliary equation H (x,y, z,p, q) = b independent of G = a, we have the complete 
solution z=@(x,y,a,b) by eliminatinup and q from F=O, G=u, and H= b. 

(2) Solution of Various Standard Forms of Partial Differential Equations of the First Order. 
The integration constants are a, b. 
(i) f(p, q) = 0. The complete solution is z= ax + rp(u)y + b, where the function t = ~(a) is defined 
byf(t,a)=O. 
(ii) f(px, q) = 0, f(x, qy) = 0, f(p/z, q/z) = 0. These equations reduce to (i) if x = ex, y = e’, .z = e’, 
respectively. 
(iii) f(x,p,q)=O. If we can solve forp= F(x,q), the complete solution is z=JF(x,u)dx+uy+ b. 
A similar procedure applies to f( y,p, q) = 0. 
(iv) f(z,p, q) = 0. Solvef(z, t, at) = 0 for t = F(z, a). The complete solution is then given by x + 
uy+ b= Jdz/F(z,a). If we eliminate a and b from the complete solution cP(x,y,z,u,b)=O and 
8 @/ aa = a @/ ab = 0, we have the singular solution of the original equation. 
(v) Separated variable type f(x,p)=g(y,q). Solve the two ordinary differential equations f (x,p) 
= a and g(y,q)= a for the solutionsp = P(x,u) and q= Q (~,a), respectively. Then the complete 
solution is z=jP(x,u)dx+IQ(y,u)&+b. 

(vi) Lagrange’s partial differential equation Pp + Qq = R. Here P, Q, R are functions of x, y, and 
z. Denote the solutions of the system of differential equations dx : & : dz = P : Q : R by u(x,y,z) = 
a, u(x,y,z) = b. Then the general solution is @(u,u)=O, where @ is an arbitrary function. A 
similar method is applicable to 

i pj<x 

j=l 

1, . . . . x& = R(x,, . . . . x,). 
J 

If we have n independent solutions uj(x) = uj of a system of n differential equations dxj/q = 
dz/R (j-l, . . . . n), the general solution is given by @(u,, . . . , u,) = 0. 
(vii) Clairaut’s partial differential equation z =px + q y +f(p,q). The complete solution is given 
by the family of planes z = ax + by +f(u, b). The singular solution as the envelope of the family 
of planes is given by eliminating p and q from the original equation and x = - af/ap and 
Y= - af/aq. 

(III) Solutions of Partial Differential Equations of Second Order (- 322 Partial Differential 
Equations (Methods of Integration)) 

(1) Quadrature. Here cp and Ic, are arbitrary functions. 
(i) r =f(x). The general solution is z = ~~f(x)dxdx + cp(y)x + $(y). A similar rule applies to 

t =f(y). 
(ii) s =J(x, y). The general solution is z = ssf(x, y)dxdy + q(x) + $(y). 
(iii) Wave equation. r-t = 0. The general solution is z = cp(x + y) + $(x - y). 
(iv) Laplace’s differential equation. r + t = 0. Let x + iy = [ and cp, I+$ be complex analytic func- 
tions of [. The general solution is z = cp([) + I+@), and a real solution is z= cp(c) + q(r). 
(v) r + Mp = N, where M and N are functions of x and y. The general solution is given by z = 
j[jL(x,y)N (x,y)dx+cp(y)]/L(x,y)dx+$(y), L(x,y)=expj[M(x,y)dx]. In the integration,yis 
considered a constant. 

A similar method is applicable to s + Mp = N, s + Mq = N, and t + Mq = N. 
(vi) Monge-Ampere partial differential equation. Rr + Ss + Tt + U(rt -s2) = V, where R, S, T, U, V 
are functions of x, y, z, p, q. 
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First, in the case U = 0, we take auxiliary equations 

eq. (1) Rdy*+ Tdx*-Sdxdy=O, 

eq. (2) Rdpdy+ Tdqdx= Vdxdy. 

Equation (1) is decomposed into two linear differential forms Xi dx + Yi & = 0 (i = 1,2). The 
combination with (2) gives a solution u,(x,y,z,p,q)= a,, t+(x,y,z,p,q)= bi (i= 1,2), and we have 
intermediate integrals Fi(ui, oi) = 0 (i = 1,2) for an arbitrary function Fi. We have the solution 
of the original equation by solving the intermediate integrals. If S2#4RT, two intermediate 
integrals are distinct, and hence we can solve them in the formp = P(x,y,z), q= Q (x,y,z), and 
then we may integrate dz = Pdx + Q+. 

Next, in the case U#O, let A, and X2 be the solutions of U*A* + USA + TR + UV = 0. We have 
two auxiliary equations 

i 

X,U&+ Tdx+ Udp=O, 

h,Udx+Rafv,+ Udq=O, Or ( 

A,Udy+ Tdx+ Udp=O, 

h,Udx+ Rdy+ Udq=O, 

and from the solutions ui = a,, vi = bi (i = 1,2), we have intermediate integrals Fi(ui, I+) = 0 (i = 1,2). 
If 4( TR + U V) # S2, I, # 1,, we have two different intermediate integrals & = 0. Solving the simul- 
taneous equations Fi = 0 in p = P (x, y, z), q = Q(x, y, z), we may also find the solution by integrat- 
ingdz=Pdx+Qdy. 
(vii) Poisson’s differential equation. P = (rt - s*)“Q, where P = P(p, q, r, s, t) is homogeneous with 
respect to r, s, t and we assume that Q = Q(x, y, Z) satisfies aQ/az # a, for x, y, z when rt = s*. The 
equation P(p, p(p), r, r@(p), r{@(p)}*)=0 is then an ordinary differential equation in cp as a func- 
tion of p. We first solve this for cp, and then solve a partial differential equation of the first order 
q=(p(p) by the method (11)(2)(i). 

(2) Intermediate Integrals. Letf(x,y,z,p,q,r,S,f) be polynomials with respect to r, s, t. Suppose 
thatf(x,y,z,p,q,r,s,t)=O has the first integral u(x,y,z,p,q)=O. We insert 

( 
*+p~+sik au, 

I/ ( 
au au au t=- 7&+qz+sap 

V 

au 
r=- ax a4 ap z 

into the original equation, and replace all the coefficients that are polynomials of s by 0. We thus 
obtain a system of differential equations in U. If u and u are two independent solutions of this 
system, an intermediate integral of the original equation is given in the form (a(u,u)=O. 

(3) Initial Value Problem for a Hyperbolic Partial Differential Equation L[ U]Z u,.. + au, + bt+ 
+cu=lz. 

+ u$$-Rg)-{acos(n,x)+bcos(n,y)}uR ds, 1 
where A is the hatched region in Fig. 19, and the conormal n’ is the mirror image of the normal 
n with respect to x =y. 

u(&~)=(uR),+j-cAR(u~+ou)dy+lBR(u~+bu)dx+j-j. R(x,y;t,v)h(x,y)dxdy 
c 0 

(characteristic initial value problem). 

x 

Fig. 19 Fig. 20 

Here q is the hatched rectangular region in Fig. 20. R (x,y ; 5,~)) is the Riemann function; it 
satisfies 

M [R (x,Y; 5, dl = 0, 

RX--bR=O (on x=[), 

R,,-aR=O (ony=n), 

R(5,~;5,4= 1. 
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Example (i). uxr = h(x,y). R (x,y; 5,~) = 1. 

z&T))= ;LQ + u,l+ $l,“[ u,cos(n,x)+u,cos(n,y)]ds+~~-h(x,y)dxc$. 

Example (ii). Telegraph equation uxy + cu = 0 (c > 0). R (x,y ; 5,~) = J,,( 2vm- q) ). 

Example (iii). uxu + -$-(u,+uy)=O (n= a constant >O). 

(IV) Contact Transformations (- 82 Contact Transformations) 

We consider a transformation (xi, . . . ,x,,; z)+(Xi, . . . , x,;z). weputpj=at/axj, esaz/axj 
(j=l , . . . , n). The transformation is called a contact transformation if there exists a function 
p(x,z,p)#O satisfying dZ- ZPjdXj=p(x,z,p)(dz -Zpjdxj). 

A transformation given by (2n + 1) equations D = 0, 8 Q/ax, + P+3 52/ aZ = 0, a 3/ &xi + 
pja s2/az = 0 generated by a generating function O(x,z,X, Z) is a contact transformation. 

Generating Function 

zxjxj+z+z 

zxjz+z*-zxjxj-zz 

2(X, - Xj)2 + (Z - z>* - a* 

z(q-xj)*-z*-z* 

P 

-1 

Z/(22 - z) 

1 

-& 2 
J 

Transformation 

xj= -pi, Pj’ -xj, 

z=Zpjxj-z 

xi = -pjz, 

pi = - (2Xj - Xj)/(2Z - z) 

xj=xj-pjz, 

z$= -pj(cp;- 1)-l/*, 

z=z(Cp;- 1)“2 

Legendre’s 

transfo:rmation 

Pedal transformation 

Similarity 

(V) Fundamental Solutions (- 320 Partial Differential Equations H) 

A function (or a generalized function such as a distribution) T satisfying LT= 6 (8 is rhe Dirac 
delta function) for a linear differential operator L is called the fundamental (or elementary) 
solution of L. In the following table, we put 

(Heaviside function). 

J, is the Bessel function of the first kind; K, and Z, are the modified Bessel functions. (-Table 
19.IV, this Appendix.) 

(if x,, > 0 and the quantity under the radical sign is positive), 

(otherwise). 

(For Pf (finite part) - 125 Distributions and Hyperfunctions.) 

Operator Fundamental Solution 

d/dx 

d” 
dx” 

an/ax,ax2...ax, 

l(x) 

I 

xm-‘/(ml- l)! (x >O) 

0 @GO) 

l(~,)W2)...W”) 

1 1 
(i=&i) 

2n x+iy 
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Operator 1 Fundamental Solution 

A I - r 5 /2(n-2)7rnj2 + 
H) 1 (n>3) 

(1/2n)logr (n=2) 

/2”(m-1)!*“‘2 fi (2k-n) - 
1 1 ( n - 2m is a positive integer 

k=l 
yn-2m or a negative odd integer 

kfm-h 

27P -fewK 
(m-l)! (n,2,-m(2~~) 

0” (Pfs 2m-n)/T(“/2)-122m-l (m- l)!r[m+ 1 -(n/2)] 

(O-A)” 
(A is real and ~0) 

(VI) Solution of Boundary Value Problems (- 188 Green’s Functions, 323 Partial Differential 
Equations of Elliptic Type, 327 Partial Differential Equations of Parabolic Type) 

~[u]=Au,,+2Bu,,+Cu,,+Du,+Eu,+Fu, 

M[v]=(Av),,+2(Bu),+(Co),-(Dv),-(Eu),+Fv. 

Green’s formula ~S,{vL~YI-UM~vl}dXQ=~(P(U~-v~)+Q~~)~~. 

eq. (1) 
Acos(n,x)+Bcos(n,y)=Pcos(n’,x), 
Bcos(n,x)+Ccos(n,y)=Pcos(n’,y). 

Q=(A,+B,-D)cos(n,x)+(B,+C,-E)cos(n,y). 

The integration contour C is the boundary of the domain D (Fig. 21), n is the inner normal of 
C, and n’, called the conormal, is given by (1). 

- 
Fig. 21 

(1) Elliptic Partial Differential Equation L[ u]= u,, + z+~ + au, + bu,, + cu = h. 

Here G (x,y ; 5, n) is Green’s function, which satisfies M (G (x,y; 5, n)) = 0 in the interior of D 

except at (x,.Y)#(& 4, and 

G (x,y; 5,~) = - (1/27r)log{w + a regular function, 

G(x,~;5>d=O (Cw)EC). 
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a% (2) Laplace’s Differential Equation in the 2-Dimensional Case s + - =O. 
39 

u(x,y)Ezi(r,cp)=Ref(z) (z~x+iy=re”). 

(i) Interior of a disk (r < 1). 

(ii) Annulus (0 < q < r < 1). 

(Poisson’s integration formula). 

f(z)= 2 ( &2”6(l>v)L (W)4-Jo2”o(~,~)S~(w)d~-olo~z) 

(Villat’s integration formula). 

w= ~(ilogz+~), a=(~-~)~2~ {~(l,cp)-ti(q,cp))&, $=-;logq. 

Here St and 5s are the Weierstrass {-functions ( - 134 Elliptic Functions) with the fu:ndamental 
periods 2w, and 2~s. 

(iii) Half-plane (y > O).f(z)= i/r:% dt, u(x,y)= -l-/-t (xy:j’:,z dt. 

(3) Laplace’s Differential Equation in the 3-Dimensional Case. 
(i) Interior of a sphere (r < 1). 

l-r2 

(1-2rcosy+r2)3’2 
sinOdOd@, 

where 

cosy=cosOcosO+sinOsinBcos(@-cp). 

(ii) Half-space (z > 0). 

u(x,Y,z)= &y= 
4&%0) 

--OO {(x-~)2+(y-1))2+z2}3’2 
4’4. 

(4) Equation of Oscillation (Helmholtz Differential Equation) Au + k2u = 0. Let u,, be the nor- 
malized eigenfunction with the same boundary condition for the eigenvalue k,. Green’s function 
is 

G(J’,Q)= E 
un(P)u;(Q) 

k2- k,Z 

Domain 
Boundary 
Condition Eigenvalue Eigenfunction 

rectangle 
O<x<a, O<y< b 

circle O<r<n 

annulus b < r < a 

fan shape 
O<r<a, O<cp<a 

rectangular parallelepiped 
O<x(a, O<y<b, 

O<z<c 

sphere O<r<a 

u=o knm=n 

(n,m=12. ) > , .. 

u=o k,,, is the root of J,(kx)=O 

k,, is the root of 

u=o J,,, (ka)N,,, (kb) 
-J,,,(kb)N,,,(ka)=O 

u=o 
k,, is the root of J,, (ka) = 0 

(/J==r/(Y) 

au %=O 

au 
k,, is the root of #, (ka) = 0, 

z=o where 

4dPk~~/2 Jn+(l,2)W 

sinnn:sinm!sY 
b 

J,,,(k,,r)e”q 

J,,, (L,,r) N, (k,,,,,r) 

Jm(k,,,,,a) N,,,(k,,a) 1 

ekimq 

cosn7r~cosmaYcosC~ 
b 

(5) Heat Equation. $ = K Au A = 2 + . . . + 2 ; K is a positive constant 
I m 
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tion: hu - k au/an = q, where h and k are nonnegative constants with h + k = 1, and ‘p is a given 

Here V is the domain, and S is its boundary. G (P, Q, t) is the elementary solution that satisfies 
aG/at = KAG in V and kaG/an = hG on S, and further in the neighborhood of P= Q, t =O, it 
has the form G (P, Q, t) = (4mct)- m&R2/4rr + terms of lower degree (R =m). 
(i) -oo<x<oo,G=U(x-~,t),whereU(x,t)=e-”*/4”’/~4 not (similar in the following case 
(ii)). 
(ii) 0 < x < co. u(O,t)=O: G= U(x-.$‘,z)- C/(x+&t). 

j$=hu: G= U(X-&t)+ U(x+&t)-2he*t s 
-5e’W(x-q,f)dq. 

-CC 

(iii) 0 < x < I. u(O,t)=u(l,t)=O: G=4( $I+( $1~). 

$(O,t)= $!,r)=O: .=a( $I$+( HIT). 

u(O,t)= $(I,r)=O: 

Here 9 is the elliptic theta function:a(x[T)=&(x,~)= I +2~ei~“2cos2nn x. 
(iv) O<x<co, o<y<w. u(x,O,r)= u(O,y,r)=O: 

G=(e-(“-~2/4r~-e-(“+~2/4~r)(e-~--rl)2/4.f_e-(y+1,2/4”‘)/4nKt 

(v) o< x< a, O<y<b. u = 0 on the boundary: 

(vi) O~x<a,O<y~b,O~z~c.u=Oontheboundary: 

G=-& 2 5 2 exp 
I=1 m=l n=l 

kx Id m7v mq nTz n77.C 
X Sin~sm~sin~sinq-sincsmc. 

(vii) 0 < r < 00. Spherically symmetric. Ix/= r, /,$I= r’: 

G = (,-(+?/4K~ - e-(r+r’)*/4rr)/8~rrl(~K~)‘/z. 

(viii) 0 < r < a. Spherically symmetric. u = 0 on the boundary: 

G= &f, e-Kn”2t/“2sin!?fIsin!!?$~ 

(ix) a < r < cc. Spherically symmetric. kau/ ar - hu = 0 on the boundary: 

G= 1 

8arr’(aKt)“2 
e -(l--1,)2/41f+e-(‘+‘,-2’)z/4”‘_ ah+ k -&-(4?rKt)"' 

Xexp( Kf(~~+(r+r’-2a)~) 

X erfc 

(x) 0 < r < co. Axially symmetric: 

(xi) 0 < r < a. Axially symmetric. 

Ga; e -(~+“3/4K*Z~(rr~/2Kt)/4s~t. 

kz - hu =0 on the boundary: 

JO (rdJ0 (r’4 

G= f 2 {Jo(acu,))2+ (J, ((q-“’ 

where CI” is given by ka,/,(aa,) - h Jo(m,) = 0. 
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16. Elliptic Integrals and Elliptic Functions 

(I) Elliptic Integrals (- 134 Elliptic Functions) 

(1) Legendre-Jacobi Standard Form. 

Elliptic integral of the first kind 

F(kv)= 
s 

o’ vle;,in2i = 
s 

sin q 

o ~(, _ t2tl _ k2t2) (k is the modulus). 

Elliptic integral of the second kind 

Elliptic integral of the third kind 

s 

‘p 
fl(v,n,k)= 

4 = 
o (l+nsin*#)j/l-k2sin2$ s 

sin ‘p 
dt 

c (l+nt*)j/(l-t*)(l-k*?j ’ 

When ‘p = r/2, elliptic integrals of the first and the second kinds are called complete elliptic 
integrals: 

I 
K(k)F(P.i)=Sr’2\/l-~sin2~ =i \/(l-t2;l-k2t2) =;F(;.;:l;k*)~ 

0 

E(k)=E(k,;)= 
s 

“2~l - k2sin2$ d$= 

0 

I’~~dt;;F(-~,i:l;k*), 

where F is the hypergeometric function. 

K(k’)=K(m)&‘(k), E(k’)=E(~/1)&‘(k) (k’2= 1 -k”; k’ is the 

complementary modulus). 

EK’ + E’ K - KK’ = ; (Legendre’s relation). K 

sin q cos ‘p aE E-F -=- 
diTiG& ak k 

(2) Change of Variables. 

tan(#- q~)= k’tancp: F(+$$$)=(l+k’)F(k,d, 

1-k’ E(f$$)=& - [E(k,q,)+k’F(k,cp)l- l+kt slnd’. 
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k, 

i- k’ 
~’ 

coscp 
k’F(k,cp) 

sincpcoscp 

d/1 - k2sin2cp v/1 - k2sin2cp 1 
k’ -itanT 

1 - 
coscp .iF(k,cp) i[E(k,cp)- F(k,cp)- I/m tancp] 

1 
k 

ksincp d 1 - k2sin2cp kF(k v) $(k,rp)- k’2F(kvN 

(3) Transformation into Standard Form. 
(i) The following are reducible to elliptic integrals of the first kind (we assume a > b > 0 for 
parameters). 

1 

$3 s 
x 
, &i arccos fi + lPx 

v3 -1+x 

arccos’/3-1+X 
v/7+1-x 

arccoss 

s 
x 
, vG7 

1 

$7 

LB+1 

2x0 

1 
z 

1 

v2 s 
x 
0 $7 

x 

Lf 

dt 

0 (a’- t2)(b2- t2) 

s 

x 

b d/<a2- t;(t2- b2) 

s 

x 

n j/l<t’- a;(t2- b2) 

dt 

u2+ t2)(b2+ t2j 

1 - 
a 

b - 
a arc sin x 

b 

arc sin 

arc sin 

1 - 
a 

1 - 
a 

b - 
a 

1 
a arc tan x 

b 

arc sin s 
x 

dt 

o &I~- t2)(b2+ t2) 

dt 

a’+ t2)(t2- b2) 

1 b 
arc cos - 

X dla2+ b2 da’+ b2 

(ii) The following are reducible to elliptic integrals of the second kind (we assume a > b > 0 for 
parameters), 
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c2d- dt 

s 
x 

dt 

b t2j/(t2- b2)(a2- t2) 

A k cp 

a 

da2+ b2 

vm 

b2 

1 
ab2 

b - 
a 

da2- b2 
a 

da’- b2 
a 

arc sin x 
b 

arc cots : 

b arc COS - 
X 

arc tan x 
b 

(II) Elliptic Theta Functions 

(1) ForImr>O,weputq=e’“‘anddeline 

so(u,T)~94(u,T)~1+2 5 (-l)nq”2cos2n7ru, 
n=l 

6, (u,7)~2 2 (- l)“qt”+(1/2)12sin(2n+ l)su, 
n=O 

9, (u, 7) Sz 2 5 qt”+(i/*)lZcos(2n + l)?rU, 
n=O 

lYs(u,7)= 1+2 5 q”2cos2trBU. 
n=l 

Each of the four functions i$ (j = 0, 1,2,3) as a function of two variables u and T satisfies the 
following partial differential equation 

a28(U,T) 

au2 
=4 iaa(u,7) 7, a7 

(2) Mutual Relations. 

S,4(u)+~~(u)=SP(u)+934(u), 8,2(u)= k@(u)+ k’s;(u), 

hj( u) = - k’6;( u) + kS,2( u), 8;(u)= k@(u)- k’s;(u), 

where k is the modulus such that iK’(k)/K(k)= T, and k’ is the corresponding complementary 
modulus. 

k’ = 8,2(0)/&j’(O). 

%Y0) = ~~,(w,(o)s,(o), 

W’(O) s; (0) l9; (0) &f(O) 
6;(o)= 6,(O) + 9,(O) +&(g. 

(3) Pseudoperiodicity. In the following table, the only variables in 8 are u and T. m and n are 
integers. 
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Increment of u $2 $3 Exponential Factor 

nl-knr (-IWO (- l)~+~lY, (-l)“& 6, 
exp[ - nmi 

1 
(- l)“+‘lYa (- l)“+“lY, I 

x (2u + nr)] 
m--++r 2 93 (- lW0 

1 
m+ n+- 7 ( > 2 

(- l)“iti, (- l)“+“i6, (- 1)“tY3 8, exp[ -(n+ i)rri 

m--+ n+!- r 
1 2 ( 2 1 82 93 (-l)m+%Ya (-l)“i9, I X(2u+(n+;)T)] 

Zeros u = m m+nr m+- 1 
2 

m-F-- 1 
2 

+ n+Jj 7 
( > 

+ nr + n++ 7 
( 1 

(4) Expansion into Infinite Products. We put Q,s E (1 - q2”). Then we have 
II=1 

8,(u)=Q, ii (1-2q2”-‘cos2nu+q4”-2), 
n=l 

8,(u)=2Q,,q’/4sinnu E (l-2q2”cos2mu+q4”), 
n=l 

92(u)=2Q,q’/4cosrru ff (1+2q*~cos2nu+q4”), 
n=l 

8,(u)=Q, 3 (1+2q2”-‘cos2au+q4R-2). 
n=l 

(III) Jacobi’s Elliptic Functions 

(1) We express the modulus k and the complementary modulus as follows. 

k= G(O) 

83’ (0) ’ 

k, = 80’ (0) 

83’ (0) ’ 
k2+k”= 1. 

Then we have 

K(k)= K= ;&f(O), K’(k) = K’ = - irK. 

The relation between q and k is 

(2) 

q=++ &,5 + l&9+ 15op3+ 1707 
25 29 2’3 

-L"+ 

2’7 
. . . . where L= 1-‘1 

1+$Yz . 

Functions sn, cn, dn; Addition Theorem. 

1 %(u/W 
sn(u,k)-y 

I 792(u/W 

vk 41 (u/2K) ’ 
cn(u,k)z k 

i-- k 8, (u/2K) ’ 
dn(u,k)Efl ~i”$~~~. 

0 u 

sn%+cn%= 1, dn’u + k’s& = 1. 

sn( u + 0) = snucnvdnv+snvcnudnu 
cn( u + u) = 

cnucnv-snudnusnvdnv 
l- k2sn2usn2v ’ 1 - k2 sn2u sn’v ’ 

dn(u+ v)= dnudnv- k’snucnusnvcnv 

1 - k2 sn’u sn2v 

dsnu dcnu 
-=cnudnu, -=- 

du du 
snudnu, 

ddnu 
- = - k’snucnu. 

du 
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(3) Periodicity. In the next table, m and n are integers. 
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Increment of u snu cnu dn u 

2mK+2niK’ (-1)“snu (- l)m+“cnu (-l)n#dnu 

(2m - l)K+ZniK’ (- y+lJzL& (- l)rn’y(JE (- l)“k’& 

2mK+ (2n + 1)iK’ (- l)W-& (- l)“+“+lik-l$f i(- I)“+‘% 

(2m-l)K+(2n+l)iK (-l)“‘+tk-‘g (-l)mf”ik’k-‘& 

Zeros u = 2nK+2miK’ (2n+ l)K+ZmiK’ (2n+ l)K+(2m+ 1)iK’ 

Poles u = 2nK+(2m+ 1)iK’ 2nK+(2m + 1)iK’ 2nK+(2m + 1)iK’ 

Fundamental oeriods 4K, 2iK’ 4K, 2K+2iK’ 2K, 4iK’ 

(4) Change of Variables. In the next table, the second column, for example, means tlhe relation 
sn(ku, l/k)= ksn(u,k). 

u k sn cn dn 

ku 

iu 

k’u 

iku 

ik’u 

(l+k)u 

(l+k’)u 

(1 + k’)*u 
2 

l/k ksn 

k’ iz 

dn 

1 
cn 

k i- k’ 

k’ i- k 

1 
F 

2fi 
l+k 

k,E 

iks” 
dn 

ik’z 

(l+k)sn 

l+ksn2 

E 

1 
dn 

dn 
cn 

cndn 
I+ksn* 

1 - k’ 
1 + k’ 

1 - (1 + k’)sn* 
(l+k’)F 

dn 

k2sncn dn-Vi? x 
1-G (l+dn)(k’+dn) I-VP 

cn 

dn 
cn 

1 
i-i 

I-ksn* 
l+ksn* 

(Gauss’s transformation) 

I-(l-k’)sn” 

(Landen’s transformation) 

sn(u,k’) 
Jacobi’s transformation. sn( iu, k) = i ~, 

1 
cn(u,k’) 

cn( iu, k) = ___, 
cn(u,k’) 

dn(u,k’) 
dn(iu,k)= p. 

cn(u, k’) 

(5) Amplitude. 

is called the amplitude. 
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sn(u,k)=sinp,=sinam(u,k), cn( u, k) = cos cp = cos am( u, k), 

dn(u,k)= dw = dl- k2sn2(u,k) . 

u(b) = I,x 
dt 

j/(1-t’)(l-k2t2) ’ 
x = sn( u, k). 

Elliptic Functions 

am(u,k)= E + 5 29” 

n-1 n(l+q2”) 
sin(nn&) (q=eiw=e-“W/K)). 

am(0,l) = gd0 (Gudermann function). 

(IV) Weierstrass’s Elliptic Functions 

(1) Weierstrass’s y3 -function. For the fundamental periods 2w,, 20,, we have 

1 1 

(u-2nw,-2mos)2 - (2nw,+2mw3)2 I 

gI 3g2 g3 =L+!&2+!&4+- - 

U2 
12oou6+ 6160 u*+ . . . . 

g,=602’ 1 1 

n,m (2nwr +2m03) 
4’ 

g3- 140X’ 
n,m (2nw, + 12m03) 

6’ 

where Z’ means the sum over all integers except m = n = 0. 
@7(-u)= p(u). Putting 02- -(a, +w3), 9~ B(wj) (j= 1,2,3) we have 

e,+e,+e,=O, e1e2 + e2e3 + e3el = - g2/4, v2e3 = 83/d. 

@‘2tu)=4[ P(u)-e,][ P(u)-e,][ P(u)-e3]=483(u)-g2P(u)-g3. 

Addition theorem 

2 gqu+u)= -p(u)- g?(u)+ 1 
I ’ 

63(u+W,)-e,+ (ej-e&-s) 
I -I P(u) - ej 

tj,k,O=tLW. 

Using theta functions corresponding to r = w3/o,, 

P(u)= - 2 - 
d210g6, (u/2w,) 

du2 
~l=~(w,)=-LY!!? 

129 9{(O) ’ 

1 ai3 (0% (u/%)83 (u/2q)~,(u/&) 
p’tu)=-z- 1 82 m9,0.%9: (Up+) . 

The relations to Jacobi’s elliptic functions are 

q=exp(i7rw,/o,). 

dn2u 
=e,+te,-e3)$=e2+(e,-e3)- 

s&4 
=e,+(e,-e3)L 

sn% ’ 

where the modulus is k= 
i 

e2-e3 

e,’ 
K(k)=w,G. 

(2) l-function. 

1 1 
u - 2nw, - 2mw3 + (2nw, +U2m03)2 + 2no, +2m03 1 

1 g2 g3 =-- 

6ou3- i%+- 8400 
&7- 

U 

2!!.!Q- 

18480 
... 

= (Sl/O,)U + dlog9, (u/2w,)/du. 

S’(u) = - B(u). 
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Pseudoperiodicity. Putting ~7~ = 3 (oj) (i = 1,2,3) we have 

5(U+2nwl+2mw,)=~(u)+2nTjl+2mTj3 (n,m=O, k 1, ?2, . ..). 

7,~s - QW, = n201 - n,wZ = q+, - nZwj = si/2 (Legendre’s relation). 

1 S”(U) - S”(o) 
Addition theorem {(u+o)={(u)+{(u)+~ s,(u)-s,(v) . 

(3) u-function. 

( +L 

2 

a(u)-UrI’ l- znw +U2mw 
U U 

n,m 1 3 ) [ exp 2nw, + 2mw, 2 ( 2nw, + 2mw3 11 

1788 

n,m=o, 2 1, 1 I k-2, . ..) 

(n,m)z(O,O> 

=u- ALuS- pul- 
g3 b4 9 

- 24.3 .5 23.3.5.7 29.32.5 ’ ‘. ’ .7 

! I  (u) = 4u)ldu). 0(-u)= -u(u). 

Pseudoperiodicity. u(u+2nwl+2mw,)=(- l)n+m+m” [exp(2nnl+2mn,)(u+nw,+ mwJ]u(u). 
(4) Cosigma functions u,, u2, us. 

u(u+wj) 
u/(u)- -ev- = u(wj> (j= 1,2,3; $,=I‘$,). 

uj(“) ’ 
P(u)-ej= - [ 1 P(2u) = - 

2o,(ubJ2(u>fJ3(u> a4) =- u(u) ’ 03(u) -. u4(u) 
(J(uIa) 0, (u/d 02(u/d 

snu=a 
u3(u/u) ’ 

cnu- 
u3(u/4 ’ 

dnu= ~ 
u3(u/d ’ 

where a=V%-e, =A. 
WI 
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17. Gamma Functions and Related Functions 

(I) Gamma Functions and Beta Functions (- 174 Gamma Function) 

In this Section (I): C means Euler’s constant, B, means a Bernoulli number, 5 means the Rie- 
mann zeta function. 

(1) Gamma function. T(z)= 
s 

m e-‘F’dt (Rez>O) 
0 

1 

s 

co+) 
=- 

e2nir _ 1 e-‘t’-‘dt. 
m 
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In the last integral, the integration contour goes once around the positive real axis in the positive 
direction. 

I?(n+l)=n! (n-0,1,2, . ..). r(1/2)=6. 

IY(z + 1) = zqz), wv - 4 = &, nlllr(z+ i)= pTp- Wn(1/2)-n~qnZ), 
j=O 

1 - =zec’ fj (1+ +-z/n, 
r(z) 

i0gr(i+z)=-~i0g~-cz- 2 O” 5(2n+l)z2n+* 

n=l n=, 2n+l 
(Izk 1). 

~~~2=~ol/(l+---&$) (x,yarerealandx>O). 

Asymptotic expansion (Stirling formula). 

rcz) = e 

! 

m (- 1)“-&-2n 
-zz’-‘~SG exp C 

2n(2n - 1) 1 (lawI< 4 
n=l 

=e 
571 

2488320~~ 
+o(z-q . 1 

(2) 

(3) 

(4) 

(5) 

Beta Function. B(x*Y)=Jyf I-‘(1 -t)Y-‘dr (Rex, Rey > 0) 

= r(x)r(y)/r(x +.Y). 

Incomplete Gamma Function. 

y(v,x)qXfv- ‘e-‘dt = r(v)- x(“-‘)/~~-~/~W~~- 1j,2,u,2(x) (Re Y > 0). 

Incomplete Beta Function. &(x>Y)= 1 ?-‘(l- t)“-‘dt (O<a < 1). 

Polygamma Functions. q(z)- $iOgryz) 

--+f& &c-C+ 2 (‘-- 1 nEo n+l 

(k=1,2, . ..). 

(II) Combinatorial Problems (- 330 Permutations and Combinations) 

Factorial n!=n(n-l)(n-2)...3.2.1. O!=l. 

Binomial coefficient (zy)= 
a(a- l)...((Y-r+ 1) 

r ! 

(1) Number of Permutations of n Elements Taken r at a Time. 

.P,=n(n-l)...(n-r+l)=n!/(n-r)!. 

Number of combinations of n elements taken r at a time 

nc+ n! 
r!(n-r)! =(F>. 

.cr=,cn-,a nc,=n-lc,+n-lcr-l. 

Number of multiple permutations .I&= n’. 

Number of multiple combinations nHr=n+r--1C,= 
(n+r-l)! 

r!(n- l)! . 

Number of circular permutations 2,/r. 
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(2) Binomial Theorem. (a+bp~o(;)a”-‘b’. 

Multinomial theorem (a,+ . . . +a,)“=2 p,,n!p , afl...aLm. 
.... m. 

The latter summation runs over all nonnegative integers satisfying p, + . . . +prn = n. 

References 

See references to Table 16, this Appendix. 

18. Hypergeometric Functions and Spherical Functions 

(I) Hypergeometric Function (- 206 Hypergeometric Functions) 

(1) Hypergeometric Function. 
m rya+n) r(b+n) r(c) z” 

F(a,b;c;z)= 2 p-p-. 
n=O r(a) r(b) r(c+n) n! 

The fundamental system of solutions of the hypergeometric differential equation 
2 

r(l-r)s+[c-(a+b+l)z]$-abu=Oat.z=Oisgiven by 

u, = F(a,b;c;z), u,=z’-CF(a-c+l, b-c+l; 2-c; z) (CfO, - 1, -2, . ..). 

F(a,b;c;z)=F(b,a;c;z). dF/dz=(ab/c)F(a+ 1, b+ 1; c+ 1; z). 

r(c)r(c-a-b) 
F(=,b;c; I)= r(c-a)r(c-b) (Re(a + b - c) < 0). 

F(a,b;c;z)= r(c) 
I r(b)r(c - b) 0 

‘tb-l(l-t)E-b-l(l-tz)-udt (Rec>Reb>O, I4 < I), 

1 r(c) 
F(a’b’c’z)= 2ni r(=)r(b) I 

im r(u+s>r(b+s)r(-s) 
-im r(c + S) 

(-z)“ds. 

(2) Transformations of the Hypergeometric Function. 

F(a,b; c; z)=(l-z)-“F(a,c-b; c; -&) 

=(1-Z)E--(I--F(C-u,c-b; c; z) 
r(c)r(b - a) 

( 
1 =(‘-z)-~~(~)~(~-~)F =,c-ha-b+l; =) 

b rwb - b) 
+(l-‘)- r(a)r(c-b) F b,c-a; b-a+l; & 

( 1 

r(c)r(c- u - b) 

= r(c-a)r(c-b) 
F(a,b; a+b-c+l; l-z) 

+(l -zy-b r(c)r(a + b - C) 
wm4 

F(c-a,c-b; c-a-b+l; 1-z) 

r(c)r(b - U) 
=r(b)To(-~)-OF(a,l-c+o; I-b+a; ;) 

r(c)r(a - b) 
+ r(a)r(c-b)(-z)-bF(b,l-c+b; I-a+b; ;). 
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(3) Riemann’s Differential Equation (- Table 14.11, this Appendix). 

d% 
dt2+ 

1--cw-cr’+ 1+-P’+ 1-y-y’ du 
z-a z-b Z-C 1 dr 

aa’(a-b)(a-c) + P/?‘(b-c)(b-a) + yy’(c-a)(c-b) 
z-a z-b z-c 1 (z-a)(z:b)(z-c) =” 

Here we have (Y + (Y’ + /3 + /3’ + y + y’= 1 (Fuchsian relation). The solution of this equation 
is given by Riemann’s P-function 

(a-c/,/3-P’,y-y’#integer). 

We have 24 representations of the above function by interchanging the parameters a, b, c; a, 
(Y’; p, fi’; y, y‘ in the right-hand side. 

(4) Barnes’s Extended Hypergeometric Function. 

pFq(q,...,$P1, . . . . P,;z)= 
O” (4”...(~J, Zn 
2 

n-0 (P,L...(P,), n! ’ 
where (a),,=(~((~+l)...((~+n--1) 

=r(a+n)/r(a). F(a,b;c;z)=,F,(a,b;c;z). oFo(x) = ex, ,F,(a;x)=(l -x)-a. 

(5) Appell’s Hypergeometric Functions of Two Variables. 

F,(a;P,P’;Y;x,Y)= 5 2 
m (&+n(P)m(Lv, 

m!n!(Y),+, 
XrnY”, 

m=O n=O 

(dn+“(PL(P’>, 
Fz(~;AP’;Y,Y’;x,Y)= m.on~o m,n,(y) (y,) xmyn, 

. . m n 

FX~,~‘;P,P';Y;X,Y)= 2 2 
(a),(w?,(P)m(B').xmyn 

m=O n=O m!n!(y),+, 

M (&+n(PL+n 
F4(KP;Y,Y’;w)= f. z. m,n,(y) (y,) xmyn. 

. . m n 

(6) Representation of Various Special Functions by Hypergeometric Functions, 

(l-x)“=F(-v,b;b;x), e-“X, (~)“(tanhx)F(l+~,~; l+n; sech2x . 

log(l+x)=xF(l,l; 2; -x), =xF 

sinnx=n(sinx)F 

1+&l-n 1 

arctanx=xF i,l; 5; -x2 . 

(2n - I)!! 
P*dx)=(- I>” (2n)!! F -n n+l. 19 3 2 > 2 , , 

(2n + l)!! 
P*n+dx)=(-1)” (2n)!! XF -n n+?. 2.~2 , 2, 2, (spherical function), 
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where 

n=0,1,2, . . . . 
m(m-2)...4.2 (meven), 

m(m-2)...3.1 (m odd), 
O!!=(-l)!!=l. 

K(x)=;F(;, ;; 1; x’), E(x)=;F( -;, ;; 1; xz) (complete elliptic integral). 

J,(x)= x -,F,(s+l; -~)=2~~~l~~F,(“+~;2y+l:2ix). 
2r(v + 1) 

ex= blimm F(a,b;a;x/b)= ,F,(a;a;x)=,Fe(x). 
+ 

(II) Legendre Function (- 393 Spherical Functions) 

(1) Legendre Functions. The generalized spherical function corresponding to the rotatl’on group 
of 3-dimensional space is the solution of the following differential equation. 

(l-z2)~-2z~+ v(v+l)-& u=O. 
[ 1 

When IJ = 0, the equation is Legendre’s differential equation, and the fundamental system of 
solutions is given by the following two kind of functions. 

Legendre function of the first kind T3,(z)dJ”(r)=2F,( -v, v+l; 1; +;I. 

Legendre function of the second kind 

!Q(Z)E 
r(v+ 1)G 

2’+lr[v+(3,2),Z 
-v-l 

PI ( 

v+2 v+1 3 1 
2’ 2; v+p ,z 1 . 

1 Q,(x)- -[D,(.x+iO)+Q,(x-iO)] 
2 

(COSV7T)P” (x) - P, (- x) 
=77 

2 sin ~71 (vfinteger; - 1 <x< 1). 

Recurrence formulas: 

‘p”(z)= W-l(Z). a,(z)-a-,-,(z)=7c(cotva)q3,(z) (v #integer). 

v,(-~)=e’“~‘(P,(z)-(2/7r)(sinva)Q(z), Q-z)= -e’V?iQ,(z) ( f = sgn(Im z)). 

(z2- lm4(4/~z=(v+ 1~W3,+,(~)--~%3,(Z)l, 

Qv+ lvwz)=(v+ lN-L+1(z)+ v%,(z), 

(z2- lww4/~z=(V+ l)[Q,+,(z)--zQ,(z)l, 
(2v + l)zQ,(z) = (v + l)Q+ ,(z) + vQ,- i(Z). 

~3,(z)=~-1’22-“-‘tanvn 
r(v+ 1) 

rb+(3/2)lz 
-“-12F, v+1 ;+l, 2; v+;; 1 Z2 

+~-,,22y~b+w2)1 l-v 2. 3 1 r(v+l) -j--’ 2 z-v; 

P,(cos8)= y (v#integer; O<B<P). 

Estimation: IQ,(cosB)l< x 
Gia 

(O<fl<n; v:> 1). 

p”(l)= 1, P”(o)=-% r( q)r( I$), 

QAO) = + 71 
(1 -cOsvT)r( q)r( T). 

(2) The Case v = n ( = 0, 1,2, ). In the following, the symbol ! ! means 

rn!!G 
m(m-2)...4.2 (m even), 

m(m-2)...5.3.1 (m odd). 
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The function P,, is a polynomial of degree n (Legendre polynomial) and is represented as follows: 

P,(z)= & $(z2- 1) 

I-n 1 -5, -.-; ?-,,; 5 

= &z-l)!! 
n! 

z” n(n-1) n-2+ n(n-l)(n-2)(n-3) 
-(2n-z 2.4.(2n- 1)(2n-3) 

Z"-4T 1 “’ ’ 

P2,(z)= 5 (-1y-’ (2m+2j- l)!! 

j=O (2j)!(2m-2j)!! “’ 
Pzm+,(z)= g c-l)"- 

(2m+2j+ l)!! z2j+, 
(2j+ 1)!(2m-2j)!! ’ j=O 

P,(cos8)= 
G!n)! -. 

-,+1ne2F, 

22”(n!)2 
& -n; !-,; ,k2i@ 

2 

2(2n - l)!! 

= (2n)!! 
cos(n-2)/3+ !.I.? 

n(n- 1) 

1.2 (2n-1)(2n-3) 
cos(n-4)8 

+ 1.3.5 n(n- l)(n-2) 

1.2.3 (2n- 1)(2n-3)(2n-5) 
cos(n-6)8+ . . . 

I 

+ (n even), 

(n odd). 

= 2 On)!! 

[ 

1.(n+l) 

r (2n+ l)!! 
sin(n + 1)/3 + 

1.(2n+3) 
sin( n + 3)19 

1.3.(n+l)(n+2) 

+ 1.2*(2n+3)(2n+5) 
sm(n + 5)fI + . . . (ad infinitum) 

I 
(o<e< 4 

Laplace-Mehler integral representation 

\/z ecos[n+(1/2)lcp =- 
I 

,sin[n+(1/2)lcp 
77 ol/ c0scp-c0se 

+l!L 
I‘, rl 6 cOse-coscp 

dv 

Pn(x)=~r~+~~(‘) (x=+\/5i+p2). 
r 

P,(l)= 1, P,(- l)=(- l)“, p2,+ do) = 0, 

(2n)! 
Pz,(O)=(- l>“--- = 

(- 1)“(2n - l)!! 

22”(n!)2 (2n)!! ’ 

Recurrence formulas: nP,(z)-(h- l)zP,-,(z)+(n- l)P,-,(z)=O, 

_ ,. . ,., 

I 
(Rez > 1). 
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2*(2n)!! 

I 

l.(n+ 1) 
Qn(cosQ= (2n+l)!! cos(n+l)@+ 1*(2n+3) cos(n+3)@ 

1.3.(n+l)(n+2) 

+ 1.2.(2n+3)(2n+5) 
cos(n+5)8+ . ..I (O<e<a). 

Q,(x)= & $, [ (x2- l)“log+=] - ;P,(x)logE 

= ;P,(X)log----- ; _’ ; - 5, $ pj- l(X)P,-j(X). 

Qo(x) = ; 1% E > Q,(x)=;log+$l, Q2(x)= +(3x2- l)logE - ix. 

(3) Generating Functions. 

1 

v/1-2hz+h2 = 

I 

i! h”P,,(z) (Ihj<minlz*m I), 
n=O 

m 
c 
n=O 

-&P,(z) (Ihl>max\z?vzI). 

(If - 1 < z < 1, the right-hand side is equal to 1.) 

1 
1% 

z-t+ l-2tz+z2 

d/1-2tz+z2 
& = n~otnQ.(z) (Rez > 1, I4 < 0 

r= j/m, cosO=z/r, x,y real, 

++++ 2 
Ii 

1 + 1 

m-’ (2mi~+z)2+XZ+yZ 2 (2mi7r-z) +x2+y2 I 

(Here the square root of a complex number is taken so that its real part is positive.) 

1+ g PJo(nJ/x2+y2 ) (Rez > 0), 
n=l 

= 

I 

O” ++;+ c (-1)“B2.r2”-Ip 

n*, OnI! 
_ (cosQ) 

2n I (0 < 0 < 2n; z real). 

(4) Integrals of Legendre Polynomials. 

Orthogonal relations: 
s 

+‘Pn(z)Pm(z)dz=G,,&. 
-1 

1 
+lzkPn(z)dz=o (k=O,l, . ..) n- 1). 

-1 

X(X-2)...(h-n+2) 

s 
’ h z P,(z)dz= 

(X+n+1)(h+n-1)...@+1) (neven), 

0 (A-l)(A-3)...(X-n+2) 

(X+n+1)(X+n-1)...(X+2) (nodd) 
(ReX> - 1). 

2(m-n+l)(m-n+3)...(m+n-1) 

I 
Irp,(cos0)sinm0dl= (m-n)(m-n+2)...(m+nj 

(m>n; m+n isodd), 

0 
0 (otherwise). 

(5) Conical Function (Kegelfunktion). This is the Legendre function corresponding to the case 
v = - (l/2) + A (A is a real parameter), 

P-(i,2j+iA(cos~)=l+~sin2~+ (4h2+~j($2+32)sin4~+.... 

P4*,2)+&)= P-(*,2)-&h 

1794 
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(III) Associated Legendre Functions (- 393 Spherical Functions) 

(1) Associated Legendre Functions. The fundamental system of solutions of the differential 
equation in (II) (1) is given by the following two kind of functions when p#O. 

Associated Legendre function of the first kind: 

qq!(z)z l ,,(~)~‘**+V,V+l; 1-K P), 

where we take the branch satisfying arg[(z + l)/(z - l)]‘@ = 0 for z > 1 in the expression raised to 
the (p/2)th power. 

Associated Legendre function of the second kind: 

v+p+2 v+p+ 1 3 1 
~ 2 ,2;v+-;- 

2 z2 ’ 

where we take the branch satisfying arg(z’ - l)fi’* = 0 for z > 1 in (zz - l)‘@, and arg z-“-*~~ = 0 
for z > 0 in z-“-@-l, respectively. 

Pp(x)~eip”/2\SD~(x+iO)=ei~~/2@~(x-iO) Y 

=&(~)p’2+,V+l; 1-p; 7) (-l<x<l). 

77 = - P&y (x)cospr- 2 sm ~7r [ 

IYJJ+p+1) _ 
I-+-p+ 1) 

P” “(xl 1 (-l<x<l). 

Integral representations: 

K%) = 
(z2-- 1)P’2 

s 

+’ (l-t2)p-‘/2 

2pGITp+(1/2)1 -* (z+tviT) 
p-“d 

(Rep> -i, ]arg(z? l)]<n). 

%3;%) = 
(z2- l)‘-2 

s 

CQ (sinh t)2Y+’ 
2’r(p-V)r(~+1) o (z+cosht)‘+‘+i dt 

(Rez>-l,jarg(z?l)]<a,Rev>-l,Re(p-Y)>O). 

r[p+(i/2)l(z2- I)“-~ 

s 

m cosh[v+(1/2)]t 

r(p+++i)r(pLvv) o (z+cosht) 
p+(1/2) dl 

“(cosha)= 

(sinhcu)” 

G I[-p+(1/2)] o (cosha-cosht)‘+(“*) s 

*cosh[ {v+(l/2)}t]dt 
a>O, Rep<: . 

(sin0)’ 

s 

“cos[ {~+(W}v+v 

rh++(ip)l o (coscp-cose)“+“‘2’ 
O<B<n,Reb<i 

I(2p+ 1)2-“(sine)’ m 
P”-’ (cos8) = t”+‘dt 

u~++l)r(~+~+l)r(p---Y) (1+2tcost3+t*)fi+(‘/2) 

(Re(p+v)> -1, Re(p-v)>O). 

p,-qcose)= 1 *e-lcose 
I rb+p+i) 0 

J,(tsint3)t”dt (O<B<F,Re(g+r)> -1). 

(Re(Y+p)> -l,Rev > - 1, larg(z + l)] < r). 

s 

m e-l~+W2)l’dt 

a (cash t - cosha)“+(“2) 

(a>O, Rep< l/2, Re(v+y)> - 1). 
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Recurrence formulas: 

(z2- wTY(z)ldz=(~-P+ 1>@1+1(z)-(v+ l)z933t(z), 

Pv + 1wR(z)=(~ - P + l)W+ ,(z)+(v + /$PBt- 1(z), 

w,-dz)=w!(z), 

(1-x*)dP~(x)/dx=(v+l)xP/yx)-(v-p+1)P~+,(x). 

The case when p is an integer m(m = 0, 1,2, . . .) and Y is also an integer n: 

P,“+*(x)+2(m+l)x(l-x~)-“*P~+~(x)+(,-m)(fl+m+1)P~(x)=O. 

(2n+ l)xPT(x)-(n-m+ l)P,“,,(x)-(n+m)P,“_,(x)=O (0 < m < n - 2), 

(x2-l)dPT(x)/dx-(n-m+l)P~+,(x)+(n+l)xP~(x)=O, 

P,“- l(X) - P,“+ *(x) = (2n + l)VF? p,“- l(x). 

PD;P(z)= 
Iyv- p+ 1) 

[ 

2 
Iyv+p+ 1) 

q:(z)-- ;eeipr (sinpa)Clt(z) 1 , 

~t(z)sin[(v+~)n]-~all._,(z)sin[(v-~)~]=~ei~~(cos~~)~~(z), 

@!(-z)=e’im @F(z) -(2/n)[sin(v + p)8]eCipVQ.,(z) (+ = - sgn(Imz)), 

a:(-~)= -ekimQ(z) (? = sgn(Imz)). 

e-‘“OF(coshcr)= 
nIyl+y+v) 

V2asinha 
@:;:@(cotha) (Recosha > 0). 

sin(v+p)a 
QEv-I(X)= sin(v-pCL)a Q:(X)- Ts~(;,,:~ P:(X), 

Py-‘(x)= (x)- AsinprQ’ (x) ?r Y 

Qi(-x)= -[cos(v+p)a]Q,‘L(x)+(m/2)[sin(v+y)lr]P~(x). 

xx?(z)= 
~(l+v+m)(z2-l)m’Z 

r( 1 + v - m)m!2” 
2F1 m-v,m+v+l;m+l; 

( 

=P,(z)(dz)“. 

d”%(z) 
!q!yz)=(z*- l)m/*dxm, aim(z)=(- l)“(z*- 1)-“‘2 mQv(z)(dz)m. 

Py”(x)=(- 1)” 
r(l+v+m)(l-x*)~‘* 

r(l+v-m)m!2m 
*F1 

l-x 
m-v,m+v+l;m+l; 2 

dmf’v (x) 
=(-l)yl-x*)“/*~, 

P”-“(x)=(1-x*)-+ 7. 
I I 

r(v-m+ 1) 
‘P,(x)(dx)“=(- I)“- 

T(v+m+l) 
p,” (x>. 

x x 

d”‘Qv (x> 
Q,?(x)=(-l)m(l-~2)“~2~, QY”(~)=(- l)m r(v-m+ ‘) 

r(v+m+ 1) Q’(xh 

The values at the origin are 

P; (0) = \/;;2p 
r[(v-p)/2+11r[(-v-p+1)/21’ 
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dP,f(O) 2P+1sin[7T(B+~.)/21r[(y+fl.+2)/21 VG 2”+’ PC 
dx r[(v-p+1)/2lV~ = r[(Y-~+1)/2lr[(-v-11)/21’ 

de,!’ (0) 
~ =2w;; cos( fq.n) y;-;;;. 

dx 

(2) Generating Functions. 

(cost?+isinesinr$= P,(cos6)+2 i (-i)“&(coSmrp)P~(cos6). 
m=l 

p”-r(,,,@)= + ~$$l).j~---)P;‘(cosL9) (O<B<m,/l>O). v+n+l 

(3) Orthogonal Relations. 

“P,” (x)P; (x)dx= 2 (n+ 6,,. 
h+ 1 (n-m)! 

nsinBe’i(m-m’)‘PP,” (cosf?)P~‘(cos~)d~= 
4r7 (n+m)! 

- ~ a,,. s,,*. 
2n+l (n-m)! 

(4) Addition Theorems. 

(Rez>O, ReS >O, larg(z- 1)1 <n, la&-l)/ CT). 

Q,(tt’- Vt’- 1 dt ‘2cos~)=~“(t)q3”(t’)+2 5 (-l)mQ~(t)~D;“(t’)cosm~ 
m=l 

(t, t’ real, 1 < t’ < t, v # negative integer, cp real). 

P,(cosBcosB’+sinBsin8’coscp)= P,(cosB)P,(cos8’)+2 2 (- i)~py-~(cose~)p,m(COS~~)COSm(p 
m=l 

m r(v-m+~) 
=p,(c0se)p,(c0se~)+2 2 m=, r(v+m+ 1) P; (cos e )pvm (c0s e’)cosmcp 

(o<ecs, O<~‘<Q, 6+8’<s, cpreal). 

Q,(cosBcos8’+sinesinB’coscp)= P,(cosB’)Q,(cos0)+2 g (- l)mPy-m(cosB’)Q~(cosB)cos~~ 
m=l 

(0<8’<71/2, 0<0<7r, B+6’<77, cpreal). 
__ __ 

ia,@‘+++ @+l cosha)= 2 - 

(5) Asymptotic Expansions. 
( 7, T’, Cl >o). 

W(z) = I 
2yrb+(1/2)1 

V/?ir(v-p+i) 

z”+ 2-u-T[-v-(1/2)] 
vl?rr(-p-v) z-“-l [1+o(z-2)] 1 

(v+(l/!)#integer, largz) <a, \zjSl). 

Qt(z)= l&e+” rb+~++) 

2”+1 rjy+(3/2)]’ 
-“-1[1+0(z-2)] 

(r+(l/2)#negativeinteger, largz)<m, Iz~>T~>. 

pr(cos8)- 2_ rb+p+l) cos[{r+(l/2)~~-(~/4)+(~/2)] 
Y 

din I-b + (3/2)] m 
[1+0(&J-‘>] 

(E<~<T-E, E>O, J~j>l/e). 
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,,,[(v+~)es!p+ 

(2sin8) /+0/3 

IL= -- 
2 I, -- 

Q~(cosO)=di rb'+p++) 
I%+ (3/2)] 

X 
e(_l,,r(;+~+i)r(;-,+~)r(.+:)cos[(,+~)e+~l+S] 

I-0 r(++p)r(+-p)r(v+l+$)f! 
(2sinB)'+"/2) * 

(In the final two formulas the series converges when v + /J #negative integer, v + (l/2) #negative 
integer, s/6 < 8 < 571/6.) 

[(v+ +)cosq]PP[P(cosB)=J,(n)+sin2~ 

(TJ =(2v+ l)sin(0/2)). 

(6) Estimation. When v > 1, v-p+l>O, p 2 0, 

pv-cp (c0se)I < 

lQ”~*(cose)l< r(v-tm+1)(-&)“2”. 
r++i) (sine) 

(7) Torus Functions. These are solutions of the differential equation 

u=o. 

The fundamental system of solutions is given by 

‘SD:-:-(~/z,(cosh$, W-:_(,/&osh+ 

The asymptotic expansion when m = 0 is 

%(,,2)(coshd 

= (n--l)!e”-(‘/2)1 2r%+(i/2)1 ~log4+Il~e-2w2F 
[ ( 

1 
m!(n - l)! 1 53 n+ $;n+l;e -2”‘+A+B . 

r[n+(i/2)16 I) 1 
Here 

A=l+ (1/N~-u/Ne-2’+ 
l.(n- 1) 

(1/2)(3/2)[n-(1/2)l[n-(3/2)1 e-4,,+ 
1+2*(n- l)(n-2) 

. . . 

+ 
(2n-3)!!(2n- l)!! _ _ e an I)? 

[(2n-2)!!12 ’ 

B= r[n+OP)l 
2 
m r[[+(l/Z)lr[n+l+(1/2)1( 

F , at+ nh 
n3j2(n- l)! I=1 (n+Z)!Z! 

I(n+/+ ul-v/-(1/2)- %,I--(l/2) 

where 

u,=1+;+ . ..+$ vr~(,,2)‘~+5+f+...+~=2”2r-ur. 

References 

See references to Table 16, this Appendix. 
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19. Functions of Confluent Type and Bessel Functions 

(I) Hypergeometric Function of Confluent Type (- 167 Functions of Confluent Type) 

(1) Kummer Functions. 

m r(a+n) l?(c) z” u(z)= ‘F, (a; c; z)= 2 ~ ~ - n=O l-(a) r(c+n) n! 
r(c) 

= qa)r(c - a) 
zl-C 

1 
ze’p- 1 (z - t)-‘dt (O<Rea<Rec) 

0 
qc)21-c 

= r(u)r(c-a) 
eZ/2 s +‘e”‘/2(1-t)c-.-‘(1+f)u--Ldt (O<Rea<Rec). 

-1 
The fundamental system of solutions of the confluent hypergeometric differential equation 

(Kummer’s differential equation) 

whenc#O,-l,-2 ,..., isgivenby 

6*(z)~,F,(u;c;z), d2(z)~z’-ClFl(u-c+1; 2-c; z). 

d,F,(u; c; z)/dz=(u/c),F,(u+ l;c+ l;z), 

,F,(u;c;z)=e”,F,(c- u;c; -z), 

u,F1(u+l;c+l;z)=(u-c),F,(u;c+1;z)+c,F,(u;c;z), 

u1F~(a+1;c;z)=(z+2u-c),F1(u;c;z)+(c-u),F1(a-1;c;z). 

Putting (a),=a(a+l)...(u+n-l)=P(a+n)/I’(a) we have 

Li’JJn r(c) * 1 -!- F (u;c;z)= 
z”+l(aL+l 

(n+ l)! 
,F1 (u+n+ l;n+2;z) (n=0,1,2, . ..). 

Asymptotic expansion: 

d,mA,~-~ 2 w  (~)“(~~c+l)“(~Z)-.+BlellU-C .$ (c-aL~l-uLz”, 

n=O n=O 

d2~A2z-“ c. 
O” (u)“(u-c+1)“(_Z)-n+B2e~zL1-C 5 (c-dI;l-4nz. 

?I=0 TZ! n=O 

(]~]>>]a], ]z]>]c], -3n/2<argz<a/2,c#integer), 

where 

Al=e-iT(~)/r(~-~), B, = rw/rb), 

fi2=e-i~(~-c+'T(2-c)/r(I-~), B2 = r(2 - c)/r(a - C + 1). 

(2) The fundamental system of solutions at z = 0 of the hypergeometric differential equation of 
confluent type 

(l/4)-p2 u=o 
Z2 1 

is given by 

z(1~2)‘~e’ez,Fl[(1/2)+~-K; 22p+ l;z]. 

(II) Wbittaker Functions (- 167 Functions of Confluent Type) 

(1) A pair of linearly independent solutions of Whittaker’s differential equation 

d2W 

-[ dz2 

+ l+K+ (f/4)-p2 
4 z Z2 I 

w=o 
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isgiven by M,,~,(z)=z”+“~2)e-*~z,F,[~~-~+(1/2); f2p+l;z]. 

Whittaker functions: 

w&k 
l-Y-2y) 

M&)+ 
Jx2l.d 

r[(1/2)-p-4 r[(1/2)+fi-K1 
M,,-,(z)= w,,-,(z). 

When 2~ is an integer, the above definition of W,,,(z) loses meaning, but by taking the limit 
with respect to p we can define it in terms of the following integrals. 

K,,(z)= 

ZP+w2~e-z/2 m 

s 
r[P++(1/2)-Kl 0 

e--LTTp--K-(I/Z)(l ++-(‘/2)& 

z”e-‘/2 M~P-K-w2)e-’ 
= ri p+(1/2)- K] 

(ReCp+(1/2)-K]>O, largzlcn). 

P+‘L-(L/a 
dt 

s ““r(s-K)r[--S--+(1/2)]r[-sfp+(1/2)]z”I 

-ice 
r[-K+11.+(1/2)]r[-K-~+(1/2)] ’ 

M ,+p+(l,2),r(Z) = (- 0: ~+(‘~2)e-r~2(2~+1),,F,(-f;2~+1;z) (1=0,1,2, . ..). 

M (~)=~-in[“+(l/2)lM_,~,(ei”z). 
GF 

M,,,(z)= 
r(+ + 1) e”“W-, ,(e’“z)+ 

r(+ + 1) 

r[p+(1/2)-Kl ’ r[p+(1/2)+Kl 

e”I~-r-(l/2)l~, Ir (Z) 

(-371/2<argz<T/2, 2p#-l,-2,...). 

M&)= 
r(+ + 1) 

e-inKW-K,p(eCiTz)+ 
my+ 1) 

r[ ,dl/2bKK] r[p+(i/2)+Kle 

-inl.-r-(1/2)1Rl.,r(Z) 

(-n/2<argt<3T/2, 21J.f - 1, -2, . ..). 

W&p (2)’ Z”2~~-~I,2ww2~ (Z)+[(1/2)-K+CL1W,-,,r(Z) 

=z 1’2w,-(,,2,,p+(,,2, (Z)+[(1/2)-K-&f54+(Z). 

zdW,,,(z)/dz=[K-(z/2)lW,,,(z)- [ P2- {K-(1/2)}2]W,-1,p(z). 

When K is sufficiently large we have 

M,,&& (z)-r -1/2r(2p+ 1)K-P-(1/4)z1/4 COS[2(ZK)“2-~VT-(11/4)], 

W,,,(Z)--((4Z/K)1’4eXp(-K+KlOgK)Sin[2(ZK)”2-nK-(~/4)], 

~~,,,(Z)-(Z/4K)“4eXp(K-K10gK-2(ZK)”2). 

Asymptotic expansion: 

WK,,(z)~e-z/2z’ 

x 1+ 5 ~~~-~~-(1~2~~23~~~-~~-(3/2~~~i...c~2-~~--n+(l/2~~~1 

( “=I n!z” 

(2) Representation of Various Special Functions by Whittaker Functions. 

(i) Probability integral (error function) erfx=@(x)- &ce-“dt 

= 1-T-v2x-v2e-x2/2w 
-1,4,1,4(x2) 

=2x,& ;;;; --2 =2 
( ) ( 

x3 x5 x7 
VG LG x-m+2!5-3!7’-*. ) 

Asymptotic expansion: 

~[l-m(x)]~~(l-i+~-~~...). 
(2x2) (2x2) 

&D(xqq=C(x)-S(x), 
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where C(x), S(x) are the following Fresnel integrals. 

C(x)=jXcostt2dt= $ + -$sinTx2+0 $ , 
0 ( 1 

S(x)=~sin~t2dt=~-~cos~x2+O($). 

(ii) Logarithmic integral 

1 dt 
Liz= - 

s 0 logt 
(When z > 1, take Cauchy’s principal value at t = 1.) 

= -(logl/z)-“2z”2W-1,2,0(-logz). 

Liz is sometimes written as lit. 

(3) Exponential Integral 

Eix= 
I 

X $ dt (When x > 0, take the Cauchy’s principal value at t = 0 while integrating.) 
-m 

(x real, #O) 

N (n-l)! 
=e*x 7 +N! 2 

t”-N 

n=l n=O n!(n- N) 
+ $) + C+loglxl. 

Cosine integral CixE - 
I x 

mydt=C+logx-j 
0 

Sine integral Six= 
s 

Xs&t dt, 

0 t 

six=-- 
J x 

mydt=Six- :. 

Asymptotic expansion Eiix=Cix+isixze’” &+&+&+A+... 
IX (lx)* (/X)3 (1x)4 

(III) Bessel Functions (- 39 Bessel Functions) 

(1) Cylindrical Functions. A cylindrical function Z, is a solution of Bessel’s differential equation 

Recurrence formulas: 

z,- 1 (z> + Z”, 1 (z> = (2V/Z)Z” (21, Z,-,(z)- Z,,, (z)=2dZ,(z)/dz. 

s 
zY+lZv(z)dz=zY+lZy+, (I), 

s 
z-“Zv+, (z)dz= -z-“Z,(z). 

As special solutions, we have the following three kinds of functions. 
(i) Bessel function (Bessel function of the first kind). 

J,(eim”z)=eimMiJY(z). 

J-,b)=(- l)“J,(z). 

Jo+(,,2)(z)=~~z”t(‘/‘)( - i $)“( +) (n=O, 1,2, . ..). 

(ii) Neumann function (Bessel function of the second kind). 

N,(r)=&[( cosY~)J”(z)-J-,(z)] (vfinteger; largzl <a), 
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N-, (z)s( - l)“N, (z) (n=0,1,2, . . . . law < 77). 

N,(e immz) = e -imMlNy(z)+2i(sinmr~cotv~)J,(z). 

N n+(l,2)(4=(- l)n+‘J-h+(l,2)l(Z). 

(iii) Hankel function (Bessel function of the third kind). 

H(‘)(z)rJ,(z)+iN,(z), Y 

H(Z)(z)~Jp(z)-iN,(z). Y 

H!‘)(iz/2)= -2ieeim12 (7r~)-“*W~,~(z). 

H??(z)= eimH!‘)(z), H??(z)= e-‘“IHj*)(z). H!*)(x) =Hj’)(x) (x,v real). 

(2) Integral Representation. 

Hansen-Bessel formula 

.--n 
1 =- 

J 
neiZcosrcosntdt 

7r 0 

1 =- 
J = 0 

“cos(z sin t - nt)dt (n=0,1,2, . ..). 

Mehler’s formula J,(x) = 1 s, msin(xcosht)dt, 

No(x)= - 1 Jc, O”cos(x cash t)dz (x > 0). 

Poisson’s formula J”(z)= ~/- ~~z~~~,2)l J”/2cos(zcost)sin2Vtdt 
71 v 0 

(Rev:> - i), 

NV(z)= - 
442)” 

vln IYv+(1/2)1 
“‘2sin(z sin t)cos’” t dt - s me -rsin”’ cosh2” t dt 

0 1 
(Rez>O, Rev> -l/2). 

Schllfli’s formula Tcos(zsint-vt)dt-~~me-ZSi*‘e-v’dt ‘(Rez>O), 
0 

N,(z)= $s, nsin(zsint-vt)dt- ~~me-Zsinhr[e”r+(cosvrr)e-“r]dt (Rez>O). 
= 0 

[ f(t-;)]I- “-‘dt (c>O, largzl<n, Rev> -1). 

2(x/2)-" m 
J”(x)= - 

sinxt 

din Ij(1/2)-VI s (t2-1)Y+(“2) 
4 

1 

dt x >o, -$<Rev<;. 
> 

ezwllw*t-~-l dt (Rez > 0). 

(The contour goes once around the negative real axis in the positive direction.) 

Sommerfeld’s formula 2n-?+imeircosreiv[t-(n/2)]dt, 

v+ioo 

H&,qz) = ; J 1 2n-B+iooeiZcos,,iv[r-(n/2)]dt (-n<argz<a-n, O<ll<?r). 
q-im 

ff (l)(z) = - 2! e-im/2 
Y I 

meiZCoShfcoshvtdt (O<argz < V; when v=O, it holds also at z=O). 
7? 0 

H;“(z) = - 
2ie-““” (z/2)’ 

I 
m e iz Wsh f SinZ’ t dt 

6 Iyv+(1/2)1 0 

(0 < argz < 7, Rev>-1/2;whenz=O, -1/2<Rev<1/2). 
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H(‘)(z) = - i e -ivn/Z m 

Y 
s 

eir[t-(l/t)]/Zt-v-l dt 

7? 
(O<argz<a; whenargz=O, -l<Rev<l). 

0 

(3) Generating Function. 

exp[ “tit-“] n=, =Jo(z)+ 5 [t”+(- t)-“]J,(z), 

exp( iz cos 0) = f i”J,(z)e ‘“*=Jo(z)+2 g inJ”(z)cosne. 
n--cc n=l 

s 
J&W=2 5 J”+Zn+,(Zh 

n=O 

Kapteyn’s series 1 - = 
1-z 

Schlomilch’s series. Supposing thatf(x) is twice continuously differentiable with respect 
to the real variable x in 0 < x < rr, we have 

f(x)= ;a,+ 5 a,Jo(nx) (O<x<n), 
n=l 

where ao=2f(0)+ $-erd~i”‘2y(usin~)dq, 

2 a,=- 
s l 

Tdu a/* 
r 0 

uj’(usincp)cosnq~dq~ 
0 

l=Je(z>+2 5 J2,(z)=[Jo(z)]2+2 5 [J,(z)]Z. 
?I=1 n=l 

(4) Addition Theorem. For the cylindrical function Z,, we have 

ei4Zv(kR)= fj J,(kp)Z,+,(kr)e’“~ 
n= --oo 

(R=J/ r2+p2-2rpcoscp, O<$< 5, eW = 
r-pe-iv 
~ O<p<r, r-peW ’ 

k is an arbitrary complex number), 

3 (kR > 
~ =2’k-‘r(v) 2 (v+n#+;, 

R’ 
(kp) ‘v+mckr) c~)(coscp) 

m=O ry 

(V #negative integer). 

(1= 1,2). 

,ikpcosq= L l/2 O” 

( > 2kp 
mIZo iY2 m+ l)J,+(~,z,(kp)~,(cosO 

=2T(v) 5 (~+m)i~J,+,(kp)(kp)-“C$)(cosq) (VfO, - 1, -2, . ..). 
m-0 

where P,,, is a Legendre polynomial, and Cg) is a Gegenbauer polynomial. 

(5) Infinite Products and Partial Fractions. Let j,,, be the zeros of z-“J,(z) in ascending order 
with respect to the real part. We have 

J,(z) = 01 fj (1-g) 
l-b+ 1) nsl 

(+-L-2,-3 ,... ). 
, 

Note that if v is real and greater than - 1, all zeros are real. 
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Kneser-Sommerfeld formula 

(6) Definite Integrals. 
(O<x<X<l, Rez>O). 

s “‘2J,(zcosO)cos@dB= 
0 

&~2=J2v(‘)dt, 
0 

2 
P+v y+v+1 

- -. v+1; A!! 

2 ’ 2 ’ a2 

(Re(a+ib)>O, Re(a-ib)>O, Re(p++)>o). 

s 
m 

eC"'J,(bt)t"dt= 
(2xmJ+(1/2)1 

0 (a2+ b2)Y+(‘/2)v/71 
Rev>-:, Rea>lImbl . 

> 

m 
(Rev>O, Rea>lImbl). 

Sommerfeld’s formula 
I 

m Jo(+-I+= rdr ,ikw 

0 vF2=PT7 

(r,x real; -m/2<argdr2-k2 <n/2, Ct<argk<~). 

Weyrich’s formula ?i-J_+meiTx~~1)(r\lk2-.2 )dT= 
eikm 

M LPT? 

(r,x real; O<argm <T, O<argk<m). 

Weber-Sonine formula 

s o”J,(at)e-P4’t’-‘dt= 
b/mIb + /d/21 -a2 

2ppr(y+ 1) 
v+l; - 

4P2 

(Re( p + v) > 0, [awl < :7/4, a > O), 

s 
omJ~(af)e-PI’*~Y+‘dt= ?&-‘/4~’ 

(2P2) 
(Rev > - 1, largpl <a/4). 

Sonine-Schafheitlin formula 

s 
mJ,,(at)J,(bt)t-“df = 

dj(p+ V-A+ 1)/21 
0 2~~bP-~+‘r[(-~++++h+1)/2lr(y+1) 

X2F1 

/J+v-h+1 p-V-X+1 a2 
2 ’ 2 ; p+l; 

2 

(Re(p+v-X+l)>O, Reh>-1, O<a<b). 

(7) Asymptotic Expansion. 
(i) Hankel’s asymptotic representation. We put 

(v,m)= 
[4~~-1~1~4~~-3~1...[4~~-(2m-1)~] 

22mm! 
(m= 1,2,3, . ..). (V,O)‘l. 

For Iz[>>/Y[, lzl>l, 

J,(z)= 1 

(-T<argz<n), 
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N,(z)= 

)[ 1 
)[ 

M-l 

z C-1) 
m(V,2m+l) 

+ *m+, +ow2M-‘) 
m=O (2z) 1 

(-n<argz<m), 

H;~~(z)=gexp[i(z- f - ; 
)I[ 

1:; s+ O(lzl-71 (-7r<argz<2n), 

H.““zqgexP[-i(z-~-;)][ yy+o(lzly)] (-2a<argr<a). 

(ii) Debye’s asymptotic representation. 

vkx, 1-(v/x)>&, v/x=sincu, when l-(P/x)>(~/x)v’/*, 

H,C’)(x)- -exp ix cosa + a - T sina 
A [ { ( 2) I] 

e h/4 

X- i ( 1 5 
X 

+ 8fZtan20L 
1 

je3ri/4 
2x3 

3 II 385 +(128+ 76tan20+ ~ 
3456 

tan4a) 3. 5e5ni/4 + 
22x5 ... 1 

(X=[ - xcos(a/2)]“2). 

v&x, (v/x)- 1 >E, v/x=coshu, when l~*-x*~~/*>l, I~*-x*]~/%-*>>l 

H,,(‘)(x)-+exp[x(ocosho-sinho)] 
71 

Whenvkx, Ix--Y~<x’/~, x>l, X-V=& 

(X=[ - xsinh(a/2)]‘/*). 

H (*j(x) ~- Y 

(iii) Watson-Nicholson formula. When x, v > 0, w  = [(x/v)* - l]‘/*, 

H,c’)(x)=3-‘/hexp[(- l)‘+‘i((n/6)+v(w-(~~/3)-arctanw)}]H1(;)~(~~~/3)+O~~-~~ 

(1= 1,2). 

(IV) Functions Related to Bessel Functions 

(1) Modified Bessel Functions. 

I Y (z)e e-im/2.Tv(e”/2z) 

= 5 (z/2)“+2n 
n=o n!I-(v+n+ 1)’ 

71 r-,(z)--“(z) 
2 sin ~77 -( 1 

TL “*wo,,(2z). 
2z 



1806 App. A, Table 19.IV 
Confluent Functions, Bessel Functions 

Recurrence formulas: 

Iv- I(z)- I,+ ,(4=(2~IzMz)~ 

I,- I(z)+ z”+,(z)=wz). 

Kv-I(Z)- G+,(z)= -(2~/W&)t 

Kv-,(z)+&+,(z)= -%Xz), 

K-“(z)= K”(z). 

H. Weber’s formula: O” e -P’*J, (at).Z,, (bt) t dt 

(Rev> - 1, largpl <o/4; a,b>O). 

Watson’s formula: J,(z)N”(z)--J”(z)N,,(z)= 
4sin( CL- v)n m 

42 i K”-,(2zsinht)e(v+“)‘dt 

(Rez>O, Re(p-v)<l), 

ah: (z) a444 4 
Jv(z)~ -N,(z)~ = - - s = 0 

m K,,(2z sinh t)em2”‘dt (Ret >O). 

Nicholson’s formula: 

Dixon-Ferrar formula: 

(2) Kelvin Functions. 

When v is an integer n, 

kei”(z)-(a/2)her”(z). 

her,(x)- ibei,(x)=(- l)“~~(ti x), 

her,(x)- ihei,(x)=(- l)“+‘H,,(‘)($ x) (x real). 

(3) Struve Function. H,(x)= 
2(z/2)” 

I I5+(1/2)]G 0 
“‘2sin(z cos 8)sin’“B dfl 

J,z(z) + N,Z(z) = 5 I O” K,42z sinh t)cosh 2vt dt (Rez > 0). 

J,?(z)+N,!(z)= GimK2”(2zsinht)dt 

( 
Rez>O; 

ber Y (z)? ibei Y (z)=J Y (e*3ni/4 z>, 

her Y (z)? ihei Y (z)- H(1)(er3”i/4z), Y 

ker”(z)= -(a/2)hei”(z), 

=g (- l)m(z/2)“+Zm+’ 

m=O r[m+(3/2>]r[v+m+(3/2)1’ 

Anger function: ncos(vO-zsinB)dO. 

H. F. Weber function: E”(z)=$p(vB-zsin0)dtI. 

Putting V”EZ’$ +zf +z2- v2, 

V”H”(Z) = 
4(z/2)“+’ 

r[v+(1/2)]!IG ’ !),V? 

v”J”(z)= (z-v)siny v”J”(z)= (z-v)siny 
vr vr 

V,E,(z)= - $ - 
(z - v)cos v7r (z - v)cos v7r 

71 . 71 ’ 
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When v is an integer n, J,(z)=J,(z). 

s 0 
=Jow = zJo(z) + ~[J,(z)&(z) - J,(zvf,(z)l, 

J 0 
=N,(t)dt=zN,(z)+ +v,(z)Ho(z)- fv,(z)H,(z)]. 

(4) Neumann Polynomials. 
(n/21 n(n-j- l)! 

R(t)= ci 
j=O j!(l/2)“-“+’ 

(n is a positive integer), 

O,(t)= l/t. 

Schlafli polynomials: 

+1+2 $ O,(t)J,(z) (ItI > lzlh 
n=l 

S, (1) = i [to, (t) - cos’ y ] (n is a positive integer), 

S,(t) E 0. 

V,S,(x)=2n+2(x-n)sin2(n7r/2) (V, is the same operator defined in (3)). 

Lommel polynomials: R,,,(Z)E r(v+ m) 
r(v)(z,2)“z4 2’ 2 ’ v7 - m3 ( 

1-m 2. 

l-v-m; -2’ > 

=(~z/2sinvn)[J,+,(z)J_,+,(z)+(- l)“J-,-,(z)J,-,(z)] 

(m is a nonnegative integer). 

References 

See references to Table 16, this Appendix. 

20. SyStelllS Of Orthogonal Functions (- 317 Orthogonal Functions) 

JR 

Name 

Legendre 

Gegenbauer 

Chebyshev 

Hermite 

Jacobi 

Laguerre 

Notationp,(x) Interval (a,b) 

P”(X) 

C,Y(x> 

Tn (xl 

H,(x) 

(-?,(a,~; x) 

G,“(x) 

(- 1, + 1) 

(- 1, + 1) 

(- 4 + 1) 

(-w+m) 

(031) 

(0, co) 

Weight q(x) 

1 

(1 - x2)4w) 

(1 -x2)- I/2 

e-x2 

x7- ‘(1 - X)a-7 

x*e-” 

For Legendre polynomials P,,(x) - Table 18.11, this Appendix. 

(I) Gegenbauer Polynomials (Gegenbauer Functions) 

Norm A, 

2/(2n + 1) 

2mI(2v+ n)/22’(n + v)n![r(v)12 

7r(n=O); 7r/2 (n > 1) 

v- 77 .n! 

n![r(y)12r(~+n-~+i) 
(a+2n)r(a+n)r(y+n) 

r(a+n+ 1)/n! 



App. A, Table 20.11 
Systems of Orthogonal Functions 

1808 

Generating function 

Orthogonal relation 
I r (sin2”0)C~(cos0)C,Y(cosfI)d0= 

d(2v + n) 

0 
1 Ln. 

22”-‘(V+n)n![r(Y)1 

(II) Chebyshev (Tschebyscheff) Polynomials 

(1) Chebyshev Polynomial (Chebyshev Function of the First Kind) 

T,(x)rcos(narccosx) 

=(1/2)[(x+iV~)‘+(x-i\ll-1;I)‘] 

= F(n, - n; l/2; (1 -x)/2) 

= (_ I)“( 1_ .,3”’ d” (I- x2)“-(“2) 

(2n - l)!! dx” ’ 

Chebyshev function of the second kind 

U,(x)-sin(narccosx) 

=(1/2i)[(x+iVY7)n-(x-i~i77)“] 

= (- l)“-ln d-1 (1 _ x2)“-(*‘2) 

(2n- l)!! dx”-1 

x(x), U,(x) are mutually linearly independent solutions of Chebyshev’s differential equation 
(I- x2)$’ - xy’ + n2y = 0. Recurrence relations are 

Tn+, (x)-2xT,(x)+ r,-, (x)=0, u,,, (x)-2xI/,(x)+ u,-, (x)=0. 

Generating function: 

l-12 
=T,(x)+2 2 T,(x)r”, 

1 
1-2tx+ 12 n=O 1--2tx-F t2 = & z 4+1(x)t”. 

n 0 

Orthogonal relation: (m#n), 
(m=n+O), 

s 

+’ umw”(x)dx 

(m=n=O); -1 VT7 = : 

5 (m=n#O), 

0 (otherwise). 

Orthogonality in finite sums. Let uo, ul, , . . , uk be the zeros of Tk+ 1(x). All zeros are real and 
situated in the interval (- l,l). Then we have 

I 

0 
i$oTm(ui~Tn(ui~F (k+1)/2 

(mfn, or m=n=k+ l), 
(l$m=ngk), 

k+l (m=n=O). 

Letp,(x) be the best approximation of x” in - 1 < x Q 1 by polynomials of degree at most n - 1. 
Then we have x”-p,(x)=2-“+‘T,(x). 
(2) Expansions by T,(x). 

e”=Z,(a)+2 2 Z,(a)T,(x), 
?I==1 

sinax= 2 (- 1)52,+1 (a)TZn+, (xl 

n=O 

cosax=Jo(a)+2 2 (-l)“J,,(a)T,,(x), 
n=l 



1809 App. A, Table 2O.N 
Systems of Orthogonal Functions 

m 1 log(l+xsin2a)=2logcosa-2C, n(-tana)‘T,(x), 
n=l 

cc 
arctanx=2 c (-p -lfn+‘T,,+,( 

2n+l X. ) 
?I=1 

(III) Parabolic Cylinder Functions (Weber Functions) (- 167 Functions of Confluent Type) 

Parabolic cylinder functions: 

D,(z)= 2(1’4)+(v’2)z-1’2 W(l,4)+(v,2), -ri4(z2/2) 

=A2 (1/4)+wz)z-1/2 Mw4~+w,z~. -1,4(Z*/2) + ~~1,4j-(v,2), -1,4@*/2) 

nu --VI/21 u - v/2) 1 
= 2yi2e-z214 x 

J[ 

1 -v 1 zz 

U(1 - Jw21 IF1 2;2;y 3-Q) ( > 
d+!$;;;;)]. 

The solutions of Weber’s differential equation 

are given by 

D,(z), 4(-z), D-u-, (iz>, D-v-, t-k), 

and the following relations hold among them. 

D~(z)=[~(~+1)/\/2n][e’“‘2D-~-,(iL)+e-iun’2D_~_1(-i~)] 

=e -‘mD,(-z)+[V277 /~(-v)]~-~~~+')~~~D_~_,(~z) 

=e’“lo,(-z)+[V277 /r(-~)]e’(~+‘)“/~D_~-,(-iz). 

Integral representation: 

D,(z)= ~lae-zi-(r’/z)t-Y-ldr (Rev<(,). 
U-v) 0 

e - (S/4)- zt- (G/Z) = 
* (-t)” 

c 
---Do,(z)= +J-y n! tT- v)D,(z)dv (c<O, largtl <n/4). 

n=O c Ice 

Recurrence formula: 

0,+1(z)-zD,(z)+vD,-,(z)=o, dD,(z)/dz+(1/2)zD,(z)-vD,-,(z)=O. 

D, (0) = 2y’26i- p+w~; 

Ni - d/21 ’ 
D:(O)=- r(-v,2) . 

Asymptotic expansion: 

v(v- 1) + Y(V- l)(v-2)(v--3) _ 

2z2 2.4~~ 
+ . . . 

I( 
largzl < a~). 

D-,(z)=~“*/~ &[ l-erf(&)], erf(x)=+iXe-“dt (errorfunction). 

(IV) Hermite Polynomials 

For the parabolic cylinder functions, when v is an integer n, we have 

D,,(z)=(-l)neZ2~4d”(e-‘2~2)/dz”=e-’*~4Hn(z/~), 
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where H,(x) is the Hermite polynomial 

H,(x)=2-“‘2(- l)“ex*dn (e-“*)/dX”=eX2/*D,(~x). 

A Hermite polynomial is more often defined by the following function He,(x) (e.g , in W.F. 
Magnus, F. Oberhettinger, and R. P. Soni [l]). 

He,(x)=( - l)neX2/2dn (e-“‘/*)/dx”= I?‘/~D, (x)= H,, (x/fi ). 

The function y = H,(x) is a solution of Hermite’s differential equation 

y”-2xy’+2ny=O. 

H,(X) is a polynomial in x of degree n, and is an even or odd function according to whether n 
is even or odd. 

H 2n+,(~)=(-1)n(2n+1)!!~x,F,(-n;3/2;x2). 

Recurrence formula: 

K+ I (x> = d/T xH,, (x) - nH,-, (x) = V? xH, (x) - H; (x)/fi , 

H 
2n 

(o)= (-- 1)“(2n)! 
2% ! 

=(-1)“(2n-l)!!, H,,+,(O)=O. 

Generating function: 

efi fx-(f2/*)= 2 H, (x)t”/n!. 
n-0 

Orthogonal relation: 

/ ‘mH,(x)H,(x)e-X2d~=6,,n!~/?r. 
-CC 

(V) Jacobi Polynomials 

=x’-Y(l-xx) 
y-ar(y+n) dn 

---7& 
r(Y) dx 

Y+n--l(l -X)-Y]. 

These satisfy Jacobi’s differential equation x( 1 - x)y ” + [ y - (o + 1)x] y’ + n(cr + n) y = 0. 

Orthogonal relation: 

s ‘XY-l(l-X)a-Y G,(a,y;x)G,(a,y;x)dx= n!lY(cr+n-y+l)lY(y)’ 

0 (a+2n)r(a+n)r(y+n)Smn 

Representation of other functions: 

(Rey > 0, Re(cr - y) > - 1). 

P.(x)=G(l,l; +), T,(x)=G(O,;; +), 

n r(2v + n) 
c;(x>=(- 1) r(2v).n! G,, 

( 
1 1+x 

2v,v+ 2; 2 
1 

. 
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(VI) Laguerre Functions 

(1) Laguerre Functions. 

L?‘(z) = I-(a+v+l) 
I-(a+ l)l-(v+ 1) z-(‘+1)‘2e”iz~I(,+,)lzl+,,~~(z) 

r(cr+v+l) 
=r(a+ i)r(v+ 1) ,F,(-v;cc+l;z), 

These satisfy Laguerre’s differential equation 

zd2[L!“)(z)]/dz2+(a+l-z)d[Lp)(z)]/dz+vL!”)(z)=O. 

(2) Laguerre Polynomials. When v is an integer n (n = 0, 1,2, . . . ), the function L:)(x) reduces 
to a polynomial of degree n as follows. 

Laguerre polynomials: 

i=O 

(- l)“n! 
LiO)(x)= 1, L$m)(x)= 1, L!;;)(x)= olxmL:*‘(x) (m=0,1,2,...). 

Recurrence formulas: 

nLp)(x)=(-x++n+a- l)Lfi,(x)-(n+a- l)L!“_),(x), 

xd[Lp)(x)]/dx=nI$)(x)-(n+a)Lf$,(x) (n=2,3,...). 

Generating function: 

e-X”(‘-‘) = 2 L!“‘(x)p (ItI < 1). 
(l-t)a+r n=e 

Orthogonal relations: 

(3) 

s 0 
me-Xx”L$‘)(x)L~)dx=6,,~(a+n+l)/n!=8,,,,~(1+a)(n~a). 

H,,(x)=(-2)“n!L!+)(x2), H2n+,(~)=(-2)“n!~~xL~‘~2)(~2). 

Sonine Polynomials. 

S’“‘(x) 3 
(- 0” 

n L’“‘(x) 
T(a+n+l) n * 

(VII) Orthogonal Polynomials 

k=O 

(where n, m are positive integers and n < m). 
We have the same polynomials if we replace xk in PJ 1 - 2x) by 

x(x-l)...(x-k+l)/m(m-l)...(m-kfl) (k=O,l,..., n). 

Orthogonality in finite sums: 

$i f’n,, (kP,,,n (k) = h, 
(m+n+l)!(m-n)! 

k-0 (2n + l)(m!)’ ’ 

Chebyshev’s q functions: 

qn(m 
, 
x)= (- l>“(m- l)! 

2”(m-n- l)! Pn,m-~ (x), L,,(x)= [2”(n!)‘/(2n)!]q,(m,x- 1). 

Forgivendatay,atmpointsx,=x,+(k-l)h(k=l,..., m) that are equally spaced with 
step h, the least square approximation among the polynomials Q(x) of degree n( <m), i.e., the 

polynomial that minimizes the square sum of the residues S = k$ [yk - Q(x&]’ is given by the 
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following formula (- 19 Analog Computation): 

B/c= 5 YiSk,m (9, Sk= E [6,,(i)]‘, 
i=l i=l 

References 

See references to Table 16, this Appendix. 

21. Interpolation (- 223 Interpolation) 

(1) Lagrange’s Interpolation Polynomial. 

f(x)= 2 f(xs) 
(x-xo)(x-x,)...(x-xs~,)(x-xs+,)...(x-xx,) 

s=o (x,-xo)(x,-x,)...(x,-xx,~,)(x,-x,+,)...(x,--x,)~ 

Aitken’s interpolation scheme. The interpolation polynomialf(x) corresponding to the value 

Ys =f(xJ (3 = 031 , . . . , n) is given inductively by the following procedure. The order of x0,x,, 
. . .,x, is quite arbitrary. 

p,,o(x)=ys (s=O,l, . . ..n>. 

~~,k+,~X~=[~X,-xX)~k,k~X~-~Xk-xX)~,,k~~~]/~~,-xk~ (s=k+1,k+2,...,nh 

f(x) -AJx>. 

(2) Interpolation for Equally Spaced Points. When the points xk lie in the order of their sub- 
scripts at a uniform distance h (x, = x0 + sh), we make the following difference table (Ax = h). 
Forward difference: 

Ai=A;=&+, -f;=f(xi+,)-f(xi), A;=A;;f-A;-‘. 

Variable 

. . . 
x0 - 2Ax 
x0-Ax 

x0 
x,+Ax 

x0+ 2Ax 
x0+ 3Ax 

. . . 

Value of Function . . . 
jr: 
fo 
fi 

2 

(1st) 

- 
Difference 

(2nd) (3rd) (4th) . . . 

. . . . . . 
Amz Af, . . . . . . 
A-, A?, A?, A:, . . . 
L$, g A:, A!, . . . 

4 A: g . . . 
A2 . . . . . . 

Backward difference: 

&@-‘-@&A;-,. 

Central difference: 

8; = 8;&,2) - 6;~,$,2~, S;+(+) = A;. 

Newton interpolation formula (forward type): 

u(u- 1) 
f(xo+uAx)=f(xo)+~Ao+~ 

l! 
A2+ u(u- l)(u-2) A3 

2! O 3! 0 

+ U(U- l)(u-2)(~-3) A4+ 
4! 0 . . . . 

Gauss’s interpolation formula (forward type): 

u(u- 1) 
f(xo+~W=f(xo)+++~ A?,+ 

u(u- l)(u+ 1) 

3! 
A?, 

+ u(u- l)(u+ l)(u-2) A4 + 

4! 2 . . . . 
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Stirling’s interpolation formula: 

Bessel’s interpolation formula: 

x0+x, 
f(T+uAx)= r(xo);s(xl) +~Ao+~(~2-t)~+~(~2-a)A~, 

+ &(A +)(A gA.‘2; Atl + . . . . 

Everett’s interpolation formula: 

u(u2- 1) 
+4(x,)+ 7 0 

A2+ U(U2-1)(U2-4)A4 + 
5! I . . . . ((=1-u) 

(3) Interpolation for Functions of Two Variables. Let x,,, = x0+ mAx, yn =yo+ nAv 
(m and n are integers). We define the finite differences as follows: 

A,(x,,Yo> --fhyo) -f(xozvo>> 

A,(xo,~o)=f(xo>~J -f(xotuo)$ 

A:(xo,yo) -A&,,Y,,) - Ax(xo,~o)= 6,’ (GYO), 

A,.Jxo,yo) -A+,,Y,) - A,(xo,yo) = A~(xo,Y,) -Ax(xo,~o)~ 

A,2(xo,yo)=Ay(xo,~,)-Ay(xo,~o)= 6,’ (xoJ,), . . 

Newton’s formula: 

f(xo+ uAx,yo+ vb) =f(xo,ro) + (uA, + uA,)(x,,vo) 

+(1/2!)[u(u-l)A;+2 uoA,+u(u-l)A;](xo,yo)+ . . . . 

Everett’s formula. Putting s = 1 - u, t = I- u we have 

f(xo+ uAx,~o+uA~)=~tf(xo,~o)+~uf(xo~~,)+ utf(x,,~o)+uuf(x,t~,) 

-(1/6)[us(1+s){t~,Z(x,,y,)+u~,2(~~,~~)}+~~(1+~){t~~(~,,y~)+0~~(x~,y,)} 

+ot(l+t~{s~~~XO,Yo~+USy2~X~,YO~}+ur~1+u~{S~~~XO,Y*~+US:~XI,Y,~}]+~~~~ 

References 

[l] F. J. Thompson, Table of the coefficients of Everett’s central-difference interpolation formula, 
Tracts for computers, no. V, Cambridge Univ. Press, 1921. 
[2] M. Lindow, Numerische Infinitesimalrechnung, Dummler, Berlin, 1928. 
[3] H. T. Davis, Tables of the higher mathematical functions I, Principia Press, Bloomington, 
1933. 
[4] K. Hayashi and S. Moriguti, Table of higher transcendental functions (in Japanese), Iwanami, 
second revised edition, 1967. 

22. Distribution of Typical Random Variables 
(- 341 Probability Measures, 374 Sampling Distributions) 

In the following table, Nos. 1-13 are l-dimensional continuous distributions, and Nos. 2&21 are 
k-dimensional continuous distributions, for which the distribution density is the one with respect 
to Lebesgue measure. Nos. 14-19 are l-dimensional discrete distributions, and Nos. 22-24 are 
k-dimensional discrete distributions, where the density function P(x) means the probability at 
the point x. 

The characteristic function, average, and variance are given only for those represented in a 
simple form. 
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NO. Name Symbol Density Function Domains 

1 Normal Wrd 

2 Logarithmic normal 

3 Gamma 

4 

5 

6 

Exponential 

Two-sided exponential 

Chi square 

UPTO) 

e(rso) 

7 Beta 

8 F F(m, n) 

I 

f 

Cauchy 

One-side stable 
for exponent I /2 

Uniform rectangular 

1 (x-r)* 
1/1exp -- 
(2nd) 1 I 202 

*+P[-v] 

[r(p)]- Ig -PxP- I,-40 

(I/+=P(-(x-P)/4 

(1/2o)e-l’l/ 

2-“/2[r(n/2)]-‘x(“/Z)-‘e-X/2 

[B(p,q)]-‘xp-‘(I-xp-’ 

[GB(n/2,1/2)]-'[I +(r*/n)]-'"+"/2 

,*w[ *+?I-’ 

l/(B-a) 

--o,<x<m 

o.:y < m 

o.:x<m 

p.:x< m 

-cs<x<m 

O‘ZX< m 

O<X<l 

ocx< m 

--at<r<m 

-a<,<m 

--m<x<m 

o<x<m 

ncx<p 

14 Binomial Bin(v) (:)P%n-x x=0.1,2 ,..., n 

I5 Poisson P4) C”XX/X! x-cI.l,2,.. 

16 Hypergeometric ff(N3n.p) 

x integer 
O< KC Np, 

O<n-x<Nq 

17 Negative binomial NB(m,p) r(m+~)[r(m)~!]-~pp~ x=aI 1,2, 

18 Geometric G(P) Pq= x=O.l,2, 

19 Logarithmic KLq’/x, KL’ - I/logp x-1.2,3,... 

20 Multidimensional normal N(!-hW 
(Zn)-yzl-v 

x exp[ - (x - p)Z - ’ (x - P)'/21, 

x-(x I,__., xJJ,p=(p I,..., h), --(a,) 

21 Dirichlet 

r-b,+ +Y~+, ) 
rb,)...rbk+,) 

q-1 A&+,!- ’ 

x,+,-I-(x,+...+x,) 

x I,..., .q>o, 
x,+,. +x,<1 

22 Multinomial M(~,(P,)) 
n!(x,!...x~+,!)-‘p;I...p*X:+, 

++,=n-(x,+ . ..+xJ 

Xi’ . ..x* 

=O,l,..., n, 
x,+..,+.q<n 

23 
Multidimensional 
hypergeometric 

24 Negative polynomial 

x,, . . ..xt integers 
O<xi< Np, 

(i-l,...,k+l) 

r(m+x,+...+~k) X,>.....q 
r(m)x,!...+! P&w Pk? -0,1,2, 
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Conditions for Characteristic 

Parameters Function 

-CO<p<CO, 

a>0 
I 

2 

3 

4 

5 

6 

7 

8 

9 

IO 

II 

I2 

13 

P,S>O 

-m<p<m,o>o 

o>o 

n positive integer 

P.4>0 

eP+(a2) 

(I- iof)-P 

e’*(l-ior)-’ 

(l+oV-’ 

(1-2it)-“I* 

0% 

02 

202 

2n 

P4 

(P+q)?P+q+l) 

OP 

C+S 

0 

n 

P 

p+q 

m,n positive integers 

m, n positive integers 

n positive integer 

-CO<p<CO, 
o>o 

O(n>l) 

O<c<m exp[ - clfl’/z(l - it/lrl)] none none 

(P-@/12 -m<a<p<m (e’@ - e’“‘)/ir( fi- a) (a+PW 

p+q- Lp,q>O, 

n positive integer 
(pe”+ 4)” np 14 

A>0 exp[-A(1 -e”)) A A 15 

P+q’l,P,q>o, (Nq)‘“‘(N’“‘) - ’ 

N, Np,n positive integers XF(-n -Np.Nq--n+l.e”) 
w&-n) 

> 9 3 1 np 16 

N>n 
N-l 

m’“‘sm!/(m-n)! 

p+q-l,p,q>O, 

m>O 

mq 
P 

w 
PZ 

17 
(1-qe”)- 

p+q- I,p,q>O 
P 

I - qe” 

4 

7 
18 

p+q-I,p,q>O - Kr log( I - qe”) &q/P &q(l- Krq)/P’ 19 

-m<P,,...,Pk 

< co, P symmetric 

positive definite 

quadratic form 

ap( ipf- F), 

I=(112 . . ..d 

E(3)= Pi 
V(xJ = a,, 

Cov(x,,x,)- mv 
20 

E (xi) =cvi(v,+...+v~+~-“,), 
“I. . . . . ++,>o vi COV(X,,Xj) = - cvivj, 21 = 

VI+ .,, +~,+I c++ . ..+v.+J2 

x(“,+...+“,+,+l)-’ 

p,+...+p*+,=I, 

PI.....Pk+I>o 
n positive integer 

(p,e”l+ +p&“+p*+,)” EC%) = w, 
w#)=nP,(l -PA 

Cov(x,, x,)= -“pip, 
22 

V(x,)- C”P,(l -p;), 

PI. . . . . P&+,>o, 

N,NP,, . . ..NP.‘,~ 

positive integers 

EC+)= vi 
cov(x,*xj)= - c”Pp,. 

23 
N-II 

CG-- 
N-l 

Po+P,+...+Pk- 

~,PO,P,~...~Pk 

>O, m>O 

E(q) = $ 
v(x,)=wib,+P,vP~~ 24 

COdXi, x,) = mpg,/P; 
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Remarks 
1. Reproducing property with respect to p, u2. 
2. X=logY:N(y,a2). 
3. Reproducing property with respect top. 
4. e(O,a)=r(l,u). 
6. n is the number of degrees of freedom; reproducing property with respect to n. 
8. m and n are the numbers of degrees of freedom. 
9. ezr= F(m,n). 
10. n is the number of degrees of freedom. 
11. C(0, 1)= t(1); reproducing property with respect to n and u. 
14. Reproducing property with respect to n. 
15. Reproducing property with respect to A. 
17. Reproducing property with respect to m. 
18. G(p)=NB(l,p). 
20. Generalization of normal distribution; reproducing property with respect to p and X. 
22. Generalization of binomial distribution; reproducing property with respect to n. 
23. Generalization of hypergeometric distribution. 
24. Generalization of negative binomial distribution; reproducing property with respect to m. 

23. Statistical Estimation and Statistical Hypothesis 
Testing 

Listed below are some frequently used and well-investigated statistical procedures. (Concerning 
main probability distributions - 398 Statistical Decision Functions, 399 Statistical Estimation, 
400 Statistical Hypothesis Testing). The following notations and conventions are adopted, unless 
otherwise stated. 

Immediately after the heading number, the distribution is indicated by the symbol as defined 
in Table 22, this Appendix. It is to be understood that a random sample (xi, x2, . . ,x,) is ob- 
served from this distribution. Where two distributions are involved, samples (xi, . . . ,x0,) and 

(Y i , . . . , y,,) are understood to be observed from the respective distributions. 
Next, a necessary and sufficient statistic based on the sample is marked with * when it is com- 

plete, and # otherwise. Then appears the sampling distribution of this statistic. FOT those statistics 
consisting of several independent components, the distribution of these are shown. Greek lower- 
case letters except tl and 1 denote unknown parameters. Italic lowercase letters denote constants, 
each taking arbitrary real values. Italic capital letters denote constants whose values are specified 
in each procedure; repeated occurrences of the same letter under the same heading nurnber specify 
a certain common real value. 

Problems of point estimation, interval estimation, and hypothesis testing are presented, with 
corresponding estimators, confidence intervals, and tests (critical regions) as their solutions. All 
the confidence intervals here are those constructed from UMP unbiased tests, having I --c( as 
confidence levels. Alternative hypotheses are understood to be the negations of corresponding 
null hypotheses. Significance levels of all the tests are CI. The following symbols are attached to 
each procedure to describe its properties. 

For estimators: 
UMV: uniformly minimum variance unbiased. 
ML: maximum likelihood. 
AD admissibility with respect to quadratic loss function. 
IAD: inadmissibility with respect to quadratic loss function. 

For tests: 
UMP: uniformly most powerful. 
UMPU: uniformly most powerful unbiased. 
UMPI( ): uniformly most powerful invariant with respect to the product of transformation 
groups shown in ( ). 
LR: likelihood ratio. 
0: group of orthogonal transformations. 
L: group of shift transformations. 
S: group of change of scales. 
AD: admissibility with respect to simple loss function. 
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IAD: inadmissibility with respect to simple loss function. (Note that UMPU implies AD.) 
The following symbols denote lOO( 1 - (u)% points of respective distributions, (Y being 

sufficiently small. 
u(a): standard normal distribution. 
f,(a): t-distribution with f degrees of freedom. 
x:(a): x2 distribution with f degrees of freedom. 
F$a): F-distribution with (fi,f2) degrees of freedom. 

(1) N(/l,bZ). xx,*. N(n/&,&). 

Point estimation of p. X= iZxi: UMV,ML,AD. 

Interval estimation of CL. 
( 

Xk 442)$ 
1 

. 

Hypothesis [ p < k]. X > k + u(a)-& : UMP, LR. 

Hypothesis [h < p < I]. X < h - C or X > I+ C: UMPU, LR. 

(2) N(a,o*). 2(x,-a)**. 2x;. (a*& is the a*-multiplication of a random variable obeying 
the x*(n) distribution. We use similar notations in the following.) 

Point estimation of u*. 
X(x;- a)’ 

: UMV, ML, IAD. 

Interval estimation of u*. (A&x, - a)*, BC(x. - a)*). 
Hypothesis [a* < k]. Z(xi- a)*>x;(a)k: UkIP,LR. 
Hypothesis [u*= k]. z(xi - a)* < Ak or x(x, - a)* > Bk: UMPlJ. 

(3) N(PTfJ2). (;;J*. ($‘;“““). 

Point estimation of p. X: 

Interval estimation of p. 

UMV, ML, AD. 

! 

. 

Hypothesis 

Hypothesis 

p < k]. &t;-kTf > $!$ : UMPU,LR. 

p= k]. : UMPU, LR, UMPI(S, 0) for k = 0. 

Point estimation of u*. 

Point estimation of u. 

Interval estimation of u*. (AZ(x, - F)i BZ(x, - 3’). 

Hypothesis [u*< k]. 2(x,-.F)*>x,f-,(a)k: UMP, LR. 

Hypothesis [a*= k]. C(xi - Z)*< Ak or X(x,-Y)* > Bk: UMPU. 
Hypothesis [a* > k]. Z(xi - $* <d- t( 1 - a)k: UMPU, UMPI(L). 

Hypothesis -!! < k [ u 1. +- > E: UMPW), AD. 

(4) Bin(N,f?). Xxi*. Bin(Nn,O). 

Point estimation of 8. $: UMV, ML, AD. 

Hypothesis [0 < k]. X> A: UMP. 
Hypothesis [h < fI < I]. X< B or X> C: UMPU. 

(5) H(N,m,B) (n= 1). x*. 

Point estimation of 8. UMV, AD. 

Hypothesis [0 < k]. x > A: UMP. 
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(6) NB(N,O). Xxi*. NB(NyQ 1 

Point estimation of 0. Nn +zx-- 1 (1 when the denominator is 0): UMV, AD. 
I 

Nn 
m: 

ML. 

Hypothesis [0 < k]. Zx, < A : UMP. 
Hypothesis [h < 0 < I]. Cx, < B or Xx, > C: UMPU. 

(7) P(X). xxi*. P(d). 
Point estimation of h. X: UMV, ML, AD. 
Hypothesis [X < k]. X> A : UMP. 
Hypothesis[h<X<I]. Z<B orZ>C: UMPU. 

(8) G(0). Zxi*. NB(n,8). 

(9) 

(10) 

(11) 

(12) 

For the point estimation of 0 and hypothesis testing - (6). 

U[O,fl]. maxxi*. 

Point estimation of 0. maxxi: ML, IAD. n+l -maxx,: UMV, IAD. 
n 

Hypothesis [0 < k]. maxx, > (1 - a)‘/“k: UMP. 
Hypothesis [0 = k]. maxx, < ka”” or maxx, > k: UMP. 

U[[,v]. (minxi, maxx,)*. 

Point estimation of 5. 
n minxi - maxx; 

n-l : UMV, IAD. minxi: ML, IAD. 

t+17 Point estimation of 2. 
tiin Xi + maxx, 

2 
: UMV, AD. 

Hypothesis [q-t< k]. maxx,--minx, > ka”“: UMP. 

u e-;,e+; . [ 1 (minxi, maxx,)*. 

Point estimation of 19. 
min xi + max xi 

~ : ML, AD. 
L 

Hypothesis [Q < k]. minxi > k + i - a’/” ormaxxi>k+i: UMP. 

et ho>. ( ZXi)‘. ( ::n;$+i;P)~ 

Point estimation of u. 
Xx,--minxi 

n-1 
: UMV, IAD. ,i-minxi: ML, IAD 

Point estimation of p. * minxi - AX: UMV, IAD. minx,: ML, IAD. 

Hypothesis [a< k,p=h]. Cx,<h or ,Zxi>kloga.-‘/“+h: UMP. 
Hypothesis [h<a< I]. xx,-nminx,<A or Xxi-nminxi> B: UMPU. 

Hypothesis [ p = k]. 
nminx;- k 

cx, _ n minx, < 0 or 
nminxi-k 

Cx, - n minx, 
>C: UMPU. 

(13) r(p,O). ZXi*. r(np,u).- 

Point estimation of u. 5: UMV, ML, IAD. 

Interval estimation of u.‘(CZx,, DZx,). 
Hypothesis [a < k]. Xx, > A : UMP. 
Hypothesis [u= k]. Xx, < Ck or Zxi > Dk: UMPU. 

(14) 
N( ~,,a*) 
N( ~24’). 

Point estimation of p1 -pLz. x-j? UMV, ML, AD. 

Interval estimation of pl -pLz. 

Hypothesis [~~-j~~<k]. 
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[/.vp*=k]. Ix-y-kl>u(a/2) 
d---- 

$ + $ : UMPU, UMPI(L), LR. 

I 
CXi 

* r 

I , 

N (n, WV*) 

XV, 

s*=~(x;-,r)z+qyi-y)2 

. q~*(J*~~*~‘> . 

a2x2n,cn,-2 , 

Point estimation of p, - ,u2. X-y: UMV, ML, AD. 

Interval estimation of p, - p2. x--y+ tn,+n*-2 

Hypothesis [ p, - p2 < k]. 
(X-F-k)G d/n,+n*-2 

t = 
G V/s’ 

> tn,+n*-2 (a): UMPU, 

UMPI(L), LR. 
Hypothesis [ p1 - p2= k]. ItI > tn,+n2-2(a): UMPU, UMPI(L), LR. 

Point estimation of CT*. n +s,’ -2 : 
1 2 

UMV, IAD. 6: ML, IAD. 
I 2 

Interval estimation of u*. (As*,Bs*). 
Hypothesis [u*< k]. s*>x~,+~~-~(cx)~: UMP, LR. 

Hypothesis [u2= k]. s* < Ak or s*> Bk: UMPU. 
Hypothesis [a*> k]. s*>~~,+~,-~(l -a)k: UMPU, UMPI(L), LR. 

4 
Interval estimation of -. 

0: I 
A 

0: 
Hypothesis 1 < k . ~ [ 1 (n,-1) q-%-q2 

b, - 1) qyi-Jq* 
> F;;:,‘(a)k: UMPU, UMPI(L, S), LR. 

02 

* 
(17) N(PbP2,4,43P). 

xx;, 2(x;- q*, 
ZYi, qvi-u)‘, 

qx,-qYi-Y) 

! 
Point estimation of p. r= 

Hypothesis [p=O]. Irj > 
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1 
Prime Numbers and Primitive Roots 
L 

Indices Modulo p 
3 
Bernoulli Numbers and Euler Numbers 
4 
Class Numbers of Algebraic Number Fields 
5 
Characters of Finite Groups; 
Crystallographic Groups 
6 
Miscellaneous Constants 
7 
Coefficients of Polynomial Approximations 

1. Prime Numbers and Primitive Roots (- 297 Number Theory, 
Elementary 

In the following table, p is a prime number and r is a corresponding primitive root. 

P r P r P r P * P r P r 

2 79 3 191 19 311 17 439 17 577 5 
3 2 83 2 193 5 313 17 443 2 587 2 
5 2 89 3 197 2 317 2 449 3 593 3 
I 3 97 5 199 3 331 3 451 13 599 7 

11 2 101 2 211 2 337 19 461 2 601 7 
13 2 103 5 223 3 341 2 463 3 607 3 
17 3 107 2 221 2 349 2 467 2 613 2 

P r ___- 
709 2 
719 11 
727 5 
733 7 
739 3 
743 5 
751 3 

P r 

857 3 
859 2 
863 5 
877 2 
881 3 
883 2 
887 5 

19 2 109 11 229 7 353 3 479 13 617 3 757 2 907 2 
23 5 113 3 233 3 359 7 487 3 619 2 761 I 911 17 
29 2 127 3 239 7 367 11 491 2 631 3 769 11 919 7 
31 3 131 2 241 I 373 2 499 7 641 3 113 2 929 3 
37 2 137 3 251 11 379 2 503 5 643 11 787 2 937 5 
41 7 139 2 257 3 383 5 509 2 647 5 797 2 941 2 
43 3 149 2 263 5 389 2 521 3 653 2 809 3 947 2 

41 5 151 I 269 2 397 5 523 2 659 2 
53 2 157 5 271 43 401 3 541 2 661 2 
59 2 163 2 217 5 409 29 541 2 673 5 
61 2 167 5 281 3 419 2 557 2 677 2 
67 2 173 2 283 3 421 2 563 2 683 5 
71 7 179 2 293 2 431 7 569 3 691 3 
73 5 181 2 301 5 433 5 571 3 701 2 

811 3 
821 2 
823 3 
827 2 
829 2 
839 11 
853 2 ~- 

953 3 
967 5 
971 11 
977 3 
983 5 
991 7 
997 7 

tMersenne numbers. A prime number of the form 2P- 1 is called a Mersenne number. There exist 
27 suchp’s less than44500: p=2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 60’7, 1279, 
2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497. The even perfect 
numbers are the numbers of the form 2P-‘(2P- l), where 2P- 1 is a Mersenne number. 

2. Indices Modulop (- 297 Number Theory, Elementary) 

Let r be a primitive root corresponding to a prime number p. The index I = Ind,a of a with respect 
to the basis r is the integer 1 in 0 <I< p - 1 satisfying r’= a(modp). a = b(modp) is equivalent to 
Ind,a = Ind, b(mod(p- 1)). The index satisfies the following congruence relations with respect to 
mod(p- 1): Ind,ab=Ind,a+Ind,b, Ind,a”=nInd,a, Ind,a=Ind,rInd,a. 
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We can solve congruence equations using these relations. The following is a table of indices. 

P 

2 
3 
5 
7 

11 

P-l 

1 
2 
4 

2.3 
2.5 

13 2’.3 
17 24 
19 2.32 
23 2.11 
29 22.7 

31 2.3.5 
37 22.32 
41 23.5 
43 2.3.7 
47 2.23 

53 22.13 
59 2.29 
61 22.3.5 
67 2.3.11 
71 2.5.7 

73 23.32 
79 2.3.13 
83 2.41 
89 23.11 
97 25.3 

101 22.52 
103 2.3.17 
107 2.53 
109 22.33 
113 24.7 

127 
131 
137 
139 
149 

2.3’.7 
2.5.13 

23.17 
2.3.23 

2’.37 
. 

151 2.3.5’ 
157 22.3.13 
163 2.3.’ 
167 2.83 
173 22.43 

179 2.89 
181 2’.3’.5 
191 2.5.19 
193 26.3 
197 2=.7= 

199 2.32.11 
211 2.3.5.7 

223 2.3.37 
227 2.113 
229 2’.3.19 

- 
r 
- 

2 
2 
3 
2 

2 
3 
2 
5 
2 

3 
2 
7 
3 
5 

2 
2 
2 
2 
7 

5 
3 
2 
3 
5 

2 
5 
2 
1 
3 

3 
2 
3 
2 
2 

7 
5 
2 
5 
2 

2 
2 

19 
5 
2 

3 
2 
3 
2 
I 

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 

1 - 
13- 
2 15- 
18 4 7- 

1 4 9 11 7 - 
14 1 5 11 7 4 - 

1 13 16 6 12 5 10 - 
2 16 1 19 9 14 7 15 - 

1 5 22 12 25 18 21 9 20 - 

24 1 20 28 23 11 7 4 27 9 - 

1 26 23 32 30 11 7 35 15 21 9 - 

14 25 18 1 37 9 7 31 4 33 12 8 - 

27 1 25 35 30 32 38 19 16 41 34 7 6 - 

18 20 1 32 7 11 16 45 5 35 3 42 15 13 - 

1 17 47 14 6 24 10 37 39 46 33 30 45 22 44 

1 50 6 18 25 45 40 38 15 28 49 55 14 33 23 

1 6 22 49 15 40 47 26 57 35 59 39 54 43 20 

1 39 15 23 59 19 64 10 28 44 47 22 53 9 50 

6 26 28 1 31 39 49 16 15 68 11 20 25 48 9 

8 6 1 33 55 59 21 62 46 35 11 64 4 51 31 

4 1 62 53 68 34 21 32 26 11 56 19 75 49 59 

1 72 27 8 24 77 56 47 60 12 38 20 40 71 23 

16 1 70 81 84 23 6 35 57 59 31 11 21 29 54 

34 70 1 31 86 25 89 81 77 13 46 91 85 4 84 

1 69 24 9 13 66 30 96 86 91 84 56 45 42 58 

44 39 1 4 61 72 70 80 24 86 57 93 50 77 85 

1 70 47 43 22 14 29 78 62 32 27 38 40 59 66 

15 80 92 20 1 101 87 105 3 98 34 43 63 42 103 
12 1 83 8 74 22 5 99 41 89 50 67 94 47 31 

72 1 87 115 68 94 38 84 121 113 46 98 80 71 60 

1 72 46 96 56 18 43 35 23 51 29 41 126 124 105 

10 1 75 42 122 25 38 46 125 91 73 102 119 97 19 

1 41 86 50 76 64 107 61 27 94 56 80 32 115 98 

1 87 104 142 109 53 124 84 95 120 132 72 41 93 138 

10 93 136 1 82 23 124 120 145 42 34 148 3 74 128 

141 82 1 147 28 26 40 124 135 129 62 116 21 113 92 

1 101 15 73 47 51 57 125 9 107 69 33 160 38 28 

40 94 1 118 28 103 53 58 99 150 90 61 97 87 132 

1 27 39 95 23 130 73 33 20 144 102 162 138 84 64 

1 108 138 171 15 114 166 54 135 118 62 149 155 80 36 

1 56 156 15 62 164 175 135 53 48 99 26 83 20 13 

44 116 50 171 85 112 98 1 134 33 175 15 165 8 123 
34 84 1 104 183 141 31 145 162 123 82 5 151 24 29 

1 181 89 146 29 25 159 154 120 36 141 192 110 78 66 

106 1 138 142 189 172 123 55 118 70 164 11 167 88 76 

1 43 132 139 162 144 199 154 21 179 115 118 17 80 124 

180 1 89 210 107 147 144 172 163 128 82’ 152 204 118 50 

1 46 11 154 28 61 99 178 34 8 197 77 131 150 218 

111 68 214 1 42 195 24 52 131 191 175 164 73 12 193 

(table continued on following page) 
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P P--l 

233 23.29 
239 2.7.17 
241 24.3.5 
251 2.53 
251 28 

263 2.131 
269 22.61 
271 2.33.5 
211 2’.3.23 
281 23.5.7 

I 

3 
I 
I 

11 
3 

5 
2 

43 
5 
3 

- 

2 3 5 7 11 13 17 19 23 29 31 31 41 43 47 

72 1 165 222 197 158 103 136 112 132 182 8 85 25 139 
66 14 138 1 4 43 52 155 63 160 188 31 99 15 113 

190 182 138 1 25 47 111 85 57 154 151 73 6 219 114 
135 6 80 218 1 162 184 233 134 203 226 187 fii 77 85 
48 1 55 85 196 106 120 125 28 94 242 219 19 207 61 

190 50 1 79 166 62 126 43 156 221 136 170 17 154 65 

1 109 208 19 230 142 105 223 176 187 259 56 200 254 32 
266 153 220 98 92 15 16 261 15 45 222 182 156 1 213 
147 188 1 22 I 222 103 252 208 14 47 87 1:!6 55 218 
204 1 186 182 253 9 166 221 197 172 62 135 ;!3 132 75 

3. Bernoulli Numbers and Euler Numbers (- 177Generating 
Functions) 

B, are Bernoulli numbers; En are Euler numbers. 

n 

2 
4 
6 
8 

10 

12 
14 
16 
18 
20 

22 

24 

26 

28 

30 

I 
I 

Numerator of B, 

1 
1 
1 
1 
5 

691 
7 

3617 
43867 

174611 

854513 

23636409 1 

8553 103 

23749461029 

8615841276005 

I i 
Denominator of B, 

6 
30 
42 
30 
66 

4 
0.16667 
0.03333 
0.0238 1 
0.03333 
0.07576 

2730 0.253 11 
6 1.16667 

510 7.09216 
798 54.97118 
330 529.12424 

138 6192.12319 

2730 86580.253 11 

6 1425517.16667 

870 2729823 1.06782 

14322 601580873.90064 

En 

1 
5 

61 
1385 

50521 

2702765 
19936098 1 

19391512145 
2404879675441 

37037 1188237525 

6.934887 x lOI 

1.551453 x 10’9 

4.087073 x lo*’ 

1.2522610 x ld4 

4.41543,9x 1026 

4. Class Numbers of Algebraic Number Fields 

(I) Class Numbers of Real Quadratic Field (- 347 Quadratic Fields) 

Let k = Q( fi ), where m is a positive integer without square factor (1 < m < 501). h is the class 
number (in the wider sense) of k. The -sign in the row of N(E) means that the norm N(E) of 
the fundamental unit is - 1. When N(E) = + 1, the class number in the narrow sense is 2h, and 
when N(E) = - 1, the class number in the narrow sense is also h. 

m h N(E) m h N(E) m h 

2 1 - 85 2 - 170 4 
3 1 86 1 173 1 
5 1 - 87 2 174 2 
6 1 89 1 - 177 1 
7 1 91 2 178 2 

10 2 - 93 1 179 1 
11 1 94 1 181 1 
13 1 - 95 2 182 2 
14 1 97 1 - 183 2 

h N(E) m h N(E) 

335 2 
337 1 - 
339 2 
341 1 
345 2 
346 6 - 
347 1 
349 1 - 
353 1 - 

m h N(E) 

421 1 - 
422 1 
426 2 
427 6 
429 2 
430 2 
431 1 
433 1 - 
434 4 
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m h N(E) 

15 2 
17 1 - 
19 1 
21 1 
22 1 
23 1 
26 2 - 
29 1 - 
30 2 
31 1 
33 1 
34 2 
35 2 
37 1 - 
38 1 
39 2 
41 1 - 
42 2 
43 1 
46 1 
47 1 
51 2 
53 1 - 
55 2 
57 1 
58 2 - 
59 1 
61 1 - 
62 1 
65 2 - 
66 2 
67 1 
69 1 
70 2 
71 1 
73 1 - 
74 2 - 
77 1 
78 2 
79 3 
82 4 - 
83 1 

m h N(E) 

101 1 - 
102 2 
103 1 
105 2 
106 2 - 
107 1 
109 1 - 
110 2 
111 2 
113 1 - 
114 2 
115 2 
118 1 
119 2 
122 2 - 
123 2 
127 1 
129 1 
1304 - 
131 1 
133 1 
134 1 
137 1 - 
138 2 
139 1 
141 1 
142 3 
143 2 
145 4 - 
146 2 
149 1 - 
151 1 
154 2 
155 2 
157 1 - 
158 1 
159 2 
161 1 
163 1 
165 2 
166 1 
167 1 

m h N(E) m h N(E) 

185 2 - 266 2 
186 2 267 2 
187 2 269 1 - 
140 2 271 1 
191 1 273 2 
193 1 - 274 4 - 
194 2 277 1 - 
195 4 278 1 
197 1 - 281 1 - 
199 1 282 2 
201 1 283 1 
202 2 - 285 2 
203 2 286 2 
205 2 287 2 
206 1 290 4 - 
209 1 291 4 
210 4 293 1 - 
211 1 295 2 
213 1 298 2 - 
214 1 299 2 
215 2 301 1 
217 1 302 1 
218 2 - 303 2 
219 4 305 2 
221 2 307 1 
222 2 309 1 
223 3 310 2 
226 8 - 311 1 
227 1 313 1 - 
229 3 - 314 2 - 
230 2 317 1 - 
231 4 318 2 
233 1 - 319 2 
235 6 321 3 
237 1 322 4 
238 2 323 4 
239 1 326 3 
241 1 - 327 2 
246 2 329 1 
247 2 330 4 
249 1 331 1 
251 1 334 1 

App. B, Table 4.11 
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m h N(E) 

354 2 
355 2 
357 2 
358 1 
359 3 
362 2 
365 2 
366 2 
367 1 
370 4 
371 2 
373 1 
374 2 
377 2 
379 1 
381 1 
382 1 
383 1 
385 2 
386 2 
389 1 
390 4 
391 2 
393 1 
394 2 
395 2 
397 1 
398 1 
399 8 
401 5 
402 2 
403 2 
406 2 
407 2 
409 1 
410 4 
411 2 
413 1 
415 2 
417 1 
418 2 
419 1 

m h N(E) 

435 4 
437 1 
438 4 
439 5 
442 8 - 
443 3 
445 4 - 
446 1 
447 2 
449 1 - 
451 2 
453 1 
454 1 
455 4 
457 1 - 
458 2 - 
461 1 - 
462 4 
463 1 
465 2 
466 2 
467 1 
469 3 
470 2 
471 2 
473 3 
474 2 
478 1 
479 1 
481 2 - 
482 2 
483 4 
485 2 - 
487 1 
489 1 
491 1 
493 2 - 
494 2 
497 1 
498 2 
499 5 
501 1 

One can find a table of fundamental units and representatives of ideal classes for 0 < m < 2025 in 
E. L. Ince, Cycles of reduced ideals in quadratic fields, Royal Society, London, 1968. 

(II) Class Numbers of Imaginary Quadratic Fields (- 347 Quadratic Fields) 

Let k = Q( G ), where m is a positive integer without square factor (1 < m s 509). h is the 
class number of k. In the present case, there is no distinction between the class numbers in the 
wider and narrow senses. 

mhmhmhmhmhmhmhmh 

1 1 65 8 129 12 193 4 255 12 319 10 389 22 447 14 
2 1 66 8 130 4 194 20 257 16 321 20 390 16 449 20 
3 1 67 1 131 5 195 4 258 8 322 8 391 14 451 6 
5 2 69 8 133 4 197 10 259 4 323 4 393 12 453 12 
6 2 70 4 134 14 199 9 262 6 326 22 394 IO 454 14 
7 1 71 7 137 8 201 12 263 13 327 12 395 8 455 20 

10 2 73 4 138 8 202 6 265 8 329 24 397 6 457 8 
11 1 74 10 139 3 203 4 266 20 330 8 398 20 458 26 
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m h m h in h 

13 2 
14 4 
15 2 
17 4 
19 1 
21 4 
22 2 
23 3 
26 6 
29 6 
30 4 
31 3 
33 4 
34 4 
35 2 
37 2 
38 6 
39 4 
41 8 
42 4 
43 1 
46 4 
47 5 
51 2 
53 6 
55 4 
57 4 
58 2 
59 3 
61 6 
62 8 

1 
1 
1 
1 
1 
11 
11 
1 
1 
1 
1 
1 
1 
1 
1: 
1: 
1: 

77 E 
78 4 
79 4 
82 i 
83 3 
85 4 
86 10 
87 6 
89 12 
91 2 
93 4 
94 8 
95 8 
97 4 
01 14 
02 4 
03 5 
05 8 
06 6 
07 3 
09 6 
10 12 
11 8 
13 8 
14 8 
15 2 
18 6 
19 10 
22 10 
23 2 
27 5 

141 E 
142 4 
143 1c 
145 8 
146 16 
149 14 
151 1 
154 8 
155 4 
157 6 
158 8 
159 10 
161 16 
163 1 
165 8 
166 10 
167 11 
170 12 
173 14 
174 12 
177 4 
178 8 
179 5 
181 10 
182 12 
183 8 
185 16 
186 12 
187 2 
190 4 
191 13 

m h 

205 8 
206 2C 
209 2C 
210 8 
211 3 
213 8 
214 6 
215 14 
217 8 
218 10 
219 4 
221 16 
222 12 
223 7 
226 8 
227 5 
229 10 
230 20 
231 12 
233 12 
235 2 
237 12 
238 8 
239 15 
241 12 
246 12 
241 6 
249 12 
251 7 
253 4 
254 16 

m h m h m h 

267 2 
269 22 
271 11 
213 8 
274 12 
277 6 
278 14 
281 20 
282 8 
283 3 
285 16 
286 12 
287 14 
290 20 
291 4 
293 18 
295 8 
298 6 
299 8 
301 8 
302 12 
303 10 
305 16 
307 3 
309 12 
310 8 
311 19 
313 8 
314 26 
317 10 
318 12 

331 3 399 16 
334 12 401 2a 
335 18 402 16 
337 8 403 2 
339 6 406 16 
341 28 401 16 
345 8 409 16 
346 10 410 16 
347 5 411 6 
349 14 413 20 
353 16 415 10 
354 16 417 12 
355 4 418 8 
357 8 419 9 
358 6 421 10 
359 19 422 10 
362 18 426 24 
365 20 427 2 
366 12 429 16 
367 9 430 12 
370 12 431 21 
371 8 433 12 
373 10 134 24 
374 28 435 4 
377 16 437 20 
379 3 138 8 
381 20 $39 15 
382 8 342 8 
383 17 443 5 
385 8 M5 8 
386 20 146 32 

-- 
m h 

-- 
461 30 
462 8 
463 7 
465 16 
466 8 
467 7 
469 16 
470 20 
471 16 
473 12 
474 20 
478 8 
479 25 
481 16 
482 20 
483 4 
485 20 
487 7 
489 20 
191 9 
493 12 
494 28 
197 24 
198 8 
199 3 
501 16 
502 14 
503 21 
505 8 
506 28 
509 30 
-- 

There are only 9 instances of m for which h = 1, and only 18 instances of m for which h := 2 (Baker, 
Stark). All these cases are in this table. 

One can find a table of structures of the ideal class groups and representatives of ideal classes 
for m < 24000 in H. Wada, A table of ideal class groups of imaginary quadratic fields, Proc. Japan 
Acad., 46 (1970), 401-403. 

(III) Class Numbers of Cyclotomic Fields 

Cyclotomic field k = Q(e’““‘) (1-z I < 100, I prime). h, is the first factor of the class number of k 
(- 14 Algebraic Number Fields). 

h, > 1 for I> 19 (Uchida). 

5. Characters of Finite Groups; Crystallographic Groups 

(I) Symmetric Groups S,, Alternating Groups A, (3 < n < 7), and Mathieu Groups IV, (,q = 
11,12,22,23,24) 

(1) In each table, the first column gives the representation of the conjugate class as we represent 
a permutation by the product of cyclic permutations. For example, (3)(2)’ means the conjugate 
class containing (123)(45)(67). 
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(2) The second column gives the order of the centralizer of the elements of the conjugate class. 
(3) In the table of S,,, the first row gives the type of Young diagram corresponding to each 
irreducible character. For example, [3,2*, l] means T(3,2,2,1). 
(4) In the table of A,, when we restrict the self-conjugate character of S,, (the character with *) 
to A,, it is decomposed into two mutually algebraically conjugate irreducible characters, and 
therefore we show only one of them. The other irreducible character of A, is given by the 
restriction to A, of the character of S, that is not self-conjugate. 
(5) In the table of M,, each character with a bar over the degree is one of the two mutually 
algebraically conjugate characters. 

eT=(-l&/--3)/2, e$=(lkV3)/2, eC=(-lkC7)/2 

&:=(-M/7)/2, E:=(-lkV/-15)/2, E;=(-l+CE)232 

s4 [41 [3,11 rm* P, 17 [I41 

(1) 24 1 3 2 3 1 

(2) 4 1 (3) 3 1 :, 0 -1 i1 1’ 
(4) 4 1 -1 0 1 -1 
(2)2 8 1 - 1 2 - 1 1 

s5 I [51 [4,11 [3,21 t3, 121* P2> 11 12, I31 USI 
(1) 120 1 4 5 6 5 4 1 
(2) 12 1 2 1 0 -1 -2 -1 
(3) 6 1 1 -1 0 -1 1 1 
(4) 4 1 0 -1 0 1 0 -1 

@I2 8 1 0 1 -2 1 0 1 
(3)(2) 6 1 -1 1 0 -1 1 -1 

(5) 5 1 -1 0 1 0 -1 1 

s6 1 [61 [5,11 [421 [4,1*1 [32l [3,&l]* [23] [3, 13] [22, 12] [2, 14] [16] 

(1) 720 1 5 9 10 5 16 5 10 9 5 1 

(2) 48 13 3 2 1 0 -1 -2 -3 -3 -1 

(3) 18 1 2 0 1 -1 -2 -1 1 0 2 1 
(4) 8 1 1 -1 0 -1 0 1 0 1 -1 -1 

a* 16 1 1 1 -2 1 0 1 -2 1 1 1 
(3)(2) 6 1 0 0 -1 1 0 -1 1 0 0 -1 

(5) 5 1 0 -1 0 0 1 0 0 -1 0 1 

(6) 6 1 -1 0 1 0 0 0 -1 0 1 -1 

(W 8 1 -1 1 0 -1 0 -1 0 1 -1 1 

PI3 48 1 -1 3 -2 -3 0 3 2 -3 1 -1 

(3)2 18 1 -1 0 1 2 -2 2 1 0 -1 1 
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& [71 [6,11 [5,21 [5,1'1 [4,31 [4,2,11 [3*,11 [4.131* [3,2'1 [3,2,1*1 [23,11 [3.141 [22.1’l [2,1sl [I’] 

(I) 5040 I 6 14 I5 I4 35 21 20 21 35 I4 I5 I4 6 I 
(2) 240 I 4 6 5 4 5 I 0 -5 -4 
(3) 72 I 3 2 3 -I -I -3 2 

1: 
-I -I ;’ A6 ;4 ;l 

(4) 24 I 2 0 I -I 0 I I 2 -I 0 
(2)2 48 I 2 2 -I i2 -I :l -4 I -I 2 -I 2 2’ ,l 

(3)(2) I2 I I 0 I I 0 
(5) IO I I -1 0’ -I 0’ I 0 

-I I -I I 0 -I -I 

:, 
0 -I 

(6) 
86 

I 0 
il 

0 0 I 0 0 
1’ 

0 8 
-I I I 

0 
(4)(2) I 0 -I 0 I -I 0 -I 0 -I :, 0 1’ 

(2)3 48 I 0 2 
,’ 

0 I -3 0 3 -I 0 3 -2 0 -I 
(3)2 I8 I 0 -I 2 0 2 0 2 0 -I 0 I 

(5)(2) IO I -1 I 0 -I ,l 1 0 -I ,l I 0 -I I -I 

(3)(2)2 24 I - I 2 
I’ 

-I -I I 2 I -I -I -I 2 -I I 
(4)(3) I2 I - I 0 0 0 I 

(7) 7 I -I 0 I 
:, il 0’ 

-I :, :, ,l 1’ 0 -I -ll 

-47 

(I) 2520 

(3) 36 
(2)2 24 

(5) 5 
(4x2) 4 
(3)* 9 

(3X2)* 12 

(7) 7 
(7) 7 

[4, 131* 

10 
1 

-2 
0 
0 
1 
1 

c3+ 

e-4- 

(1) g 
@I4 48 

(4)2 8 

(3)3 18 

(5)* 5 

tW) 8 

@)(2) 8 

(6X3)(2) 6 

(11) 11 

1 10 11 55 
1 2 3 -1 
1 2 -1 -1 
1 1 2 1 
1 0 1 0 

1 0 -1 1 

1 0 -1 1 
1 -1 0 -1 
1 -1 0 0 

45 

-3 
1 

0 
0 

-1 

-1 
0 
1 

44 -is IO 

4 0 -. 2 
0 0 0 

-1 -2 I 
-1 1 0 

0 0 k i.VLZ 

0 0 T i-VT 
1 0 j. 
0 6 -1 

(11) 11 1 1 -1 0 0 1 0 Eq -1 

g=11.10.9.8=7920. 

MI, (1) g 1 11 11 55 55 55 45 54 66 99 120 144 176 16 

(a4 192 1 3 3 -1 -1 7 -3 6 2 3 -8 0 0 0 

(4)* 32 1 3 -1 3 -1 -1 1 2 -2-l 0 0 0 0 

(3)3 5412 2 11 10 0 3 0 3 0 -4 -2 
(5)* 10 1 1 1 0 0 0 0 -1 1 -1 0 -I 1 

(8)(2) 8 1 1 -1 -1 1 -1 -1 0, 0 1 0 0 0 :, 
(6)(3)(2) 6 1 0 0 - 1 - 1 1 0 0 - 1 0 1 0 0 0 

(11) 11 1 0 0 0 0 0 1 -1 0 0 -1 1 0 &q+ 
(11) 11 1 0 0 0 0 0 1 -1 0 0 -1 1 0 Eq 

w 240 1 - 1 - 1 -5 -5 -5 5 6 6 -1 0 4 -4 4 
(10)(2) 10 1 -1 -1 0 0 0 0 1 1 -1 0 -1 1 -1 
(4)*(2)* 32 1 -1 3 -1 3 -1 1 2 -2 -1 0 0 0 0 

(3)4 36 1 -1 -1 1 1 1 3 0 0 3 0 -r; -1 1 

@I2 12 1 -1 -1 1 1 1 -1 0 0 -1 0 1 -1 1 
(8)(4) 8 l-l 1 1 -1-l -1 0 0 1 0 0 0 0 

g=12~11~10~9~8=95040. 
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M22 (1) g 1 21 55 154 210 280 231 385 99 ;13 

ma 384 1 5 7 10 2 -8 7 1 3 -3 
(3Y 361 3 1 1 3 1 -3 -2 0 0 

(5)4 5 1 1 0 -1 0 0 1 0 -1 0 
(4)4(2)2 16 1 1 -1 2 -2 0 -1 1 -1 1 
(4)4(2)2 32 1 1 3 -2 -2 0 -1 1 3 1 

(7)3 710 -10 0 0 0 0 1 E; 

(7)3 710 -10 0 0 0 0 1 E; 
(8)2(4)(2) 8 1 - 1 1 0 0 0 - 1 1 - 1 - 1 

(6)2(3)2(2)2 12 1 - 1 1 1 - 1 1 1 -2 0 0 
(1 II2 Ill-10 0 1 &q+ 0 0 0 1 
(1U2 11 1 -1 0 0 1 Eq 0 0 0 1 

g=22.21.20.48=443520. 

M23 (1) g I 1 22 230 231 770 1035 2024 z 990 231 253 896 

m* 
(3Y 

(5)4 
(4)4(2)2 

(7)3 
(7)3 

(V2(4)(2) 
(6)2(3)2(2)2 

(1 II2 
(1 II2 

(15)(5)(3) 
(15)(5)(3) 
W(W) 
( 1W)(2) 

(23) 
(23) 

2688 1 6 22 7 -14 27 
18014 5 6 5 0 
1512 0 10 0 
32 1 2 2 -1 -2 -1 
14 1 1 -1 0 0 -1 

14 1 1 -1 0 0 -1 

8 10 0 -1 0 1 
1210 l-2 1 0 
1110-10 0 1 

1110-10 0 1 
151-10 10 0 
151-10 10 0 
14 1 -1 1 0 0 -1 
14 1 -1 1 0 0 -1 
231-10 1 + 0 
231-10 1 :’ 0 

8 -3 -18 
-1 0 0 
-1 0 0 

0 1 2 

1 E: CT 
1 E; e; 

0 -1 0 
-1 0 0 
0 1 0 
0 1 0 

-1 0 0 
-1 0 0 

1 - E; E; 

1 -&; E; 
0 -1 1 
0 -1 1 

7 13 0 
-3 1 -4 

1 -2 1 

-1 1 0 
0 1 0 m 

0 1 0 
-1 -1 0 
1 1 0 
0 0 &q+ 
0 0 Eq 

E: 1 1 
c5- 1 1 
0 -1 0 
0 -1 0 
1 0 -1 
1 0 -1 

M24 (lY4 g 55.64 45 22.45 
1 

‘I 
(7-Y 21.2” 

(3Y 27.4C 

(5)4 60 

(4)4(2S 128 

(7)3 42 

(7)3 42 

W(4)(2) 16 
(6)2(3)z(2)2 24 

(11)2 11 

(l5)(5)(3) 15 

(15X5)(3) 15 
(14)(7X2) 14 

(14X7)(2) 14 
(23) 23 

(23) 23 

(12)2 12 

(6)4 24 

(4)6 96 

(3)s 7.72 

(2Y2 15.29 

(10)2(2)2 20 

V-1)(3) 21 
(21)(3) 21 
(4)4(2)4 3.2’ 

(l2)(6)(4)(2) 12 

1 23 7.36 23.11 

17 28 13 

15 9 IO 

13 2 3 

13 4 1 

12 0 1 

12 0 I 

1 I 0 -1 

11 l-2 

1 1 -1 0 
10 -1 0 

10 -1 0 
10 0 -1 

10 0 -1 

10 -1 0 

IO -I 0 

l-l 0 1 

l-l 0 1 

l-l 0 1 

I-1 0 1 

I -1 12 -11 

I -1 2 -1 
l-l 0 1 

l-l 0 1 

I-1 4 -3 
I-l 1 0 

23.17 

-21 

16 

1 

-5 

0 

0 

-I 

0 

0 
1 

1 
0 

0 

0 

0 

-1 

-1 

-1 

I 

11 

1 

0 

0 

3 
0 

64 -3 - 18 

10 0 0 

0 0 0 

0 1 2 

- 1 E; E: 

- 1 &< Ej 

0 -1 0 

-2 0 0 

0 1 0 
0 0 0 

0 0 0 
I -&j Ej+ 

1 -E; E3 
1 -1 I 

1 -1 1 

0 1 1 

0 -I -1 

0 1 -2 

-8 3 3 

0 5 - 10 

0 0 0 

-1 ET Ej 

-I E: e3’ 

0 -3 6 
0 0 0 0 

23.45 

-21 

0 

0 

3 

2E: 

2&j 

-1 

0 

1 
0 
0 

0 
0 

0 

0 

-1 

I 

-1 

-3 

-5 

0 

-&; 

-E; 

3 

23.45 

27 

0 

0 

-1 

-1 

-1 

1 

0 

1 
0 

0 
-1 

-1 

0 

0 

0 

2 

3 

6 

35 

0 

-1 

-1 

3 
0 

Il.21 770 

7 - 14 

-3 5 

I 0 

-1 -2 

0 0 

0 0 

-1 0 

1 I 

0 0 

&5’ 0 

ES 0 
0 0 
0 0 
1 %+ 
1 ca 
0 I 

0 1 

3 -2 

0 -7 

-9 10 

1 0 

0 0 

0 0 

-1 2 
-1 -I 
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(V” 
(2)8 21 .g,lO 

(3Y 27.40 
(5)4 60 

(4)4(2S 128 

(7)3 42 
(7)3 42 

(8)2(4)(2) 16 
(6)2(3)2(2)2 24 

(11)2 11 
(15)(5)(3) 15 
(15)(5)(3) 15 
(14)(7)(2) 14 
(14)(7)(2) 14 

(23) 23 
(23) 23 
(12)2 12 
(6)4 24 
(4)6 96 

(3)8 7.12 

w2 15.29 
(10)2(2)2 20 

(21)(3) 21 
(21)(3) 21 
(4)4(2)4 3.2' 

(12)(6)(4)(2) 12 

T 

!3.21 23.55 

35 
6 

-2 

3 
0 

0 
-1 
2 

-1 
1 
1 
0 
0 
0 
0 
0 
0 
3 

0 
3 

-2 
0 
0 

3 
0 

49 

5 
0 
1 

-2 
-2 

1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-3 

8 
-15 
0 
1 
1 

-7 
-1 

23.88 23.99 23.144 23.11.21 23.7.36 77.12 11.35.27 

8 21 48 49 -28 -56 -21 

-1 0 0 -15 -9 9 0 

-1 -3 -3 3 1 -1 0 
0 1 0 -3 4 0 -1 
1 2 1 0 0 0 0 
1 2 1 0 0 0 0 
0 -1 0 -1 0 0 1 

-1 0 0 1 -1 1 0 
0 0 1 0 -1 0 0 

-1 0 0 0 1 -1 0 
-1 0 0 0 1 -1 0 
1 0 -1 0 0 0 0 
1 0 -1 0 0 0 0 
0 0 0 0 0 1 -1 
0 0 0 0 0 1 -1 
0 0 0 0 0 0 0 
0 2 -2 0 0 0 0 
0 -3 0 -3 0 0 3 

8 6 -6 0 0 0 0 

24 -19 16 9 36 24 -45 

-1 1 1 -1 1 -1 0 
1 -1 1 0 0 0 0 
i -1 1 0 0 0 0 

8 -3 0 1 -4 -8 3 
-1 0 0 1 -1 1 0 

g=24.23.22.21.20.48=244823040. 

(II) General Linear Groups GL(2, q), Unitary Groups LJ(2, q), and Special Linear Groups SL(2, q) 
(q is a power of a prime) (- 151 Finite Groups I) 

(1) The notations are as follows. E =exp[2Pv - 1 /(q- l)], 7 = exp[2aVT /(,g2- l)], 
u = exp[2nm /(q + l)], p is the generator of the multiplicative group of GF(q) - { 01, w  is 
the generator of the multiplicative group of GF(q’) - {0}, wq- ’ = (Y, B is an element of GL(2, q) 
with order q2- 1, and B, = Bq-‘. 
(2) The first column gives a representative of the conjugate class. 

General Linear Group GL(2, q). 

X,(l) &l(q) Y m.n 

E2na qezna (q+ l)&(m++J 

Z” 

(q- l)‘)“w+ 1) 

Pa ( 1’ 1 Pa ) 

E2no 0 e(m+f9a -‘J 
no(q+ I) 

(P” pb) j &a+b) &a+@ 0 

B’ Eric - E”c 0 - (TJ lx + 7, ncq) 

(1) l<a<q-1, l<b<q-1, afb(modq-l), l<c<q’-1, cfO(modq+l). 
(2)Weassumethat l<n<q-l,forX,(l),X,,(q), l<m<n<q-1,for Y,,,,, l<n<q2-1 
for Z,,, n fO(modq + 1). Here, Z,, = Z,. when n E n’q(modq2 - 1). 

Unitary Group U(2,q). 

X,‘(l) x;(q) 

(as as) 02m quzm (q-;L+nIs ;% (q+ lbJm 

(4’ .4 
as 

( 1 a’ 

( 

ld” 

1 I 
(I --nu 

w -w 
qnu+v--“U4 

, 
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(1) (y .s)> (“” ,-uq) are the canonical forms of an element of U(2, q) in GL(2,q’). 

(2) l<s<q+l, l<t<q+l, sft(modq+l), 1<u<q2-1, ufO(modq-l).Whenu= 
- u’q (modq*- 1) u, u’ gives the same conjugate class. 
(3) The ranges are 1~ n < q + 1 for X,‘(l), X,‘(q), 1~ m < n < q+ 1 for Y;,,, l< n < q2- 1 for 

Zi, n $0 (modq - 1). When n’= - nq (modq2 - l), we have .Z; = Z;,.. 

Special Linear Group X(2,2”) (the case when q = 2”). 

( 1 1 1 1 4 

1 

(P” ( 
P 

1 --D > ) 1 1 0 1 ERa +&cna 0 

B; 1 -1 0 -(umc+u-mc) 

(1) l<a<(q-2)/2, l<c<q/2. 
(2) l<n<(q-2)/2, l<m<q/2. 

Special Linear Group X(2, q) (q = power of an odd prime number, e = (q - 1)/2, e’ = (q + 1)/2). 

1 ( > 1 q+l q-1 
q+l q-1 

1 4 2 2 

z= -l -1 
( ) 

1 q (- l)“(q + 1) (-- lYYq- 1) (- 1$$! (- I)+ 

P,= ( 1 
1 1 

1 1 0 1 -1 Pk A’ 

P2=jj1 ( 1 1 0 1 -1 CL7 A ? 

P:Z 

[l_pl ) 

1 0 (-1) -(- 1)” (-l)‘/lk (-I)+* 

1 0 t-11 -(-1)” (-l)‘/AT (- l)e’AT 

P -a 1 1 ena+ E-“a 0 C-1) 0 

Bf 1 -1 0 -(UmC +u-mc) 0 -(- 1) 

(l)l<a<(q--3)/2, l<c<(q-1)/2, l<n<(q-3)/2, l<m<(q-1)/2, 
n+={-1*[(-l)eq]1’z}/2, p’={lf[(-l)‘q]“2}/2. 
(2) The last two columns mean two characters (with the same signs), respectively. 

(III) Ree group Re(q), Suzuki Group Sz(q), and Janko Group J. 

Ree group Re(q) (q=3*“+l=3m2). 
TheorderofRe(q)isq3(q3+l)(q-1),q~=q2-q+1,m+=q+3m+1,m~=q-3m+1. 

1 1 
J 2 
x 3 
Y 9 
T 3 

T-’ 3 
YT 9 

YT-’ 9 
JT 6 

JT-’ 6 
R” 
Sb 

JR” 
JSb 

VS 
W’ 

I A B C XP 

1 40 q3 440 (4- l)mm+P (4- l)mm-/2 m(q2- 1) q3+1 

1 -1 
Z 

-4 -(4- 1)/2 (4 - w 0 q+l 
1 -(q-l) -(4+ ml/2 (q-m)/2 --m 1 
1 1 0 z m m -m 1 
1 1 0 0 a fl 2a 1 
1 1 0 0 cu a 2Z 1 
1 1 0 0 P P -P 1 

1 1 0 0 P P -P 1 
1 -1 0 0 Y -Y 0 1 
1 -1 0 0 - 
1 1 1 1 ; 

-7 0 1 
0 0 p’uI+p-’ 

1 3 -1-3 1 -1 0 0 
1 -1 1 -1 0 0 0 pp+p-p 
1 -1 -1 1 1 -1 0 0 
1 0 -1 0 -1 0 -1 0 

1 0 -1 0 0 1 1 0 
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1 1 
J 2 
x 3 
Y 9 
T 3 

T-’ 3 
YT 9 

YT-’ 9 
JT 6 

JT-’ 6 
R” 
Sb 

JR” 
JSb 

V” 

W’ 

q3+1 

-(q+ 1) 
1 
1 
1 
1 
1 
1 

-1 
-1 

pp+p-‘UI 
0 

--(Pp+P-'l(l) 
0 

0 

0 

(4 - Iho (4- Iko 
xq- 1) -(4- 1) 
2q-1 2q-1 

-1 -1 
-1 -1 
-1 -1 
-1 -1 
-1 -1 
-3 1 
-3 1 
0 0 

o(vb) o’(hb) 
0 0 

o(vb) a’(Xb) 

0 0 - ,$o("-4f+ o-"@) 

0 

(q2- lb+ 
0 

-m+ 
-1 

-3m-1 
-3m-1 

-1 
-1 
0 
0 
0 
0 
0 
0 

0 0 

(q*-- l)m- 
0 

-m- 
.- 1 

3n1-1 
3m-1 

__ 1 
-- 1 
0 
0 
0 
0 
10 
0 

i( ww  + W-w) 
i=o 

(1) The first column gives a representative of conjugate class, and the second column gives its 
order. The orders of R, S, V, W are (q- 1)/2, (q+ 1)/4, m- , m, , respectively. R, S, Tare commuta- 
tive with J. 
(2) R”-R-“, V”w V”qc 1/“q2- I/-“- V-‘q- Vms’J2, W’- W’q’c. W’q’, We’- W-‘qw W-“J*, Here 

we fix an integer 6 satisfying d3 = 1 [mod(q + 1)/4], (6 - 1, (q + 1)/4) = 1. 

~b~~b8~~b8=~~ -b-s -bS-s -b8=, JR”-JR -a, JSb-JS -b, 
where A-B means that A and B are mutually conjugate. 
(3) p=exp[4rrGI /(q-l)], v=exp(2rrV- 1 /m-), w=exp(2nGi /m+), 

u = exp[8nm /(q + l)]. 
(4) 1 < /.t<(q-3)/4, 1 <:h(q-3)/S. 
Here v is considered mod(q+ I)/4 and 

Y,= Yy,= Y&z= Ye,= Ye&= Y_“@, 

K is considered modm- and 

ZK=ZKq=Z~q2=Z~)(=Z~)cq=Z~rq2, 

T is considered mod m + and 

z:=z~4=z~42=z~7=z~7q=z~,q2. 

(5) u(vb)= - 5 (uvb8’+u-vb8’), u’(Xb)= i (u~~‘+u-~b~‘)-(u~b~2+u-~~2). 
i=o i=O 

(6) 
m+md-q m-v-q 

(Y” - 2 >p=- 2 
1-V-q 

>y= --j--’ We show one of the two mutually 

complex conjugate characters, for the characters A, B, C. 

Suzuki group Sz(q). The order of Sz(q) is q*(q*+ l)(q- 1) (q=2*“+l,2q=r2). 
- 

X, ‘a z, 
1 4* qZ+l (q-r+ l)(q- 1) (q+r+l)(q-1) r(q- I)/2 r(q- I)/2 
1 0 1 r-1 -r-l - r/2 -r/2 

1 0 1 -1 -1 rCl /2 -rm /2 

1 0 1 -1 -1 -rV/--l/2 r\i-l/2 
1 1 6’ + to- Oi 0 0 0 0 
l-l 0 -(e,Bj+,p7+,;~+,;fiq 0 1 1 

(1) The first column gives a representative of the conjugate class. 
(2) no, rr,, r2 are the elements of order q - 1 q + r + 1, q - r + 1, respectively. 
(3) eO, E,, e2 are the primitive q - 1, q + r + 1, q - r + 1 roots of 1, respectively. 
(4) md; and 7; i are mutually conjugate elements, and hence X, and X-, give the same character. 
i, (Y run over the representatives of mod q- 1, and i,afO (modq- 1). 
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(5) n{, 7i;j, @, T;‘q are mutually conjugate, and hence Yp, Y-@, Ypq, Yek give the same 
character. j, p run over the representatives of modq + r + 1, and j, p f 0 (modq + r + 1). 
(6) T;, rFk, n$‘, nFkq are mutually conjugate, and hence Z,, Z-,, Zyq, Z-, give the same 
character, k, y run over the representatives of mod q - r + 1, and k, yf0 (mod q - r + 1). 

Janko Group J. 

1 1 77 133 209 133 77 77 133 76 76 56 56 120 120 120 
2 1 5 5 1 -3 -3 -3 -3 4 -4 0 0 0 0 0 
3 1 -1 1 -1 -2 2 2 -2 1 1 2 2 0 0 0 
51 2 -2 -1 &+ --E+ -&- E- 1 1 2&- 2.?+ 0 0 0 
51 2 -2 -1 E- -E- -&+ E+ 1 1 2&+ 2E- 0 0 0 

6 l-1 -1 1 0 0 0 0 1 -1 0 0 0 0 0 
7 1 0 0 -1 0 0 0 0 -1-I 0 0 1 1 1 

10 1 0 0 1 -E+ -&+ -&- -&- -1 1 0 0 0 0 0 

10 1 0 0 1 -&- -e- --E+ --e+ -1 1 0 0 0 0 0 
111 0 1 0 1 0 0 1 -1 -1 1 1 -1 -1 -1 
15 1 -1 1 -1 &+ --e+ -&- E- 1 1 -&- -&+ 0 0 0 
15 1 -1 1 -1 E- -&- --E+ &+ 1 1 -&+ -&- 0 0 0 
191 1 0 0 0 1 1 0 0 0 -1 - 1 x, A, A, 
191 1 0 0 0 1 1 0 0 0 -1 - 1 A, x3 x, 

191 1 0 0 0 1 1 0 0 0 -1 - 1 x3 x, x, 

(l)TheorderofJis8~3~5~7~11~19=175560. 
(2) The first column gives the order of the elements of each conjugate class. 
(3) p=exp(27im /19),hl=p+~7+p8+p”+p’2+p’8, X2=p2+p’4+p’6+p3+p5+~‘7, 
x3=p4+p9+p’3+p6+p10+p’5, E-r=(I+_V5)/2. 
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(IV) Three-Dimensional Crystal Classes (- 92 Crystallographic Groups) 

Crystal System 
Bravais Types 

T Geometric Crystal Classes T Arithmetic Crystal Classes 

Triclinic 
P 

Monoclinic 
p, c 

Orthorhombic 
p, c, F, 1 

Tetragonal 
p, 1 

Trigonal 
P, R 

Hexagonal 
P 

Schoentlies International 
Notation Notation”’ 

C, 
SAC,) 

C2 
C Ih 

C Zh 

Short FUJI 

1 1 
T i 

2 2 
m m 

2/m 1 
m 

WV) 
C 2” 

222 222 
mm2 mm2 

222 
mmm --- 

mmm 

G 
S4 

C 4h 

D.4 
C 
Dh) 

D 4h 

4 4 
4 3 

4/m 4 
m 

422 422 
4mm 4mm 
42m 42m 

4/mmm 
422 
--- 
mmm 

G 
WC,i) 
D3 
C 3” 

D3d 

G 
C 3h 

C 6h 

J% 

3 3 
? ? 
32 32 
3m 3m 

3m -2 3- 
m 

6 6 
6 6 

6/m 6 
m 

622 622 

(P? 1) 
(P. 7, 

1 
2 

(P. 2) (C, 2) 
(P, m) CC, m) 

(P, 2/m) CC, 2/m) 

3-5 
6-9 

10-15 

(P,222)(C,222)(F,222)(1,222) 
(P,mm2)(C,mm2)(A,mm2)(F,mm2) 

(1, mm2) 

16-24 

25-46 

(P,mmm)(C,mmm)(F,mmm)(I,mmm) 47-14 

(P, 4Y3) (134) 75-80 

(P. 4, (I, 3, 81-82 

(P. 4/m) U,4/4 

(P,422)'4'(1,422) 

CP, 4mm) (I, 4mm) - - - 
(P,42m)(P,4m2)(1,4m2)(I,42m) 

83-88 

89-98 
!,9-110 

l!!l-122 

(P,4/mmm)(I,4/mmm) 1:!3-142 

(P, 3)“’ R 3) 
(P, 3) (R 3, 
(P 312)‘@ (P 321)“’ (R 32) 
(P:3ml)(P, ;lm) (R,3;) 

(P,?lm) (P,?ml) (R,?m) 

(P,6)'*' 

(P,G 

U'. 6/m) 

(P,622)@' 

143-146 
147-148 
1,29-155 
156-161 

162-167 

168-173 
-174 

175-176 

177-182 

Number of 
Sp.ace Groups@) 
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Crystal System 
Bravais Types 

Hexagonal 
P 
(cont.) 

Cubic 

P, F, 1 

Notes 

T Geometric Crystal Classes 

Schoenflies 
Notation I- 
C 

DE 

D 6h 

T 

Th 

0 

Td 

Oh 

Full 

6mm 
6m2 
622 

International 
Notation”) 

Short 

6mm 
6m2 

6/mmm 

23 

m3 

432 
43m 

m3m 

mmm 
23 

1, 
m 
432 
43m 
442 
-3- 
mm 
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Arithmetic Crystal Classes 

V’. 6mm) 
(P,6m2) (P,62m) 

(P, 6hmm) 

(P, 23) (F, 23) (I, 23) 

(f’, m3) (F, m3) (L m3) 

(P, 432)“” (F, 432) (1,432) 
(P,43m) (F,43m) (Z,43m) 

(P, m3m) (F, m3m) (I, m3m) 

Number of 
Space Groups”’ 

183-186 
187-190 

191-194 

195-199 

200-206 

207-214 
215-220 

221-230 

(1) The notation is based upon International tablesfor X-ray crystallography I, Kynoch, 1969. In 
each crystal system, the lowest class is a holohedry. 
(2) These correspond to the consecutive numbers of space groups in the book cited in (1). 
(3)-( 10) Enantiomorphic pairs arise from these classes: two pairs for (4), (8), (9), and one pair for 
the others. 
For the shapes of Bravais lattices - 92 Crystallographic Groups E, Fig. 3. 

6. Miscellaneous Constants 

\/!i = 1.41421 35623 73095. \/lo = 3.16227 76601 68379. 

dt! = 1.25992 10498 94873, i%@ = 4.64158 88336 12779. 
log,,2=0.30102 99956 63981= l/3.32192 80948 87364. 

(I) Base of Natural Logarithm e (1000 decimals) 

e=2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 
45713 82178 52516 64274 27466 39193 20030 59921 81741 35966 29043 57290 03342 95260 59563 07381 
32328 62794 34907 63233 82988 07531 95251 01901 15738 34187 93070 21540 89149 93488 41675 09244 
76146 06680 82264 80016 84774 11853 74234 54424 37107 53907 77449 92069 55170 27618 38606 26133 
13845 83000 75204 49338 26560 29760 67371 13200 70932 87091 27443 74704 72306 96977 20931 01416 
92836 81902 55151 08657 46377 21112 52389 78442 50569 53696 77078 54499 69967 94686 44549 05987 
93163 68892 30098 79312 77361 78215 42499 92295 76351 48220 82698 95193 66803 31825 28869 39849 
64651 05820 93923 98294 88793 32036 25094 43117 30123 81970 68416 14039 70198 37679 32068 32823 
76464 80429 53118 02328 78250 98194 55815 30175 67173 61332 06981 12509 96181 88159 30416 90351 
59888 85193 45807 27386 67385 89422 87922 84998 92086 80582 57492 79610 48419 84443 63463 24496 
84875 60233 62482 70419 78623 20900 21609 90235 30436 99418 49164 31409 34317 38143 64054 62531 
52096 18369 08887 07016 76839 64243 78140 59271 45635 49061 30310 72085 10383 75051 01157 47704 
17189 86106 87396 96552 12671 54688 95703 50354. 

e (in octal) = 2.55760 52130 50535 5. 

l/e=0.36787 94411 71442, e2=7.38905 60989 30650= l/O.13533 52832 36613. 
v\le = 1.64872 12707 00128 = l/O.60653 06597 12633. 
log,lO=2.30258 5092994046= l/0.434294481903252, 
log,2 = 0.693 14 71805 59945 = I/ 1.44269 50408 88964. 

(II) The Number n (1000 decimals) (- 328 Pi(n)) 
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n=3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 

86280 34825 34211 70679 82148 08651 32823 066470938446095 5058223172 5359408128 48111 74502 

84102 70193 8521105559 64462 29489 54930 3819644288 10975 66593 34461 28475 64823 37867 83165 

27120 1909145648 56692 34603 4861045432 66482 13393 60726 02491 41273 72458 70066 06315 58817 

48815 20920 96282 92540 91715 36436 78925 9036001133 05305 4882046652 138414695194151 16094 

33057 27036 57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735 18857 52724 

89122 79381 8301194912 98336 7336244065 6643086021 39494 63952 24737 19070 21798 60943 70277 

05392 17176 29317 67523 84674 81846 766940513200056 81271 45263 56082 77857 71342 75778 96091 

73637 17872 1468440901 22495 3430146549 58537 10507 92279 68925 89235 42019 95611 21290 21960 

86403 44181 59813 62977 47713 09960 51870 72113 49999 99837 297804995105973 17328 16096 31859 

50244 59455 34690 83026 42522 30825 33446 85035 26193 11881 7101000313 78387 52886 58753 32083 

8142061717 7669147303 59825 3490428755 46873 11595 62863 88235 37875 93751 95778 18577 80532 

17122 68066 13001 92787 6611195909 21642 01989. 

T (in octal)=3.11037 55242 10264 3. 
I/~=O.3183098861 83791, ~2=9.869604401089359=l/0.10132 1183642338. 
\/i. = 1.77245 38509 055 16 = l/O.5641 8 95835 47756, 
t&i = 2.50662 82746 3100 1 = l/O.39894 22804 01433, 
\/ii/? = 1.2533 1 41373 15500 = l/O.79788 45608 02865, 

3, = 1.46459 18875 61523 = l/O.68278 40632 55296. 
log,,n=0.49714 98726 94134, log,n= 1.14472 98858 49400. 

(III) Radian rad 

1 rad=57”.295779513082321=3437’.7467707849393=206264”.8062470964. 
lo = 0.0 1745 32925 19943 rad. 1’ = 0.00029 08882 08666 rad, 1” = 0.00000 4848 1 368 1 I rad 

(IV) Euler’s Constant C (100 decimals) (- 174 Gamma Function) 

C=O.57721 566490153286060651209008240243 10421 5933593992 
35988 05767 23488 48677 26777 66467 09369 47063 29174 67495. 

cc= 1.78107 24179 90197 98522. 

s,= 2 L 
,=I I 

3 1.83333 333 6 2.45000 000 15 3.3 1822 899 100 5.18737 752 
4 2.08333 333 8 2.71785 714 20 3.59773 966 500 6.79282 343 
5 2.28333 333 IO 2.92896 825 50 4.79920 534 1000 7.48547 086 

7. Coefficients of Polynomial Approximations 

In this table, we give some typical examples of approximation formulas for computation of func- 
tions on a digital computer (- 19 Analog Computation, 336 Polynomial Approximation). 

(I) Exponential Function 

(1) Putting.&+l=q+y+i(qisaninteger.-k<y<i],wehave 

eX = 2%( y),c(y) k Cqy ‘, which gives an approximation by a polynomial of the 7kh degree, 
where the maximal error is 3 x lo-“. 

a,=0.70710 6781 I 6, a, =0.49012 90717 2, u,=O.16986 57957 2, a,=0.03924 73321 5, 
u4 = 0.00680 097 12, u5 = 0.00094 28 173, u6 = 0.00010 93869, a, = 0.0000 1 0826. 

(2) An approximation by a polynomial of the 1 lth degree: eX k CU,.X’ (- 1 < x < 0). 
Maximal error 1 x 10-12. 
a0 = 0.99999 99999 990, a, = 0.99999 99999 995, u2 = 0.50000 00000 747, 
u3 = 0.16666 66666 8 12, u4 = 0.04166 66657 960, us = 0.00833 33332 174, 
a,=0.00138 88925 998, a,=0.00019 84130 955, a,=0.00002 47944428, 
a,=O.OOOOO 27550 711. u,~= 0.0000002819019, a,,=0.0000000255 791. 
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(3) ex"l+ X 

ko+k,x2+k2x4 
( -loge s x Q log\/2 ). 

-- 
;+ 1+ k,x2 

Maximal error 1.4 x IO- 14. 
k,= 1.00000 00000 00327 1. k, =0.10713 50664 56464 2. 
k,=0.0005945898690188, k,=0.0238017331574186. 

(II) Logarithmic Function 

(1) An approximation by a polynomial of the 1 lth degree: log(l + x)+x:a;x’ (0~ x < 1). 
Maximal error 1.1 x IO-“. 
a0 = 0.00000 0000 1 10, a, = 0.99999 99654 98, a2 = - 0.49999 82537 98, 
a3 = 0.33329 85059 64, ad= -0.24963 72428 65, u5= 0.19773 31015 60, 
a6= -0.1574488954 13, a,=0.1171291156 18, a8 = - 0.07364 037 19 14. 
a,=0.03469 74937 56, uIo= -0.01046 82295 69. a,, =0.00148 19917 22. 

(2) For 1 < x Q 2, and putting y = x - “2 -----(3 + 2\/2 ) (- 1 < y $1) then logx + logd/2 + 
x+\/2 

2 a, p+ gives an approximation by a polynomial of the 1 Ith degree (0 < i Q 5). where the 
maximal error is 9.2 X IO- 15. 

a,=0.343 14 57505 076 10 6, a, = 0.00336 70892 56222 5, a2 = 0.00005 94707 04347 4. 
a,=O.OOOOO 12504997762, a,=0.0000000285 68292 8, a,=0.0000000007 437 13 9. 

(III) Trigonometric Functions 

(1) Weput &=p+f+i+g (pisaninteger:q=O,l:r=O,l; -l<z<l),ands=sin 7, 

c=cos~ 
4 

If r=O, sinx=(-l)%, cosx=(-1)4c, 
If r=l, sinx=(-I)%, cosx=-(-l)%. 
Here s and c are computed by the following approximation formulas. Putting - z2/2 =y, 

s(y)=sin(az/4)+zrCa, y’. c(y)=cos(az/4)+‘Cb, y’ gives an approximation by a polynomial 
of the 5th degree, where the maximal errors are s: 2~ 10-15, c: 2~ IO-“. 

a0=0.78539 81633 97426, a,=0.16149 10243 75338. a,=0.00996 15782 61200. 
a,=0.00029 26094 99152, u,=0.00000 50133 389, a,=0.0000000555 1357. 
b, = 0.99999 99999 999, /I, =0.61685 02750 601, b,=0.06341 73767 885, 
b,=0.00260 79335 007. b,=0.00005 7447609. b,=0.0000007765 93. 

(2) 
sin(nx/2) 
-----kFC( -1)‘qx” (-1 dx < 1). This gives an approximation by a polynomial of 10th 

X 

degree (0~ i < 5), where the maximal error is 2.67 x 10-l I. 
ao= 1.57079 63267 682, a, =0.64596 40955 820, a,=0.07969 26037 435, 
a,=0.00468 16578 837, a,=0.00016 02547 767, a,=O.OOOOO 34318 696. 

(3) k,+ 2 + . ..+ 2 (continued fraction) (- 1 < x $ 1). 
I 4 

Maximal error 9.8 X IO-“. 
k,=0.78539 8 16349907, k,=6.1922946807 1350, k,= -0.65449 83095 2316. 
k,=520.24599063989939, k,= -0.0779795098775 1. 

(IV) Inverse Trigonometric Functions 

(1) An approximation by a polynomial of the 21st degree (0 < i $ 10): 
arcsinx+ Eu,x~~+’ (1x1s I/dZ). 
Maximal error IO- lo. 
ao=l.0000000005 3, a,=0.1666665754 5, a,=0.0750046066 5, a,=0.04453 58425 7. 
a,=0.03175 26509 6, a,=0.01176 58281 9, a,=0.06921 26185 7, a,= -0.14821 09628 8. 
u,=0.3288976635 2. a9= -0.35020 41201 5, u,,=0.19740 503250. 
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(2) Putting x=w+u (w=i,i,i,i; -$ < us $), o= z (ICI s f, 

arctanx=arctanw+t(u), t(o)=arctanc. 
The values of arctanw: 
arc tan( l/8) = 0.12435 49945 467 11, arc tan(3/8)=0.35877 06702 70611, 
arctan(5/8)=0.55859 93153 43560, arctan(7/8)=0.71882 9999621623. 

t(c) is computed by an approximation by a polynomial of the 9th degree (0 < i < 4). where 
t(c)=arctanuk C(- l)‘u,a2’+‘. 
Maximal error 1.6 X lo- 13. 
a,, = 0.99999 99999 9992, a, = 0.33333 33328 220, = 0.19999 97377 6, a, 
a3 = 0.14280 9976, a4 = 0.10763 60. 

X2/ + - ,k, (continued fraction) (- 1 < x G 1). 

Maximal error 3.6 x lo- lo. 
k,=0.99999999362, k,= -3.00000308694, k,= -0.55556977284, 
k,= - 15.77401 81127 3, 
k,= -0.1619080978 0, k,= -44.57191 79508 8, k,= -0.1081067493 1 

(V) Gamma Function 

An approximation by a polynomial of the 8th degree: 

r(2+x)+ Cqx’(-1/2<x<l/2). 

Maximal error 7.6 x 10e8. 

a,=0.99999 9926, a,=0.42278 4604, a2=0.411849671. a,=0.08156 52323, 
a,=0.07406 48982. us= -0.00012 51376 7, a,=0.01229 95771, a7= -0.00349 61289, 
a,=0.00213 85778. 

(VI) Normal Distribution 

(1) (0 <x < co). This gives an approximation by a polynomial 

of the 6th degree. 
Maximal error 2.8 x 10m7. 
a,=0.0705230784, a,=0.04228 20123, a,=0.0092705272, 
a3 =0.00015 20143, a,=0.0002765672, a5 =0.0000430638. 

4~(x)(l-P(x))=[exp(-~)][~+x4(u,+~)] (O<x<oo). 

Maximal error 2 x lo-‘. 
a,=0.0055, a, =0.0551, a2= 14.4. 

(3) The inverse function of (2) 

x~[y(ao+~)]“2. y= -log[4P(x)(l -P(x))] (O<y< co). 

Maximal error 4.9 x 10m4. 
a,=2.0611786, aI= -5.7262204, a,=11.640595. 
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[l] J. A. Greenwood and H. 0. Hartley, Guide 
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Univ. Press, 1962. 
[2] Research Group for Statistical Sciences (T. 
Kitagawa and M. Masuyama, eds.) New statis- 
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[4] E. S. Pearson and H. 0. Hartley, Bio- 
metrika tables for statisticians, explanation 
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2 (l)p’q”-‘: 5 dec., 
i=r 
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n= 1(1)50(2)100(10)200(20)500(50)1000. 
[9] National Bureau of Standards, NBS ap- 
plied mathematical series, no. 6, Tables of 
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( > 7 p’q”-i and the partial sum: 7 dec., p = 
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tion (Japanese), Baihukan, 1951, e-“hi/i!: 
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6 dec.. N = 2( 1)50( lO)lOO( 100)2000, n = 
l(l)(N/2), k= I(l)n. 

[ 121 National Bureau of Standards, NBS no. 
23, Tables of normal probability functions, 
1942, 
cp(x)=(l/&)exp(-$x2), 

Q(x)= Ix rp(x)dx: 15 dec., 

x=O(O.O~;Ol)l.OOOO(O.OOl)8.285. 
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beta-functions, Cambridge, second edition, 
1968, I,(p,q): 8 dec.,p, q=O.5(0.5) 11(1)50. 
[ 141 K. Pearson, Tables of the incomplete 
gamma-function, Cambridge, 1922, revised 
edition, 195 1, 

I(u.p)= j-y’ (l/e”)(uP/T(p+ I))&: 

7 dec.,p=0.0(0.1)5.0(0.2)50.0, u=O.1(0.1)20.0; 
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0.00(0.01)3.50(0.05)4.75, T(h,a) 

[ 191 National Bureau of Standards, NBS no. 
50, Tables of the bivariate normal distribution 
function and relatfed functions, 1959, L(h, k, r) 

cc 7) 
= 

ss h k 2n.vl-r2 

x*+y*-2rxy 

2(1-r2) I 
dydx: 6 dec., 

r = 2 0.00(0.05)0.95(0.01)0.99, 
h, k = O.O(O. 1)4.0. 
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[20] T. Kitagawa and M. Midome, Table of 
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[21] R. C. Bose, W. H. Clatworthy, and S. S. 
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lina Agric. Expt. Station Tech. Bull., 1954 
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Washington, 1914. 
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[ 1 l] British Association for the Advancement 
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Comm. Math. Phys. 
Communications in Mathematical Physics 
(Berlin) 

Comm. Pure Appl. Math. 
Communications on Pure and Applied 
Mathematics (New York) 

Comment. Math. Helv. 
Commentarii Mathematici Helvetici (Zurich) 

Compositio Math. 
Compositio Mathematics (Groningen) 

Comput. J. 
The Computer Journal (London) 

Crelles J. 
= J. Reine Angew. Math. 

CWI Newslett. 
Centrum voor Wiskunde en Informatica. 
Newsletter (Amsterdam) 

Cybernetics 
Cybernetics (New York). Translation of 
Kibernetika (Kiev) 

Czech. Math. J. 
Czechoslovak Mathematical Journal (Prague) 

Deutsche Math. 
Deutsche Mathematik (Berlin) 



Journals 

Differentsial’nye Uravneniya 
Differentsial’nye Uravneniya (Minsk). Trans- 
lated as Differential Equations 

Differential Equations 
Differential Equations (New York). Transla- 
tion of Differentsial’nye Uravneniya 

Dokl. Akad. Nauk SSSR 
Doklady Akademii Nauk SSSR 
(Moscow). Soviet Math. Dokl. is the English 
translation of its mathematics section 

Duke Math. J. 
Duke Mathematical Journal (Durham) 

Econometrica 
Econometrica, Journal of the Econometric 
Society (Chicago) 

Edinburgh Math. Notes 
The Edinburgh Mathematical Notes (Edin- 
burgh) 

Enseignement Math. 
L’Enseignement Mathematique (Geneva) 

Enzykl. Math. 
Enzyklopadie der Mathematischen Wissen- 
schaften mit Einschluss ihrer Anwendungen 
(Berlin) 

Erg. Angew. Math. 
Ergebnisse der Angewandte Mathematik 
(Berlin-New York) 

Erg. Math. 
Ergebnisse der Mathematik und ihrer Grenz- 
gebiete (Berlin-New York) 

Fund. Math. 
Fundamenta Mathematicae (Warsaw) 

Funkcial. Ekvac. 
Fako de I’Funkcialaj Ekvacioj Japana 
Matematika Societo. Funkcialaj Ekvacioj 
(Serio Internacia) (Kobe, Japan) 

Functional Anal. Appl. 
Functional Analysis and its Applications 
(New York). Translation of Funktsional. Anal. 
Prilozhen. 

Funktsional. Anal. Prilozhen. 
Funktsional’nyi Analiz i ego Prilozheniya. 
Akademiya Nauk SSSR (Moscow). Translated 
as Functional Anal. Appl. 

General Topology and Appl. 
General Topology and its Applications 
(Amsterdam) 

Hiroshima Math. J. 
Hiroshima Mathematical Journal. Hiroshima 
Univ. (Hiroshima, Japan) 

Hokkaido Math. J. 
Hokkaido Mathematical Journal. Hokkaido 
Univ. (Sapporo, Japan) 

1842 

IBM J. Res. Develop. 
IBM Journal of Research and Development 
(Armonk, N.Y.) 

Illinois J. Math. 
Illinois Journal of Mathematics (Urbana) 

Indag. Math. 
lndagationes Mathematicae = Nederl. Akad. 
Wetensch. Proc. 

Indian J. Math. 
Indian Journal of Mathematics (Allahabad) 

Indiana Univ. Math. J. 
Indiana University Mathematics Journal 
(Bloomington) 

Information and Control 
Information and Control (New Y’ork) 

Inventiones Math. 
Inventiones Mathematicae (Berlin) 

Izv. Akad. Nauk SSSR 
Izvestiya Akademii Nauk SSSR (Moscow). 
Math. USSR-Izv. is the English translation 
of its mathematics section 

J. Algebra 
Journal of Algebra (New York) 

J. Analyse Math. 
Journal d’Analyse Mathtmatiques (Jerusalem) 

J. Appl. Math. Mech. 
Journal of Applied Mathematics and 
Mechanics (New York). Translation of Prikl. 
Mat. Mekh. 

J. Approximation Theory 
Journal of Approximation Theory (New York) 

J. Assoc. Comput. Mach. (J. ACM) 
Journal of the Association for ‘Computing 
Machinery (New York) 

J. Austral. Math. Sot. 
The Journal of the Australian Mathematical 
Society (Sydney) 

J. Combinatorial Theory 
Journal of Combinatorial Theory. Series A 
and Series B (New York) 

J. Comput. System Sci. 
Journal of Computer and System Sciences 
(New York) 

J. Differential Equations 
Journal of Differential Equations (New York) 

J. Differential Geometry 
Journal of Differential Geometry (Bethlehem, 
Pa.) 

J. Ecole Polytech. 
Journal de I’Ecole Polytechnique (Paris) 

J. Fat. Sci. Hokkaido Univ. 
Journal of the Faculty of Science, Hokkaido 
University. Series I. Mathematics (Sapporo, 
Japan) 
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J. Fat. Sci. Univ. Tokyo 
Journal of the Faculty of Science, University 
of Tokyo. Section I. (Tokyo) 

J. Franklin Inst. 
Journal of the Franklin Institute (Phila- 
delphia) 

J. Functional Anal. 
Journal of Functional Analysis (New York) 

J. Indian Math. Sot. 
The Journal of the Indian Mathematical 
Society (Madras) 

J. Inst. Elec. Engrs. 
Journal of the Institution of Electrical En- 
gineers (London) 

J. Inst. Polytech. Osaka City Univ. 
Journal of the Institute of Polytechnics, Osaka 
City University. Series A. Mathematics 
(Osaka) 

J. London Math. Sot. 
The Journal of the London Mathematical 
Society (London) 

J. Math. Anal. Appl. 
Journal of Mathematical Analysis and Ap- 
plications (New York) 

J. Math. and Phys. 
Journal of Mathematics and Physics (Cam- 
bridge, Massachusetts, for issues prior to 1975; 
for 1975 and later, New York) 

J. Math. Econom. 
Journal of Mathematical Economics 
(Amsterdam) 

J. Math. Kyoto Univ. 
Journal of Mathematics of Kyoto University 

(Kyoto) 

J. Math. Mech. 
Journal of Mathematics and Mechanics 
(Bloomington) 

J. Math. Pures Appl. 
Journal de Mathematiques Pures et Ap- 
pliquees (Paris) 

J. Math. Sot. Japan 
Journal of the Mathematical Society of Japan 

(Tokyo) 

J. Mathematical Phys. 
Journal of Mathematical Physics (New York) 

J. Multivariate Anal. 
Journal of Multivariate Analysis (New York) 

J. Number Theory 
Journal of Number Theory (New York) 

J. Operations Res. Sot. Japan 
Journal of the Operations Research Society 

of Japan (Tokyo) 

J. Optimization Theory Appl. 
Journal of Optimization Theory and Applica- 
tions (New York) 

J. Phys. Sot. Japan 
Journal of the Physical Society of Japan 

VOW) 

J. Pure Appl. Algebra 
Journal of Pure and Applied Algebra 
(Amsterdam) 

J. Rational Mech. Anal. 
Journal of Rational Mechanics and Analysis 
(Bloomington) 

J. Reine Angew. Math. 
Journal fur die Reine und Angewandte 
Mathematik (Berlin). = Crelles J. 

J. Res. Nat. Bur. Standards 
Journal of Research of the National Bureau 
of Standards. Section B. Mathematics and 
Mathematical Physics (Washington) 

J. Sci. Hiroshima Univ. 
Journal of Science of Hiroshima University. 
Series A (Mathematics, Physics, Chemistry); 
Series A-I. (Mathematics) (Hiroshima) 

J. Soviet Math. 
Journal of Soviet Mathematics (New York). 
Translation of (1) Itogi Nauki-Seriya 
Matematika (Progress in Science-Mathe- 
matical Series); (2) Problemy Matematichesk- 
ogo Analiza (Problems in Mathematical 
Analysis); (3) Zap. Nauchn. Sem. Leningrad. 
Otdel. Mat. Inst. Steklov. 

J. Symbolic Logic 
The Journal of Symbolic Logic (New Bruns- 
wick) 

Japan. J. Math. 
Japanese Journal of Mathematics (Tokyo) 

Jber. Deutsch. Math. Verein. (Jber. D.M.V.) 
Jahresbericht der Deutschen Mathematiker 
Vereinigung (Stuttgart) 

Kibernetika (Kiev) 
Otdelenie Matematiki, Mekhaniki i Kiber- 
netiki Akademii Nauk Ukrainskoi SSR. 
Kibernetika (Kiev). Translated as Cybernetics 

KBdai Math. Sem. Rep. 
KBdai Mathematical Seminar Reports 

(Tokyo) 

Linear Algebra and Appl. 
Linear Algebra and Its Applications (New 
York) 

Linear and Multilinear Algebra. 
Linear and Multilinear Algebra (New York) 

Mat. Sb. 
Matematicheskii Sbornik (Recueil Mathema- 
tique). Akademiya Nauk SSSR (Moscow). 
Translated as Math. USSR-Sb. 
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Mat. Tidsskr. A 
Matematisk Tidsskrift. A (Copenhagen) 

Mat. Zametki 
Matematicheskii Zametki. 
Akademiya Nauk SSSR (Moscow). Translated 
as Math. Notes 

Math. Ann. 
Mathematische Annalen (Berlin-Gottingen- 
Heidelberg) 

Math. Comp. 
Mathematics of Computation (Providence). 
Formerly Math. Tables Aids Comput. 

Math. J. Okayama Univ. 
Mathematical Journal of Okayama University 
(Okayama, Japan) 

Math. Japonicae 
Mathematics Japonicae (Osaka) 

Math. Nachr. 
Mathematische Nachrichten (Berlin) 

Math. Notes 
Mathematical Notes of the Academy of 
Sciences of the USSR (New York). Trans- 
lation of Mat. Zametki 

Math. Rev. 
Mathematical Reviews (Ann Arbor) 

Math. Stand. 
Mathematics Scandinavica (Copenhagen) 

Math. Student 
The Mathematical Student (Madras) 

Math. Tables Aids Comput. (MTAC) 
Mathematical Tables and Other Aids to 
Computation (Washington). Name changed 
to Mathematics of Computation in 1960 
(vol. 14ff.) 

Math. USSR-Izv. 
Mathematics of the USSR-Izvestiya (Provi- 
dence). Translation of Izv. Akad. Nauk SSSR 

Math. USSR-Sb. 
Mathematics of the USSR-Sbornik (Provi- 
dence). Translation of Mat. Sb. 

Math. Z. 
Mathematische Zeitschrift (Berlin-GGttingen- 
Heidelberg) 

Mathematika 
Mathematika, A Journal of Pure and Applied 
Mathematics (London) 

Meed. Lunds Univ. Mat. Sem. 
Meddelanden fran Lunds Universitets 
Matematiska Seminarium = Communications 
du Seminaire Mathtmatique de l’universite 
de Lund (Lund) 

Mem. Amer. Math. Sot. 
Memoirs of the American Mathematical 
Society (Providence) 

Mem. Coll. Sci. Univ. Kyoto 
Memoirs of the College of Science. University 
of KyGto. Series A (Kyoto) 

Mem. Fat. Sci. Kyushu Univ. 
Memoirs of the Faculty of Science, Kyushu 
University. Series A. Mathematics (Fukuoka, 
Japan) 

Memor. Sci. Math. 
Memorial des Sciences Mathematiques (Paris) 

Michigan Math. J. 
The Michigan Mathematical Journal (Ann 
Arbor) 

Mitt. Math. Ges. Hamburg 
Mitteilungen der Mathematischen 
Gesellschaft in Hamburg (Hamburg) 

Monatsh. Math. Phys. 
Monatschefte fiir Mathematik undo Physik 
(Vienna) 

Monatsh. Math. 
Monatshefte fur Mathematik (Vienna) 

Monograf. Mat. 
Monogratje Matematyczne (Warsaw) 

Moscow Univ. Math. Bull. 
Moscow University Mathematics Bulletin 
(New York). Translation of the ma.thematics 
section of Vestnik Moskov. Univ., Ser. I, Mat. 
Mekh. 

Nachr. Akad. Wiss. Gdttingen 
Nachrichten der Akademie der Wissenschaften 
in Giittingen. Math.-Phys. Kl. (Gtimttingen) 

Nagoya Math. J. 
Nagoya Mathematical Journal (N.agoya) 

Nederl. Akad. Wetensch. Proc. 
Koninklijke Nederlandse Akademie van 
Wetenschappen, Proceedings. Series A. 
Mathematical Sciences (Amsterdam) = Indag. 
Math., Proc. Acad. Amsterdam 

Nieuw Arch. Wisk. 
Nieuw Archief voor Wiskunde (Groningen) 

Numerische Math. 
Numerische Mathematik (Berlin-GGttingen- 
Heidelberg) 

Nuovo Cimento 
11 Nuovo Cimento (Bologna) 

Osaka J. Math. 
Osaka Journal of Mathematics (Osaka) 

Osaka Math. J. 
Osaka Mathematical Journal (Osaka) 

Pacific J. Math. 
Pacific Journal of Mathematics (Berkeley) 

Philos. Trans. Roy. Sot. London 
Philosophical Transactions of the Royal 
Society of London. Series A (London) 
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Phys. Rev. 
The Physical Review (New York) 

Portugal. Math. 
Portugaliae Mathematics (Lisbon) 

Prikl. Mat. Mekh. 
Adademiya Nauk SSSR. Otdelenie Tekhnich- 
eskikh Nauk. Institut Mekhaniki Prikladnaya 
Matematika i Mekhanika (Moscow). Trans- 
lated as J. Appl. Mat. Mech. 

Proc. Acad. Amsterdam 
= Nederl. Akad. Wetensch. Proc. 

Proc. Amer. Math. Sot. 
Proceedings of the American Mathematical 
Society (Providence) 

Quart. Appl. Math. 
Quarterly of Applied Mathematics (Provi- 
dence) 

Quart. J. Math. 
The Quarterly Journal of Mathematics, Ox- 
ford. Second Series (Oxford) 

Quart. J. Mech. Appl. Math. 
The Quarterly Journal of Mechanics and 
Applied Mathematics (Oxford) 

Rend. Circ. Mat. Palermo 
Rendiconti de1 Circolo Matematico de 
Palermo (Palermo) 

Rend. Sem. Mat. Univ. Padova 
Rendiconti de1 Seminario Matematico 
dell’Universit8 di Padova (Padua) 

Proc. Cambridge Philos. Sot. 
Proceedings of the Cambridge Philosophical 
Society (Cambridge) 

Rev. Mat. Hisp. Amer. 
Revista Matematica Hispaiio-Americana 
(Madrid) 

Proc. Imp. Acad. Tokyo 
Proceedings of the Imperial Academy (Tokyo) 

Proc. Japan Acad. 
Proceedings of the Japan Academy (Tokyo) 

Proc. London Math. Sot. 
Proceedings of the London Mathematical 
Society (London) 

Proc. Nat. Acad. Sci. US 
Proceedings of the National Academy of 
Sciences of the United States of America 
(Washington) 

Proc. Phys.-Math. Sot. Japan 
Proceedings of the Physico-Mathematical 
Society of Japan (Tokyo) 

Proc. Roy. Sot. London 
Proceedings of the Royal Society of London. 
Series A (London) 

Proc. Steklov Inst. Math. 
Proceedings of the Steklov Institute of 
Mathematics (Providence). Translation of 
Trudy Mat. Inst. Steklov. 

Prog. Theoret. Phys. 
Progress of Theoretical Physics (Kyoto) 

Publ. Inst. Math. 
Publications de 1’Institut Mathematique 
(Belgrade) 

Publ. Inst. Math. Univ. Strasbourg 
Publications de 1’Institut de Mathematiques 
de I’Universitt de Strasbourg (Strasbourg) 

Publ. Math. Inst. HES 
Publications Mathematiques de 1’Institut des 
Hautes Etudes Scientifiques (Paris) 

Publ. Res. Inst. Math. Sci. 

Publications of the Research Institute for 
Mathematical Sciences (Kyoto) 

Rev. Mod. Phys. 
Reviews of Modern Physics (New York) 

Rev. Un. Mat. Argentina 
Revista de la Union Matematica Argentina 
(Buenos Aires) 

Rev. Univ. Tucuman 
Revista Universidad National de Tucuman, 
Fact&ad de Ciencias Exactas y Tecnologia. 
Serie A. Matematicas y Fisica Teorica 
(Tucuman) 

Roczniki Polsk. Towar. Mat. 
Roczniki Polskiego Towarzystwa Matema- 
tycznego. Serja I. Prace Matematyczne 
(Krakow) 

Rozprawy Mat. 
Rozprawy Matematyczne, Polska Akademia 
Nauk, Instytut Matematyczny (Warsaw) 

Russian Math. Surveys. 
Russian Mathematical Surveys (London). 
Translation of Uspekhi Mat. Nauk 

Sammul. Giischen 
Sammulung Goschen (Leipzig) 

Sankhya 
Sankhya, The Indian Journal of Statistics. 
Series A and Series B (Calcutta) 

S.-B. Berlin. Math. Ges. 
Sitzungsberichte der Berliner Mathematischen 
Gesellschaft (Berlin) 

S.-B. Deutsch. Akad. Wiss. Berlin 
Sitzungsberichte der Deutschen Akademie 
der Wissenschaften zu Berlin, Mathematisch- 
Naturwissenschaftliche Klasse (Berlin) 

S.-B. Heidelberger Akad. Wiss. 
Sitzungsberichte der Heidelberger Akademie 
der Wissenschaften, Mathematisch-Natur- 
wissenschaftliche Klasse (Heidelberg) 



Journals 1846 

S.-B. Math.-Nat. K1. Bayer. Akad. Wiss. 
Sitzungsberichte der Mathematisch-Natur- 
wissenschaflichen Klasse der Bayerischen 
Akademie der Wissenschaften zu Miinchen 
(Munich) 

S.-B. &ter. Akad. Wiss. 
Sitzungsberichte der iisterreichische Akade- 
mie der Wissenschaften (Vienna) 

Sibirsk. Mat. Zh. 
Akademiya Nauk SSSR. Sibirskoe Otdelenie. 
Sibirskii Matematicheskii Zhurnal ~Moscow). 
Translated as Siberian Math. J. 

Skr. Norske Vid. Akad. Oslo 
Skrifter Utgitt av det Norske Videnskaps- 
Akademii Oslo. Matematisk-Naturvidens- 
kapelig Klasse (Oslo) 

Soviet Math. Dokl. 
Soviet Mathematics, Doklady (Providence). 
Translation of mathematical section of Dokl. 
Akad. Nauk SSSR 

S.-B. Phys-Med. Soz. Erlangen 
Sitzungsberichte der Physikalisch- 
Medizinischen Sozietlt zu Erlangen (Erlangen) 

S.-B. Preuss. Akad. Wiss. 
Sitzungsberichte der Preussischen Akademie 
der Wissenschaften. Physikahsch-Mathema- 
tische Klasse (Berlin) 

SRI J. 
Stanford Research Institute Journal (Menlo 
Park) 

Schr. Math. Inst. u. Inst. Angew. Math. Univ. 
Berlin 

Studia Math. 
Studia Mathematics. (Wroclaw) 

Schriften des Mathematischen Tnstituts und 
des lnstituts fur Angewandte Mathematik der 
Universitat Berlin (Berlin) 

Schr. Math. Inst. Univ. Miinster 
Schriftenreihe des Mathematischen Instituts 
der Universitlt Miinster (Miinster) 

Sci. Papers Coil. Gen. Ed. Univ. Tokyo 
Scientific Papers of the College of General 
Education, University of Tokyo (Tokyo) 

SBbutu-kaisi 
Nihon Stigaku-buturi-gakkai Kaisi (Tokyo) 

Sugaku 
Sugaku, Mathematical Society of Japan 

(Tokyo) 

Summa Brasil. Math. 
Summa Brasiliensis Mathematicae (Rio de 
Janeiro) 

Sci. Rep. Tokyo Kyoiku Daigaku 
Science Reports of the Tokyo Kyoiku 
Daigaku. Section A (Tokyo) 

Scripta Math. 
Scripta Mathematics. A Quarterly Journal 
devoted to the Philosophy, History, and Ex- 
pository Treatment of Mathematics (New 
York) 

St-m. Bourbaki 

Tensor 
Tensor (Chigasaki, Japan) 

Teor. Veroyatnost. i Primenen. 
Teoriya Veroyatnostei i ee Primenenie. 
Akademiya Nauk SSSR (Moscow). Translated 
as Theor. Prob. Appl. 

Theor. Prob. Appl. 

Seminaire Bourbaki (Paris) 

SIAM J. Appl. Math. 

Theory of Probability and Its Applications. 
Society for Industrial and Applied Mathe- 
matics. English translation of Teor. Veroyat- 
nost. i Primenen. (Philadelphia) 

SIAM Journal of Applied Mathematics. A 
Publication of the Society for Industrial and 
Applied Mathematics (Philadelphia) 

SIAM J. Comput. 
SIAM Journal on Computing (Philadelphia) 

SIAM J. Control 
SIAM Journal on Control (Philadelphia) 

SIAM J. Math. Anal. 
SIAM Journal on Mathematical Analysis 
(Philadelphia) 

SIAM J. Numer. Anal. 
SIAM Journal on Numerical Analysis 
(Philadelphia) 

SIAM Rev. 

TBhoku Math. J. 
The TBhoku Mathematical Journal (Sendai, 
Japan) 

Tohoku-riho 
TBhoku Teikokudaigaku RikahGkoku 
(Sendai, Japan) 

Topology 
Topology. An International Journal of 
Mathematics (Oxford) 

Trans. Amer. Math. Sot 
Transactions of the American Mathematical 
Society (Providence) 

Trans. Moscow Math. Sot. 
Transactions of the Moscow Mathematical 
Society (Providence). Translation of Trudy 
Moskov. Mat. Obshch. 

SIAM Review (Philadelphia) 

Siberian Math. J. 
Siberian Mathematical Journal (New York). 
Translation of Sibirsk. Mat. Zh. 

Trudy Mat. Inst. Steklov. 
Trudy Matematicheskogo Instituta im. V. A 
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Steklova. Akademiya Nauk SSSR (Moscow- 
Leningrad). Translated as Proc. Steklov Inst. 
Math. 

Trudy Moskov. Obshch. 
Trudy Moskovskogo Matematicheskogo 
Obshchestva (Moscow). Translated as Trans. 
Moscow Math. Sot. 

Tsukuba J. Math. 
Tsukuba Journal of Mathematics. Univ. 
Tsukuba (Ibaraki, Japan) 

Ukrain. Mat. Zh. 
Akademiya Nauk Ukrainskoi SSR. Institut 
Matematiki. Ukrainskii Matematicheskii 
Zhurnal (Kiev). Translated as Ukrainian 
Math. J. 

Ukrainian Math. J. 
Ukrainian Mathematical Journal (New York). 
Translation of Ukrain. Mat. Zh. 

Uspekhi Mat. Nauk 
Uspekhi Matematicheskikh Nauk (Moscow- 
Leningrad). Translated as Russian Math. 
Surveys 

Vestnik Moskov. Univ. 
Vestnik Moskovskogo Universiteta. I, Mate- 
matika i Mekhanika (Moscow). Mathematical 
section translated as Moscow Univ. Math. 
Bull. 

Vierteljschr. Naturf. Ges. Zurich 
Vierteljahrsschrifte der Naturforschenden 
Gesellschaft in Zurich (Zurich) 

Z.Angew. Math. Mech.(Z.A.M.M.) 
Zeitschrift fur Angewandte Mathematik und 
Mechanik, Ingenieurwissenschaftliche For- 
schungsarbeiten (Berlin) 

Z. Angew. Math. Phys. (Z.A.M.P.) 
Zeitschrift fur Angewandte Mathematik und 
Physik (Basel) 

Z. Wahrscheinlichkeitstheorie 
Zeitschrift fur Wahrscheinlichkeitstheorie und 
Verwandte Gebiete (Berlin) 

Zbl. Angew. Math. 
Zentralblatt fiir Angewandte Mathematik 
(Berlin) 

Zbl. Math. 
Zentralblatt fur Mathematik und ihre Grenz- 
gebiete (Berlin-Gottingen-Heidelberg) 

Zh. cksper. Teoret. Fiz. 
Zhurnal 6ksperimental’noi i Teoreticheskoi 
Fiziki (Moscow) 



Publishers 

Academic Press 

Deutscher Verlag der Wiss. 
Deutscher Verlag der Wissenschaften, Berlin 

Dover 
Academic Press Inc., New York-London Dover Publications, Inc., New York 

Addison-Wesley 
Addison-Wesley Publishing Company, Inc., 
Reading (Massachusetts)-Menlo Park (Cali- 
fornia)-London-Don Mills (Ontario) 

Dunod 
Dunod, Editeur, Paris 

Elsevier 

Akademiai Kiadb 
A kiadasert feliis: az Adademiai Kiado igaza- 
toja (Publishing House of the Hungarian 
Academy of Sciences), Budapest 

Akademie-Verlag 
Berlin 

Elsevier Publishing Company, Amsterdam- 
London-New York 

Fizmatgiz 

Akademische Verlag. 
Akademische Verlagsgesellschaft, Leipzig 

Gosudarstvennoe Izdatel’stvo Fiziko- 
Matematicheskoi Literatury, Moscow 

Gauthier-Villars 
Gauthier-Villars & C”, Editeur, -Paris 

Ginn 

Allen 
W. H. Allen & Co. Ltd., London 

Allen & Unwin 
Allen & Unwin, Inc., Winchester (Massachu- 
setts) 

Ginn and Company, Waltham (Massachu- 
setts)-Toronto-London 

Gordon & Breach 
Gordon & Breach, Science Publishers Ltd.. 
London 

Allyn & Bacon 
Allyn & Bacon, Inc., Newton (Massachusetts) 

Almqvist and Wiksell 
Almqvist och Wiksell Forlag, Stockholm 

Asakura 
Asakura-syoten, Tokyo 

Aschelhoug 
H. Aschelhoug and Company, Oslo 

BaihGkan 
Tokyo 

Benjamin 
W. A. Benjamin, Inc., New York-London 

Birkhauser 
Birkhauser Verlag, Basel-Stuttgart 

Blackie 
Blackie & Son Ltd., London-Glasgow 

Goztekhizdat 
Gosudarstvennoe Izdatel’stvo Tekhniko- 
Teoreticheskoi Literatury, Moscow 

Griffin 
Charles Griffin and Company Ltd., London 

Hafner 
Hafner Publishing Company, New York 

Harper & Row 
Harper & Row Publishers, New York- 
Evanston-London 

Hermann 
Hermann & C”, Paris 

Hirokawa 
Hirokawa-syoten, Tokyo 

Hirzel 
Verlag von S. Hirzel, Leipzig 

Cambridge Univ. Press 
Cambridge University Press, London-New 
York 

Holden-Day 
Holden-Day, Inc., San Francisco-London 
Amsterdam 

Holt, Rinehart and Winston 
Holt, Rinehart and Winston, Inc., New York- 
Chicago-San Francisco-Toronto-London 

Interscience 
Interscience Publishers, Inc., New York- 
London 

Iwanami 
Iwanami Shoten, Tokyo 

Kawade 
Kawade-syobo, Tokyo 

Kinokoniya 
Kinokoniya Company, Tokyo 

Chapman & Hall 
Chapman & Hall Ltd., London 

Chelsea 
Chelsea Publishing Company, New York 

Clarendon Press 
Oxford University Press, Oxford 

Cremona 
Edizioni Cremonese, Rome 

de Gruyter 
Walter de Gruyter and Company, Berlin 

Dekker 
Marcel Dekker, Inc., New York 
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KyGritu 
Kyoritu-syuppan, Tokyo 

Lippincott 
J. B. Lippincott Company, Philadelphia 

Longman 
Longman Group, Ltd., Harlow (Essex) 

Longmans, Green 
Longmans, Green and Company, Ltd., 
London-New York-Toronto-Bombay- 
Calcutta-Madras 

Macmillan 
The Macmillan Company, New York-London 

Maki 
Maki-syoten, Tokyo 

Maruzen 
Maruzen Company Ltd., Tokyo 

Masson 
Masson et Cie Paris ’ 1 

Math-Sci Press 
Math-Sci Press, Brookline (Massachusetts) 

McGraw-Hill 
McGraw-Hill Book Company, Inc., New 
York-London-Toronto 

Methuen 
Methuen and Company Ltd., London 

MIT Press 
The MIT Press, Cambridge (Massachusetts)- 
London 

Nauka 
Izdatel’stvo Nauka, Moscow 

Noordhoff 
P. Noordhoff Ltd., Groningen 

North-Holland 
North-Holland Publishing Company, 
Amsterdam 

Oldenbourg 
Verlag von R. Oldenbourg, Munich-Vienna 

Oliver & Boyd 
Oliver & Boyd Ltd., Edinburgh-London 

Oxford Univ. Press 
Oxford University Press, London-New York 

Pergamon 
Pergamon Press, Oxford-London-Edinburgh- 
New York-Paris-Frankfurt 

Polish Scientific Publishers 
Pahstwowe Wydawnictwo Naukowe, Warsaw 

Prentice-Hall 
Prentice-Hall, Inc., Englewood Cliffs (New 
Jersey) 

Princeton Univ. Press 
Princeton University Press, Princeton 

Publishers 

tandem House 
<andom House, Inc., New York 

jibundo 
rokyo 

springer 
springer-Verlag, Berlin (-GGttingen)- 
Heidelberg-New York 

Ieubner 
B. G. Teubner Verlagsgesellschaft, Leipzig- 
Stuttgart 

IBkai 
Iokai-syobo, Tokyo 

Tokyo-tosyo 
Tokyo 

Tokyo Univ. Press 
Tokyo University Press, Tokyo 

Ungar 
Frederick Ungar Publishing Company, New 
York 

Univ. of Tokyo Press 
University of Tokyo Press, Tokyo 

Utida-rokakuho 
Tokyo 

Van Nostrand 
D. Van Nostrand Company, Inc., Toronto- 
New York-London 

Vandenhoeck & Ruprecht 
Giittingen 

Veit 
Verlag von Veit & Company, Leipzig 

Vieweg 
Friedr Vieweg und Sohn Verlagsgesellschaft 
mbH, Wiesbaden 

Wiley 
Wiley & Sons, Inc., New York-London 

Wiley-Interscience 
Wiley & Sons, Inc., New York-London 

Zanichelli 
Nicola Zanichelli Editore, Bologna 



Special Notation 

This list contains the notation commonly and frequently used throughout this work. Th’e symbol * 
means that the same notation is used with more than one meaning. For more detailed definitions 
or further properties of the notation, see the articles cited. 

Notation 

I. Logic 

v 

3 

A,& 

V 

1 

+, =,=- 

++,Q,P 

II. Sets 

E 

c 

$ 

c = 

0 

“, u 

n, n 
c> c 

-, ' 
X 

R, - 

I 

rI 

c, LI 
b 

{II 

Example Definition 

Article 
and 
Section 

VxF(x) 

3xF(x) 

AAB, A&B 

AvB 

1A 

A-+& A*B 

AoB 

XEX 

x+x 

AcB 

A+B 

AEB 

A”& UAk 

A~B, 04 

A’, C(A) 

A-B, A\B 

AxB 

XRY, X-Y 

AIR 

Hi A, 

EAA,, HA, 

WI 

B A 

{4P(x)) 

Universal quantifier (for all x, F(x) 
holds) 

Existential quantifier (there exists 
an x such that F(x) holds) 

Conjunction, logical product 
(A and B) 

Disjunction, logical sum (A or B) 

Negation (not A) 

Implication (A im,plies B) 

Equivalence (A and B are logically 
equivalent) 

Membership (element x is a 
member of the set X) 

Nonmembership (element x is not 
a member of the set X) 

Inclusion (A is a subset of B) 

Noninclusion (A is not a subset 
of B) 

Proper inclusion (A is a proper 
subset of B) 

Empty set 

Union, join 

Intersection, meet 

Complement (of a set A) 

Difference (A - B = A n B’) 

Cartesian product (of A and B) 

Equivalence relation 
(for two elements x, y) 

Quotient set (set of equivalence 
classes of A with respect to an 
equivalence relation R) 

Cartesian product (of the A,) 

Direct sum (of the A,) 

Power set (set of all subsets of A) 

Set of all mappings from A to B 

Set of all elements x with the 
property P(x) 

41 lB, C 

41 lB, C 

41 lB* 

41 lB* 

4llB 

41 lB* 

411B 

3tllA 

381A 

381A 

381A 

381A 

381A 

381B, D* 

381B, D* 

381B 

3111B 

381B* 

135A* 

135B* 

381E 

381E 

381E 

381C 

381A 
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Notation 

=> I I. # 

N 

+ 

H 

x, 1x1, #X 

rc, 

j-:X-Y 

,f:XwY 

1, id l,, id, 

c, x CX(X)> xx(x) 

I 

0 

lim sup, lim 

flA 

Clef 

lim sup A, 

lim inf, lim lim infA, 

lim 

l&l 

lim 

III. Order 

(> 1 

c> I 

(2 1 

c> 1 
max 

min 

sup 

lim A, 

1% A, 

I$lAAn 

(4 4 

C4 hl 

(a> bl 

Ca, 4 
maxA 

minA 

supA 

inf infA 

a -cc b 

u, v 

n, A 

IV. Algebra 

mod 

aUb,avb 

aflb,ar\b 

a-b(modn) 

I 46 

x 4 

det, I I detA, IAl 

Special Notation 

Definition 

Article 
and 
Section 

Family with index set A 

Sequence (of numbers, points, 
functions, or sets) 

Cardinal number (of the set X) 

Aleph (transfinite cardinal) 

Mapping (f from X to Y) 

Mapping (where f(X) = Y, but 
not in the present volumes) 

Identity mapping 
(identity function) 

Characteristic function 
(representing function) 

Restriction (of a mapping f to A) 

Composite (of mappings f and g) 

Superior limit (of the sequence 
of sets A,) 

Inferior limit (of the sequence 
of sets A,,) 

Limit (of the sequence of sets A,) 

Inductive limit (of A,) 

Projective limit (of A,) 

Openinterval {xla<x<b} 

Closed interval {xla<x<b} 

Half-open-interval {xlu < x < b} 

Half-open interval {xla<x<b} 

Maximum (of A) 

Minimum (of A) 

Supremum, least upper bound 

(of 4 

Infimum, greatest lower bound 

(of 4 

Very large (b is very large 
compared to a) 

Join of a, b in an ordered set 

Meet of a, b in an ordered set 

Modulo (a and b are congruent 
modulo n) 

Divisibility (a divides b) 

Nondivisibility (a does not 
divide b) 

Determinant (of a square matrix 

4 

l65D 

165D 

49A* 

49E 

381C* 

381C 

381C 

381C 

381C* 

381C 

27OC* 

27OC* 

27OC* 

2lOB 

210B 

355c* 

355c* 

355c 

355c 

311B 

311B 

311B 

311B 

243A* 

243A* 

2976 

297A* 

297A 

103A* 
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Article 

Notation Example 

tr, SP 

Eij 

Im 

Ker 

Coim 

Coker 

a,, s/ 

Horn 

Horn, 

Tor 

Ext 

A. AP 

V. Algebraic Systems 

N 

Z 

Z, 

Q 
R 

C 

H 

GF(qL Fq 

Definition 
and 
Section 

trA, SpA 

‘A; A’, A”, A’ 

4 

A@B 

MEN 

MIN 

dim M 

Im,f 

Ker.f 
Coimf 

Cokerf 

(a,b), a.b 

[a, bl, a x b 

M@N 

Hom(M, N) 

Hom,(M, W 

TorAM, NJ 

Ext”(M, N) 

AM, ARM 

Trace (of a square matrix A) 

Transpose (of a matrix A) 

Unit matrix (of degree n) 

Matrix unit (matrix whose 
(i,j)-component is 1 and all others 
are 0) 

Kronecker product (of two 
matrices A and B) 

Isomorphism (of two algebraic 
systems M and N) 

Quotient space (of an algebraic 
system M by N) 

Dimension (of a linear space, etc.) 

Image (of a mapping f) 

Kernel (of a mapping ,f) 

Coimage (of a mapping f) 

Cokernel (of a mapping ,f) 

Kronecker delta (hii = 1 and 
~5,~ = 0 for i #j) 

Inner product (of two vectors 
a and b) 

Vector product (of two 3- 
dimensional vectors a and b) 

Tensor product (of two modules 
M and N) 

Set of all homomorphisms 
(from M to N) 

Set of all A-homomorphisms 
(of an A-module M to 
an A-module N) 

Torsion product (of M, N) 

Extension (of M, N) 

Exterior algebra (of a linear space 
M), pth exterior product (of M) 

Set of all natural numbers 

Set of all rational integers 

Z/mZ (set of all residue classes 
modulo m) 

Set of all rational numbers 

Set of all real numbers 

Set of all complex numbers 

Set of all quaternions 

Finite field fwith u elements) 

269F 

269B 

269A 

2 69B 

269C* 

256B 

256F* 

256C 

277E* 

217E 

;!llE 

;!llE 

:!69A 

442B* 

442C* 

:!77J, 2561* 

:!llB 

:!llE 

:!OOD 

:!OOG 

2560 

294A 

294A 

29lG* 

294A 

294A 

294A 

29B 

149M 
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Notation Example 

QP 

4x,,...,4 

k(x l>...>X,) 

kCCx~,...>x,,ll 

VI. Groups 

GL GU VI, GJ% K) 

SL 

PSL 

u 

SU 

0 

SO 

Spin 

SP 

PSL(n, K) 

U(n) 

SU(4 

O(n) 

SW 

Spin(n) 

Sp(n) 

Definition 

p-adic number field 
(p is a prime) 

Ring of p-adic integers 

Polynomial ring (of variables 
x , , , x, with coefftcients in k) 

Field extension 
(ofkbyx ,,..., xn) 

Formal power series ring (with 
coefftcients in k). 

Note: The symbols N, Z, Q, R, C, 
and H stand for sets, each with its 
own natural mathematical 
structure 

Article 
and 
Section - 
439F 

439F 

369A 

149D 

370A 

General linear group (over V, 
or over K of degree n) 

Special linear group (over K of 
degree n) 

60B 

60B 

Projective special linear group 
(over K of degree n) 

60B 

Unitary group (of degree n) 60F 

Special unitary group (of degree n) 60F 

Orthogonal group (of degree n) 

Special orthogonal group, 
rotation group (of degree n) 

Spinor group (of degree n) 

Symplectic group (of degree n) 

[For PGL(n, K), LF(n, K), PU(n), Sp(n), PSp(n, K)-60 Classical Groups] 

VII. Topology (Convergence) 

-+ a,-+a 

-1, h %l4 a” b a 

t3 /* a,Ta, a, /*a 

lim lima, 
- 

lim sup, hm lim sup a,, hm a, 

lim inf, !$a liminfa,, lima, 

a- , ,Cl E”, E, Cl E 

‘, ‘, Int E’, E”, Int E 

P> d P&K Y)> 4x> Y) 

II II l/X/l 

1.i.m. 1.i.m. f, 

Convergence (sequence a, 
converges to a) 

Convergence monotonically 
decreasing 

Convergence monotonically 
increasing 

Limit (of a sequence a,) 

Superior limit (of a sequence a,) 

Inferior limit (of a sequence a,) 

Closure (of a set E) 

Interior (of a set E) 

Distance (between two points 
x and y) 

Norm (of x) 

Limit in the mean (of a 
sequence f,) 

601 

601 

61D 

60L 

87B, E* 

87B 

87B 

87B, E* 

s7c* 

87c* 

425B 

425B 

273B* 

37B 

168B 
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Notation Example Definition 

4rticle 
(and 
;Section 

s-lim s-lim x, 

w-lim w-lim x, 

N f=s 

VIII. Geometry and Algebraic Topology 

E” 

P” 

S” 

T” 

H” HYX, 4 

Hll fL(X> 4 

a 

6 

S9 
9 

A 

ac 

df 
sq’x 

$(x) 

z1-z2 

Zl”Z2 

WAU 

d dw 

grad 

rot 

div 

A 

II 

D 

a(u,,...,u,) aui 
(H a(xl,...,x,)' axj 

grad cp 
rot u 

divu 

Acp 

I3 

DV 

IX. Function Spaces 

C C(Q) 

Strong limit (of a sequence x,) 

Weak limit (of a sequence xn) 

Homotopy (of two mappings 

f and d 

Homeomorphism (of two 
topological spaces X and Y) 

Euclidean space (of dimension n) 

Projective space 
(of dimension n) 

Spherical surface 
(of dimension n) 

Torus (of dimension n) 

n-dimensional cohomology group 
(of X with coefficients in A) 

n-dimensional homology group 
(of X with coefficients in A) 

(of chain complex C) 

n-dimensional homotopy group 

(of Xl 

Boundary (of C) 

Coboundary (off) 

Streenrod square (of x) 

Steenrod pth power (of x) 

Cup product (of z1 and z2) 

Cap product (of z1 and z2) 

Exterior product (of two 
differential forms w  and q) 

Exterior derivative (of a 
differential form w) 

Gradient (of a function cp) 

Rotation (of a vector u) 

Divergence (of a vector u) 

Laplacian (of a function cp) 

d’alembertian (of a function cp) 

Differential operator 

Jacobian determinant (of 
(ul,. . , u,) with respect to 

(Xl >. . .1 x,1) 

Jacobian matrix (of (ul, , u,) 
with respect to (x1,. ,x,)) 

Space of continuous functions 

(on Q) 

37B 

.37E 

202B 

425G 

140 

343B 

140 

422E 

2OlH 

201G 

201B 

2025, 170 

201B 

201H* 

64B 

64B 

2011 

2OlK 

105Q* 

105Q 

442D 

442D 

442D 

323A 

130A 

112A* 

:208B 

:208B 

168B(l) 
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Article 
and 

Notation Example Definition Section 

LP Lp(W Lp(a> b) Space of functions such that lflp 168B(2) 
is integrable on Q 

c’ C’(L)(l <l<co) Space of functions of class C’ 168B(9) 

9 m4 Space of C” functions with 168B(13) 
compact support 

& 4fi) Space of C” functions 168B(13) 

[For 4Q), A@), A,@), @Q)(=%dU BMW), BW), C, C, C,,(n), C,@), C$), c&.@), 
+q(Q)> %w)(~)> +P,W> ~,,P,(Q, Jf,(R”), H’(Q), H;(R), A’@“), n l(dk’), ZZ 1 ‘(dk)), I,, 
Lo,,,@), m, M(Q), (WV, o#), 9, s, S(Q), I+$)-168 Function Spaces. For w(Q) (Space of 
Sato hyperfunctions), g’(Q), B’(Q), UC, 8,, Y’(Rn)- 125 Distributions and Hyperfunctions] 

X. Functions 

I I 

Re 

Im 

- 

I4 

Rez 

Imz 

z 

arg 

Cl 

0 

0 

argz 

Cal 

f(x) = OMX)) 

f(x) = h7(x)) 

f(x)-g(x) 

D D(T) 

R NT) 

suPP suppf 

p.v. P.v. S:f(-Wx 

Pf PfJfWx 

6 w4,&x 

ex p expx 

log, Log logx, Logx 

sin x, cos x, tan x, set x, 
cosecx, cotan x 

arc sin x, arc cos x, arc tan x 

Arcsinx, Arccosx, Arctanx 

Absolute value (of a complex 
number z) 

Real part (of a complex 
number z) 

Imaginary part (of a complex 
number z) 

Complex conjugate (of a complex 
number z) 

Argument (of a complex 
number z) 

Gauss symbol (greatest integer 
not exceeding a real number a) 

Landau’s notation (f(x)/g(x) 
is bounded for x+c() 

Landau’s notation (f(x)/g(x) 
tends to 0 for X-XX) 

Infinite or infinitesimal of the 
same order (for x+t() 

Domain (of an operator T) 

Range (of an operator T) 

Support (of a function f) 

Cauchy’s principal value (of 
an integral) 

Finite part (of an integral) 

Dirac’s delta function 
(measure or distribution) 

Exponential function 
(expx = ex) 

Natural logarithmic function and 
its principal value, respectively 

Trigonometric functions 

Inverse trigonometric functions 

Principal value of inverse 
trigonometric functions 

-l4B* 

14A 

14A* 

74A 

74C 

83A 

87G 

87G 

87G* 

251A 

251A 

168B(l) 

216D 

125C 

125C* 

113D, 269H 

131D, G 

131E 

131E 

131E 
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Notation 

sinh x, cash x, tanh x 

0 ,c 

Li 

XI. Probability 

P, Pr 

E 

v, o2 

P 

P(l) 

E(I) 

N 

Example 

C ‘II I 

P ” I 

n! 

dn) 

AnI 

T(z) 

J,(z) 

W) 

B(X? Y) 

F(4 B> Y; 4 

P 

Li(x) 

x 

P(E), W4 

E(X) 

w4, a2(W 

PW, Y) 

WIF) 

JW Y) 

N(m, c2) 

w 

Definition 

Hyperbolic functions 

Article 
and 
Section 

131F 

Binomial coefficient, combination 330 

Permutation 

Factorial (of n) 

Euler function 

Miibius function 

Riemann zeta function 

Bessel function of the first kind 

Gamma function 

Beta function 

Gauss’s hypergeometric function 

330 

330 

;195c* 

295c 

450B* 

39B 

114A 

114c 

:!06A 

Riemann’s P function 253B 

Logarithmic integral 167D 

Probability (of an event) 

Mean or expectation (of a 
random variable X) 

Variance (of a random variable X) 

Correlation coefficient (of two 
random variables X and Y) 

Conditional probability (of an 
event E under the condition F) 

Conditional mean (of a random 
variable X under the condition Y) 

One-dimensional normal 
distribution (with mean m and 
variance g2) 

342B* 

342C 

342C 

342C* 

342E 

342E 

Appendix A, 
Table 22 

Multidimensional normal dis- 
tribution (with mean vector p 
and variance matrix C) 

Poisson distribution (with 
parameter 1) 

Appendix A, 
Table 22 

Appendix A, 
Table 22* 



Systematic List of Articles 
I 
Logic and Foundations 

1. Foundations of Mathematics Art. 156 
2. Axiom Systems 35 
3. Paradoxes 319 
4. Symbolic Logic 411 
5. Axiomatic Set Theory 33 
6. Model Theory 216 
I. Nonstandard Analysis 293 
8. Giidel Numbers 185 
9. Recursive Functions 356 

IO. Decision Problem 97 
11. Constructive Ordinal Numbers 81 
12. Analytic Sets 22 

II 
Sets, General Topology, and Categories 

1. Sets 381 
2. Relations 358 
3. Equivalence Relations 135 
4. Functions 165 
5. Axiom of Choice and Equivalents 
6. Cardinal Numbers 49 
7. Structures 409 
8. Permutations and Combinations 
9. Numbers 294 

10. Real Numbers 355 
I 1. Complex Numbers 74 
12. Ordering 311 
13. Ordinal Numbers 312 
14. Lattices 243 
15. Boolean Algebras 42 
16. Topological Spaces 425 
17. Metric Spaces 213 
18. Plane Domains 333 
19. Convergence 87 
20. Connectedness 79 
21. Dimension Theory 117 
22. Uniform Spaces 436 
23. Uniform Convergence 435 
24. Categories and Functors 52 

34 

330 

25. Inductive Limits and Projective Limits 
210 

26. Sheaves 383 

III 
Algebra 

1. Algebra 8 
2. Matrices 269 
3. Determinants 103 
4. Polynomials 337 
5. Algebraic Equations 10 
6. Fields 149 
7. Galois Theory 172 
8. Linear Spaces 256 
9. Rings 368 

10. Associative Algebras 29 
11. Commutative Rings 67 
12. Noetherian Rings 284 
13. Rings of Polynomials 369 
14. Rings of Power Series 370 

15. Quadratic Forms Art. 348 
16. Clifford Algebras 61 
17. Differential Rings 113 
18. Witt Vectors 449 
19. Valuations 439 
20. Adeles and Ideles 6 
21. Cayley Algebras 54 
22. Jordan Algebras 231 
23. Modules 271 
24. Homological Algebra 200 
25. Hopf Algebras 203 
Appendix A, Table 1. Algebraic Equations 

IV 
Group Theory 

1. Groups 190 
2. Abelian Groups 2 
3. Free Groups 161 
4. Finite Groups 151 
5. Classical Groups 60 
6. Topological Groups 423 
7. Topological Abelian Groups 422 
8. Compact Groups 69 
9. Lie Groups 249 

10. Lie Algebras 248 
11. Algebraic Groups 13 
12. Homogeneous Spaces 199 
13. Symmetric Riemannian Spaces and Real 

Forms 412 
14. Discontinuous Groups 122 
15. Crystallographic Groups 92 
16. Representations 362 
17. Unitary Representations 437 
18. Invariants and Covariants 226 
Appendix A, Table 5. Lie Algebras, Symmetric 
Riemannian Spaces, and Singularities 
Appendix B, Table 5. Characters of Finite 
Groups and Crystallographic Groups 

V 
Number Theory 

1. Number Theory 296 
2. Number Theory, Elementary 297 
3. Continued Fractions 83 
4. Number-Theoretic Functions 295 
5. Additive Number Theory 4 
6. Partitions of Numbers 328 
7. Distribution of Prime Numbers 123 
8. Lattice-Point Problems 242 
9. Diophantine Equations 118 

10. Geometry of Numbers 182 
11. Transcendental Numbers 430 
12. Quadratic Fields 347 
13. Algebraic Number Fields 14 
14. Class Field Theory 59 
15. Complex Multiplication 73 
16. Fermat’s Problem 145 
17. Local Fields 257 
18. Arithmetic of Associative Algebras 27 
19. Zeta Functions 450 
Appendix B, Table 1. Prime Numbers and 
Primitive Roots 
Appendix 8, Table 2. Indices Modulo p 



Systematic List of Articles 1858 

Appendix B, Table 4. Class Numbers of 
Algebraic Number Fields 

VI 
Euclidean and Projective Geometry 

1. Geometry Art. 181 
2. Foundations of Geometry 155 
3. Euclidean Geometry 139 
4. Euclidean Spaces 140 
5. Geometric Construction 179 
6. Regular Polyhedra 357 
7. Pi (n) 332 
8. Trigonometry 432 
9. Conic Sections 78 

10. Quadric Surfaces 350 
11. Convex Sets 89 
12. Vectors 442 
13. Coordinates 90 
14. Projective Geometry 343 
15. Affne Geometry 7 
16. Non-Euclidean Geometry 285 
17. Conformal Geometry 76 
18. Erlangen Program 137 
19. Continuous Geometry 85 
20. Curves 93 
21. Surfaces 410 
22. Four-Color Problem 157 
Appendix A, Table 2. Trigonometry 
Appendix A, Table 3. Vector Analysis and 
Coordinate Systems 

VII 
Differential Geometry 

1. Differential Geometry 109 
2. Differentiable Manifolds 105 
3. Riemannian Manifolds 364 
4. Connections 80 
5. Tensor Calculus 417 
6. Geodesics 178 
7. Symmetric Spaces 413 
8. G-Structures 191 
9. Complex Manifolds 72 

10. Kghler Manifolds 232 
11. Harmonic Integrals 194 
12. Differential Geometry of Curves and 

Surfaces 111 
13. Riemannian Submanifolds 365 
14. Minimal Submanifolds 275 
15. Harmonic Mappings 195 
16. Morse Theory 279 
17. Differential Geometry in Specific Spaces 

110 
18. Finsler Spaces 152 
19. Integral Geometry 218 
20. Siegel Domains 384 
21. Spectral Geometry 391 
22. Pseudoconformal Geometry 344 
23. Global Analysis 183 
Appendix A, Table 4. Differential Geometry 

VIII 
Algebraic Geometry 
1. Algebraic Geometry 12 
2. Algebraic Curves 9 

3. Algebraic Surfaces Art. 15 
4. Algebraic Varieties 16 
5. Abelian Varieties 3 
6. Riemann-Roth Theorems 366 

IX 
Topology 

1. Topology 426 
2. Fundamental Groups 170 
3. Covering Spaces 91 
4. Degree of Mapping 99 
5. Complexes 70 
6. Homology Theory 201 
7. Fixed-Point Theorems 153 
8. Cohomology Operations 64 
9. Homotopy Theory 202 

10. Fiber Spaces 148 
1 l.‘Obstructions 305 
12. Topology of Lie Groups and Homo- 

geneous Spaces 427 
13. Fiber Bundles 147 
14. Characteristic Classes 56 
15. K-Theory 237 
16. Knot Theory 235 
17. Combinatorial Manifolds 65 
18. Differential Topology 114 
19. Transformation Groups 431 
20. Theory of Singularities 418 
21. Foliations 154 
22. Dynamical Systems 126 
23. Shape Theory 382 
24. Catastrophe Theory 51 
Appendix A, Table 5. Lie Algebra, Symmetric 
Riemannian Spaces, and Singularities 
Appendix A, Table 6. Topology 
Appendix A, Table 7. Knot Theor) 

X 
Analysis 

1. Analysis 20 
2. Continuous Functions 84 
3. Inequalities 211 
4. Convex Analysis 88 
5. Functions of Bounded Variation 166 
6. Differential Calculus 106 
7. Implicit Functions 208 
8. Elementary Functions 131 
9. Cm-Functions and Quasi-Anallytic 

Functions 58 
10. Integral Calculus 216 
11. Curvilinear Integrals and Surface Integrals 

94 
12. Measure Theory 270 
13. Integration Theory 221 

14. Invariant Measures 225 
15. Set Functions 380 
16. Length and Area 246 
17. Denjoy Integrals 100 
18. Series 379 
19. Asymptotic Series 30 
20. Polynomial Approximation 336 
21. Orthogonal Functions 317 
22. Fourier Series 159 
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23. Fourier Transform Art. 160 
24. Harmonic Analysis 192 
25. Almost Periodic Functions 18 
26. Laplace Transform 240 
27. Integral Transforms 220 
28. Potential Theory 338 
29. Harmonic Functions and Subharmonic 

Functions 193 
30. Dirichlet Problem 120 
31. Capacity 48 
32. Calculus of Variations 46 
33. Plateau’s Problem 334 
34. Isoperimetric Problems 228 
35. Variational Inequalities 440 
Appendix A, Table 8. Inequalities 
Appendix A, Table 9. Differential and Integral 
Calculus 
Appendix A, Table 10. Series 
Appendix A, Table 11. Fourier Analysis 
Appendix A, Table 12. Laplace Transforms 
and Operational Calculus 
Appendix A, Table 20. Systems of Orthogonal 
Functions 

XI 
Complex Analysis 

1. Holomorphic Functions 198 
2. Power Series 339 
3. Dirichlet Series 121 
4. Bounded Functions 43 
5. Univalent and Multivalent Functions 

438 
6. Transcendental Entire Functions 429 
7. Meromorphic Functions 272 
8. Distribution of Values of Functions of 

a Complex Variable 124 
9. Cluster Sets 62 

10. Algebraic Functions 11 
11. Algebroidal Functions 17 
12. Riemann Surfaces 367 
13. Ideal Boundaries 207 
14. Conformal Mappings 77 
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Bagemihl, Frederick (1920&) 62.CE 
Bahadur, Raghu Raj (19244) 396.r 398.r 399.N, r 

400.K, r 
Bahmann, H. 97.B 
Bailey, Norman T. J. 40x 
Baillon, Jean-Bernard (1951-) 286.Y 
Baily, Walter Lewis, Jr. (1930-) 16.2 32.F, H 122.r 

194.r 
Baiocchi, Claudio 440.r 
Baire, Rene Louis (187441932) 20 21 C, L 84.D, r 

126.H 273.B, J 425.N 
Bairstow, L. 301.E 
Baker, Alan (19399) 118.D 182.G, r 196 347.E 

430.D, r 
Baker, George Allen, Jr. (1932-) 142.r 
Baker, Henry Frederick (1866-1956) 9.r 15.r 78.r 

350.r 
Baker, Kenneth R. 376.r 
Bakhshali (c. 3rd century) 209 
Balaban, Tadeusz 325.K 
Balakrishnan, A. V. (1922-) 378.D 
Balas, Egon 215.C r 
Baldwin, John T. (1944-) 276.F 
Balian, Roger 386.r 
Ball, W. W. Rouse 157.r 
Banach, Stefan (1892-1945) 20 23.G 36.A, F 37.A, 

B, E, F, H, I, 0, r 105.Z 162 168.r 246.G 286.K, Z 
310.F, 1424.C H, J, X 442.r 

Banerjee, Kali S. (1914-) 102.r 
Bang, Theger Sophus Vilhelm (1917-) 58.F 
Banica (Banica), Constantin (1942-) 23.r 
Baouendi, M. Salah (1937-) 323.N 345.A 
Barankin, Edward William (1920&) 396.r 399.D, r 
Barban, Mark Borisovich (1935-) 123.E 
Barbey, Klaus 164.r 
Barbosa, Jolo Lucas Marques 275.B 
Barbu, Viorel(1941l) 88.r 440.r 
Barden, Dennis 65.C 
Bardos, Claude Williams (1940-) 204.E 
Bargmann, Valentine (19088) 258.r 437.EE 
Bar-Hillel, Yehoshua (1915575) 96.r 



1877 Name Index 
Bieberbacb, Ludwig 

Bari, Nina Karlovna (1901-61) 159.J Berg, Christian (19444) 338~ 
Barlow, Peter (177661862) NTR Berg, Ira David (1931-) 331.E 390.1 
Barlow, William (18455 1934) 92.F Berge, Claude (19266) 186.r 281.r 282.r 
Barnes, Ernest William (187441953) 206.C App. A, Berger, Charles A. (1937-) 251.K, L 

Table 18.1 Berger, James Orvis (1950&) 398.r 
Barr, Michael (19377) 200.r Berger, M. (1926-) 109.*, r, 17&A, C 391.8, C, r 
Barrow, Isaac (1630-77) 265 283 Berger, Melvyn (19399) 286.r 
Barth, Wolf Paul (1942-) 16.r Berger, Toby (1940-) 213.E 
Bartle, Robert Gardner (1927-) 68.M 443.A, G Bergh, Joran (1941-) 224.r 
Bartlett, Maurice Stevenson (1910-) 40.r 44.r 280.5 Bergman, Stefan (1895-1977) 21.Q 77.r 188.G. r 

407.r 421 .C, r 326.C 
Barwise, Jon 356.r Berkovitz, Leonard D. (1924-) 86.F 108.A, B 
Bashforth, F. 303.E Berlekamp, Elwyn R. (1940-) 63.r 
Bass, Hyman (1932-) 122.F 200.r 237, J, r Bernays, Paul Isaak (1888-1977) 33.A, C, r 97.* 
Bass, Robert Wauchope (1930-) 289.D 156.r 411.5, r 
Bastin, J. 351.r Bernoulli family 20 38 107.A 266 
Batchelder, Paul M. 104.r Bernoulli, Daniel (1700-82) 20 38 205.B 301.5 
Batchelor, George Keith (1920-) 205.r 433.C r 342.A 396.B 
Bateman, Paul Trevier (1919-) 4.D 348.K Bernoulli, Jakob (165441705) 38 46.A 93.H 136.D- 
Bauer, Friedrich Ludwig (1924-) 302.r F 177.B 250.A 342.A 379.1 App. A, Table 14.1 
Bauer, Heinz (1928-) 193.U App. B, Table 3.1 
Baum, Paul Frank (19366) 366.E 427.B Bernoulli, Jakob (1759-89) 38 
Bayer, Pilar 450.r Bernoulli, Johann (166771748) 38 46.A 93.H 163.B 
Bayes, Thomas (1702-61) 342.A. F 396.J 398.B 165.A 

399.F 401.B, E 403.G 405.1 Bernoulli, Johann (1710-90) 38 
Bazilevich, Ivan Evgen’evich 438.8 Bernoulli, Johann (174441807) 38 
Beale, E. M. L. 292.r 349.r Bernoulli, Nikolaus (168771759) 38 
Beals, Richard William (193%) 320.r 345.A, B Bernoulli, Nikolaus (1695-1726) 38 
Beardon, Alan Frank (1940&) 234.r Bernshtein, I. N. 125.EE 154.G 41&H, r 
Beatley, Ralph 139.r Bernshtein, Sergei Natanovich (1880-1968) 49.B 
Beauville, Arnaud (1947-) 15.r 58.E 196 240.E 255.D 261.A 275.A, F 323.1 334.C 
Bebutov, M. 126.E 336.A, C, F 
Becchi, C. M. 150.G Bernshtein, Vladimir 121.r 
Beck, James V. 200.Q, r Bernstein, Allen R. 276.E, r 293.D 
Beckenbach, Edwin Ford (1906-82) 211.r Bernstein, Felix (1878-1956) 228.A 
Becker, Oskar Joachim (188991964) 156.r 187.r Berry, G. G. 319.B 
Beckmann, Petr (1924-) 332 Berry, L. Gerard (1948-) 40.D 
Bede Venerabilis (673-735) 372 Bers, Lipman (1914-) 21.r 23.r 111~ 122.1, r 204.G 
Beer, Stafford (1926-) 95.r 234.D, r 275.A 320.r 326.r 327.r 352.B-E, r 367.r 
Beeson, H. 275.C 416.*, r 
Beez, R. 365.E Berstel, Jean (1941-) 31.r 
Behnke, Heinrich (1898-1979) 21.H, Q 23.E 198.r Berthelot, Pierre (1943%) 16.r 366.r 450.Q 

367.B, G, I, r Bertini, Eugenio (1846-1933) 15.C 
Behrends, Ralph Eugene (I 926-) 132.r Bertrand, Joseph Louis Francois (182221900) 
Behrens, W. V. 400.G 11 l.F 123.A 
Belardinelli, Giuseppe 206.r Berwald, L. (1883-?) 152.C 
Belavin, A. A. 80.r Berztiss, Alfs T. 96.r 
Belinfante, Frederik J. 150.B Besikovich (Besicovitch), Abram Samoilovich (189 1~ 
Bell, Eric Temple (188331960) 177.D 1970) l&A, C 246.K 
Bell, James Frederick (1914-) 33.r Besov, Oleg Vladimirovich (19333) 168.B, r 
Bell, John Stewart (1928-) 351.L Bessaga, Czestaw (19322) 286.D 443.D 
Bell, Steve 344.D Besse, Arthur L. 109.r 178.r 
Bellissard, Jean Vincent (19466) 35 1 .L Besse, J. 198.N 
Bellman, Richard (Ernest) (1920-84) 86.A, F 127.A, Bessel, Friedrich Wilhelm (1784- 1846) 39.A, B, D, 

D, E, G, r 163.B 211~ 291.r 314.r 394.r 405.B, r G 197.C 223.C App. A, Tables 14.11, 19.111, IV, 
Belov, Nikolai Vasil’evich (1891-I 92.r 21.111, IV 
Beltrami, Eugenio (1835-1900) 109 194.B 285.A Besson, Gerard (1955-) 391.F 

352.B App. A, Table 4.11 Betti, Enrico (1823392) 105.A 200.K 201.A, B 426 
Belyaev, Yurii Konstantinovich (1932-) 176.G Beurling, Arne (Karl-August) (19055) 62.B, E 
Bendat, Julius S. (19233) 212.r 125.A, U 143.A 164.G, I 169.E 192.Q 251.L 
Bender, Helmut (1942-) 151.5 338.Q, r 352.C 
Benders, J. F. 215.r B&out, Etienne (1739983) 9.B 12.B 
Bendikson (Bendixson), Ivar Otto (1861~ 1936) Bhaskara (1114-85?) 209 296.A 

107.A 126.1 Bhatia, Nam Parshad (1932-) 86.r 126.r 
Bengel, Giinter (1939-) 112.D Bhattacharya, Rabindra Nath (1937-) 374.F, r 
Benilan, Philippe (1940&) 162 Bhattacharyya, A. 399.D, r 
Bensoussan, Alain (1940&) 405.r Bianchi, Luigi (185661928) 80.J 365.5 417.B 
Berard-Bergery, Lionel (1945-) 364.r Bickel, Peter John (1940-) 371.r 
Berens, Hubert (19366) 224.E, r 378.r Bidal, Pierre 194.F 
Berezin, Feliks Aleksandrovich (1931-80) 377.r Bieberbach, Ludwig (188661982) 43.r 77.E 89.C 
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Biedenharn. Lawrence C. 
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92.F. r 107.r 179.B, r 198.r 254.r 288.r 339. 429.r 
438.B, C 

Biedenharn, Lawrence C. (1922-) 353.r 
Biezeno, Cornelis Benjamin (1888-1975) 19.r 
Biggeri, Carlos 121.C 
Biggs, Norman Linstead (1941-) 157.r 
Billera, Louis J. (1943-) 173.E 
Billingsley, Patrick P. (19255) 45.r 136.r 250.r 

341.r 374.r 
Binet, Jacques Philippe Marie (178661856) 174.A 

295.A 
Bing, Rudolf H. (1914-86) 65.F, G 79.D 273.K 

382.D 425.AA 
Birch, Bryan John (1931-) 4.E 118.CE 450.S 
Birkeland, R. 206.D 
Birkhoff, Garrett (191 l-) 8.r 87.r 103~ 183.r 243.r 

248.5 310.A 311.r 343.r 443.A, E, H 
Birkhoff, George David (188441944) 30.r 107.A 

109 1 Il.1 126.A, E 136.A, B 139.r 153.B, D 157.A 
162 253.C 254.D 279.A 286.D 420.F 

Birman, Joan S. (19222) 235.r 
Birman, Mikhail Shlemovich (19288) 331.E 
Birnbaum, Allan (1923-76) 399.C r 400.r 
Birtel, Frank Thomas (1932-) 164.r 
Bisconcini, Giulio 420.C 
Bishop, Errett A. (1928883) 164.D-F, J, K 367.r 
Bishop, Richard L. (1931-) 105.r 178.r 417.r 
Bishop, Yvonne M. M. 280.r 403.r 
Bitsadze, Andrei Vasil’evich (19166) 326.r 
Bjerknes, Carl Anton (1825-1903) 1.r 
Bjiirck, Ake (1934-) 302.r 
Bjiirck, Goran (1930&) 125.r 
Bjork, Jan-Erik 112.r 125.EE 274.r 
Bjorken, James Daniel (19344) 132.r 146.A, C 150.r 
Blackman, R. B. 421 .r 
Blackwell, David (Harold) (1919-) 22.H 398.r 

399.c 
Blahut, Richard E. (19377) 213.r 
Blair, David E. (1940-) 1 t0.E 364.G 
Blakers, Albert Laurence (19177) 202.M 
Blanchard, Andre (1928-) 72.r 
Blanc-Lapierre, Andre Joseph (1915-) 395.r 
Bland, Robert G. (19488) 255.C 
Blaschke, Wilhelm (18855 1962) 43.F 76.r 89.C r 

109.*, r llO.C,r 111~ 178.G 218.A,C, H 228.r 
Biatt, John Markus 353.r 
Blattner, Robert James (1931-) 437.W, EE 
Bleaney, B. I. 130.r 
Bleuler, Konrad (1912-) 150.G 
Bloch, Andre (1893-1948) 2l.N, 0 77.F 272.L 

429.D 
Bloch, Felix (1905-) 353.r 402.H 
Bloch, Spencer 16.R 
Block, Henry David (1920-78) 420.C 
Bloxham, M. J. D. 386.C 
Blum, Julius Rubin (1922282) 136.E 
Blum, Manuel 71.D, r 
Blumenthal, Ludwig Otto (1876-1944) 32.G 122.E 
Blumenthal, Robert McCallum (1931-) 5.r 261.B, r 
Boas, Ralph Philip, Jr. (1912-) 58.r 220.D 240.K 

429.r 
B&her, Maxime (1867-1918) 107.A 167.E 193.D 
Bochner, Salomon (189991982) 5.r 18.A, r 21.Q, r 

36.L X0.r 109.e. r 125.A 160.C. r 164.G 192.B. 0 
194.G 261.F 327.r 341.C J, r 367.F 378.D 443.A, 
C H 

Bodewig, Ewald 298.r 
Boerner, Hermann (1906-82) 362~ 
Boetius, Anicius Manlius Torquatus Severinus 

(c. 480-524) 372 

Bogolyubov, Nikolai Nikolaevich (1909-) 125.W 
136.H 146.A 150.r 212.B 290.A, D 361.r 402.5 

Bohme, Reinhold (19444) 275.C 
Bohnenblust, (Henri) Frederic (1906-) 28 310.A, G 
Bohr, Harald (1887-1951) 18.A, B, H, r 69.B 12l.B, 

C 123.r 450.1 
Bohr, Niels Henrik David (188551962) 351.A 
Bokshtein (Bockstein), Meer Feliksovich (1913-) 

64.B 117.F 
Bol, Gerrit (19066) 110.r 
Boll, Marcel (1886-) NTR 
Bolley, Pierre (19433) 323.N 
Boltyanskii, Vladimir Grigor’evich (lS25-) 86.r 

89.r 117.F 127.G 
Boltzmann, Ludwig (18441906) 41.A, B, r 136.A 

402.B, H, r 403.B, r 
Bolyai, Janos (Johann) (1802-60) 35 A 181 267 

285.A 
Bolza, Oskar (1857-1942) 46.r 
Bolzano, Bernard (1781-1848) 140 273.F 
Bombieri, Enrico (1940-) 15.r 72.K 1 18.B 123.D, 

E, r 151.J 275.F 438.C 45O.P, Q 
Bompiani, Enrico (188991975) 110.B 
Bonnesen, Tommy (1873-) 89.r 228.A 
Bonnet, Ossian Pierre (1819-92) 10s’ 11 l.H 275.A, 

C 364.D App. A, Table 4.1 
Bonsall, Frank Featherstone (1920-) 310.H 
Bony, Jean-Michel(1942-) 274.r 
Book, D. L. 304.r 
Boole, George (1815-64) 33.E 42.A-D, r 104.r 

156.B 243.E 267 379.5 41 l.A, r 
Boone, William Werner (1920-83) 9’7.*, r 161.B 
Boothby, William M. (1918-) 1lO.E 
Borchardt, Carl Wilhelm (1817-80) :!29.r 
Borchers, Hans-Jiirgen (1926-) 150.1~ 
Borel, Armand (1923%) 12.B 13.A, G, r 16.2 32.H, 

r 56.r 73.r 122.F, G, r 147.K 148.E, I 199.r 203.A 
248.0 249.5, V, r 366.D 383.r 384.D 427.B, r 431.r 
437.Q 450.r App. A, Table 6.V 

Bore], Emile (1871-1956) 20 21.0 22.A, G 58.D 
83.B 124.B 156.C 198.Q, r 261.D 27O.B, C, G, J 
272.E, F 273.F 339.D 342.A, B 379.0 429.B 

Borevich, Zenon Ivanovich (1922-) (4.r 297.r 347.r 
Borges, Carlos J. Rego (1939-) 273.K 425.Y 
Borisovich, Yurii Grigor’evich (1930-) 286.r 
Born, Max (1882-1970) 402.5 446.r 
Borovkov, Aleksandr Alekseevich (193-) 260.H 
Borsuk, Karol (1905582) 79.C, r 153 B 202.B, I 

382. A, C 
Bortolotti, Ettore (1866-1947) 417.E 
Bose, Raj Chandra (1901-) 63.D 241.B STR 
Bose, Satyendra Nath (1894-1974) 132.A, C 351.H 

377.B 402.E 
Bott, Raoul(1923-) 105.r 109 153.C 154.F-H 

178.G 202.V, r 237.D, H, r 248.r 272.L 279.D 
325.5 345.A 366.r 391.N, r 413.r 427.E, r 437.Q 
App. A, Table 6.VII 

Bouligand, Georges (18899?) 120.D 
Bouquet, Jean-Claude (1819985) 107.A 11 l.F 

288.B 289.B 
Bourbaki, Nicolas 8 13.r 20.r 22.r 34.r 35.r 60.r 61.r 

67.r 74.r 84.r 87.r 88.r 103.r 105.r 106.r 122.r 13l.r 
135.r 149.r 162 168.C 172.r 187.r 21ti.r 221.r 225.r 
248.r 249.r 256.r 265.r 266.r 267s 270.r 277.r 284.r 
310.1 311.r 312.r 337.r 348.r 355.r 360.r 362.r 368.r 
379.r 381.r 409.r 423.r 424.1, r 425,s. W, Y, CC, r 
435.r 436.r 443.A 

Bourgin, David G. 201~ 
Bourgne, Robert 171.r 
Bourguignon, Jean-Pierre (1947-) 80.r 364.r 
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Callen, Herbert Bernard 

Bourion, Georges 339.E 
Boussinesq, Joseph (1842-1929) 387.B. F 
Boutroux, Pierre Leon (1880-1922) 265.r 288.B, 

C, r 
Bowen, Rufus (1947-78) 126.A, J, K, r 136.C G, r 

234.r 
Bowman, Frank (1891-1983) 39.r 
Box, George E. P. (1919%) 102.r 128.r 301.L 371.A 

421.G, r 
Boyle, James M. 298.r 
Bradley, G. J. 92.r 
Bradley, Ralph Allan (19233) 346.C 
Brahmagupta (598-660) 118.A 209 
Bram, Joseph (19266) 291 .r 
Brams, Steven John (1940&) 173.r 
Brandt, Heinrich (1886-1954) 190.P 241.C 
Branges, Louis de (1932-) 176.K 438.C 
Bratteli, Ola (1946-) 36.H, K, r 308.r 402.G, r 
Brauer, Richard Dagobert (1901-77) 14.E 27.D, 

E 29.E, F, K 118.C 151.5, r 362.G, I, r 427.B 
450.D, G, L 

Braun, He1 (1914-) 32.H 122.E 231.r 
Brauner, Karl 418.r 
Bravais, Auguste (1811-63) 92.B, F App. B, 

Table 5.IV 
Bredikhin, Boris Maksimovich (1920&) 123.E 
Bredon, Glen E. (19322) 383.r 431.r 
Breiman, Leo (1928-) 260.r 342.r 
Brelot, Marcel (1903-) 12O.C E, r 193.5, L, N, U 

207.C 338.G, H 
Bremermann, Hans-Joachim (1926-) 21.D, I 
Bremmer, Hendricus (19044) 240.r 
Brent, Richard Peirce (1946-) 123.B 142.A 450.1 
Breuer, Manfred 390.5 
Brewster, Sir David (1781-1868) 283.r 
Brtzis, David 88.E 
Brtzis, Hai’m (1944) 88.E 162.*, r 286.C X 440.r 
Brianchon, Charles Julien (178551864) 78.K 343.E 
Brieskorn, Egbert (19366) 16.r 418.C, D, r App. A, 

Table 5.r 
Brigham, E. Oran (1940@) 142.r 
Brill, Alexander Wilhelm von (184221935) 9.E, r 

ll.B, r 12.B 
Brillinger, David Ross (1937-) 421.r 
Brillouin, Leon Nicolas (188991969) 25.B 446.r 
Brin, Matthew G. 136.G 
Briot, Charles Auguste Albert (1817-82) 107.A 

288.B 289.B 
Broadbent, S. R. 340.r 
Brocker, Theodor 51.r 
Broderick, Norma 92.r 
Brodskii, Mikhail Samoilovich (1913%) 251.r 390.H 
Brody, Robert 21.0 
Bromwich, Thomas John TAnson (1875- 1929) 

240.D 322.D 379.r App. A, Table 12.1 
Bronshtein, M. D. 325.1 
Bras, Jacques (1934-) 150.D 274.D, I 386.B, C 
Brosilow, C. B. 303.r 
Brouncker, Lord William (1620-84) 332 
Brouwer, Dirk (1902-66) 55.r 
Brouwer, Luitzen Egbertus Jan (1881-1966) 65.G 

79.D 99.A 117.A, D, r 153.B 156.A, C 202.B 305.A 
426 

Browder, Andrew (193ll) 164.r 
Browder, Felix Earl (1927-) 112.F, Q 286.C X, r 

323.H 
Browder, William (19344) 114.5, L, r 427.B 
Brown, Edgar H., Jr. (19266) 202.T 
Brown, Harold 92.F 
Brown, Lawrence David (1940&) 396.r 

Brown, Lawrence G. (1943-) 36.5 390.5, r 
Brown, Leon 43.G 
Brown, Morton (1931-) 65.G 
Brown, Robert (177331858) 5.D 45.A-C, F, I 

176.C I 250.F 406.B, G 
Brown, Robert Freeman (1935-) 153.r 
Brown, Scott W. (1937-) 251.L 
Brownlee, John (1868-1927) NTR 
Bruck, Richard Hubert (1914-) 19O.P, r 241.D 
Bruhat, Francois (1929-) 13.K, Q. R 437.0, EE 
Brumer, Armand 182.r 450.5 
Brun, Viggo (188551978) 4.A, C 123.D, E 
Brune, 0. 282.r 
Brunel, Antoine 136.C 
Brunn 89.E 
Brunovsky, Pavol 126.M 
Bruns, Heinrich (1848-1919) 126.A 420.A 
Brunschvicg, Leon (1869-1944) 329.r 
Bruter, Claude Paul (19377) 281.r 
Buchholz, Herbert (1895-1971) 167.r 
Buchner, Michael Anthony (1947-) 126.L 
Buchsbaum, David Alvin (1929%) 284.G 
Buck, R. Creighton (1920-) 43.F, r 106.r 
Biickner, Hans 217.r 
Bucur, Ion (1930-76) 52.r 
Bucy, Richard S. (19355) 86.E 95.r 405.G, r 
Buerger, Martin J. 92.r 
Buffon, Georges Louis Leclerc, Comte de (1707-88) 

218.A 342.A 385.C 
Buhler, Joe P. 450.G 
Biihlmann, Hans (1930-) 214.r 
Bulirsch, Roland (1932-) 303.F 
Biilow, Rolf 92.F 
Bunimovich, Leonid Abramovich 136.G 
Bunyakovskii, Viktor Yakovlevich (1804-89) 21 l.C 

App. A, Table 8 
Burali-Forti, Cesare (1861-1931) 319.B 
Burchnall, Joseph Langley (189221975) 387.C 
Burckhardt, Johann Jakob 92.F 
Burd, Vladimir Shepselevich (19388) 290.r 
Burgess, David Albert (1935-) 295.E 
Burghelea, Dan (19433) 105.r 183 
Biirgi, Joost (1552-1632) 265 
Burgoyne, N. 150.D App. B, Table 5.r 
Burkholder, Donald L. (19277) 168.B 262.B 
Burkill, John Charles (1900-) 100.A 
Burns, Daniel Matthew, Jr. (19466) 344.C-E 
Burnside, William Snow (1852-1927) 151.D, H, J, r 

16l.C 190.Q, r 267 431.F 
Busemann, Herbert (1905-) 178.F, H, r 
Bush, Robert R. 96.r 346.G 
Bush, Vannevar (1890-1974) 19.E 
Bustab, A. 4.A, C 123.E 
Butkovskii, A. G. 86.r 
Butzer, Paul L. (1928-) 224.E, r 378.r 
Byrne, George D. 303.r 

C 

Cabannes, Henri (1923-) 259.r 
Caflisch, Russel E. 41.D, E 
Caianiello, Eduardo R. (1921-) 291.F, r 
Cairns, Stewart Scott (1904482) 114.A, C 426 
Calabi, Eugenio (1923-) 122.F 232.C 275.H 

365.G, L 
Calderbn, Alberto-Pedro (1920&) 36.M 217.5, 

r 224.A, F 251.0 274.B, 1321.F 323.5 345.A 
Calkin, John Williams (19099) 36.5 390.1 
Callan, Curtis G. (1942-) 132.C 36l.B, r 
Callen, Herbert Bernard (1919-) 419.r 
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Campanato, Sergio 

1880 

Campanato, Sergio (I 930&) 168.B 
Campbell, George Ashley (1870-?) 220.r 249.R 
Camus, Jacques (1942-) 323.N 
Cannon, James W. (19433) 65.A, C, F 
Cannonito, Frank Benjamin (1926-) 97.r 
Cantelli, Francesco Paolo (18755) 342.8 374.E 
Cantor, Georg (184551918) 20 33.A 34.r 47.r 

49.D, r 79.D 93.D 98.r 117.A 156.A 159.J 267 
273.F 294.A, E, r 312.A, C 355.r 381.F, r 426 

Cantor, Moritz Benedikt (1829-1920) 20.r 26.r 38x 
187.r 209.r 265.r 266.r 296.r 360.r 372.r 

Cantwell, John C. 154.H 
Cappell, Sylvain E. (I 9466) 65.D 114.K, r 
Caratheodory, Constantin (187331950) 20.r 

21.0, Q 43.J, K, r 46.r 74.r 77.C r 82.r 136.A, C 
180.r 198.r 246.G 255.D, E 270.E 316.F 320.r 321.r 
324.r 333.B, C, r 334.E 438.B 

Cardano, Girolamo (1501-76) 8 10.D 294.A, r 
360.*, r 444 App. A, Table 1 

Cardoso da Silva, Fernando Antonio Figueiredo 
(1939-) 320.r 

Carleman, Torsten (189221949) 20 30.A 41.D 43.H 
58.F 68.L 112.N 125.A 160.r 164.5 168.B 217.5, r 
240.K 321.F 323.5, M 336.1 App. A, Table 8 

Carleson, Fritz (I 8888 1952) 121.C 
Carleson, Lennart A. E. (19288) 43.F, G, r 48.r 

77.E 124.C 159.H 164.1 168.B 169.r 352.F 
Carlson, Bille Chandler (19244) 389.r 
Carlson, James A. 21 .N 
Carmeli, Moshe (1933-) 359.r 
Carnahan, Brice (19333) 304.r 
Carnot, Lazare Nicholas Marguerite (1753-1823) 

181 266 
Carrell, James Baldwin (1940-) 226.r 
Carrel, J. B. 346.E, r 
Carroll, Robert Wayne (I 930-) 378.r 
Carson, John R. App. A, Table 12.11 
Cartan, Ehe (1869-1951) 13.H 21.P 50 80.A, M, N 

90.r 105x 109.*, r 1 lO.B, r I 1l.r 137.*, r 147.A 
152.C 178.A, B 183 191.E, H, 1218.D, E 219.B, 
r 248.F, I, K, N, W, r 249.E, I, R, S, V, r 285.r 
344.AmC, F 362.1 364.F 365.B, 1384.A 412.*, 
r 413.F, r 417.r 427.B 428.E, G 434.B 437.X 
App. A, Table 5.1 

Cartan, Henri (1904-) 3.r 17.C r 20.*, r 21.E, H, 
I, L, 0, Q, r 23.B, E, r 28.r 32.r 36.L 50 52.r 58.D 
64.8 70.F, r 72.E 80.r 87.r 94.r 105.r 124.B, r 192.r 
198.r 200.1, r 201.5 208.r 210.r 225.r 272.5 277.r 
338.E. L, M, P 383.5, r 426 

Carter, Roger William (19344) 151.D, r 
Cartier, Pierre Emil (1932-) 9.E 12.B 16.E 203.H 
Cartwright, Mary L. 62.E 
Case, James H. 108.C 
Casimir, 248.5 
Casorati, Felice (1835590) 104.D 198.D 
Cassandro, M. 402.G 
Casselman, William Allen (1941-) 450.r 
Cassels, John William Scott (19222) 14.r 59.r 118.r 

182.r 257.r 
Cassini, Jean Dominique (162551712) 93.H 
Casson, Andrew J. 114.K 
Cassou-Nogues, Pierrette (1945-) 450.5 
Castaing, Charles (1932-) 443.A 
Castelnuovo, Guido (186551952) 3.E 9.H, r 12.B, r 

15.B, E, G, H 
Castillon, Giovanni Francesco Mauro Melchior 

Salvemini de (1708891) 179.A 
Catalan, Eugene Charles (1814-94) App. A, 

Table lOI 
Cauchy, Augustin Louis (I 789-l 857) 4.D 5.F 20 

21.C 53 87.C 100.E 107.A, B 164.5 165.A, r 190.Q 
198.A, B, E, F, Q 211.C 216.D, E 267 273.5 274.G 
284.B 286.X, Z 294.E 296.301.G 31&A, C, G 
320.B, D, 1321.A, B 339.A 341.D 344.A 379.A, 
B, F, K 388.B 436.G App. A, Tables 8, 9, 10.11 

Cauer, D. (188991918) 179.8 
Cauer, Wilhelm (1900-45) 282.r 
Cavalieri, (Francesco) Bonaventura (1598- 1647) 

20 265 
Cayley, Arthur (1821-95) 12.B 54 105.A 137 151.H 

157.A 190.Q 226.G 251.1 267 269.F, J 285.A 
Cazenave, Thierry 286.Y 
CebySev - Chebyshev 
Tech, Edouard (189331960) 1 lO.B, r 117.E 201.A, 

M, P 207.C 383.F 425.T, r 426 436.1 
Ceder, Jack G. (19333) 425.Y 
Cerf, Jean (19288) 114.1 
Cesari, Lamberto (1910-) 246.r 290.1. 314.D, r 

394.r 
Cesaro, Ernest0 (1859-1906) 297.D 379.K, M 
Ceva, Giovanni (1647?-1734?) 7.A 
Chaber, Jozef 273.K 
Chacon, Rafael Van Severen (1931-) 136.B, H 162 
Chadan, Khosrow (1930&) 375.r 
Chaikin, S. E. - Khaikin, S. E. 
Chaitin, Gregory J. 71.r 354.D 
Chakravarti, Indra-Mohan (1928-) 102.1 
Chandler, Colston 274.D, I 386.C 
Chandrasekhar, S. 433.r 
Chandrasekharan, Komaravolu (1920-) 121.r 123.r 

160.r 379.r 450.r 
Chang Chen-Chung (19277) 276.r 293.r 
Chang, J. J. 346.E, r 
Chang Sun-Yang (1948-) 164.1 
Chaplygin, Sergei Alekseevich (18699 942) 326.B 
Chapman, D. G. (1920&) 399.D 
Chapman, Sydney (1888-1970) 41.E 260.A 261.A 

379.M 402.H, r 
Chapman, Thomas A. (1940&) 65.C 382.B, D 
Charnes, Abraham (19177) 255.D, E 408.r 
Charpit, Paul (?-1774) 82.C 320.D 322.B App. A, 

Table 15.11 
Charzynski, Zygmunt (1914-) 438.C 
Chase, A. B. 24.r 
Chase, Stephen Urban (1932-) 29.r 172.A, K 
Chasles, Michel(179331880) 12.B 78.5 267 350.C 
Chatelet, Francois (1912-) 118.D 
Chaudhuri, Jyoti 63.D 
Chaundy, T. 387.C 
Chauvenet, William (1820-70) 392.r 
Chazarain, Jacques (19422) 274x 325.H, M 345.B 

378.F 
Chazy, Jean (188221955) 288.D 420.D 
Chebotarev, Nikolai Grigor’evich (1894-1947) 

14.S 172.r 
Chebyshev, Pafnutii L’vovich (1821-94) 19.G 

123.A 223.A 299.A 317.D 336.8, H, .I 342.C 
App. A, Tables 20.11, VII 

Cheeger, Jeff (1943-) 178.B, r 391.D, M, r 
Chen Bang-Yen (1943-) 365.F, H, 0, r 417.r 
Chen Jing-Run (1933-) 4.C, r 123.E 242.A 
Chen, T.-C. 142.C r 
Cheney, Elliott Ward (1929-) 142.r 
Cheng, J. H. 365.L 
Cheng Shiu-Yuen (1948-) 275.H 391.F, H 
Ch’&ng Ta-Wei (fl. 1592) 57.C 
Chern Shiing-Shen (1911-) 21. N, P 50.r 56.C, F, r 

80.r 90.r 109.*, r 1lO.E 1ll.r 147.A, IV 152.C 
218.D, E, r 237.B 272.L 275.A, E 279.C 344.B 
365.B, H, L, 0, r 
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Coxeter, Harold Scott Macdonald 

Chernoff, Herman (19233) 371.A, C, H, r 374.r 
400.K 

Chervonenkis, 0. A. NTR 
Cherwell, Lord (Lindemann, Frederick Alexander) 

291.F 
Cheung, Fan-Bill 386.r 
Chevalier, Alfred 171 
Chevalier, Jacques 329.r 
Chevalley, Claude (1909-84) 6.A ll.r 12.B 13.B, 

F, I, N, r 27.r 50.r 59.A, r 6O.L, r 61.r 69.D 105.r 
118.8, F 125.M 151.1200.0 248.Q, r 249.U, V, r 
256.r 258.r 277.r 284.G 368.r 409.r 423.r 427.B 

Chew, Geoffrey Foucar (19244) 132.r 386.C r 
Chien, Robert Tienwen (1931l) 282.r 
Ch’in Chiu-Shao (fl. 1250) 57.B 
Ching Wai-Mee 308.F 
Chisini, Oscar 9.r 
Chittenden, Edward Wilson (1895- 1977) 273.K 
Choi Man-Duen (19455) 36.5 308.r 
Cholesky 298.G, 302.B, D 
Chomsky, Noam (19288) 31.D 75.E 
Choong, K. Y. 332 
Choquet, Gustave (1915-) 20.r 48.F, H, r 89.r 

120.E 139.r 164.C 193.5, N, r 207.C 255.E 338.C 
D, H, I, L-0 407.B 424.U, r 

Chow Wei-Liang (1911l) 3.B 12.B 13.F 16.H, R, S 
72.F, H 

Chowla, Sarvandaman D. (19077) 123.D 450.1, 
K, r 

Chretien, Max (19244) 15O.r 
Christian, Ulrich Hans Richard Otto (19322) 

32.F, H 
Christoffel, Elwin Bruno (1829-1900) 77.D 80.L 

109 1 ll.H 317.D 417.D App. A, Tables 4.11, 13.11 
Chu Hsin 126.N 
Chu Lan Jen(1913-) 133.r 
Chu Shih-Chieh (fl. 1300) 57.B 
Chudakov, Nikolai Grigor’evich (19044) 4.C 
Chudnovskii, Grigorii V. 430.D, r 
Chung Kai Lai (1917-) 45.r 260.5 342.B 
Church, Alonzo (19033) 22.G 31.B 75.D 81.A, r 

97.*, r 354.r 356.A, C, E, G, r 
Churchman, C. West (19133) 307.A 
Ciarlet, Phillipe G. (1938-) 300.r 304.r 
Ciesielski, Zbigniew (1934-) 176.G 
Clagett, Marshall (1916-) 187.r 372.r 
Clairaut, Alexis Claude (1713-65) 20 107.A 165.A 

App. A, Tables 14.1, 15.11 
Clancey, Kevin F. 251.r 
Clark, Charles Edgar (1935-) 376.r 
Clarke, Douglas Albert 356.H, r 
Clarkson, James Andrew (19066) 443.H 
Clatworthy, Willard H. STR 
Clausius, Rudolf Julius Emmanuel (1822-88) 419.A 
Clebsch, Rudolf Friedrich Alfred (1833-72) ll.B 

226.G 353.B 
Clemence, Gerald Maurice (1908-) 55.r 392.r 
Clemens, Charles Herbert (19399) 16.5 
Clenshaw, Charles William (19266) 299.A 
Clifford, Alfred H. (19088) 190.r 243.G 
Clifford, William Kingdon (1845579) 9.C 61.A, D 

275.F 
Clough, Ray William, Jr. (1920-) 304.r 
Coates, John H. (19455) 118.D 182.r 450.5, r 
Cochran, William Gemmel (1909980) 102.r 373.r 

374.B 
Codazzi, Dellino (1824473) 11 l.H 365.C 417.F 

App. A, Table 4.1 
Coddington, Earl Alexander (19255) 107~ 252.r 

253.r 254.r 314.r 315.r 316.r 394.r 

Coffman, Charles V. 246.5 
Cohen, Eckford (1920-) 121.A 
Cohen, Irvin Sol (1917-) 284.A, D, G 
Cohen, Jacob Willem (1923-) 227.r 
Cohen, Marshall M. (1937-) 91.r 
Cohen, Paul Joseph (1934-) 22.F 33.D, r 49.D 

192.P, Q 
Cohen, S. G. 353.r 
Cohn, Paul Moritz (1924-) 249.r 
Cohn, Richard M. (1919-) 104.r 
Cohn-Vossen, Stefan (1902-36) 109 111.1 178.F, 

H 357.r 365.E 410.r 
Coifman, Ronald R. 168.B 251.r 
Cole, B. 164.D 
Cole, J. D. 25.r 
Coleman, Sidney Richard (1937-) 146.C 
Cohn de Verdi&e, Yves (19455) 391.5 
Collatz, Lothar Otto (1910-) 217.r 298.r 
Collingwood, Edward Foyle (1900@70) 62.C. D, r 
Collins, P. D. B. 386.r 
Combes, Jean-Michel Christian (1941-) 331.F 
Combescure, Edouard (c. 1819 (24?)-?) 11 l.F 
Commichau, Michael 72.r 
Condon, Edward U. 353.r 
Conforto, Fabio (1909-54) 3.r 
Conley, Charles Cameron (1933384) 126.E 
Conlon, Laurence William (1933-) 154.H 
Conner, Pierre Euclide, Jr. (1932-) 237.r 431.E, r 
Connes, Alain (1947-) 136.F 308.H, I, r 351.L 
Constantine, Alan Graham 374.r 
Constantinescu, Corneliu (1929%) 193.U 207.C D, 

r 367.E, G, r 
Conti, Roberto (1923-) 290.r 
Conway, John Horton 151.1235.A 
Conway, Richard W. 376.r 
Cook, Joseph M. (19244) 375.A 
Cook, Roger John (19477) 118.D 
Cook, Stephen Arthur (1939-) 71.E, r 
Cooke, George Erskine (1932-) 201.r 
Cooke, Kenneth Lloyd (19255) 163.B 
Cooke, Richard G. 379.r 
Cooley, James William (1926-) 142.D, r 304.r 
Cooper, William (19355) 255.D, E 408.r 
Copernicus, Nicolaus (1473-1543) 360 
Coppel, William Andrew 314.r 
Corbato, Fernando J. 133.r 
Cordes, Heinz 0. (1925-) 345.A 
Coriolis, Gaspard Gustav de (1792-1843) 271.D 
Cornea, Aurel(19333) 193.U 207.C D, r 367.E, 

G, r 
Cornish, Edmund Alfred (1909-73) 374.F 
Cornu, Marie Alfred (1841-1902) 93.H 167.D 
Corwin, Lawrence Jay (1943-) 132.r 
Coster, Joseph 386.C 
Cotes, Roger (1682-1716) 299.A 
Cottle, Richard Warren (1934-) 292.D 
Coulson, Charles Alfred (1910-74) 446.r 
Courant, Richard (1888-1972) 20.*, r 46.r 77.E, r 

82.r 106.r 107.r 112.r 120.r 134.r 188.r 189.r 197.r 
198.r 204.G 205.r 216.r 217.r 222.r 275.A, C, r 
300.r 304.C F, r 317.r 320.r 321.G, r 322.r 323.E, I 
324.r 325.M, r 327.r 334.C D 389.r 391.H 441.r 
446.r 

Cousin, Pierre (186771933) 20 21.K, Q 
Cowen, Michael J. (19455) 124.r 
Cowling, Thomas George (1906-) 259.r 402.r 
Cox, David Roxbee (19244) 40.r 403.r 
Cox, Gertrude Mary (1900-78) 102.r 
Coxeter, Harold Scott Macdonald (19077) 13.R 

92.r 122.H 151.r 161.r 248,s 285.r 357.r 
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Cracknell, Arthur P. 

1882 

Cracknell, Arthur P. 92.r 
Cramer, Gabriel (1704452) 179.A 269.M 302.A 
Cramer, Harald (1X93-1985) 123.r 214.C 242.A 

250.r 341.E, r 374.r 395.r 399.D. M. r 400.r 
Crandall. Michael G. (1940@) 162 286.T, X, r 
Crandall, Stephen Harry (1920&) 298.r 
Crapper, Gordon David (1935-) 205.F 
Crawford, Frank Stevens (19233) 446.r 
Crelle, August Leopold (1780- 1855) 1 NTR 
Cremona, Antonio Luigi Gaudcnzio Giuseppe 

(1830-1903) 16.1 
Crittenden. Richard J. (1930&) 413.r 
Crofton, Morgan William (1826-1915) 218.B 
Cronin, Jane (Smiley) (19222) 153.r 
Crout, Prescott D. 302.8 
Crow, James Franklin (l916-) I1 5.D 263.r 
Crowell, Richard Henry (19288) 235.r 
Crycr, Colin W. 303.G 
Csiszar, lmre 213.r 
Cuda, Karel (1947-) 293.E, r 
Curtis, Charles Whittlcscy (19266) 29.r 92.r 151.r 

277.r 362.r 
Curtis, E 70.r 
Curtis, John H. 299.A 
Cutkosky, Richard Edwin (19288) 146.A, C 386.C 
Cutland, Nigcl John (19444) 293.r 
Czuber, Emanuel (1851-1925) 19.B 

D 

Dade, Everett C. (I 937-) 92.F 
Dahlquist. Germund (19255) 303.G 
Dakin, R. J. 215.r 
d’Alembert, Jean le Rond (1717-83) 20 107.B 

130.A 205.C 239 252.F 325.D App. A, Table 10.11 
Damerell, Robert Mark (1942%) 450.M 
Daniell, Percy John (1889-1946) 310.1 
Danilevskii, A. M. 298.D 
Danilov, V. 1. 16.2 
Dankner, Alan (19455) 126.5 
Dantzig, George Bernard (1914-) 255.C E, r 264.r 

292.D 408.r 
Darboux, Jean Gaston (184221917) 50 109.*, r 

IIO.B 126.L 158.r 216.A 275.A 317.D 320.C 428.A 
Darmois, Georges 374.H 
Darwin, Charles Robert (1809982) 40.B 
Dashen, Roger Frederick (1938-) 132.r 
Date, Eturo (1950-) 287.C 
D’Atri, Joseph Eugcnc (19388) 364.r 384.E 
Datta, Bibhutibhusan 209.r 
Davenport, Harold (1907-69) 4.E I 18.D 192.P 
David, Florence Nightingale (19099) STR 
David, Herbert Aron (19255) 346.r 374.r 
Davidenko, Dmitrii Fedorovich (1922-) 301.M 
Davie, Alexander M. 164.5 
Davies, Laurie 374.r 
Davis, Burgess J. (19444) 262.B 
Davis, Chandler (19266) 212.r 
Davis, Harold T. App. A, Table 21.r NTR 
Davis, Martin (David) (19288) 22.H 31.r 97.*, r 

173.0 293.r 356.H 
Davis, Philip J. (1923-) 223.r 299.r 
Davis, William Jay (19399) 68.M 443.H 
Davisson, Lee D. (19366) 213.E 
Day, Mahlon Marsh (1913-) 37.r 310.r 
Daykin, David Edward 332.r 
De Alfaro, Vittorio (1933-) 132.r 375.r 
de Baggis, F. S. 126.A 
Debiard. Amedte 115.r 
Debreu, Gerard (1921-) 173.E 443.A, I 

Debye, Peter Joseph William (1884- 1966) 25.C r 
30.C 39.E App. A, Table 19.111 

Dedekind, Julius Wilhelm Richard (18~~1l1916) 
1 l.B, r 12.B 14.CE, J, U 47 49.F, r 67.K 98 
156.A, r 172.A, r 243.F 267 284.G 294.A, E, r 
328 347. H 355.A, r 363.r 379.D 45O.A D, K 

De Giorgi, Ennio 275.F 323.L 
de Haan, David Bierens (1822-95) App. A, 

Table 9.r 
Dehn, Max(187881952) 65.E 155.F 196 
Dejon, Bruno F. (1930&) 301.G, r 
Dekkers, A. J. NTR 
Delaunay, Charles Eugene (1816-72) 93.H 
de la Vallee-Poussin, Charles Jean (1866- 1962) 

20.r 48.A, B 123.B 379,s 437.r 450.B, I 
Deleanu, Aristide (19322) 52.r 
Delens, Paul Clement (1889-) 110.r 
de I’Hbpital, Guillaume FranCois Anto ne (1661l 

1704) 20 
Deligne, Pierre (19444) 9.r 12.B l6.V, r 32.D 118.B 

418.r428.H450,A,G, H, J,M,Q,S, -App. B, 
Table 5 

Dellacherie, Claude (19433) 22.r 261.r 262.r 407.B, r 
Deltheil, Robert 218.r 
Demazure, Michel (1937-) 13.r 16.1, Z, r 
de Miatello, 1. D. 384.E 
Deming, William Edwards (1900&) 280.5 373.F. r 
Democritus (c. 460-c. 370 R.c.) 187 
de Moivre, Abraham (1667-1754) 74.C 250.A 

342.A 
De Morgan, Augustus (1806671) 42.Pt 156.B 157.A 

38l.B4ll.A, r 
Dtnes, Jozsef (19322) 241.r 
Denjoy, Arnaud (1884-1974) 58.F 79 D lOO.A, D 

126.1 154.D, H, r 159.1 168.B 429.D 
Denker, Manfred (19444) 136.H 
Deny, Jacques (1916-) 338.M-P, r 
de Oliveira, Mario Moreria Carvalho 126.5 
De Paris, Jean-Claude 321.G 
de Possel, Rent: (19055) 77.E 367.F 
Deprit, Andre Albert (19266) 420.G 
Deprit-Bartholome, Andrte 420.G 
de Rham, Georges-William (1903-) 12.B, 105.R, 

V,r, 109.*, r 114.L 125.A. R 194.F, r ZOl.A, H,I 
237.H 249.V 274.G, 364.E r, 417.r 

Desargues, Gerard (159331662) 155.E 181 265 329 
343.c 

Descartes, Rene (159661650) 7.C 10.E 20 93.H 101 
180.A 181 265 426 

Deser, Stanley (I 931-) 150.r 
De-Sham, Amos (19266) 353.r 
Desoer, Charles A. (19266) 86.D 

i d’Espagnat, Bernard (1921I) 351.r 
DeTurck, Dennis M. 364.r 
Deuring, Max Friedrich (1907-84) 27.r 29.r 73.A, 

r 123.D 257.r 439.L 45O.S, r 
Deutsch, Robert William (1924-) 55.1 
de Vries, G. 387.B 
De Wilde, Marc (1940%) 424.X, r 
Dewitt, Bryce Seligman (1923%) 359.r 
Dewitt (Dewitt-Morette), Cecile (192Z:-) 150.r 

359.r 
DiCastro, C. 361.r 
Dickinson, Bradley W. (1948-) 86.D 
Dickson, Leonard Eugene (187441954) 4.E 10.r 

54.r 60.K l18.A 151.1, r 296.r 297.r 
Didenko, Viktor Pavlovich 326.r 
Dido (Didon, Belus Elissa) 228.A 
Dienes, Paul (188221952) 339.r 
Diestel, Joseph (1943-) 37.r 443.A 
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Eells, James 

Dieudonne, Jean (19066) 10.r 12.r 13.C 20.r 60.K, 
r 139.r 151.r 183.r 200.r 203.r 226.r 321.r 355.r 
389.r 424.r 425.S X, Y 435.r 436.1 

Dijkstra, Edsger Wybe (1930-) 281.C 
Dikii, Leonid Aleksandrovich 387.C 
Diller, Justus (1936- ) 155.r 
Dilworth, Robert Palmer (1914-1 281.E 
Dinaburg, E. 1. 126.K 
Dinculeanu, Nicolae (19255) 443.r 
Dinghas, Alexander (1908-74) 124.r 198.r 
Dmi, Ulissc (184551918) 39.D Ill.1 159.B 314.D 

435.B 
Dinits, E. A. 281.r 
Dinkelbach, Werner 264.r 
Dinostratus (fl. 350? B.C.) 187 
Diocles (200 H.c.) 93.H 
Diophantus (c. 246-c. 330 or c. 1st century) 118.A 

182.F 187 296.A 
Dippolito, Paul Randall (1948) 154.D 
Dirac, Paul Adrien Maurice (1902 -84) 125.C 

132.A 150.A 270.D 297.r 35l.G, r 359.C 377.B, C, r 
App. A, Table 12. I I 

Dirichlct, Pctcr Gustav Lejeune (1805559) 14.D, U 
84.D 98 I19.r 120.A, F 12l.A 123.D 159.B 160.B 
164.B, 165.A, r 182.A 193.F 234.C 242.A 261.C 267 
295.D 296.A, B 323.C E 334.C 338.Q 341.D 347.E, 
H. r 348.M 379.C, D 440.8 450.A. C, K App. A, 
Table 9.V 

Dixmier, Jacques (19244) 18.1 36.r 68.1 308.F. r 
351.C 437.r 

Dixon, A. C. (I 865.. 1936) App. A. Table 19.IV 
Dmitriev, N. A. 44.r 
Dobrushin, Roland L’vovich (19299) 250.r 340.B. 

r 402.G 407.B 
d’ocagne, Maurice (1862- 1938) 19.D, r 
do Carmo, Manfrcdo PerdigHo 1ll.r 275.A, B 

365.G, r 
Doetsch, Gustav (189221977) 43.E 208.r 240.r 

379.M 
Doi, Koji (19344) 450.L 
Doig, Alison G. 215.D 
Dolansky, Ladislav NTR 
Dolbeault, Pierre (1924 -) 72.D 
Dolbeault-Lemoine. Simone 365.E 
Dold, Albrecht E. (192X-) 70.F. r 201.r 
Dolgachev, Igor V. App. A, Table 5.V 
Dollard, John Day (1937 -) 375.B 
Domb, Cyril 361.r 402.r 
Donaldson, Simon K. 114.K, r 
Dongarra, Jack J. (1950-) 298.r 
Donin, Iosif Failovich (19455) 72.G 
Donnelly, Harold Gerard (1951.-) 391.N 
Donoghue, William F., Jr. 212.r 
Donsker, Monroe David (19244) 250.E 340.r 
Doob, Joseph Leo (1910&) 5.r 45.r 62.E 86.E 115.r 

136.B 162 193.T 207.C 250.r 260.5 261.A, F, r 
262.A, B, D 341.r 342.r 395.r 406.A 407.A, r 

Doolittle, M. H. 302.B 
Doplichcr, Sergio (1940-) 150.E 
Dorfmeister, Josef F. (19466) 384.r 
Dorgc, Karl (I 89881975) 337.F 
Dorn, William Schroeder (19288) 349.r 
Dornhoff, Larry 362.r 
Douady, Adrien (19355) 23.G 72.G 
Douglas, Jesse (1897.. 1965) 77.E 109 152.C 275.A, 

C 334.C, D, F, r 
Douglas, R. G.(1938-) 36.5, r 164.1 251.r 390.5, r 
Doughs, Avron (1918) 112.H 323.H 
Dowker, Clifford Hugh (1912. 82) 117.E 201.M 

425.S, Y 

Drach, Jules (1X71&1941) 107.A 
Drake, Frank Robert (19366) 33.r 
Draper, Norman Richard (1931-) 102.r 
Drasin. David (1940&) 272.K. r 
Dreitlein, Joseph F. (I 9344) 132.r 
Drcll, Sidney David (I 9266) 132.r 150.r 
Dreyfus, Stuart Ernest (1931-) 127.r 
Driver, Rodney D. (1932. ) 163.B 
Dryden, H. L. 433.r 
Dubinsky, Ed (1935-) 168.B 
de Bois-Reymond, Paul David Gustave (1831-89) 

159.H 379.D 
Dubreil, Paul 243.r 
Dubreil-Jacotin, Marie-Louise 243.r 
Dubrovin, B. A. 387.r 
Dubyago, Alexander Dmitrievich (1903359) 309.r 
Dudley, Richard Mansfield (19388) 176.G 
Duffin. Richard J. 264.r 
Duffmg, G. 290.C 
Dufresnoy, Jacques 17.C 124.B 
Dugundji, James (1919985) 425.r 
Duhem, Pierre Maurice Marie(1861-1916) 419.B 
Duijvestijn, A. J. W. (1927-) NTR 
Duistermaat, Johannes Jisse (1942-) 274.B, I 

345.B, r 391.J 
Dulac, M. H. 289.C D, r 
Dunford, Nelson (1906 -) 37.r 68.M 112.1, 0 136.B, 

r 162.*, r 168.r 240.r 251.G, r 310.r 315.r 331.r 
378.B, r 390.K, r 443.A, F-H, r 

Dupin, Pierre Charles Francois (1784- 1873) 11 l.H 
Durand, E. 301 .F 
Durand, William Frederick (1859-1958) 222.r 
Duren, Peter Larkin (19355) 43.r 438.r 
Direr, Albrecht (1471-1528) 360 
Durfee, Alan H. (1943-) 154.8 418.r 
Duschek, Adalbert (189551957) 1 I1.r 
Du Val, Patrick (19033) 418.C 
Duvaut, Georges (19344) 440.r 
Dvoretsky, Aryeh (1916-) 45.r 443.D 
Dwork, Bernard M. (19233) 450.G, Q 
Dwyer, Paul Summer (1901-) 298.r 
Dydak, Jerzy 382.A, C 
Dye, Henry Abel (19266) 136.F, r 
Dyer, S. Eldon, Jr. (1929-) 237.r 
Dym, Harry (19388) 176.K 
Dynkin, Evgenii Borisovich (1924-) 115.A, r 248.S 

r 250.r 26l.A, C 270.B App. A, Table 5.1 
Dyson, Freeman John (1923-) 132.C 146.A 150.A 

182.G 212.B 402.G 
Dzyaloshinskii, Igor Ekhiel’vich (1931-) 402.r 

E 

Easton, William B. 33.F, r 
Eberlein, Ernst 136.H 
Eberlein, Patrick Barry (19444) 178.r 
Eberlein, William Frederick (1917-) 37.G 162 424.V 
Ebin, David G. (1942-) 178.B 183.r 
Eckmann, Beno (1917-) 200.1 
Eddington, Sir Arthur Stanley (1882-1944) 109 

App. A, Table 4.11 
Eden, Richard John (19222) 146.A, C, r 386.C r 
Edgeworth, Francis Ysidro (1845-1926) 374.F 
Edmond, C. 432.r 
Edmonds, Alan Robert (19222) 353.r 
Edrei, Albert (1914-) 17.D 272.K, r 
Edwards. Harold M. (19366) 123.r 
Edwards, Robert Duncan (1942-) 65.A, C, F 154.H 
Eells, James (19266) 105.r ! 14.B 183.*, r 194.r 

195.E, r 
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Effros, Edward George 

1884 

Effros, Edward George (19355) 36.H, J 308.r 
Efron, Bradley (19388) 399.0 
Egorov, Dmitrii Fedorovich (1869- 193 1) 270.5 
Egorov, Ivan Petrovich (1915-) 364.F 
Egorov, Yurii Vladimirovich (19388) 112.D 274.C 

I 345.A, B 
Ehrenfest, Paul (1880-1933) 260.A 402.r 
Ehrenfest, Tatiana Alekseevna Afanaseva 260.A 

402.r 
Ehrenpreis, Leon (1930&) 1 l?.B, C, R 125,s 320.H 

437.EE 
Ehresmann, Charles (1905-79) 80.A, r 90.r 109 

154.A, r 
Ehrlich, Louis W. (19277) 301.F 
Ehrlich, Paul Ewing (1948-) 301.r 364.r 
Eichler, Martin Maximilian Emil (1912-) 1 l.B, r 

13.P 27.D, r 32.D, H, r 60.r 61.r 348.r 450.A, L, 

M, S 
Eicken, W. 75.r 
Eidel’man, Samuil Davidovich (1921-) 112.B 

327.H 
Eilenberg, Samuel (19133) 31.r 52.r 70.E-G, r 75.r 

91.r 2OO.K, M, 0, r 201.A, C, E, G, J, Q 202.B, T 
210.r 277.r 305.A 426.*, r 

Einstein, Albert (187991955) 45.A 109 129 132.A 
137 150.A 256.5 285.A 351.A 359.A, B, D, r 364.D, 
1434.C r App. A, Table 4.11 

Eisenberg, Edmund (?-1965) 292.D 
Eisenhart, Luther Pfahler (187661965) 109.*, r 

1ll.r 417.r 
Eisenstein, Ferdinand Gotthold Max (1823352) 

14.0 32.C F 296.A 337.F 339.E 450.T 
Ejiri, Norio (1953-) 275.A 364.F 365.G 391.C 
Elias, Peter (19233) 213.F 
Eliasson, Halldbr Ingimar (19399) 364.H 
Elliott, George Arthur (1945-) 36.H, K, r 
Elliott, Peter D. T. A. 295.r 
Ellis, George F. R. (1939-) 359.r 
El’sgol’ts, Lev Ernestovich (1909967) 163.r 
Elworth, Kenneth David (1940-) 183 286.D 406.r 
Emch, Gerald Gustav (1936-) 351.r 
Emde, Fritz 389.r NTR 
Emden, Robert (1862-1940) 291.F 
Endo Shizuo (1933-) 200.K 
Enestriim, Gustav (185221923) I0.E 
Enflo, Per (19444) 37.G, L 
Engel, Friedrich (1861-1941) 247.r 248.F 249.r 
Engelking, Ryszard 117~ 273.r 425.r 436.r 
Enneper, A. 275.A, B 
Ennola, Veikko Olavi (19322) App. B. Table 5.r 
Enoki Ichiro (19566) 72.K 
Enomoto Hikoe (19455) App. B, Table 5 
Enright, Wayne H. 303.r 
Enriques, Federigo (1871-1946) 9.r 12.B, r 15.B. E, 

G, H, r 72.K 
Enskog, David (188441947) 41.E 217.N 402.H 
Enss, Volker (1942-) 375.D 
Epstein, David Bernard Alper (1937-) 154.H 
Epstein, Henri (1932-) 125.W 150.D 212.B 386.B, r 
Epstein, Paul Sophus (1883-) 450.A, K 
Eratosthenes (2755194 B.C.) 187 297.B 
Erbacher, Joseph A. 365.H 
Erdtlyi, Artur (1908877) 25.r 30.r 220.r 254.r 389.r 

App. A, Table 20.r 
Erdiis Paul (1913-) 4.A 45.r 123.C r 241.E 250.r 

295.E 328 336.E 342.B 
Erlang, A. K. 260.H 307.C 
Ernst, B. 359.E 
Ernst, Bruno (1947-) 424.r 
Escobal, Pedro Ramon 309.r 

Eskin, Grigorii Il’ich (1936-) 274.C I 345.B 
Estermann, Theodor 4.C, D 123.D 
Estes, William Kaye 346.G 
Ethier, Stewart N. 263.r 
Euclid (Eukleides) (c. 303-c. 275 B.C.) 13.R 24.C 35.A 

67.L 70.B 93.A 139.A, B, E 140 150.F 155.A 179.A 
180.A 181 187 285.A, C 296.A 297.A, B 332 337.D 
364.B 412.H 423.M 425.V 

Eudoxus (c. 408-c. 355 B.C.) 20 187 
Euler, Leonhard (1707-83) 4.C 16.E 20 38 46.A, B 

56.B, F 65.A 83.A 90.C 93.C 107.A, Et 126.A 131.D, 
G 141 145 165.A,r 174.A,C 177.C,D 181 186.A. 
F 201.B, F, N 204.E 205.A, B 240.A :!41.B 266 
27l.E, F 275.A 294.A 295.C E 296.A 297.D, H 
303.D, E 320.D 332 379.1-K 419.B 420.B 432.C 
441.B 450.B App. A, Tables 3.V, 14.1 App. B, 
Tables 3.1, 6.IV 

Evans, Griffith Conrad (188771973) 48.E 120.D 
338.H 

Evens, Leonard (1933-) 200.M 
Everett, J. D. 223.C App. A, Table 21 
Ewens. Warren J. 263.r 

F 

Faber, Georg (18777) 228.B 336.1391.D 438.B 
Fabry, Eugene (185661944) 339.D 
Faddeev, Dmitrii Konstantinovich (19077) 112.P 

302.r 
Faddeev, Lyudvig Dmitrievich (1934-) 132.C 

150.G 375.F 387.G 
Faddeeva, Vera Nikolaevna (19066) 302.r 
Fagnano, Giulio Carlo (168221766) 2:O 
Falb, Peter L. (1936-) 86.D 
Falthammar, Carl-Gunne (1931-) 259.r 
Faltings, Gerd (19544) 118.E 145 
Fan Ky (1914-) 153.D 
Fannes, Marcus Marie-Paul (1950-) 402.G 
Fano, Gino (1871-1952) 12.B 137.r 
Fano, Robert Mario (1917-) 130.r 213.F 
Fano, Ugo (1912-) 353.r 
Fantappie, Luigi 125.A 
Faraday, Michael (1791-1867) 150.A 
Farey, J. 4.B 
Farkas, Julius (1847-1930) 255.B, E 
Farquhar, Ian E. 402.r 
Farrell, 0. J. 164.5 
Farrell, Roger Hamlin (1929-) 398.r 
Fary, Istvan (1922-1) 1ll.r 365.0 
Fathi, Albert 126.N 
Fatou, Pierre (187881929) 21.Q 43.D 221.C 272.D 

339.D 
Fattorini, Hector 0. 378.D 
Favard, Jean (1902-) 336.C 
Fazar, W. 376.r 
Federer, Herbert (1920-) 246.r 275.A. G, r 334.F 
Fedorov, Evgraf Stepanovich (1853-19 19) 92.F 

122.H 
Fedorov, Vyatseslav Vasil’evich 102.1 
Feferman, Solomon (1928-) 81.A 
Fefferman, Charles L. (1949-) 21.P, Q 168.B, r 

224.E 262.B 320.r 344.D. F 345.A. B 
Feinberg, Stephen E. 403~ 
Feinstein, Amiel 213.F 
Feit, Walter (1930-) 151.D, J, r 362.r 
FejCr, Lipbt (Leopold) (1880-1959) 43.5 77.B 159.C 

255.D 
Fekete, Mihaly (Michael) (1886-1957) 48.D 445 
Feldblum 179.B 
Feldman, Jacob (1928-) 136.F 
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Frobenius, Ferdinand Georg 

Fel’dman, Naum Il’ich 118.D 430.D, r 
Fell, James Michael Gardner (19233) 308.M 
Feller, William (1906670) 112.5 115.A, r 250.r 260.5 

261.A, B 263.r 341.r 342.r 378.B 
Fenchel, Werner (1905-) 89.r 109 1 ll.F 365.0 
Fendel, D. App. B, Table 5 
Fenstad, Jens Erik 356.F, r 
Fermat, Pierre de (1601-65) 4.D 20 109 144 145 

180.A 265 296.A 297.F, G 329 342.A 441.C 
Fermi, Enrico (1901-54) 132,287.A, r 351.H 377.B 

402.E 
Fernique, Xavier 176.G 
Ferrar, William Leonard (l893-) App. A, Table 

19. IV 
Ferrari, Ludovico (1522-65) 8 10.D 360 444 

App. A, Table 1 
Ferrero, Bruce 14.L 450.5 
Ferrets, N. M. 393.C 
Ferus, Dirk 365.E, J, N, 0, r 
Feshbach, Herman (1917-) 25.r 
Fet, Abram Il’ich (19244) 279.G 
Feynman, Richard Phillips (1918-) 132.C 146.A, B 

150.A, F 351.F 361.A 
Fibonacci (Leonardo da Pisa, Leonardo Pisano) 

(c. 1174-c. 1250) 295.A 372 
Fiedler, Wilhelm 350.r 
Fienberg, Stephen Elliott (19422) 280.r 
Fierz, Markus Edoward (1912-) 150.A 
Fife, Paul C. 95.r 263.D 
Figiel, Tadeusz 68.K, M 
Figueira, Mario Sequeira Rodrigues 286.Y 
Filippov, Aleksei Fedorovich (1923-) 22.r 
Fillmore, Peter Arthur (19366) 36.J 390.5, r 
Finn, Robert (19222) 204.D, r 275.A, D 
Finney, David John (19177) 40.r 
Finney, Ross L. 201.r 
Finsler, Paul (1894- 1970) 109 152.A 286.L 
Fischer, Arthur Elliot 364.H 
Fischer, Bernd (1936-) 151.1, J 
Fischer, Ernst (187551956) 168.B 317.A 
Fischer, Gerd 23.r 
Fischer-Colbrie, Doris Helga (19499) 275.F 
Fisher, Michael Ellis (1931-) 361.r 
Fisher, Ronald Aylmer (1890-1962) 19.r 40.B 

102.A, E, r 263.E 371.A, C 374.B, F 397.r 399.D, 
K, N, 0, r 400.G 401.B, C, F, G, r 403.A, F, r STR 

Fisher, Stephen D. 43.G 77.E 
Fix, George Joseph (1939%) 300.r 304.r 
Flammer, Carson (1919-) 133.r 
Flanders, Harley (19255) 94.r 432.r 442.r 
Flaschka, Hermann (1945-) 287.B, r 
Fleissner, William G. 273.K 
Fleming, Wendell Helms (19288) 108.A 275.A, G 

334.F 405.r 
Flon, L. 75.r 
Floquet, G. 107.A 252.5 268.B 
Floyd, Edwin E. (1924-) 237.r 431.E, r 
Focken, C. M. 116.r 
FBder, Geza (1927-77) 33.r 
Fodor, Jerry A. 96.r 
Fogarty, John 226.r 
Fogels, E. 123.D, F 
Foguel, Sham R. 136.C 
Foiav, Ciprian (1933-) 251.N 
Fok (Fock), Vladimir Aleksandrovich (1898-1974) 

105.C 377.A. r 
Fokker, Adriaan Daniel 115.A 402.1 
Fomin, Sergei Vasil’evich (1917--75) 2.F 46.r 

136.G 
Fong, Paul 15 1 .J App. B, Table 5.r 

Ford, Lester R. (1896-1971) 234.C r 281.r 282.r 
Ford, Walter Burton (187441971) 30.r 
Forelli, Frank (1932-) 164.G, H, K 
Forrester, Jay Wright (1918-) 385.B, r 
Forst, Gunner 338.r 
Forster, Otto F. (1937-) 72.r 
Forsyth, Andrew Russell (185881942) 289.B 428.r 

App. A, Table 14.r 
Forsythe, George Elmer (1917-72) 302.r 304.r 
Fort. Marion Kirkland, Jr. (1921-) 65.r 
Fort, T. 104.r 
Fortet, Robert Marie (1912-) 395.r 
Fortuin, C. M. 212.A 
Foster, Ronald Martin (1896-) 220.r 
Fotiadi, Dimitri 146.A, C 
Fourier, Jean-Baptiste-Joseph (1768-1830) 10.E 

18.B 20 36.L 39.D 125.0, P, BB 142.D 158 159.A 
160.ApD 176.1 192.B, D, F, K, 0 197.C 220.B 
255.E 266 267 274.C 317.A 327.B 345.B 437.2 
App. A, Tables 11. I, 11 

Fowler, Kenneth Arthur (1916-) 151.5 
Fowler, Ralph Howard (1889-1944) 402.r 
Fox, Ralph Hunter (1913-73) 65.G 235.A, C, G, r 

382.A 
Fraenkel, Abraham Adolf (1891-1965) 33.A, B, D, 

r 47.r 381.r 
Frame, J. S. App. B, Table 5 
Francis, J. G. F. 298.F 
Frank, Philipp (1884-1966) 129.r 
Frankel, Theodore T. (1929-) 364.D 
Franklin, Philip (189881965) 157.A, E 
Franklin, Stanley P. (1931-) 425.CC 
Franks, John M. (1943-) 126.5, K 
Franz, Wolfgang (19055) 91.r 337.F 
Fraser, Donald Alexander Stuart (1925-) 396.r 

401.r 
Frautschi, Steven Clark (1933%) 386.r 
Frechet, Rent Maurice (1878-1973) 37.0 87.K, r 

117.H 246.A, 1273.A, r 286.E, K 424.1425.4, S, 
CC, r 426 

Fredholm, Erik Ivar (1866-1927) 20 68.A, E, F, K, 
L 120.A 162 217.A, E, F, r 222.A 251.D 286.E 
339.D 

Freedman, David A. (1938-) 250.r 
Freedman, Michael Hartley (1951-) 114.K, r 
Frege, Friedrich Ludwig Gottlob (184881925) 

156.B4ll.A,r 
Freitag, Eberhard (1942-) 32.F 
Frenet, Jean-Frederic(1816~1900) 1lO.A lll.D 

App. A, Table 4.1 
Fresnel, Augustin Jean (1788- 1827) 167.D App. A, 

Tables 9.V, 19.11 
Freudenthal, Hans (19055) 162 178.F 202.A, U, r 

248.r 249.r 265 310.A, D 
Freyd, Peter John (1936-) 52.r 200.r 
Fricke, Robert (1861-1930) 32.r 73.r 122.r 233.r 

234.r 
Friedberg, Richard Michael (1935-) 356.D 
Friedman, Avner (1932-) 108.A, B 115.D 286.r 

320.r 322.r 327.r 406.r 440.r 
Friedman, James W. 173.E 
Friedman, Lawrence 307.r 
Friedman, Nathaniel A. (1938-) 136.E, r 
Friedrichs, Kurt Otto (1901-83) 112.D, I, S 125.A 

162 204.G 205.r 252.r 300.r 304.F 323.H, r 325.G, 
r 326.D 331.A 345.A 351.K 375.A 

Fristedt, Bert (19377) 5.r 
Frobenius, Ferdinand Georg (1849-1917) 1.r 2.B 

3.A, D, N 14.K 29.H 107.A 145 151.H 154.B 
190.Q, r 191.B 257.D 267 269.1, N 280.F 286.H 
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FrGhlich, Alhrecht 

1886 

297.1 310.H 362.E, G 390.B428.A, D437,EE 
450.P App. A, Table 14.1 

Frohlich, Albrecht (l916-) 14.r 59.r 
Frohlich, Jiirg M. (19466) 402.G 
Fro&art, Marcel (19344) 146.A 386.B 
Frolik, Zdenek (1933-) 425.Y, CC 436.r 
Fronsdal, Christian (1931-) 132.r 
Frostman, Otto Albin (1907777) 48.A, G 120.D 

338.C r 
Froude, William (I 8 I O-79) I 16.B 
Fu, James Chuan (19377) 399.M 
Fubini,Guido(1879-1943) 109 llO.B,r22l.E 

270.L 
Fubini, Sergio Piero (19288) 132.r 
Fuchs, lmmanuel Lazarus (1X33-1902) 32.B 107.A 

119.r 122.C 178.F 234.B 288.B App. A, Table 18.1 
Fuchs, Ladislas 2.r 
Fuchs, Maximilian Ernst Richard (18733) 253.A, E 

28X.D 
Fuchs, Wolfgang Heinrich (19 155) 17.D 272.K, r 
Fueter, Karl Rudolf (1880-1950) 73.r 
Fuglede, Bent (19255) 48.H 143.B 338.E 
Fujii, Hiroshi (1940%) 304.D 
Fuji’i’e, Tatuo (1930-) 143.r 
Fujiki, Akira (19477) 23.G 72.H 232.C 
Fujikoshi. Yasunori (1942.--) 280.r 
Fujimagari, Tetsuo (1943-) 44.E 
Fujimoto, Hirotaka (19377) 21.M, N 
Fujisaki, Genjiro (1930-) 6.F 450.L 
Fujisaki, Masatoshi (1943-) 86.E 405.r 
Fujisawa, Rikitaro (1861-1933) 267 
Fujishige Satoru (19477) 66.r 281.r 
Fujita, Hiroshi (19288) 204.B-D 304.r 378.5 
Fujita, Takao (1949-) 9.r 15.H 72.1 
Fujiwara, Daisuke (19399) 323.H 345.8 
Fujiwara, Masahiko (1943-) I 18.C D 
Fujiwara, Matsusaburo (1881-1946) 89.E 230.*, r 

240.B App. A, Table 9.r 
Fukamiya, Masanori (19 I2-) I62 
Fuks, Boris Abramovich (1907-75) 21.r 198.r 
Fuks, Dmitrii Borisovich lOS.AA, r 154.G 
Fukushima Masatoshi (19355) 115.C 261.r 
Fulkerson, Delbert Ray (1924476) 376.r 
Fuller, Francis Brock 126.G, N 
Fulton, William (19399) 9.r 16.1 366.E, r 418.r 
Funk, Paul 46.r 109 
Furlan, Giuseppi (1935 -) 132.r 
Furstenberg, Hillel 136.C, H 
Furtwangler, Philipp (186991940) 14.L, 0, R 59.A, 

D. F 145 

G 

Gaal, S. A. 425.r 
Gabriel, Pierre (1933%) 13.r 52.r 
Gabrielov, A. M. App. A, Table 5.V 
Gackstatter, Fritz (194ll) 275.E 
Gagliardo, Emilio 224.A 
Gaier, D. 77.r 
Gaifman, Haim (19344) 33.r 
Galambos, Janos (1940&) 374.r 
Galanter, Eugene H. 96.r 
Gale, David (1921-) 22.H 
Galerkin, Boris Grigor’evich (1871~. 1945) 303.1 

304.B 
Galilei, Galileo (I 564 1642) 78.F 107.A 126.A 265 

271.A 359.C 360 
Gallager, Robert G. 63.r 213.E, F 
Gallagher, Patrick Ximenes (1935-) 123.E 
Gallavotti, Giovanni 136.G 

Gallot, Sylvestre (19488) 364.G 
Galois, Evariste (1811-32) 8 83.C 137 149.M 151.D 

171.*, r 172.A, B, G, H 190.Q 200.N 267 
Galton, Francis (1822-191 1) 40.B 44.B, C, r 401.E 
Calvin, Fred (19366) 33.F 
Gambier, Bertrand Olivier (187991954) 288.C 
Gamelin, Theodore Williams (1939-) 36.r 43.r 

164.G, H, J, K, r 169.r 
Gamkrelidze, Revaz Valerianovich 86.r 
Candy, Robin Oliver 81.A 356.r 
Gangolli, Ramesh A. (19355) 5.r 437.EE 
Gantmakher, Feliks Ruvimovich (1908864) 103.r 

248.r 
Garabedian, Paul Roese1(1927-) 77.E 107.r 438.C 
Garbow, Burton S. 298.r 
Garcia, August 136.B 
Carding, Lars (19199) 112.G, N 189.B, r 321.G 

323.H 325.F, J, r 345.A 
Gardner, Clifford S. (1924-) 387.B, D 
Garfinkel, Robert S. (1939-) 215.r 
Garland, Howard (19377) 122.G 
Garnett, John B. (1940&) 164.F, J 169.E, r 
Garnier, Rene (I 8877) 253.E 288.C D 334.C 
Garnir, Henri (1921-85) 189.r 
Garsia, Adrian0 M. (19288) 262.r 
Garside, F. A. 235.F 
Garside, G. R. 301.N 
Gaschiitz, Wolfgang (1920-) 151.D 
Gass, S. I. 255.r 
Gastwirth, Joseph L. (193%) 371.H 
Gateaux, R. 286.E 
Gauduchon, Paul (19455) 109.r 391.r 
Gauss, Carl Friedrich (1777-1855) 3.A 10.E ll.B 

14.U, r 16.V 73.A 74.A, C, r 77.B 83.A 94.F 99.C 
107.A 109 lll.F~H 118.A 120.A 123.A 136.C 
149.1 174.A 175 176.A-C, F, H 179.A 180.B 193.D 
206.A 223.C 242.A 253.B 267 275.C 2’79.C 285.A 
294.A 295.D 296.A, B 297.1299.A 302.B, C 309.C 
r 327.D 337.D 338.5 341.D 347.H 357.A 364.D, H 
365.C 401.E 403 407.D 417.F 426 441.B 450.C 
App. A, Tables 3.111,4.1, 10, 14.11, 16.111, 21 

Gaveau, Bernard (1950-) 115.r 
Gear, Charles William (19355) 303.E, ICI, r 
Gegenbauer, Leopold (1849- 1903) 3 l7.D 393.E 

App. A, Table 20.1 
Gel’fand, Izrail’ Moiseevich (19 133) 3; .r 36.E, G, L 

46.r 82.r lOS.AA, r 112.0, r 125.A, Q. S 136.G 
154.G 16O.r 162.*, r 168.8 183.r 192.G 218.F,G 
256.r 258.r 287.C 308.D 341.r 375.G 387.C, D 
395.r 407.C 424.T, r 437.W, EE, r 443.A, F, H 
450.A, T 

Gel’fond, Aleksandr Osipovich (1906-68) 182.G 
196 295.r 430.A, D, r 

Cell-Mann, Murray (1929-) 132.A, D, r 15O.C 
361.r 

Gentzen, Gerhard (I 909-45) 156.E 41 I .J, r 
Geocze, Zoard de 246.D, E 
Geoffrion, Arthur M. 215.D, r 
Georgescu, V. 375.B 
Gerard, Raymond (I 932-) 428.H, r 
Gerbert (Silvester II) (940??1003) 372 
Gerhardt, Carl Immanuel (1816-99) 245.r 
Germain, Sophie (1776-1831) 11 l.H 145 App. A, 

Table 4.1 
Gerstner, Franz Joseph von (1789-1823) 205.F 
Getoor, Ronald Kay (19299) 5.r 261.r 262.r 
Gevrey, Maurice-Joseph (1884-1957) 58.G, r 

125.U 168.B 325.1 327.C 
Ghosh, Javanta Kumar (19377) 374.F 396.r 399.0 
Ghosh, Sakti P. 96.r 



1887 Name Index 
Cries. Robert Louis 

Ghouila-Houri, Alain 281.r 282x Goluzin, Gennadii Mikhailovich (1906652) 48.r 
Giacaglia, Georgio Eugenio Oscare 290.r 77.r 438.B, C, r 
Gibbs, Josiah Willard (I 839- 1903) 136.A, C 159.D Gomory, Ralph E. (19299) 215.B, C, r 

340.B 402.B, D, G 419.B, C, r Gonzalez-Aciina, Francisco 235.E 
Gierer, Alfred (1929-) 263.D Good, Irving John (1916-) 403.G, r 
Gieseker, David (19433) 16.Y 72.K Goodier, James Norman (19055) 271.r 
Giga Yoshikazu (19555) 204.C Goodman, Timothy N. T. (1947-) 126.K 136.H 
Gikhman, Iosif Il’ich (19 188?) 406.r Goodner, Dwight Benjamin (1913%) 37.M 
Gilbert, Edgar N. (19233) 63.B Goodwyn, L. Wayne 126.K 136.H 
Gilford, Dorothy Morrow (1919 -) 227.r Gopel, Gustav Adolph (1812-47) 3.A 
Gilkey, Peter Belden (19466) 39l.N, r Goppa, V. D. 63.E 
Gill, Stanley Jensen (19299) 303.D Gordan, Paul Albert (183771912) ll.B 226.G 
Gillies, Donald Bruce (1928875) l14.D 173.D 255.E 353.B 
Gillman, Leonard (19177) 425.r Gordon, Marilyn K. 303.r 
Gindikin, Semen Grigor’evich (19377) 384.C r Gordon, Walter (1893-1940) 351.G 377.C 387.A 
Gini, Corrado 397.E Gorenstein, Daniel (19233) 151.5, r 200.K 
Ginibre, Jean (1938- ) 2 I2.A, r 375.F Gor’kov, Lev Petrovich (1929-) 402.r 
Giraud, Georges 323.C, F Gorny, A. 58.D 
Giraud, Jean (1936-) 200.M Gorry, G. Anthony 215.r 
Giri, Narayan C. (192%) 280.r Gottschalk, W. D. 126.r 
Girsanov, Igor Vladimirovich (1934-) 115.D 136.D Goulaouic, Charles (?%1983) 323.N 

406.B Goursat, Edouard Jean-Baptiste (185881936) ll.r 
Girshick, M. A. 398.r 399.F, r 20.r 46.r 92.F 94.F 193.0 198.B 217.F, r 278.r 
Giusti, Enrico (1940-) 275.F 320x 321.r 322.r 324.r 428.r 
Givens, James Wallace, Jr. (1910-) 298.D Govorov, Nikolai Vasil’evich (1928-) 272.K 
Glaeser, Georges (191%) 58.C r Grad, Harold (1923-) 41.B 
Glaser, V. 150.D 386.B Graeffe (Griiffe), Carl Heinrich (1799-1873) 301.N 
Glashow, Sheldon Lee (1932-) 132.D Graeub, Werner 256.r 
Glauber, Roy J. 340.C Graev. Mark Iosifovich (1922-) 125.r 162.r 183.r 
Glauberman, George Isaac (1941-) 151.J, r 218.r 437.r 
Glauert, Hermann (I 892- 1934) 205.8, D Graff, Karl F. 446.r 
Glazman, Izrail’ Markovich (1916-68) 197.r 251.r Gragg, William Bryant (19366) 303.F 

390.r Graham, Ronald Lewis (1935-) 376.r 
Gleason, Andrew Mattei (1921-) 164.F I96 351.L Gram, Jsrgan Pedersen (1850-1916) 103.G 208.E 
Gleser, Leon Jay (1939-) 399.M 226.E 302.E 317.A 
Glezerman, M. 201 .r Grammel, Richard (1889%) 19.r 
Glicksberg, Irving Leonard (1925583) 86.r 425.T Granoff, Barry (19388) 325.L 
Glimm, James Gilbert (19344) 36.H 150.F, r Grant, J. A. 3Ol.L 

204.G, r 30X.L Grashof, Franz (1826693) 116.8 
Glivenko, Valerii Ivanovich (I 896- 1940) 374.E Grassmann, Hermann Gunther (1809-77) 90.B 

41 l.F, J, r 105.A 147.1 199.B 256.0 267 
Glowinski, Roland (19377) 440.r Grau, Albert A. (1918-) 301.E 
Gluck, Herman R. (1937-) 183.r Grauert, Hans (1930&) 20 21.1, L, Q. r 23.E-G, r 
Gnanadesikan, Ramanathan 280.r 32.F 72.E, G, H, J, r 118.E 147.r 178.F 194.F 232.r 
Gnedenko, Boris Vladimirovich (1912-) 250.r 418.B 

341 .G 374.G Graunt, John (1620-74) 40.A 401.E 
Godbillon, Claude 154.G, r 20 I .r Gray, Andrew 39.r 
Giidel, Kurt (1906678) 22.H 31.B 33.A, C, D, F, r Gray, John Walker (193ll) 1lO.E 

49.D 97.q 156.E, r 184 185.A, C, r 276.D 356&C, r Gray, Robert M. (1943-) 213.E, F 
41 l.J, r Graybill, Franklin Arno (1921-) 403.r 

Godement, Roger (1921-) 36.L 103.r 192x 200.r Green, Albert E. 271.r 
201.r 256.r 277.r 337.r 368.r 383.E, r 450.A, L, T Green, George (179331841) 45.D 94.F 105.W 

Godwin, A. N. 5 I .r 120.A 188.A 189.A, B 193.D, J, N 252.K 315.B 
Gokhberg (Gohbcrg), Izrail’ Tsudikovich (19288) 327.D App. A, Tables 3.111, 4.11, 15.VI 

68.A, J, r 251.r 390.H, r Green, H. E. 291.F 
Goldbach, Christian (1690-1764) 4.C Green, Herbert Sydney (1920-) 402.5, r 
Gol’dberg, Anatolii Asirovich (1930-) 17.C 272.K, r Green, James Alexander (19266) App. B, Table 5.r 
Goldberg, Richard R. 160.r Green, Leon W. (1925-) 136.G 178.G 
Goldberg, Samuel I. (1923-) 105.r 1lO.E 194.r Green, Mark L. (1947-) 21.N 

364.F 417.r Green, Melville S. 361.r 402.r 
Golden, Sidney (!917-) 212.8 Greenberg, Bernand G. (1919-85) 374.r 
Goldman, Oscar (1925) 29.K 200.L Greenberg, Leon (1931-) 234.D, r 
Goldschmidt. David M. I5 I .J Greenberg, Marvin Jay (1935-) 93.r 118.r 201.r 
Gol’dsheid (Goldseid), I. J. 340.r Greene, John M. (19288) 387.B 
Goldstein, Sheldon (I 9477) 136.G Greene, Robert Everist (19433) 178.r 365.B 
Goldstein, Sydney (1903-) 205.r 268.C Greenwood, J. Arthur STR 
Goldstine, Herman Heine (19133) 75.r 138.r Gregory, James (1638875) 332 
Goldstone, Jeffrey (1933-) 132.C Gregory, R. T. 301x 
Golod, Evgenii Solomonovich (19344) 59.F 161.C Grenander, Ulf (1923-) 395.r 421.r 
Golub, Gene Howard (19322) 302.r Griess, Robert Louis, Jr. (19455) 151.1 



Name Index 
Griffiths, Phillip A. 

1888 

Grifliths, Phillip A. (19388) 9.E, r 16.J, r 21.N 72.G 
124.r 218.E 272.L 

Grifhths, Robert Budington (1937-) 212.A 
Grigelionis, Bronyus Igno (19355) 262.r 
Grillenberger, Christian (1941l) 136x 
Grisvard, Pierre (1940-) 224.E 
Grobman, David Matveevich (1922-) 126.G 
Gromoll, Detlef (193%) 109.r 178.r 279.G 
Gromov, Mikhael L. 154.F 178.r 364.H 
Gross, Oliver Alfred (19199) 86.r 
Gross, W. (?%1918) 62.E 246.G 272.1 429.D 
Grothendieck, Alexander (1928-) 3.N, r 12.B, r 

13.B, r 16.E, U, Y, AA, r 29.K 52.r 68.A, K, M, 
N, r 125.r 168.B, r 200.1, r 203.H 210.r 237.A, 
B, J 325.5 366.A, D, r 383.E, r 424.L, S, X, r 426 
443.A, I> 450 

Grotschel. Martin 215.C 
Grotzsch, Herbert (1902-) 352.A, C 438.B 
Grove, Karsten 178.r 
Groves, G. W. 92.r 
Griinbaum, Branko (1929-) 16.r 89.r 
Griinbaum, F. Albert0 41.C 
Grunsky, Helmut (1904486) 77.E, F, r 226.r 438.B 
Griinwald, G&a (1910-42) 336.E 
Grushin, Viktor Vasil’evich (19388) 323.K. N 

345.A 
Guckenheimer, John M. (19455) 126.K, N 
Guderley, Karl Gottfried (1910-) 205.r 
Gudermann, Christoph (179881852) 131.F 447 

App. A, Tables 16, 16.111 
Guerra, Francesco (1942-) 150.F 
Guest, Philip George (1920&) 19.r 
Gugenheim, Victor K. A. M. (19233) 65.D 
Guggenheim, Edward Armand (19Oll) 419.r 
Guignard, Monique M. 292.B 
Guilford, Joy Paul (18977) 346.r 
Guillemin, Victor W. (19377) 105.r 191.r 274.1, r 

325.L 391.5, N 428.F, G 431.r 
Guiraud, Jean-Pierre 41.D 
Gulliver, Robert D., II (19455) 275.C 334.F 
Gumbel, Emil J. (1891-) 374.r 
Gundlach. Karl-Bernhard (1926-) 32.G 
Gundy, Richard Floyd (19333) 168.B 262.B 
Gunning, Robert Clifford (1931-) 21.r 23.r 

367.G, r 
Gunson, Jack 386.C 
Gupta, Suraj Narayan (1924-) 150.G 
Guthrie, Francis 157.A 
Guthrie, Frederick 157.A 
Guttman, Louis 346.r 
Gyory, Kalman (1940-) 118.D 
Gysin, Werner 114.G 148.E 201.0 

H 

Haag, Rudolf (19222) 150.C-E 351.K 402.G 
Haar, Alfred (1885-1933) 142.8, r 225.C r 255.E 

317.C 321.C 323.E 334.C 336.B 
Haberman, Shelby J. 280.r 
Haboush, William J. (1942-) 16.W 
Hadamard, Jacques Salomon (1865-1963) 20.r 

43.E46.A 58.F. r 109 111.1 121.C 123.B 124.B 
125.A 126.5 159.J 178.A, B 208.D 272.E 320.r 
321.A, G 323.B 325.B, r 339.A, D 357.r 429.B 
450.8, I App. A, Table 8 

Hadley, George F. 227.r 
Haefliger, Andre (1929%) 105.r 114.D 154.A, CH 
Half, L. R. 280.D, r 
Hagihara Yusuke (189771979) 133.r 420.r 
Hagis, Peter H., Jr. (1926-) 297.D 

Hahn, Frank John (1929-) 136.G 
Hahn, Hans (187991934) 37.F 93.D 16O.F 390.G 

424.C 
Hajek, Jaroslav (1926-74) 371.r 399.N, r 
Hajian, Arshag B. (1930-) 136.C F 
Hajos, Gyorgy (Georg) (1912272) 2.B 
Haken, Hermann 95 
Haken, Wolfgang R. G. (19288) 157.A, D 186.r 

235.A 
Halanay, Aristide (19244) 163.r 394.r 
Hal& Gabor (1941-) 123.E 
Halberstam, Heini (1926-) 123.r 
Hale, Jack Kenneth (192%) 163.B, H, r 286.r 290.r 
Hall, G. 303.r 
Hall, Marshall, Jr. (1910-) 29.H 66.r 151.1, r 161.C 

r 190.r 241.C App. B, Table 5 
Hall, Philip (1904482) 151.B, D-F 19Cl.G 
Hall, William Jackson (1929%) 396.r 
Hallen, E. G. 130.r 
Hallstrom, Gunnar af 124.C 
Halmos, Paul Richard (1916-) 42.r 13&E, H 197.r 

225.r 251.r 256.r 270.r 276.E 381.r 390.r 
Halphen, Georges Henri (1844489) 11O.B 134.r 
Hamachi, Toshihiro (1942-) 136.F, r 
Hamada, Noboru (1940-) 96.r 
Hamada, YQsaku (1931-) 321.G 
Hamburger, Hans (1889-1956) 240.K 450.M 
Hamel, George (187771954) 270.5 388.B 
Hamilton, Richard S. (1943-) 195.E 352.C 
Hamilton, William Rowan (1805-65) 20 29.B 

108.B 126.A, L 151.B 186.F 219.C 267 269.F 
271.F 294.F, r 324.E 351.D 441.B 442.D 

Hamm, Helmut A. 418.1 
Hammersley, John Michael (1920-) 34.0.r 385.r 
Hammerstein, H. 217.M 
Hamming, Richard W. (1915-) 63.B, c’ 136.E 

223.r 
Hampel, Frank R. 371.A, I, r 431.r 
Hanai, Sitiro (19088) 273.K 425CC 
Hanania, Mary I. 346.r 
Hancock, H. 134.r 
Handel, Michael (1949-) 126.5 
Handelman, David E. (1950-) 36.H 
Handscomb, David Christopher (19333 I 385.r 
Haneke, Wolfgang 123.C 
Hankel, Hermann (1839973) 39.B 174.A 220.B 

App. A, Table 19.111 
Hanks, R. 224.E 
Hannan, Edward James (1921-) 421.r 
Hanner, Olof (Olaf) (1922-) 79.r 
Hano, Jun-ichi (1926-) 364.F 365.L 
Hansen, Frank (1950-) 212.C 
Hansen, Johan Peder (195 1-) 16.1 
Hansen, Peter Andreas (1795-1874) App. A, 

Table 19.111 
Hanson, David Lee (19355) 136.E 
Hanson, Richard J. (193%) 302.r 
Happel, H. 420.r 
Hara, KBkiti (1918-) 329.r 
Harada, Koichiro (1941-) 151.1, J 
Harada, Manabu (1931l) 200.K 
Harari, Haim (1940&) 132.r 
Harary, Frank (1921-) 186.r 
Hardorp, Detlef 154.H 
Hardt, Robert Miller (19455) 275.C 
Hardy, Godfrey Harold (1877-1947) 4.C, D, r 20.r 

43.E, F 83.r 88.r 106.r 121.r 123.C, r 159.G, H, r 
164.G 168.B 211.r 216.r 220.B 224.E 242.A, B, r 
295.r 317.B 328.*, r 339.B, C 379.F, M. S, r 450.B, 
I App. A, Table 8 
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Hikita, Teruo 

Harish-Chandra (1923383) 13.r 32.r 122.F, G 
249.V 308.M 437.V, X, AA, CC, EE 450.T 

Harle, Carlos Edgard 365.E 
Harman, Harry Horace (1913-76) 346.F, r 
Harnack, Carl Gustav Axe1 (1851-88) 100.E 193.1 
Harris, Joseph 9.E, r 16.r 
Harris, Theodore Edward (1919.-) 44.A 260.5 

34o.c 
Harris, William Ashton (1930-) 289.E 
Hart, J. F. 142.r NTR 
Hartley, Herman Otto (1912-80) STR 
Hartley, Richard Ian 235.E 
Hartman, Philip (1915-) 107.r 126.G 195.E 252.r 

254.r 313.r 314.r 315.r 316.r 365.5 
Hartmanis, Juris (1928-) 71.r 75.r 
Hartogs, Friedrich (187441943) 20 2l.C F, H, Q 
Hartshorne, Robin (193%) 9.r 16.R, r 343.r 
Harvey, F. Reese (1941l) 112.C D 125.Y, Z 
Harvey, William James (1941-) 234.r 
Hasegawa, Hirosi (1782-1838) 230 
Hashimoto, Isao (1941-) 280.r 
Hashimoto, Takeshi (1952-) 213.E 
Hashimoto, Tsuyoshi (194%) 173.E 
Hasse, Helmut (1898-1979) 9.E3 12.B 14.E, L, O-R, 

U, r 27.D, E 29.G 59.A, G, H, r 73.A 113 118.C F 
149.r 242.B 257.F, H, r 295.r 297.1 347.r 348.D, G 
449.r 450.A, L, P, S 

Hastings, Cecil (1920-) 142.r NTR 
Hastings, D. W. 40.D 
Hasumi, Morisuke (1932-) 125.BB 164.K 
Hatakeyama, Yoji (1932-) llO.E, r 
Hattori, Akio (1929-) 237.H 431.D 
Hattori, Akira (1927-86) 200.K, M 
Haupt, Otto (18877) 268.E 
Hausdorff, Felix (1868-1942) 79.A 117.G 169.D 

224.E 234.E 240.K 246.K 249.R 273.5 317.B 381.r 
388.r 423.B 425.A, N, P, Q, AA 426 436.C 443.1 

Hawking, Stephen W. (19422) 359.r 
Hayashi, Chihiro (1911-) 290.r 
Hayashi, Chikio (1918-) 346.E 
Hayashi, Kazumichi (19255) 207.C r 
Hayashi, Keiichi (187991957) NTR 
Hayashi, Mikihiro (1948%) 164.K 
Hayashi, Tsuruichi (1873-1935) 230 267 
Hayman, Walter Kurt (19266) 17.D 124.r 193.r 

272.K, r 391.D 438.C E 
Haynal, A. 33.F, r 
Heath, David Clay (19422) 173.E 
Heath, Sir Thomas Little (1861-1940) 181.r 187.r 
Heath-Brown, David Rodney 118.D 123.C E 
Heaviside, Oliver (1850-1925) 125.E 306.A, B 

App. A, Table 12.11 
Heawood, P. J. (1861-1955) 157.A, E 
Hecht, Henryk (1946-) 437.X 
Hecke, Erich (188771947) 6.D 1 l.B 14.r 29.C 

32.C D, H. r 73.B 123.F, r 348.L, r 450.A, D-F, 

MO 
Hector, Gilbert Joseph (1941-) 154.H 
Hedlund, Gustav Arnold (19044) 126.A, r 136.G 
Heegaard, Poul(1871-1948) 65.C 247.r 
Heesch, Heinrich (19066) 92.F 157.A, D 
Heiberg, Johan Ludvig (1854-1928) 181.r 187.r 
Heilbronn, Hans Arnold (1908-75) 123.D 347.E 

450.K 
Heine, Heinrich Eduard (1821-81) 206.C 273.F 

393.c 
Heins, Maurice Haskell(1915-) 77.F 164.K 198.r 

207.C 367.E, G, r 
Heintze, Ernst 178.r 
Heinz, Erhard (19244) 323.5 

Heisenberg, Werner Karl (1901-76) 150.A 351.C 
D 386.C 

Heitsch, James Lawrence (1946-) 154.G 
Held, A. 359.r 
Held, Dieter (19366) 151.1 
Helgason, Sigurdur (1927-) 109.r 199.r 218.G 225.r 

248.r 249.r 412.r 413.r 417.r 437.Y, AA, EE 
Hellerstein, Simon (1931-) 272.K, r 
Hellinger, Ernst D. (1883-1950) 197.r 217.r 390.G 
Helly, Eduard (188441943) 89.B 94.B 
Helmholtz, Hermann von (1821-94) 139.A 188.D 

205.B 419.C 442.D App. A, Tables 3, 15.VI 
Helms, Lester L. 120.r 193.r 
Helson, Henry (1927-) 164.G, H, r 192.P-R, r 

251.r 
Hemmingsen, Erik (1917-) 117.E 
Hempel, John Paul (1935-) 65.E 
Henderson, David William (1939-) 117.1 
Henkin - Khenkin 
Henkin, Leon (Albert) (1921l) 276.D 
Henon, Michel 287.B, r 
Henrici, Peter K. (1923-) 138.r 300.r 301.r 303.r 
Henry, Charles 144.r 
Henry, N. F. M. 92.r 
Hensel, Kurt (1861-1941) 1l.r 12.B 14.U 118.C 

236.r 370.C 439.L 
Henstock, Ralph (19233) 100.r 
Hepp, Klaus (19366) 146.A 150.r 
Herbrand, Jacques (1908-31) 14.K 59.A, E, H, r 

156.E, r 200.N 356.A, E 
Herglotz, Gustav (1881-1953) 43.1 192.B 325.5 
Hering, Christoph H. 151.5 
Herman, Michael-Robert (19422) 126.1, N 154.G 
Hermann, Carl Heinrich (1898-1961) 92.F 
Hermes, Hans (1912-) 31.r 97.r 356.r 
Hermite, Charles (1822-1901) 14.B 60.0 107.A 

131.D 167.C 176.1 182.A 199.A 217.H 223.E 232.A 
251.E, 0 256.Q 269.1 299.A317.D 344.F 348.F 
412.E. G 430.A App. A, Tables 14.11, 2O.IV 

Herodotus (c. 484-c. 425 B.C.) 181 
Heron (between 150 B.C. and A.D. 200) 187 App. A, 

Tables 2.11, III 
Hersch, Joseph (1925-) 143.A 391.E 
Hertz, Heinrich Rudolf (1857794) 441.B 
Hertzig, David (19322) 151.1 
Herve, Michel Andre (1921-) 23.r 62.B 
Herz, Carl Samuel (1930-) 206.E, r 
Herzberger, Maximilian Jacob (1899-1981) 180.r 
Hesse, Ludwig Otto (1811-74) 9.B 139.H 226.D 

279.B, E, F 
Hessel, Johann Friedrich Christian (179661872) 

92.F 
Hessenberg, Gerhard 155.r 
Hessenberg, K. (1874- 1925) 298.D 
Hestenes, Magnus R. 302.D 
Heun, Karl 303.D 
Hewitt, Edwin (1920&) 192.P, r 342.G 422.r 425.S 

BB 
Hey, Kate 27.F 450.A, L 
Heyting, Arend (1898-1980) 156.r 41 l.J, r 
Hicks, Noel J. (1929-79) lll.r 

~ Hida, Takeyuki (19277) 176.r 
Higgs, Peter Ware (19299) 132.D 
Higman, Donald Gordon 151.1 
Higman, Graham (19177) 97.*, r 151.A, F, I, r 

190.M 
Higuchi, Teiichi (19333) 23.r 
Higuchi, Yasunari (194%) 340.G, r 
Hijikata, Hiroaki (19366) 13.0, P, R 
Hikita, Teruo (19477) 75.r 
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Hilb, Emil 

1890 

Hilb, Emil (1882-1929) 253.r 
Hilbert, David (1862-1943) 4.A 9.F 1 l.B 14.J&L, 

R, U 15.H 16.E, S 20.*, r 32.G 35.A, r 41.E 46.A, 
C, E, r 59.A 68.A, C, I, L 73.B 17.B, E 82.r 92.F 
93.5 105.Z 107.A, r 1 11.1 112.D, r 120.A 126.1 
150.G 155.ApC, E,G, H 156.A,C, D, r 160.D 162 
172.5 179.8 181 188.r 189.r 196.A, B 197.A, B,r 
217.H-J, r 220.E 222.r 226.G, r 253.D 267 284.A 
285.A, 286.K 304.r 317.r 320.r 321.r 322.r 323.E, 
I, r 324.r 325.M 327.r 337.F 347.G, H, r 356.A 
357.r 364.1 365.5 369.D, F 375.F 377.D 382.8 
389.r 402.H 410.r 41 l.J, r 423.N 424.W 430.A 
441.r 443.A 446.r App. A, Table 8 

Hildebrandt, Stefan 0. W. (1936-) 195.E 275.B 
334.F 

Hildebrandt, Theophil Henry (1888-1980) 3lO.r 
443.A 

Hildreth, C. 349.r 
Hilfcrty, M. M. 374.F 
Hilfinger, P. N. 75.r 
Hill, Edward Lee (1904-) 150.8 
Hill, George William (1838% 1914) 107.A 26&B, E 
Hill, Rodney (1921-) 271.r 
Hille, Einar (1894-1980) 106.r 107.r 115.A 136.B 

160.E 162 198.r 216.r 251.r 252.r 253.r 254.r 286.X, 
r 288x 289.r 313.r 315.r 316.r 336.r 378.B, D,r 
438.B 

Hillier, Frederick S. 215.r 
Hilton, Peter John (1923-) 70.r 201.r 202.P, U 
Hintin -- Khinchin 
Hinman, Peter G. (1937-) 22.F, r 356.r 
Hinohara, Yukitoshi (1930-) 200.K 
Hipparchus (190?%125? 8.c.) 187 432.C 
Hippias (late 5th century B.C.) 187 
Hippocrates (of Chios) (470? 430‘? B.C.) 187 
Hirai, Takeshi (1936&) 437.W 
Hirano, Sugayasu (1930-) 301 .G 
Hirashita, Yukio (1946-) 164.C 
Hirayama, Akira (1904&) 230.r 
Hironaka, Heisuke (1931-) 12.B l6.L, Z 21.L 23.D 

72.H 232.C 418.B 
Hirose, Hideo (190X%81) 230.r 
Hirota, Ryogo (1932%) 387.D 
Hirsch, Guy Charles (1915-) 201.5 427.E 
Hirsch, Morris William (1933-) 114.C, D, J, r 

126.5, r 279.C 
Hirschfeld, Joram 276.r 
Hirschman, Isidore I. (1922%) 220.r 
Hirzebruch, Friedrich Ernst Peter (1927-) 12.8 

15.D,G,H2032.F56.G,r72.K,r109114.A 
147.r237.A366.A,B,D,r383.r418.r426431.D,r 

Hitchcock, Frank Lauren (1875-1957) 301.E 
Hitchin, Nigel James (1946&) 80.r 364.r 
Hitchins, G. D. 3Ol.L 
Hitotumatu, Sin (1926&) 186.r 301.D 389.r NTR 
Hitsuda, Masuyuki (1938%) 176.H 
Hlavat$, Viclav (1894&?) 434.r 
Hlawka, Edmund (l916-) 182.D 
Ho, B. L. 86.D 
Hobson, Ernest William (I 856- 1933) 133.r 393.C, r 
Hochschild, Gerhard Paul (1915-) 6.E 13x 59.H 

200.K-M, 0, Q, 249.r 
Hochster, Melvin (1943-) 16.2 
Hocking, John Gilbert (1920-) 79.r 201.r 
Hocquenghem, Alexis (1908-) 63.D 
Hodge, Sir William Valiance Douglas (1903-75) 

12.B 15.D l6.V, r 20 109.*, r 194.B, r 232.A, B, D 
343.r 

Hodges, Joseph Lawson (1922-) 37l.A, H 399.E, 
H N P, r 

Hodgkin, Alan Lloyd (1914-) 291.F 
Hodozi, Yosi (1820-68) 230 
Hoeffding, Wassily (1914-) 371.A 374.1 400.r 
Hoffman, Banesh H. (1906&) 359.D 434.C 
Hoffman, David Allen (1944-) 275.r 365.H 
Hoffman, Kenneth Myron (1930-) 43.r 164.F, 

G, I, r 
Hoffmann-Jorgensen, Jsrgen (1942-) .22.r 
Hogg, Robert Vincent, Jr. (1924-) 371.r 
Hiilder, Otto (1859-1937) 84.A 104.F 168.B 190.G 

21 l.C 277.1 288.D 379.M App. A, Table 8 
Holland, Paul W. (1940-) 280.r 403.r 
Halley, Richard Andrews (1943-) 44.E 340.r 
Holm, Per (1934&) 418.r 
Holmgren, Erik Albert (1872-) 125.DD 321.F 

327.C 
Holmstedt, Tord 224.C 
Homma, Tatsuo (1926&) 65.E 235.A 
Honda, Taira (1932-75) 3.C 450.Q, S, r 
Hong Imsik (1916-) 228.B, r 
Hong Sing Leng 365.N 
Hood, William Clarence (1921-) 128.r 
Hooke, Robert (1635-1703) 271.G 
Hooker, Percy Francis 214.r 
Hooley, Christopher (1928&) 123.E, r 295.E 
Hopcroft, John E. (1939-) 31.r 71.r 75 r 186.r 
Hopf, Eberhard (1902-83) 111.1 126.A, M 136.B 

162.B, C, G, r 204.B, C, r 222.C 234.r 270.E 286.U, 
X 433.8, C 

Hopf, Heinz (1894-1971) 65.r 72.K 93 r 99.r 109 
111.1, r 126.G 147.E 153.B 178.A 201.r 202.A, B, I, 
Q, S, U, V, r 203.A, C, D, H 249.V 305.A 365.H 
425.r 426.*, r 

Hopkins, Charles 368.F 
Horikawa, Eiji (1947-) 72.K. r 
Hiirmander, Lars Valter (1931-) 20 21.1, r 107.r 

112.B-D, H, K, L, R, r 115.D 125.A 164.K 189.C 
274.D, 1286.5 320.1 321.r 323.M 325.H 345.A, B 

Horn, Jacob (1867-1946) 107.A 206.D 314.A 
Horner, William George (1786-1837) 3Ol.C 
Horowitz, Ellis (1944-) 71.r 
Horrocks, Geoffrey (1932-) 16.r 
Hosokawa Fujitsugu (1930&) 235.D 
Hotelling, Harold (1895-1973) 280.B 374.C 
Hotta, Ryoshi (1941-) 437.X 
Householder, Alston Scott (1904&) 298.D 301.r 

302.E 
Houseman, E. E. 19.r 
Howard, Ronald Arthur (1934-) 127.E: 
Howarth, Leslie (1911-) 205.r 
HrbBEek, Karel 33.r 293.E, r 
Hsiang Wu-Chung (1935-) 114.5, K 431.D, r 
Hsiang Wu-Yi (1937-) 275.F 365.K 431.D, r 
Hsiung Chuan-Chih (1916-) 364.F 365.H 
Hsii Kwang-Ch’i (1562-1633) 57.C 
Hu Sze-Tsen (1914-) 79.r 91.r 148.r 201.r 277.r 
Hu Te Chiang 28 1 .r 
Hua Loo-Keng (Hua Luo K’ang) (1910.-85) 4.A, 

E, r 122.E 242.A, r 295.E 
Huang, Kerson (1928-) 402.r 
Huber, Peter J. 371.A, H, J, r 399.H, P. r 
Huber-Dyson, Verena 362.r 
Hudson, John F. P. 65.C, D 
Huff, Robert E. (1942&) 443.H 
Hugenholtz, Nicholaas Marinus (1924.. I 308.H 
Hugoniot, Pierre Henri (1851-87) 51.E 204.G 

205.B 
Hukuhara, Masuo (1905-) 3O.C, r 88.~ 254.D 

288.B, r 289.B-D 314.A, C, D 315.C 316.E 388.B 
443.A 
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Hull, Thomas Edward (19222) 206.r 303.r 
Humbert, Georges (1X59-1921) 83.D 
Humphreys, James E. (1939-) 13.r 248.r 
Hunt, Gilbert Agnew (1916-) 5.H 162 176.G 260.5, 

r 261.A, B 33X.N, 0 400.F 407.B 
Hunt, Richard A. 159.H 168.8, r 224.E 
Huntley, H. E. 116.r 
Huppert, Bertram 151 .D, r 
Hurewicz, Witold (1904456) 117.A, C, r 136.8 

148.D 202.A, 9, N, r 426 
Hurley, Andrew Crowther (1926-) 92.F 
Hurst, Charles A. (1923-) 212.A 402.r 
Hurwicz, Leonid 255.D, E, r 292.E, F, r 
Hurwitz,Adolf(1859-1919) 3.K9.1 10.E ll.D 

83.B 134.r 198.r 339.D 367.8 450.B, r 
Husemoller, Dale H. (1933-) 15.r 56.r 147.r 
Huxley, Andrew Fielding (1917-) 291.F 
Huxley, Martin Neil (19444) 123.E, r 
Huygens, Christiaan (1629-95) 93.H 245 265 

325.8, D 446 
Huzita, Sadasuke (1734- 1807) 230 
Hwa, Rudolph C. (1931-) 146.r 
Hypatia (370?-418) 1 X7 

lagolnitzer, Daniel (1940.-) 146.C 274.D, 1 386.C. r 
Ibragimov, Il’dar Abdulovich (19322) 176.r 250.r 
Ibuki, Kimio (1918-) 75.D 
Ibukiyama, Tomoyoshi (1948%) 450,s 
Ichihara, Kanji (1948%) 115.D 
Igari, Satoru (19366) 224.E 
Igusa, Jun-ichi (19244) 3.r 9.J 12.B 15.E, F 16.2, r 

32.F 11 X.C, D 
Ihara, Yasutaka (193X-) 59.A, r 450.A, M, Q, S, U 
Iitaka, Shigeru (19422) 72.1, r 
lizuka, Kenzo (19233) 362.1 
Ikawa, Mitsuru (1942-) 325.K 34S.A 
Ikebe, Teruo (1930-) 112.E, P 37S.B, C 
Ikebe, Yasuhiko (19344) 298.r 
Ikeda, Akira (19477) 391.C 
Ikeda, Hideto (194X-) 96.r 
Ikeda, Masatoshi (19266) 2OO.K, L 
Ikeda, Nobuyuki (1929-) 44.r 45.r 115.r 250.r 262.r 

399.r 406.F, r 
Ikeda, Tsutomu (1950-) 304.D 
Ikehara, Shikao (1904-X4) 123.B 160.G 
Bin, Arlen Mikhailovich (19322) 327.r 
Illusie. Luc (1940-) 366.r 
Im Hof, Hans-Christoph 17X.r 
Imai, Kazuo (1952-) 41 .D 
Imanishi, Hideki (1942-) 154.H 
Inaba,Eizi(1911--) 337.F 
Inaba. Takashi (1951-) 154.D 
Inagaki. Nobuo (1942-) 399.N 
Ince, Edward Lindsay (1891-1941) 107.r 252.r 

254.r 26X.C D 2XX.r 289.r 
Infeld. Leopold (1898% 1968) 206.r 359.D 
Ingham, Albert Edward (1900-) 123.C r 242.A 
Inose, Hiroshi (1951-~79) 16.r 450.S 
Inoue, Masahisa (1946-) 72.K 
Inoue, Masao (1915-) 338.r 
Iochum, Bruno 351.L 
lonescu-Tulcea, Alexandra 136.B, C 
Iooss, Gerard (19444) 126.M 
Ipsen, D. C. 116.r 
Iri, Masao (1933-) 66.r 186.r 281.r 299.B 301.F 

303.E. r 
Irie Seiiti (1911l) 62.E 

Irwin, Michael C. 65.D 126.G, r 
Isaacs, Rufus Philip (1914--X1) 108.A 
Isbell, John Rolfe (1930-) 436.r 
Iseki, Kanesiroo (1920-) 328 
Iseki, ShB (1926-) 328 
Iseki, Tomotoki (fl. 1690) 230 
Ishida, Masanori (1952-) 16.2 
Ishihara, Shigeru (1922-) 110.r 364.F 365.H 
Ishihara, T&u (1942) 195.r 
Isii, Keiiti (1932-) 2S5.D 399.r 
Ising, Ernest (1900-) 340.B, C 
Iskovskikh, Vitalii Alekseevich 16.5 
Ismagilov, R. S. 183.r 
Isozaki, Hiroshi (l950-) 375.B 
Israel, Robert B. (195l-) 402.r 
Israel, Werner (1931-) 359.r 
Iss’sa, Hej 367.G 
Itaya, Nobutoshi (19333) 204.F 
Ito, Kiyosi (1915-) 5.E, r 4S.G, r 115.A, C 176.1, r 

261.A, r 395.C r 406.A-D, G, r 407.A, C, r 
Ito, Masayuki (1940-) 338.0 
Ito, Noboru (1925-) 151.H. J 
Ito, Seizi, (1927-) 204.B 270.r 327.r 
Ito, Shunji (1943%) 126.K 136.C r 
Ito, Takashi (19266) 192.r 
Ito, Teiiti (189%) 92.F 
Ito, Yoshifumi (1940-) 125.BB 
Ito, Yuji (19355) 136.C F 
Itoh, Mitsuhiro (19477) 80.r 
Itoh, Takehiro (1943-) 275.A 365.G 
Iversen, F. 62.E 272.1 
Ivory, Sir James (1765-1842) 350.E 
Ivrii, V. Ya. 325.H 
Iwahori, Nagayoshi (19266) 13.R, r 249.r 442.r 
Iwamura, Tsurane (1919-) 85.A. r 
Iwaniec, Henryk 123.C E 
Iwano, Masahiro (1931-) 254.D 289.D, E 
Iwasawa, Kenkichi (1917-) 6.D, F 14.L 32.r 243.G 

24X.F.V249.S,T,V,r257.H384.C450.A,F,J,L, 
N, r 

Iyanaga, Shokichi (1906-) 6.r 7.r 14.Q, r 59.D, E, r 
60.r 149.r 161.r 200.r 277.r 294.r 343.r 362.r 36X.r 
409.r 

Izumi, Shin-ichi (19044) 121.r 160.B, F 310.r 

J 

Jackiw, Roman Wildmir (19399) 80.r 
Jackson, Dunham (1888-1946) 336.C E, r 
Jackson, John David (19255) 130.r 
Jackson, Kenneth R. 303.r 
Jacob, Maurice R. 132.r 386.r 
Jacobi, Carl Gustav Jacob (1X04-51) 3.A, G, L 4.D 

9.E,F ll.B,C2046.C 105.107.B 10X.B 126.A 134.A, 
C, I, J, r 178.A 182.H 202.P 208.9 229 248.A 267 
271.F 296.A 297.1 29X.B 302.C 317.D 324.D, E 
34X.K 390.G 420.A, F 428.C App. A, Tables 14.1, 
II, 16.1, III, 20.V 

Jacobowitz, Howard (19444) 286.5 344.8 
Jacobs. Konrad (1928-) 136.H, r 
Jacobson, Florence D. 231.r 
Jacobson, Nathan (1910-) 27.r 29.r 54.r 67.D 149.r 

172.A, K, r 231.r 248.r 256s 36X.H, r 499.r 
Jacod, Jean M. (19444) 262.r 
Jacquet, He& Michel(1933-) 32.r 437.r 450.A. 

N 0 
Jaeckel, Louis A. 371.H, J, r 
Jaffe, Arthur Michael (19377) 15O.C F, r 
Jaglom - Yaglom 
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Jahnke, Paul Rudolf Eugene 

1892 

Jahnke, Paul Rudolf Eugene (1863-1921) 389.r 
NTR 

James, Alan Treleven (1924-) 102.r 374.r 
James, Ioan M. (1928-) 202.Q, U 
James, Ralph Duncan (1909-79) lOO.A, r 
James, Robert Clarke (19188) 37.G 
James, W. 280.D, r 398.r 399.G 
Jancel, Raymond (19266) 402.r 
Janes, E. T. 403.C 
Janet, Maurice (18888) 365.B 
Janiszewski, Zygmund (188881920) 426 
Janko, Zvonimir (1932-) 151 .I, J App. B, 

Table 5.111 
Janner, Aloysio 92.r 
Jans, James Patrick (1927-) 368.r 
Janzen, 0. 246.G 
Jarratt, Peter (1935-) 301.N 
Jauch, Josef-Maria (1914-74) 375.A, r 
Jayne, J. E. 22.r 
Jech, Thomas (1944-) 22.r 33.F, r 
Jeffreys, B. S. 25.r 
Jeffreys, Harold (1891-) 25.B, r 
Jelinek, Fredrick (1932-) 213.E, r 
Jenkins, Gwilym M. 128.r 421.D, G, r 
Jenkins, Howard B. 275.A, D 
Jenkins, James Allister (1923-) 77.F 143.r 438.B, C 
Jensen, Johann Ludwig Wilhelm Waldemar (1859- 

1925) 88.A 121.A 164.K 198.F 
Jensen, K. L. 145 
Jensen, Ronald B. 33.F, r 356.r 
Jentsch, Robert 339.E 
Jerison, Meyer (1922-) 425x 
Jessen, Raymond J. (1910-) 373.~ 
Jeulin, Thierry 406x 
Jewett, Robert Israel (19377) 136.H 
Jimbo, Michio (1951l) 253.E 387.C 
Jimbo, Toshiya (1941-) 164.r 
Jiiina, Miloslav 44.E 
Joffe, Anatole 44.C 
John, Fritz (1910-) 112.B 168.B 218.F 262.B 274.F 

292.B 300.r 304.r 320.r 321.r 323.r 324.r 325.r 327.r 
John, Peter W. M. (1923%) 102x 
Johns, M. Vernon, Jr. (1925-) 371.H, r 
Johnson, Norman Lloyd (1917-) 374.r 
Johnson, Wells 14.L 
Johnson, William B. (19444) 68.K, M 
Johnston, John (1923-) 128.r 
Jolley, Leonard Benjamin William (18866) 379.r 
Joly, Jean-Rene Benoit (1938) 118.r 
Jona-Lasinio, Giovanni 361.r 
Jonckheere, A. R. 346.r 
Jones, B. W. 347.r 348.r 
Jones, Floyd Burton (1910-) 273.K 
Jones, John D. S. 80.r 
Jones, William (167551749) 332 
Jordan, C. W. 214.r 
Jordan, Camille (18381922) 20.r 79.A 92.A, F 

93.A, B, F, K 104.r 151.H 159.B 166.B 190.G,Q,r 
267 269.G 270.D, G 277.1 302.B 310.B 333.A 
362.K 380.C App. A, Table 8 

Jordan, Ernst Pascual(1902-) 150.A 231.B 351.L 
377.B 

Jordan, Herbert E. App. B, Table 5.r 
Joreskog, Karl G. (1935-) 403.r 
Joseph, Peter D. 405.r 
Jost, Res Wilhelm (1918) 150.r 386.B 
Joule, James Prescott (181889) 130.B 
Julia, Gaston Maurice (1893-1978) 21.Q, r 43.K 

124.B 198.r 272.F 429.C 435.E 
Jung, Heinrich Wilhelm Ewald (1876- 1953) 15.r 

JureEkova, Jana (1940&) 371.5, r 
Jurkat, Wolfgang (Bernhard) (1929%) 123.D 
Jutila, Matti Ilmari (19433) 123.E 
Juzvinskii - Yuzvinskii 

K 

Kac, I. S. - Kats 
Kac, Mark (1914484) 41.C 115.C 150.F 250.r 261.1 

287.C 295.E 340.r 341.r 351.F 391.C, r 
Kaczmarz, Stefan (1895-1939) 317.r 
Kadanoff, Leo Philip (1937-) 361.r 
Kadison, Richard Vincent (19255) 36.<i, K 308.r 
Kadomtsev, Boris Borisovich (1928-) 387.F 
Kagan, Abram Meerovich (1936-) 374 H 
Kahan, William M. 302.r 
Kahane, Jean-Pierre (1926-) 159.H, r 192.Q, r 
Kahler, Erich (1906-) 109 191.1 199.A 232.A 365.L 

428.E, r 
Kailath, Thomas (1935-) 86.D, r 
Kainen, Paul C. 157.r 
Kaiser, Henry F. 346.F, r 
Kakeshita Shin-ichi (19344) 371.A 
Kakeya, SBichi (1886-1947) 10.E 89.E 
Kakutani, Shizuo (1911-) 37.N 136.B-D, F 153.D 

162 286.D 310.A, G 352.A 367.D 398.G 
Kalashnikov, Anatolii Sergeevich (1934-) 327.r 
Kall, Peter 408x 
Kallen, Anders Olof Gunnar (1926-68) 150.D 
Kallianpur, Gopinath (1925-) 86.r 250.r 405.r 
Kalman, Rudolf Emil (1930-) 86.A, CF 95 

405.G, r 
Kalmar, L&z16 (1905576) 97.* 
Kaluza, Theodor, Jr. (1910-) 434.C 
Kamae, Teturo (1941-) 136.H 354.r 
Kambayashi, Tatsuji (1933-) 15.r 
Kamber, Franz W. (19366) 154.G, H, r 
Kamenskii, Georgii Aleksandrovich (19255) 163.r 
Kametani, Shunji (1910-) 62.E 124.C 
Kamke, Erich (1890-1961) 316.r 
Kampe de Feriet, Joseph (1893-1982) 206.D 

393.E, r 428.r 
Kan, Daniel M. 70.E 
Kanamori, Akihiro (194%) 33.r 
Kaneda, Eiji (1948) 365.E 
Kaneko, Akira (1945-) 162 
Kanel’, Yakob Isaakovich (1932-) 204.12, r 
Kaneyuki, Soji (19366) 384.r 
Kanitani, Joy0 (1893-) 1 lO.B, r 
Kannan, Rangachary (19466) 290.r 
Kano, Tadayoshi (1941-) 286.2 
Kantor, William M. 151.J 
Kantorovich, Leonid Vital’evich (1912286) 46.r 

162 217.r 255.E 304.r 310.A 
Kaplan, Wilfred (19155) 106x 216.r 313.r 
Kaplansky, Irving (19177) 2.E, r 107.r 113.r 200.K 

241.E 248.r 308.C r 
Kapteyn, Willem (18499?) 39.D App. A. Table 19.111 
Karacuba, Anatolii Alekseevich (1937-) 4.E 
Karhunen, Kari (19155) 395.r 
Kariya, Takeaki (1944) 280.r 
Karlin, Samuel (1923-) 222.r 227.r 26O..J 263.E 

310.H 336.r 374.r 399.G, r 400.r 
Karp, Carol (1926-72) 356.r 
Karrass, Abe 161.r 
Karzanov, A. V. 281.r 
Kas, Arnold S. 15.H 16.R 
Kasahara, Kenkiti (19355) 21.M 
Kasahara, Koji (1932-) 325.H 
Kasai, Takumi (19466) 71.r 
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Knapowski, Stanislaw 

Kasch, Friedrich (1921l) 29.H 
Kashiwara, Masaki (19477) 68.F 125.DD, EE, 

146.A, C 162 274.1 386.C 418.H 428.H 437.r 
Kasteleyn, P. W. (1924-) 212.A 
Kastler, Daniel (1926-) 150.E 351.K 402.G 
Kataoka, Kiyomi (1951l) 125.DD, r 
Kataoka, Shinji (1925-) 408.r 
Katttov, Miroslav 117.A, D, E 
Kato, Junji (1935-) 163.r 
Kato, Kazuhisa (19466) 126.J 
Kato, Masahide (19477) 72.K 
Kato, Mitsuyoshi (19422) 65.D 147.Q 418.r 
Kato, Tosio (1917-) 68.r 162 204.8, C, E 289.E 

304.r 331.A, B, E, r 345.A 351.D 375.A-C 
378.D, E, H-J 390.r 

Katok, Anatolii Borisovich (1944) 126.N 136.E, 

F, H, r 
Kats, Izrail’ Samoilovich (19266) 115~ 
Katsurada, Yoshie (191 I-80) 365.H 
Katz, Jerrold J. 96.r 
Katz, Nicholas M. (1943-) 16.r 450.5, Q, r 
Katznelson, Yitzhak (19344) 136.E 159.H, I 192.r 
Kaufman, Sol (1928-) 399.N, r 
Kaul, Helmut (19366) 195.E 
Kaup, Wilhelm 384.r 
Kawada, Yukiyosi (1916-) 59.H 
Kawaguchi, Akitsugu (1902-84) 152.C 
Kawai, Soichi (19377) 72.r 
Kawai, Takahiro (19455) 125.BB, DD, r 146.A, C 

162 274.1 386.C 428.H 
Kawai, Toru (19455) 293.E, r 
Kawakami, Hiroshi (1941-) 126.N 
Kawakubo, Katsuo (1942-) 431.D 
Kawamata, Yujiro (19522) 15.r 21.N 72.1, r 232.D 
Kawashima, Shuichi (19533) 41.r 
Kawata, Tatsuo (1911l) 374.H 395.r 
Kazama, Hideaki (19455) 21.L 
Kazarinoff, Nicholas D. (1929%) 211~ 
Kazdan, Jerry L. (1937-) 364.H, r 
Kazhdan, David A. 122.G 391 .N 
Kazhikov, A. V. 204.F 
Kechris, Alexander S. (19466) 22.C H, r 
Keedwell, Anthony Donald (19288) 241.r 
Keesling, James Edgar (1942-) 382.C 
Keim, Dieter 424.r 
Keisler, H. Jerome (1936-) 33.r 276.E, r 293.D, r 
Keldysh, Mstislav Vsevolodovich (191 I-78) 336.F 
Keller, Herbert Bishop (1925%) 303.r 
Keller, Joseph Bishop (1923-) 274.C r 
Kelley, D. G. 212.A 
Kelley, John Ernst, Jr. (19377) 376.r 
Kelley, John Leroy (1916-) 37.M 87.r 381.r 424.r 

425.r 435.r 436.r 
Kellogg, Oliver Dimon (187881932) 120.B, D, r 

153.D 193.r 286.D 
Kelly, Anthony 92.r 
Kelvin, Lord (Thomson, William) (18244 1907) 

19.B 39.G 120.A 193.B App. A, Table 19.IV 
Kemeny, John George (19266) 260.5 
Kempe, Alfred Bray 157.A, D 
Kempf, George R. (19444) 9.r 16.r 
Kempisty, Stefan (1892-1940) lOO.A, r 
Kempthorne, Oscar (19199) 102.r 
Kendall, David G. (19188) 44.A 218.r 260.H, J 
Kendall, Maurice George (1907-83) 102.r 280.r 

346.r 371.K 397.r 400.r 
Kenmotsu Katsuei (1942-) 275.F 
Kennedy, P. B. 193~ 
Kepler, Johannes (1571-1630) 20 78.D 126.A 265 

271 .B 309.B 432.C 

Kerekjarto, Szerkeszti Bela (189881946) 207.C 
410.r 

Kerner, Immo 0. 301.F 
Kerr, Roy Patrick (19344) 359.E 
Kervaire, Michel Andre (19277) 65.C 114.A, B, 

I-K 235.G 
Kerzman, Norberto Luis Maria (19433) 164.K 
Kesten, Harry (1931l) 5.G 44.r 340.r 
Khachiyan, L. G. 71.D 255.C 
Khaikin, Semen Emanuilovich 290.r 318.r 
Khas’minskii, Rafail Zalmanovich (1931-) 115.D 
Khatri, Chinubhai Ghelabhai (1931-) 280.r 
Khavinson, Seineon Yakovlevich (19277) 77.E 
Khayyam, Omar (c. 1040-c. 1123(24?)) 26 
Khenkin (Henkin), Gennadii Markovich (1942-) 

164.K 344.F 
Khinchin (Hintin), Aleksandr Yakovlevich (1894- 

1959) 4.A 45.r 83.r 100.A 115.D 213.F 250.C 
307.C 332.r 341.G 342.D 395.B 402.r 

Khovanskii, Aleksei Nikolaevich (1916-) 83.r 
Kiefer, Jack Carl (1924-81) 399.D 
Kikuchi, Fumio (19455) 304.r 
Kikuti, Dairoku (1855-1917) 230 267 
Killing, Wilhelm Karl Joseph (1847-1923) 50 

248.B 279.C 364.F 
Kim Wan Hee (19266) 282.r 
Kimura, Motoo (19244) 115.D 263.E 
Kimura, Tatsuo (19477) 450.V 
Kimura, Tosihusa (19299) 30.r 288.B-D 289.r 
Kinderlehrer, David S. (1941-) 105.r 
Kingman, John Frank Charles (1939-) 136.B, r 
Kinnersley, William 205.F 
Kinney, John R. 115.A 
Kino, Akiko (1934-83) 81.D 356.G 
Kinoshita, Shin’ichi (1925-) 235.A, C, H 
Kinoshita, Toichiro (1925-) 146.B 
Kirby, Robin Cromwell (1938-) 65.A, C 70.C 

114.J-L 
Kirchhoff, Gustav Robert (1824487) 255.D 282.B 
Kirillov, Aleksandr Aleksandrovich (19366) 437.T 
Kirkwood, John Gamble (1907759) 402.5 
Kiselev, Andrei Alekseevich 204.C 
Kishi, Masanori (1932-) 48.H 338.1, J, M 
Kishimoto, Akitaka (1947-) 36.K 402.G 
Kister, James Milton (1930&) 147.r 
Kitada, Hitoshi (19488) 375.B 
Kitagawa, Tosio (1909-) STR 
Kizner, William 301 .D 
Klainerman, Sergiu 286.5 
Klee, Victor La Rue, Jr. (1925-) 89.r 286.D 
Kleene, Stephen Cole (1909%) 22.G 31.B, C, r 

81.A, r 97.r 156.r 185.r 276.r 319.r 356.A, C-H, r 
411.r 

Kleiman, Steven L. (1942-) 9.E, r 16.E, r 450.r 
Klein, Felix (184991925) 1.r 7.E 1 l.B 32.r 53.r 83.D 

90.B,r 109 119.r 122.C,r 137.*,r 139.A,r 151.G 
167.E 171.r 175.r 181 190.Q 196.r 206.r 229.r 233 
234.A, D, r 267.*, r 285.A, C, r 343.F 363.r 410.B 
447.r 

Klein, Jacob 444.r 
Klein, Oskar Benjamin (1895-1977) 212.B 351.G 

377.c 
Klema, Virginia C. 298.r 
Klingen, Helmut P. (1927-) 32.H 450.E 
Klingenberg, Wilhelm P. (19244) 109.*, r 111.~ 

178.C, r 279.G 
Kloosterman, Hendrik D. (1900-) 4.D 32.C G 
Klotz, Tilla 365.H 
Kluvanek, Igor (1931-) 443.A, G 
Knapowski, Stanislaw (1931-67) 123.D 
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Knapp, Anthony William 
1894 

Knapp, Anthony William (1941 -) 260.r 437.EE 
Knaster, Bronisiaw (1X93-- 1980) 79.D 
Knescr, Hellmuth (I 89881973) 198.r 
Kneser, Julius Carl Christian Adolf (I 862- 1930) 

107.A 314.A 316.E App. A, Table 19.111 
Kneser, Martin L. (19288) 13.0-Q 60.K 391.C 
Knopp, Konrad (1X82- 1957) 208.C 339.C 379.1, 

M r 
Knopp, Marvin Isadore (1933-) 328.r 
Knorr, Knut R. K. (I 940&) 72.r 
Knowles, Greg 443.G 
Knudsen, Finn Fayc (I 9422) 16.r 
Knus, Max-Albert (1942-) 29.r 
Knuth, Donald Ervin (19388) 71.r 96.r 354.r 
Knutson, Donald 16.r 
Kobayashi, Osamu (19555) 364.H 
Kobayashi, Shoshichi (19322) 2l.N, 0, Q, r 80.r 

105.r 109.r 275.A 364.r 365.K, 0, r 412.r 413.r 
417.r 431.r 

Kobayashi, Zen-ichi (19066) 367.D 
Koch, John A. 157.A 186.r 
Kochen, Simon Bernard (19344) 118.F 276.E, r 
K&her, Max (19244) 32.F 23 1 .r 
Kodaira, Kunihiko (l915-) l2.B, r 15.8, E, F 

16.V,r2021.N72.F,G,1-K109112.1,0147.0 
194.r 232.D, r 366.A, r 

Kodama, Akio (1949-) 384.F 
Kodama, Laura Ketchum 164.K 
Kodama, Yukihiro (19299) 117.F 273.r 382.D 425.r 
Koebe, Paul (188221945) 77.B, E 193.D, E 196 

438.B, C 
Kogut, John Benjamin (19455) 361.r 
Kohn. Joseph John (19322) l12.H 274.1 345.A 
Koiso, Norihito (1951-) 364.r 
Koizumi, Shoji (1923-) 3.N 
Kojima, Tetsuzo (188661921) 121.B 240.8 379.L 
Koksma, Jurjen Ferdinand (19044) 182.r 430.C 
Kolbin, Vyacheslav Viktorovich (1941-) 408.r 
Kolchin. Ellis Robert (1916-) 13.F I I3 172.A 
Kolesov, Yurii Seralimovich (1939%) 290.r 
Kolmogorov, Andrei Nikolaevich (19033) 20 44.r 

45.F 58.D 71.r 100.A 115.A, D l26.A. L 136.E 
159.H 196 201.A. M, P 205.E 213.E 214.C 250.F, r 
260.A, F 261.A 34l.G, 1, r 342.A, D, G 354.D 
371.F 374.E 407.A, r 425.Q 426 433.C 

Komatsu, Hikosaburo (19355) 68.F 107.r 112.D, R 
162 168.B 224.C E 254.D 378.D, I 

Komatu. Atuo (19099) 305.A 425.U 
Komatu, YQsaku (1914-) 77.E App. A. Table 14.r 
Komura, Takako (1930--) 168.8 378.F 424,s 
Komura, Yukio (193ll) 162 168.B 286.X 378.F 

424.S W 
Kondo, Kazuo (191 I-) 282.r 
Kondo, Motokiti (1906680) 22.C F 
Konheim, Alan G. 126.K 136.H 
K&rig, Dines (188441944) 33.F 
Kiinig, Heinz J. (1929-) 164.G, r 
K&rigs, G. 44.B 
Konishi, Yoshio (1947-) 286.X, Y 
Konno, Hiroshi (1940-J 264.r 
Kono, Norio (1940-) 176.G 437.CC 
Koopman, Bernard Osgood (1900&81) 420.F 
Koopmans, Tjalling Charles (I 9 10 85) 128.r 

255.E 376 
Koosis, Paul J. 164.r 
Koranyi, Adam (1932-) 413.r 
Kern, Granino Arthur (19222) 19.r 
Korn, T(h)eresa Mikhailovich 19.r 
Kiirncr, Otto Herman (1934- ) 4.F 
Korobov, Nikolai Mikhailovich (1917-) 4.E 

Korolyuk, Vladimir Semenovich (192%) 250.r 
Kortanek, Kenneth 0. (19366) 255.D, E 
Korteweg, Diederik Johannes (184881941) 387.B 
Kortum, Ludwig Hermann (1836619041 179.B 
Koshiba, Zen’ichiro (19266) 304.F 
Kostant, Bertram (19288) 248.2 287.r 387.C 

437.U, EE 
Kostrikin, Aleksei Ivanovich (1929-) 161.C 
Koszul, Jean Louis (1921-) 200.5 412.r 413.r 
Kotake, Takeshi (1932-) 112.D 321.G 
Kotani, Shinichi (19466) 176.F 
Kiithe, Gottfried (19055) 29.1 125.Y ltiB.B, r 424.r 
Kotr, Samuel (1930&) 374.r 
Kovalevskaya (Kowalewskaja), Sof’ya Vasil’evna 

(1850-91) 107.B 267 286.2 320.1 321.A, B 
Kowalewski, Gerhard (1876-1950) 103.r 
Kowata, Atsutaka (19477) 437.r 
Kra, Irwin (1937-) 122.r 234.r 
Krahn, E. 228.B 391.D 
Kraichnan, Robert H. 433.C 
Krakus, Bronislav 178.r 
Kramers, Hendrik Anthony (1894-1952) 25.B 
Krasinkiewicz, Josef (1944-) 382.C 
Krasner, Marc (1912-85) 145 
Krasnosel’skii, Mark Aleksandrovich (1320-) 251.r 

286.r 290.r 
Krasovskii, Nikolai Nikolaevich (1924-j 163.B 
Kraus, Fritz (190331980) 212.r 
Krazer, Karl Adolf Joseph (1858- 1926) 3.r 
KrCe, Paul (19333) 224.C 
Kreider, Donald Lester (1931l) 81.*, r 
Krein, Mark Grigor’evich (1907-) 37.1~ 68.A, J, r 

89.r l15.r 162 176.K 251.1, r 310.H 391l.H, r 424.0, 
U, V 443.H 

Krein, Selim Grigor’evich (1917-) 162 224.A 378.r 
Kreisel, Georg (I 9233) 356.H 
Kreiss, Heinz-Otto (1930&) 304.F 325.K 
Krellc, Wilhelm 292.r 
Krengel, Ulrich (19377) 136.B, F, r 
Krichever, I. M. 387.F 
Krieger, Wolfgang 136.E, F, H, r 308.1 
Kripke, A. 411.F 
Kripke, Saul 356.G, r 
Krogh, Fred T. (1937-) 303.r 
Krohn, Kenneth 31.r 
Kronecker, Leopold (1823-91) 2.B 10.B 14.L, U 

15.C 47 73.A, r 136.G 156.C 190.Q 192.R 201.H 
236.A,r267269.C347.D422.K450.B,SApp.A, 
Table 4 

Krull, Wolfgang (1899- 1970) 12.B 67.1>, E, J, r 
172.A, 119O.L 277.1284.A, F, G439.L 

Kruskal, Joseph Bernard (I 9288) 346.E, r 
Kruskall, Martin David (19255) 359.F 387.B 
Kruskal, William Henry (1919%) 371.D 
Krylov, Nikolai Mitrofanovich (1879-1955) 290.A 
Krylov, N. S. 402.r 
Krylov, Nikolai Vladimirovich (I 941-) I 15.r 136.H 

405.r 
Krylov, Vladimir Ivanovich (19022) 46.r 217.r 

299.r 304.r 
Krzyianski, Miroslaw 325.r 
Kshirsagar. Anant M. (1931.-) 280.r 
Kubilius, Jonas P. (1921l) 295.r 
Kublanovskaya, Vera Nikolaevna (1920-) 298.F 
Kubo. Izumi (1939-) 136.F, G 395.r 
Kubo, Ryogo (1920-) 308.H 402.K 
Kubota, Tadahiko (188551952) 89.C 
Kubota. Tomio (193&) 14.U 59.H 257.H 450.A, 

J, M 
Kudo, Hirokichi (1916-) 399.r 443.A 
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Leadbetter, Malcolm Ross 

Kudryavtsev, Valerii Borisovich (19366) 75.D 
Kuga, Ken’ichi (1956-) 114.K 
Kuga, Michio (1928-) 450.M, S 
Kugo, Taichiro (1949%) 150.G 
Kuhn, Harry Waldo (I 8744) 108.r 173.B, r 255.r 

292.A, B 
Kuiper, Nicolaas H. (1920@) 105.r 114.8 126.G 

183.e. r 286-D 364.F 365.B, 0 
Kuipers, Lauwerens 182.r 354.r 
Kulikov, Leonid Yakovlevich 2.D 
Kulk, W. V. D. 428.r 
Kulkarni, Ravi S. (19422) 72.r 
Kullback, Solomon (1907-) 213.D, 398.G 403.C, r 
Kumano-go, Hitoshi (1935582) 112.L 274.r 323.r 

345.A, B 
Kummer, Ernst Eduard (1810-93) 14.L, N, 0, U 

15.H 145 167.A 172.F 206.A 236 267 379.1450.3 
App. A, Tables 10.11, 19.1 

Kunen, Kenneth (1943-) 33.r 
Kunieda, Motoji (1879- 1954) 121.B 240.B 
Kunita, Hiroshi (19377) 86.r 115.D 260.5 261.r 

406.B, r 
Kiinneth, Hermann (189221975) 200.E, H 201.3 

450.Q 
Kuntzmann, Jean (1912-) 71.r 75x 
Kunugui, Kinjiro (1903375) 22.C F 62.B, E, r 

lOO.A, r 
Kiinzi, Hans Paul (19244) 292.F, r 
Kuo Yung-Huai 25.8 
Kupka, Ivan Adolf-Karl (19377) 126.r 
Kupradzc, Viktor Dmitrievich (1903385) 188.r 
Kuramochi, Zenjiro (1920-) 207.C D 367.E, G 
Kuranishi, Masatake (19266) 72.G 249.D, V 286.5 

428.F, G, r 
Kurata, Masahiro (1943-) 126.5 
Kuratowski, Kazimierz (Casimir) (1X96- 1980) 

22.D,G,r79.D.r 186,H425,A,Q,r426 
Kuroda, Shige Toshi (1932-) 331.E 375.C 
Kuroda, Sigckatu (1905572) 41 l.J, r 
Kuroda, Tadashi (I 926 ) 367.E 
Kurosh, Aleksandr Gennadievich (190X-71) 2.E, r 

29.5 103.r 161.A, r 190.r 337.r 
Kurosu, Konosuke (189331970) 240.B 
Kiirschak, Jozsef(l86441933) 439.L 
Kurth, Rudolf(l917-) 116.r 
Kurusima, Yosihiro (?-1757) 230 
Kusaka, Makoto (176441839) 230 
Kushner, Harold Joseph (19333) 86.E 405.r 
Kushnirenko, Anatolii Georgievich 418.r 
Kusunoki, Yukio (19255) 143.r 207.C, D, r 367.G, I 
Kutta, Wilhelm Martin (I 86771944) 301.D 303.D 
Kuwabara, Ruishi (1951l) 391.N 
Kuyk, Willem (19344) 32.r 

L 

Lacey, Howard Elton (19377) 37.r 
Lachlan, Alistair H. 276.F 
Lacroix, Sylvestre Francois (176551843) 181 
Ladyzhenskaya, Ol’ga Aleksandrovna (1922 -) 

204.B-D, r 286.r 323.P 
Lafontaine, Jacques (19444) 364.H 
Lagrange, Joseph Louis (1736618 13) 4.D 20 46.A, 

B 82.A83.C D 105.A 106.E, L 107.A, B 109 126.A, 
E, L 150.B 151.8 172.A, F 190.Q 205.A223.A238 
252.D,K266271.F274.C275.A296.A301.C 
322.B 324.D 336.G 342.A 420.B, D 428.C 442.C 
App. A, Tables 9.IV, 14.1, 15. 21 .I1 

Laguerre, Edmond Nicolas (I 834486) 76.B 137 
299.A 317.1~ 429.B App. A, Tables 14.11, 26.VI 

Lainiotis. Dimitri G. 86.r 
Lakshmikantham, Vangipuram (19244) 163.r 
Laksov, Dan (1940-) 9.E 
Lamb, Sir Horace (1849- 1934) 205.r 446.r 
Lambert, Jack D. 303.r 
Lambert, Johann Heinrich (1728877) 83.A, E 332 

339.c 
Ldmbert, Robert Joe (1921-) 303.r 
Lame, Gabriel (179551870) 133.B, C 145 167.E 
Lamperti, John Williams (1932-) 44.E 342.r 
Lance, E. Christopher (1941l) 308.F 
Lanczos, Cornelius (1893-1974) 298.D, E 301.5, N 

302.r 
Land. A. H. 215.D 
Landau, Edmund Georg Herman (1877-1938) 

4.A, r43.J. K, r 77.F 87.G, r 106.r 107.A 121.C-E 
123.8, F, r 131.r 160.G 216.r 240.B 242.A, r 294.r 
295.D 297.r 339.r 347.r 450.1, r 

Landau, Lev Davidovich (1908868) 130.r 146.A, 
C, r 150.r 205.r 259.r 402.r 433.B 

Landau, Yoan D. 86.r 
Landen, John (1719-90) 134.B App. A, Table 

16.111 
Landkof, Naum Samoilovich (19155) 338.r 
Landsberg, Georg(1865-1912) 11.r 
Landshoff, Peter Vincent (1937-) 146.r 386.r 
Lane, Jonathan Homer (1819-80) 291.F 
Landford, Oscar Erasmus, III (1940&) 126.K 

15O.C 340.B, F 402.G 
Lang, Serge (19277) 3.M, r 6.r 12.B 14.r 28.r 105.r 

118.D, F, r 134.r 172.r 182.r 198.r200.r 256.r 
277.r 337.r 368.r 430.r 450.r 

Langevin, Paul (1872- 1946) 45.1 402.K 
Langhaar, Henry L. 116.r 
Langlands, Robert Phelan (19366) 32.H, r 

437.DD, r 450.A, G, N, 0, S, T 
Lapidus, Leon (1910-75) 303.r 
Laplace, Pierre Simon (174991827) 30.B 103.D 

107.8 126.A 192.F 194.B 239 240.A 250.A 266 
306.A 323.A 342.A, r 401.E 442.D App. A, Tables 
12.1, 18.11 

Lappo-Danilevskii, Ivan Aleksandrovich 253.r 
LaSalle, Joseph Pierre (1916683) 86.F 
Lascoux, Jean 146.A, C 
Lashnev, Nikolai Serafimovich 425.CC 
Lashof, Richard Kenneth (19222) 279.C 365.0 
Lasker, Emanuel (186881941) 12.B 
Latter, Robert H. (19466) 168.B 
Laufer, Henry B. (19455) 418.r 
Laugwitz, Detlef (19322) 111 .r 
Laurent, Pierre Alphonse (1813-54) 198.D 339.A 
!>aurent-Duhamel, Marie Jeanne (179771872) 

322.D 
Lauricella, G. 206.D 
Lavine, Richard B. (19388) 375.C 
Lavita, James A. 375.r 
Lavrent’ev, Mikhail Alekseevich (1900-80) 336.F 

352.A, D, E 436.1 
Lavrik, Aleksandr Fedorovich (19277) 123.E 
Lawler, Eugene L. (19333) 66.r 281.r 376.r 
Lawley, Derrick Norman 280.B, G, r 346.F, r 
Lawson, Charles L. 302.r 
Lawson, Herbert Blaine, Jr. (19422) 80.r 154.r 

178~ 275.F, r 364.H 365.K 
Lax, Peter David (19266) 112.5, P, S 204.r 274.r 

304.F 321.G 325.H 345.A, r 375.H 387.C r 
Lazard, Daniel (1941-) 200.K 
Lazard, Michel Paul (19244) 122.F 
Lazarov, Connor (1938) 154.H 
Leadbetter, Malcolm Ross (1931l) 395.r 
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Lebesgue, Henri L&on 

1896 

Lebesgue, Henri Leon (1875- 1941) 20.r 22.A 84.D 
93.F 94.C r 117.8, D, r 120.A, B, D 136.A, E 156.C 
159.ApC, J 160.A 166.C 168.B 179.r 221.A-C 244 
246.C 270.D, E, G, J, L, r 273.F 379,s 38O.C D, r 
388.8 

Lebowitz. A. 134x 
Lebowitz, Joel Louis (1930&) 136.G 
LeCam, Lucien (Marie) (1924-) 341.r 398.r 399.K, 

M, N, r 
Ledger, Arthur Johnson (1926-) 364.r 
L& Dung Trang (1947-) 418.1 
Lee, Benjamin W. (1935577) 132.r 
Lee, E. Bruce (19322) 86.r 
Lee Tsung Dao (19266) 359.C 
Lee, Y. W. 95.r 
Leech, John 151.1 
Leela, S. 163.r 
Lefebvre, Henri (19055) 101.r 
Lefschetz, Solomon (188441972) 3.A 12.B 15.B 

16.P, U, V 79.r 93.r 126.A, r 146.r 153.B, C, r 170.r 
201.A, E, 0, r 210.r 290.r 291.r 394.r 410.r 418.F, I 
422.r 426.*, r 450.Q 

Legendre, Adrien Marie (1752-1833) 4.D 46.C 
82.A 83.B 107.A 109 123.A 134.A, F 145 174.A 
266 296.A, B 297.H. 1342.A 393.A-C 419.C 
App. A, Tables 14.11, 15.IV, 16.1, IV, 18.11, III 

Lehman, R. Sherman (1930&) 385.r 450.1 
Lehmann, Erich Leo (1917-) 371.A, C, H, r 396.r 

399.C E, H, P, r 400.B, r 
Lehmann, Harry Paul (19244) 150.D 
Lehmer, Derrick Henry (19055) 145 301.K 354.B 
Lehmer, Derrick Norman (1867-1938) 123.r NTR 
Lehmer, Emma (19066) 145 
Lehner, Joseph (1912-) 32.r 
Lehrer, G. I. App. B, Table 5 
Lehto, Olli (1925-) 62.C 352.C 
Leibenzon (Leibenson), Zinovii Lazarevich 

(1931l) 192.Q 
Leibler, Richard Arthur (19144) 398.G 
Leibniz, Gottfried Wilhelm, Freiherr von (1646- 

1716) 20 38 75.A 106.D 107.A 156.B 165.A 
245 265 283 293.A 332 379.C App. A, Tables 
9, 10.111 

Leith, Cecil Eldon, Jr. (1923-) 433.C 
Leja, Franciszek (Franqois) (1885-1979) 48.D 
Lelong, Pierre (1912-) 21.r 
Lelong-Ferrand, Jacqueline (1918-) 364.r 
Lemaire, Luc R. (1950&) 195.E, r 
Lenstra, J. K. 376.r 
Leon, Jeffrey S. 151 .I 
Leonardo da Vinci (1452-1519) 360 
Leonardo Pisano - Fibonacci 
Leontief, Wassily W. (1906-) 255.E 
Leontovich, A. M. 420.G 
Leopoldt, Heinrich Wolfgang (19277) 14.D, U 

450.A, J 
Leray, Jean (1906-) 20 112.B 125.A 146.A 148.A, E 

200.5 201.5 204.B, D, r 240.r 286.C D 321.G 323.D 
325.1, J, r 383.5, r 426 

Lerner, R. G. 414.r 
LeRoy, Edouard (1870-1954) 379,s 
Lesley, Frank David 275.C 
Lettenmeyer, Fritz (1891-1953) 254.D 289.D 314.A 
Levelt, Antonius H. M. 428.r 
LeVeque, William Judson (1923-) 118.r 295.r 296.r 

297.r 430.r 
Levi, Eugenio Elia (188331917) 13.Q 21.F, I, Q 

112.D 1% 248.F 214.G 282 321.G 323.B 325.H 
344.A 

Levi, Friedrich Wilhelm (1888-1966) 2.E 122.B 

Levi-Civita, Tullio (1873-1941) 80.A, K 109.*, r 
364.B 420.F 

Levin, Viktor Iosifovich (1909%) 198.r 211.r 
Levine, Jerome Paul (1937-) 114.D 235.G 
Levinson, Norman (1912-75) 107.r 123.B 160.G 

252.r 253.r 254.r 314.C r 315.r 316.r 394.r 450 
Levitan, Boris Moiseevich (1914-) 112.0 287.C 

315.r 375.G 387.D 
Levy, Azriel (1934-) 22.F 33.F, r 356.G 
Levy, Paul (188661971) 5.B, E, r45.A, E, G, I, r 

115.r 159.1 176.A, E, F 192.N 260.5 261.A 262.A 
341.E-G 342.D 406.F 407.A, B 

Lewin, L. 167.r 
Lewis, Daniel Ralph (1944-) 443.A 
Lewis, Donald J. (19266) 4.E 118.D, F 
Lewis, Richard M. 127.G 
Lewy, Hans (19044) 112.C 274.G, I 255.B 300.r 

304.F 320.1 323.1 334.F 
Li Chih (119221279) 57.B 
Li, Peter Wai-Kwong (1952-) 391.D, N 
Li Tien-Yien (1945-) 126.N 303.G 
Li Yen (1892-1963) 57.r 
Liao San Dao (1920&) 126.5 
Lichntrowicz, Andre (19155) 80.r 152 C 359.r 

364.F, H, r 391.D 
Lichtenstein, Leon (1878-) 217.r 222.1 
Lickorish, William Bernard Raymond 114.L 154.B 
Lie, Marius Sophus (1842-99) 13.C, F 76.B, C 

105.0, Q 107.B 109.0, Q 137 139.B 183 190.Q 
247 248.A, B, F, H, P, S,T, V, r 249.&D, G, H, 
L, M, V, r 267 286.K 313.D 406.G 431.C, G 437.U 

Lieb, Elliott Hershel (1932-) 212.B, r ,402.r 
Lieb, Ingo (1939-) 164.K 
Lieberman, David Ira (1941-) 16.R 23.G 
Lieberman, Gerald J. (19255) STR 
Liebmann, Karl Otto Heinrich (187441939) 111.1 

365.5 
Libnard, Alfred 290.C 
Liepmann, Hans Wolfgang (1914-) 205.r 
Lifshits, Evgenii Mikhailovich (1915-) 130.r 150.r 

205.r 259.r 402.r 
Liggett, Thomas Milton (19444) 162 :!86.X 340.r 
Lighthill, Michael James (1924-) 25.B, r 160.r 205.r 

446.r 
Ligocka, Ewa (1947-) 344.D 
Lill 19.B 
Lin, C. C. 433.r 
Lin Jiguan 108.B 
Lin Shu 63.r 
Lind, Douglas A. (19466) 136.E 
Lindeberg, J. W. 250.B 
Lindelof, Ernst Leonhard (1870-1946) 43.C H 

123.C 425,s 
Lindemann, Carl Louis Ferdinand von (18522 

1939) 179.A 332 430.A, D 
Lindenstrauss, Joram (1936-) 37.M, N, r 168.r 

443.H 
Lindley, Dennis Viktor (1923%) 401.r 
Lindow, M. App. A, Table 21.r 
Linfoot, Edward Hubert (1905-82) 34.7.E 
Linnik, Yurii Vladimirovich (1915-72) 4.A, C, E 

123.D, E 136.H 250.r 341.E 374.H 
Lionnet, Eugene (1805-84) 297.D 
Lions, Jaques-Louis (1928-) 86.r 112.E, F 204.B 

224.A, E, F, r 286.C 320.r 322.r 323.r 327.r 37&F, 
I, r 405.r 440.r 

Liouville, Joseph (1809982) 107.A 112.1 126.L 
131.A 134.E 171 182.G 219.A 252.C ‘272.A 315.B 
402.C 430.B 

Lippmann, Bernard Abram (1914-) 3 75.C 
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Malcolm, Donald G. 

Lipschitz, Rudolf Otto Sigismund (1832-1903) 
84.A 107.A 159.B 168.B 279.C 286.B 316.D 406.D 

Liptser, Roberg Shevilevich (1936-) 86.E 405.r 
Listing, Johann Benedikt (1808-82) 426 
Little, C. N. 235.A 
Little, John A. 365.N 
Little, John Dutton Conant (1928-) 133x 
Littlewood, Dudley Ernest (1903-79) App. B, 

Table 5.r 
Littlewood, John Edensor (188551977) 4.C, D 

43.E, r 88.r 123.B, C 159.G 168.B 192.D, P 211.r 
224 242.B, r 317.B 339.B, C 379.S 450.B, I App. A, 
Table 8 

Liu Chung Laung (19344) 66.r 
Liu Hui (fl. 260) 57.A 332 
Liulevicius, Arunas L. (1934-) 202.S 
Livesay, George Roger (19244) 442.L 
Livingood, John 328 
L&hits, Mikhail Samulovich (1917-) 68.5 
Lobachevskii, Nikolai Ivanovich (1793- 1856) 35.A 

181 267 285.A 
Loday, Jean-Louis (19466) 237.r 
Loeb, Peter Albert (19377) 293.D, r 
Loeve, Michel (1907779) 341.r 342.r 
Loewy, Alfred (187331935) 190.P 
Liifstrom, Jorgen (1937-) 224.r 
Logunov, Anatolii Alekseevich (19266) 150.r 
Lohwater, Arthur John (1922-82) 62.r 
Lojasiewicz, Stanislaw (1926-) 16.r 58.E 
Lommel, Eugen Cornelius Joseph van (1837799) 

39.C App. A, Table 19.IV 
Lomonosov, V. I. 251.L 
Langley-Cook, Laurence H. 214.r 
Longo, Giuseppe (1941-) 213.r 
Lonsdale, Dame Kathleen Yardley (1903-71) 92.r 
Looman, H. 198.A 
Looman, M. 100.A 
Loomis, Herschel H., Jr. 75.D, r 
Loomis, Lynn H. (1915-) 36.r 126x 192.r 225.r 
Loos, Ottman 412.r 
Lopatinskii, Yaroslav Borisovich (1906681) 323.H 

325.K 
Lopez de Medrano, Santiago 114~ 
Lorentz, George G. (1910-) 168.B 
Lorentz, Hendrik Antoon (185331928) 60.5 150.B 

258.A 359.B 391.1 402.H 
Lorenz, Edward N. 126.N 433.B, r 
Lorenz, Max 0. 397.E 
Lorenzen, Paul Peter Wilhelm (19155) 243.G 
Loria, Gino (1862-1954) 93.r 
Los, Jerzy Maria (1920&) 276.F 293.C 
Loschmidt, Joseph (1821-95) 41.A 
Losik, Mark Vol’fovich (1935-) 105.r 
Lotz, Heinrich P. 310.H 
Louveau, Alain 22.G 
Lovasz, L&z16 (19488) 186.r 
Love, Augustus Edward Hough (186331940) 271.G 
Love, Clyde Elton (1882-) 107.A 
Low, Francis Eugene (1921-) 150.C 361.r 
Lowdenslager, David B. (1930-) 164.G, H 
Lbwenheim, Leopold (18781940) 97.B 156.E, r 

276.D 
Liiwner, Karl (Loewner, Charles) (189331968) 

212.r 438.B, C 
Lozinskii, Sergei Mikhailovich (1914-) 314.D 
Lii Yinian 17.D 
Lubatiski, J. K. 258.D 
Lubin, Jonathan (19366) 257.r 
Lubkin, Saul (1939%) 450.Q 
Lucas, William F. (19333) 173.D, E, r 

Lute, Robert Duncan (1925-) 96.r 173.C 346.G 
Liiders, Gerhart Claus Friedrich (1920-) 150.D 

386.B 
Ludwig, Donald A. (19333) 321.G 325.L, r 345.r 
Luenberger, David G. (1937-) 86.E 264.r 
Lukacs, Eugene (1906-) 341x 
Lukaszewicz, Jan (18781956) 411.L 
Luke, Yudell L. 389x App. A, Table 16 NTR 
Lumer, Giinter (19299) 164.F, G 
Lundberg, Filip 214.C 
Luneburg, Rudolf Karl (1903-49) 180.A, r 325.L 
Lunts, G. 198.r 
Liiroth, Jakob (1844-1910) 16.5 
Lustzig, G. App. B, Table 5 
Luther, Herbert A. 304.r 
Lutz, Elizabeth (1914-) 1 lS.D, E 
Luxemburg, Wilhelmus Anthonius Josephus 

(19299) 293x 
Luzin (Lusin), Nikolai Nikolaevich (1883-1950) 

22.A, C, F, G, I, r 100.A 156.C 159.1270.5 425CC 
Lyapin, Evgenii Sergeevich (19144) 190.r 
Lyapunov, Aleksandr Mikhailovich (185771918) 

107.A 120.A 126.A, F 163.G 250.B 286.V 314.A 
394.A, C, r 398.C 443.G 

Lyapunov, Aleksei Andreevich (191 l-73) 22.r 
Lyndon, Roger Conant (1917-) 97.r 200.M 
Lyons, Richard Neil (1945-) 151.1 
Lyusternik, Lazar’ Aronovich (1899-1981) 279.G 

286.Q, r NTR 

M 

Maak, Wilhelm (1912-) 18.r 
Maass, Hans (191 l-) 32.F, G, r 450.M 
Macaulay, Francis Sowerby (1862-1937) 12.B 

284.D 
Mach, Ernst (183881916) 116.B 205.B 271.A 
Machin, John (1680-1751) 332 
Machover, Maurice (1931-) 356.G 
Mack, C. 301.N 
Mackay, Alan L. 92.F 
MacKenzie, Robert E. (1920&) 279.C 
Mackey, George Whitelaw (1916-) 36.G 424.M, N 

437.EE 
MacLane, Saunders (1909%) 8.r 52s 70.F, r 91.r 

103.r 200.M, r 201.G 202.T 277.r 305.A 
Maclaurin, Colin (169881746) 20 266 379.5 
MacMahon, Major Percy Alexander (1854-1929) 

328 330.r 
MacPherson, Robert Duncan (1944-) 366.E, r 
MacRobert, Thomas Murray 393.r 
Madansky, Albert 408.r 
Maeda, Fumitomo (189771965) 162 
Maeda, Fumi-Yuki (1935-) 207.D, r 
Maeda, Yoshiaki (1948-) 364.G 
Maehara, Shoji (19277) 41 l.J, r 
Magenes, Enrico (19233) 112.E 323.r 
Magidor, Menachem 33.r 
Magnus, Wilhelm (19077) 161.B, r 389.r App. A, 

Table 2O.IV 
Mahalanobis, Prasanta Chandra (1893-1972) 

280.E 
Mahler, Kurt (1903-) 182.r 430.B, C 
Mahlo, P. 33.r 
Mainardi, Gaspare (1800-79) 1 ll.H App. A, Table 

4.1 
Maitra, Ashok P. 22.E 396.r 
Majima, Hideyuki (1952Z) 428.H 
Makarov, Vitalii Sergeevich (1936-) 122.G 
Malcolm, Donald G. 376.r 
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Malfatti. Gian Francesco 

1898 

Malfatti, Gian Francesco ( 173 1~ 1807) 179.A Maschke, Heinrich (1853-1908) 362.13 
Malgrange, Bernard (19288) 58.C. E 68.F 112.B, Maschler, Michael (1927-) 173.D 

C, R 125.W 320.H 418.r 428.H Maskit, Bernard (1935-) 122.1 234.D, r 416.r 
Malliavin, Paul (1925.-) I lS.D, r 192.M 406.E, r Masley, John M. (1947-) 14.L 
Malmquist, Johannes (1882.. 1952) 254.D 28&B, C, Maslov, Viktor Pavlovich (1930%) 30.r 274.C I 

r 289.13&D 314.A 345.r 
Mal’tsev, Anatolii Ivanovich (1909967) 29.F 249,s Massau, Junius (185221909) 19.B 

276.D Masser, David W. 134.r 430.D. r 
Malus, Etienne Louis (177551812) 180.A Massey, William S. (1920-) 91.r 17O.r 201.r 
Mandelbaum, Richard (19466) 114.r 202.M, P 410.r 
Mandclbrojt, Szolem (1899-1983) 58.F 134.C r Masuda, Kazuo (19466) 72.r 

339.A, r Masuda, Kyuya (1937-) 378.1, J 
Mandelbrot, Benoit B. (19244) 246.K 433.r Masuyama, Motosaburo (1912-) STR 
Mandelstam, Stanley (19288) 132.C Matano, Hiroshi (1952-) 263.C 303.G, r 
Marie, Ricardo 126.5 Mather, John Norman (19422) 5l.CE 126.5 
Mangasarian, Olvi L. (19344) 292.D, r 154.E, r 286.5 418.r 
Mangoldt, Hans Carl Friedrich van (185441925) Mathews, George Ballard (1861-1922) 39.r 

123.B 450.B Mathieu, Emile Leonard (1835-90) 15,l.H 268.A-D 
Manin, V. G. 80.r Matiyasevich, Yurii Vladimirovich 9’7.*, r 118.A 
Manin, Yurii Ivanovich (1937-) 16.5, V 80.r 118.E 196 

387.r 450.5, M Matsuda, Michihiko (1938-) 428.G 
Mann, Henry Berthold (19055) 4.A 37l.A, C 421.r Matsumoto, Hideya (1939-) 13.R 122.F 
Mann, Larry N. (19344) 364.F Matsumoto, Kazuo (1922-) 41 l.J 
Manna, Zohar (1939-) 75.r Matsumoto, Kikuji (1931-) 62.B 124C, r 
Mannheim, Amedee (183lll906) 11 l.F Matsumoto, Shigenori (1947-) 126.M 
Manning, Anthony Kevin (19466) 51.r 126.5, K Matsumoto, Yukio (1944-) 65.D 114.K 
Mansfield, Richard B. (194ll) 22.F Matsumura, Akitaka (195ll) 41.r 204.F 
Maranda, Jean-Marie A. (?-1971) 362.K Matsumura, Hideyuki (1930-) 284.r 
Marchand, Jean-Paul 375.r Matsusaka, Teruhisa (19266) 12.B 16.P, W, r 
Marchenko, Vladimir Aleksandrovich (1922-) Matsushima, Yozo (1921-83) 32.r 122.F 199.r 

287.C 387.D 249.r 384.r 
Marchuk, Gurii Ivanovich (19255) 304.r Matsushita, Shin-ichi (1922-) 338.L 
Marcinkiewicz, Jozef (1910-) 159.H 224.A, E Matsuyama, Noboru (1916-) 310.r 

336.E Mattis, Daniel Charles 402.r 
Marden, Morris (19055) 1O.r Mattuck, Arthur Paul (1930-) 118.E 450.P 
MardeSic, Sibe (19277) 382.A Matuda, Tizuko (19233) 30.r 28&B, r 289.r 
Margulis, Grcgorii A. (I 9466) 122.G Matumoto, Takao (19466) 65.C 114.iK 

Marion, Jerry Baskcrville (1929-) 271.r Matunaga Yosisuke (1692??1747) 230 332 
Markov, Andrei Andreevich (185661922) 5.H Matuzaka, Kazuo (1927-) 7.r 343.r 

44.D, E 126.F, J 127.E 136.B, D,G 150.F 176.F Matveev, Vladimir Borisovich 387.r 
182.G 260.A, H, J 26l.A, B 336.C 340.C 379.1 Maunder, Charles Richard Francis 2’31.r 
403.E 405.C 406.D 407.B Maupertuis, Pierre Louis Moreau de ( ’ 698- 1759) 

Markov, Andrei Andreevich (19033) 31.B 161.B 180.A 441.B 
356.r Maurer, Ludwig (1859-?) 249.R 

Markus, Lawrence J. ( 1922 ) 86.r 126.A, H, L, r Maurus (c. 780-c. 856) 372 
291.r Mautner, Friedrich Ignaz (1921-) 136.G 308.G 

Markwald, Werner 81 .A, r 437.EE 
Marotto, Frederick Robert (1950 -) 126.5 Mawhin, Jean 290.r 
Marsden, Jerrold E. (19422) 126.r 183.r 271.r 286.r Maxlield, John E. (1927-) NTR 

3 16.r 364.H 420.r Maxwell, Albert Ernest 280.r 346.F, I 
Marshall, Donald E. 164.1 Maxwell, George (19466) 92.r 
Marsten, Roy Earl (19422) 215.r Maxwell, James Clerk (1831-79) 51.F 130.A 150.A 
Martin, Andre (193ll) 150.D 386.B, r 180.A 393.D 402.B, H 419.B 
Martin, Donald A. 22.D, F. H, r 33.F, r Maxwell, William L. (19344) 376.r 
Martin, Harold C. 304.r May, J. Peter (19399) 70.r 
Martin, Paul C. 308.H May, Kenneth Ownsworth (1915-77) 157.r 

Martin, Robert S. 207.C, D 260.1 May, Robert McCredie (19366) 126.N 263.D, r 

Martin, William Ted (191 ll) 21.r Mayer, Dieter H. 402.G, r 
Martineau, Andre (1930-72) 125.W, Y, r 162 168.8 Mayer, Karl Heinz (19366) 431.r 

424.X Mayer, Walter 11l.r ZOl.C, E, L 
Martinet, Jean 1lO.E Maynard. Hugh B. 443.H 
Martin-Liif, Per (1942-) 354.r Maret, Edmond 109.r 115.r 391.r 
Martio. Olli Tapani (1941l) 352.F Mazur, Barry C. (1937-) 16.r 37.C 65.C G 114.C 
Marty, F. (?&1939) 272.H 435.E 126.K 426 450.5, r 
Maruyama Gisiro (1916-86) 115.D 136.D, E 250.r Mazur, Stanislaw (1905581) 36.E 

260.5 395.r Mazurkiewicz, Stefan (188881945) 2:I.C 93.D 426 

Maruyama, Masaki (1944-) 16.Y McAndrew, Michael H. 126.K 136.H 

Maruyama, Toru (1949%) 443.A McAuley, Van A. 301.E 
Masani, Pesi R. (1919-) 395.r McBride, Elna Browning 177.r 

Mascheroni, Lorenzo (1750.-- 1800) 179.B McCarthy, John (19277) 31.C 
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Moldestad. Johan 

McCoy, Barry Malcolm (1940- ) 402.r 
McCoy, Neal Henry (I 9055) 368.r 
McCracken, Marsden 126.r 
McDuff, Dusa Waddington (19455) 30X.F 
McGregor, James 263.E 
McKay, John 151.1 
McKcan, Henry P., Jr. (1930&) 41.C 45.1. r I lS.A, r 

176.F, K 260.5 26l.A, r 323.M 340.F 387.E, r 
391 .B, C, K, r 406.r 407.8 

McLachlan, Norman William (188%) 26X.r 
McLaughlin, Jack (1923-) 151.7 
McMillan, Brockway (1915-) 136.E 213.D 
McShane, Edward James (19044) 310.1, r 
Meeks, William Hamilton, III 235.E 275.C D 

Mehler, Ferdinand Gustav (1835595) App. A, 
Tables 18.11, 19.111 

Mehra, Raman K. 86.r 
Meinardus, Giinter (19266) 32X 
Meinhardt, Hans 263.D 
Meixner, Josef (19088) 268.r 389.r 
Melin, Anders (19433) 345.A 
Mellin, Robert Hjalmar (185441933) 206.D 220.C 
Melrosc, Richard B. (1949) 325.M 
Menaechmus (375325 B.C.) I87 
Mendelson, Elliot (1931-) 33.D, r 319.r 
Menelaus (of Alexandria) (fl. 981) 7.A I87 
Menger, Karl (1902-) 93.D 1 I7.A, B, D, r 426 
Menikoff, Arthur S. (19477) 325.H 
Men’shor, Dmitrii Evgen’evich (18922) 77.A 159.J 

198.A, r 317.8 
Meray, Hugues Charles Robert (1835. I91 I) 267 
Mercer, J. 217.H 
Mergclyan, Sergei Nikitovich (19288) 164.5 336.F 

367.G 
Merluzzi, P. 303.r 
Merman, G. A. 420.D 
Mersenne, Marin (158X-1647) 297.E App. B, 

Table I 
Mertcns, Franz Carl Josef (1 X40- 1927) 123.A 

379.F 
Meschkowski, Herbert (1909-) 188.r 
Meshalkin, Lev Dmitrievich (19344) 136.E 
Messiah, Albert M. L. (1921l) 351.r 
Messing, William (19455) 450.Q 
Mttivier, Michel(193ll) 443.H 
Meusnier, Jean Baptiste Marie Charles (1754-93) 

109 11 l.H 275.A 334.8 
Meyer, Franz (I 85661934) 267 
Meyer, Kenneth R. (1937-) l26.K, I, M 
Meyer, Paul-Andre (19344) 261.r 262.D, r 406.r 

407.B. r 
Meyer, Wolfgang T. (I 9366) 109.r 17X.r 279.G r 
Meyer, Yves 251.r 
Michael, Ernest Arthur (19255) 425.X, Y, AA, CC 
Michel, Rene 178.r 304.r 
Michelson, Albert Abraham (18521931) 359.A 
Migdal, A. A. 361.C 
Mikami, Yoshio (1875.-1950) 230.r 
Mikhailov, A. V. 387.G 
Mikhlin, Solomon Grigor’evich (I 908%) 46.r 2 17.r 
Mikusinski, Jan G. (1913%) 306.A, B 
Miles, G. 136.E 
Miigram, Arthur N. (!912-) 112.5 
Milgram, R. James (19399) 65.r 
Miller, Charles F., III (1941l) 97.r 
Miller, David Charles(l9lR~) 291.F 
Miller, K. S. 104.r 
Miller, Louis W. 376.r 389.r 
Millett, Kenneth Cary (I 94l-) 154.H 
Mills, Robert L. (1927-) XO.Q, r 150.G 

Mil’man, David Pinkhusovich (1913-) 37.G 424.U 
443.H 

Milne, James Stuart (1942-) 450.r 
Milne, William Edmund (1890@) 303.E 
Milne-Thomson, Louis Melville (1891-1974) 104.r 

NTR 
Milnor, John Willard (1931-) 56.F, r 65.C, E 70.C 

99.r 109.r llI.r I l4.A-C, F-K, r 126.N 147.H, P 
154.H 178.E 237.J, r 365.0 391.C 418.D, r 426 
App. A, Table 5.V 

Mimura, Masayasu (194ll) 263.D 
Mimura, Yositaka (189881965) 434.C r 
Mimura. Yukio (1904-84) 162 
Minakshisundaram, Subbaramiah (1913-6X) 121.r 

323.M 379.r 391.B, r 
Minemura, Katsuhiro (19455) 437.r 
Minkowski, Hermann (186441909) 14.B, D, U 

X9.D, E 118.C 122.E, F l82.A, C-E, r 196 211.C 
255.8 258.A 296.A 34&D, G, K 359.B App. A, 
Table 8 

Minlos, Robert Adol’fovich (1931-) 258.r 341.5 
424.T 

Minorsky, Nicholas (I 885-) 163.8 
Minsky, Marvin C. 385.r 
Minsky, M. L. 75.r 
Minty, George James (19299) 281.r 286.C 
Miranda, Carlo (1912-82) 323.r 
Mirimanov, D. 145 
Mishchenko, Evgenii Frolovich (19222) 86.r 
Mishkis, Anatolii Dmitrievich 163.B 
Misiurewicz, Michal(l9488) 126.K 
Misner, Charles William (19322) 359.r 
Mitchell, Andrew Ronald 223.r 
Mitchell, Benjamin Evans (1920&) 52.N, r 200.1 
Mitome, Michiwo (1909-76) STR 
Mitropol’skii, Yurii Alekseevich (1917-) 290.D, F 
Mitsui, Takayoshi (1929-) 4.F. r 123.F 328 
Mittag-Leffler, Gustav Magnus (184661927) 47 267 

272.A 
Mityagin, Boris Samuilovich (19377) 424.S 
Miura, Robert Mitsuru (19388) 387.B 
Miwa, Megumu (19344) I18.E 
Miwa, Tetsuji (1949.-) 112.R 253.E 387.C 
Miyadera, Isao (19255) 162 378.B 
Miyajima, Kimio (194X-) 72.G 
Miyajima, Shizuo (1948%) 310.H 
Miyakawa, Tetsuro (194X-) 204.C 
Miyake, Katsuya (1941-) 16.2 
Miyakoda, Tsuyako (1947-) 301.C 
Miyanishi, Masayoshi (1940-) 15.H, r 
Miyaoka, Yoichi (1949%) 72.K, r 
Miyata, Takehiko (1939983) 226.r 
Miyoshi, Tetsuhiko (193X-) 304.r 
Mizohata, Sigeru (19244) I l2.B, D, P 274. B, G, I 

320.1, r 321.F, G, r 323.M 325.G, H 345.A 
Mizukami, Masumi (1951l) 16.r 
Mizumoto, Hisao (1929%) 367.1 
Mizutani, Akira (19466) 304.r 
Mizutani, Tadayoshi (I 9455) 154.G 
Mobius, August Ferdinand (1790-1868) 66.C 74.E 

76.A 267 295.C 410.8 
Moedomo, S. 443.H 
Mohr, Georg (1640-97) 179.B 
Moise, Edwin Evariste (19188) 65.C 70.C 79.D 93.r 

139.r 410.r 
Moiseiwitsch, Benjamin Lawrence (1927-) 441.r 
Moishezon, Boris Gershevich (1937-) 16.E, U, W 

72.r 
Molchanov, Stanislav Alekseevich 115.D 340.r 
Moldestad, Johan (19466) 356.F, r 
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Moler, Cleve B. 

1900 

Moler, Cleve B. (19399) 298.r 302x 
Monge, Gaspard (174661818) 107.B 109 158 181 

255.E 266 267 278.A 324.F 
Monin, Andrei Sergeevich 433.r 
Monte], Paul Antoine Aristide (I 87661975) 272.F 

424.0 435.E, r 
Montgomery, Deane (19099) 196 249.V, r 423.N 

431.r 
Montgomery, Hugh L. (19444) 14.L 123.E, r 
Montucla, Jean Etienne (1725599) 187x 
Mook, Dent T. 290.r 
Moon, Philip Burton (19077) 130.r 
Moore, Calvin C. (1936-) 122.F 
Moore, Eliakim Hastings (186221932) 87.H, K, r 
Moore, John Colemar (19233) 147.r 200.r 203.r 
Moore, John Douglas 365.5 
Moore, Robert Lee (1882-1974) 65.F 273.K 

425.AA 426 
Moran, Patrick Alfred Pierce (1917-) 218.r 
Morawetz, Cathleen Synge (19233) 112.S 345.A 
Mordell, Louis Joel (18881972) 118.A, E 
Morera, Giacinto (185661909) 198.A 
Morf, Martin (19444) 86.r 
Morgan, Frank 275.C 
Morgenstern, Oskar (1902-77) 173.A, D 376.r 
Mori, Akira (1924455) 352.8, C 367.E 
Mori, Hiroshi (19444) 275.F 
Mori, Mitsuya (19277) 59.H 
Mori, Shigefumi (1951-) 16.R, r 364x 
Mori, Shin’ichi (19 13%) 207.C r 
Mori, Shinziro (189331979) 284.G 
Moriguti. Sigeiti (1916-) 299.B 389.r NTR 
Morimoto, Akihiko (19277) 1lO.E 126.5 344.C 
Morimoto, Haruki (I 930%) 399.r 
Morimoto, Hiroko (1941l) 224.F 
Morimoto, Mituo (19422) 125.BB, DD 162 
Morimune, Kimio (19466) 128.C 
Morishima, Taro (1903%) 145.* 
Morita, Kiiti (1915-) 8 117.A, C, E, r 273.K 425.S 

x-z, cc 
Morita, Masato (1927-) 353.r 
Morita, Reiko (19344) 353.r 
Morita, Shigeyuki (19466) 154.G 
Morita, Yasuo (1945-) 450.U 
Moriya, Mikao (1906-82) 59.G. H 
Morlet, Claude 147.Q 
Morley, Edward Williams (1838- 1923) 359.A 
Morley, Michael 276.F, r 
Morrey, Charles Bradfield, Jr. (1907-84) 46.r 78.r 

112.D 125.A 194.F, r 195 246.C 275.A, C, r 323.r 
334.D 350.r 352.B 

Morris, Peter D. 443.H 
Morrow, James 72.K 
Morse, Harold Marston (189221977) 109 114.A, 

F 126.5 178.A 275.B 279.A-F 286.N, Q, r 418.F 
Morse, Philip McCord (1903-) 25.r 133.r 227x 
Morton, Keith W. (1930-) 304.r 
Moschovakis, Yiannis Nicholas (19388) 22.D, F, 

H, r 33.r 356.G, r 
Moser, Jiirgen (Kurt) (19288) 21.P 55.r 126.A, L, r 

136x 286.5, r 323.L 344.B 42O.C G 
Moser, William 0. J. (1927-) 92x 122.r 151.r 161.r 
Mosher, Robert E. 64.r 70.r 
Mosteller, (Charles) Frederick (19166) 346.C, G 
Mostow, George Daniel (1923-) 13.r 32.r 122.F, G 

249.r 
Mostowski, Andrzej (1913-75) 33.D, r 356.C H 
Motohashi, Yoichi (19444) 123.E 
Motoo, Minoru (1927-) 44.E l15.C D, r 261.r 
Moulin, M. 375.F 

Moulton, Forest Ray (1872-1952) 55.r 303.E 
Moussu, Robert (1941l) 154.H 
Moyal, Jose E. 44.r 
Muchnik, Al’bert Aramovich (19344) 356.D 
Mugibayashi, Nobumichi (19266) 125.BB 
Muhly, Paul Scott (19444) 164.H 
Muirhead, Robb John (19466) 280.r 
Mukherjee, Bishwa Nath 346.r 
Miiller, Claus Ernst Friedrich (1920-) 323.5 393.r 
Muller, David Eugene (1924-) 3Ol.C 
Miller, Werner (19499) 391.M 
Miiller-Breslau, Heinrich Franz Bernhard (1851l 

1925) 19.r 
Mullikin, Thomas Wilson (19288) 44 r 
Mullis, Clifford T. (1943%) 86.D 
Mumford, David Bryant (19377) 3.A, N, r 9.J, r 

12.B 15.E, F, r 16.R, W, Y, Z, r 32.r 72.G 226.r 
418.D 

Munkres, James Raymond (1930-) 70.r 105.r 
114.C r 

Miintz, C. H. 336.A 
Miinzner, Hans-Friedrich 365.1 
Murakami, Shingo (1927-) 32.r 122.F 384.r App. A, 

Table 5.1 
Muramatu, Toshinobu (19333) 168.B 224.E 

251.0 
Murasugi, Kunio (1929-) 235.A, E, r 
Murata, Hiroshi (1945-) 75.r 
Murray, Francis Joseph (1911-) 136.1; 308.F 
Murre, Jacob P. (1929-) 16.W 
Murthy, M. Pavaman 237.r 
Muskhelishvili, Nikolai Ivanovich (189 1~ 1976) 

217.r 222.r 253.r 
Muto, Yosio (1912-) 364.F, r 
Mutou, Hideo (1953-) 391.E 
Mycielski, Jan (1932-) 22.H 33.F, r 
Myers, Sumner Byron (1910-55) 152.1” 178.B 
Myrberg, Pekka Juhana (1892-1976) 367.E 

N 

Nachbin, Leopold0 (1922-) 21.r 37.M 425.BB 
Nagaev, Sergei Viktrovich (19322) 25O.r 
Nagamati, Sigeaki (1945-) 125,BB 
Nagami, KeiB (1925-) 117.A, C, r 273 K, r 425.Y, 

AA, CC, r 
Nagano, Tadashi (1930-) 191.r 275.F 279.C 344.C 

364.F 365.F, K 
Naganuma, Hidehisa (1941-) 450.L 
Nagao, Hirosi (1925-) 151.H 200.L 362.1 
Nagasawa, Masao (19333) 44.r 
Nagase, Michihiro (1944-) 251.0 
Nagata, Jun-iti (19255) 117.C 273.K, r 425.r 
Nagata, Masayoshi (19277) 8 12.B 13.1 15.r 16.D, 

T, V, AA, r 61.1, r 196 226.G, r 277.r ;!84.E, G 
369.r 370.r 

Nagell, Trygve (1895-) 118.D 
Nagumo, Mitio (19055) 162 286.2, r 316.E, r 

323.D 
Na’im, Linda 120.E 207.C 
Naimark (Neumark), Mark Aronovich (1909-78) 

36.G r 107.r 112.r 192.r 252.r 258x 308.D 315.r 
437.W, EE 

Naito, Hiroo (1950-) 365.F, N 
Nakada, Hitoshi (1951-) 136.C 
Nakagami, Yoshiomi (1940-) 308.r 
Nakagawa, Hisao (1933-) 365.L 
Nakai, Mitsuru (1933-) 169.r 207.C D 
Nakai, Yoshikazu (1920&) 15.C F 16.E r 
Nakajima, Kazufumi (1948-) 384.r 



1901 Name Index 
Nourein. Abdei Wabab M. 

Nakamura, Iku (1947-) 72.K Newman, Maxwell Herman Alexander (189771984) 
Nakamura, Kenjiro (1947779) 310.r 65.C F 93.r 333.r 
Nakamura, Michiko (1937-) 424.X Newton, Sir Isaac (1642- 1727) 20 48.B, F, H 
Nakamura, Tokushi (1930-) 7O.F, r 107.A 126.A 205.C 223.C 254.D 265 27t.A-C 
Nakane, Genkei (166221733) 230 283 299.A 301.D 336.G 337.1338.A 418.D 
Nakanishi, Noboru (1932-) 146.A-C App. A, Table 21 
Nakanishi, Shizu (19244) lOO.A, r Newton, Roger Gerhard (19244) 375.G, r 
Nakano, HidegorB (1909974) 162 310.A 436.r Ney, Peter E. (1930-) 44.C 
Nakano, Shigeo (19233) 21.L 72.H 147.0 232.r Neyman, Jerzy (189441981) 373.A, r 396.F 
Nakano, Tadao (19266) 132.A 400.B, D 401.B, C, F, G, r 
Nakao, Shintaro (19466) 340.r Nicholson, John William (1881-1955) App. A, 
Nakaoka, Minoru (1925%) 70.F, r 153.8 202.P Tables 19.111, IV 

305.A Nickel, Karl L. E. (1924-) 222.r 301.G 
Nakayama, Mikio (19477) 173.E Nickerson, Helen Kelsall (1918-) 94.r 442.r 
Nakayama, Tadasi (1912-64) 6.E 8 29.H, I 59.H Nicolaenko, Basil 41.D 

67.D 172.A 2OO.KpN 243.G Nicolaus Cusanus (1401-64) 360 
Nakazi, Takahiko (1944-) 164.G Nicolescu, Miron (1903-75) 193.r 
Namba, Kanji (19399) 33.r Nicomachus (SO-150?) 187 
Namba, Makoto (1943-) 9.E 72.r Nicomedes (fl. 250? B.C.) 93.H 
Nambu, Yoichiro (1921-) 132.C Niederreiter, HaraId G. (1944-) 182.r 354.r 
Namikawa, Yukihiko (1945-) 16.2 Nielsen, Niels (1865-1931) 167.r 174.r 
Namioka, Isaac (1928) 310.r 424.r Niino, Kiyoshi (1941-) 17.C 
Napier, John (1550&1617) 131.D 265 432.C Niiro, Fumio (19233) 3lO.H 

App A, Tables 2.11, 111 Nijenhuis, Albert (1926-) 72.B 
Narasimhan, Mudumbai S. (1932-) 112.D Nikaido, Hukukane (19233) 89.r 
Narasimhan, Raghavan (19377) 23.r 367.G Nikodym, Otto Martin (18788) 270.L 323.E 380.C 
Naruki, Isao (1944-) 21.P, Q 344.D 443.H 
Nash, John Forbes, Jr. (19288) 173.A, C, r 204.F Nikolai, Paul John (1931l) 151.H 

286.5 323.L 327.G, r 365.B Nikol’skii, Nikolai Kapitonovich (1940-) 251.r 
Navier, Louis Marie Henri (1785-1836) 204.B, Nikol’skii, Sergei MikhaIlovich (1905-) 168.B 

C, F 205.C Nilson, Edwin Norman (19177) 223.r 
Nayfeh, Ali Hasan (1933-) 25.r 290.r Ninomiya, Nobuyuki (19244) 338.C D, J-M 
Necks, Jindiich (19299) 304.r Nirenberg, Louis (1925-) 72.r 112.D, F, H 164.K 
Nedoma, Jiii 213.F 168.B 262.B 274.1286.2, r 304.F 320.1323.H, r 
Ne’eman, Yuval(19255) 132.D, r 345.A, B 365.5 
Nehari, Zeev (1915-78) 77.r 367.G 438.B Nishi, Mieo (19244) 12.B 
Nelson, Joseph Edward (1932-) 115.D 150.F 176.F Nishida, Goro (1943-) 202.U 

293.E, r 341.r 437,s Nishida, Takaaki (1942-) 4l.D, E, r 204.F 263.D 
Nemytskii, Viktor Vladimirovich (190&) 126.E, r 286.2 

394.r Nishijima, Kazuhiko (19266) 132.A 150.r 
Nernst, Hermann Walter (186441941) 419.A Nishikawa, Seiki (19488) 195.r 
N&on, Andre (1922-) 3. M, N, r 15.D 16.P Nishimori, Toshiyuki (1947-) 154.G, H 
Nersesyan, A. A. 164.5 Nishimura, Toshio (1926-) 156.E 
Nesbitt, Cecil James (19122) 29.r 362.r 368.r Nishina, Yoshio (1890-1951) 351.G 
Netto, Eugen (184661919) 177.r 330.r Nishino, Toshio (1932-) 21.L, Q 
Neubiiser, Joachim E. F. G. (19322) 92.F Nishiura, Yasumasa (1950-) 263.r 
Neugebauer, Otto (Eduard) (1899%) 24.r Nisio, Makiko (1931-) 45.r 260.5 405.r 
Neuhoff, David L. 213.E, F Nitecki, Zbigniew 126.r 
Neukirch, Jiirgen (19377) 450.r Nitsche, Johannes C. C. (1925-) 275.C r 334.F, r 
Neumann, Bernhard Hermann (1909%) 16l.C Niven, Ivan(19155) 118.r 

190.M Nobeling, Georg 117.D 246.r 
Neumann, Carl (Karl) Gottfried (1832-1925) Noether, Amalie Emmy (188221935) 8 12.B 

39.B 120.A 188.H 193.F 217.D 323.F App. A, 16.D, X 27.D, E 29.F 150.B 277.1284.A, D, G 
Tables 19.111. IV 368.F 450.L 

Neustadt, L. W. 292.r Noether, Max (1844-1921) 9.E, F, r ll.B, r 12.B 
Neuwirth, Lee P. (1933-) 235.r 15.B, D 16.1 366.C 
Nevanlinna, Frtthiof (1894- 1977) 272.K Nogi, Tatsuo (1941-) 304.F 
Nevanlinna, Rolf Herman (189551980) 2 1 .N 43.r Nohl, Craig R. 80.r 

109 124.B 164.G 198.r272.B, D, E, K, r 367.E, Nomizu, Katsumi (19244) 105.r 199.r 365.H, N, r 

I, r 429.B 438.B 412.r 413.r 417.r 
Neveu, Jacques (1932-) 136.C Nordin, Clas 323.M 
Neville, Charles William (1941-) 164.K Norguet, Francois (19322) 21.1 
Newcomb, Robert Wayne (19333) 282.r Norkin, Sim Borisovich (19188) 163.r 
Newcomb, Simon (I 8355 1909) 392.r Norlund (Nerlund), Niels Erik (188551981) 
Newell, Allen 385.r 104.B, r 379.5, Q 
Newhauser, George L. 215.r Northcott, Douglas Geoffrey 67.1 200.r 277.r 284.r 
Newhouse, Sheldon E. (19422) 126.5, L, M Norton, Richard E. (19288) 146.C 

Newlander, August, Jr. 72.r Norton, Simon Phillips (1952-) 151.1 
Newman, Charles Michael (19466) 212.r Noshiro, Kiyoshi (1906676) 62.B, C, E 

Newman, Donald J. 328 Nourein, Abdel Wahab M. 301.F 
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Novikov, P&r Sergeevich 

1902 

Novikov, PZtr Sergeevich (1901-75) 22.D, F, H 
97.*, r 161.B 

Novikov, Sergei Petrovich (19377) 56.F 114.5 
126.N l54.B, D 387.C r 

Nozaki, Akihiro (1936-) 31.r 75.D. r 
Nusselt, Ernst Kraft Wilhelm (1X82- 1957) ll6.B 
Nyikos, Peter J. 273.K 
Nyquist, Harry (1X89-1976) 86.A 402.K 

0 

Obata, Morio (19266) 364.F, G, r 391.D 
Oberhettinger, Fritz (191 I -) 220.r 389.r App.A, 

Table 2O.IV 
Ochan, Yurii Semenovich (19133) l00.r 
Ochiai, Takushiro (1943-) 2l.N, 0 191.r 384.r 
Oda, Tadao (1940-) 16.2, r 72.K 
Oda, Takayuki (1950&) 450.S 
Odqvist, Folke K. G. 188.r 
Oenopides (c. 5th century B.C.) 187 
Ogasawara, Tojiro (1910-78) 162 
Ogg, Andrew P. (19344) 32.r 
Ogiue, Koichi (1941-) llO.E 365.L, r 
Ogus, Arthur E. (19466) 450.r 
Oguztoreli, Mehmet Namik (19233) 163.r 222.r 
oharu, Shinnosuke (1941l) 162 286.X 
Ohm, Georg Simon (178771854) 130.B 259 
Ohnishi, Masao (1923-) 41 l.J 
Ohtsuka, Makoto (19222) 62.C r 77 120.A 143.B 

193.r 207.C r 246.A 33X.C D, M, r 
Ohya, Yujiro (19355) 325.H, I 345.A 
Oikawa, KBtaro (1928-) 48.r 77.E, r 367.r 
Ojanguren, Manuel (1940&) 29.r 
Ojima, Izumi (19499) 150.G 
Oka, Kiyoshi (1901-78) 20 21.E, H, I, K, Q 23.D 

72.E 147.0 383.5 
Oka, Yukimasa (19422) 136.F 
Okabe, Yasunori (1943-) 176.F 
Okada, Norio (1947-) 173.E 
Okada, Yoshitomo (189221957) 379.P 
Okamoto, Kazuo (1948,) 253.E 
Okamoto, Kiyosato (1935-) 437.AA 
Okamoto, Masashi (19233) 280.r 
Okamoto, ShDichi (1951-) 306.A 
Okamura, Hiroshi (1905-48) 94.r 216.B 246.F 

316.D, r 
Okano, Hatsuo (19322) 100.r 
Okonek, C. 16.r 
Okubo, Kenjiro (19344) 253.C 
Okugawa, Kotaro (19133) 113 
Okumura, Masafumi (19366) 1lO.E 
Okuyama, Akihiro (1933-) 273.K 425.Y 
Oleinik, Ol’ga Arsen’evna (19255) 112.D 323.r 

325.H 327.r 
Olive, David Ian (1937-) 146.r 386.C r 
Olivieri, E. 402.G 
Olkin, Ingram (1924-) 280.r 
Olmsted, John M. H. (1911l) 106.r 216.r 
Olum, Paul (1918%) 91.r 305.A, r 
Olver, Frank W. J. 30.r 
O’Meara, Onorato Timothy (19288) 348.r 
Omnes, Roland Lucian (193 1 -) 150.r 
Omori, Hideki (19388) 178.E 183 286.r 
Omura, Jim K. (1940-) 213.E 
O’Nan, Michael E. l51.H, I 
O’Neil, Richard 224.E 
O’Neill, Barrett (19244) 1ll.r 178.r 365.B, G 
O’Neill, Bernard V., Jr. 164.F 
Ono, Harumi (1932-) 301.F 
Ono, Katuzi (19099) 156.E, r 

Ono, Takashi (19288) 13.P 
Onsager, Lars (1903376) 340.B 402.K 
Oono, Yosiro (1920-) 282.r 
Oort, Frans (19355) 9.J 
Oppenheim, Alexander 220.B 242.A 
Ord, J. Keith 374.r 
Ordeshook, Peter C. 173.r 
Ore, Oystein (189991968) 157.r 190.L 
Oresme, Nicole (c. 1320(30)-82) 372 
Orey, Steven (1928X) 260.5 
Orihard, Masae (19155) 310.r 
Orhcz, Wiadyslaw (1903-) 168.B 44z1.D 
Ornstein, Donald S. (19344) 5.G 136.B, C, E-G, r 

162 213.E, F 
Ornstein, Leonard Salomon (1880-1941) 45.1 
Ortega, James McDonogh (19322) 301.r 
Orzech, Morris (19422) 29.r 
Oseen, William (18799) 205.C 
Oseledets, Valerii Iustinovich (1940&) 136.B 
Osgood, William Fogg (186441943) 3.r ll.r 21.H, r 

107.A 
Oshima, Toshio (19488) 274.r 437.03, r 
Osikawa, Motosige (19399) 136.F 
Osima, Masaru (19122) 109.r 275A E, r 334.F, r 

365.H 391.D 
Osterwalder, Konrad (1942-) 150.F 
Ostrogradskii, Mikhail Vasil’evich (1801-62) 94.F 
Ostrowski, Alexander (1893-) 14.F 58.F 88.A r 

106.r 12l.C 205.r 216.r 272.F 301.r 339.E 388.B 
439.L 

Oswatitsch, Klaus (1910-) 207.C 
Otsuki, Nobukazu (19422) 136.r 
Otsuki, Tominosuke (1917-) 275.A, ‘F 365.B 
Ouchi, Sunao (19455) 378.F 
Ovsyannikov, Lev Vasil’evich (1919-) 286.2 
Owen, Donald B. STR 
Oxtoby, John Corning (1910-) 136.H 
Ozawa, Mitsuru (19233) 17.C 367.E 438.C 
Ozeki, Hideki (1931-) 365.1, r 

P 

Paatero, Veikko (1903-) 198.r 
Pacioli, Luca (c. 1445-c. 1514) 360 
Pad& Henri Eugene (186331953) 142.E 
Page, Annie 123.D 
Paige, Christopher Conway (1939-) 241.C 
Painleve, Paul (186331933) 198.G 288.A-D, r 

420.C 
Pal, J. 89.C 
Palais, Richard Sheldon (193 l-) 80.r 105.Z, r 

183.*, r 191.G 279.A, E 286.Q, r 431.r 
Palamodov, Viktor Pavlovich (19388) 112.R 
Paley, Raymond Edward Alan Christopher (19077 

33) 45.r 58.r 125.0, BB 159.G 160.E, G, r 168.B 
192.F, r 272.K 295.E 317.8 

Palis, Jacob, Jr. 126.C J, M, r 
Pan, Viktor Yakovlevich (19399) 71.D 
Panofsky, Wolfgang Kurt German (1919%) 130.r 
Papakyriakopoulos, Christos Dimitric,u (1914-76) 

65.E 235.A 
Papanicolaou, George C. (1943-) 11 .j.D 
Papert, Seymour 385.r 
Pappus (of Alexandria) (fl. 320) 78.K 187 343.D 
Pdrasyuk (Parasiuk), Ostap Stepanovich (1921-) 

146.A 
Paris, Jeffrey B. (19444) 33.r 
Parker, Ernest Tilden (19266) 151.H 241.B 
Parreau, Michel (1923-) 164.K 193.G 207.C 367.E 
Parry, William (1934-) 136.C r 
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Polkinghorne, John Charlton 

Parseval, Marc Antoine (175551836) IX.8 159.A 
16O.C H lY2.M lY7.C 220.B, C, E 

Parshin, Aleksei Nikolaevich 118.E 
Parthasarathy, Kalyanapuram Rangachari 213.F 

341.r 374.r 
Parzen, Emanuel (1929%) 421.D 
Pascal, Blaise (1623362) 20 75.A 7X.K 155.E 181 

265 329 330 342.A 343.E 
Pascal, Ernest0 (1865-?) 15.r 
Pascal, Etienne (15X88 165 1) 329 
Pasch, Moritz (1843 1930) 155.B 
Passman, Donald S. (1940&) 15 1 .r 
Pasta, J. 287.r 
Pasternack, Joel 154.H 
Pastur, Lconid Andreevich 340.r 
Patil, Ganapati P. (19344) 374.r 
Patodi, Vijay Kumar (1945576) 237x 366.r 391.C 

K, L N r 
Pauli, Wolfgang Ernst (lYOO&58) 150.A 25X.A, D 

351.G, H, r 3X6.8 
Pawley, G. Stuart (19377) 92.F 
Pazy, Amnon (1936-) 162 2X6.X 378.F 
Peano, Giuseppe (1858X1932) 93.D, J 106.H 107.A 

117.A 156.8 246.F, G 267 294.A, B, r 316.E 411.A 
Pcarcy, Carl Mark (1935-) 25 1 .r 
Pearl, Raymond (1 X79- 1940) 263.A 
Pears, Alan (19388) 117.r 
Pearson, D. B. 33 l.E 375.B 
Pearson, Egon Sharpe (189551980) 400.B 401.B, 

F, r STR 
Pearson, Karl (1857- 1936) 40.B 174.r 374.r 397.D 

401.E 403.C STR 
P&let, Jean Claude Eugene 116.8 
Pcdcrsen, Gert Kjzrgard (1940&) 36.K, r 212.C 

30x.r 
Pederson, Roger N. (1930&) 438.C 
Pedoe, Daniel (1910-) 343.r 
Pcctre, Jaak (1935-) 112.E, K 125.F 224.A, C, 

E, F, r 
Peierls, Rudolf Ernst (19077) 212.8 
Peirce, Benjamin (1809980) 231.B 36X.F 
Peirce, Benjamin Osgood (185441914) App. A, 

Table 9.r 
Peirce, Charles Sanders (183991914) 156.8 41 l.A 
Peixoto, Mauricio Matos (1921-) 126.A, H, I, M 
Pelczynski, Aleksander 37.L, r 6X.M 443.D 
Pell,John(1611-85) 118.A 
Pepis, Jozef (c. 1922-c. 1942) 97.* 
Peressini, Anthony L. (1934-) 310.r 
Perko, Kenneth A., Jr. (1943%) 235.E 
Perlman, Michael David (1942%) 2XO.r 
Perron, Oskar (1X80-1975) 83.r lOO.A, F 107.A 

120.C 121.C 123.B 254.D 269.N 280.F 289.D 
294.r 310.H 314.A 316.E, r 379.L 394.r 

Pesin, Ya. B. 136.G 
Peter, F. 69.B 249.U, r 437.EE 
Peter, Rozsa (1905577) 356.8, r 
Petermann, Abdreas (19222) 361.r 
Peterson, Elmor Lee (1938%) 264.r 
Peterson, William Wesley (19244) 63.r 
Petersson, Hans (1902-84) 32.B-D 32X.r 450.Q 
Petkov, Vessclin Mihailev (1942-) 325.H 
Petrenko, Viktor Pavlovich (19366) 272.K, r 
Petrie, Ted E. (19399) 431.D 
Petrov, Valentin Vladimirovich (1931l) 250.r 
Petrovskii, Ivan Georgievich (1901-73) 107.r 

112.D 196 320.r 321.E, r 323.1 324.r 325.F, G, J, r 
321.H 

Pettis, Billy James (1913-79) 68.M 443.A. B, D, 
F-H 

Petty, Sir William (1623-87) 40.A 401.E 
Petvyashvili, V. I. 387.F 
Peyret, Roger 304.r 
Pfaff, Johann Friedrich (1765-1825) 103.G 105.Q 

107.B 42X.A, B 
Pfanzagl, Johann (1928%) 399.M, 0 400.r 
Plhiger, Albert (19077) 143.A 272.K 367.E, r 
Pham, Frederic 146.A, C 386.C 41X.r 
Phelps, Robert Ralph (19266) 443.H 
Phillips, Aris (191551985) 154.F 279.C 
Phillips, E. 136.r 
Phillips, Melba N. (19077) 130.r 
Phillips, Ralph Saul (1913-) 68.M 112.P, S 162 

251.r 286.r 375.H 378.B, F, r 443.A, H 
Phragmen, Lars Edvard (1X63-1937) 43.C 
Picard, Charles Emile (185661941) 3.A 1l.r 12.B, r 

15.B, D, r 16.P, U 20.*, r 107.A 113 124.B 206.D 
232.C 237.5 253.r 272.E 288.C 28Y.r 316.D 323.D 
367.D 38X.r 418.F, r 429.B 

Pick, Georg 2 1 .O 
Pielou, Evelyn C. 263.r 
Pietsch, Albrecht (19344) 6X.N, r 424.r 
Pillai, K. C. Sreedharan 2XO.B 
Pincherle, Salvatore (185331936) 217.F 240.B 
Pinchuk, S. I. 344.D, F 
Pinsker, Mark Shlemovich (19255) 136.E 213.E 
Piper, Christopher J. 215.E 
Pitcher, Tom Stephen (19266) 396x 
Pitman, Edwin James George (18977) 371.A, E 

399.G, r 400.K 
Pitt, Harry Raymond (1914-) 160.G 192.r 339.r 

379.r 
Pitt, Loren D. (1939%) 176.F 
Pitts, Jon T. 275.G 
Plancherel, Michel (1X85-1967) lY2.M 218.G 

437.L 
Planck, Max Karl Ernst Ludwig (1858- 1947) 

115.A 351.A 402.1 419.r 
Plante, Joseph F. (19466) 154.H 
Plateau, Joseph Antoine Ferdinand (1x01-83) 109 

275.C 334.A, B 
Platek, Richard A. 356.G 
Plato (427-347 B.C.) 187 357.B 
Platonov, Vladimir Petrovich (1939%) 13.Q 
Pleijel, Ake Vilhelm Carl (1913%) 391.B, C, r 
Plemelj, Josip 253.r 
Plis, Andrzej (lY29-) 321.F 323.5 
Pliss, Viktor Aleksandrovich (19322) 126.5 
Plotkin, Morris 63.B 
Plucker, Julius (1801&6X) 9.8 12.B 90.B 137 267 
Pochhammer, Leo (1841-1920) 206.C 
Pogorelov, Aleksei Vasil’evich (1919-) 365.5 
Pohlmann, Henry 450,s 
Poincare, Henri (185441912) 3.A, C, D ll.B 12.B 

16.E 20 21.Q 25.B 3O.C, r 32.B, F, r 55.r 56.B, F 
65.A, C 70.A 74.G 105.A 107.A 109 114.5, K 117.A 
120.A, D 122.C. r 126.A, C, E,G, I. L, r 136.A,C 
153.B 156.C 170 19X.5 201.A, B, F, 0 218.C H 
219.A, r 24X.5 253.D 254.D 258.A 267 279.A 
285.A, D 286.W 288.8 28Y.C 314.A 335 344.A 
383.E 420.A, C 425.G 426 450.Q 

Poinsot, Louis (177771859) 271.E 
Poisson, Simeon Denis (1781-1840) 5.D, F 82.B 

105.M 126.E 159.C 16X.B 192.C L 193.G 198.B 
260.H 266 271.F, G 323.A 324.C D 325.D 338.A 
341.D 391.5 397.F 407.D App. A, Tables 15.V1, 
19.111 

Polit, Stephen H. 136.E 
Polkinghorne, John Charlton (lY30-) 146.r 

386.C, r 



Name Index 
Pollaczek, FClix 

1904 

Pollaczek, Felix (189221981) 145 307.C 
Pollaczek-Geiringer, H. 298.r 
Polonsky, Ivan P. 223.r 299.r 
Polya, George (188771985) 20.r 48.D, r 66.E 88.r 

121.C 211.r 228.B, r 272.K 339.D 374.5 429.B 
Polyakov, A. M. 80.r 
Pomeranchuk, Isaak Yakovlevich (1913-66) 386.B 
Pommerenke, Christian (1933-) 48.r 77.F 169.F 

438.r 
Poncelet, Jean-Victor (178881867) 179.B 181 

266 267 
Pong, D. H. 345.A 
Ponstein, J. 292.D 
Pontryagin, Lev Semenovich (1908-) 2.G 56.D, 

F, H 64.A, B 86.A, F 107.r 108.r 114.H 126.A, I, r 
192.K 201.A, r 202.B, U 203.D 249.r 305.A 318.r 
422.C E, r 423.r 

Ponzano, Giorgio Enrico (1939-) 146.A 
Poor, Walter Andrew (19433) 178.r 
Popov, M. V. 291.E 
Popov, Viktor Nikolaevich (19377) 132.C 150.G 
Popp, Herbert (19366) 16.W 
Port, Sidney Charles (19355) 5.G 
Porter, Alfred William (1863-1939) 116.r 
Post, Emil Leon (189771954) 31.B 75.D 97.r 161.B 

240.D 356.A, D, H, r 
Postnikov, Aleksei Georgievich (1921-) 295.E 

328.*, r 
Postnikov, Mikhail Mikhailovich (19277) 70.G 

148.D 172.r 305.A 
Poston, Tim 51.r 
Povzner, Aleksandr Yakovlevich (19155) 375.A 
Powell, H. B. 151.r 
Powell, M. J. D. (1936-) 142.r 
Powers, Robert T. (1941-) 36.K 212.B 308.1, r 
Poynting, John Henry (185221914) 130.A 
Prabhu, Narahari Umanath (19244) 260.5 
Prachar, Karl (1925-) 123.D. r 450.r 
Prandtl, Ludwig (1875-1953) 116.B 205.B-D 222.C 
Prdsad, Gopal (1945-) 122.G 
Preissmann, Alexandre 178.B 
Presburger, M. 156.E, r 
Preston, Gordon Bamford (19255) 190.r 
Price, Griffith Baley (19055) 443.A 
Price, J. 423.r 
Priestley, Maurice Bertram (19333) 421.r 
Prigogine, Ilya (1917-) 95 
Prikry, Karel L. (19444) 33.F, r 
Pringsheim, Alfred (1850-1941) 58.E 83.E 
Pro&s (410(411)-485) 187 
Prokhorov, Yurii Vasil’evich (1929-) 115.D 

250.E, r 341.F, r 374.r 
Protter, Murray H. (19188) 78.r 106.r 216.r 323.r 

327.r 350.r 
Priifer, Heinz (1896-l 934) 2.D 200.K 
Prugovecki, Eduard (19377) 375.r 
Przymusinski, Teodor C. 117.E 
Przytycki, Feliks 126.K 
Ptak, VIastimil(19255) 424.X 
Ptolemy (Claudius Ptolemaeus) (c. 85-c. 165) 187 

432.C 
Pugh, Charles C. 126.JJL, r 
Puiseux, Victor Alexandre (1820-83) 339.A 
Pukanszky, Lajos 437.K, U 
Puppe, Dieter (1930-) 200.r 202.G 
Puri, Madan Lai (1929-) 280.r 371.r 
Pustyl’nik, Evgenii Izievich (19388) 251.r 
Pusz, Wieslaw 402.G 
Putnam, Calvin Richard (1924-) 251.K 
Putnam, Hilary Whitehall (19266) 81.D, r 97.+, r 

Pyatetskii-Shapiro, Il’ya losifovich (1929-) 32.H 
122.G 125.r 159.J 384.A, C, r 437.r 45O.Q, S 

Pythagoras (572-492 B.C.) 60.0 118 A 139.B, D 
145 155.C 181 187 

Q 

Quenouille, Maurice Henri (1924-73) 421.D 
Quillen, Daniel G. (1940-) 12.r 16.Y 191.r 200.K 

237.A, I, J 369.F 
Quinn, Barbara Keyfitz 286.X 
Quinn, Frank S. (1946-) 114.K 

R 

Raabe, Joseph Ludwig App. A, Table 10.11 
Raanan, Joseph 173.E 
Rabie, M. 173.r 
Rabinowitz, Paul H. (1939-) 286.T, W, r 
Rabinowitz, Phillip (19266) 223.r 299.r 301.r 
Racah, Giulio (1909-65) 353.A, B, r 
Rademacher, Hans Adolph (1892-1969) 4.A, C, D 

297.r 317.B, C 328.*, r 357.r 
Radjavi, Heydar (19355) 251.r 
Radkevich, E. V. 112.D 323.r 
Rado, Tibor (189551965) 65.C 77.B 109 164.1 

193.r 246.r 275.A, C, D, r 323.E, 1334.C, r 367.A, 
F 410.B 

Radon, Johann (1887-1956) 94.C 1;!5CC 218.F 
270.1, L 380.C 443.H 

Ridstrom, Hans Vilhem (1919-70) 443.1 
Raghavarao, Damaraju (1938-) 102.r 
Raghunathan, Madabusi Santanam (1941-) 

122.G, r 
Raiffa, Howard 173.C 398.r 
Raikov, Dmitrii Abramovich (1905-) 192.G 256.r 

341.E 424.X 437.EE 
Rainville, Earl D. 389.r 
Rajchman, A. 159.5 
Rail, Louis B. (1930-) 138.r 301.r 
Ralston, Anthony (1930-) 142.r 223.r 303.D, r 
Ralston, James V. 345.A 
Ramachandra, Kanakanahalli (19333) 123.E 
Ramamoorthi, R. V. 396.r 
Ramanathan, Kollagunta Gopalaiyer (1921-) 

118.D 450.K 
Ramanujam, Chidambaram Padmanabham (19388 

74) 232.D, r 
Ramanujan, Srinivasa (188771920) ,4.D 32.C D 

295.D, E 328.*, r 
Ramis, Jean-Pierre (19433) 68.F 
Ramsey, Frank Plumpton (1903-30) 156.B 
Ran, Ziv (1957-) 450,s 
Randles, Ronald Herman (1942-) 3’71.r 374.r 
Range, R. Michael (1944) 164.K 
Rankin, Robert Alexander (1915-) 123.C 
Rankine, William John Macquorn (1820-72) 

204.G 205.B 
Rao, Calyampudi Radhakrishna (Radhakrishna 

Rao, Calyampudi) (1920-) 280.r 374.H 399.C 
D, 0, r 401.r 

Rao, Ranga R. (1935-) 374.r 
Raphson, Joseph (c. 1648-c. 1715) 301.D 
Rapoport, Michael 16.r 
Rasmussen, 0. L. 301.r 
Rathbone, C. R. 332.r 
Ratner, Marina E. 126.5 136.F 
Rauch, A. 17.D 

~ Rauch, Harry Ernest (1925579) 134.r 178.A, C 
~ Ray, Daniel Burrill (1928-79) 5.r 115.A 
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Rolle, Michel 

Ray-Chaudhuri, Dwijendra K. 96.r 
Rayleigh, Lord (Strutt, John William) (1842-1919) 

46.F 68.H 228.B 298.C 304.B 318.r 331.A, D 446.r 
Raynaud, Michel(19388) 3.N, r 
Razumikhin, B. S. 163.G, I 
Rebbi, Claudio 80.r 
Reckhow, Robert A. 71.r 
Ree, Rim Hak 15 1 .I, J App. B, Table 5.111 
Reeb, Georges (1920&) 90.r 154.A, B, D 279.D 
Reed, George Michael (1945-) 273.K 
Reed, L. J. 263.A 
Reed, Michael (1942-) 331.r 375.r 390.r 
Reed, Myril Baird (19022) 282.r 
Reeh, Helmut Rudolf (1932-) 150.E 
Rees, David (19188) 67.1 284.A 
Regge, Tullio (1931l) 132.C 146.A, C 375.r 386.C 
Regiomontanus (Johann Miiller) (1436676) 360 

432.C 
Reich, Edgar (1927-) 352.C 
Reid, Constance 196.r 
Reid, John Ker (19388) 302.r 
Reid, Miles A. (1948-) 16.r 
Reidemeister, Kurt Werner Friedrich (1893-1971) 

91.r 155.r 235.A, r 
Reif, Frederick (19277) 402.r 
Reifenberg, E. R. 275.A, G 334.F 
Reilly, Robert C. 365.H 
Reiner, Irving (1924-) 29.r 92.r 151.r 277.r 362.r 
Reinhardt, Hans 59.F 
Reinhardt, Karl 21.B, Q 
Reinsch, C. (1934-) 298.r 300.r 
Rellich, Franz (1906655) 68.C 188.D 323.G 331.A, 

B 351.C 
Remak, Robert (18888?) 19O.L 277.1 
Remes, E. 142.B 
Remmert, Reinhold (1930-) 20 21.M, Q, r 23.B-E, 

r 199.r 
Remoundos, Georgios (18788 1928) 17.A, C, r 
Rengel, Ewald 77.E 
Rtnyi, Alfred (1921-70) 4.C 123.E 
Reseboom, J. H. 376.r 
Resnikoff, George Joseph (1915-) STR 
Reuleaux, Franz (1829-1905) 89.E 11 l.E 
Revuz, Daniel Robert (1936-) 260.5 261.E 
Reynolds, Osborne (1842-1912) 116.B 205.C 259 
Rhaeticus, Georg Joachim (1514474) 432.C 
Rheinboldt, Werner Carl (1927-) 301.r 
Rhodes, John L. (1937-) 31.r 
Ribenboim, Paulo (19288) 145.r 
Ribet, Kenneth A. 14.L 450.5, r 
Riccati, Jacopo Francesco (167661754) 86.E 107.A 

405.G App. A, Table 14.1 
Ricci, Curbastro Gregorio (1853- 1925) 109 364.D 

365.C 417.B, F App. A, Table 4.11 
Ricci, Matteo (1552-1610) 57.C 
Rice, John Richard (19344) 299.r 336.r 
Richard, Jules Antoine (186221956) 319.B 
Richardson, C. H. 104.r 
Richardson, Lewis Fry (1881-1953) 302.C 304.E 
Richardson, Roger Wolcott, Jr. (1930-) 431.r 
Richert, Hans-Egon (19244) 4.C 123.D, E, r 
Richter, Hans (1912278) 443.A 
Richter, Wayne H. (19366) 81.D. r 
Richtmyer, Robert Davis (1910-) 304.r 
Rickart, Charles Earl (19133) 36.r 231.r 443.A 
Rickman, Seppo U. (1935-) 352.F 
Rieffel, Marc A. (1937-) 308.H 443.H 
Riemann, Georg Friedrich Bernhard (1826666) 3.1, 

L,r9.C,F,Ill.B~D,r12.B15.D16.V202l.A, 
C, F 30.C 37.K 46.E 51.E 74.D 77.B 80.K 94.B 

105.A, P, W 107.A 109 1lO.E 123.A,B 137 152.A 
159.A 160.A 181 198.A, D, Q 199.A 216.A 217.5 
237.G 253.B, D 267 274.G 275.A 285.A 286.L 
323.E 325.D 334.C 344.A 363 364.A, B, D 365.A 
366.A-D 367.A, B, E 379.C S 412.A-D, J 413.* 
416 426 447 450.A, B, I, Q App. A, Tables 4.11, 
14.11, 18.1 

Riemenschneider, Oswald W. (1941-) 232.r 
Riesz, Frigyes (Frederic) (1880-1956) 43.D 68.A, 

E, r 77.B 136.B 162 164.G, I 168.B 193.S 197.A, 
F, r 251.0, r 260.D 310.A, B 317.A, B 390.r 
425.r 

Riesz, Marcel (188661969) 43.D 88.C 121.r 
125.A 164.G, 1224.A 338.B 379.R 

Riley, Robert Freed (1935-) 235.E 
Rim, Dock S. (1928) 200.M 
Ringel, Gerhard (19199) 157.E, r 186.r 
Ringrose, John Robert (1932-) 308.r 
Rinnooy Kan, Alexander H. G. (1949-) 376.r 
Rinow, Willi (1907779) 178.A 
Riordan, John (1903-) 66.r 330.r 
Riquier, C. 428.B, r 
Rishel, Raymond W. 405.r 
Rissanen, Jorma (19322) 86.D 
Ritt, Joseph Fels (1893-1951) 113.*, r 428.r 
Ritter, Klaus (19366) 292.r 
Ritz, Walter (1878-1909) 46.F 303.1 304.B 
Riviere, Ntstor Marcel0 (1940-78) 224.E 
Roache, Patrick John (1938-) 300.r 
Robbin, Joel W. (1941l) 126.G, r 183 
Robbins, Herbert (Ellis) (19155) 250.r 399.D 
Roberts, Joel L. (1940-) 16.1 
Roberts, John Elias (1939%) 150.E 
Roberts, John Henderson (19066) 117.C 
Roberts, Richard A. (1935-) 86.D 
Robertson, Alex P. 424.r 
Robertson, Howard Percy (1903-61) 359.E 
Robertson, Wendy J. 424.X, r 
Robin, Gustave (1855-97) 48.B 323.F 
Robinson, Abraham (1918874) 118.D 276.D, E, r 

293.A, D, r 
Robinson, Derek William (1935-) 36.K, r 308.r 

402.G, r 
Robinson, G. 301.r 
Robinson, Julia Bowman (1919-85) 97.*, r 
Robinson, R. Clark 77.F 126.H, J, L, r 
Robinson, Raphael Mitchel(1911l) 356.B 
Roth, Gustave (1839-66) 9.C, F ll.D 15.D 237.G 

366.ApD 
Roche, Edouard Albert (1820-83) App. A, 

Table 9.1V 
Rockafellar, R. Tyrrell (19355) 89.r 292.D 
Rodin, Burton (1933-) 367.1, r 
Rodoskii, Kirill Andreevich (1913-) 123.E 
Rodrigues, Olinde (179441851) 393.B 
Roepstorff, Gert (1937-) 402.G 
Rogers, Claude Ambrose (1920-) 22.r 182.D 

443.D 
Rogers, Hartley, Jr. (1926-) 22.r 81.D, r 97.r 

356.r 
Rogers, William H. 371.r 
Roggenkamp, Klaus W. (1940-) 362.r 
Rogosinski, Werner Wolfgang (1894-1964) 159.H. 

r 242.A 
Rohrl, Helmut (1927-) 196 253.D 
Roitman, A. A. 16.R, r 
Rokhlin, Vladimir Abramovich (1919-84) 56.H 

114.H, K 136.E, H, r 213.r 
Rolfsen, Dale Preston Odin (1942-) 235.r 
Rolle, Michel (i652-1719) 106.E 



Name Index 
Romanov. Vladimir Gabrilovich 

1906 

Romanov, Vladimir Gabrilovich 218.H 
Romberg, W. 299.C 
Roquette, Peter Jaques (19277) I 18.D 
Rose, Milton Edward (19255) 353.r 
Rosen, Judah Ben (19222) 292.E 
Rosenberg, Alex (19266) 29.r 
Rosenberg, Ivo G. (19399) 75.D 
Rosenberg, Jonathan M. (195ll) 437.r 
Rosenblatt, Murray (19266) 395.r 421.r 
Rosenbloom, Paul Charles (1920&) 255.D, E 
Rosenblueth, Arturo (1900&70) 95.r 
Rosenblum, Marvin (19266) 331.E 421.r 
Rosenhain, Johann Georg (1816-87) 3.A 
Rosenhead, Louis (1906684) 205.r 
Rosenlicht, Maxwell (1924-) 9.F 13.B, r 
Rosenthal, Peter (1941l) 251.r 
Roshko, Anatol(19233) 205.r 
Ross, George G. 438.C 
Ross, Kenneth A. (19366) 192.r 
Ross, Ronald (1857- 1932) 263.A 
Rosser, John Barkley (1907 ) 33.r 145 156.E, r 

185.r 356.D 
Rossetti, C. 132.r 
Rossi, Hugo 21.r 23.r 164.C G 344.C 384.r 
Rota, Gian-Carlo (19322) 66.r 203.r 
Roth, Klaus Friedrich (19255) 118.D 182.G 
Roth, Leonard (1904-6X) 12.r 16.r 
Rothstein, Wolfgang (1910-75) 21.M 
Rotman, Joseph J. (1934-) 2.E 
Rouche, Eugene (183221910) 10.E 99.D 198.F 
Rouche, Nicolas 290.r 
Rouet, A. 150.G 
Roumieu, Charles 125.A. U 
Rourke, Colin Patrik (19433) 65.r 147.4, r 
Roussarie, Robert 154.G H 
Roussas, George Gregory (19333) 399.N, r 
Roy, K. K. 396.r 
Roy, Prabir (19377) 117.C 
Roy, Samarendra Nath 280.B 
Royden, Halsey Lawrence (1928-) 21 .O 36.M 

164.K 166.r 207.C D, r 221.r 270.r 367.E, 1 
380.r 416 

Rozanov, Yurii Anatol’evich (1934-) 176.r 395.r 
Rozenfel’d (Rosenfel’d) B. 1. 154.G 
Rozhdestvenskii, Boris Leonidvich (19288) 204.r 
Rubel, Lee A. (I 9288) 164.5 
Riickert, Walter 23.B 
Rudakov, Aleksei Nikolaevich 15.r 
Rudin, Mary Ellen (19244) 425.Y 
Rudin, Walter (1921-) 20.r 36.r 84.r 87.r 106.r 

164.1, K, r 166.r 192.Q, r 198.r 216.r 221.r 270.r 
367 380.r 422.r 

Rudolph, Daniel Jay (19499) 136.E, F 
Rudvalis, Arunas (19455) 151.1 
Ruelle, David Pierre (19355) 126.A, J, K, M, N, r 

136.C, G, H,r 150.D 154.H 340.B402.G,r 
433.B. r 

Ruffini, Paolo (176551822) 172.A 190.Q 
Ruh, Ernst A. (19366) 178.r 
Rund, Hanno (19255) 152.C r 
Runge, Carl David TolmC (I 856- 1927) 19.r 118.D 

223.A 301.D 303.D 416.F 
Running, Theodore Rudolph (I 866-) 19.r 
Ruskai, Mary Beth (19444) 212.B 
Russell, Bertrand Arthur William (18722 1970) 

156.A,B,r319.B,r411.A,K,r 
Rutman, Moisei Aronovich (1917-) 89.r 310.H 
Ryan, Patric J. 365.r 
Ryll-Nardzewski, Czeslaw (19266) 22.E 
Ryser, Herbert John (1923385) 66.r 

S 

Saaty, Thomas L. (19266) 157.r 22.r 260.H 291.r 
Sabatier, Pierre Celestin (19355) 375.r 
Saburi, Yutaka (19488) 125.BB 
Saccheri, Girolamo (I 667-l 733) 285 A 
Sacker, R. S. 126.M 
Sacks, Gerald Enoch (19333) 22.F 33.r 63.B 97.r 

276.r 356.r 
Sacks, Jerome (1931l) 195.E, r 275.D 
Sacksteder, Richard (1928-) 136.G 154.H 365.E 
Sadanaga, Ryoichi (1920&) 92.F 
Sadler, D. H. 291.F 
Sagher, Yoram 224.E 
Sah, Chih-Han (19344) 151.~ 
Sahni, Sartaj K. 71.r 
Sainouchi, Yoshikazu (19266) 367.1 
Saint-Beuve, Marie-France 22.r 
Saint-Donat, Bernard 9.r 16.r 
Saint-Raymond, Jean 22.F 
Saito, Hiroshi (19477) 450.G, r 
Saito, Kyoji (1944-) 41&D, r App. A, Table 5.r 
Saito, Masahiko (1931l) 122.F 
Saito, Tosiya (1920&) 126.E 289.E 
Saito, Yoshimi (1939-) 375.C 
Sakai, Akira (1932-) 164.K 
Sakai, Fumio (19488) 21.N 
Sakai, Makoto (1943-) 367.E, r 
Sakai, Shoichiro (1928-) 36.K, r 308 C, E, F, L 
Sakai, Takashi (1941l) 178.C 391.B ,413.r 
Sakamoto, Heihachi (1914-) 374.H 
Sakamoto, Kunio (19488) 365.N, r 
Sakamoto, Reiko (19399) 323.M 325.K, r 327.H 
Sakane, Yusuke (1946-) 365.L 
Sakata, Shoichi (191 l-70) 132.D, r 
Saks, Stanisiaw (1897-1942) 84.r 94.- 1OO.r 198.r 

221.r 246.r 270.r 380.r 
Salam, Abdus (19266) 132.D 
Salem, Raphael (1898-1963) 159.r 192~ 
Salmon, George (1819-1904) 78.r 350.r 
Salomaa, Arto Kustaa (1934-) 75.r 
Salzmann, Helmut Reinhard (1930-) 58.r 
Sambutsky, S. 353.r 
Samelson, Hans (1916-) 413.r 427.E 
Sampson, Joseph Harold (1925-) 183 195.E 
Samuel, Pierre (1921l) 12.B 67.r 284.G, r 370.r 

439.r 
Sanderson, Brian Joseph (19399) 65.r 147.Q. r 
Sannami, Atsuro (1955-) 126.J 
Sanov, Ivan Nikolaevich (19199) 16’ .C 403.r 
Sansone, Giovanni (188881979) 290.r 317.r 
Santalb, Luis Antonio (191 ll) 218.C, E, H, r 228.A 
Sapiro - Shapiro 
Sapronov, Yu. I. 286.r 
Sarason, Donald Erik (1933%) 164.K, r 
Sard, Arthur (1909-80) 105.5 208.B :!86.P 
Sargsyan (Sargsjan), L. S. 3 15.r 
Sarhan, Ahmed E. 374.r 
Saribekovich, Sargsyan Iskhan (1931-) 315~ 
Sario, Leo Reino (1916-) 48.r 77.E, r 124.C r 169.r 

207.r 367.E, G, r 
Sarton, George Alfred Leon (1884419 56) 26.r 209.r 

372.r 
Sasaki, Shigeo (1912-) 110.E 275.C 365.5 
Sasieni, Maurice W. 307.r 
Sataev, E. A. 136.F, r 
Satake, Ichiro (19277) 13.r 16.2 21.0 32.F 59.H 

122.r 248.U, r 384.r 43l.AA 
Sato, Atsushi (19544) 154.H 
Sato, Fumthiro (1949-) 450.V 
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Seidenberg, Abraham 

Sato, Ken-iti (1934-) 115.C D 263.r 
Sato, Mikio (192%) 20 112.D 125.A, V, W, BB, EE 

146.A, C 162.*, r 274.1 345.B 386.C 387.C 418.H 
450.A, M, Q, S, V 

Sato, Tokui (1906683) 217.r 288.B 
Sattinger, David H. 126.M 286.r 
Savage, I. Richard (19255) 371.A, C, r 
Savage, John E. 71.r 
Savage, Leonard Jimmie (1917-71) 342.G 399.F, r 

401.B. F 
Sawada, Ken (1953-) 126.5 
Sawashima, Ikuko (1929%) 310.H 
Saxer, Walter (189661974) 214.r 
Saronov, Vyachcslav Vasil’evich (19355) 341 .J 
Scarf, Herbert Ely (1930 -) 173.E 227.r 
Si-egol’kov - Shchegol’kov 
Schaaf, Manfred 258.r 
Schade, J. P. 95.r 
Schaefer, Helmut (19255) 217.r 310.A, H 
Schaeffer, Albert Charles (19077) 438.B, C 
Schafheitlin, Paul (1861-) App. A, Table 19.111 
Schafke, Friedrich Wilhelm (19222) 268.r 389.r 
Schaible, Siegfried 264.r 
Schapira, Pierre M. (19433) 112.D 125.Y 162 
Schark, I. J. 164.1 
Schatten, Robert (191 1-1977) 68.1 
Schauder, Juliusz Pawel (1899-1943) 37.L 68.E 

153.D 286.D 323.C D, r 325.C r 
Schechter, Martin (1930&) 112, F, H 189.B 320.r 

323.H 
Scheffe, Henry (1907777) 102.r 346.C 399.C. r 
Scheffers, Georg (I 866- 1945) 247.r 
Scheifele, Gerhard 55.r 
Scheinberg, Stephen 164.K 
Scheja, Giinter (1932-) 21.M. r 
Scherk, Heinrich Ferdinand 275.A 
Scherk, John (1947-) 132.r 
Scherk, Peter (1910-85) 4.A 
Schetzen, Martin 95.r 
Schickard, Wilhelm (I 592 1635) 75.A 
Schiffer, Menahem Max (191 I-) 77.E, r 188.r 367.r 

438.B, C 
Schiffman, M. 275.B 
Schilling, Otto Franz Georg (191 t-73) 257.r 439.r 
Schlafli, Ludwig (1814-95) 105.A 248.S 393.8 

App. A, Tables 19.111, IV 
Schlaifer, Robert 398.r 
Schlesinger, Ludwig (186441933) 253.E, r 
Schlessinger, Michael 16.r 
Schlichting, Hermann (1907-) 205.r 433.A 
Schlieder, Siegfried (I 918-) 150.E 
Schlomilch, Otto 39.D App. A, Tables 9.IV, 10.11, 

19.111 
Schmeidler, David 173.D 
Schmetterer, Leopold (1919-) 399.N 
Schmid, Hermann Ludwig (1908-56) 59.H 
Schmid, Wilfried (19433) 16.r 437.W 
Schmidt, Erhald (187661959) 68.C I 139.G 

217.H, 1286.V 302.E 317.A 445 
Schmidt, Friedrich Karl (1901-77) 12.B 59.G 

45O.P 
Schmidt, 0. Y. - Shmidt 
Schmidt, Robert (1898- 1964) 208.C 379.M 
Schmidt, Wolfgang M. (19333) 83.r I l&B, D, r 

182.G, r 354.r 430.C 437.W 
Schnee, Walter 379.M 
Schneider, Michael (19422) 16.r 
Schneider, Theodor (191 l-) 182.r 196 430.A, B, r 
Schober, Glenn E. (1938.-) 438.r 
Schoen, Richard M. (1950@) 275.D, F 364.r 

Schoenberg, Isaac Jacob (1903-) 178.A 
Schoenfeld, Lowell (1920-) 328 
Schoenflies, Arthur Moritz (185331928) 47.r 65.G 

92.E, F 93.D, K 122.H 381.r App. B, Table 5.IV 
Scholtz, Arnold 59.F 
Schonfinkel, M. 97.* 
Schdnhage, Arnold 298.r 
Schopf, Andreas 200.1 
Schottky, Friedrich Hermann (1851-1935) 9.J 

43.5 234.8 367.C 
Schouten, Jan Arnoldus (188331971) 109.*, r 137 

417.r 428.r 434.C 
Schrader, Robert (19399) 150.F 
Schreier, Otto (1901-29) 7.r 28 151.A, I 161.A 

172.F 190.G, N 200.M 256.r 343.r 350.r 
Schroder, A. 156.8 
Schroder, Friedrich Wilhelm Karl Ernst (1841-1902) 

44.B 388.D 41 l.A 
Schrodinger, Erwin (1887-1961) 331.A, D 340.E 

351 .C, D 434.C 
Schubauer, G. B. 433.A 
Schubert, Hermann (1848-1911) 56.E 201.r 
Schubert, Horst (19199) 235.A 
Schur, Friedrich Heinrich (185661932) 364.D 
Schur, Issai (187551941) 29.E 43.5 122.C E, F, H, r 

151.E 226.r 277.H 295.E 368.G 379.L437.D, EE 
App. B, Table 5.r 

Schiitte, Kurt (1909%) 97.~ 156.E, r 
Schuur, Jerry Dee (19366) 290.r 
Schwank, Friedrich (1900-) 217.r 
Schwartz, Arthur J. (1932-) 126.1 
Schwartz, Jacob Theodore (1930-) 37.r 68.M 

112.1, 0 136.B, r 162.r 168.r 240.r 251.r 279.r 
286.r 30&F, r 310.r 315.r 331.r 378.r 390.r 443.A, 
G, r 

Schwartz, Laurent (1915-) 20.*, r 68.r 94.r 112.D, r 
125.A, B, L, r 160.r 162.*, r 168.r 189.r 192.M 
240.r 262.r 270.1 306.A 322.r 424.R, S, X, r 

Schwartz, Richard 280.r 
Schwarz, Hermann Amandus (184331921) 1 l.D 

43.B 77.D 106.H 109 198.G 21 l.C 246.B 275.B, F 
334.C App. A, Tables 8, 9.111, 13.111 

Schwarzenberger, Rolph Ludwig Edward (1936-) 
92.r 

Schwarzschild, Karl (187331916) 359.E 
Schweber, Silvan Samuel (1928%) 150.r 
Schweitzer, Paul Alexander (19377) 126.N 154.D 
Schwerdt, Hans 19.r 
Schwinger, Julian Seymour (1918-) 132.C 146.A 

150.A, F 308.H 361.A 375.C 
Scidmore, Allan K. (1927-) 96.r 
Scipione de1 Ferro (1465- 1526) 360 
Scott, Dana S. 33.E, r 
Scott, William Raymond (1919-) 151.r 
Searle, Shayle R. (1928&) 403.r 
Sebastiao e Silva, Jose (1914-) 125.BB 
Secrest, Don H. (19322) 299.r 
Sedov, Leonid Ivanovich (19077) 116.r 
Seebach, L. 425.r 
Seeley, Robert Thomas (19322) 274.1323.K 
Seelig, Carl (1894-1962) 129.r 
Segal, Graeme Bryce (1941-) 105.r 237.5 366.r 
Segal, Irving Ezra (1918-) 308.D 351.K 
Segal, Jack (1934-) 382.A, C 
Segre, Beniamino (1903-77) 366.r 
Segre, Corrado (1X63-1924) 1 l.B 
Seibert, Peter 126.D 
Seidel, Philipp Ludwig von (1821-96) 302.C 
Seidel, Wladimir P. (1906-81) 62.C D 
Seidenberg, Abraham (1916-) 9.r 343.r 



Name Index 
Seifert, Herbert 

1908 

Seifert, Herbert (19077) 65.r 91.r 99.r 126.N 154.D 
170.r 201.r 235.A, C, r 410.r 

Seinfeld, John Hersh (19422) 303.r 
Seitz, Gary M. 151.5 
Seki, Takakazu (Kowa) (c. 1642 (1639?)-1708) 

230 332 
Sekiguchi, Jiro (195 1 -) 437.CC 
Selberg, Atle (1917-) 4.A 32.H, r 122.F, G 123.8, 

D, E 412.K 437.X, CC, DD 450.A, I, K, T, r 
Selberg, Henrik Ludvig (19066) 17.A, C, D, r 48.E 

124.B 338.H 
Selfridge, R. G. NTR 
Sell, George R. (1937-) 126.M 
Selmer, Ernst Sejersted (1920&) 118.C 
Selten, Reinhard 173.B 
Semple, John Greenlees (1904-86) 12.r 
Sen, Pranab Kumar (19377) 280.r 371.r 
Senior, James Kuhn 151.r 
Seregin, L. V. 1 15.r 
Sergner, J. A. 19.B 
Serre, Jean-Pierre (1926-) 3.N, r 9.r 12.B 13.r 15.E 

16.C, E, T, r 20 2l.L, Q 29.r 32.D 52.N 59.H, r 
64.8, r 70.r 72.E, K, r 122.F 147.K, 0 148.A 
172.r 200.K, M, r 202.N, U, r 237.5 248.r 249.r 
257.r 284.G 362.r 366.D 369.F, r 426 428.G 
450.G. J, R, r 

Serret, Joseph Alfred (1819-85) 11 l.D 238.r 
App. A, Table 4.1 

Serrin, James Burton (1926-) 275.A, D 323.D, E 
Servais, C. 297.D 
Seshadri, Conjeeveram Srirangachari (19322) 

16.Y, r 
Seshu, Sundaram (19266) 282.r 
Sevast’yanov, Boris Aleksandrovich (1923-) 44.r 
Severi, Francesco (187991961) 9.F, r 1 l.B 12.B 

15.B, D, F 16.P 232.C 
Sewell, Geoffrey Leon (1927-) 402.G 
Sewell, Walter Edwin (1904-) 336.H 
Sgarro, Andrea (19477) 213.r 
Shabat, Aleksei Borisovich 387.F 
Shafarevich, Igor’ Rostislavovich (1923-) 14.r 15.r 

16.r 59.F, H 118.D, E 257.H 297.r 347.r 450.Q, S 
Shampine, Lawrence Fred (19399) 303.r 
Shaneson, Julius L. 65.D 114.5, K, r 
Shanks, Daniel (19177) 332.r 
Shanks, E. B. 109.r 
Shanks, William (1812-82) 332 
Shannon, Claude Elwood (1916-) 31.C 136.E 

213.A, D-F 403.r 
Shannon, Robert E. 385.r 
Shapiro, Harold N. (19222) 123.D 
Shapiro, Harold S. 43.r 
Shapiro, Harvey L. 425.r 
Shapiro, Jeremy F. 215.r 264.r 
Shapiro, Zoya Yakovlevna 258.r 323.H 
Shapley, Lloyd Stowell(1923-) 173.D, E 
Sharkovskii, Aleksandr Nikolaevich (19366) 126.N 
Sharpe, Michael J. (1941l) 262.r 
Shaw, B. 251.K 
Shaw H. 75.r 
Shchegol’kov (Stschegolkow), Evgenii Alekseevich 

(1917-) 22.r 
Shelah, Saharon 33.r 276.E, F, r 
Shelly, Maynard Wolfe 227.r 
Shelukhin, V. V. 204.F 
Shen Chao-Liang (1951-) 36.H 
Shenk, Norman A., II 112.P 
Shepard, Roger Newland (1929-) 346.E, I 
Sher, Richard B. (1939-) 382.D 
Sherman, Seymour (1917-77) 212.A. r 

Shewhart, Walter Andrew (1891-1967) 401.G 
404.A, B 

Shiba, Masakazu (1944-) 367.1 
Shibagaki, Wasao (19066) 174.r App. A, Table 20.r 

NTR 
Shidlovskii, Andrei Borisovich (1915-) 430.D, r 
Shields, Allen Lowell (19277) 43.G, r 164.5 
Shields, Paul C. (1933-) 136.E, r 213.F 
Shiga, Kiyoshi (19444) 195.r 
Shiga, Koji (1930-) 72.r 147.0 
Shige-eda, Shinsei (19455) 96. r 
Shikata, Yoshihiro (19366) 178.r 
Shilov, Georgii Evgen’evich (1917-75) 21.D 36.M 

125.A, Q, S 160.r 162.r 164.C 384.D 424.r 
Shimada, Nobuo (1925-) 114.B 202,s 
Shimakura, Norio (1940&) 323.H, N 
Shimizu, Hideo (19355) 32.H 45O.L, r 
Shimizu, Ryoichi (1931-) 374.H 
Shimizu, Tatsujiro (1897-) 124.B 272.J 
Shimodaira, Kazuo (1928-) 230.r 
Shimura, Goro (1930&) 3.M, r ll.B 13.P 16.r 32.D, 

F, H, r 59.A 73.B, r 122.F, r 450.A, I,, M, S, U, r 
Shintani, Hisayoshi (1933-) 303.r 
Shintani, Takuro (1943380) 450.A, El, G, V, r 
Shioda, Tetsuji (1940-) 450.Q, S 
Shiohama, Katsuhiro (1940&) 178.r 
Shiraiwa, Kenichi (1928-) 126.5 
Shirkov, Dmitrii Vasil’evich (1928-) 150.r 361.r 
Shiryaev, Al’bert Nikolaevich (1934-) 86.E 395.r 

405.r 
Shisha, Oved (1932-) 211.r 
Shizuta, Yasushi (19366) 41.D 112.F 
Shimidt (Schmidt), Otto Yul’evich (189-1956) 

190.L 277.1 
Shmul’yan, Yu. V. 37.E, G 162 424.0, V 
Shnider, Steven David (1945-) 344.CE 
Shnirel’man, Lev Genrikhovich (1905538) 4.A 

279.G 286.Q, r 
Shoda, Kenjiro (1902-77) 8 29.F 
Shoenfield, Joseph Robert (19277) 22. F, H, r 97.r 

156.r 185.r 411.r 
Shohat, James Alexander (188661944) 240.r 341.r 
Shortley, George H. 353.r 
Shreider, Yulii Anatol’evich (1927-) 192.r 
Shrikhande, S. S. 102.K 241.B STR 
Shub, Michael (1943-) 126.5, K, r 
Shubik, Martin 173.r 
Shubnikov, Aleksei Vasil’evich (1887-) 92.F, r 
Shult, Ernest E. (19333) 151.5 
Shultz, Frederic W. (1945-) 351.L 
Shvarts (Schwarz, &arc), Al’bert Solomonovich 

(1934-) 56.H 80.r 286.D 
Sibuya, Yasutaka (1930-) 289.D, E428.H, r 
Sidak, Zbyntk (1933-) 371.r 
Sidon, S. 159.J 192.T 
Siebenmann, Laurence Carl (1939-) 65.A, C, r 

70.C 114.5, K, r 
Siegel, Carl Ludwig(189661981) 3.A, r 4.F ll.B, r 

14.E 21.Q 22.A, C, H, r 27.r 32.F, r 49.D, r 55.r 
72.r 118.A, C, D 122.B, E, F, r 123.D 126.1 154.D 
182.D, E, G, r 242.A 289.D 296.A 297.r 328 347.E 
348.K.r 384.A, E, F 412.r 42O.C F 430.A, B, D, r 
450.A, E, K, r 

Sierpiitski, Waciaw (188221969) 22.A, C, H 49.D 
242.A 297.r 425.r 426 

Sigmund, Karl 136.r 
Sikonia, W. 331.E 390.1 
Sikorski, Roman (1920-83) 42.r 
Silov - Shilov 
Silver, Jack H. 33.F, r 



1909 Name Index 
Steffensen, John F. 

Silverman, Leonard M. (19399) 86.D 
Silverstein, Martin Louis (19399) 44.E 168.B 
Silvester II - Gerber1 
Silvet, S. D. 102.r 
Simart, Georges 1l.r 12.r 15.r 418.r 
Simauti, Takakazu (1930&) 411.5 
Simon, Barry (19466) 150.r 212.8, r 331.r 351.r 

375.r 390.r 
Simon, Herbert Alexander (1916-) 385.r 
Simon, Leon M. (19455) 275.C 
Simonis, Juriaan (19433) 16.Y 
Simons, James H. (19388) 275.A, F 364.r 365.G 
Simplicius (c. 6th century) 187 
Simpson, Thomas (1710-61) 299.A 303.E 
Sims, Charles C. (1937-) 14.L 151.A, I 
Sinai, Yakov Grigor’evich (19355) 126.A, J, N 

136.C, E, G, r 
Singer, Isadore Manual (1924-) 20 68.F 80.r 91.r 

109 153.C 183 191.r 303.H, r 323.K, M 366.A-C, r 
390.5 391.B, C, K, L, r 428.r 

Singh, Avadhesh Narayan 209.r 
Sinha, Kalya B. 375.r 
Sinnott, W. 450.5 
Sirao, Tunekiti (1924-) 45.1, r 
Sitnikov, Kirill Aleksandrovich (19266) 117.D 
Siu Yum-Tong (1943-) 195.r 232.C 364.r 
Sjolin, Per B. (1943-) 159.r 
Skibinsky, Morris (1925-) 396.3 
Skitovich, Viktor Pavlovich 374.H 
Skolem, Albert Thoralf (188771963) 97.8 118.C D 

156.E, r 276.D 293.A 
Skornyakov, Lev Anatol’evich (19244) 85.r 
Skorokhod, Anatolii Vladimirovich (1930-) 44.r 

115.D, r 250.E, r 406.D, F, r 
Skramstad, H. K. 433.A 
Slater, Lucy Joan 167.r 206.r 292.B NTR 
Slodowy, Peter (194%) 418.r 
Slowikowski, Wqjciech (1932-) 424.X 
Smale, Stephen (1930-) 65.C 105.Z, r 114.A, B, 

D, F, r 126.A, J, K, r 136.G 183 279.D, E 286.P, Q 
426 

Small, Charles (1943-) 29.r 
Smart, D. R. 153.r 
Smart, William Marshall (1889-) 55.r 392.r 
Smirnov, Modest Mikhailovich (1921l) 326.r 
Smirnov, Nikolai Vasil’evich (1900-66) 250.F, r 

374.E STR 
Smirnov, Vladimir Ivanovich (1887-1974) 20.r 

106.r 216.r 371.F 
Smirnov, Yurii Mikhailovich (1921l) 273.K 
Smith, Brian T. (1942-) 298x 301.0 
Smith, David Eugene (1860-1944) 187.r 
Smith, Gordon Dennis 304.r 
Smith, Guy Watson (18855) 19.r 
Smith, H. L. 87.H, K, r 
Smith, Henry John Stephen (1826683) 179.B 
Smith, J. M. 263.r 
Smith, Kennan Tayler (1926-) 276.E 338.E 
Smith, Paul Althaus (1900-80) 235.E 431.B 
Smith, Paul John (19433) 151.1 
Smithies, Frank (1912-) 217.r 
Smorodinsky, Meir (1936-) 136.E 
Smullyan, Raymond M. 411.r 
Smyth, Brian 275.F 365.H, L 
Smythe, Robert T. (1941-) 340.r 
Snapper, Ernst (1913-) 16.E 200.M 
Sneddon, Ian Naismith (1919%) 389.r 
Sneddon, W. J. 336.r 
Snell, James Laurie (1925-) 260.3 
Snell (Snel van Roijen, Snellius), Willebrord 

(1580-1626) 180.A 
Sobolev, Sergei L’vovich (1908-) 20 46.r 125.A 

162 168.B, r 224.E 320.r 323.G 325.r 
Sobolevskii, Pave1 Evseevich (1930-) 251.r 286.r 

378.1, J 
Sohncke, Leonhard (1842-97) 92.F 
Solitar, Donald Moiseevitch (19322) 161.r 
Solovay, Robert M. (19388) 22.F, H 33.E, F, r 
Sommer, Friedrich (1912-) 198.r 367.r 
Sommerfeld, Arnold Johannes Wilhelm (1868-1951) 

130.r 188.D 271x 274.r 402.H App. A, Table 19.111 
Sommerville, Duncan Mclaren Young (187991934) 

285.r 
Soms, A. 399.N 
Sonine (Sonin), Nikolai Yakovlevich (184991915) 

317.D App. A, Tables 19.111, 2O.VI 
Sono MasazB (1886-1969) 8 284.G 
Soreau, R. (18655?) 19.r 
Sotomayor, Jorge (1942-) 126.M 
Sova, Miroslav 378.D 
Sowey, E. R. 354.r 
Spanier, Edwin Henry (1921-) 64.r 70.r 148.r 170.r 

201.M, r 202.1, r 305.r 
Spath, R. A. 274.F 314.A 
Spearman, Charles (1863-1945) 346.F, r 371.K 
Specht, Wilhelm (1907-85) 10.r 151.r 190.r 
Specker, W. H. 142.C 
Spector, Clifford (1930-) 81.r 156.E, r 356.H, r 
Speer, Eugene Richard (19433) 146.A 
Speiser, Andreas (1885-1970) 151.r 172.5 190.r 
Spencer, Domina Eberle (1920@) 130.r 
Spencer, Donald Clayton (1912-) 12.B 15.F 72.G, r 

232.r 367.r 428.E, r 438.B, C 442.r 
Spencer, Thomas 402.G 
Sperner, Emanuel (1905-80) 7.r 256.r 343.r 350.r 
Spindler, Heinz 16.r 
Spitzer, Frank Ludwig (19266) 44.C 250.r 260.E, J 

340.r 
Spivak, Michael D. (1940-) 114.5 191.r 365.r 
Sprindzhuk, Vladimir Gennadievich (19366) 118.D 

43o.c 
Springer, George (1924-) 367.r 
Springer, Tonny Albert (19266) 13.A, I, 0, P, r 
Srinivasan, B. App. B, Table 5 
Srinivasan, T. P. 164.G 
Srivastava, Muni Shanker (1936-) 280.r 
Stallings, John Robert, Jr. (19355) 65.A, C, E, F 

235.G 426 
Stampacchia, Guido (1922-78) 440.r 
Stanasila (Stanagila), Octavian (19399) 23.r 
Stancu-Minasian, I. M. 408.r 
Stanley, Harry Eugene (1941-) 402.r 
Stanley, Richard Peter (1944) 16.2 
Stapp, Henry Pierce (19288) 146.C 274.D, I 386.C 
Stark, Harold Mead (1939-) 83.r 118.D 182.G 

347.E 450.E 
Stasheff, James Dillon (19366) 56.r 201.r 
Staudt, Karl Georg Christian von (1798-1867) 

267 343.C 450.5 
Stavroudis, Orestes Nicholas (1923-) 180.r 
Stearns, Richard Edwin (19366) 75.r 
Stechkin, Sergei Borisovich (1920-) 211.r 336.C 
Steel, J. 22.F 
Steele, John Hyslop (1926-) 263.D 
Steen, Lynn Arthur (1941-) 425.r 
Steenbrink, Joseph H. M. (1947-) 9.J 
Steenrod, Norman Earl (1910-71) 52.r 56.r 64.A, 

B, r 70.F, r 91.r 147.r 148.D 201.A, C, Q, R 210.r 
305.A, r 426.*, r 442.r 

Steffensen, John F. 223.r 



Name Index 
Stegall, Charles 

1910 

Stegall, Charles 443.H 
Stegun, Irene A. (1919 ) NTR 
Stein, Charles M. 280.D, r 398.r 399.G, r 400.8, F 
Stein, Elias M. (193ll) 159.G 168.B, r 224.8, E, r 

251.r 437.V, DD 
Stein, Karl (19133) 20 2l.H, L, M, Q 23.B, E, F 

72.E 367.B, G, I 
Steinberg, Robert (19222) 13.0 151.7 237.5 248.2 

App. B, Table 5.r 
Steinbuch, Karl 95.r 
Steiner. Jakob (179661863) 78.K 89.C 179.A, B 

181 228.8 267 
Steinhaus, Hugo (188771972) 37.H 317.r 424.5 
Steinitz, Ernst (1871.-1928) 8 149.1, r 172.A 357.r 
Steinmann, Othmar Viktor (1932-) 150.D 
Stepanov, Sergei Aleksandrovich 450.P 
Stepanov, Vyacheslav Vasil’evich (188991950) 

18.A. r 126.E r 394.r 
Stephan, Frederick F. 280.5 
Stepin, Anatolii Mikhailovich (1940&) 136.E, G, H 
Stern. A. 297.D 
Sternberg, S. H. 346.r 
Sternberg, Shlomo (19366) 105.r 1ll.r 126.G, r 

132.r 19l.r 274.r 325.L 428.F, G, r 431.r 
Stetter, Hans J. (1930&) 303.r 
Stevin, Simon (15488 1620) 360 
Stewart, F. M. 22.H 
Stewart, Gilbert W., III 298.r 
Stewart, Ian Nicholas (1945-) 51.r 
Stickelberger. Ludwig (1X50- 1936) 2.B 
Stiefel, Eduard Ludwig (1909978) 55.r 56.A, B, F 

65.8 147.A, I, M 199.B 302.D 
Stieltjes, Thomas Joannes (1856694) 94.A-C 133.C 

166.C l92.D, Q 220.D 240.A, K 270.L 
Stiemke, Erich 255.B, E 
Stigum, Bernt Petter (193ll) 44.r 
Stirling, James (169221770) 66.D 174.A 223.C 

App. A, Tables 17.1, 21.1 
Stoer, Josef (19344) 303.F 
Sto’ilow, Simion 207.8, C 367.r 
Stoka, Marius Ion (19344) 218.r 
Stoker, James Johnston (19055) 11 lx 205.r 
Stokes, George Gabriel (1X19-1903) 94.F I05.U 

167.E 188.E204.B.C,F205.C,F254.DApp.A, 
Table 3.111 

Stall, Wilhelm Friedrich (19233) 21.N 272.L 
Stolz, Otto (384221905) 106.G 333.8 
Stolzenberg, Gabriel 164.F 
Stone, Arthur Harold (1916-) 22.r 273.K 

425.X, CC 
Stone, Charles J. 5.F 
Stone, Harold S. (1938) 96.r 
Stone, Marshall Harvey (1903-) 42.D 112.0 162 

168.B 197.r 207.~ 251 .r 310.1 37X.C 390.r 425.T 
Stong, Robert Evcrt (19366) I14.r 237.H 
Stora, Raymond Felix (1930&) 150.G 
Storer, James Edward (19277) 282.r 
Stsrmer, Erling (19377) 212.B 
Stout, Edgar Lee (19388) 164.r 
Stracke, Gustav (18877) 309.r 
Strang, Wiliam Gilbert (19344) 300.r 304.r 
Strassen, Volker (19366) 250.E 
Stratila (Strati&), Serban 308.r 
Stratonovich, Ruslan Leont’evich (1930%) l15.D 

406.C 
Stratton, Julius Adams (l901&) 130.r 133.r 
Strauss. Walter A. (19377) 286.C 345.A 
Stray, Arne (19444) 164.5 
Streater, Raymond F. (19366) 150.r 386.r 
Strcbcl, Kurt 0. (I 92 l-) 352.C 

Street, Anne Penfold (1932-) 241 .r 
Stroock, Daniel Wyler (1940&) 44.E 115.C D, r 

250.r 261.C 262.E 406.A, D, r 
Stroud, Arthur H. 299.r 
Stroyan, Keith Duncan (19444) 293.r 
Struik, Dirk Jan (1X94-) 187.r 266.r 
Strutt, Maximilian Julius Otto (190331 133.r 268.r 
Struve, Friedrich George Wilhelm von (1793-1864) 

39.G App. A, Table 19.IV 
Stuart, Alan (1922%) 102.r 374.r 397.r 400.r 
Student (Gosset, William Sealy) (1876 -1936) 

374.B 400.G 401.F 
Stueckelberg, Ernst Carl Gerlach (1905%) 361.r 
Sturm, Jacques Charles Francois (18011-55) 10.E 

107.A 112.1 301.C 315.B 
Subramanyam, K. 399.0 
Suetuna, Zyoiti (189X-1970) 242.B 2’35.D 450.E 
Sugawara, Masao (1902270) 73.A 
Sugie, Toru (19522) 15.H 
Sugimoto (Goto), Midori (19444) 17Y.r 
Suita, Nobuyuki (1933%) 77.E 
Sukhatme, Balkrishna Vasudeo (1924479) 373.r 
Sukhatme, Pandurang Vasudeo 373.r 
Sullivan, Dennis Parnell (1941-) 65.C 114.5, L 

154.H, r 234.E 
Sumihiro, Hideyasu (1941-) 16.2 
Sunada, Toshikazu (19488) 195.r 391 .C 
Sundman. Karl Frithiof(1873-1949) 420.C 
Sunouchi, Gen-ichiro (191 I-) 159.G, H 3lO.r 336.D 
Sunzi (c. 3rd century) 57.A 
Suranyi, Janos (1918 -) 97.B 
Suslin, Andrci Aleksandrovich 16.Y 200.K 369.F 
Suslin (Souslin), Mikhail Yakovlevich (189441919) 

22.ApC, H, I 33.F 425.CC 
Siissmilch, Johann Peter (1707-67) 401.E 
Suzuki, Michio (19266) 151.1, J, r 190.r App. B, 

Table 5.111 
Suzuki, Mitsuo (19288) 173.E 
Svarc - Shvarts 
Swan, Richard G. (1933-) 200.M 23’r.r 362.r 383.r 
Sweedler, Moss E. (19422) 172.A, K 203.A 
Swierczkowski, S. 22.H 
Swinnerton-Dyer, Henry Peter Francis (1927-) 

1 l8.D, E 450.5, Q, S 
Switzer, Robert M. (1940%) 202.r 
Sylow, Peter Ludvig Mejdell (1832-1918) 151.8 
Sylvester, James Joseph (1X14-97) 103.F 186.A 

226.G 267 297.D 348.C 369.E, F 
Symanzik, Kurt (1923-83) 132.C 15O.D, F 361.B, r 

386.C 
Synge, John Lighton (1897-) 152.C 178.B, C 
Szabb, Arpad (19133) 187.r 
Szankowski. Andrzej (1945-) 37.L 
Szasz, Otto (188441952) 121.B 
Szczarba, Robert H. (1932-) 114.K 
Szebehely, Victor G. (1921l) 420.r 
Szegii, Gabor (I 895-19X5) 20.r 48.D, r 164.G 

188.H 222.r 228.B, r 317.r 322.r 336.1 389.r 
Szegti, Giorgio P. 86.r 108.r 126.r 
Szemeredi, Endre 136.C 
Szmielew, Wanda (19 18-76) 97.B 
Sz.-Nagy (Szekefalvi-Nagy), Bela (191.3&) 68.r 197.r 

251.N, r 390.r 
Szpilrajn, Edward 117.G 
Szpiro, Lucien (194ll) 16.Y 118.E 

T 

Tabata, Masahisa (1947-) 304.D 
Tachibana, Shun-ichi (19266) I1O.E 



1911 Name Index 
Thurston, William P. 

Tai Yung-Sheng (19444) 16.r 28.r 59.H 118.D, E, r 200.K, N 257.r 450.F, G, 
Tait, Peter Guthrie (1831~1901) 157.C 235.A L, N, P, Q. S, r 
Takagi, Ryoichi (1943 -) 365.1, K, L Tatsuuma, Nobuhiko (1930&) 437.K 
Takagi, Teiji (I 875 - 1960) 14.L, 0, R, U 59.A Tatuzawa, Tikao (1915-) 4.F, r 123.E 450.r 

73.A, r 196 267 297.1 336.A 348.M 415 450.E Tauber, Alfred (186661942?) 36.L 121.D 160.G 
App. B, Tables 4.1, II 192.F 339.8 379.N 

Takahara, Yositane (c. 17th century) 230 Taubes, Clifford Henry (1955-) 150.r 
Takahashi, Hidetoshi (1915585) 142.D 299.r Taylor, Angus Ellis (191 l&) 106.r 216.r 
Takahashi, Moto-o (1941-) 156.E 41 l.J, r Taylor, Brook (168551731) 20 21.B 58.C 106.E, J 
Takahashi, Reiji (19277) 437.BB 286.F 339.A App. A, Table 9.IV 
Takahashi, Shuichi (1928-) 362.K Taylor, Sir Geoffrey Ingram (1886- 1975) 205.E 
Takahashi, Tsunero (1933 -) 275.F 365.1, K, L 433.A, C 
Takahasi, Yositoki (1764- 1804) 230 Taylor, Howard Milton (19377) 260.r 
Takano, Kinsaku (1915-58) 213.F Taylor, James Henry (18933?) 152.C 
Takano, Kyoichi (1943-) 428.r Taylor, John Clayton (1930&) 132.r 
Takasawa, Yoshimitsu (1942-) 299.B Taylor, John R. 375.r 
Takasu, Satoru (I 931-) 200.K Taylor, Joseph L. 36.M, r 
Takebe, Katahiro (166441739) 230 332 Taylor, Michael E. 345.A 
Takeno, HyBitiri, (19 IO-) 434.r Taylor, Samuel James (19299) 45.r 
Takenouchi, Osamu (19255) 437.E Taylor, Thomas D. 304.r 
Takenouchi, Tanzo (1887-1945) 73.A 134.r Teichmiiller, Oswald (1913-43) 9.J 43.E 77.E 
Takens, Floris (1940-) 126.A, L, M, r 433.B, r 352.A, C 416 438.B 
Takesaki, Masamichi (1933%) 36.r 308.H, I, J Teissier, Bernard (19455) 16.2 418.r 
Takeuchi, Kei (19333) 128.C r 346.r 37l.A, H Teixeira, Francisco Comes 93.r 

373.r 399.K, 0 400.r Temam, Roger (1940&) 204.B, D 304.r 
Takeuchi, Masaru (19322) 365.1, L, N, 0 384.E, r Tennenbaum, Stanley (19277) 33.F, r 
Takeuchi, Mitsuhiro (19477) 203.r Teplitz, Vigdor L. 146.r 
Take&, Gaisi (1926-) 33.r 81.D 156.E, r 356.G, r Terada, Toshiaki (1941-) 206.D 428.H 

41 l.J, r Terano, Takao (19522) 301.F 
Takhtadzhan (Takhtajan), Leon Armenovich Terasaka, Hidetaka (19044) 235.A, C 

387.G ter Haar, Dick 402.r 
Tall, Franklin D. (19444) 273.K te Riele, H. J. J. 297.D 
Talman, James Davis (I 93 I-) 389.r Terjanian, Guy 118.F 
Talmi, Igal 353.r Terry, Milton Everett (1916-) 346.C 371.C 
Tamagawa, Tsuneo (1925-) 6.F 13.P, r 59.H 118.C Thales (c. 639-c. 546 B.C.) 35.A 18 1 187 

122.F 348.K 450.A, H, K, L Theaitetus (415-369 B.C.) 187 
Tamano, Hisahiro (1928869) 425.X Theil, Henri (19244) 128.r 
Tamarkin, Jacob David (188881945) 160.E 240.r Theodorsen, Theodore (18977) 39.F 

341.r Theodorus (of Cyrene) (5th century B.C.) 187 
Tamura, Itiro (19266) 114.8, F 154.8. H Theon (of Alexandria) (Il. 370) 187 
Tamura, JirB (1920-) 124.C 367.F Theon (of Smyrna) (Il. 130) 187 
Tamura, Ryoji (1920-81) 371.C Thimm, Walter (19133) 23.D 
Tanabe, Hiroki (1932-) 378.1 Thirring, Walter Eduard (1927-) 212.B 
Tanabe, Kunio (1943-) 302.r Thorn, Rene F. (1923-) 12.B 5l.A, B, E 56.E, F, I 
Tanaka, Chuji (1916-) 121.8, C 70.r 114.A, F-H 126.A, H, M 148.E 183 202.T 
Tanaka, Hiroshi (1932-) 41.C 261.r 340.r 406.D 263.D 418.G, r 426 
Tanaka, Hisao (192%) 22.C F Thoma, Elmar Herbert (1926-) 437.E 
Tanaka, Jun-ichi (19499) 164.H Thomas Aquinas (1225(27)-74) 372 
Tanaka, Makoto (1942-) 437.r Thomas, J. 206.C 
Tanaka, Minoru (19099) 295.E Thomas, Lawrence E. 375.F 
Tanaka, Minoru (1949%) 279.r Thomas, Paul Emery (1927-) 64.r 
Tanaka, Noboru(l930&) 21.P 80.r 191.r 344.B Thomas, Richard Kenneth (1942-) 136.E 

364.F 365.F 384.D, r Thomas, Tracy Yerkes (1899-1984) 152.C 
Tanaka, Shigeru (19422) 136.C Thomason, Steven Karl (1940@) 22.F 
Tanaka, Shunichi (19388) 287.C Thompson, Cohn John (1941-) 212.B 
Tanaka, Yosizane (1651-1719) 230 Thompson. J. F. 304.E 
Tandori, Karoly (19255) 3 17.B Thompson, John Griggs (1932-) 15l.D, H-J 
Tangora, Martin Charles (19366) 64.r Thomsen, Cerhard (18999) 155.H 
Tani, Atsusi (I 9466) 204.F ‘t Hooft, Gerald 132.C D 
Taniyama, Yutaka (1927-58) 3.M 73.B 450.F, S Thorin, G. 0. 88.r 224.A 
Tannaka, Tadao (1908886) 59.D 69.D 249.U Thorne, Kip S. 359.r 
Tannery, Paul (1843-l 904) 144.r 187.r Thorpe, J. A. Y 1.r 
Tanno, Shukichi (19377) 110.E 364.F, G 365.L Thrall, Robert McDowell (1914-) 29.r 173.D 

3Yl.C E, N 368.r 
Tdrski, Alfred (1902-83) 22.G 33.r 97.B, r 156.r Threlfall, William (1888-) 65.r 91.r 99.r 170.r 

185.D, r 276.D 201.r 235.r 4lO.r 
Tartaglia, Niccolb (1500?-57) 360 Thue, Axe1 (186331922) 31.B 118.D 182.G 
Tartakovskii, Vladimir Abramovich 4.E 161.B Thullen, Peter (!907-) 20 21.H, M, Q 
Tashiro, Yoshihiro (1926-) 364.F, G Thurston, William P. (19466) 65.E 126.5, N 
Tate, John Torrence (1925-) 3.C M, N, r 6.E, F, r 154.A, D-H, r 234.A 235.B, E 



Name Index 
Thurstone. Louis Leon 

1912 

Thurstone, Louis Leon (188771955) 346.C F 
Tierney, Myles 200.r 
Tietavainen, Aimo A. (19377) 63.r 
Tietze, Heinrich (1880- 1964) 425.Q 
Tikhonov, Andrei Nikolaevich (19066) 153.D 

273.K 425.Q, S, T 
Timmesfeld, Franz-Georg (19433) 151.5 
Timoshenko, Stephen P. (187881972) 271.r 
Tisserand, Francois Felix (1845-96) 55.r 
Tissot, Nicolas Auguste (1824&?) 206.C 
Titchmarsh, Edward Charles (1898-1963) 112.0 

123.B, D, r 16O.C r 192.r 198.r 220.C 242.A, r 
306.B 429.r 450.r 

Tits, Jacques Leon (1930&) 13.0, Q, R, r 151.1, J 
343.1 

Toda, Hirosi (1928) 202.P, R, U 
Toda, Morikazu (I 917-) 287.A, r 
Toda, Nobushige (19388) 17.C 
Todd, John Arthur (1908-) 237.F 366.B, r 
Todhunter, Isaac (1820-84) 342.r 
Todorov, Andrei Nikolov (194%) 232.C 
Todorov, Ivan T. (19333) 146.r 150.r 
Toeplitz, Otto (18x1-1940) 197.r 217.r 251.0 

379.L 
Toki, Yukinari (19133) 62.D 352.A 367.E 
Tollmien, Walter 433.A 
Tolman, Richard Chace (1881-1948) 402x 
Tolstoy, I. 446.r 
tom Dieck, Tammo 43 1 .E, r 
Tomi, Friedrich (19433) 275.C 
Tomita, Minoru (1924-) 308.H 
Tomiyama, Jun (1931-) 36.K 164.E 
Tomonaga, Sin-itiri, (1906679) 132.C 146.A 150.A 

359.C 361.A 
Tomotika, Susumu (1903364) 134.r 
Tompkins, Charles Brown (1912-) 275.B 365.B 
Tondeur, Philippe Maurice (19322) 154.G, H, r 
Tonelli, Leonida (1885- 1946) 107.A 246.C 
Tonnelat-Baudot, Marie-Antoinette (1912-80) 

434.r 
Toponogov, Viktor Andreevich 178.A, F 
Topp, L. J. 304.r 
Topsse, Flemming (19388) 22.r 
Tore&, R. (1884-1915) 9.E, J ll.C 
Torgerson, Warren S. 346.E, r 
Torii, Tatsuo (19344) 3Ol.C 
Totoki, Haruo (19344) 136.D 395.r 
Traub, Joe Fred (19322) 71.r 301.r 
Trefftz, Erich Immanuel(18881937) 46.F 
Tremolieres, Raymond (1941-) 440.r 
Treves, J. Francois (1930-) 112.D, L 125.r 274.1 

286.2 320.1, r 321.r 345.A, B 424.r 
Tricomi, Francesco Giacomo (18977 1978) 217.N, r 

288.C 317.r 326.C r 
Triebel, Hans (1936-) 168.r 224.r 
Trigg, G. L. 414.r 
Tristram, Andrew G. 114.K 
Trjitzinsky, Waldemar Joseph (1901-73) 254.D 

289.C D 314.A 
Tromba, Anthony J. (1943-) 275.C r 286.D 
Trotter, Hale Freeman (1931&) 235.C 351.F 378.E 
Trubowitz, Eugene B. (1951&) 387.E 
Trudinger, Neil Sidney (19422) 364.H 
Truesdell, Clifford Ambrose T. (1919-) 389.B 
Trych-Pohlmeyer, E. B. 402.G 
Tschebyscheff - Chebyshev 
Tsen Chung-Tze 27.E 118.F 
Tsirel’son B. S. 406.D 
Tsu Ch’ung-Chih (4299500) 57.A 332 

Tsuboi, Takashi (1953-) 154.G 
Tsuchiya, Nobuo (1950-) 154.G, H 
Tsuda, Takao (I 932-) 354.r 
Tsuji, Masatsugu (1894-1960) 48.r 62.B, D 124.C 

234.r 242.A 367.r 388.B 
Tsuji, Tadashi (19466) 384.B 
Tsukada, Kazumi (1953-) 365.N 391 .N 
Tsukamoto, Tatsuo (1940-) 353.r 
Tsukamoto, Y6tar8 (1932-74) 178.B 
Tsushima, Ryuji (1952-) 32.r 
Tsuzuku, Tosiro (19299) 13.R 
Tucker, Albert William (1905-) 173.1.255.B, E 

292.A, B 
Tug&, Tosiyuki (19266) 22.C 81 356.G, r 
Tukey, John Wilder (19155) 34.r 87.r 142.D, r 

304.r 371.A, r 397.r 421.C r 425.X, r 436.r 
Tumarkin, Lev Abramovich (1904474) 117.1 
Tumura, Yosiro (1912-) 17.C D 62.10 
Tung Chuan 57.A 
Turan, Pal (Paul) (1910-76) 123.D, r 
Turing, Alan Mathison (1912254) 22.G 31.B, C 

97.B 161.B 356.A 
Turner, M. J. 304.r 
Tushkanov, S. B. 17.C 
Tutte, William T. 186.r 
Tyupkin, Yu. S. 80.r 
Tzafriri, Lior (1936-) 37.N, r 168.r 

U 

Uchida, Fuichi (19388) 431.G 
Uchida, Koji (1939-) 14.L 
Uchiyama, Akihito (1948-) 168.B 
Udagawa, Kanehisa (1920-65) 389.r 
Ueda, Tetsuo (1951&) 72.K 
Ueda, Yoshisuke (19366) 126.N 
Uehara, Hiroshi (1923-) 202.P 
Ueno, Kenji (19455) 16.r 72.1, r 
Ueno, Tadashi (1931-) 115.C 
Ugaheri, Tadashi (1915-) 240.B 338.C 
Uhl, J. Jerry, Jr. (1940-) 443.A, H 
Uhlenbeck, George Eugene (1900-) 41.C 45.1 
Uhlenbeck, Karen (19422) 195.E, r i75.D 
Uhlhorn, Ulf 258.r 
Uhlmann, Armin 212.B 
Ukai, Seiji (1939-) 41.D 
Ulam, Stanislaw Marcin (1909984) 33.F, r 153.B 

287.r 385.C 
Ullman, Jeffrey D. (1942-) 31.r 71.r ‘75.r 186.r 
Ullrich, Egon (1902257) 17.A, C 
Ulm, Helmut (1908-75) 2.D 
Umemura, Hiroshi (19444) 16.1 
Umemura (Yamasaki), Yasuo (1934-) 225.r 437.BB 
Umezawa, Hiroomi (19244) 150.r 
Umezawa, Toshio (1928-) 411.F 
Uno, Toshio (1902-) NTR 
Ura, Taro (1920-) 126.D, F 
Urabe, Minoru (1912-75) 301.D 
Urakawa, Hajime (19466) 391.E 
Ural’tseva, Nina Nikolaevna 286.r 323.D 
Urbanik, Kazimierz (1930-) 407.C 
Ursell, Harold Douglas 246.r 
Uryson, Pave1 Samuilovich (1898-1924) 22.1 93.D 

117.A, r 273.K 425.Q, S, U, V, CC 
Ushiki, Shigehiro (1950-) 126.N 
Ushio, Kazuhiko (19466) 96.r 
Utida, Itumi (1805582) 230 
Utida, Shunro (1913-) 263.A 
Uzawa, Hirofumi (19288) 292.A, E, r 



1913 Name Index 
Wagschal, Claude 

V 

Vahlen, Karl Theodor (186991945) 83.B 
Vaillancourt, Remi (1934-) 304.F 345.A 
Vainberg, Boris Rutimovich (1938X) 323.K 
Vainshtein, Isaak Aronovich 273.K 
Vlisala, Jussi 143.r 352.F 
Vajda, Steven 40X.r 
Valentine, F. A. 88.r 
Valiron, Georges (18X4- 1954) 17.A, C, D 43.K 

121.B, C, r 124.8 272.F, K 429.B435.r 
van Beijeren, Henk 402.G 
van Ceulen, Ludolf (1540-1610) 332 
Van Daele, Alfons 308.H 
van Dantzig, D. 109 434.C 
van den Berg, Franciscus Johannes (1 X33-92) 19.B 
van der Corput, Johannes Gualtherus (1890-1975) 

4.C 182.H 242.A 
Vandermonde, Alexandre Theophile (1735596) 

103.G 190.Q 
van der Pal, Balthasar (188991959) 240.r 290.C 
van der Waerden, Bartel Leendert (1903-) 8.*, r 

12.B 24.r 29.r 60.r 66.r 67.r 90.r 92.F, r 122.r 149.r 
1721 187.r 190.r 196 284.r 337.r 351.r 362.r 368.r 
369.E 371.C 417.E 

Vandiver, Harry Shultz (18X2-1973) 14.L 145.*, r 
van Hove, Leon Charles Prudent (1924-) 351.K 

402.G 
van Kampen, Egbertos R. (1908842) 170 
Van Moerbeke, Pierre (19444) 287.C 
van Roomen, Adriaan (1561-1615) 444 
van Schooten, Frans (1615-60) 444.r 
Varadarajan, Veeravalli Seshadri (1937-) 249.r 
Varadhan, Sathamangalam Ranga Ayyangar 

Srinivasa (1940-) 115.C D, r 136.r 250.r 261.C 
262.E 340.r 406.A, D, r 

Varadier, M. 443.A 
Varaiya, Pravin P. 86.D 10X.8 292.F 
Varchenko, A. N. 41X.r 
Varga, Ott6 (1909969) 152.C 
Varga, Richard Steven (1928X) 302.r 
Varopoulos, Nicholas Theodoros 192.U 
Varopoulos, T. 17.C 267.r 
Varouchas, J. 232.C 
Varshamov, Rom Rubenovich (I 9277) 63.B 
Vasilesco, Florin (1897-1958) 120.D 
Vaughan, Robert Charles 123.E 
Vaught, Robert L. 276.D, F 
Veblen, Oswald (1880&1960) 90.r 109.*, r 137 

152.C 201.r 343.r 434.C r 
Vedesinov, N. 425.Q 
Veech, William Austin (19388) 136.H 
Vekua, Il’ya Nestorovich (1907-77) 217.3 323.r 
Veldkamp, Ferdinand0 D. 13.R 
Velo, Giorgio 150.r 
Veneziano, Gabriele (1942-) 132.C 386.C 
Venkov, Boris Borisovich (19344) 200.M 
Venttsel’, Aleksandr Dmitrievich (1937-) 115.C 

261.r 406.F 
Verbeure, Andre (1940-) 402.G 
Verbiest, Ferdinand (1623-88) 57.C 
Verdier, Jean-Louis (19355) 16.r 450.Q, r 
Ver Eecke, Paul (1867-1959) 187.r 
Vergne, Michele 384.r 
Verhulst, Pierre Francois (1 x04-49) 263.A 
Verner, James Hamilton (1940-) 303.r 
Veronese, Giuseppe (185441917) 275.F 
Vershik, Anatolii Moiseevich (19333) 136.D, r 

183.r 

Vesentini, Edoarc (I 92X-) 122.F 
Vessiot, Ernest (1 ,6551952) 107.A 113 249.V 
Vey, Jacques 154.G, r 384.r 
Vick, James Whi>yhd (1942-) 201.r 
Viehweg, Eckart”?.8X) 72.1, r 232.D, r 
Viete, Francois (1 ‘?o-1603) 
Vietoris, Leopoldtl891-) 

8 20 332 360 444 
201.A, C, E, L 425.Q 

Vigneras, Marie-France (1946-) 391.C 
ViguC, Jean-Pierre (1948-) 384.r 
Vilenkin, Naum Yakovlevich (1920-) 112.r 125.r 

162.r 21X.r 341.r 389.r 395.r 407.C 437.AA 
Villat, Henri Rene Pierre (187991972) App. A, 

Table 15.VI 
Ville, Jean A. 262.A 
Vinberg, Ernesl Borisovich (1937-) 122.G 351.1 

384.C, r !2 
Vinogr “ov, Ivan M. (1891-1983) 4.C, E 123.B, E 

242.p295.E 
Vinter, Richard B. 127.G 
Virtanen, Kaarlo I. 62.C 352.A, C 367.E, I 
Vishik, Mark Iosifovich (1921-) 112.E 323.N 
Vitali, Giuseppe (187551932) 270.G 380.D 
Viterbi, Andrew J. (19355) 213.E 
Vitt, Aleksandr Adol’fovich 290.r 
Vitushkin, Anatolii Georgievich (1931l) 164.5 

169.E 
Vivanti, Giulio (1859%‘~) 217.r 339.A 
Vladimirova, S. M. 365. J 
Vogan, David Alexander, Jr. (19544) 437.r 
Vogel, Kurt (188881985) 24.r 
Vogel, William R. 200.r 
Vogt, Dietmar (1941-) 168.8 
Voichick, Michael (1934-) 164.K 
Voiculescu, Dan Virgil (19499) 36.5 331.E 
Voigt. Jiirgen (1943-) 331.E 
Volder, J. E. 142.C 
Volk, Isai Mikhailovich 289.E 
Volkov, Yurii Aleksandrovich (1930&) 365.5 
Volkovyskii, L. 198.r 
Volterra, Vito (1860-1940) 20 68.5 162 163.B 

19X.5 217.A 222.A 263.B 
Voltyanskii, V. G. 155.r 
von Eotvos, Roland (184881919) 359.D 
von Karman, Theodore (1 X8 1- 1963) 205.E 433.C 
von Koch, Helge (1870-1924) 246.K 450.1 
von Mises, Richard (I 883-1953) 29X.r 342.A 

354.E 399.K, r 
von Neumann, John (Johann) (1903357) lX.A, 

E, r 20 22.F 33.A-C, r 36.G 68.169.B, C 75.B 
85.A 95 136.A, B, E, F 138.r 156.E, r 162 173.A, C, 
D, r 197.A, r 225.r 251.M 255.E 304.F 308.C, F, 
G, I, r 312.A 331.E 351.C L, r 354.B 376 385.C 
390.1 445 

Vopenka, Petr (19355) 33.r 
Voronoi, Georgii Fedoseevich (1868- 1908) 242.A 
Voss, Heinz-Jiirgen 1 X6.r 
Vranceanu, Gheorghe (1900-79) 434.C 
Vulikh, Boris Zakharovich (1913-78) 310.A 

W 

Wada, Junzo (1927-) 164.C 
Wada, Yasusi (Nei) (1787-1840) 230 
Waelbroeck, Lucien (1929%) 36.M 
Wage, M. L. 117.E 
Wagner, Harvey Maurice (1931-) 307.r 408.r 
Wagner, Herbert 39.F 
Wagner, S. W. 95.r 
Wagschal, Claude 321.G 
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\ 
k 

Wagstaff, Samuel S. \ 

1914 

Wagstaff, Samuel S. 14.L 145 \ 
Wahl, Jonathan Michael (19455) 9.r 
Wahlin, G. E. 145.r 1 

Wait, R. 223.r 301.r 304.r 
Wakakuwa, Hidekiyo (19255) ‘6’t.F 
Wald, Abraham (1902250) 37ht8.A 399.H, M, r 

400.r 401.F, r 421.r 
Waldhausen, Friedhelm (1938-) 65.E 235.B 
Waldschmidt, Michel(19466) 430.D, r 
Wales, David B. (1939-) 151.1 App. B, Table 6 
Walfisz (Val’liS), Arnold Z. (1892-1962) 4.D 123.D 

220.B 242.r 295.D 
Walker, Arthur G. 359.E 
Walker, G. 421.D # 
Walker, M. R. 376.r 
Walker, R. C. 425.r L 

Walker, Robert John (19099) 9.r 15.B 
Wall, Charles Terens Clegg (1936-) 114.s, 

H, J, K r 
Wallace, Andrew Hugh (1926-) 114.F, L 
Wallach, Nolan R. 178.r 199.r 249.r 275.A, F 

364.r 365.G 437.W 
Wallis, Jennifer Seberry 241.r 
Wallis, John (161661703) 20 265 332 App. A, 

Table lO.VI 
Wallis, Walter Denis 241.r 
Wallis, Wilson Allen (1912-) 371.D 
Wallman, Henry (1915-) 117.r 
Walsh, John Joseph (1948%) 117.1 
Walsh, Joseph Leonard (189551973) 223.r 317.C 

336.F. I 
Walter, John H. (19277) 151.5 
Walter, J. S. 142.C 
Walter, Wolfgang (1927-) 211.r 
Walters. Peter (19433) 136.H 
Walther, Hansjoachim 186.r 
Wang Hsien-Chung (1918878) 81 110.E 148.E 

152.r 199.r 413.r 
Wang, Ju-Kwei (19344) 164.G 
Wang Xiaotong (c. early 7th century) 57.A 
Wantzel, Pierre-Laurent (1814-48) 179.A 
Ward, Harold Nathaniel (1936-) App. B, Table 5.r 
Ward, R. 16.r 
Waring, Edward (1736-98) 4.E 
Warner. Frank Wilson, III (19388) 364.H 
Warner. Garth William, Jr. (1940&) 249.r 437.r 
Warning, E. 118.B 
Warschawski, Stefan Emanuel (19044) 77.C 
Washington, A. 432.r 
Washington, Lawrence Clinton (1951-) 14.L 450.5 
Washio. Yasutoshi (1929-) 399.r 
Washizu, Kyuichiro (1921-81) 271.r 
Wasow, Wolfgang Richard (1909-) 25.B, r 30.r 

107.r 254.r 289.E 304.r 
Wassermann, Gordon 51.r 
Watabe, Tsuyoshi (1934-) 431.D 
Watanabe, Kinji (19466) 323.5 
Watanabe, Shinzo (1935-) 44.E, r 45.r 115.C r 

261.r 262.r 406.B, D, F 
Watanabe, Takeshi (1931-) 260.5 
Watari, Chinami (1932-) 336.D 
Waternaux, Christine M. 280.r 
Watson, George Leo (19099) 4.E 348.r 
Watson, George Neville (1886-) 39.E, r 160.C 

174.r 220.B 268.r 389.r App. A, Tables 19.111, IV 
NTR 

Watson, H. W. 44.B, C, r 
Watt, J. M. 303.r 
Wayland, Harold (19099) 298.r 
Weaver, W. 403.r 

Weber, Claude Alain (19377) 65.r 
Weber, H. F. 39.G App. A, Table 19.IV 
Weber, Heinrich (1842-1913) 8.r 11.13, r 12.B 73.A 

98 167.C 236.r 363.*, r App. A, Tables 19.111, IV, 
20 

Weber, Wilhelm Eduard (1804-91) 363 
Webster, Arthur Gordon (1863-1923) 322.r 
Webster, Sidney M. (1945) 344.F 
Wedderburn, Joseph Henry Maclagan (1882-1948) 

29.E, F 149.M 190.L 368.G 
Wehrl, Alfred (1941-) 212.r 
Weierstrass, Karl Theodor Wilhelm (1815-97) 

9.D 1 l.B, D 20 21.A, E 46.C 58.C 84.C 106.B 109 
120.A 134.F 140 168.B 174.A 198.D, I, N, Q 
229.r 236 267 272.A 273.F 274.F 275.A, B 294.A 
334.B, C 336.A, F 339.A, D 355.D, r 370.B 379.H 
429.B 430.D 435.A 447 App. A, Table 16.IV 

Weil, Andre (19066) 3.C, E, M, r 4.D 6.E, r 9.E, 
H, r 12.B, r 13.M, r 14.r 16.A, C 20 ‘i.l.G 27.r 28 
32.C, D 59.H, r 60.0 73.B 109.*, r 1 i8.B, D, E 
122.F, G, r 182.E 192.r 196 225.G, r 232.B 422.r 
436.A, r 437.P 450.A, H, M, O-S, r 

Weinberg, B. L. 96.r 
Weinberg, Louis (1919-) 282.r 
Weinberg, N. 425.U 
Weinberg, Steven (19333) 132.C D, r 
Weinberger, Hans Felix (1928-) 323.r 327.r 
Weingarten, Leonhard Gottfried Johannes Julius 

(183661910) lll.H, 1365.C App. A, Table 4.1 
Weinstein, Alan David (1943-) 126.N 178.r 
Weinstock, Robert 441.r 
Weir, M. D. 425.r 
Weisberger, William I. (1937-) 132.C 
Weiss, Benjamin (1941-) 136.E-G 
Weiss, Edwin (19277) 14.r 200.r 
Weiss, Guido Leopold (1928-) 168.EI 224.r 
Weiss, Lionel (1923-) 398.r 
Weiss, Max L. (1933-) 43.r 
Weitsman, Allen W. 272.K, r 
Weitzenbock, Roland W. (1885-) 226.C 
Welch, Bernard Lewis 400.G 
Weldon, Edward J., Jr. ’ 63.r 
Wells, Raymond O’Neil. Jr. (1940&) 164.K 232.r 

344.D, E 
Welsh, James Anthony Dominic 66.1 
Wendroff, Burton 304.F 
Wentzel, Gregor (18988) 25.B 
Wentzell - Venttsel 
Wermer, John (19277) 164.F, G, I, K., r 
West, James Edward (19444) 382.D 
Westlake, Joan R. 302.r 
Westwater, Michael John (1942-) 146.A 
Wets, M. J. 408.r 
Weyl, Claus Hugo Hermann (188551955) 7.r 9.r 

ll.B 13.H, J, Q, R 14.r 18.A 20 21N 60.r 69.B 109 
112.D, I, N, 0 124.B, r 126.L 137 1?9.B, r 156.B 
182.F, H, r 190.r 196.r 197.A 198.r 225.1 226.r 
248.F, P, R, W, Z, r 249.U V, r 255.E 272.L 
323.E, G, M 331.E 351.C r 359.r 362.H 367.A, E, r 
377.A 390.1 391.1 413.G, J 434.B 43’r.DD 442.r 445 
448 App. A, Table 4.11 

Weyl, Fritz Joachim (1915-77) 21.N, r 124.B, r 
272.L 448 

Weyrich, Rudolf (1894-) 39.r App. A, Table 19.111 
Whaples, George William (1914-81) 14.F 
Wheeler, John Archibald (1911-) 359.r 386.C 

434.c 
, White, Paul A. (1915-) 298.r 

Whitehead, Alfred North (1861-1947:s 156.B 319.r 
411.A, r 
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Yamauchi, Kazunari 
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Yamauchi, Kazunari (19455) 364.F 
Yamauti, Ziro (1898X1984) 142.B NTR 
Yamazaki, Keijiro (1932 -) 362.5 
Yamazato, Makoto (19499) 341.H 1 
Yamazi, Nusizumi (1704472) 230 
Yanagawa, Takashi (1940&) 371.A 
Yanagihara, Htroshi (I 934-) 203.r \ 

Yanai, Haruo (1940--) 346.r 
Yanase, Mutsuo (19222) 212.8 
Yanenko, Nikolai Nikolaevich i,,,llXi\ 204.r 
Yang Chen Ning (19222) 80.Q, r 132.D, r 150.G 

359.c 
Yang Chung-Tao (1923-) 17X.r 
Yang Hui (fl. 1261) 57.B 
Yang, Paul C. P. (19477) 391.E 
Yano, Kentaro (1912-) 72.r 80.r 109.r Ii 

364.F 36S.H 417.r 
Yano, Shigeki (1922-) 159.G k!Jf 
Yanpol’skii, Avraam Ruvimovich (19055) I&R 
Yaspan, Arthur J. 307.r 
Yasugi, Mariko (19377) 156.E 
Yasuhara, Mitsuru (19322) 41 l.J 
Yasuura, Kamenosuke (19233) 2X2.r 
Yates, Frank (1902-) 19.r 371.C STR 
Yau Shing-Tung (19499) 72.G 115.D 183.r 195.r 

232.C r 235.E 275.C. D, H 364.r 365.H, L 
391.D, E 

Yen Chih-Ta 427.B 
Yennie, Donald Robert (19244) 146.8 
Yin W&n-Lin 242.A 
Yoncda, Nobuo (1930&) 52.r 200.K 
Yoneyama, Kunizo (I 8777 1968) 79.D 
Yor, Marc (19499) 176.C 
Yorke, James A. 126.N 303.G 
Yoshida, Hiroyuki (1947-) 450,s 
Yoshida, Masaaki (1948%) 42X.H 
Yoshida, Masao (1913-) NTR 
Yoshida, Norio (1916-70) 367.1 
Yoshida, Tomoyoshi ( 19466) 43 1 .D 
Yoshikawa, Atsushi (19422) 224.E 
Yoshikawa, Zituo (1878-1915) 437.r 
Yoshizawa, Taro (1919-) 163.r 290.r 394.r 
Yosida, KBsaku (19099) 36.r 37.r 68.r 107.r 112.r 

115.A 136.B, r 162 16X.r 192.r 197.r 247 r 251.r 
2X6.X 288.B 306.A 37X.B, D, H, r 390.r 

Yosida, Mituyosi (159% 1672) 230 
Yosida, YBiti (1898X) NTR 
Youden, William John (1900&71) 102.K 
Youla, Dante C. 86.D 
Young, Alfred (187331940) 362.H 
Young, David Monaghan (1923-) 301.r 302.r 
Young, Gail Sellers (19155) 79.r 
Young, H. Peyton 173.E 201.r 
Young, John Wesley (I 87991932) 343.r 
Young, Richard Donald (1929-) 215.B 
Young, Thomas (177331829) 271.G 
Young, William Henry (186331942) 106.H 159.J 

224.E 3 17.B App. A, Table 8 
Youngs, J. W. T. 157.E 
Yukawa. Hideki (1907781) 132.A 150.A 338.M 
Yule,George Udny(1871~1951) 421.D 
Yuzvinskii, Sergei Aronovich (19366) 136.r 
Yvon, Jacques (1903-) 402.5 

Z 

Zabreiko, P&r Petrovich (1939%) 251 .r 
Zdbusky, Norman J. (19299) 387.8 
Zacks, Shelemyahu (1932.-) 399.H 
Zagier, Don 15.H 72.r 450.T 

Zak, F. L. 16.1 
Zakharov, V. E. 80.r 387.F, G 
Zaleman, Lawrence 169.r 
Zamansky, Marc (1916-) 336.D 
Zaremba, Stanislaw (186331942) 120.B 
Zaring, Wilson B. 33.r 
Zariski, Oscar (1 X99- 1986) 12.B, r 15.B, D, E, H, r 

16.A, I, J, L, X, r 67.r 284.C, D, G, r 270.r 41X.r 
439.r 

Zarnke, Charles Robert 123.C 
Zassenhaus, Hans J. (1912-) 92.A, F 151.E, H, J, r 

190.r 362.K * 
Zeeman, Erik Christopher (19255) 51.A, r 65.A, 

C, D, r 235.G 426 
Zegalov - Zhegalov 
Zeigler, Bernard P. 385.r 
Zeller, Karl (1924-) 43.G 5X.r 379.r 
Zeller-Meier, Georges 30X.F 
Zemansky, Mark Waldo (1900&) 419.r 
Zener, Clarence (19055) 264.r 
Zen0 (c, 490-c. 430 B.C.) 187 319.C 
Zenor, Phillip L. 273.K 
Zermelo, Ernst Friedrich Ferdinand (1X71-1953) 

33.A, B, r 34.B, r 41.A 3Xl.F, G, r 
Zerna, Wolfgang (1916-) 271.r 
Zhang Qiujian (c. 5th century) 57.A 
Zhegalov, Valentin Ivanovich 326.r 
Zhelobenko, Dmitrii Petrovich (1934-) 437.EE, r 
Zia-ud-Din, M. App. B, Table 5.r 
Ziemer, William P. (19344) 246.5 
Zilber, Joseph Abraham (19233) 70.E 201.5 
Ziller, Wolfgang (1952-) 279.G 364.r 
Zimmermann, Wolfhart (1928X) 146.A 150.D 
Zippin, Leo (19055) 2.D 196 249.V, r 423.N 431.r 
Zobin, N. M. 424,s 
Zoll, Otto 178.G 
Zoretti, M. Ludovic 79.D 
Zorn, Max A. (1906-) 34.C r 54.r 45Cl.L 
Zoutendijk, Guus (1929-) 292.E 
Zsidh, L&z16 (19466) 30X.r 
Zuckerman, Herbert Samuel (1912-70) 1lX.r 192.P 
Zumino, Bruno (1923-) 150.D 386.B 
Zurmiihl, Rudolf (19044) 298.r 
Zuse, Konrad (1910-) 75.A 
Zverkin, Aleksandr Mikhailovich (192%) 163.r 
Zvyagin, V. G. 286.r 
Zwinggi, Ernst (19055) 214.r 
Zygmund, Antoni (1902-) 136.B 159.E, G, r 168.B, 

r 192.r 198.r 217.5, r 224.r 251.0 274.B, 1336.C, r 
Zykov, Aleksandr Aleksandrovich (19222) 186.r 
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Note: Citation is to article and section or to a table 
in an appendix, not to page. 

A 

a (cardinal number of N) 49.A 
A(a) (the totality of functions bounded and con- 

tinuous on the closure of s2 and holomorphic 
in Q) 168.B 

A,(Q) (the totality of functions J‘that are holomor- 

phic in Q and that satisfy i IJ(z)lPd.xdy< x) 

168.B 
r-capacity 169.C 
r-excessive function 261 .D 
r-limit point 126.D 
a-limit set (of an orbit) 126.D 
r-perfect, a-perfectness 186.5 
a-point (of a meromorphic function) 272.B 
r-pseudo-orbit 126.5 
x-quartile 396.C 
x-string 248.L 
r-trimmed mean 371.H 
a-adic completion (of an R-module) 284.B 
a-adic topology (of an R-module) 284.B 
.oj-characteristic class (of a real oriented vector 

bundle) 237.F 
A-balanced mapping 277.J 
A-B-bimodule 277.D 
A-homomorphism 

between A-modules 277.E 
of degree p (between two graded A-modules) 

200.B 
A-linear mapping (between A-modules) 277.E 
A-module 277.C 
A-optimality 102.E 
A set 22.A 409.A 
A-stability 303.G 
A(r)-stability 303.G 
&-stability 303.G 
A(O)-stable 303.G 
A-submodule 277.C 
A-summable 379.N 
A-number 430.C 
abacus 75.A 
Abel, N. H. 1 
Abel continuity theorem 12l.D 339.B 
Abelian category 52.N 
Abelian differential 1 I .C 367.H 
Abelian equation 172.G 
Abelian ergodic theorem 136.B 
Abelian extension 172.B 
Abelian function 3.5 

elementary 3.M 
Abelian function field 3.5 
Abelian group(s) 2 190.A 

category of 52.B 
class of 202.N 
dual topological 422.C 
elementary 2.B 
elementary topological 422.E 
free 2.C 
meta- 190.H 
mixed 2.A 
primary 2.A 
reduced 2.D 
topological 422.A 

torsion 2.A 
torsion-free 2.A 
of type p” 2.D 

Abelian ideal (of a Lie algebra) 248.C 
Abelian integral 1 l.C 
Abelian Lie algebra 248.C 
Abelian Lie group 249.D 
Abelian linear group over K 60.L 
Abelian p-group 2.A 

complete 2.D 
divisible 2.D 

Abelian potential 402.G 
Abelian projection operator 308.E 
Abelian subvariety 3.B 
Abelian surface 15.H 
Abelian theorems 240.G 
Abelian variety (varieties) 3 

isogenous 3.C 
polarized 3.G 
simple 3.B 

Abel integral equation 217.L 
Abel method, summable by 379.N 
Abel method of summation 379.N 
Abel partial summation 379.D 
Abel problem 217.L 
Abel test 379.D 
Abel theorem 

(on the Cauchy product of two series) 379.F 
(in the theory of algebraic functions) 3.L 1 l.E 

aberration 180.C 
annual 392 
diurnal 392 

Aberth (DKA) method, Durand-Kerner- 301.F 
Abramov’s formula 136.E 
abscissa 

of absolute convergence (of a Dirichlet series) 
121.B 

of absolute convergence (of a Laplace trans- 
form) 240.B 

of boundedness (of a Dirichlet series) 121.B 
of convergence (of a Dirichlet series) 121.B 
of convergence (of a Laplace transform) 

240.B.H 
of regularity (of a Dirichlet series) 121.B 
of regularity (of a Laplace transform) 240.C 
of simple convergence (of a Dirichlet series) 

121.B 
of uniform convergence (of a Dirichlet series) 

121.B 
of uniform convergence (of a Laplace transform) 

240.B 
absolute (for a quadric hypersurface) 285.C 
absolute Bore1 summable 379.0 
absolute class field 59.A 
absolute continuity 

generalized 1OO.C 
generalized, in the restricted sense 100.C 
space of 390.E 

absolute continuity (*), generalized 100.C 
absolute convergence, abscissa of 

(of a Dirichlet series) 121.B 
(of a Laplace transform) 240.B 

absolute covariant 226.D 
absolute curvature (of a curve) 1ll.C 
absolute figure (in the Erlangen program) 137 
absolute homology group 2Ol.L 
absolute inequality 21 l.A 
absolute integral invariant 219.A 
absolute invariant 12.A 226.A 
absolutely closed space 425.U 
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Whitehead, George William (191%) 64.r 70.r 148.r 
202.P, Q, T-V, r 

Whitehead, John Henry Constantine (1904-60) 
65.A, C, F 90.r 91.r 109.r 114.A, C 178.A 200.L 
202.F, N, P 237.5 426 

Whiteside, Derek Thomas 265.r 283.r 
Whitham, Gerald Beresford (19277) 205.r 
Whitin, Thomson M. 227.r 
Whitney, D. Ransom 371.A, C 
Whitney, Hassler (19077) 56.B, F 58.B-E 66.r 

105.A,D, K, r 111, J 114.A, B, D,r 126.E 147.A, 
F, M 168.B 186.H 201.A, J 418.G 

Whittaker, Edmund Taylor (187331956) 167.B 
174.r 268.r 271.r 3Ol.C 389.r 420.r 450.0 App. A, 
Tables 14.11, 19, 20.r 

Whittle, Peter (1927-) 421.r 
Whyburn, Gordon Thomas (1904469) 79.r 93.r 426 
Wick, Gian Carlo (1909-) 351.K 
Widder, David Vernon (189881973) 94.r 220.D 

240.B, D, E 341 .r 
Widlund, Olof B. (19388) 303.G 
Widman, Kjell-Ove 195.E 
Widom, Harold (19322) 164.K 
Wieferich, Arthur 145 
Wielandt, Helmut (1910-) 151.B, E, H, r 
Wiener, Norbert (189441964) 5.C 18.A, r 20 

36.L 37.A 45.A, B, D, r 48.A, B 58.r 86.E 95.*, r 
120.BpD 123.B 125.0, BB 136.B 159.1 160.B, 
E, G, r 162 176.C. I 192.F, H, 0, P, r 207.C D 
222.C 250.E 260.E 338.G 339.r 342.A 395.D, r 
406.8 407.r 

Wierman, John Charles (19499) 340.r 
Wigert, S. 295.E 
Wightman, Arthur Strong (19222) 15O.C D, r 

212.B 258.r 351.K 386.r 
Wigner, Eugene Paul (1902-) 150.A 212.B 258.C r 

351.H, J&L, r 353.B, r 377.B 437.DD 
Wijsman, Robert Arthur (1920-) 396.r 
Wilcox, Calvin Hayden (19244) 375.B 
Wilcoxon, Frank 371.A-C 
Wilczynski, Ernst Julius (187661932) 109 1lO.B 
Wilder, Raymond Louis (18966 1982) 79.r 93.r 
Wiles, Andrew (1953-) 14.L 257.H 450.5 
Wilkes, James Oscroft (1932-) 304.r 
Wilkinson, James Hardy (1919-) 138.C 298.r 

300.r 301.r 302.r 
Wilks, Samuel Stanley (1906-64) 280.B 374.r 

396.r 399.P 
Willers, Friedrich-Adolf (1883-) 19.r 
Williams, David (19388) 260.P 
Williams, H. C. 123.C 
Williams, Robert F. (19288) 126.5, K, N 
Williamson, Jack (1940-) 272.K, r 
Williamson, Robert E. (19377) 114.H 
Willmore, Thomas James (1919--) lll.r 365.0 
Wilson, B. M. 295.E 
Wilson, Edwin Bidwell (1879-1964) 374.F 
Wilson, John (1741-93) 297.G 
Wilson, K. B. 102.r 3Ol.L 
Wilson, Kenneth G. (19366) 361.r 
Wiman, Anders (186551959) 429.B 
Winnink, Marinus 308.H 
Winter, David John (1939-) 172.r 
Winters, Gayn B. 9.r 
Wintner, Aurel Frederick (1903358) 55.r 420.r 

435.E 
Wirtinger, Wilhelm (18655?) 3.r 235.B, D 365.L 

App. A, Table 8 
Wishart, John 374.C 
Witt, Ernst (1914-) 9.E 59.H 60.0 149.M 151.H 

I 

161.B 248.5 348.E 449.A. B 
Witten, Louis (1921l) 359.r 
Wold, Herms - 0. A. 395.D 
Wolf, Emil (‘ !2-) 446.r 
Wolf, Josep 

19 

ilbert (1936-) 178.r 364.D 365.F 
412.r 41. I 

Wolfe, Dor;,llas A. 371.r 374.r 
Wolfe, Ph “” 327-) 292.D 349.C 
Wolff, Jul’ 

k 

43.K 77.C 
Wolff, Th as H. 164.1 
Wolfowitz, Jacob (1910-81) 63.r 213.F 399.5, N, r 

400.r 
Wolovich, William A. (1937-) 86.D 

:ratschek, Hans 92.F 

a% -3 qie (19344) 403.c 
wo Sai-Wing (1940-) 314.r 

4b 

wo i (1935-) 21.N 
w ) .” Muray (1934-) 86.E 
Wood, John William (1941l) 154.B, H 
Wood, Rex Chester (1920-) 19.r 
Woodcock, Alexander E. R. 51.r 
Woods, E. J. (1936-) 308.1 377.r 
Woods, H. J. 92.F 
Woolard, Edgar William (1899-) 392.r 
Woronowicz, Stanislaw Lech (1941-) 402.G 
Wrench, John William, Jr. (1911&) 332.r 
Wright, D. App. B, Table 5 
Wright, Elisabeth Maitland 4.D, r 83.r 291.F 295.r 

328.*, r 
Wright, Sewall (1889-) 263.E 
Wronski, HGene Joseph Maria (177661853) 208.E 
Wu Chien-Shiung (19133) 359.C 
Wu Hung-Hsi (1940-) 178.r 
Wu Tai Tsun (1933-) 402.r 
Wu Wen-Tsiin (19199) 56.F, r 90.r App. A, 

Table 6.V 
Wulf, W. A. 75.r 
Wylie, Alexander (1815-87) 57.C 
Wylie, Shaun (1913-) 70.r 201.r 

X 

Xavier, Frederic0 Jose de Vasconcelos (1951-) 
275.E 

Xiahou Yang (c. 5th century) 57.A 
Xu Yue (fl. 200) 57.A 

Y 

Yabuta, Kozo (1940&) 164.G 
Yaglom, Akiva Moiseevich (1921-) 44.B, C 395.r 

407.C 433.r 
Yaglom, Isaak Moiseevich (1921-) 89.r 
Yamabe, Hidehiko (1923-60) 183 196 249.D, V 

364.H 
Yamada, Masami (19266) 353.r 
Yamada, Toshihiko (1939-) 362.r 450.T 
Yamada, Toshio (1937-) 406.D 
Yamagami, Shigeru (1955-) 212.B 
Yamaguchi, Keizo (1951-) 344.C 
Yamaguti, Masaya (19255) 126.N 303.G, r 304.F 

325.H 
Yamamoto, Koichi (1921l) 241.E 
Yamamoto, Sumiyasu (19177) 96.F 
Yamamoto, Yoshihiko (1941-) 45O.S 
Yamanaka, Takesi (1931-) 286.2 

i Yamanoshita, Tsuneyo (1929-) 202.S 
Yamashita, Hiroshi (19466) 301.F 
Yamasuge, Hiroshi (1926-60) 114.F 
Yamato, Kenji (1948-) 154.G 
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Affine minimal surface 

1920 

afline minimal surface llO.C 
alline normal 1lO.C 
afline principal normal llO.C 
aftine ring 16.A 
afline scheme 16.D 
alline space 1.A 
affne symmetric space 80.5 
affine torsion 11O.C 
afline transformation(s) 7.E 364.F 

group of 7.E 
of a manifold with an afline connection 80.5 
proper 7.E 
regular 7.E 

afline variety 16.A 
afline Weyl group (of a symmetric Riemann space) 

413.G 
affinity 7.E 

equivalent 7.E 
age-dependent branching process 44.E 
Agncsi, witch of 93.H 
Ahlfors finiteness theorem 234.D 
Ahlfors live-disk theorem 272.5 
Ahlfors function 43.G 77.E 
Ahlfors principal theorem 367.B 
Ahlfors theory of covering surfaces 367.B 
Airy integral App. A, Table 19.IV 
Aitken interpolation scheme 223.B, App. A, Table 

il 

Akizuki theorem, Krull- 284.F 
Alaoglu theorem, Banach- 

(in a Banach space) 37.E 
(in a topological linear space) 424.H 

Albanese variety 16.P 
of a compact Kahler manifold 232.C 
strict 16.P 

Aleksandrov compactification 207.B 
aleph 49.E 

alpha (K,) 312.D 
zero (h’,) 49.E 

Alexander cohomology group 201.M 
relative 201.M 

Alexander duality theorem 210.0 
Alexander horned sphere 65.G 
Alexander ideal (of a knot) 235.C 
Alexander-Kolmogorov-Spanier cohomology theory 

201.M 
Alexander matrix (of a knot) 235.C 
Alexander polynomial (of a knot) 235.C 
Alexander polynomial (of a link) 235.D 
Alexander trick 65.D 
Alexander-Whitney mapping (map) 201.5 
Alfven wave 259 
algebra 8 

(over a field) 203.F 
(of sets) 270.B 
algebraic 29.5 
alternative 231.A 
AF- 36.H 
approximately finite 36.H 
association 102.5 
associative 29 231.A 
augmented 200.L 
Al+‘*- 36.H 
Azumaya 29.K 
Banach 36.A 
Banach *- 36.F 
Boolean 42.A 243.A 
Boolean, generalized 42.B 
C*- 36.G 
C*-, of type I 430.5 

C*-group (of a locally compact Hz.usdorff 
group) 36.L 

Calkin 36.5 390.1 
Cayley 54 
Cayley, genera1 54 
central separable 29.K 
central simple 29.E 
Clifford 61.A 
over a commutative ring 29.A 
composition 23 1 .B 
current 132.C 
cyclic 29.G 
derived (of a Lie algebra) 248.C 
Dirichlet 164.B 
disk 164.B 
distributive 231.A 
division 29.A 
Douglas 164.1 
dual 203.F 
enveloping 200.L 231.A 
enveloping, universal (of a Lie algebra) 248.5 
enveloping van Neumann 36.G 
exterior (of a linear space) 256.0 
Frobenius 29.H 
full matrix 269.B 
function 164.A 
graded 203.B 
Grassmann (of a linear space) 25~5.0 
group 29.C 38.L 192.H 
Hecke 29.C 32.D 
homological 200.A 
Hopf 203.H 
Hopf, dual 203.C 
Hopf, elementary 203.D 
Hopf, graded 203.C 
increasing family of 6- 407.B 
j- 384.C 
Jordan 231 
L,- (of a locally compact Hausdorl‘f group) 
36.L 

Lie 248.A 
liminal C*- 36.H 
linear 8 
of logic 41 l.A 
logmodular 164.B 
multiplier 36.K 
nonassociative 23 1 .A 
normal j- 384.C 
normal simple 29.E 
operator 308.A 
optional 6- 407.8 
PI- 29.5 
postliminal C*- 36.H 
power associative 231.A 
predictable ri- 407.B 
quasi-Frobenius 29.H 
quaternion 29.D 
quaternion, generalized 29.D 
quaternion, Hamilton 29.B 
quaternion, totally definite 27.D 
quotient 29.A 
Racah 353.A 
reduced 23 1 .B 
relationship 102.5 
residue class 29.A 
r~- 270.B 
semigroup 29.C 
semigroup, large 29.C 
(semi)simple 29.A 
separable 29.F,K 200.L 



1919 Subject Index 
Affhe mapping 

additive functor 52.N 
additive group 2.E 190.A 

complete 2.E 
divisible 2.E 
free 2.E 
ordered 439.B 
totally ordered 439.B 

additive interval function 380.B 
, continuous 380.B 
additive measure 

completely 270.D 
finitely 270.D 
o- 270.D 

additive number theory 4 
additive operator 251.A 
additive processes 5 342.A 

temporally homogeneous 5.B 
additive set function 380.C 

completely 380.C 
finitely 380.B 
n-absolutely continuous 380.C 

additive valuation 439.B 
additivity 

(in the theory of local observables) 150.E 
complete (of the integral) 221.C 
complete (of a measure) 270.D 
for the contours (in the curvilinear integral) 

94.D 
countable 270.D 
of probability 342.B 
CT- 270.D 

address 75.B 
single-, instructions 75.C 

adele 6.C 
and idele 6 
principal 6.C 

adele group 
of an algebraic group 13.P 
of a linear algebraic group 6.C 

adele ring (of an algebraic number field) 6.C 
adeles and ideles 6 
Adem formula App. A, Table 6.11 
Adem relation 64.B 
adequacy 396.5 
adherent point 425.B 
AD1 (alternating direction implicit) method 

304.F 
adiabatic law 205.B 
adiabatic process, quasistatic 419.B 
adiabatic wall 419.A 
adjacent 

(chamber) 13.R 
(edges) 186.B 
(germ) 418.E 
(vertices) 186.B 

adjacement matrix 186.G 
adjoin 

a set to a field 149.D 
a variable to a commutative ring 337.A 

adjoint 
left (linear mapping) 52.K 256.Q 
right (linear mapping) 52.K 256.Q 
self- - self-adjoint 

adjoint boundary condition 315.B 
adjoint boundary value problem 315.B 
adjoint differential equations 252.K 
adjoint differential expression 252.K 
adjoint functor 52.K 
adjoint group 

isogenous to an algebraic group 13.N 

of a Lie algebra 248.H 
of a Lie group 249.P 

adjoint Hilbert space 251.E 
adjoint kernel (of a kernel of a potential) 338.B 
adjoint Lie algebra 248.B 
adjoint matrix 269.1 
adjoint operator 

(on Banach spaces) 37.D 251.D 
(on Hilbert spaces) 251.E 
(of a linear partial differential operator) 322.E 
(of a microdifferential operator) 274.F 
(of a microlocal operator) 274.F 

adjoint representation 
of a Lie algebra 248.B 
of a Lie group 249.P 
of a linear representation 362.E 

adjoint space (of a linear topological space) 424.D 
adjoint system 

(of a complete linear system on an algebraic 
surface) 15.D 

of differential equations 252.K 
adjunction formula 15.D 
adjustment 

sampling inspection with 404.C 
seasonal 397.N 

Adler-Weisberger sum rule 132.C 
admissible 

(decision function) 398.B 
(estimator) 399.G 
(extremal length) 143.A 

admissible automorphic representations 450.N 
admissible control 405.A 
admissible function 46.A 304.B 
admissible homomorphism (between a-groups) 

190.E 
admissible isomorphism (between R-groups) 190.E 
admissible lattice (in R”), S- 182.B 
admissible monomial (in Steenrod algebra) 64.B, 
admissible normal subgroup 190.E 
admissible ordinal 356.G 
admissible sequence (in Steenrod algebra) 64.B, 

App. A, Table 6.111 
admissible subgroup (of an n-group) 190.E 
Ado theorem 248.F 
advanced type (of functional differential equation) 

163.A 
a.e. (almost everywhere) 270.D 
AF-algebra 36.H 
affect (of an algebraic equation) 172.G 
affectless algebraic equation 172.G 
afhne (morphism) 16.D 
aftine algebraic group 13.A 
afline algebraic variety 16.A 

quasi- 16.C 
aftine arc element 11O.C 
aftine arc length llO.C 
affme binormal llO.C 
afhne connection 80.H 286.L 

canonical (on R”) 80.5 
coefficients of 80.L 

aftine coordinates 7.C 
afline curvature llO.C 
atline differential geometry llO.C 
atline frame (of an al&e space) 7.C 
affme geometry 7 

in the narrower sense 7.E 
affine length llO.C 
affme locally symmetric space 80.J 
afhnely congruent 7.E 
afhne mapping 7.E 



Subject Index 
Absolutely continuous 

1918 

absolutely continuous 
(function) 100.C 
(mapping in the plane) 246.H 
(measure) 270.L 
(set function) 380.C 
(vector measure) 443.G 
generalized 1OO.C 
p- 380.C 
in the restricted sense 100.C 
in the sense of Tonelli 246.C 

absolutely continuous (*) 100.C 
absolutely continuous spectrum 390.E 
absolutely convergent 

(double series) 379.E 
(infinite product) 379.G 
(Laplace-Stieltjes integral) 240.B 
(power series) 2 1 .B 
(series) 379.C 
(series in a Banach space) 443.D 
uniformly 435.A 

absolutely convex set (in a topological linear space) 
424.E 

absolutely integrable function 216.E 
absolutely irreducible (representation) 362.F 
absolutely irreducible character 362.E 
absolutely measurable 270.L 
absolutely p-valent 438.E 

locally 438.E 
absolutely simple algebraic group 13.L 
absolutely stable 

(linear k-step method) 303.G 
(system of differential equations) 291.E 

absolutely summing (operator) 68.N 
absolutely uniserial algebra 29.1 
absolute minimality 16.1 
absolute moment (kth) 341 .B 
absolute multiple covariant 226.E 
absolute neighborhood retract 202.D 

fundamental (FANR) 382.C 
absolute norm (of an integral ideal) 14.C 
absolute parallelism 191.B 
absolute retract 202.D 

fundamental (FAR) 382.C 
absolute stability 303.G 

interval of 303.G 
region of 303.G 
region of, of the Runge-Kutta (P,p) method 
303.G 

absolute temperature 419.A 
absolute value 

(of a complex number) 74.8 
(of an element of an ordered lield) 149.N 
(of an element of a vector lattice) 310.B 
(of a real number) 355.A 
(of a vector) 442.B 

absorb (a subset, topological linear space) 424.E 
absorbing barrier 115.B 
absorbing set (in a topological linear space) 424.E 
absorption cross section 375.A 
absorption law 

in the algebra of sets 381.B 
in a lattice 243.A 

absorption principle, limiting 375.C 
abstract algebraic variety 16.C 
abstract L space 310.G 
abstract L, space 310.G 
abstract M space 310.G 
abstract Riemann surface 367.A 
abstract simplicial complex 70.C 
abstract space 381.B 

abstract variety 16.C 
abundant number 297.D 
acceleration parameter 302.C 
acceptance 400.A 
acceptance region 400.A 
accepted 3 1 .D 
accessible (from a region) 93.K 
accessible boundary point 333.B 
accretive operator (in a Hilbert space) 251.5 286.C 
accumulated error 138.C 
accumulation point 87.C 425.0 

complete 425.0 
acoustic problem 325.L 
act 

on a commutative ring 226.A 
freely (on a topological space) lZ12.A 

action 43 1.A 
R- 126.B 
rational 226.B 
reductive 226.8 
Z- 126.B 

action and reaction, law of 271.A 
action integral S0.Q 
action space 398.A 
activity 281.D 
activity analysis 376 
actuarial mathematics 214.A 
acute angle 139.D 
acute type 304.C 

strongly 304.C 
acyclic complex 200.C 200.H 
Adams-Bashforth method 303.E 
Adams conjecture 237.1 
Adams-Moulton method 303.E 
Adams operation 237.E 
adapted (stochastic process) 407.B 
adaptive scheme 299.C 
addition 

(in a commutative group) 190.A 
(of natural numbers) 294.B 
(in a ring) 368.A 
(of unfoldings) 51.D 

addition formula 
algebraic 3.M 
for ez 131.G 
for sine and cosine 432.A 
of trigonometric functions App. A, Table 2.1 

addition theorem 
of Bessel functions 39.B 
of cylindrical functions App. A, ‘Table 19.111 
of Legendre functions 393.C 
of the @-function App. A, Table 16.IV 
of sn, cn, dn App. A, Table 16.111 
of the i-function App. A, Table 16.IV 

additive 
completely - completely additive 
countably - countably additive: 
finitely - finitely additive 
CT- - o-additive 
totally - totally additive 

additive category 52.N 
additive class 

completely 270.B 
countably 270.B 
finitely 270.B 

additive functional 
(of a Markov process) 261.E 
martingale 261.E 
natural 261.E 
perfect 261.E 

. 



1921 Subject Index 
Algorithm 

o- 270.B 
0, tail 342.G 
V-, topological 270.C 
CT-, well-measurable 407.B 
simple 29.A 
solvable 231.A 
Staudt 343.C 
Steenrod 64.B 
supplemented 200.L 
symmetric 29.H 
tensor (on a linear space) 256.K 
Thorn 114.H 
total matrix 269.8 
uniform 164.A 
uniscrial 29.1 
uniserial, absolutely 29.1 
uniserial, generalized 29.1 
unitary 29.A 
universal enveloping (of a Lie algebra) 248.5 
vector App. A, Table 3.1 
von Neumann 308.C 
von Neumann, induced 308.C 
von Neumann, reduced 308.C 
W*- 308.C 

weak* Dirichlet 164.G 
zero 29.A 

algebra class (of central simple algebras) 29.E 
algebra class group 29.E 
algebra extension 29.D 200.L 
algebra homomorphism 29.A 
algebraic addition formula 3.M 
algebraic algebra 29.5 
algebraic analysis 125.A 
algebraically closed (in a field) 149.1 
algebraically closed field 149.1 

quasi- 118.F 
algebraically dependent (on a family of elements 

of a field) 149.K 
algebraically dependent elements (of a ring) 369.A 
algebraically equivalent cycles 16.R 
algebrdicdlly equivalent to 0 (a divisor on an alge- 

braic variety) 16.P 
algebrdicdlly independent (over a field) 149.K 
algebraically independent elements (of a ring) 

369.A 
algebraically simple eigenvalue 390.E 
algebraic branch point (of a Riemann surface) 

367.B 
algebraic closure 

of a field 149.1 
separable 257.E 

algebraic correspondence 9.H 16.1 
group of classes of 9.H 

algebraic curves 1l.A 
irreducible 1l.B 
plane 9.B 

algebraic cycles 450.Q 
algebraic differential equation 113 288.A 
algebraic dimension (of a compact complex mani- 

fold) 74.F 
algebraic clement (of a field) 149.E 
algebraic equations 10, App. A, Table 1 

in m unknowns 10.A 
algebraic extension 149.E 
algebraic family (of cycles on an algebraic variety) 

16.R 
algebraic fiber space 72.1 
algebraic function ll.A 
algebraic function field 

over k of dimension I 9.D 

over k of transcendence degree 1 9.D 
in n variable 149.K 
c-function of 450.P 

algebraic fundamental group 16.U 
algebraic geometry 12.A 
algebraic groups 13 

absolutely simple 13.U 
afIine 13.A 
almost simple 13.U 
connected 13.A 
isogenous 13.A 
k-almost simple 15.0 
k-anisotropic 13.G 
k-compact 13.G 
k-isotropic 13.G 
k-quasisplit 13.0 
k-simple 13.0 
k-solvable 13.F 
k-split 13.N 
linear 13.A 
nilpotent 13.F 
reductive 13.1 
semisimple 13.1 
simple 13.L 
solvable 13.F 
unipotent 13.E 

algebraic group variety 13.B 
algebraic homotopy group 16.U 
algebraic integer 14.A 
algebraic K-theory 237.5 

higher 237.5 
algebraic Lie algebra 13.C 
algebraic linear functional 424.B 
algebraic multiplicity (of an eigenvalue) 309.B 
algebraic number 14.A 
algebraic number fields 14 

relative 14.1 
algebraic pencil 15.C 
algebraic point (over a field) 369.C 
algebraic scheme 16.D 
algebraic sheaf, coherent 16.E 72.F 
algebraic singularity (of an analytic function) 

198.M 
algebraic solution (of an algebraic equation) 10.D 
algebraic space 16.W 
algebraic subgroup 13.A 
algebraic surfaces I5 
algebraic system 

of r equations 10 
in the wider sense 409.B 

algebraic topology 426 
algebraic torus 13.D 
algebraic varieties 16 16.C 

abstract 16.C 
afline 16.A 
complex 16.T 
normal 16.F 
product 16.A 
projective 16.A 
quasi-afline 16.C 
quasiprojective 16.C 

algebra isomorphism 29.A 
algebroidal function(s) 17 

entire 17.B 
k-valued 17.A 

algorithm 97 356.C 
composite simplex 255.F 
division 297.A 
division (of polynomials) 337.C 
dual simplex 255.F 



Subject Index 
Alignment chart 

1922 

Euclidean 297.A 
Euclidean (of polynomials) 337.D 
fractional cutting plane 215,B 
greedy 66.G 
heuristic 215.E 
partitioning 215.E 
primal-dual 255.F 
variable-step variable-order (VSVO) 303.E 
VSVO 303.E 

aliases 102.1 
alignment chart 19.D 
allied series (of a trigonometric series) 159.A 
all-integer 215.B 
all-integer algorithm 215.B 
all-integer programming problem 215.A 
allocation, optimum 373.E 
allocation process, multistage 127.A 
allowed homomorphism (between A-modules) 

277.E 
allowed submodule 277.C 
almost all 342.B 
almost all points of a variety 16.A 
almost certainly converge 342.D 
almost certainly occur 342.8 
almost complex manifold 72.B 

stably 114.H 
weakly 114.H 

almost complex structure 72.B 
tensor held of (induced by a complex structure) 
72.B 

almost conformal 275.C 
almost contact manifold 1lO.E 
almost contact metric structure llO.E 
almost contact structure llO.E 
almost elfective action (on a set) 415.B 
almost elfectively (act on a G-space) 431.A 
almost everywhere converge 342.D 
almost everywhere hold (in a measure space) 270.D 
almost finite memory channels 213.F 
almost G-invariant statistic 396.1 
almost invariant test 400.E 
almost parallelizable manifold 114.1 
almost periodic (motion) 126.D 
almost periodic differential equation 290.A 
almost periodic functions 18 

analytic 18.D 
on a group 18.F 
with respect to p 18.C 
in the sense of Bohr 18.B 
uniformly 18.B 

almost periodic group, maximally 18.1 
almost periodic group, minimally 18.1 
almost simple algebraic group 13.~ 

k- 13.0 
almost subharmonic 193.T 
almost surely converge 342.D 
almost surely occur 342.B 
almost symplectic structure 191.B 
alphabet 31.B 63.A 213.B 
alternate angles 139.D 
alternating contravariant tensor 256.N 
alternating covariant tensor 256.~ 
alternating direction implicit (ADI) method 304.F 
alternating function 337.1 
alternating group of degree n 151.G 
alternating knot 235.A 
alternating law (in a Lie algebra) 248.A 
alternating matrix 269.B 
alternating multilinear form 256.H 
alternating multilinear mapping 256.H 

alternating polynomial 337.1 
simplest 337.1 

alternating series 379.C 
alternating tensor field 105.0 
alternative (in game theory) 173.B 
alternative algebra 231.A 
alternative field 231.A 
alternative hypothesis 400.A 
alternative theorem, Fredholm 68.E :!17.F 
alternizer 256.N 
altitude (of a commutative ring) 67.E 
altitude theorem, Krull 284.A 
amalgamated product (of a family of groups) 

190.M 
amalgamated sum 52.G 
ambient isotropic 65.D 
ambient isotropy 65.D 
ambig class (of a quadratic field) 347.F 
ambig ideal (of a quadratic field) 347.F 
ambiguous point 62.D 
amicable number 297.D 
Amitsur cohomology group 200.P 
Amitsur complex 200.P 
amount insured 214.A 
amount of inspection, expected 404.C 
amount of insurance 214.A 
Ampere equations, Monge- 278, App. A, Table 

15.111 
Ampere transformation 82.A 
amphicheiral knot 235.A 
ample divisor 16.N 

very 16.N 
ample linear system 16.N 

very 16.N 
ample over S (of a sheaf on a scheme) 16.E 

relatively 16.E 
very 16.E 

ample vector bundle 16.Y 
amplification matrix 304.F 
amplification operator of a scheme 304.F 
amplitude 

(of a complex number) 74.C 
(function) App. A, Table 16.111 
(of an oscillation) 318.A 
(of time series data) 397.N 
(of a wave) 446 
Feynman 146.B 
partial wave scattering 375.E 
probability 351.D 
scattering 375.C,E 386.B 

amplitude function (of a Fourier integral operator) 
274.C 345.8 

AMU estimator, kth-order 399.0 
analog, difference 304.E 
analog computation 19 
analog computers 19.E 

electronic 19.E 
analog of de Rham’s theorem 21.L 
analog quantity 138.B 
analog simulation 385.A 
analysis 20 

activity 376 
algebraic 125.A 
backward 138.C 
backward error 302.B 
combinatorial 66.A 
consistency of 156.E 
convex 88 
design-of-experiment 403.D 
dimensional 116 



1923 

Diophantine 296.A 
experimental 385.A 
factor 280.G 
forward 138.C 
function 20 
functional 162 
functional, nonlinear 286 
harmonic (on locally compact Abelian groups) 

192.G 
intrablock 102.D 
microlocal 274.A 345.A 
multivariate 280 
of a network 282.C 
numerical 300 
principal component 280.F 
regression 403.D 
spectral 390.A 

analysis of variance 400.H 403.D 
multivariate 280.B 
table 400.H 

analytic 
(function) 21 .B,C 198.A,H 
(predicate) 356.H 
complex, structure 72.A 
micro- (hyperfunction) 125.CC 
pseudo- (function) 352.B 
quasi- (function) 352.B 
quasi- (in the generalized sense) 58.F 
real 106.K 198.H 

analytical dynamics 271.F 
analytically continuable 198.1 
analytically hypoelliptic 112.D 323.1 
analytically independent elements 370.A 
analytically normal local ring 284.D 
analytically thin set 23.D 
analytically uniform spaces 125,s 
analytically unramified semilocal ring 284.D 
analytic almost periodic function 18.D 
analytic automorphism 21.5 
analytic capacity 169.F 
analytic continuation 198.G 

along a curve 198.1 
direct 198.G 
uniqueness theorem of 198.1 
in the wider sense 198.0 

analytic covering space 23.E 
analytic curve 

in an analytic manifold 93.B 
in a Euclidean plane 93.B 

analytic differential (on a Riemann surface) 367.H 
analytic fiber bundle 

complex 147.0 
real 147.0 

analytic functions 198.A,H 
complex 198.H 
inverse 198.L 
many-valued 198.5 
multiple-valued 198.5 
n-valued 198.5 
real 106.K 198.H 
in the sense of Weierstrass 198.1 
of several complex variables 21.B,C 
in the wider sense 198.0 

analytic geometry 181 
analytic hierarchy 356.H 
analytic homomorphism (between Lie groups) 

249.N 
analytic index 

of a elliptic complex 237.H 
of an elliptic differential operator 237.H 

Subject Index 
Angle 

analytic isomorphism 21.5 
between Lie groups 249.N 

analyticity, set of 192.N 
analytic manifold 

complex 72.A 
real 105.C 

analytic mapping 21.5 
analytic measurable space 270.C 
analytic neighborhood 

of a function element in the wider sense 
198.0 

of a Riemann surface 367.A 
analytic number theory 296.B 
analytic operation 22.B 
analytic operation function 37.K 
analytic perturbation 331.D 
analytic polyhedron 21.G 
analytic prolongation 198.G 
analytic relations, invariance theorem of 198.K 
analytic representation (of GL( V)) 60.D 
analytic set 

(in set theory) 22 
(in the theory of analytic spaces) 23.B 
co- 22.A 
complementary (in set theory) 22.A 
germ of 23.8 
irreducible (at a point) 23.B 
principal 23.B 
purely d-dimensional 23.B 
purely d-dimensional (at a point) 23.B 

analytic sheaf 72.E 
coherent 72.E 

analytic spaces 23 
Banach 23.G 
C- 23.E 
general 23.G 
K-complete 23.F 
normal 23.D 
in the sense of Behnke-Stein 23.E 

analytic structure 
complex 72.A 
real 105.D 
on a Riemann surface 367.A 

analytic submanifold, complex 72.A 
analytic subset (of a complex manifold) 72.E 
analytic subspace 23.C,G 
analytic torsion 391.M 
analytic vector (with respect to a unitary representa- 

tion of a Lie group) 437,s 
analytic wave front set 274.D 
analyzer 

differential 19.E 
harmonic 19.E 

anchor ring 410.B 
ancient mathematics 24 
ancillary statistic 396.H 4Ol.C 
Anger function 39.G, App. A, Table 19.IV 
angle 139.D 155.B 

(of a geodesic triangle) 178.A,H 
(of hyperspheres) 76.A 
(of a spherical triangle) 432.B 
acute 139.D 
alternate 139.D 
corresponding 139.D 
eccentric (of a point on a hyperbola) 78.E 
eccentric (of a point on an ellipse) 78.D 
Euler 90.C 
general 139.D 
non-Euclidean (in a Klein model) 285.C 
obtuse 139.D 



Subject Index 

Angular derivative (of a holomorphic function) 
1924 

regular polyhedral 357.B 
righi 139.D 
straight 139.D 
straightening of 114.F 
supplementary 139.D 
trisection of 179.A 
vertical 139.D 

angular derivative (of a holomorphic function) 
43.K 

angular domain 333.A 
angular frequency (of a sine wave) 446 
angular momentum 258.D 271.E 

integrals of 420.A 
intrinsic 415.G 
orbital 315.E 
theorem of 271.E 

angular momentum density 150.B 
angular transformation 374.D 
anharmonic ratio 343.D 
anisotropic 

(quadratic form) 13.G 
k- (algebraic group) 13.G 

annihilation operator 377.A 
annihilator 422.D 

left 29.H 
reciprocity of (in topological Abelian groups) 
422.E 

right 29.H 
annual aberration 392 
annual parallax 392 
annuity contract 214.B 
annular domain 333.A 
annulator 422.D 
annulus conjecture 65.C 
anomaly 

eccentric 309.B 
mean 309.B 
true 309.B 

Anosov diffeomorphism 126.5 136.G 
Anosov flow 126.5 136.G 
Anosov foliations 126.3 
Anosov vector held 126.5 
ANR (absolute neighborhood retract) 202.D,E 
antiautomorphism 

(of a group) 190.D 
(of a ring) 368.D 
principal (of a Clifford algebra) 61.B 

antiendornorphism 
(of a group) 190.D 
(of a ring) 368.D 

antiequivalence (between categories) 52.H 
anti-Hermitian form 256.Q 
anti-Hermitian matrix 269.1 
antiholomorphic 195.B 275.B 
antihomomorphism 

of groups 190.D 
of la1 tices 243.C 
of rings 368.D 

anti-isomorphic lattices 243.C 
anti-isomorphism 

of groups 190.D 
of lattices 243.C 
of ordered sets 3 11 .E 
of rings 368.D 

antinomy 3 19.A 
antiparticle 132.A 386.B 
antipodal points (on a sphere) 140 
antipode 203.H 
anti-self-dual (G-connection) 80.Q 

antisymmetric 
(Fock space) 377.A 
(multilinear form) 256.H 
(multilinear mapping) 256.H 
(relation) 358.A 
(tensor) 256.N 
law 311.A 
matrix 269.B 

antisymmetry, set of 164.E 
Antoine’s necklace 65.G 
apartment 13.R 
aperiodic 136.E 260.B 
Apollonius problem (in geometric construction) 

179.A 
a posteriori distribution 388.B 
a posteriori probability 342.F 
apparent force 271.D 
apparent singular point 254.L 
Appell hypergeometric functions of two variables 

206.D, App. A, Table 18.1 
application 31.B 
approach 

Bayesian 401 .B 
group-theoretic 215.C 
non-Bayesian 401 .B 
S-matrix 132.C 
state-space 86.A 

approximate derivative (of a measurabls: function) 
100.B 

approximate functional equation (for zeta function) 
450.B 

approximately derivable (measurable function) 
100.8 

approximately finite (von Neumann algebra) 308.1 
approximately finite algebra 36.H 
approximately finite-dimensional 308.1 
approximation(s) 

best (of a continuous function) 33’6.B 
best (in evaluation of functions) 142.B 
best (of an irrational number) 83.8 
best polynomial, in the sense of Chebyshev 

336.H 
Diophantine 182.F 
full discrete 304.B 
least square 336.D 
of linear type 142.B 
method of successive (for an elliptic partial dif- 

ferential equation) 323.D 
method of successive (for Fredholm integral 
equations of the second kind) 217.D 

method of successive (for ordinary differential 
equations) 316.D 

nth (of a differentiable function) 106.E 
Oseen 205.C 
overall, formula 303.C 
Pad& 142.E 
Pauli 415.G 
Prandtl-Glauert 205.B 
polynomial. 336 
semidiscrete 304.B 
simplicial (to a continuous mapping) 70.C 
Stokes 205.C 
Wilson-Hilferty 374.F 
Yosida 286.X 

approximation method 
in physics 25 
projective 304.B 

approximation property 
(of a Banach space) 37.L 



1925 Subject Index 
Ascending chain 

bounded 37.L 
approxrmation theorem 

(on functions on a compact group) 69.B 
(on valuations) 439.G 
cellular 70.D 
Eichler’s 27.D 
Kronecker’s 422.K 
polynomial (for C”-functions) 58.E 
simplicial 70.C 
Weierstrass 336.A 

a priori distribution 388.B 
least favorable 388.H 

a priori estimate 323.C 
in L2 sense 323.H 

a priori probability 342.F 
AR (absolute retract) 202.D 
Arabic numerals 26 
Arab mathematics 26 
Araki axioms, Haag- 150.E 
Araki-Sewell inequality, Roepstorff- 402.G 
arbitrary constant 313.A 
arbitrary set 381.G 
arc(s) 93.B 186.B 

continuous 93.B 
Farey 4.8 
geodesic 178.H 364.B 
joined by an 79.B 
Jordan 81.D 93.B 
major 4.B 
minor 4.B 
open 93.B 
pseudo- 79.B 
simple 93.B 

Arccos 131.E 
arc cos (arc cosine) 13 1 .E 
arc element 

affine 1lO.C 
conformal llO.D 

Archimedean lattice-ordered group 243.G 
Archimedean ordered field 149.N 
Archimedean unit (of a vector lattice) 310.8 
Archimedean valuation 14.F 439.C 
Archimedean vector lattice 310.C 
Archimedes axiom 

in geometry 155.B 
for real numbers 355.B 

Archimedes spiral 93.H 
arc length 11 l.D 

atTine 1lO.C 
representation in terms of (for a continuous 
arc) 246.A 

Arcsin 131.E 
arcsin (arcsine) 131.E 
arcsine law 

for Brownian motion 45.E 
for distribution function 250.D 
for random walk 260.E 

arcsine transformation 374.D 
Arctan 131.E 
arctan (arctangent) 131.E 
arcwise connected component 79.B 
arcwise connected space, locally 79.B 
area 246 

(Euclidean) 139.F 
(of a polygon) 155.F 
(of a set in R’) 216.F 
Banach (of a surface) 246.G 
of concentration 397.E 
definite, set of 216.F 
Geiicze (of a surface) 246.E 

Gross (of a Bore1 set) 246.G 
inner 216.F 270.G 
Janzen (of a Bore1 set) 246.G 
Lebesgue (of a surface) 246.C 
mixed (of two ovals) 89.D 
outer 216.F 270.G 
Peano (of a surface) 246.F 
surface, of unit hypersphere App. A, Table 9.V 

area1 element (in a Cartan space) 152.C 
area1 functional 334.B 
areally mean p-valent 438.E 
area theorem 438.B 

Bers 234.D 
Arens-Royden theorem 36.M 
Arens theorem, Mackey- 424.N 
Arf-Kervaire invariant 114.5 
Argand plane, Gauss- 74.C 
argument 

(of a complex number) 74.C 
behind-the-moon 351.K 

argument function 46.A 
argument principle 198.F 
arithmetical (predicate) 356.H 
arithmetical hierarchy 356.H 

of degrees of recursive unsolvability 356.H 
arithmetically equivalent 

(lattices) 92.B 
(pairs) 92.B 
(structures) 276.D 

arithmetic crystal classes 92.B 
arithmetic function 295.A 
arithmetic genus 

(of an algebraic curve) 9.F 
(of an algebraic surface) 15.C 
(of a complete variety) 16.E 
(of a divisor) 15.C 
virtual (of a divisor) 16.E 

arithmetic mean 21 l.C 397.C 
arithmetic of associative algebras 27 
arithmetico-geometric mean 134.B 
arithmetic operations 294.A 
arithmetic progression 379.1, App. A, Table 10.1 

prime number theorem for 123.D 
arithmetic subgroup 13.P 122.F.G 
arithmetic unit 75.8 
arithmetization (of metamathematics) 185.C 
array 96.C 

balanced 102.L 
k- 330 

orthogonal 102.L 
arrow diagram 28 1 .D 
Arrow-Hurwicz-Uzawa gradient method 292.E 
artificial variables 255.C 
Artin, E. 28 
Artin conjecture 450.G 
Artin general law of reciprocity 59.C 
Artin-Hasse function 257.H 
Artinian module 277.1 
Artinian ring 284.A 

left 368.F 
right 368.F 

Artin L-function 450.G,R 
Artin-Rees lemma 284.A 
Artin-Schreier extension (of a field) 172.F 
Artin symbol 14.K 
Arzela theorem, Ascoli- 168.B 435.D 
ascending central series (of a Lie algebra) 248.C 
ascending chain 

in an ordered set 31 l.C 
of subgroups of a group 190.F 



Subject Index 

Ascending chain condition 
1926 

ascending chain condition 
in an ordered set 3 1 I .C 
for subgroups of a group 190.F 

Ascoli-Arzela theorem 168.B 435.D 
Ascoli theorem 435.D 
as. consistent 399.K 
assembler 75.C 
associate (of an element of a ring) 67.H 
associated convergence radii 21.B 
associated diagrams (in irreducible representations 

of orthogonal groups) 60.5 
associated differential equation, Legendre’s 393.A 
associated factor sets (of crossed products) 29.F 
associated factor sets (for extension of groups) 

190.N 
associated fiber bundle 147.D 
associated flow 136.F 
associated form (of a projective variety) 16,s 
associated graded ring 284.D 
associated integral equation (of a homogeneous) 

integral equation) 217.F 
associated Laguerre polynomials 317.D 
associated Legendre functions 393.C App. A, 

Table 18.fII 
associated prime ideal 67.F 
associated principal bundle 147.D 
association, measure of 397.K 
association algebra 102.5 
association matrix 102.5 
associative, homotopy 203.D 
associative algebra(s) 102.5 231.A 

power 231.A 
associative law 

for the addition and multiplication of natural 
numbers 294.B 

in the algebra of sets 381.B 
for cardinal numbers 49.C 
for the composite of correspondences 358.B 
general (for group composition) 190.C 
for group composition 190.A 
in a lattice 243.A 
in a ring 368.A 

associative multiplication of a graded algebra 
203.B 

assumed rate of interest 214.A 
assumption 

inverse 304.D 
Stokes 205.C 

asteroid 93.H 
astronomy, spherical 392 
asymmetric (factorial experiment) 102.H 
asymmetric Cauchy process 5.F 
asymptote (of an infinite branch) 93.G 
asymptotically developable (function) 30.A 
asymptotically distributed 374.D 
asymptotically efftcient estimator 399.N 

first-order 399.0 
kth-order 399.0 

asymptotically mean unbiased 399.K 
asymptotically median unbiased estimator (AMU) 

kth-order 399.0 
asymptolically normal estimator 

best (BAN) 399.K 
consistent and (CAN) 399.K 

asymptotically normally distributed 399.K 
asymptotically optimal 354.D 
asymptotically stable 126.F 286,s 394.B 

globally 126.F 
uniformly 163.G 

asymptotically unbiased 399.K 

asymptotic bias 399.K 
asymptotic completeness 150.D 
asymptotic concentration 399.N 
asymptotic condition, LSZ 150.D 
asymptotic cone 350.B 
asymptotic convergence 168.B 
asymptotic covariance matrix 399.K 
asymptotic curve 1lO.B 1ll.H 
asymptotic direction 1ll.H 
asymptotic distribution, &h-order 399.0 
asymptotic efiiciency 399.N 

second-order 399.0 
higher-order 399.0 

asymptotic expansion 30.A, App. A, Table 17.1 
(of a pseudodifferential operator) 345.A 
method of matched 112.B 
Mirskshisundaram-Pleijel 391.B 

asymptotic fields 150.D 
asymptotic freedom 361.B 
asymptotic method 290.D 
asymptotic normality 399.K 
asymptotic path (for a meromorphic function) 

272.H 
asymptotic perturbation theory 331.D 
asymptotic power series 30.A 
asymptotic property (of solutions of a system of 

linear ordinary differential equations) 314.A 
asymptotic ratio set 308.1 
asymptotic ray 178.F 
asymptotic representation 

Debye 39.D, App. A, Table 19.IH 
Hankel App. A, Table 19.111 

asymptotic sequence 30.A 
asymptotic series 30.A 
asymptotic set 62.A 
asymptotic solution 325.M 
asymptotic tangent 1lO.B 
asymptotic value of a meromorphic function 62.A 

272.H 
asymptotic valaue theorem, Lindelof 43.C 
asynchronous system (of circuits) 75.B 
Atiyah-Bott fixed point theorem 153.1~ 
Atiyah-Singer fixed point theorem 153.C 
Atiyah-Singer index theorem 237.H 

equivariant 237.H 
atlas 105.C 

of class Cr 105.D 
of class C” 105.D 
oriented 105.F 

atled (nabla) 442.D 
atmospheric refraction 392 
at most (for cardinal numbers) 49.B 
atomic 

(measurable set) 270.D 
at 0 163.H 

atomic element (in a complemented modular lat- 
tice) 243.F 

atomic formula 276.A 411.D 
atomless 398.C 
at random 401.F 
attaching a handle 114.F 
attaching space 202.E 
attraction, domain of 374.G 
attractor 126.F 

strange 126.N 
attribute, sampling inspection by 404 C 
augmentation 

(of an algebra) 200.M 
(of a chain complex) 200.C 
(of a coalgebra) 203.F 



1927 Subject Index 
Axiom of the power set 

(of a cochain complex) 200.F 
(of a complex in an Abelian category) 

200.H 
augmented algebra 200.M 
augmented chain complex 200.C 
autocorrelation 421.8 
autocorrelation coefficient 397.N 
autocovariance, sample 421.B 
automata 31 
automatic integration scheme 299.C 
automaton 31.A 

deterministic linear bounded 31 .D 
hnite 31.D 
nondeterministic linear bounded 31.D 
push-down 31.D 

automorphic form 450.0 
of dimension -k 32.B 
of type U 437.DD 
of weight m 32.A 
of weight k 32.B 

automorphic function(s) 32 
multiplicative 32.A 
with respect to F 32.A 

automorphism 
(of an algebraic system) 409.C 
(of a field) 149.B 
(of a group) 190.D 
(of an object in a category) 52.D 
(of a polarized Abelian variety) 3.G 
(of a probability space) 136.E 
(of a ring) 368.D 
analytic 21.5 
anti- (of a group) 190.D 
anti- (of a ring) 368.D 
differential 113 
Frobenius (of a prime ideal) 14.K 
group of (of a group) 190.D 
holomorphic 21.5 
inner (of a group) 190.D 
inner (of a ring) 368.D 
inner, group of (of a group) 190.D 
inner, group of (of a Lie algebra) 248.H 
involutive (of a Lie group) 412.8 
k-fold mixing 136.E 
Kolmogorov 136.E 
metrically isomorphic (on a measure space) 

136.E 
modular 308.H 
outer, group of (of a group) 190.D 
outer, group of (of a Lie algebra) 248.H 
principal (of a Clifford algebra) 61.B 
shift 126.5 
spatially isomorphic (on a measure space) 

136.E 
spectrally isomorphic (on a measure space) 

136.E 
strongly mixing 136.E 
weakly isomorphic 136.E 
weakly mixing 136.E 

automorphism group (of a Lie algebra) 248.A 
automorphy, factor of 32.A 
autonomous 163.D 290.A 
autoregressive Gaussian source 213.E 
autoregressive integrated moving average process 

421.G 
autoregressive moving average process 421.D 
autoregressive process 421.D 
auxiliary circle 78.D 
auxiliary equation, Charpit 32O.D 

auxiliary units 414.A 

auxiliary variable 373.C 
average 211 .C 

moving 397.N 
moving, process 421.D 
phase 402.C 
weighted moving 397.N 

average complexity 71.A 
average outgoing quality level 404.C 
average sample number 404.C 
averaging, method of 290.D 
AW*-algebra 36.H 
axial-vector currents, partially conserved 132.C 
axial visibility manifold 178.F 
axiom(s) 35.A 411.1 

Archimedes (in geometry) 155.B 
Archimedes (for real numbers) 355.B 
congruence (in geometry) 155.B 
Eilenberg-Steenrod 201.Q 
Euclid 139.A 
first countability 425.P 
the first separation 425.Q 
the fourth separation 425.Q 
Frechet 425.4 
Haag-Araki 150.E 
Haag-Keslev 150.E 
Hausdorff 425.Q 
Kolmogorov 425.Q 
logical 337.C 411.1 
Martin 33.F 
mathematical 337.C 411.1 
Osterwalder-Schrader 150.F 
Pasch 155.B 
second countability 425.P 
the second separation 425.Q 
system of 35.8 
the, third separation 425.4 
Tietze’s first 425.Q 
Tietze’s second 425.Q 
Tikhonov’s separation 425.Q 
Vietoris 425.Q 
Wightman 150.D 

axiom A diffeomorphism 126.5 
axiom A flow 126.5 
axiomatic quantum field theory 150.D 
axiomatic set theory 36 156.E 
axiom A vector field 126.5 
axiomatization 35.A 
axiomatize (by specifying a system of axioms) 

35.B 
axiom of choice 33.B 34.A 

and continuum hypothesis, consistency of 
33.D 

and continuum hypothesis, independence of 
33.D 

axiom of comprehension 33.8 38 1 .G 
axiom of constructibility 33.D 
axiom of determinacy 22.H 
axiom of determinateness 33.F 
axiom of e-induction 33.8 
axiom of extensionality 33.8 
axiom of foundation 33.8 
axiom of free mobility (in Euclidean geometry) 

139.8 
axiom of infinity 33.8 381.G 
axiom of linear completeness (in geometry) 155.B 
axiom of mathematical induction 294.8 
axiom of pairing 381.G 
axiom of parallels (in Euclidean geometry) 139.A 

155.B 
axiom of the power set 33.B 381.G 



Subject Index 
Axiom of reducibility (in symbolic logic) 

1928 

axiom of reducibility (in symbolic logic) 156.B 
411.K 

axiom of regularity 33.B 
axiom of replacement 33.B 381.G 
axiom of separation 33.B 
axiom of strong infinity 33.E 
axiom of subsets 33.B 381.G 
axiom of substitution 381.G 
axiom of the empty set 33.B 
axiom of the sum set 33.B 
axiom of the unordered pair 33.B 
axiom of union 381 .G 
axioms of continuity 

Dedekind’s 355.A 
axiom system(s) 35 

of a structure 409.B 
of a theory 411.1 

axis (axes1 
of a circular cone 78.A 
conjugate (of a hyperbola) 78.C 
of convergence 240.B 
coordinate (of an aftine frame) 7.C 
coordinate (of a Euclidean space) 140 
imaginary 74.C 
major (of an ellipse) 78.C 
minor (of an ellipse) 78.C 
optical 180.B 
of a parabola 78.C 
principal (of a central conic) 78.C 
principal (of a parabola) 78.C 
principal (of a quadric surface) 350.B 
principal, of inertia 271.E 
principal, transformation to 390.B 
real 74.C 
of rotation (of a surface of revolution) 111.1 
transverse (of a hyperbola) 78.C 
xi- (of a Euclidean space) 140 

Ax-Kochen isomorphism theorem 276.E 
azimuth App. A, Table 3.V 
azimuthal quantum number 315.E 
Azumaya algebra 29.K 
Azumaya lemma, Krull- 67.D 

B 

/I -beta 
.8(R) 

(=9,,,(Q)) 168.B 
(the space of hyperfunctions) 125.V 

B”,,, (Besov spaces) 168.B 
p-KMS state 402.G 
P-shadowed 126.5 
B-traced 126.J 
%-measurable function 270.5 
%-measurable set 270.C 
B-regular measure 270.F 
%ummable series 379.0 
/81-summable series 379.0 
b-function 125.EE 418.H 
BN-pair 13.R 343.1 
(B,N)-pair 151.5 
En set 22.D 
B-complete (locally convex space) 424.X 
BA 102.L 
back substitution 302.B 
backward analysis 138.C 
backward difference 223.C App. A. Table 21 
backward emission 320.A 
backward equation, Kolmogorov 115.A 260.F 
backward error analysis 302.B 

backward interpolation formula 
Gauss 223.C 
Newton 223.C 

backward moving average representation 395.D 
canonical 395.D 

backward type 304.D,F 
badly approximable 83.B 
Baer sum (of extensions) 200.K 
Bahadur efficiency 400.K 
Baire condition 425.L 
Baire function 84.D 
Baire-Hausdorff theorem 273.5 425.N 
Baire measurable 270.L 
Baire property 425.L 

Lebesgue measurability and 33.F 
Baire set 126.H 270.C 
Baire space 425.L 
Baire zero-dimensional space 273.B 
Bairstow method 301.E 
balanced array 102.L 
balanced fractional factorial design 102.1 
balanced incomplete block design 102.E 

partially 102.5 
balanced mapping, A- 277.5 
balayage 338.L 
balayage principle 338.L 
ball 140 

n- 140 
open 140 
open n- 140 
spin 351.L 
unit 140 
unit (of a Banach space) 37.B 

ball knot, (p, q)- 235.G 

ball pair 235.G 
BAN (best asymptotically normal) 399.K 
Banach-Alaoglu theorem 

(in a Banach space) 37.E 
(in a topological linear space) 424.H 

Banach algebra(s) 36.A 
Banach analytic space 23.G 
Banach area (of a surface) 246.G 
Banach (extension) theorem, Hahn- 

(in a normed space) 37.F 
(in a topological linear space) 424.C 

Banach integral 310.1 
Banach lattice 310.F 
Banach Lie group 286.K 
Banach limit 37.F 
Banach manifold 105.2 
Banach space(s) 37.A,B 

reflexive 37.G 
regular 37.G 

Banach star algebra 36.F 
Banach-Steinhaus theorem 

(in a Banach space) 37.H 
(in a topological linear space) 424.5 

Banach theorem 37.1 
band, Mobius 4lO.B 
bang-bang control 405.C 
Barankin theorem 399.D 
bar construction (of an Eilenberg-MacL.ane com- 

plex) 70.F 
bargaining set 173.D 
bargaining solution, Nash 173.C 
Barnes extended hypergeometric function 206.C 

App. A, Table 18.1 
barrel (in a locally convex space) 424.1 
barreled (locally convex space) 424.1 

quasi- 424.1 



1929 

barrier 120.D 
absorbing I 15.B 
reflecting 115.B.C 

Bartle-Dunford-Schwartz integral 443.G 
barycenter 

(of points of an affme space) 7.C 
(of a rigid body) 271.E 

barycentric coordinates 
(in an atline space) 7.C 90.B 
(in a Euclidean complex) 70.B 
(in the polyhedron of a simplicial complex) 

7o.c 
barycentric derived neighborhood, second 65.C 
barycentric refinement 425.R 
barycentric subdivision 

(of a Euclidean complex) 70.B 
(of a simplicial complex) 70.C 

baryons 132.B 
base 

(in a Banach space) 37.L 
(curve of a roulette) 93.H 
(of a logarithmic function) 131.B 
(of a point range) 343.B 
(of a polymatroid) 66.F,G 
data 96.B 
filter 87.1 
local 425.E 
for the neighborhood system 425.E 
normal 172.E 
open 425.F 
for the space 425.E 
for the topology 425.F 
for the uniformity 436.B 

base functions 304.B 
base point 

of a linear system 16.N 
of a loop 170 
of a topological space 202.8 

base space 
of a fiber bundle 147.B 
of a fiber space 148.B 
of a Riemann surface 367.A 

base term (of a spectral sequence) 200.J 
base units 414.A 
Bashforth method, Adams- 303.E 
basic components (of an m-dimensional surface) 

110.A 
basic concept (of a structure) 409.B 
basic equation 320.E 
basic feasible solution 255.A 
basic tield (of linear space) 256.A 
basic form 255.A 
basic interval 4.B 
basic invariant 226.B 
basic limit theorem 260.C 
basic open set 425.F 
basic optimal solution 255.A 
basic property (of a structure) 409.B 
basic ring (of a module) 277.D 
basic set (for an Axiom A flow) 126.5 
basic set (of a structure) 409.B 
basic solution 255.A 

feasible 255.A 
optimal 255.A 

basic space (of a probability space) 342.8 
basic surface (of a covering surface) 367.B 
basic variable 255.A 
basic vector field 80.H 
basic Z,-extension 14.L 

Subject Index 
Bernoulli 

basin 126.F 
basis 

(of an Abelian group) 2.B 
(in a Banach space) 37.L 
(of a homogeneous lattice) 182.B 
(of an ideal) 67.B 
(of a linear space) 256.E 
(of a module) 277.G 
canonical 201 .B 
canonical homology 1 l.C 
Chevalley canonical 248.4 
dual 256.G 
minimal 14.B 
normal 172.E 
of order I’ in N 4.A 
orthonormal 197.C 
Schauder 37.L 
strongly distinguished 418.F 
transcendence 149.K 
Weyl canonical 248.P 

basis theorem 
Hilbert (on Noetherian rings) 284.A 
Ritt (on differential polynomials) 113 

bath, heat 419.B 
Bayes estimator 399.G 
Bayes formula 342.F 405.1 
Bayesian approach 401 .B 
Bayesian model 403.G 
Bayes risk 398.B 
Bayes solution 398.B 

generalized 398.B 
in the wider sense 398.B 

Bayes sufficient c-field 396.5 
BCH (Base-Chaudhuri-Hooquenghem) code 63.D 
BDI, type (symmetric Riemannian spaces) 412.G 
BDII, type (symmetric Riemannian spaces) 412.G 
BDH (Brown-Douglas-Fillmore) theory 36.5 390.5 
behavior, Regge 386.C 
behavior strategy 173.B 
behind-the-moon argument 351.K 
Behnke-Stein, analytic space in the sense of 23.E 
Behnke-Stein theorem 21.H 
Behrens-Fisher problem 400.G 
Bellman equation 405.B 
Bellman function 127.G 
Bellman principle 405.B 
Bell inequality 351.L 
Bell number 177.D 
belong 

(to a set) 381.A 
to the lower class with respect to local con- 
tinuity 45.F 

to the lower class with respect to uniform con- 
inuity 45.F 

to the upper class with respect to local con- 
tinuity 45.F 

to the upper class with respect to uniform con- 
tinuity 45.F 

Beltrami differential equation 352.B 
Beltrami differential operator 

of the first kind App. A, Table 4.11 
of the second kind App. A, Table 4.11 

Behrami operator, Laplace- 194.B 
Bergman kernel function 188.G 
Bergman metric 188.G 
Bernays-Gddel set theory 33.A 
Bernoulli 

loosely 136.F 
monotonely very weak 136.F 



Subject Index 
Bernoulli differential equation 

1930 

Bernoulli differential equation App. A, Table 14.1 
Bernoulli family 38 
Bernoulli lemniscate 93.H 
Bernoulli method 301.5 
Bernoulli number 177.B 
Bernoulli polynomial 177.B 
Bernoulli process 136.E 

very weak 136.E 
weak 136.E 

Bernoulli sample 396.B 
Bernoulli shift 136.D 

generalized 136.D 
Bernoulli spiral 93.H 
Bernoulli theorem 205.B 
Bernoulli trials, sequence of 396.B 
Bernshtein inequality (for trigonometric polyno- 

mials) 336.C 
Bernshtein polynomial 366.A 418.H 

Sato- 125.EE 
Bernshtein problem 275.F 

generalized 275.F 
Bernshtein theorem 

(on cardinal numbers) 49.B 
(on the Laplace transform) 240.E 
(on minimal surfaces) 275.F 

Bers area theorem 234.D 
Bertini theorems 15.C 
Bertrand conjecture 123.A 
Bertrand curve 11 l.F 
Besov embedding theorem, Sobolev- 168.B 
Besov space 168.B 
Bessaga-Pelczynski theorem 443.D 
Bessel differential equation 39.B, App. A, Table 

14.11 
Bessel formula, Hansen- App. A, Table 19.111 
Bessel function(s) 39, App. A, Table 19.111 

half 39.B 
modified 39.G 
spherical 39.B 

Bessel inequality 197.C 
Bessel integral 39.B 
Bessel interpolation formula App. A, Table 21 
Bessel series, Fourier- 39.D 
Bessel transform, Fourier- 39.D 
best (statistical decision function) 398.B 
best approximation 

(of a continuous function) 336.B 
(in evaluation of functions) 142.B 
(of an irrational number) 83.B 
in the sense of Chebyshev 336.H 

best asymptotically normal estimator 399.K 
best invariant estimator 399.1 
best linear unbiased estimator (b.1.u.e.) 403.E 
best polynomial approximation (in the sense of 

Chebyshev) 336.H 
beta density 397.D 
beta distribution 341.D, App. A, Table 22 
beta function 174.C App. A, Table 17.1 

incomplete 174.C App. A, Table 17.1 
beta-model, Lute 346.G 
better, uniformly (statistical decision function) 

398.B 
Betti group (of a complex) 201.B 
Betti number 

of a commutative Noetherian ring 200.K 
of a complex 201.B 

between (two points in an ordered set) 31 l.B 
between-group variance 397.L 
Beurling generalized distribution 125.U 
Beurling-Kunugui, theorem, Iversen- 62.B 

Bezout theorem 12.B 
BG (=Bernays-Giidel set theory) 33.A 
Bhattacharyya inequality 399.D 
biadditive mapping 277.5 
bialgebra 203.G 

quotient 203.G 
semigroup 203.G 
universal enveloping 203.G 

bialgebra homomorphism 203.G 
Bianchi identities 80.5 417.B, App. A, Table 4.11 
bias 399.C 
biaxial spherical harmonics 393.D 
BIBD (balanced incomplete block design) 102.E 
bicharacteristic curve 325.A 
bicharacteristic strip 320.B 
bicompact 425,s 
bicomplex 2OO.H 
Bieberbach conjecture 438.C 
Biehler equality, Jacobi- 328 
biequicontinuous convergence, topology of 424.R 
bifurcation, Hopf 126.M 
bifurcation equation 286.V 
bifurcation method 290.D 
bifurcation point 

(in bifurcation theory) 126.M 286.R 
(in nonlinear integral equations) 217.M 

bifurcation set 51.F 418.F 
bifurcation theorem, Hopf 286.U 
bifurcation theory 286.R 
biharmonic (function) 193.0 
biholomorphic mapping 21.5 
biideal 203.G 
bijection 

(in a category) 52.D 
(of sets) 381.C 

bijective mapping 381.C 
bilateral network 382.C 
bilinear form 

(on linear spaces) 256.H 
(on modules) 277.5 
(on topological linear spaces) 424.G 
associated with a quadratic form 256.H 
matrix of 256.H 
nondegenerate 256.H 
symmetric (associated with a quadratic form) 

348.A 
bilinear functional 424.G 

integral 424.R 
bilinear Hamiltonian 377.A 
bilinear mapping 

(of a linear space) 256.H 
(of a module) 277.5 
canonical (on tensor products of linear spaces) 

256.1 
bilinear programming 264.D 
bilinear relations, Hodge-Riemann 16.V 
bimatrix game 173.C 
bimeasurable transformation 136.B 
bimodular germ (of an analytic function) 418.E 
bimodule 277.D 

A-B- 277.D 
binary quadratic form(s) 348.M 

primitive 348.M 
properly equivalent 348.M 

binary relation 358.A 41 l.G 
binding energy 351.D 
Binet formula 

(on Fibonacci sequence) 295.A 
(on gamma function) 174.A 

binomial coefficient 330, App. A, Table 17.11 



1931 Subject Index 
Bore1 set(s) 

binomial coefticient series 121.E 
binomial distribution 341.D 397.F, App. A, 

Table 22 
negative 341.D 397.F, App. A, Table 22 

binomial equation 10.C 
binomial probability paper 19.B 
binomial series App. A, Table lO.IV 
binomial theorem 330, App. A, Table 17.11 
binormal 11 l.F 

afine ll0.C 

bioassay 40.C 
biology, mathematical models in 263 
biometrics 40 
bipartite graph 186.C 

complete 186.C 
bipolar (relative to a pairing) 424.H 
bipolar coordinates 90.C 
bipolar cylindrical coordinates App. A, Table 3.V 
bipolar theorem 37.F 424.H 
biprojective space 343.H 
biquadratic equation App. A, Table 1 
birational correspondence 16.1 
birational invariant 12.A 
birational isomorphism 

between Abelian varieties 3.C 
between algebraic groups 13.A 

birational mapping 16.1 
birational transformation 16.1 
BirchhSwinnerton-Dyer conjecture 1 f8.D 450,s 
biregular mapping (between prealgebraic varieties) 

16.C 
BirkhoR integrable (function) 443.E 
Birkhoff integral 443.E 
Birkhoff fixed-point theorem, Poincare- 153.B 
Birkhoff-Witt theorem, Poincart- (on Lie algebras) 

248.5 
Birnbaum theorem 399.C 
birth and death process 260.G 
birth process 260.G 
birth rate, infinitesimal 260.G 
bispectral density function 421.C 
bispinor of rank (k, n) 258.B 
bit 75.B 213.B 

check 63.C 
information 63.C 

bivariate data 397.H 
bivariate distribution 397.H 
bivariate moments 397.H 
bivariate normal density 397.1 
Blackwell-Rao theorem 399.C 
Blakers-Massey theorem 202.M 
Blaschke manifold 178.G 

at a point p 178.G 
Blaschke product 43.F 
Blaschke sequence 43.F 
Bleuler formalism, Gupta- 105.G 
Bloch constant 77.F 

schlicht 77.F 
Bloch theorem 77.F 
block 

(bundle) 147.Q 
(of irreducible modular representations) 362.1 
(of a permutation group) 151.H 
(of plots) 102.B 
complete 102.B 
incomplete 102.B 
initial 102.E 

block bundle 147.Q 
normal 147.Q 
q- 147.Q 

block code 63.A 213.F 
sliding 213.E 

block design 102.B 
balanced incomplete 102.E 
efficiency-balanced 102.E 
optimal 102.E 
randomized 102.B 
variance-balanced 102.E 

block effect 102.B 
block size 102.B 
block structure, q- 147.Q 
blowing up 

(of an analytic space) 23.D 
(of a complex manifold) 72.H 
(by an ideal sheaf) 16.K 
b.1.u.e (best linear unbiased estimator) 403.E 

Blumenthal zero-one law 261.B 
BMO (bounded mean oscillation) 168.B 
Bochner integrable 443.C 
Bochner integral 443.C 
Bochner theorem 36.L 192.B 
body 

bounded star 182.C 
rigid 271.E 

body forces 271.G 
Bogolyubov inequality, Peierls- 212.8 
Bohr, almost periodic function in the sense of 

18.B 
Bohr compactification 18.H 
Bokshtein homomorphism 64.B 
Bokshtein operation 64.B 
Boltzmann constant 402.B 
Boltzmann distribution law, Maxwell- 402.B 
Boltzmann equation 41.A 402.B 
Bolzano-Weierstrass theorem 140 273.F 
bond percolation process 340.D 
Bonnet formula, Gauss- 111 .H 364.D, App. A, 

Table 4.1 
Bonnet fundamental theorem 11 l.H 
Bonnet-Sasaki-Nitsche formula, Gauss- 275.C 
Boolean algebra 243.E 

generalized 42.B 
Boolean lattice 42.A 243.E 

of sets 243.E 
Boolean operations 42.A 
Boolean ring 42.C 

generalized 42.C 
Boolean space 42.D 
Boolean-valued set theory 33.E 
Borcher theorem 150.E 
bord (for a G-manifold) 431.E 
bordant 431.E 
border set 425.N 
Borel-Cantelli lemma 342.B 
Bore1 direction (of a meromorphic function) 272.F 
Bore1 embedding, generalized 384.D 
Bore1 exceptional value 272.E 
Bore1 exponential method, summable by 379.0 
Bore1 field 270.B,C 
Bore1 integral method, summable by 379.0 
Bore1 isomorphic 270.C 
Borel-Lebesgue theorem 273.H 

mapping 270.C 
Bore1 measurable function 270.5 
Bore1 measure 270.G 
Bore1 method of summation 379.0 
Bore1 set(s) 

(in a Euclidean space) 270.C 
(in the strict sense) 270.C 
(in a topological space) 270.C 



Subject Index 
Bore1 space 

1932 

nearly 261 .D 
Bore1 space 270.C 

standard 270.C 
Bore1 subalgebra (of a semisimple Lie algebra) 

248.0 
Bore1 subgroup 

of an algebraic group 13.G 
k- (of an algebraic group) 13.G 
of a Lie group 249.5 

Bore1 subset 270.C 
Bore1 summable, absolute 379.0 
Bore1 theorem 

(on classifying spaces) App. A, Table 6.V 
(on meromorphic functions) 272.E 
Heine 273.F 

Bore]-Weil theorem 437.4 
bornological 

locally convex space 424.1 
ultra- (locally convex space) 424.W 

Borsuk-Ulam theorem 153.B 
Bortolotti covariant derivative, van der Waerden- 

417.E 
Bose particle 132.A 
Bose statistics 377.B 402.E 
boson 132.A 351.H 

Nambu-Goldstone 132.C 
Bott fixed point theorem, Atiyah- 153.C 
Bott generator 237.D 
Bott isomorphism 237.D 
Bott periodicity theorem 

on homotopy groups 202.V, App. A, Table 
6.VII 

in K-theory 237.D 
bound 

Froissart 386.B 
greatest lower (of a subset in an ordered set) 

311.8 
greatest lower (of a subset of a vector lattice) 

31o.c 
Hamming 63.B 
least upper (of a subset in an ordered set) 
311.B 

least upper (of a subset of a vector lattice) 
31o.c 

lower (of a subset in an ordered set) 3 11 .B 
Plotkin 63.B 
upper (of a subset in an ordered set) 31 l.B 
Varshamov-Gilbert-Sacks 63.B 

boundary (boundaries) 
(of a convex cell) 7.D 
(cycle) 200.H 
(of a function algebra) 164.C 
(of a manifold) 65.B 105.B 
(of a topological space) 425.N 
Choquet (for a function algebra) 164.C 
closed (for a function algebra) 164.C 
C’-manifold with 105.E 
C-manifold without 105.E 
differential manifold with, of class c’ 105.E 
domain with regular 105.U 
domain with smooth 105.U 
dual Martin 260.1 
entrace (of a diffusion process) I 15.B 
exit (of a diffusion process) 115.B 
harmonic 207.B 
ideal 207.A 
Martin 207.C 260.1 
module of 200.C 
natural (of an analytic function) 198.N 
natural (of a diffusion process) 115.B 

Newton, off in the coordinate 4 18.D 
nondegenerate Newton 418.D 
of null (open Riemann surface) 367.E 
pasting together 114.F 
of positive (open Riemann surface) 367.E 
regular (of a diffusion process) 1 15.B 
relative 367.B 
Shilov (for a function algebra) 21 .D 164.C 
Shilov (of a Siegel domain) 384.1) 
surface with 410.B 
topological manifold with 105.B 
topological manifold without 105.B 

boundary cluster set 62.A 
boundary condition 3 15.A 323.F 

adjoint 315.B 
operator with 112.F 

boundary element (in a simply connected domain) 
333.B 

boundary function 160.E 
boundary group 234.B 
boundary homomorphism 

of homology exact sequence 201 L 
in homotopy exact sequences 202.L 

boundary layer 205.C 
boundary layer equation, Prandtl 205.C 
boundary operator 2OO.C 

between chain groups 201.B 
linear 3 15.B 
partial 200.E 
total 200.E 

boundary point 
dual passive 260.H 
entrace 260.H 
exit 260.H 
irregular 120.D 
passive 260.H 
regular 120.D 
of a subset 425.N 

boundary set 425.N 
boundary space 112.E 
boundary value 

(of a conformal mapping) 77.B 
(of a hyperfunction) 125.V 
(relative to a differential operator) 112.E: 

boundary value problem 315 
(for harmonic functions) 193.F 
(in numerical solution of ordinary differential 
equations) 303.H 

adjoint 315.B 
first (for elliptic differential equations) 323.C 
first (for harmonic functions) 193.F 
general 323.H 
homogeneous (of ordinary differential equa- 
tions) 315.B 

inhomogeneous (of ordinary differential equa- 
tions) 315.B 

of ordinary differential equations 315 
second (elliptic differential equations) 323.F 
second (for harmonic functions) 193.F 
self-adjoint 315.B 
solution of App. A, Table 15.VI 
third (for elliptic differential equations) 323.F 
third (for harmonic functions) 193.F 
two-point (of ordinary differential equations) 

315.A 
weak form of the (of partial differential equa- 

tions) 304.B 
bounded 

(in an affine space) 7.D 
(half-plane) 155.B 



I933 Subject Index 
Brouwer mapping theorem 

(metric space) 273.B 
(ordered set) 3 I 1 .B 
(set in a topological linear space) 424.F 
(set of real numbers) 87.B 
(torsion group) 2.F 
(vector lattice) 3lO.B 
(vector measure) 443.G 
order 3lO.B 
relatively 331.B 
T 311.B 
totally 273.B 

bounded, essentially (measurable function) 168.B 
bounded approximation property (of a Banach 

space) 37.5 
bounded automaton, linear 

deterministic 31.D 
nondeterministic 3 1.D 

bounded domain 
divisible 284.F 
homogeneous 384.A 412.F 
irreducible symmetric 412.F 
sweepable 284.F 
symmetric 412.F 

bounded from above 
(in an ordered set) 31 I .B 
(for real numbers) 87.B 

bounded from below 
(for a filtration) 200.5 
(in an ordered set) 311.B 
(for real numbers) 87.B 
(for a spectral sequence) 200.5 

bounded functions 43.A 
bounded linear operator 37.C 
boundedly complete o-field 396.E 
bounded matrix 269.K 
bounded mean oscillation (BMO) 168.B 
bounded metric space, totally 273.B 
bounded motion 420.D 
bounded p-operator 356.B 
boundedness, abscissa of (of a Dirichlet series) 

121.8 
boundedness principle, upper (in potential theory) 

388.C 
boundedness theorem, uniform 37.H 
bounded quantitier 356.B 
bounded set 

in an affine space 7.D 
in a locally convex space 424.F 
in a metric space 273.8 
totally (in a metric space) 273.B 

bounded star body 182.C 
bounded uniform space 

locally totally 436.H 
totally 436.H 

bounded variation 
function of 166.8 
integrable process of 406.B 
mapping of 246.H 
in the sense of Tonelli 246.C 
set function of 380.B 
vector measure of 443.G 

bound state 351.D 
bound variable 41 l.C 
bouquet 202.F 
Bouquet differential equation, Briot- 288.B 289.B 
Bouquet formulas (on space curves) 1ll.F 
Bourbaki, Frkchet space in the sense of 424.1 
Boussinesq equation 387.F 
boxes 140 

box topology 425.K 
brachistochrone 93.H 
bracket 105.M 

Lagrange 84.A 324.D 
Poisson (of two functions) 105.M 
Poisson (of two vector fields) 271.F 324.C.D 
Toda 202.R 

bracket product (in a Lie algebra) 248.A 
Bradley-Terry model 346.C 
braid(s) 235.F 

closed 235.F 
braid group 235.F 
branch 

(of an analytic function) 198.5 
(of a curve of class C”) 93.G 
(of a graph) 282.A 
finite (of a curve of class Ck) 93.G 
infinite (of a curve of class Ck) 93.G 

branch and bound methods 215.D 
branch divisor (in a covering of a nonsingular 

curve) 9.1 
branched minimal immersion 275.B 
branched minima1 surface 275.8 
branching Markov process 44.E 
branching processes 44 342.A 

age-dependent 44.E 
continuous state 44.E 
Galton-Watson 44.8 
Markov 44.D 
multitype Markov 44.E 

branch point 
(of a covering surface) 367.B 
(of an ordinary curve) 93.C 
algebraic (of a Riemann surface) 367.B 
fixed (of an algebraic differential equation) 
288.A 

logarithmic (of a Riemann surface) 367.B 
movable (of an algebraic diffirential equation) 
288.A 

branch source 282.C 
Brandt law 241.C 
Brauer character (of a modular representation) 

362.1 
Brauer group 

(of algebra classes) 29.E 
(of a commutative ring) 29.K 

Brauer theorem 450.G 
Bravais class 92.B 
Bravais group 92.B 
Bravais lattice 92.B 
Bravais type 92.B 

simple 92.E 
breadth (of an oval) 89.C 
Brelot solution, Perron- (of Dirichlet problem) 

12o.c 
Brelot solution, Perron-Wiener- (of Dirichlet prob- 

lem) 120.C 
Brianchon theorem 

on conic sections 78.K 
in projective geometry 343.E 

bridge, Brownian 2SO.F 374.E 
Brieskorn variety 418.D 
Brill-Noether number 9.E 
Briot-Bouquet differential equation 288.B 289.B 
broken line 155.F 
broken symmetry 132.C 
Bromwich integral 240.D 322.D, App. A, Table 12.1 
Brouwer fixed-point theorem 153.B 
Brouwer mapping theorem 99.A 



Subject Index 
Brouwer theorem on the invariance of domain 

1934 

Brouwer theorem on the invariance of domain 
117.D 

Browder-Livesay invariant 114.L 
Brownian bridge 250.F 374.E 
Brownian functional 176.1 
Brownian motion 5.D 45 342.A 

d-dimensional 45.C 
{F,}- 45.8 406.B 
on Lie groups 406.G 
with an N-dimensional time parameter 45.1 
Ornstein-Uhlenbeck 45.1 
right invariant 406.G 
space-time 45.F 

Brown-Shield-Zeller theorem 43.C 
BRS transformation 150.G 
Bruck-Ryser-Chowla theorem 102.E 
Bruhat decomposition (of an algebraic group) 13.K 

relative 13.Q 
Brun theorems, Poincare- 420.A 
Brun-Titchmarsh theorem 123.D 
Bucy filter, Kalman- 86.E 405.G 
building 130.R 343.1 
bulk viscosity, coeflicients of 205.C 
bundle(s) 

canonical 147.F 
complex conjugate 147.F 
complex line 72.F 
complex line, determined by a divisor 72.F 
conormal 274.E 
coordinate 147.B 
coordinate, equivalent 147.B 
cotangent 147.F 
cotangential sphere 274.E 
dual 147.F 
fiber 147.B 
fiber, associated 147.D 
fiber, of class C’ 147.0 
fiber, complex analytic 147.0 
fiber, orientable 147.L 
fiber, real analytic 147.0 
flat 1:. 154.B 
foliated 154.B,H 
frame, orthogonal 364.A 
frame, tangent orthogonal n- 364.A 
G- 147.B 
Hopf 147.E 
induced 147.G 
line 147.F 
Maslov 274.C 
normal 105.C 114.8 154.B,E 364.C 274.E 
normal block 147.Q 
normal k-vector 114.5 
normal sphere 274.E 
n-sphere 147.K 
n-universal 147.G 
principal 147.C 
principal, associated 147.D 
principal fiber 147.C 
product 147.E 
q-block 147.Q 
quotient 16.Y 147.B 
reduced 147.5 
spin 237.F 
Spin’ 237.F 
sub- 16.Y 147.F 
tangent 105.H 147.F 154.B 286.K 
tangential sphere 274.E 
tangent r-frame 108.H 147.F 
tautological line 16.E 
tensor 147.F 

trivial 147.E 
unit tangent sphere 126.L 
universal 147.G,H 
vector 16.Y 147.F 
vector, ample 16.Y 
vector, complex 147.F 
vector, cotangent 147.F 
vector, dual 147.F 
vector, indecomposable 16.Y 
vector, normal 105.L 
vector, quaternion 147.F 
vector, quotient 16.Y 
vector, semistable 16.Y 
vector, stable (on algebraic varieties) 16.Y 
vector, stable (on topological spaces) 237.B 
vector, stably equivalent 237.B 
vector, tangent 108.H 147.F 

bundle group (of a fiber bundle) 147.EI 
bundle mapping (map) 147.B 
bundle of homomorphisms 147.F 
bundle of p-vectors 147.F 
bundle space (of a fiber bundle) 147.B 
Bunyakovskii inequality 21 l.C, App. A, Table 8 
Burali-Forti paradox 319.B 
Burnside conjecture 151.D 
Burnside problem 161.C 

restricted 161.C 
Burnside ring 431.F 
Burnside theorem 15 1 .D 
burst error 63.E 
Bush-Mosteller model 346.G 

C 

c (cardinal number of R) 49.A 
C’(n) (the totality of I times continuously differenti- 

able functions in a) 168.B 
C;(n) (the totality of functions in C’(n) whose 

supports are compact subsets of cl) 168.B 
c (a sequence space) 168.B 
C (complex numbers) 74.A 294.A 
X-equivalent (closed on G-manifolds) ,431.F 
W-group 52.M 
Y-theory, Serre 202.N 
C-analytic hierarchy 356.H 
C-arithmetical hierarchy 356.H 
C-equivalent almost complex manifolds 114.H 
C,-field 118.F 
C,(d)-field 118.F 
C, set 22.D 
{c,}-consistency, {c,}-consistent 399.K 
C*-algebra 36.G 

liminal 36.E 
postliminal 36.E 
of type I 308.L 

C*-cross norm 36.H 
C*-dynamical system 36.K 
C*-group algebra (of a locally compact Hausdorff 

space) 36.L 
C*-tensor product, projective 36.H 
(C, cc)-summation 379.M 
c,-bundle 237.F 
c,-mapping 237.G 
C-analytic space 23.E 
C-covering space 23.E 
C’-conjugacy, (?-conjugate 126.B 
C-equivalence, C-equivalent 126.B 
(Y-flow 126.B 
C’-foliation 154.G 
C’-function in a C”-manifold 105.G 



1935 Subject Index 
Canonical representation 

C’-manifold 105.D 
with boundary 105.E 
without boundary 105.E 
compact 105.D 
paracompact - 105.D 

C-mapping 105.J 
C’-norm 126.H 
C’-structure 108.D 

subordinate to (for a Cs-structure) 108.D 
on a topological manifold 114.B 

C’- R-stable 126.H 
C’-structurally stable 126.H 
C-triangulation 114.C 
C”-homomorphism (between Lie groups) 249.N 
C”-isomorphism (between Lie groups) 249.N 
C”-function (of many variables) 58.B 

germ of (at the origin) 58.C 
preparation theorem for 58.C 
rapidly decreasing 168.B 
slowly increasing 125.0 

C”-functions and quasi-analytic functions 58 
C” topology, weak 4Ol.C 
CA set (in set theory) 22.A 
Caianiello differential equation 291.F 
calculable function, effective 356.C 
calculable number 22.G 
calculation, graphical 19.B 
calculator 75.A 
calculus 

differential 106 
fundamental theorem of the infinitesimal 216.C 
Heaviside 306.A 
holomorphic functional 36.M 
infinitesimal (in nonstandard analysis) 273.D 
Kirby 114.L 
operational 251.G 306, App. A, Table 12.11 
predicate 41 l.J 
predicate, with equality 41 l.J 
propositional 41 l.F 
of residue 198.F 
stochastic 406.A 
tensor 417.A, App. A, Table 4.11 

calculus of variations 46 
classical theory of 46.C 
conditional problems in 46.A 
fundamental lemma in 46.B 

Calderon-Zygmund singular integral operator 
217.5 251.0 

Calderbn-Zygmund type, kernel of 217.5 
Calkin algebra 36.5 
Callan-Symanzik equation 361.B 
Campbell-Hausdorff formula 249.R 
CAN estimator 399.K 
canceling 138.B 
cancellation law 

on the addition of natural numbers 294.B 
in a commutative semigroup 190.P 
on the multiplication of natural numbers 294.B 

canonical ahine connection (on R”) 80.5 
canonical anticommutation relation 277.A 
canonical backward moving average representation 

395.D 
canonical basis (of a chain group of a finite simpli- 

cial complex) 201.B 
Chevalley (of a complex semisimple Lie algebra) 

248.Q 
Weyl (of a semisimple Lie algebra) 248.P 

canonical bilinear mapping (on tensor products of 
linear spaces) 256.1 

canonical bundle (of a differentiable manifold) 147.F 
canonical class (of an algebraic curve) 9.C 
canonical cohomology class (in Galois cohomology 

in class field theory) 59.H 
canonical commutation relations 351.C 377.A,C 
canonical coordinates (of a Lie group) 

of the first kind 249.Q 
of the second kind 249.Q 

canonical coordinate system (for a conic section) 
78.C 

canonical correlation coefficient 280.E 374.C 
canonical decomposition (of a closed operator) 

251.E 
canonical decomposition theorem 86.C 
canonical divisor 

(of an algebraic curve) 9.C 
(of an algebraic variety) 16.0 
(of a Jacobian variety) 9.E 
(of a Riemann surface) 1 l.D 

canonical element (in the representation of a functor) 
52.L 

canonical ensemble 402.D 
grand 402.D 

canonical equation 324.E 
Hamilton 271.F 

canonical field 377.C 
canonical form 

(of F(M)) 191.A 
(of a linear hypothesis) 400.H 
(of a regular submanifold of F(M)) 191.A 
of the equation (of a quadric surface) 350.B 
Khinchin (of an infinitely divisible probability 
distribution) 341.G 

Kolmogorov (of an infinitely divisible pro- 
bability distribution) 341.G 

Levy (of an infinitely divisible probability 
distribution) 341.G 

Weierstrass (for an elliptic curve) 9.D 
Weierstrass (of the gamma function) 174.A 

canonical function (on a nonsingular curve) 9.E 
canonical homology basis 1 l.C 
canonical homomorphism 

(on direct products of rings) 368.E 
(on tensor products of algebras) 29.A 

canonical injection 
(from a direct summand) 381.E 
(in direct sums of modules) 277.F 
(in free products of groups) 190.M 
(from a subgroup) 190.D 
(from a subset) 381.C 

canonically bounded 200.5 
canonically polarized Jacobian variety 3.G 9.E 
canonical measure 

(in a birth and death chain) 260.G 
(in a diffusion process) 115.B 
(in a Markov chain) 260.1 

canonical model 251.N 
canonical l-form (of the bundle of tangent n-frames) 

80.H 
canonical parameter 

ofanarc lll.D 
local (for power series) 339.A 

canonical product, Weierstrass 429.B 
canonical projection 

(on direct products of modules) 277.F 
(onto a quotient set) 135.B 

canonical representation 
(of a Gaussian process) 176.E 
generalized 176.E 



Subject Index 
Canonical scale 

1936 

canonical scale 1 15.B 
canonical scores 397.M 
canonical surjection 

(on direct products of groups) 190.L 
(to a factor group) 190.D 
(onto a quotient set) 135.B 

canonical transformation 271.F 
(concerning contact transformations) 82.B 
group of 271.F 
homogeneous 82.B 

canonical vartables (in analytical dynamics) 271.F 
canonical variates 280.E 
canonical vectorial form 417.C 
Cantelli lemma, Borel- 342.B 
Cantelli theorem, Glivenko- 374.E 
Cantor, G. 47 
Cantor discontinuum 79.D 
Cantor intersection theorem 273.F 
Cantor-Lebesgue theorem 159.J 
Cantor normal form (for an ordinal number) 312.C 
Cantor set 79.D 

general 79.D 
Cantor’s theory of real numbers 244.E 
capability, error-correcting 63.B 
capacitable set 48.H 
capacitary dimension 48.G 
capacitary mass distribution 338.K 
capacitated network 281.C 
capacity 

(of discrete memeoryless channel) 213.F 
(of a prime Ideal) 27.A 
(of a set) 48 260.D 
(transportation and scheduling) 281.D 
CL- 169.C 
analytic 169.F 
continuous analytic 164.5 
ergodic 213.F 
logarithmic 48.B 
Newtonian 48.B 
Newtonian exterior 48.H 
Newtonian inner 48.F 
Newtonian interior 4X.F 
Newtonian outer 48.H 
of order r 169.C 
stationary 213.F 

capacity constraint 28 I .D 
capillary wave 205.F 
cap product 

(of a cochain and a chain) 200.K 
(of a cohomology class and a homology class) 

201.K 
capture 

complete 420.D 
partial 420.D 

CAR 377.A 
Caratheodory measure 270.E 
Caratheodory outer measure 270.E 
Carathtodory pseudodistance 21 .D 
Cardano formula (on a cubic equation) lO.D, 

App. A, Table 1 
cardinality 33.F 

(of an ordinal number) 49.E 
(of a set) 49.A 312.D 

cardinal number(s) 49.A 312.D 
comparability theorem for 49.8 
of continuum 49.A 
corresponding to an ordinal number 49.E 
finite 49.A 
infinite 49.A 
measurable 33.E 

ofN 49.A 
ofR 49.A 
of all real-valued functions on LO, ] 49.A 
ofaset 49.A312.D 
strongly compact 33.E 
strongly inaccessible 33.E 
transfinite 49.A 
weakly compact 33.E 
weakly inaccessible 33.E 

cardinal product (of a family of ordered sets) 31 l.F 
cardinal sum (of a family of ordered sets) 31 l.F 
cardioid 93.H 
Carleman condition, Denjoy- 168.B 
Carleman inequality App. A, Table 8 
Carleman theorem 

(on asymptotic expansions) 30.A 
(on bounded functions) 43.F 

Carleman type, kernel of 217.J 
carrier 

(of a differential form) 108.Q 
(of a distribution) 125.D 
(of a function) 125.B 168.B 
(of a real-valued function) 425.R 

Carson integral App. A, Table 12.11 
Cartan, E. 50 
Cartan, differential form of Maurer- :!49.R 
Cartan, system of differential equations of Maurer- 

249.R 
Cartan connection 80.M 
Cartan criterion of semisimplicity (on Lie algebras) 

248.F 
Cartan criterion of solvability (on Lie algebras) 

248.F 
Cartan formula 

for Steenrod pth power operations 64.B 
for Steenrod square operations 64.B 

Cartan integer (of a semisimple Lie algebra) 248.N 
Cartan invariant (of a fmite group) 362.1 
Cartan involution 437.X 
Cartan-KPhler existence theorem 428.E 
Cartan-Mal’tsev-Iwasawa theorem (on maximal 

compact subgroups) 249,s 
Cartan maximum principle 338.L 
Cartan pseudoconvex domain 21.1 

locally 21.1 
Cartan relative integral invariant 219.B 
Cartan subalgebra 

(of a Lie algebra) 248.1 
(of a symmetric Riemannian space) 413.F 

Cartan subgroup 
(of an algebraic group) 13.H 
(of a group) 249.1 

Cartan space 152.C 
Cartan theorem 

on analytic sheaves (H. Cartan) 72.E 
on representations of Lie algebras (E. Cartan) 

248.W 
Cartan-Thullen theorem 21.H 
Cartan-Weyl theorem 248.W 
Carter subgroup 151 .D 
Cartesian coordinates (in an aftine space) 7.C 
Cartesian product 

(of complexes) 70.C,E 
(of mappings) 381.C 
(of sets) 381 .B,E 

Cartesian space 140 
Cartier divisor 16.M 
Cartier operator 9.E 
CA set 22.A 
case complexity, worst 71.A 



1937 Subject Index 
Cell complex 

Casimir element (of a Lie algebra) 248.3 
Casorati determinant 104.D 
Casorati-Weierstrass theorem (on essential singular- 

ities) 198.D 
Cassini oval 93.H 
Casson handle 114.M 
Castelnuovo criterion 15.E 
Castelnuovo lemma 3.E 9.H 
casus irreducibilis lO.D, App. A, Table 1 
Catalan constant App. A, Table 10.111 
catastrophe, elementary 51 .E 
catastrophe point 51.F 
catastrophe set 51.F 
catastrophe theory 51 
categorical 

(data) 397.B 
(set of closed formulas) 276.F 

categorical system (of axioms) 35.B 
categoricity in powers 276.F 
categories and functors 52 
category 52.A 

Abelian 52.N 
of Abelian groups 52.B 
additive 52.N 
of analytic manifolds 52.B 
cohomology theory on the 261.Q 
of commutative rings 52.8 
diagram in the 52.C 
of differentiable manifolds 52.B 
dual 52.F 
exact 237.5 
Grothendieck 200.1 
of groups 52.8 
homotopy, of topological spaces 52.B 
of left (right) R-modules 52.B 
of linear spaces over R 52.8 
of pointed topological spaces 202.B 
PL 65.A 
product 52.A 
quotient 52.N 
of rings 52.B 
set of the first 425.N 
set of the second 425.N 
of sets 52.8 
shape 382.A 
of S-objects 52.G 
of topological spaces 52.B 

catenary 93.H 
catenoid 111.1 
Cauchy, A. L. 53 
Cauchy condensation test 379.B 
Cauchy condition (on D-integral and D(*)-integral) 

100.E 
Cauchy criterion (on the convergence of a sequence 

of real numbers) 87.C App. A, Table IO.11 
Cauchy data 321.A 
Cauchy distribution 34l.D, App. A, Table 22 
Cauchy existence theorem (for partial differential 

equations) 320.B 
Cauchy filter (on a uniform space) 436.G 
Cauchy-Hadamard formula 339.A 
Cauchy inequality 21 l.C, App. A, Table 8 
Cauchy integral formula 198.8 
Cauchy integral representation 21.C 
Cauchy integral test (for convergence) 379.B 
Cauchy integral theorem 198.A,B 

stronger form of 198.B 
Cauchy-Kovalevskaya existence theorem 321.A 
Cauchy-Kovalevskaya theorem, abstract 286.2 
Cauchy net (in a uniform space) 436.G 

Cauchy polygon 316.C 
Cauchy principal value 

of an improper integral 216.D 
of the integral on infinite intervals 216.E 

Cauchy problem 
(of ordinary differential equations) 3 16.A 
(for partial differential equations) 315.A 320.B 

321.A 325.B 

abstract 286.X 
Cauchy process 5.F 

asymmetric 5.F 
symmetric 5.F 

Cauchy product (of two series) 379.F 
Cauchy remainder App.A, Table 9.IV 
Cauchy-Riemann (differential) equation 198.A 

274.G 

(for a holomorphic function of several complex 
variables) 21.C 

(for a holomorphic function of two complex 
variables) 320.F 

Cauchy-Riemann structure 344.A 
Cauchy-Schwarz inequality 21 l.C, App. A, Table 8 
Cauchy sequence 

(in an a-adic topology) 284.B 
(in a metric space) 273.5 
(of rational numbers) 294.E 
(of real numbers) 355.B 
(in a uniform space) 436.G 

Cauchy sum (of a series) 379.A 
Cauchy theorem 379.F 
Cauchy transform 164.5 
causality, macroscopic 386.C 
cause, most probable 401.E 
caustic 325.L 
Cayley algebras 54 

general 54 
Cayley number 54 
Cayley projective plane 54 
Cayley theorem (in group theory) 15 1 .H 
Cayley theorem, Hamilton- 269.F 
Cayley transform (of a closed symmetric operator 

in a Hilbert space) 251.1 
Cayley transformation 269.5 
CCP (chance-constrained programming) 408.B 
CCR 377.A 
CCR algebra 36.H 
Tech cohomology group (for topological spaces) 

201.L,P 
relative 201.M 

Tech cohomology group with coefficient sheaf 9 
383.F 

Tech compactitication, Stone- 207.C 
Tech complete space 425.T 436.1 
Tech homology group (for topological spaces) 

201.M 
relative 201.M 

ceiling function 136.D 
ceiling states 402.G 
celestial mechanics 55 
cell 70.D 

convex (in an aftine space) 7.D 
fundamental (of a symmetric Riemann space) 
413.F 

n- (in a Hausdorff space) 70.D 
(n - q)-dual 65.B 
topological n- 140 
unit 140 

cell complex 70.D 
closure finite 70.D 
countable 70.D 



Subject Index 
Cell-like (CE) 

1938 

Euclidean 70.B 
finite 70.D 
locally countable 70.D 
locally finite 70.D 
regular 70.D 

cell-like (CE) 382.D 
cellular approximation theorem 70.D 
cellular cohomology group 201.H 
cellular decomposition (of a Hausdorff space) 70.D 
cellular homology group 201.F,G 
cellular mapping (between cell complexes) 70.D 
CE mapping 382.D 
center 

(of a central symmetry) 139.B 
(of a continuous geometry) 85.A 
(of gravity) 271.E 
(of a group) 190.C 
(of a hyperbola or ellipse) 78.C 
(of a lattice) 243.E 
(of a Lie algebra) 248.C 
(of mass) 271.E 
(of a nonassociative algebra) 231.A 
(of a pencil of hyperplanes) 343.B 
(of a quadric hypersurface) 7.G 
(of a quadric surface) 350.A 
(of a regular polygon) 357.A 
(of a regular polyhedron) 357.B 
(of a ring) 368.F 
(of a solid sphere) 140 
(of a sphere) 139.1 
(of a von Neumann algebra) 308.C 

centered process 5.B 
centering 5.B 
center manifold theorem 286.V 
center of curvature 11l.E 
center of projection 343.B 
center surface 111.1 
central composite design 102.M 
central configuration 420.B 
central conic(s) 78.C 
central difference 223.C 304.E, App. A, Table 21 
central element (in a lattice) 243.E 
central extension (of a group) 190.N 
central figure 420.B 
centralizer 

(of a subset of a group) 19O.C 
(of a subset of a ring) 368.F 

central limit theorem 250.B 
central moment 397.C 
central motion 126.E 
central potential 315.E 
central processor 75.B 
central quadric hypersurface 7.F 350.G 
central quadric surface 350.B 
central series 

ascending (of a Lie algebra) 248.C 
descending (of a Lie algebra) 248.C 
lower (of a group) 190.J 
upper (of a group) 19O.J 

central simple algebra 29.E 
similar 29.E 

central symmetry (of an afline space) 139.B 
centrifugal force 271.D 
certainly, almost 342.B,D 
certainty equivalent 408.B 
Cesaro method of summation of order u 379.M 

summable by 379.M 
Ceva theorem 7.A 
CFL condition 304.F 
CG method 302.D 

chain 200.H 
ascending (of normal subgroups of a group) 

190.F 
ascending (in an ordered set) 31 L.C 
conservative 260.A 
descending (in a lattice) 243.F 
descending (of (normal) subgroups of a group) 

190.F 
descending (in an ordered set) 31 l.C 
equivalence 200.H 
general Markov 260.5 
homotopy 200.H 
irreducible (a Markov chain) 260.B 
Markov 260.A 
minimal 260.F 
normal (in a group) 190.G 
normal (in Markov chains) 260.1~ 
q- (of a chain complex) 201.B 
recurrent 260.B 
regular (of integral elements) 428.E 
u- 260.1 

chain complex(es) 2OO.C,H 201.B 
in an Abelian category 201.B 
of A-modules 200.C 
augmented 2OO.C 
double 200.E 
oriented simplicial 2Ol.C 
positive 200.H 
product double 2OO.E 
quotient 200.C 
relative 200.C 
singular (of a topological space) 2Ol.E 

chain condition (in an ordered set) 311.C 
ascending (in an ordered set) 3 11 .C 
descending (in an ordered set) 3 11 .C 

chained metric space, well- 79.D 
chain equivalence 200.C 
chain homotopy 200.C 
chain mapping 200.C 201.B 

over an A-homomorphism 200.C 
chain recurrent 126.E 
chain recurrent set 126.E 
chain rule 106.C 
chain subcomplex 200.C 
chain theorem 14.5 
chain transformation (between complexes) 2OO.H 
Chaitin complexity, Kolmogorov- 354.D 
chamber 

positive Weyl 248.R 
Weyl 13.5 248.R 

chamber complex 13.R 
chance-constrained programming 408.A 
chance constraint 408.A 
chance move 173.B 
change 

scalar (of a B-module) 277.L 
time 261.F 406.B 
of variables (in integral calculus) 216.C 

channel 375.F 
almost finite memory 213.F 
d-continuous 213.F 
discrete memoryless 213.F 
finite memory 213.F 
noisy 213.A 
test 213.E 

channel coding theory 213.A 
channel Hilbert space 375.F 
channel wave operators 375.F 
chaos 126.N 303.G 433.B 

propagation of 340.F 



1939 Subject Index 
Characteristic vector 

Chaplygin’s differential equation 326.B 
Chapman complement theorem 382.B 
Chapman-Kolmogorov equality 261.A 
Chapman-Kolmogorov equation 260.A 
Chapman-Robbins-Kiefer inequality 399.D 
Chapman theorem (on (C, sc)-summation) 379.M 
character 

(of an Abelian group) 2.G 
(of an algebraic group) 13.D 
(irreducible unitary representation) 437.V 
(of a linear representation) 362.E 
(of a regular chain) 428.E 
(of a representation of a Lie group) 249.0 
(of a semi-invariant) 226.A 
(of a topological Abelian group) 422.B 
absolutely irreducible 362.E 
Brauer (of a modular representation) 362.1 
Chern (of a complex vector bundle) 237.B 
Dirichlet 295.D 
Hecke 6.D 
identity (of an Abelian group) 2.G 
integral (on the l-dimensional homology group 
of a Riemann surface) 1 I .E 

irreducible (of an irreducible representation) 
362.E 

Minkowski-Hasse (of a nondegenerate quadratic 
form) 348.D 

modular (of a modular representation) 362.1 
nonprimitive 450.C,E 
planar 367.G 
primitive 295.D 450.C,E 
principal (of an Abelian group) 2.G 
principal Dirichlet 295.D 
reduced (of an algebra) 362.E 
residue 295.D 
simple (of an irreducible representation) 362.E 

character formula, Weyl 248.2 
character group 

(of an Abelian group) 2.G 
(of a topological Abelian group) 422.B 

characteristic(s) 
(of a common logarithm) 131.C 
(of a field) 149.B 
Euler (of a finite Euclidean cellular complex) 
201.B 

Euler-Poincare (of a finite Euclidean complex) 
16.E 201.B 

operating 404.C 
population 396.C 
quality 404.A 
sample 396.C 
Todd 366.B 
two-terminal 281.C 

characteristic class(es) 56 
(of an extension of a module) 200.K 
(of a fiber bundle) 147.K 
(of foliations) 154.G 
(of a vector bundle) 56.D 
.d(of a real oriented vector bundle) 237.F 
of codimension 4 154.G 
of a manifold 56.F 
smooth, of foliations 154.G 

characteristic curve 
(of a network) 281.B 
(of a one-parameter family of surfaces) 111.1 
(of a partial differential equation) 320.B 

324.A,B 
characteristic equation 

(of a differential-difference equation) 163.F 
(for a homogeneous system of linear ordinary 

differential equations) 252.5 
(of a linear difference equation) 104.E 
(of a linear ordinary differential equation) 

252.E 
(of a matrix) 269.F 
(of a partial differential equation) 320.D 
(of a partial differential equation of hyperbolic 

type) 325.A,F 
characteristic exponent 

(of an autonomous linear system) 163.F 
(of the Hill differential equation) 268.B 
(of a variational equation) 394.C 

characteristic function(s) 
(of a density function) 397.G 
(of a graded R-module) 369.F 
(of a meromorphic function) 272.B 
(of an n-person cooperative game) 173.D 
(for an optical system) 180.C 
(of probability distributions) 341.C 
(of a subset) 381.C 
empirical 396.C 
Hilbert (of a coherent sheaf) 16.E 
Hilbert (of a graded module) 369.F 

characteristic functional (of a probability distribu- 
tion) 407.C 

characteristic hyperplane (of a partial differential 
equation of hyperbolic type) 325.A 

characteristic hypersurface (of a partial differential 
equation of hyperbolic type) 325.A 

characteristic linear system (of an algebraic family) 
15.F 

characteristic line element 82.C 
characteristic manifold (of a partial differential 

equation) 320.B 
characteristic mapping (map) (in the classification 

theorem of fiber bundles) 147.G 
characteristic measure 407.D 
characteristic multiplier 

(of a closed orbit) 126.G 
(of a periodic linear system) 163.F 

characteristic number 
(of a compact operator) 68.1 
(of a manifold) 56.F 
Lyapunov 314.A 

characteristic operator function 251.N 
characteristic polynomial 

(of a differential operator) 112.A 
(of a linear mapping) 269.L 
(of a matrix) 269.F 
(of a partial differential operator) 321.A 

characteristic root 
(of a differential-difference equation) 163.A 
(of a linear mapping) 269.L 
(of a linear partial differential equation) 325.F 
(of a matrix) 269.F 

characteristic series (in a group) 190.G 
characteristic set 

(of an algebraic family on a generic component) 
15.F 

(of a partial differential operator) 320.B 
characteristic strip 320.D 324.B 
characteristic surface 320.B 
characteristic value 

(of a linear operator) 390.A 
sample 396.C 

characteristic variety (of a system of microdifferential 
equations) 274.G 

characteristic vector 
(of a linear mapping) 269.L 
(of a linear operator) 390.A 



Subject Index 
Character module (of an algebraic group) 

1940 

character module (of an algebraic group) 13.D 
character system (of a genus of a quadratic held) 

347.F 
charge 15O.B 
charge symmetry 415.J 
Charpit method, Lagrange- 322.8, App. A, Table 

15.11 
Charpit subsidiary equation 82.C 320.D 
chart 

alignment 1Y.D 
control 404.B 
intersection 1Y.D 

Chatelet group, Weil- 118.D 
Chebotarev density theorem 14,s 
Chebyshev formula 299.A 

Gauss- (in numerical integration) 299.A 
Chebyshev function App. A, Table 20.11 
Chebyshev interpolation 233.A 366.5 
Chcbyshev orthogonal polynomial lY.G 
Chebyshev polynomial 336.H 
Chebyshev q-function 19.G, App. A, Table 20,VII 

simplest 1Y.G 
Chebyshev system 336.B 
Chebyshev theorem 336.B 
check bits 63.C 
check matrix, parity 63.C 
Cheng domain theorem, Courant- 39 1.H 
Chern character (of a complex vector bundle) 

237.B 
Chern class 

of a C”-bundle 56.C 
of a manifold 56.F 
of a real Zn-dimensional almost complex 

manifold 147.N 
total 56.C 
ofa U(n)-bundle 147.N 
universal 56.C 

Chern formula (in integral geometry) 218.D 
Chern number 56.F 
Cherwell-Wright differential equation 291.F 
Chevalley canonical basis (of a complex semisimple 

Lie algebra) 248.Q 
Chevalley complexification (of a compact Lie group) 

249.U 
Chevalley decomposition (on algebraic groups) 

13.1 
Chevalley group 15 1 .I 
Chevalley theorem (forms over finite fields) 118.8 
Chevalley theorem (on algebraic groups) 13.B 
Chevalley type (algebraic group) 13.N 
Chinese mathematics 57 
Chinese remainder theorem 297.G 
chi-square distribution 374.B, App. A, Table 22 

noncentral 374.B 
chi-square method, modified minimum 400.K 
cht-square test 400.G 

of goodness of fit 400.K 
choice, axiom of 33.B 34.A 
choice function 33.B 34.A 
choice process, multistage 127.A 
choice set 33.8 34.A 
Cholesky method 302.B 
Chomsky grammar 3 1 .D 
Chomsky hierarchy 31 .D 
Choquest boundary 164.C 
Chow coordinates (of a positive cycle) 16.S 
Chow-Kodaira theorem 72.F 
Chowla theorem, Bruck-Ryaer- 102.E 
Chow lemma 72.H 

Chow ring (of a projective variety) 1ti.R 
Chow theorem 

on an analytic submanifold of P” 72.F 
on the field of rational functions of an analytic 

space 23.D 
Chow variety 16,s 
Christoffel-Darboux formula 3 17.D 
Christoffel symbol 80.L 11 l.H 417.D 
Christoffel transformation, Schwarz- 77.D, App. A, 

Table 13 
Christoffel transformation formula, Schwarz- 77.D 
chromatic number 157 186.1 
chromodynamics, quantum 132.C 
Chung-Erdos theorem 342.B 
Church’s thesis 356.C 
circle(s) 140 

Apollonius App. A, Table 3.V 
auxiliary (of an ellipse) 78.D 
of convergence (of a power series) 33Y.A 
of curvature 11 l.E 
director (of an ellipse) 78.D 
great (of a sphere) 140 
inscribed (of a regular polygon) 357.A 
isometric 234.C 
of meromorphy (of a power series) 33Y.D 
open 140 
oscillating 11 l.E 
quadrature of 179.A 
unit 74.C 140 

circled subset (of a topological linear space) 424.E 
circle geometry 76.C 
circle method 4.B 
circle problem, Gauss 242.A 
circle type, limit 112.1 
circuit 66.G 
circuit matrix 254.8 
circular cone 78.A 111.1 

oblique 350.B 
right 350.B 

circular cylinder I1 1.1 350.B 
circular cylindrical coordinates App. A, Table 3.V 
circular cylindrical surface 350.B 
circular disk 140 
circular domain 333.A 
circular frequency (of a simple harmonic motion) 

318.B 
circular function 131.F 432.A 
circular section 350.F 
circular unit 14.L 
circulation (of a vector field) 205.B 442.D 
circumference 140 
circumferentially mean p-valent 438.E 
circumscribed circle (of a regular polygon) 357.A 
circumscribing sphere (of a simplex) 139.1 
cissoidal curve 93.H 
cissoid of Diocles Y3.H 
Clairaut differential equation App. A, Table 14.1 
Clairaut partial differential equation App. A, 

Table 15.11 
class 

(in axiomatic set theory) 33.C 3Rl.G 
(of a lattice group) 13.P 
(of a nilpotent group) 19O.J 
(of a plane algebraic curve) 9.B 
(of a quadratic form) 348H,I 
.&-characteristic (of a real oriented vector 

bundle) 237.F 
algebra (of central simple algebras) 29.E 
ambig (of a quadratic field) 347.F 



1941 Subject Index 
Classical (state) 

Bravais 92.B Steifel-Whitney (of a differentiable manifold) 
canonical (of an algebraic curve) 9.C 147.M 
canonical cohomology 59.H Stiefel-Whitney (of a manifold) 56.F 
canonical divisor ll.D Stiefel-Whitney (of an O(n)-bundle) 147.M 
characteristic (of an extension of module) Stiefel-Whitney (of an R”-bundle) 56.B 

200.K Stiefel-Whitney (of a topological manifold) 
characteristic (of a fiber bundle) 147.K 56.F 
characteristic (of foliations) 154.G surface of the second 350.D 
characteristic (of a vector bundle) 56 Todd 237.F 
characteristic, of codimension q 154.G total Chern 56.C 
characteristic, of a manifold 56.F total Pontryagin 56.D 
Chern (of a C”-bundle) 56.C total Stiefel-Whitney 56.B 
Chern (of a manifold) 56.F trace 68.1 
Chern (of a real 2n-dimensional almost complex universal Chern 56.C 
manifold) 147.N universal Euler-Poincare 56.B 

Chern (of a U(n)-bundle) 147.N universal Stiefel-Whitney 56.B 
cohomology 200.H unoriented cobordism 114.H 
combinational Pontryagin 56.H Wu (of a topological manifold) 56.F 
complete 398.B Zygmund 159.E 
completely additive 270.B class C” 
conjugacy (of an element of a group) 19O.C function of 106.K 
countably additive 270.B function of (of many variables) 58.B 
crystal 92.B mapping of 286.E 
curve of the second 78.K oriented singular r-simplex of 108.T 
differential divisor (of a Riemann surface) 1 l.D partition of unity of 108,s 
divisor (on a Riemann surface) 11 .D singular r-chain of 108.T 
Dynkin 270.B singular r-cochain of 108.T 
the Dynkin, theorem 270.B class Ck 
equivalence 135.B curve of (in a differentiable manifold) 93.B 
ergodic 260.B curve of (in a Euclidean plane) 93.B 
essentially complete 398.B class c”, function of 106.K 
Euler-Poincart (of a manifold) 56.F class C”, function of 106.K 
Euler-Poincart (of an oriented w-bundle) 56.B class C’ 
finitely additive 270.B function of 106.K 
fundamental (of an Eilenberg-MacLane space) mapping of 286.E 

70.F class C 
fundamental (of a Poincare pair) 114.5 atlas of 105.D 
fundamental (of the Thorn complex MC) coordinate neighborhood of 105.D 

114.G diffeomorphism of 105.J 
fundamental, with coefficient Z, 65.B differentiable manifold of 105.D 
generalized Hardy 164.G differentiable manifold with boundary of 
Gevrey 58.G 125.U 105.E 
group of congruence 14.H differentiable mapping of 105.J 
Hardy 43.F 159.G differentiable structure of 105.D 
Hilbert-Schmidt 68.1 fiber bundle of 147.0 
holosymmetric 92.B function of (in a C”-manifold) 105.G 
homology 200.H 201.8 function of (at a point) 105.G 
homotopy 202.B functionally dependent of (components of a 
idea1 (of an algebraic number field) 14.E mapping) 208.C 
idea1 (of a Dedekind domain) 67.K functional relation of 208.C 
ideal, in the narrow sense 14.G 343.F mapping of 208.B 286.E 
idele 6.D nonsingular mapping of 208.B 
idele, group 6.D regular mapping of 208.B 
linear equivalence (of divisors) 16.M vector field of 105.M 
main 241.A Z-action of 126.B 
mapping 202.B class C’, tensor field of 108.0 
minimal complete 398.B class Co, mapping into Banach space of 286.E 
monotone 270.B class (CO), semigroup of 378.B 
the monotone, theorem 270.B class D”, curve of 364.A 
multiplicative 270.B class field 59.B 
nuclear 68.1 absolute 59.A 
oriented cobordism 114.H class field theory 59 
Pontryagin (of a manifold) 56.F local 59.G 
Pontryagin (of an R”-bundle) 56.D class field tower problem 59.F 
proper 381.G class formation 59.H 
q-dimensional homology 201.B class function (on a compact group) 69.B 
of a quadratic form over an algebraic number class group divisor 1 l.D 

field 348.H classical (potential) 402.G 
residue (modulo an idea1 in a ring) 368.F classical (state) 402.G 



Subject Index 
Classical compact real simple Lie algebra 

1942 

classical compact real simple Lie algebra 248.T 
classical compact simple Lie group 249.L 
classical complex simple Lie algebra 248.8 
classical complex simple Lie group 249.M 
classical descriptive set theory 356.H 
classical dynamical system 126.L 136.G 
classical group(s) 60.A 

infinite 147.1 202.V 
classical logic 41 l.L 
classical mechanics 271 .A 
classical risk theory 214.C 
classical solution (to Plateau’s problem) 275.C 
classical statistical mechanics 402.A 
classical theory of the calculus of variations 46.C 
classilication (with respect to an equivalence 

relation) 135.B 
classification theorem 

on a fiber bundle 147.G 
first (in the theory of obstructions) 305.B 
Hopf 202.1 
second (in the theory of obstructions) 305.C 
third (in the theory of obstructions) 305.C 

classification theory of Riemann surfaces 367.E 
classificatory procedure 280.1 
classifying mapping (map) (in the classification 

theorem of fiber bundles) 147.G 
classifying space 

(of a topological group) 174.G,H 
cohomology rings of App. A, Table 6.V 
for F,‘-structures 154.E 
n- (of a topological group) 147.G 

class n 
function of 84.D 
projective set of 22.D 

class N,, null set of 169.E 
class number 

(of an algebraic number field) 14.E 
(of a Dedekind domain) 67.K 
(of a simple algebra) 27.D 

class of Abelian groups 202.N 
class w, function of 84.D 
class 1 

function of 84.D 
function of at most 84.D 

class theorems, complete 398.D 
class 5, function of 84.D 
class 0, function of 84.D 
Clebsch-Gordan coefhcient 258.B 353.B 
Clenshaw-Curtis formulas 299.A 
Clifford algebras 61 
Clifford group 61.D 

reduced 61.D 
special 61.D 

Clifford number 61.A 
Clifford torus 275.F 
Clifford torus, generalized 275.F 
clinical trials 40.F 
closable operator 251.D 
closed 

absolutely (space) 425.U 
algebraically (in a field) 149.1 
algebraically (field) 149.1 
boundary 164.C 
H- (space) 425.U 
hyperbolic, orbit 126.G 
integrally (ring) 67.1 
k- (algebraic set) 13.A 
multiplicatively, subset (of a ring) 67.1 
quasi-algebraically (held) 118.F 

r- (space) 425.U 
real, field 149.N 
Zariski 16.A 

closed arc 93.B 
closed braid 235.F 
closed convex curve 11 l.E 
closed convex hull 424.H 
closed convex surface 111.1 
closed covering 425.R 
closed curve, simple 93.B 
closed differential 367.H 
closed differential form 105.Q 
closed formula 276.A 299.A 

in predicate logic 41 l.J 
closed geodesic 178.G 
closed graph theorem 37.1251.D 424,.X 
closed group 362.5 
closed half-line (in affine geometry) 7.D 
closed half-space (of an afIine space) 7.D 
closed ideals in L,(G) 192.M 
closed image (of a variety) 16.1 
closed interval 140 

in R 355.C 
closed linear subspace (of a Hilbert space) 197.E 
closed manifold 105.B 
closed mapping 425.G 
closed operator (on a Banach space) 251.D 
closed orbit 126.D,G 

hyperbolic 126.G 
closed plane domain 333.A 
closed path 

(in a graph) 186.F 
(in a topological space) 170 
direct 186.F 
space of 202.C 

closed range theorem 37.5 
closed Riemann surface 367.A 
closed set 425.B 

locally 425.5 
relative 425.5 
system of 425.B 
Zariski 16.A 

closed subalgebra 36.B 
closed subgroup (of a topological group) 423.D 
closed submanifold (of a (Y-manifold) 105.L 
closed subsystem (of a root system) 13.L 
closed surface 410.B 

in a 3-dimensional Euclidean space 111.1 
closed system 419.A 
closed system entropy 402.G 
closed term (of a language) 276.A 
closure 425.B 

(in a matroid) 66.G 
(of an operator) 251.D 
algebraic (of a field) 149.1 
convex (in an afIine space) 7.D 
integral (of a ring) 67.1 
Pythagorean (of a field) 155.C 

closure finite (cell complex) 70.D 
closure operator 425.B 
closure-preserving covering 425.X 
clothoid 93.H 
cloverleaf knot 235.C 
cluster 375.F 
cluster decomposition Hamiltonian ?75.F 
clustering property 402.G 
cluster point 425.0 
cluster set(s) 62.A 

boundary 62.A 



1943 Subject Index 
Coefficient(s) 

curvilinear 62.C 
interior 62.A 

cluster value 62.A 
cluster value theorem 43.G 
cn App. A, Table 16.111 
coalgebra 203.F 

cocommutative 203.F 
dual 203.F 
graded 203.B 
quotient 203.F 

coalgebra homomorphism 203.F 
coanalytic set 22.A 
coarse moduli scheme 16. W 
coarse moduli space of curves of genus 9 9.J 
coarser relation 135.C 
coarser topology 425.H 
cobordant 114.H 

foliated 154.H 
h- 114.1 
mod 2 114.H 
normally 114.5 

cobordism, knot 235.G 
cobordism class 114.H 

oriented 114.H 
unoriented 114.H 

cobordism group 
complex 114.H 
oriented 114.H 
unoriented 114.H 

cobordism group of homotopy n-spheres, h- 114.1 
cobordism ring 114.H 

complex 114.H 
cobordism theorem, h- 114.F 
coboundary (coboundaries) 200.H 

(in a cochain complex) 201 .H 
(in the theory of generalized analytic functions) 

164.H 
module of 200.F 

coboundary homomorphism (on cohomology 
groups) 201 .L 

coboundary operator 200.F 
cobounded 2Ol.P 
cochairi 200.H 201.H 

(products of) 201.K 
deformation 305.B 
finite (of a locally finite simplicial complex) 

2Ol.P 
n- (for an associative algebra) 200.L 
separation 305.B 

cochain complex 200.F 201.H 
singular 201.H 

cochain equivalence 200.F 
cochain homotopy 200.F 
cochain mapping 200.F 201.H 
cochain subcomplex 200.F 
Cochran theorem 374.B 
cocommutative coalgebra 203.F 
cocycle(s) 200.H 201.H 

(in the theory of generalized analytic functions) 
164.H 

continuous 200.N 
difference 305.B 
module of 200.F 
obstruction 147.L 305.B 
separation 305.B 
vanishing (on an algebraic variety) 16.U 

Codazzi, equation of 365.C 
Codazzi-Mainardi equations 11 l.H, App. A, 

Table 4.1 
code(s) 63.A 213.D 

BHC (Bose-Chaundhuri-Hocquenghem) 63.D 
block 63.A 213.F 
convolutional 63.E 
cyclic 63.D 
Goppa 63.E 
group 63.C 
Hamming 63.C 
linear 63.C 
perfect 63.B 
sliding block 213.E 
tree 213.E 
trellis 213.E 

code word 63.A 
codimension 

(of an algebraic subvariety) 16.A 
(of a C’-foliation) 154.B 
(of an element in a complex) 13.R 
(of the germ of a singularity 51.C 
(of a linear space) 256.F 
(of a PL embedding) 65.D 

codimension q, characteristic class of 154.G 
coding rate 213.D 
coding theorem 

block 213.D 
noiseless source 213.D 
source 213.D,E 

coding theory 63 
channel 213.A 
source 213.A 

codomain (of a mapping) 381.C 
co-echelon space 168.B 
coefficient(s) 

(of a linear representation) 362.E 
(of a system of algebraic equations) 10.A 
(of a term of a polynomial) 337.B 
of an alIine connection 80.L 
autocorrelation 397.N 
binomial 330, App. A, Table 17.11 
of bulk viscosity 205.C 
canonical correlation 280.E 374.C 
Clebsch-Gordan 258.A 353.B 
confidence 399.4 
correlation (of two random variables) 342.C 

397.H 
of determination 397.H,J 
differential 106.A 
of excess 341.H 396.C 
expansion 317.A 
Fourier 159.A 197.C 317.A, App. A, Table 11.1 
Fourier (of an almost periodic function) 18.B 
Gini, of concentration 397.D 
indeterminate, Lagrange method of 106.L 
Lagrange interpolation 223.A 
Legendre 393.B 
multipie correlation 397.5 
of order p llO.A 
partial correlation 397.5 
partial differential 106.F 
population correlation 396.D 
Racah 353.B 
reflection 387.D 
regression 397.H,J 403.D 
of a Riemannian connection 80.L 
sample correlation 396.D 
sample multiple correlation 397.5 
sample partial correlation 280.E 
of shear viscosity 205.C 
of skewness 341.H 
of thermal expansion 419.B 
torsion (of a complex) 201.B 
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transmission 387.D 
transport 402.K 
universal, theorem 200.D,G,H 20l.G,H 
of variation 397.C 
of viscosity 205.C 
Wigner 353.B 

coefficient field 
(of an affine space) 7.A 
(of a projective space) 343.C 
(of a semilocal ring) 284.D 

coefficient group (of the cohomology theory) 201.Q 
coefficient module 200.L 
coefficient problem 438.C 
coefficient ring 

of a semilocal ring 284.D 
coefficient sheaf 3 

Tech cohomology with 383.F 
cohomology group with 383.E 

coercive (boundary condition) 112.H 323.H 
cofactor (of a minor) 103.D 
colibering 202.G 
cofinal 

(ordinal numbers) 3 12.C 
(subset of a directed set) 31 1 .D 

cotinality 3 12.C 
cofmality, cardinality and 33.F 
colinal object 52.D 
cofinal subnet 87.H 
cogenerator (of an Abelian category) 200.H 
cographic 66.H 
Cohen theorem (on Noetherian rings) 284.A 
coherence 397.N 421.E 
coherent algebraic sheaf 16.E 72.F 
coherent analytic sheaf 72.E 
coherently oriented (pseudomanifold) 65.B 
coherent &-module 16.E 

quasi- 16.E 
coherent sheaf of rings 16.E 
coherent vector 277.D 
Cohn-Vossen theorem 1 Il.1 
cohomological dimension 

(of an associative algebra) 200.L 
(of a scheme) 16.E 
(of a topological space) 117.F 

cohomological functor 200.1 
cohomology 6.E 200.H 

equivariant 43 1 .D 
exact sequence of 200.F 
Galois 200.N 
Gel’fand-Fuks 105.AA 
I-adic 450.Q 
non-Abelian 200.M 
Tatc 200.N 
Weil 440.Q 

cohomology class 200.H 
canonical (in Galois cohomology in the class 

field theory) 59.H 
orientation 201.N 

cohomology exact sequence (for simplicial com- 
plexes) 201.L 

cohomology group(s) 201.H 
?- 72.D 
Alexander 201 .M 
Amitsur 200.P 
i‘ech (for topological spaces) 201.M,P 
i’ech, with coefficient sheaf ,F 383.~ 
cellular 201.H 
with coefficient sheaf .p 383.E 
de Rham 201.H 
Dolbeault 72.D 

generalized (for CW complexes) 201.H 
Hochschild 200.L 
integral (of a topological space) 201.H 
local 125.W 
rational 200.0 
reduced (of a topological space) 201.H 
relative (sheaf cohomology) 125.W 
relative Alexander 201.M 
relative Tech 201.M 
singular, with compact supports 201.P 
singular, of X with coefficients in G 201.H,R 

cohomology module 200.F 
cohomology operation(s) 64 

functional 202,s 
primary 64.B 
stable 64.B 
stable primary 64.B 
stable secondary 64.C 

cohomology ring 
of a compact connected Lie Group App. A, 
Table 6.IV 

de Rham (of a differential manifold) 105.R 
de Rham (of a topological space) 201.1 
of an Eilenberg-Maclane complex APP. A, 
Table 6.111 

singular (of a topological space) 201.1 
cohomology sequence, exact 200.H 
cohomology set 172.K 
cohomology spectral sequence 200.5 
cohomology theory (theories) 

Alexander-Kolmogorov-Spanier 201.M 
on the category of topological parrs 201.Q 
complete 200.N 
with E-coeflicient, generalized 202.T 
generalized 201.Q 

cohomology vanishing theorems 194.G 
cohomotopy group 202.1 
coideal 203.F 
coimage 

(of an A-homomorphism) 277.E 
(of a homomorphism of presheaves of sheaves) 

383.D 
(of a morphism) 52.N 

coincidence number (of mappings) 153.B 
coincidence point (of mappings) 153.B 
coindex (of ?-function) 279.E 
cokernel 

(of an A-homomorphism) 277.E 
(of a homomorphism of presheavl:s or sheaves) 

383.D 
(of a morphism) 52.N 

collapsing 65.C 
elementary 65.C 

collectionwise Hausdorff space 425.AA 
collectionwise normal space 425.AA 
collective 342.A 

$- 354.E 
collective risk theory 214.C 
collinear points 343.B 
collinear vectors 442.A 
collineation(s) 343.D 

group of 343.D 
projective 343.D 
projective, in the wider sense 343.D 
in the wider sense 343.D 

collocation method 303.1 
colocal (coalgebra) 203.1 
color conjecture, four 186.1 
colored symmetric group 92.D 
coloring (of a graph) 186.1 



1945 Subject Index 
Compact set 

coloring, Tail 157.C 
color lattice 92.D 
color point group 92.D 
colors, number of 93.D 
color symmetric group 92.D 
column(s) (of a matrix) 269.A 

iterated series by (of a double series) 379.E 
repeated series by (of a double series) 379.E 

column finite matrix 269.K 
column nullity (of a matrix) 269.D 
column vector 269.A 
comass (on k-forms) 275.G 
Combescure, correspondence of 11 l.F 
combination 

k- 330 
linear (of elements in a linear space) 256.C 
linear (of ovals) 89.D 
multiple App. A, Table 17.11 
number of treatment 102.L 

combination theorem, Klein 234.D 
combinatorial analysis 66.A 
combinatorial equivalence 65.A 
combinatorially equivalent 65.A 
combinatorial manifold 65.C 
combinatorial mathematics 66.A 
combinatorial Pontryagin class 56.H 
combinatorial problems App. A, Table 17.11 
combinatorial property 65.A 
combinatorial sphere, group of oriented differentiable 

structures on 114.1 
combinatorial theory 66.A 
combinatorial topology 426 
combinatorial triangulation 65.C 
combinatorial triangulation problem 65.C 
combinatorics 66 
comb space 89.A 
commensurable 122.F 
common divisor (of elements of a ring) 67.H 

greatest 67.H 297.A 
common logarithm 131.C 
common multiple (of elements of a ring) 67.H 

least 67.H 297.A 
common notion 35.A 
communality 346.F 
commutant 308.C 
commutation relations 

canonical 351.C 377.A 
normal 150.D 

commutative algebra 203.F 
commutative diagram 52.C 
commutative field 368.B 
commutative group 2.A 190.A 
commutative law 

of addition (in a ring) 368.A 
on the addition of natural numbers 294.B 
in the algebra of sets 381.B 
on cardinal numbers 49.C 
for group composition 190.A 
in a lattice 243.A 
for multiplication (in a commutative ring) 

368.A 
on the’multiplication of natural numbers 
294.B 

commutative Lie group 249.D 
commutatively convergent series 379.C 
commutative multiplication (of a graded algebra) 

203.B 
homotopy- 203.D 

commutative ring 368.A 
category of 52.B 

commutativity, event 346.G 
commutator 

(of differential operators) 324.C 
(of two elements of a group) 190.H 
self- 251.K 

commutator group 190.H 
commutator subgroup 190.H 
commuter 368.E 
comonad 200.Q 
compact 

(continuous mapping) 286.D 
(kernel distribution) 125.L 
(linear operator) 68.B 
(topological space) 425,s 
linearly 422.L 
locally 425.V 
locally linearly 422.L 
relatively (linear operator) 331.B 
relatively (maximum likelihood method) 

399.M 
relatively (subset) 273.F 425,s 
real- 425.BB 
sequentially 425,s 
CT- 425.V 
T- 68.F 331.B 
uniformly locally 425.V 
weakly (linear operator) 68.M 

compact algebraic group, k- 13.G 
compact cardinal number 

strongly 33.E 
weakly 33.E 

compact complex manifolds, family of 72.G 
compact c-manifold 105.D 
compact element (of a topological Abelian group) 

422.F 
compact foliation 154.H 
compact form (of a complex semisimple Lie algebra) 

248.P 
compact group 69.A 
compact homotopy class 286.D 
compactification 

(of a complex manifold) 72.K 
(of a Hausdorff space) 207.A 
(of a topological space) 425.T 

compactifying (kernel) 125.L 
Aleksandrov 207.C 
Bohr 18.H 
F- 207.C 
Kertkjartb-Stoilow 207.C 
Kuramochi 207.C 
Martin 207.C 
one-point (of a topological space) 425.T 
resolutive 207.B 
Royden 207.C 
Stone-Tech 207.C 425.T 
Wiener 207.C 

compact leaf 154.D 
compact metric space 273.F 
compactness theorem (in model theory) 276.E 
compact open C” topology 279.C 
compact-open topology 279.C 435.D 
compact operators 68 
compact real Lie algebra 248.P 
compact real simple Lie algebra 

classical 248.T 
exceptional 248.T 

compact set 425,s 
in a metric space 273.F 
relatively 399.M 425.S 
uniform convergence on 435.C 
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compact simple Lie group 
classical 249.L 
exceptional 249.L 

compact space 425,s 
countably 425.S 
locally 425.V 
real- 425.BB 
sequentially 425,s 
(i- 425.V 
uniformly locally 425.V 

compact support (singular q-cochain) 201.P 
compact type (symmetric Riemannian homogeneous 

space) 412.D 
compactum, dyadic 79.D 
companion matrix 301.1 
comparability theorem for cardinal numbers 49.B 
comparison, paired 346.C 
comparison test (for convergence) 379.B 
comparison theorem (in the theory of differential 

equations) 316.E 
metric 178.A 
triangle 178.A 

compass 179.A 
compatible 

with composition 409.C 
with C-structure 114.B 
with the multiplication of a group l9O.C 
with operation (of an operator domain) 277.C 
with operations in a linear space 256.~ 
with topology 436.H 
with a triangulation (a C’-structure) 114.C 

compiler 75.C 
complement 

(of a decision problem) 71.B 
(in lattice theory) 42.A 243.E 
(in set theory) 381 .B 
orthogonal (of a subset of a Hilbert space) 

197.E 
relative (of two sets) 381.B 

complementary analytic set 22.A 
complementary degenerate series 437.W 
complementary degree 200.5 
complementary event 342.B 
complementary law of reciprocity 14.0 
complementary law of the Jacobi symbol 297.1 
complementary law of the Legendre symbol 

first 297.1 
second 297.1 

complementary modulus (in Jacobi elliptic func- 
tions) 134.5, App. A, Table 16.1 

complementary series 437.W 
complementary set 381.B 
complementary slackness, Tucker theorem on 

255.B 
complementary submodule 277.H 
complementary subspace (of a linear subspace) 

256.F 
complementation, law of (in a Boolean algebra) 

42.A 
complement conjecture, knot 235.8 
complemented (Banach space) 37.N 
complemented lattice 243.E 
complement theorem 382.B 

Chapman’s 382.B 
completable topological group 423.H 
complete 

(Abelian p-group) 2.D 
(algebraic variety) 16.D 
(increasing family of o-algebras) 407.B 
(logical system) 276.D 

(metric space) 273.5 
(ordinary differential equation) 126.C 
(predicate) 356.H 
(recursively enumerable set) 356.D 
(set of closed formulas) 276.F 
(statistics) 396.E 
(system of axioms) 35.B 
(system of orthogonal functions) 317.A 
(topological group) 423.H 
(uniform space) 436.G 
(valuation) 439.D 
(vector lattice) 310.C 
(wave operator) 375.B.H 
(Zariski ring) 284.C 
B- (locally convex space) 424.X 
fully (locally convex space) 424.X 
holomorphically (domain) 21.F 
NP- 71.E 
at o (in the theory of deformation) 72.G 
quasi- (locally convex space) 424.F 
(T- (vector lattice) 310.C 
weakly 1-, manifold 21.L 

complete accumulation point 425.0 
complete additive group 2.E 
complete additivity (of the Lebesgue integral) 

22l.C 
complete additivity (of a measure) 270.D 
complete additivity theorem, Pettis 443.G 
complete analytic space, K- 23.F 
complete bipartite graph 186.C 
complete blocks 102.B 
complete capture 420.D 
complete class 398.B 

essentially 398.B 
minimal 398.B 

complete class theorems 398.D 
complete cohomology theory 200.N 
complete distributive law (in a lattice-ordered group) 

243.G 
complete elliptic integral App. A, Table 16.1 

of the first kind 134.B 
of the second kind 134.C 

complete form, theorem on 356.H 
complete free resolution (of Z) 200.N 
complete graph 186.C 
complete hyperbolic manifolds 21.0 
complete induction 294.B 
complete integrability condition 428.C 
complete intersection 16.A 
complete lattice 243.D 

conditionally 243.D 
o- 243.D 

complete linear system 
on an algebraic curve 9.C 
on an algebraic variety 16.N 
defined by a divisor 16.N 

complete local ring 284.D 
structure theorem of 284.D 

completely additive 
(arithmetic function) 295.B 
(measure) 270.D,E 
(vector measure) 443.G 

completely additive class 270.B 
completely additive set function 380.C 
completely continuous operator 68.B 
completely integrable 154.B 
completely integrable (system of independent l- 

forms) 428.D 
completely integrally closed (ring) 67.1 
completely monotonic function 240&K 
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Complex(es) 

completely multiplicative number-theoretic function 
295.8 

completely nonunitary 251.M 
completely normal space 425.Q 
completely passive 402.G 
completely positive 36.H 

completely positive entropy 136.E 
completely primary ring 368.H 
completely randomized design 102.A 
completely reducible A-module 277.H 
completely reducible group l9O.L 
completely reducible linear representation 362.C 
completely regular space 425.Q 
completely unstable flow 126.E 
complete manifold, weakly I- 21 .L 
complete mapping 241 .B 
complete maximum principle 338.M 
complete measure 270.D 
complete measure space 270.D 
complete metric space 273.5 
completeness 

(for a Cartan connection) 80.N 
(of a logical system) 276.D 
(of the predicate calculus) 41 l.J 
asymptotic 150.D 
NP- 71.E 
theorem of (in geometry) 155.B 

completeness of real numbers 294.E 355.B 
completeness of scattering states 150.D 386.B 
completeness theorem. Code1 41 l.J 
complete observation 405.C,D 
complete orthogonal system 217.G 
complete orthonormal set (Hilbert space) 197.C 
complete orthonormal system 217.G 

of fundamental functions 217.G 
complete pivoting 302.B 
complete predicate 356.H 
complete product measure space 270.H 
complete quadrangle 343.C 
complete reducibility theorem, Poincare 3.c 
complete Reinhardt domain 21.B 
complete residue system modulo m 297.G 
complete ring (with respect to an ideal I) 16.X 
complete scheme, k- 16.E 
complete set 241.B 
complete u-field 396.E 

boundcdly 396.E 
complete solution (of partial differential equations) 

320.C 
complete space 436.G 

Tech 42S.T 436.1 
Dieudonne 436.1 
holomorphically 23.F 
topologically 436.1 

complete system 
of axioms 35.B 
of independent linear partial differential equa- 

tions 324.C 
of inhomogeneous partial differential equations 
428.C 

of nonlinear partial differential equations 
428.C 

complete valuation 439.D 
complete vector lattice 310.C 

CT- 31o.c 
complete Zariski ring 284.C 
completion 

a-adic (of an R-module) 284.B 
of a held (with respect to a valuation) 439.D 

of a measure space 270.D 
of a metric space 273.5 
p- 270.D 
of an ordered set 243.D 
of a ring along an ideal 16.X 
of Spec(A) along V(I) 16.X 
of a T,-topological group 423.H 
of a uniform space 436.G 
of a valuation 439.D 
of a valuation ring (of a valuation) 439.D 

complex(es) 70 
(in an Abelian category) 201.B 
(in buildings and BN pairs) 13.R 
(over an object of an Abelian category) 200.H 
c- 72.D 
abstract simplicial 70.C 
acyclic 201.B 
Amitsur 200.P 
cell 70.D 
chain 200.C 
chain (in an Abelian category) 201.B 
chain, over C 201 .C 
chain over A 201.G 
chamber 13.R 
closure finite cell 70.D 
cochain, over A 201.H 
cochain (in an Abelian category) 200.F,H 
cochain (of a simplicial complex) 201.H 
countable cell 70.D 
countable simplicial 70.C 
Coxeter 13.R 
CW 70.D 
de Rham 201.H 
de Rham (as an elliptic complex) 237.H 
Dolbeault 72.D 
double 200.H 
double chain 200.E 
dual 65.B 
Eilenberg-MacLane 70.F 
elliptic (on a compact (?-manifold) 237.H 
Euclidean 70.B 
Euclidean cell 70.8 
Euclidean simplicial 70.8 
finite cell 70.D 
finite simplicial 70.C 
geometric 70.B 
isomorphic simplicial 70.C 
isomorphic S.S. 70.E 
Kan 70.E 
linear (in projective geometry) 343.E 
linear line 343.E 
locally countable cell 70.D 
locally countable simplicial 70.C 
locally finite cell 70.D 
locally finite simplicial 70.C 
minimal 70.E 
multiple 200.H 
negative 200.H 
ordered (of a simplicial complex) 70.E 
ordered simplicial 70.C 
oriented simplicial chain 2Ol.C 
Poincare 114.5 
positive 200.H 
positive chain 200.C 
Postnikov 70.G 
product 200.H 
product (of cell complexes) 70.D 
product double chain 200.E 
quotient 2Ol.L 
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quotient chain 200.C 
rectilinear 70.B 
regular cell 70.D 
relative chain 200.C 
relative cochain 200.F 
semisimplicial (s.s.) 70.E 
simplicial 65.A 70.C 
singular (of a topological space) 70.E 
singular chain (of a topological space) 201.E 
singular cochain 201.H 
space form 365.L 
S.S. 70.E 
s.s., realization of 70.E 
standard (of a Lie algebra) 200.0 
Thorn 114.G 
Thorn, associated with (G, n) 114.G 
Thorn, fundamental cohomology class of the 

114.G 
complex algebraic variety 16.T 
complex analytic fiber bundle 147.0 
complex analytic function 198.H 
complex analytic manifold 72.A 
complex analytic structure (in a complex manifold) 

72.A 
complex analytic submanifold 72.A 
complex cobordism group 114.H 
complex cobordism ring 114.H 
complex conjugate bundle 147.F 
complex conjugate representation 362.F 
complex dimension (of a complex manifold) 72.A 
complex form (on a Fourier series) 159.A 
complex form (of a real Lie algebra) 248.P 
complex function 165.B 
complex Gaussian 176.B 
complex Gaussian process 176.C 
complex Gaussian random variable 176.B 
complex Gaussian system 176.B 
complex Grassmann manifold 199.B 
complex group (over a field) 60.L 
complex Hermitian homogeneous space 199.A 
complex Hilbert space 197.B 
complexification 

Chevalley 249.U 
of a real Lie algebra 248.P 

complex interpolation space 224.C 
complexity 

average 7 1 .A 
of computation 71 
Kolmogorov-Chaitin 354.D 
space 71.A 
time 71.A 
worst-case 71.A 

complex Lie algebra 248.A 
of a complex Lie group 249.M 

complex Lie group 249.A 
complex linear space 256.A 
complex line bundle 72.F 

determined by a divisor 72.F 
complex manifold(s) 72 

almost 72.B 
compact, family of 72.G 
isomorphic 72.A 
stably almost 114.H 
weakly almost 114.H 

complex multiplication 73 
complex number plane 74.C 
complex numbers 74.A 294.F 

conjugate 74.A 
complex of lines 110.B 
complex orthogonal group 60.1 

complex orthogonal matrix 269.1 
complex plane 74.C 
complex projective space 343.E 

infinite-dimensional 56 
complex quadratic form 348.A,B 
complex representation (of a Lie group) 249.0 
complex simple Lie algebra 

classical 248,s 
exceptional 248,s 

complex simple Lie group 
classical 249.M 
exceptional 249.M 

complex space form 365.L 
complex special orthogonal group 60.1 
complex spectral measure 390.D 
complex spectral representation 390.E 
complex spectral resolution 390.E 
complex sphere 74.D 
complex spinor group 61.E 
complex Stiefel manifold 199.B 
complex structure 

(in a complex manifold) 72.A 
(pseudogroup structure) 105.Y 
(on R’“) 3.H 
(on a Riemann surface) 367.A 
almost 72.B 
deformation of 72.G 
tensor field of almost (induced by a complex 
structure) 72.B 

complex symplectic group 60.L 
complex topological linear space 424..A 
complex torus 3.H 
complex-valued function 165.B 
complex variable 165.C 

theory of functions of 198.Q 
complex vector bundle 147.F 
component(s) 

(of a direct product set) 381.E 
(in graph theory) 186.F 
(of a matrix) 269.A 
(of a point in a projective space) 343.C 
(of a tensor of type (p, q)) 256.5 
(of a vector) 256.A 442.A 
(of a vector field) 105.M 
arcwise connected 79.B 
basic (of an m-dimensional surface) 110.A 
connected 79.A 186.F 
of degree n (of a graded A-module) 2OO.B 
embedded primary (of an ideal) 67.F 
fixed (of a linear system) 16.N 
ghost (of an infinite-dimensional vector) 449.A 
horizontal (of a homogeneous space) 110.A 
horizontal (of a vector field) 80.C 
identity (of a topological group) 423.F 
irreducible (of an algebraic variety) 16.A 
irreducible (of an analytic space) 23.C 
irreducible (of a linear representaiion) 362.D 
isolated primary (of an ideal) 67.F 
ith (of an element relative to a ba:sis) 256.C 
ith (of an n-tuple) 256.A 
nilpotent (of a linear mapping) 269.L 
orthogonal (of an element of a linear space) 

139.G 
path- 79.B 
primary (of an ideal) 67.F 
principal 280.F 
principal, analysis 280.F 
principal, of order p llO.A 
proper (of an intersection of subvarieties) 16.G 
Reeb 154.B 



1949 Subject Index 
Condition(s) 

relative (of a Lie transformation group) 1lO.A 
secondary (of a homogeneous space) 1lO.A 
semisimple 269.L 
simple (of a semisimple ring) 368.G 
strongly connected 186.F 
unipotent (of a linear mapping) 269.L 
variable (of a linear system) 15.C 16.N 
vertical (of a vector field) 8O.C 

component model 403.F 
components-of-variance model 403.C 
composite 

of cohomology operations 64.B 
of correspondences 358.B 
of homotopy classes 202.B 
of mappings 381.C 
of morphisms 52.A 
of subsets 436.A 
of valuations 439.F 

composite designs, central 102.M 
composite field 149.D 
composite function 106.1 
composite hypothesis 400.A 
composite number 297.B 
composite particles 132.A 
composition 

(of knots) 235.A 
(of probability distributions) 341.E 
external law of (of a set of another set) 409.A 
internal law of (of a set) 409.A 
law of (on a set) 409.A 
secondary 202.R 

composition algebra 231.B 
composition factor 190.G 
composition factor series 190.G 
composition product (of functions) 192.H 
composition series 

(in a group) 190.G 
(in a lattice) 243.F 

composition theorem (in class field theory) 59.C 
compound Poisson process 5.F 
comprehension, axiom of 33.B 381.G 
compressibility, isothermal 419.B 
compressible fluid 205.B 
compression, information 96.B 
computable (partial function) 31.B 
computation 

analog 19.A 
complexity of 7 1 
high-precision 138.B 

compute 31.B 71.B 
computers 75 

analog 19.E 
digital 75.B 
electronic 75.A 
electronic analog 19.E 
hybrid 19.E 

comultiplication 203.B,F 
Hopf 203.D 

concatenation (of paths) 170 
concave function 88.A 

strictly 88.A 
concave programming problem 292.A 
concentration 

area of 397.E 
asymptotic 399.L 
Gini coefficient of 397.E 
measure of 397.E 
spectral 33 1 .F 

concentration function 
maximal 341 .E 

mean 341.E 
concept 

basic (of structure) 409.B 
global (in differential geometry) 109 
in the large (in differential geometry) 109 
local (in differential geometry) 109 
in the small (in differential geometry) 109 

conchoidal curve 93.H 
conchoid of Nicomedes 93.H 
concircularly flat space App. A, Table 4.11 
concordant 154.F 
concurrent 

(in nonstandard analysis) 293.B 
(in projective geometry) 343.B 

condensation of singularities, principle of 37.H 
condensation point 425.0 
condensation test, Cauchy 379.B 
condition(s) 

adjoint boundary 315.B 
ascending chain (for (normal) subgroups of a 
group) 190.F 

ascending chain (in an ordered set) 31 l.C 
Baire 425.N 
boundary (for an ordinary differential equation) 

315.A 
boundary (for partial differential equations of 
elliptic type) 323.F 

boundary, operator with 112.F 
Cauchy (on the D-integral and the D(a)- 

integral) 100.E 
CFL (Courant-Friedrichs-Lewy) 304.F 
chain (in an ordered set) 3 1 l.C 
complete integrability 428.C 
consistency 341.1 
Denjoy-Carleman 168.B 
descending chain (for (normal) subgroups of a 

group) 190.F 
descending chain (in an ordered set) 311.C 
entropy 204.G 
of finite character (for functions) 34.C 
of finite character (for sets) 34.C 
finiteness, for integral extension 284.F 
Frobenius integrability 154.B 
Haar (on best approximation) 336.B 
Harnack (on the D-integral and the D(*)- 
integral) 100.E 

Holder, of order a 84.A 
initial (for ordinary differential equations) 

316.A 
initial (for partial differential equations) 321.A 
Jacobi 46.C 
KMS 308.H 
Levi 325.H 
Lindeberg 250.B 
Lipschitz 84.A 163.D 286.B 316.D 
Lipschitz, of order G( 84.A 
Lorentz 130.A 
LSZ asymptotic 150.D 
Lyapunov 250.B 
maximal (in an ordered set) 31 l.C 
minimal (in an ordered set) 3 11 .C 
no cycle 126.5 
Palais-Smale 279.E 286.4 
Poincare (in the Dirichlet problem) 120.A 
restricted minimal (in a commutative ring) 

284.A 
of R. Schmidt (in (C, cc)-summation) 379.M 
Sommerfeld radiation 188.D 
spectrum 150.D 
strip 320.D 



Subject Index 

Conditional density 
1950 

strong transversality 126.5 reduced mapping 202.F 
transversality 108.B regular 384.A 
of transversality (in the calculus of variations) right circular 350.B 
46.B self-dual regular 384.E 

uniqueness (for solution of an ordinary differen- side 25X.A 
tial equation) 3 16.D confidence coefficient 399.Q 

von Neumann 304.F confidence interval 399.4 
Whitney, (h) 41X.G confidence level 399.4 
Whitney, (h) at a point 418.G confidence limits 399.4 

conditional density 397.1 confidence region 399.Q 
conditional distribution 397.1 invariance of 399.Q 
conditional entropy 213.8 unbiased 399.Q 
conditional expectation (of a random variable) uniformly most powerful 399.Q 

342.E uniformly most powerful unbiased 399.Q 
conditional inequality 211.A configuration 
conditionality, principle of 401.C central 420.B 
conditionally complete lattice 243.D Pascal 7X.K 
conditionally convergent 379.C,E conliguration space 126.L 402.G 
conditionally u-complete lattice 243.D confluent differential equation 167.A 
conditionally stable 394.D confluent hypergeometric differential equation 
conditional mean (of a random variable) 342.E 167.A, App. A, Table 14.11 19.1 

397.7 confluent type 
conditional moments 397.5 function of 167.A 
conditional probability 342.E hypergeometric function of 167.A, App. A, 

regular 342.E Table 19.1 
conditional probability distribution 342.E confocal central tonics, family of 78.H 
conditional problems in the calculus of variations confocal parabolas, family of 7X.H 

46..4 confocal quadrics, family of 350.E 
conditional relative extremum (ofa function) 106.L conformal 77.A 
conditional self-intersection 213.B almost 275.C 
conditional stability 394.D conformal arc element 1lO.D 
condition number 302.A conformal connection 80.P 
conductivity 130.B conformal correspondence (between surfaces) 111.1 
conductor conformal curvature 1lO.D 

(of an Abelian extension) 14.4 conformal curvature tensor, Weyl XO.P, App. A, 
(of a class field) 59.B Table 4.11 
(of Dirichlet L-functions) 45o.c conformal differential geometry 11O.D 
(of an ideal group) 14.H conformal function, AL- 352.B 
(of a Grossencharakter) 450.F conformal geometry 76.A 
(of Hecke L-functions) 450.E conformal invariant 77.E 
(of a nonprimitive character or a primitive conformally equivalent 77.A 367.A 1Sll.B 
character) 450.C conformally flat 191.8 

(of a quadratic field) 347.G conformally flat space App. A, Table 4.11 
(of a residue character) 295.D conformal mapping 19X.A, App. A, Table 13 
(of a subring of a principal order) 14.B generalized 246.1 
p- (of norm-residue) 14.P extremal quasi- 352.C 

conductor-ramification theorem (in class field the- quasi- 352 
ory) 59.C conformal space 76.A 

conductor with a group character 450.G conformal structure 19l.B 
cone conformal structure (on a Riemann surface) 367.A 

(of a PL embedding) 65.D conformal torsion 1 I0.D 
(in a projective space) 343.E conformal transformation 80.P 364.F 
(of a simplicial complex) 70.C confounded 
(over a space) 202.E with blocks 102.5 
asymptotic 350.8 partially (with blocks) 102.5 
circular 7X.A 111.1 congruence 
conjugate convex X9.F (in geometry) 155.B 
convex 89.F (in number theory) 297.G 
convex polyhedral 89.F linear (in projective geometry) 343.E 
dual convex X9.F of lines 1lO.B 
extension (of a PL embedding) 65.D multiplicative 14.H 
future 25X.A congruence axiom (of geometry) 155.B 
light 25X.A congruence classes modulo m*, group of 14.H 
Mach 205.B congruence subgroup (of a modular group) 122.D 
mapping 202.E principal, of level N 122.D 
natural positive 308.K congruence zeta function 450.P 
oblique circular 350.8 congruent 
past 258.A (figures) 139.C 
quadric 350.. (segment) 155.B 
reduced (of a topological space) 202.F aflinely 7.E 



1951 Subject Index 
Connected sequences of functors 

in the Erlangen program I37 
congruent modulo m 297.G 
congruent transformation(s) 139.B 

group of 285.C 
conic(s) 78.A 

central 78.C 
focal (of a quadric) 350.E 
pencil of 343.E 

conical function App. A, Table 18.11 
conical hypersurface, quadric 350.G 
conical surface 111 .I 

quadric 350.B 
conic Lagrange manifold 274.C 345.B 
conic section(s) 78.A 

equation of 78.C 
canonical form of the equation of 78.C 

conjecture 
Adams (on J-homomorphisms) 237.1 
annulus (on combinatorial manifolds) 65.C 
Artin (on Artin L-functions) 450.G 
Bieberbach (on univalent functions) 438.C 
Birch-Swinnerton-Dyer (on L-functions of 
elliptic curves) 118.D 450.S 

Burnside (on finite groups) 151.D 
C, (on Kodaira dimension) 72.H 
entropy 12h.K 
four color 186.1 
fundamental (in topology) 70.C 
generalized Poincare 65.C 
general knot 235.B 
Hasse (on Hasse zeta function) 450,s 
Hodge (on cycles on algebraic varieties) 450,s 
Iwasawa main (on p-adic L-functions) 450.5 
knot complement 235.B 
Leopoldt (on p-adic L-functions) 450.5 
Mordell (on Diophantine equations) 118.E 
Poincdre (on a characterization of spheres) 
65.C 

property P- (on knot groups) 235.8 
Ramanujan (on automorphic functions) 32.D 
Ramanujan-Petersson (on Hecke operators) 
32.D 

Sato (on Hasse zeta functions) 450,s 
Schreier (on simple groups) 151.1 
Seifert (on vector fields) 126.K 154.D 
Smith (on knot theory) 235.E 
stability 126.3 
Taniyama-Weil (on L-functions of elliptic 

curves) 450,s 
Tate (on Hasse i-functions) 450,s 
unknotting 235.E 
Vandiver (on the class number of cyclotomic 

. fields) 14.L 
Weil (on congruence zeta functions) 450.Q 

conjugacy 
C’- 126.B 
topological 126.B 

conjugacy class (of an element of a group) 190.C 
conjugate 

(CC method) 302.D 
(diameter) 78.G 
(element) 149.5 
(point in a geodesic) 178.A 
(point in a projective space) 343.E 
(with respect to a quadric surface) 350.C 
(quaternion) 29.D 
(subset) 19O.C 
c’- 126.8 
harmonic (in projective geometry) 343.D 
52. 126.H 

topological 126.B 
conjugate axis (of a hyperbola) 78.C 
conjugate complex number 74.A 
conjugate convex cone 89.F 
conjugate differential (on Riemann surface) 367.H 
conjugate exponent 168.C 
conjugate field 149.5 377.C 
conjugate Fourier integral 160.D 
conjugate function 159.E 160.D 
conjugate gradient (CC) method 302.D 
conjugate harmonic function 193.c 
conjugate hyperbola 78.E 
conjugate ideal (of a fractional ideal) 14.1 
conjugate operator 

(in Banach spaces) 37.D 
(of a differential operator) 125.F 
(of a linear operator) 251.D 

conjugate planes (with respect to a quadric surface) 
35o.c 

conjugate point(s) 
(in the calculus of variations) 46.C 
(in a Riemannian manifold) 364.C 

conjugate pole 350.C 
conjugate Radon transform 218.F 
conjugate representation 362.F 

complex 362.F 
conjugate series (of a trigonometric series) 159.A 
conjugate space 

(of a linear topological space) 424.D 
(of a normed linear space) 37.D 

conjugation mapping (of a Hopf algebra) 203.E 
conjugation operator 164.K 
conjunction (of propositions) 41 l.B 
connected 

(aftine algebraic group) 13.A 
(design) 102.K 
(graded module) 203.B 
(graph) 186.F 
(topological space) 79.A 
(treatment) 102.B 
arcwise (space) 79.B 
K- 186.F 
locally (at a point) 79.B 
locally (space) 79.A 
locally arcwise (at a point) 79.B 
locally arcwise (space) 79.B 
locally n- (at a point) 79.C 
locally n- (space) 79.C 
locally o- (space) 79.C 
multiply (plane domain or space) 333.A 
n- (pair of topological spaces) 202.L 
n- (space) 79.C 202.L 
n-ply (plane domain) 333.A 
co- (space) 79.C 
path- (space) 79.B 
simply (covering Lie group) 249.C 
simply (space) 79.C 170 
simply, group 13.N 
strongly (components) 186.F 

connected component 79.A 186.F 
arcwise- 79.B 
strongly 186.F 

connected Lie subgroup 249.D 
connectedness 79 186.F 

of real numbers 294.E 
connectedness theorem 

general, due to W. Fulton and J. Hansen 16.1 
Zariski 16.X 

connected part 150.D 
connected sequences of functors 200.1 



Subject Index 
Connected set 

1952 

connected set 79.A 
connected space 79.A 
connected sum 

(of oriented compact Cm-manifolds) 114.F 
(of 3-manifolds) 65.E 

connecting homomorphism 
in cohomology 200.F 
in homology 200.C 
on homology groups 2Ol.C,L 

connecting morphism 20O.H,1 
connection(s) 80 

affine 80.H 286.L 
affme, coefficients of 80.L 
canonical afhne (on R”) 80.J 
Cartan 80.M 
conformal 80.P 
Euclidean 364.B 
Euclidean, manifold with 109 
flat 80.E 
Gauss-Manin (of a variety) 16.V 
Levi-Civita 364.B 
linear 80.H 
locally flat 80.E 
metric 80.K 
normal 365.C 
projective 80.0 
Riemannian 80.K 364.B 
Riemannian, coefficients of 80.L 

connection form 80.E 417.B 
connection formula 

for the solutions of a differential equation 
253.A 

connection of spin and statistics 132.A 150.D 
connection problem 253.A 
connective fiber space, n- 148.D 
connectives, propositional 41 l.E 
connectivity (of a space) 201.A 
conoid, right 111.1 
conoidal neighborhood 274.E 
conormal 323.F 
conormal bundle 274.E 
conormal sphere bundle 274.E 
co-NP 71.E 
conservation laws, even-oddness 150.D 
conservative (measurable transformation) 136.C 
conservative chain 260.A 
conservative process 261.B 
conserved axial-vector currents, partially 132.C 
consistency 

(condition in the multistep method) 303.E 
(of an estimator) 399.K 
(of a logical system) 276.D 
of analysis 156.E 
of the axiom of choice and the continuum 
hypothesis 33.D 

{cn}- 399.K 
relative 156.D 

consistency condition 341.1 
consistency proof 156.D 

of pure number theory 156.E 
consistent 

(finite difference scheme) 304.F 
(formal system) 411.1 
(system of axioms) 35.B 
a.s. 399.K 
{c,}- 399.K 
Fisher 399.K 
co- 156.E 

consistent and asymptotically normal (CAN) 
estimator 399.K 

consistent estimator 399.K 
consistent kernel (in potential theory) 338.E 
consistent-mass scheme 304.D 
consistent test 400.K 

uniformly 400.K 
constant(s) 165.C 

arbitrary (in a general solution of a differential 
equation) 313.A 

Bloch 77.F 
Boltzmann 402.B 
dielectric 130.B 
empirical 19.F 
error 303.E 
Euler 174.A 
integral 216.C 
integration (in a general solution of a differential 
equation) 313.A 

isoperimetric 391.D 
Lagrange method of variation of 252.D 
Landau 77.F 
method of variation of 55.B 252.1: 
phase (of a sine wave) 446 
Planck 115 
renormalization 150.D 
Robin 48.B 
schlicht Bloch 77.F 
structural (of a Lie algebra) 248.C 
universal (in the theory of conformal mapping) 

77.F 
constant breadth, curve of 89.C 
constant curvature 

space of 364.D, App. A, Table 4.1 I 
surface of 111.1 

constant function 381.C 
constant inclination, curve of 11 l.F 
constant mapping 381.C 
constant pressure, specific heat at 419.B 
constant sheaf 383.D 

locally constructible 16.AA 
constant stratum, p- 418.E 
constant-sum game 173.A 
constant term 

of a formal power series 376.A 
of a polynomial 337.B 
unfolding 5 1 .D 

constant variational formula 163.E 
constant volume, specific heat at 419.8 
constant width, curve of 1 ll.E 
constituent (of an analytic or coanalytic set) 22.C 
constraint 102.L 264.B 

capacity 281.D 
chance 408.B 
unilateral 440.A 

constraint qualification 
Guignard 292.B 
Slater 292.B 

constraint set (of a minimization problem) 292.A 
constructibility, axiom of (in axiomatic set theory) 

33.D 
constructible (set in axiomatic set theory) 33.D 
constructible sheaf 16.AA 

locally, constant 16.AA 
construction 

bar (of an Eilenberg-MacLane complex) 70.F 
geometric, problem 179.A 
GNS 308.D 
group measure space 136.F 
impossible, problem 179.A 
possible, problem 179.A 
W- (of an Eilenberg-MacLane complex) 70.F 



1953 Subject Index 
Continuous geometry 

construction problem (of class held tower) 59.F 
constructive field theory 150.F 
constructive method 156.D 
constructive ordinal numbers 81.B 
consumer’s risk 404.C 
contact, thermal 419.A 
contact element 428.E 

in a space with a Lie transformation group 
1lO.A 

contact form 1lO.E 
contact manifold llO.E 
contact metric structure llO.E 
contact network 282.B 
contact pair (in circle geometry) 76.C 
contact process 340.C 
contact structure 105.Y 
contact transformations 82, App. A, Table 15.IV 

quantized 274.F 
contain 381.A 

physically 351.K 
content (of a tolerance region) 399.R 

Jordan 270.G 
mean 399.R 

context-free grammar 31.D 
context-sensitive grammar 31.D 
contiguous 399.M 
contingency table 397.K 400.K 
continuable, analytically 198.1 
continuation 

analytic 198.G 
analytic, along a curve 198.1 
analytic, in the wider sense 198.0 
direct analytic 198.G 
harmonic 193.M 198.G 

continuation method 301.M 
continuation theorem 

Hartogs 21.F 
Remmert-Stein 23.B 
Riemann 21.F 
unique 323.5 

continued fractions 83.A 
finite 83.A 
infinite 83.A 
mixed periodic 83.C 
normal 83.E 
pure periodic 83.C 
recurring 83.B 
simple 83.A 

continuity 
absolute, space of 390.E 
axioms of (in geometry) 155.B 
Dedekind axiom of (for real numbers) 355.A 
equation of (for a fluid) 205.A 
equation of (for electromagnetics) 130.A 204.B 
Hartogs theorem of 21.H 
interval of (for a probability distribution) 

341.c 
local 45.F 
modulus of (of a function) 84.A 
modulus of, of kth order (of a continuous 

function) 336.C 
properties of 85.A 
of real numbers 294.E 
uniform 45.F 

continuity (*). generalized absolute 1OQ.c 
in the restricted sense 100.C 

continuity principle 
for analytic functions of several complex vari- 

ables 21.H 
in potential theory 338.C 

quasi- (in potential theory) 338.1 
continuity property for Tech theory 201.M 
continuity requirement, variational principles with 

relaxed 271.G 
continuity theorem 

Abel (for Dirichlet series) 339.B 
Abel (for power series) 121.D 
Levy 341.F 

continuous 
(additive interval function) 380.B 
(flow) 136.D 
(function of ordinal numbers) 312.C 
(mapping) 84.A 425.G 
absolutely (function) 100.C 
absolutely (mapping in the plane) 246.H 
absolutely (measure) 270.L 
absolutely (set function) 380.C 
absolutely (vector measure) 443.G 
absolutely, in the restricted sense 1oo.c 
absolutely, in the sense of Tonelli 246.C 
absolutely, (a) 100.C 
completely (operator) 68.D 
equi- 435.D 
equi-, semigroup of class (C?) 378.B 
generalized absolutely 100.C 
hypo- 424.Q 
left 84.~ 
from the left 84.B 
in the mean 217.M 
in the mean (stochastic process) 407.A 
p-absolutely 380.C 
with respect to the parameter (a distribution) 

125.H 
piecewise, function 84.B 
in probability 407.A 
right 84.B 
from the right 84.B 
separately (bilinear mapping) 424.Q 
strongly (function with values in a Banach 
space) 37.K 

uniformly 84.A 273.1 436.E 
uniformly, on a subset 436.G 
weakly (function with values in a Banach space) 

37.K 
continuous action (in topological dynamics) 126.B 
continuous additive interval function 380.B 
continuous analytic capacity 164.5 
continuous arc(s) 93.B 
continuous cocycle 200.N 
continuous distribution (probability theory) 341.D 
continuous dynamical system 126.B 
continuous flow 

(in ergodic theory) 136.D 
(on a topological space) 126.B 

continuous functions 84 
absolutely 1OO.C 
generalized absolutely 1OO.C 
lower semi- 84.C 
lower semi- (at a point) 84.C 
on a metric space 84.C 
piecewise 84.B 
quasi- 338.1 
right 84.B 
semi- (at a point) 84.C 
uniformly (in a metric space) 84.A 
upper semi- 84.C 
upper semi- (at a point) 84.C 

continuous geometry 85 
irreducible 85.A 
reducible 85.A 



Subject Index 
Continuous homomorphism 

continuous homomorphism (between topological 
groups) 423.5 

open 423.5 
continuous image 425.G 
continuously differentiable function, n-times 106.K 
continuous mapping 425.G 

space of 435.D 
strongly 437.A 
uniformly (of metric spaces) 273.1 
uniformly (of uniform spaces) 436.E 

continuous plane curve 93.B 
continuous representation 

strongly (of a topological group) 69.B 
weakly (of a topological group) 69.B 

continuous scmiflow 126.B 
continuous semimartingale 406.B 
continuous spectrum 390.A 

absolutely 390.E 
of an integral equation 217.3 

continuous spin 258.C 
continuous state branching process 44.E 
continuous tensor product 377.D 
continuum 79.D 

cardinal number of 49.A 
indecomposable 79.D 
irreducible 79.D 
Peano 93.D 

continuum hypothesis 49.D 
consistency of the axiom of choice and 33.D 
generalized 49.D 
independence of the axiom of choice and 33.D 

contour(s) 
additivity of (in the curvilinear Integral) 94.D 
of an integration 94.D 

contract, annuity 214.B 
contracted tensor 256.L 
contractible space 79.C 202.D 

locally 79.C 202.D 
locally, at a point 79.C 

contraction 
(of a graph) 186.E 
(linear operator) 37.C 
(of a mapping) 381.C 
(of a matroid) 66.H 
(of a tensor) 256.L 
sub- 186.E 

contraction principle 286.B 
contractive 251.N 

purely 251.N 
purely, part 251.N 

contradiction 41 1.1 
contradictory formal system 411.1 
contragredicnt (of a linear mapping) 256.G 
contragredient representation 362.E 
contrast 

elementary 102.C 
normalized 102.C 
treatment 102.C 

contravariant functor 52.H 
contravariant index (of a component of a tensor) 

256.J 
contravariant of order r and covariant of order s 

108.D 
contravariant spinor 258.B 
contravariant tensor 

alternating 256.N 
of degree p 256.5 
symmetric 256.N 

contravariant tensor algebra 256.K 

1954 

contravariant tensor field of order r 105.0 
contravariant vector 256.5 
contravartant vector field 105.0 
control 

admissible 405.A 
bang-bang 405.C 
feedback 405.C 
impulse 405.E 
inventory 227 
local 102.A 
optimal 46.D 86.B,C 405.A 
quality 404.A 
stochastic 342.A 405 
time-optimal 86.F 

control chart 404.B 
controllability 86.C 
controlled stochastic differential equation 405.A 
controlled tubular neighborhood system 418.G 
control limit 

lower 404.F 
upper 404.8 

control problem, time optimal 86.F 
control space (in static model in catas rophe theory) 

51.B 
control theory 86 
control unit 75.B 
convention 

Einstein 256.5 
Einstein summation 417.8 
Maxwell 51.F 
perfect delay 5 l.F 

converge 
(filter) 87.1 
(infinite product) 379.G 
(in a metric space) 273.D 
(net) 87.H 
(sequence of lattices) 182.B 
(sequence of numbers) 87.B 355.B 
(series) 379.A 
(in a topological space) 87.E 
almost certainly 342.D 
almost everywhere 342.D 
almost surely 342.D 
in distribution 168.B 342.D 
in the mean of order p 342.D 
in the mean of power p 168.B 
in probability 342.D 
with probability 342.D 
strongly 37.8 
uniformly (in a uniform space) 435.A 
weakly (in a normed linear space) 37.E 
weakly (in a topological linear Ispace) 424.H 

convergence 87 
(of a filter) 87.1 
(of a net) 87.H 
(of probability measures) 341 F 
(of truncation errors) 303.B 
abscissa of (of a Dirichlet series) 121 .B 
abscissa of (of a Laplace transform) 240.B,H 
absolute, abscissa of (Dirichlrt series) 121.B 
absolute, abscissa of (of a Laplace transform) 
240.B 

associated, radii 21.8 
asymptotic 168.B 
axis of 240.B 
circle of (of a power series) 339.A 
exponent of 429.B 
generalized 33 1 .C 
norm resolvent 33 1 .C 



1955 Subject Index 
Coordinate(s) 

radius of (of a power series) 339.A 
relative uniform star 3lO.F 
simple, abscissa of (of a Dirichlet series) 121.B 
star 87.K 
strong (of operators) 251.C 
strong resolvent 33 I .C 
uniform 435 
uniform (of a series) 435.A 
uniform (of operators) 251.C 
uniform. abscissa of (of a Dirichlet series) 

121.8 
uniform, abscissa of (of a Laplace transform) 
240.B 

uniform, on compact sets 435.c 

weak (of operators) 25 I .C 
weak (of probability measures) 341.F 
weak (of a sequence of submodules) 200.5 
Weierstrass criterion for uniform 435.A 

convergence criterion for positive series App. A 
Table 10.11 

convergence domatn (of a power series) 21.8 
convergence in measure 168.B 
convergence method 354.B 
convergence theorem 

on distributions 125.G 
Lebesgue 221 .C 
of martingales 262.B 

convergent 
(continued fraction) 83.A 
(double series) 379.E 
(filtration) 200.5 
(infinite integral) 216.E 
(sequence) 87.8 355.B 
(series) 379.A 
absolutely (double series) 379.E 
absolutely (infinite product) 379.G 
absolutely (Laplace-Stieltjes integral) 240.B 
absolutely (power series) 21.B 
absolutely (series) 379.C 
absolutely (series in a Banach space) 443.D 
commutatively 379.C 
conditionally 379.CE 
intermediate 83.B 
(o)- 87.L 
(o)-star 87.L 
order (in a vector lattice) 310.C 
pointwisc 435.B 
principal X3.B 
simply 435.B 
unconditionally 379.C 
uniformly (on a family of sets) 435.C 
uniformly (sequence, series, or infinite product) 

435.A 
uniformly, in the wider sense 435.C 
uniformly absolutely 435.A 

convergent power series 370.B 
convergent power series ring 370.8 
convergent sequence 355.B 
convex 

(function on a G-space) 178.H 
(function on a Riemannian manifold) 178.B 
(subset of a sphere) 274.E 
(subset of a sphere bundle) 274.E 
absolutely 424.E 
holomorphically, domain 21.H 
locally (linear topological space) 424.E 
logarithmically (domain) 21.B 
matrix (of order m) 212.C 
operator 212.C 
properly 274.E 

uniformly (normed linear space) 37.G 
convex analysis 88 
convex body 89.A 
convex cell (in an aftine space) 7.D 
convex closure (in an aftine space) 7.D 
convex cone 

conjugate 89.F 
dual 89.F 

convex curve, closed 1ll.E 
convex functions 88.A 

proper 88.D 
strictly 88.A 

convex hull 89.A 
(in an atline space) 7.D 
(of a boundary curve) 275.8 
(in linear programming) 255.D 
closed 424.H 

convexity theorem 
Lyapunov 443.G 
M. Riesz 88.C 

convex neighborhood 364.C 
convex polyhedral cone 89.F 
convex polyhedron 89.A 
convex programming 264.C 
convex programming problem 292.A 
convex rational polyhedra1 16.2 
convex set(s) 89 

absolutely (in a linear topological space) 424.E 
in an affine space 7.D 
P- (for a differential operator 112.C 
regularly 89.G 
strongly P- 112.C 
strongly separated 89.A 

convex surface, closed 111 .I 
convolution 

(of arithmetic functions) 295.C 
(of distributions) 125.M 
(of functions) 159.A 192.H 
(of hyperfunctions) 125.X 
(of probability distributions) 341.E 
(in the theory of Hopf algebra) 203.H 
generalized (of distributions) 125.M 

convolutional code 63.E 
cooperative game 173.A,D 
coordinate(s) 90 

(of an element of a direct product of sets) 
381.E 

(in the real line) 355.E 
afftne 7.C 
barycentric (in an afline space) 7.C 90.B 
barycentric (in a Euclidean simplicial complex) 

70.B 
barycentric (in the polyhedron of a simplicial 
complex) 70.C 

bipolar 9O.C App. A, Table 3.V 
bipolar cylindrical App. A, Table 3.V 
canonical (of a Lie group) 249.Q 
Cartesian (in an atline space) 7.C 
Chow (of a positive cycle) 16.S 
circular cylindrical App. A, Table 3.V 
curvilinear 9O.C App. A, Table 3.V 
cylindrical 90.C. App. A, Table 3.V 
ellipsoidal 90.C 133.A, App. A, Table 3.V 
elliptic 90.C 350.E App. A, Table 3.V 
elliptic cylindrical App. A, Table 3.V 
equilateral hyperbolic 9O.C App. A, Table 3.V 
generalized (in analytical dynamics) 271.F 
generalized cylindrical App. A, Table 3.V 
geodesic 80.J 
geodesic polar 90.C 



Subject Index 
Coordinate axis 

1956 

Grassmann (in a Grassmann manifold) 90.B 
homogeneous (of a point in a projective space) 

343.c 
hyperbolic cylindrical App. A, Table 3.V 
hyperplane (of a hyperplane in a projective 
space) 343.C 

inhomogeneous (of a point with respect to a 
frame) 343.C 

isothermal 90.C 
ith (of an element relative to a basis) 256.C 
Klein line 90.B 
Kruskal 359.D 
line (of a line) 343.C 
local (on an algebraic variety) 16.0 
local (on a topological manifold) 105.C 
local, transformation of 90.D 
moving App. A, Table 3.IV 
multiplanar 90.C 
multipolar 90.C 
(n + 2)-hyperspherical 76.A 90.B 
normal 90.C 
oblique (in a Euclidean space) 90.B 
orthogonal curvilinear 90.C 
parabolic 90.C 
parabolic cylindrical App. A, Table 3.V 
parallel (in an afline space) 7.C 
pentaspherical 90.B 
plane (of a plane) 343.C 
Plucker (in a Grassmann manifold) 90.B 
polar 9O.C App. A, Table 3.V 
projective 343.C 
rectangular (in a Euclidean space) 90.B 
rectangular hyperbolic 90.C 
rotational App. A, Table 3.V 
rotational hyperbolic App. A, Table 3.V 
rotational parabolic App. A, Table 3.V 
spherical 90.C 133.D 
tangential polar 90.C 
tetracyclic 90.B 
trilinear 90.C 
tripolar 90.C 

coordinate axis 
of an afhne frame 7.C 
ith (of a Euclidean space) 140 

coordinate bundle(s) 147.B 
equivalent 147.B 

coordinate curve (in a Euclidean space) 90.C 
coordinate function 

(of a tiber bundle) 147.B 
(in the Ritz method) 304.B 

coordinate hyperplane (of an afftne frame) 7.C 
coordinate hypersurface (in a Euclidean space) 

9O.C 
coordinate neighborhood 

of class c 105.D 
of a fiber bundle 147.B 
of a manifold 105.C 

coordinate ring (of an afftne variety) 16.A 
homogeneous 16.A 

coordinate system 90.A 
(of a line in a projective space) 343.C 
geodesic, in the weak sense 232.A 
holomorphic local 72.A 
isothermal curvilinear App. A, Table 3.V 
I-adic 3.E 
local (of a topological space) 90.D 105.C 
moving 90.B 
orthogonal, adapted to a flag 139.E 
orthogonal curvilinear App. A, Table 3.V 
projective 343.C 

coordinate transformation (of a fiber bundle) 147.B 
(of a locally free OX-Module) 16.E 

coplanar vectors 442.A 
coproduct 

of commutative algebras 29.A 
of an element in a graded coalgebra 203.B 
Hopf 203.D 
of two objects 52.E 

coradical 293.F 
CORDIC 142.A 
core 173.D 
coregular representation (of an algebra) 362.E 
corestriction (homomorphism of cohomology 

groups) 200.M 
Corioli force 271.D 
corner polyhedron 215.C 
Cornish-Fisher expansions 374.F 
Cornu spiral 93.H 167.D 
Corona problem 43.G 
Corona theorem 164.1 
coroot 13.5 
correcting, error- 63.A 
correcting capability, error- 63.B 
correctly posed 

(initial value problem) 321.E 
(problems for partial differential equations) 

322.A 
corrector (in a multistep method) 303.E 

Milne 303.E 
correlation 343.D 

involutive 343.D 
Kendall rank 371.K 
serial 397.N 
serial cross 397.N 
Spearman rank 371.K 

correlation coefficient 
(of two random variables) 342.C 397.H 
canonical 280.E 374.C 
multiple 397.5 
partial 397.5 
population 396.D 
sample 396.D 
sample multiple 280.E 
sample partial 280.E 
serial 421.B 

correlation inequalities 212.A 
correlation matrix 397.5 
correlation ratios 397.L 
correlation tensor 433.C 
correlogram 397.N 
correspond 358.B 
correspondence 358.B 

algebraic (of an algebraic variety) 16.1 
algebraic (of a nonsingular curve) 9.H 
algebraic, group of classes of 9.H 
birational 16.1 
of Combescure 11 l.F 
conformal (between surfaces) 111.1 
geodesic (between surfaces) 111.1 
homothetic (between surfaces) 111.1 
inverse 358.B 
one-to-one 358.B 
similar (between surfaces) 111.1 
univalent 358.B 

correspondence principle 351.D 
correspondence ring (of a nonsingular curve) 9.H 
corresponding angles 139.D 
corresponding points (with respect to confocal 

quadrics) 350.E 
cos (cosine) 13 l.E 432.A 



1957 Subject Index 
Covering Lie group, simply connected 

cos-I 131.E 
cosec (cosecant) 13 l.E 432.A 
cosech (hyperbolic cosecant) 131.F 
cosemisimple 203.F 
coset 

double (of two subgroups of a group) 190.C 
left (of a subgroup of a group) 190.C 
right (of a subgroup of a group) 19O.C 

coset space (of a topological group) 
left 423.E 
right 423.E 

cash (hyperbolic cosine) 131.F 
cosigma functions 134.H, App. A, Table 16.IV 
cosine(s) 432.A 

first law of 432.A, App. A, Table 2.11 
hyperbolic 131.F 
integral 167.D 
law of (on spherical triangles) 432.B, App. A, 
Table 2.111 

optical direction 180.A 
second law of 432.A, App. A, Table 2.11 

cosine integral 167.D, App. A, Table 19.11 
cosine series, Fourier, App. A, Table 11.1 
cosine transform, Fourier I6O.C App. A, Table 

11.11 
cospecialization (in &ale topology) 16.AA 
cospectral density 397.N 
cost 281.D 

imputed 255.B 
shadow 292.C 
unit 281.D 

cost of insurance 214.B 
cost of observation 398.F 
cot (cotangent) 131.E 
cotangent(s) 432.A 

hyperbolic 131.F 
law of App. A, Table 2.111 

cotangent bundle 147.F 
cotangential sphere bundle 274.E 
cotangent vector bundle 147.F 
Cotes formula, Newton- (in numerical integration) 

299.A 
coth (hyperbolic cotangent) 131.F 
cotree 186.G 
cotriple 200.4 
counit 203.F 
counity (of a coalgebra) 203.B 
countability axioms 425.P 
countable additivity 270.B 
countable cell complex 70.D 
countable Lebesgue spectrum 136.E 
countable model (of axiomatic set theory) 156.E 
countable ordinal number 49.F 
countable set 49.A 
countable simplicial complex 70.C 

locally 70.C 
countably additive class 270.B 
countably compact space 425.S 
countably equivalent sets 136.C 
countably Hilbertian space 424.W 
countably infinite set 49.A 
countably normed space 424.W 
countably paracompact space 425.Y 
countably productive property 425.Y 
counting constants, principle of 16.S 
counting function (of a meromorphic function) 

272.B 
Courant-Cheng domain theorem 391.H 
Cousin problem 21.K 

first 21.K 

second 21.K 
covariance (of two random variables) 342.C 397.H 

population 396.D 
sample 396.D 

covariance distribution 395.C 
covariance function 395.A,B 

sample 395.G 
covariance matrix 341.B 397.5 

asymptotic 399.K 
variance 341.B 397.5 

covariant 226.D 
absolute 226.D 
absolute multiple 226.E 
with ground forms 226.D 
multiple 226.E 
of an nary form of degree d 226.D 
relativistically 150.D 

covariant derivative 
(of a tensor field) 80.1417.B, App. A, Table 4.11 
(of a vector field) 80.1 
(of a vector field along a curve) 80.1 
van der WaerdenBortolotti 417.E 

covariant differential 
(of a differential form) 80.G 
(of a tensor field) 80.1,L 417.B 
(of a vector field) 80.1 

covariant functor 52.H 
covariant index (of a component of a tensor) 256.5 
covariant spinor 258.B 
covariant tensor 

alternating 256.N 
of degree 4 256.5 
symmetric 256.N 

covariant tensor field of order s 105.0 
covariant vector 256.5 
covariant vector field 105.0 
covector, p- 256.0 
cover (a set) 381.D 
covering(s) 

(covering space) 91.A 
(curve) 9.1 
(of a set) 381.D 425.R 
closed (of a set) 425.R 
closure-preserving 425.X 
countable (of a set) 425.R 
degree of (of a nonsingular curve) 9.1 
discrete (of a set) 425.R 
E- (of a metric space) 273.B 
finite (of a set) 425.R 
locally finite (of a set) 425.R 
mesh of (in a metric space) 273.B 
n-fold (space) 91.A 
normal (of a set) 425.R 
open (of a set) 425.R 
point-finite (of a set) 425.R 
regular (space) 91.A 
u-discrete (of a set) 425.R 
u-locally finite (of a set) 425.R 
star-finite (of a set) 425.R 
unramified (of a nonsingular curve) 9.1 

covering curve 9.1 
covering differentiable manifold 91.A 
covering dimension (of a normal space) 117.B 
covering family (in Grothendieck topology) 16.AA 
covering group (of a topological group) 91.A 423.0 

universal (of a topological group) 91.B 423.0 
covering homotopy property 148.B 
covering law 381.D 425.L 
covering Lie group, simply connected (of a Lie 

algebra) 249.C 



Subject Index 

Covering linkage invariant(s) 
1958 

covering linkage invariant(s) 235.E (of a function on R’) 106.L 
covering manifold 91 .A (of a harmonic function) 193.5 
covering mapping (map) 91 .A (of a mapping a: R” + R”) 20X.B 
covering space(s) 91 degenerate 106.L 279.B 

analytic 23.E nondegenerate 106.L 279.B 286.1~ 
C- 23.E critical region 400.A 
in the sense ofcartan 23.E critical value 
ramified 23.B (in bifurcation theory) 286.R 
universal 91.B (of a C”-function on a manifold) 279.B 

covering surface(s) 367.8 (of a C” -mapping q: M + M') 105.5 
Ahlfors theory of 367.B (of a contact process) 340.C 
with relative boundary 367.B (of an external magnetic field) 340.B 
unbounded 267.B (of a mapping a: R” + R”) 208.B 
universal 367.B Crofton formula (in integral geometry) 218.B 
unramified 367.B cross cap (a surface) 410.B 

covering system, uniform 436.D crosscut(s) (of a plane domain) 333.A 
covering theorem, Vitali 380.D fundamental sequence of (in a simply connected 
covering transformation 91 .A domain) 333.B 

of an unramilied unbounded covering surface crossed homomorphism (of an associative algebra) 
367.B 2OO.L 

covering transformation group 91.A crossed product 
Coxctcr complex 13.R (in C’*-algebra theory) 36.1 
Coxctcr diagram (of a complex semisimple Lie (of a commutative ring and a group) 29.D 

algebra) 248.S (in von Neumann algebra theory) 308.5 
Coxeter group 13.R crossings 
CPM 307.C 376 normal 16.L 
Cramer-Castillon problem (in geometric construc- only normal 16.L 

tion) 179.A crossing symmetry 132.C 386.B 
Cramer-Rao inequality 399.D cross norm, C*- 36.H 
Cramer rule 269.M cross product 
Cramer theorem 399.M (of cohomology groups) 201.5 
crash duration 281.D (of homology groups) 201.5 
creation (operator 377.A (of vector bundles) 237.C 
Cremona transformation 16.1 cross ratio 343.D 
CR-equivalence 344.A cross section 
criterion (of a fiber bundle) 147.L 286.H 

Cartan, of semisimplicity (of Lit algebras) (of a fiber space) 148.D 
248.F (of a flow) 126.C 

Cartan, of solvability (of Lie algebras) 248.F absorption 375.A 
Castclnuovo 15.E differential 375.A 386.8 
Cauchy 87.C, App. A, Table 10.11 local (in a topological group) 147.E 
convergence, for positive series App. A. Table scattering 375.A 

10.11 total 386.B 
d’Alembert App. A, Table 10.11 total elastic 386.B 
Euler 297.H cross-sectional data 128.A 397.A 
Gauss App. A, Table IO.11 cross spectral density function 421.E 
Jacobian (on regularity of local rings) 370.B Crout method 302.B 
Kummer 145, App. A, Table 10.11 CR structure 344.A 
logarithmic App. A, Table IO.11 crystal class 92.B 
Nakai-Moishezon (of ampleness) 16.E arithmetic 92.B 
Nyquist’s 86.A geometric 92.B 
Raabe App. A. Table 10.11 3-dimensional App. B, Table 5.IV 
of ruled surfaces 15.E crystal family 92.B 
Schlomilch App. A, Table IO.11 crystallographic group 92 
simplex 255.D crystallographic restriction 92.A 
Wcicrstrass, for uniform convergence 435.A crystallographic space group 92.A 
Weyl 182.H crystal system 92.B 

criterion function 127.A cube 357.B 
critical (Galton-Watson process) 44.8 duplication of 179.A 
critical determinant 182.B Hilbert 382.B 
critical exponent I I l.C unit 139.F 140 
critical inclination problem 55.c unit n- 140 
critical lattice in M with respect to S 182.B cubic equation lO.D, App. A, Table 1 
critical manifold, nondegenerate 279.D,E cubic map 157.B 
critical path 376 cubic P 92.E 
critical percolation probability 340.D cubic resolvent App. A, Table 1 
critical point cumulant 397.G 

(of a C’ -function on a manifold) 279.B factorial 397.G 
(of a C’-mapping q: M + M') 105.J joint 397.1 
(of a flow) 126.D cumulative distribution 397.B 



1959 Subject Index 
Curve(s) 

cumulative distribution curve 397.B 
cumulative distribution function 341.B 342.C 
cumulative distribution polygon 397.B 
cup product 

(of cohomology classes) 201.1 
(of derived functors) 200.K 
(in K-theory) 237.C 

cup product reduction theorem (on cohomology or 
homology groups) 200.M 

curl (of a differentiable vector field) 442.D 
current 125.R 

4-, density 150.8 
integral 275.G 
partially conserved axial-vector 132.C 
random 395.1 

current algebra 132.C 
Curtis formulas, Clenshaw- 299.A 
curvature 

(of a curve of class C?) 1lI.D 
(of a plane curve) 1 I l.E 
absolute (of a curve) 11 l.C 
affine 11O.C 
circle of 1 I1.E 
conformal 1lO.D 
constant, space of 364.D, App. A, Table 4.11 
constant, surface of 111.1 
Gaussian (of a surface) 11 l.H, App. A, Table 
4.1 

geodesic 1 I l.H, App. A, Table 4.1 
S. Germain (of a surface) 11 I.H, App. A, Table 
4.1 

holomorphic sectional 364.D 
integral (of a surface) 11 l.H 
line of (on a surface) 11 l.H 
Lipschitz-Killing 279.C 
mean 364.D 
mean (of a surface) 11 l.H 365.D, App. A, 
Table 4.1 

mean, vector 365.D 
minimum, property 223.F 
negative 178.H 
nonpositive, G-space with 178.H 
normal (of a surface) 1ll.H 
principal (of a surface) I1 1.H 365.C 
radius of (of a plane curve) 1 I l.E 
radius of (of a space curve) lll.F 
radius of principal (of a surface) 1Il.H 
Ricci 364.D 
Riemannian 364.D 
scalar 364.D. App. A, Table 4.11 
sectional 364.D 
total (of an immersion) 365.0 
total (of a surface) I 1 I .F,H, App. A, Table 4.1 
total Gaussian (of a surface) I 1l.H 
total mean 365.0 

curvature form 80.G 364.D 
curvature tensor 

(of an afline connection) 8O.J,L 417.B 
(of a FrCchet manifold) 286.L 
(of a Riemannian manifold) 364.D 
projective App. A, Table 4.11 
Weyl conformal 8O.P, App. A, Table 4.11 

curve(s) 93 11 l.A 
algebraic 9.A 
analytic (in an analytic manifold) 93.B 
analytic (in a Euclidean plane) 93.B 
asymptotic 110.B I1 l.H 
Bertrand lll.F 
bicharacteristic 325.A 
characteristic (network flow problem) 281.B 

characteristic (of a l-parameter family of 
surfaces) 111 .I 

characteristic (of a partial differential equation) 
320.B 324.A,B 

cissoidal 93.H 
of class Cx (in a differentiable manifold) 93.B 
of class C’ (in a Euclidean plane) 93.B 
closed convex 11 l.E 
of constant breadth 89.C 
of constant inclination 11 l.F 
of constant width 1 I l.E 
continuous plane 93.B 
coordinate (in a Euclidean space) 90.C 
covering 9.1 
Darboux llO.B 
Delaunay 93.H 
dual (of a plane algebraic curve) 9.B 
elliptic 9.C 
exceptional 15.G 
exponential 93.H 
of the first kind 15.G 
Frkchet 246.A 
fundamental (with respect to a birational 

mapping) 16.1 
fundamental theorem of the theory of 11 l.D 
general 93.D 
generating 111.1 
hyperelliptic 9.D 
influence 371.1 
integral (of a Monge equation) 324.F 
integral (of ordinary differential equations) 

316.A 
Jordan 93.8 
logarithmic 93.H 
Lorentz 397.F 
Mannheim 11 l.F 
meromorphic 272.L 
nodal 391.H 
oc- 404.c 
ordinary 93.C 
Peano 93.5 
pedal 93.H 
plane App. A, Table 4.1 
plane algebraic 9.B 
of pursuit 93.H 
rational 9.C 
rational (in a Euclidean plane) 93.H 
rectifiable 93.F 
rolling (of a roulette) 93.H 
of the second class 78.K 
of the second order 78.1 
simple closed 93.B 
sine 93.H 
solution (of ordinary differential equations) 

316.A 
stable 9.K 
stationary 46.8 
stationary (of the Euler-Lagrange differential 
equations) 324.E 

of steepest descent 46.A 
timelike 324.A 
tooth 181.E 
in a topological space 93.B 
transcendental 93.H 
u- lll.H 
unicursal 9.C 93.H 
unicursal ordinary 93.C 
universal 93.E 
v- lll.H 
variation 17P A 



Subject Index 
Curve fitting 

1960 

curve fitting 19.F 
curve tracing 93.G 
curvilinear cluster set 62.C 
curvilinear coordinates 9O.C, App. A, Table 3.V 

orthogonal 90.C 
planar App. A, Table 3.V 
in 3-dimensional space App. A, Table 3.V 

curvilinear coordinate system 
isothermal App. A, Table 3.V 
orthogonal App. A, Table 3.V 

curvilinear integrals 94.A 
with respect to a line element 94.D 
with respect to a variable 94.D 

cushioned refinement 425.X 
cusp 

of a curve 93.G 
of a Fuchsian group 122.C 
parabolic (of a Fuchsian group) 122.C 
of a plane algebraic curve 9.B 

cusp form 450.0 
in the case of one variable 32.B 
in Siegel half-space 32.F 

cuspidal parabolic subgroup 437.X 
cusp singularity 418.C 
cut 

(in a projective space) 343.B 
(of Q) 294.E 
(of R) 355.A 
disjunctive 215.C 
Gomory 215.B 
subadditive 215.C 

cut locus 178.A 
cutoff 15o.c 
cut point (on a geodesic) 178.A 
cutset (in a graph) 186.G 
cutset matrix (of a graph), fundamental 186.G 
cutting (P” by P’) 343.B 
cutting plane 215.B 

fractional, algorithm 215.B 
CW complex 70.D 
CW decomposition 70.D 
CW pair 201.L 
cybernetics 95 
cycle 

(on an algebraic variety) 16.M 
(of basic sets) 126.5 
(of a chain complex) 200.H 
(=cyclic permutation) 151 .G 
(of time series data) 397.N 
algebraic 450.Q 
algebraically equivalent 16.R 
dividing (on an open Riemann surface) 367.1 
foliation 154.H 
fundamental (of an oriented pseudomanifold) 

65.A 
fundamental (in a resolution of a singular point) 
418.C 

limit 126.1 
module of 200.C 
no, condition 126.5 
numerically equivalent 16.Q 
one 16.R 
positive (on an algebraic variety) 16.M 
rationally equivalent 16.R 
Schubert S6.E 
vanishing 418.F 
zero 16.R 

cycle index 66.E 
cyclic algebra 29.G 
cyclic code 63.D 

cyclic determinant 103.G 
cyclic element 251.K 
cyclic equation 172.G 
cyclic extension 172.B 
cyclic group 19O.C 
cyclic Jacobi method 298.B 
cyclic part (of an ergodic class) 260.B 
cyclic representation (Banach algebra) 36.E 
cyclic representation (topological groups) 437.A 
cyclic subgroup (of a group) 193.C 
cyclic vector (of a representation space ‘of a unitary 

representation) 437.A 
cyclide 90.B 
cyclide of Dupin 11 l.H 
cycloid 93.H 
cyclomatic number 186.G 
cyclotomic field 14.L 
cyclotomic polynomial 14.L 
cyclotomic Z,-extension 14.L 
cyclotomy 296.A 
cylinder 

circular 111.1 350.B 
elliptic 350.B 
hyperbolic 350.B 
mapping 202.E 
parabolic 350.B 

cylinder function 
elliptic 268.B 
parabolic 167.C 

cylinder set 270.H 
n- 270.G 

cylindrical coordinates 9O.C App. A, ‘Table 3.V 
bipolar App. A, Table 3.V 
circular App. A, Table 3.V 
elliptic App. A, Table 3.V 
generalized App. A, Table 3.V 
hyperbolic App. A, Table 3.V 
parabolic 167.C App. A, Table 3.V 

cylindrical equation, parabolic App. A, Table 14.11 
cylindrical functions 39.B, App. A, Table 19.111 
cylindrical hypersurface, quadric 350.1~ 
cylindrical surface 111.1 

circular 350.B 
elliptic 350.B 
hyperbolic 350.B 
parabolic 350.B 

D 

6 -delta 
9(Q) 125.B 168.B 
9’(Q) 125.B 

qM& %4J 168.B 
qMnj, q.) 125.1~ 
9,(n) (the totality of functions f(x) in Cm(D) such 

that for all c(, Dqf(x) belongs to L,,(R) with 
respect to Lebesgue measure) 168.B 

&measure 270.D 
A-refinement (of a covering) 425.R 
At-set 22.D 
d-functor 200.1 

universal 200.1 
a*-functor 200.1 
%-complex 72.D 
%cohomology groups 72.D 
d-continuous channels 213.F 
d-dimensional analytic set, purely 23.13 
d-trial path dependent 346.G 
d”-cohomology group 72.D 
D-sufficient u-field 396.5 



1961 Subject Index 
Decreasing real analytic function 

D-wave 315.E 
D-integrable function 100.D 
D-integral 

definite 100.D 
indefinite 100.D 

D(*)-integral 1OO.D 
d’Alembert criterion App. A, Table 10.11 
d’Alembertian 130.A 
d’Alembert method of reduction of order 252.F 
d’Alembert paradox 205.C 
d’Alembert solution 325.D 
damped oscillation 318.B 
damping ratio (of a damped oscillation) 318.B 
Daniel]-Stone integrable function 310.1 
Daniell-Stone integral 310.1 
Danilevskii method 298.D 
Darboux curve 11O.B 
Darboux formula, Christoffel- 3 17.D 
Darboux frame 110.B 
Darboux quadric 110.B 
Darboux sum 216.A 
Darboux tangent 110.B 
Darboux theorem 216.A 428.A 
Darmois theorem, Skitovich- 374.H 
data 96.B 

cross-sectional 128.A 
macroeconomic 128.A 
microeconomic 128.A 
scattering 287.C 387.C 

data analysis, statistical 397.A 
data base 96.B 
data processing 96 
data structures 96.B 
Davidenko’s method of differentiation with respect 

to a parameter 301.M 
death insurance 214.B 
death process 260.G 

birth and 260.G 
death rate, infinitesimal 260.G 
Debye asymptotic representation 39.D, App. A, 

Table 19.111 
decidable number-theoretic predicate 356.C 
decision 127.A 
decision function(s) 398.A 

invariant 398.E 
minimax 398.B 
sequential 398.F 
space of 398.A 
statistical 398.A 

decision problem 71.B 97 186.5 
n- 398.A 
sequential 398.F 
statistical 398.A 

decision procedure, statistical 398.A 
decision process, Markov 127.E 
decision rule 

sequential 398.F 
terminal 398.F 

decision space 398.A 
decision theoretically sufficient a-field 396.5 
decoder 213.D 
decoding 63.A 
decomposable operator (on a Hilbert space) 308.G 
decompose (a polygon) 155.F 
decomposed into the direct sum of irreducible 

representations 437.G 
decomposition 

(of a set) 381.D 
Bruhat (of an algebraic group) 13.K 
canonical (of a closed operator) 251.E 

cellular (of a Hausdorff space) 70.D 
Chevalley (on algebraic groups) 13.1 
cluster, Hamiltonian 375.F 
CW 70.D 
de Rham (of a Riemannian manifold) 364.E 
direct (of a group) 190.L 
Doob-Meyer 262.C 
D-optimality 102.E 
dual direct product (of a decomposition of a 

compact or discrete Abelian group) 422.H 
ergodic (of a Lebesgue measure space) 136.H 
Fefferman-Stein 168.B 
formula of Radon 125.CC 
Heegurard 65.C 
Iwasawa (of a connected semisimple Lie group) 

249.T 
Iwasawa (of a real semisimple Lie algebra) 

248.V 
Jordan (of an additive set function) 380.C 
Jordan (of a function of bounded variation) 

166.B 
Jordan (of a linear mapping) 269.L 
Jordan (in an ordered linear space) 310.B 
Khinchin 395.B 
Lebesgue, theorem 270.L 
Levi (on algebraic groups) 13.Q 
Levi (on Lie algebras) 248.F 
multiplicative Jordan (of a linear transforma- 

tion) 269.L 
Peirce (of a Jordan algebra) 231.B 
Peirce left (in a unitary ring) 368.F 
Peirce right (in a unitary ring) 368.F 
plane wave 125.CC 
polar 251 .E 
relative Bruhat 13.4 
Riesz (in Markov process) 260.D 
Riesz (in martingale) 262.C 
Riesz (of a superharmonic or subharmonic 
function) 193,s 

semimartigale 406.B 
simplicial (of a topological space) 79.C 
singular value (SVD) 302.E 
spectral 126.5 
Wiener-It6 176.1 
Witt (of a quadratic form) 348.F 
Wold 395.D 
Zariski 15.D 

decomposition-equal polygons 155.F 
decomposition field (of a prime ideal) 14.K 
decomposition group (of a prime ideal) 14.K 
decomposition number (of a finite group) 362.1 

generalized (of a finite group) 362.1 
decomposition theorem 

canonical 86.C 
in class held theory 59.C 
for dimension 117.C 
Lebesgue (on a completely additive set function) 

380.C 
unique (for a 3-manifold) 65.E 

decreasing, monotone 380.B 
decreasing C”-function, rapidly 168.B 
decreasing distribution, rapidly 125.0 
decreasing Fourier hyperfunction, exponentially 

125.BB 
decreasing function 

monotone 166.A 
strictly 166.A 
strictly monotone 166.A 

decreasing real analytic function, exponentially 
125.BB 



Subject Index 
Decreasing sequence, monotonically 

1962 

decreasing sequence, monotonically (of real num- 
bers) 87.8 

rapidly 168.B 
decrement, logarithmic (of a damped oscillation) 

318.B 
Dedekind, J. W. R. 98 
Dedekind, test of du Bois-Reymond and 379.D 
Dedekind axiom of continuity (for real numbers) 

3.55.A 
Dedekind discriminant theorem 14.5 
Dcdekind eta function 328.A 
Dedekind principle (in a modular lattice) 243.F 
Dedekind sum 328.A 

reciprocity law for 328.A 
Dedekind theory of real numbers 294.E 
Dedekind zeta function 14.C 450.D 
deep water wave 205.F 
defect 

(of a block of representations) 362.1 
(of a conjugate class in a group) 362.1 
(of a meromorphic function) 272.E 

defect group 
of a block of representations 362.1 

(of a conjugate class in a group) 362.1 
deficiency 

(of an algebroidal function) 17.C 
(of a closed operator) 251.D 
(of a linear system on a surface) 15.C 
maximal (of an algebraic surface) 15.E 

deficiency index 
(of a closed symmetric operator) 251.1 
(of a differential operator) 112.1 

deficient number (in elementary theory of numbers) 
297.D 

defined along V’ (for a rational mapping) 16.1 
defined over k’ (for an algebraic variety) 16.A 
define recursively 356.C 
defining functions (of a hyperfunction) 125.V 

standard 125.2 
defining ideal (of a formal spectrum) 16.X 
defining module (of a linear system) 16.N 
defining relations (among the generators of a group) 

161.A 
definite 

negative (function) 394.C 
negative (Hermitian form) 348.F 
negaiive (quadratic form) 348.8 
positive (function) 36.L 192.B,J 394.C 437.B 
positive (Hcrmitian form) 348.F 
positive (kernel) 217.H 
positive (matrix) 269.1 
positive (potential) 338.D 
positive (quadratic form) 348.8 
positive (sequence) 192.B 
semi- (Hermitian form) 348.F 
semi- (kernel) 217.H 
totally (quatcrnion algebra) 27.D 

definite D-integral 100.D 
dellnitc integral 216.C App. A, Table 9.V 

(of a hypcrfunction) 125.X 
definite quadratic form 348.C 
definition 

field of 16.A 
first (of algebraic K-group) 237.5 
second (of algebraic K-group) 237.5 
truth 185.D 

dclinition by mathematical induction 294.B 
definition by translinite induction 31 I .C 
deflation 

in homological algebra 200.M 

method for an eigenvalue problem 298.C 
deformation 

(of complex structures) 72.G 
(of a graph) 186.E 
infinitesimal, to the direction C/ds 72.G 
isomonodromic 253.E 
isospectral 387.C 
projective (between surfaces) 110.B 
of a scheme over a connected scheme 16.W 
of a surface 1lO.A 

deformation cochain 305.B 
deformation retract 202.D 

neighborhood 202.D 
strong 202.D 

degeneracy (of energy eigenvalues) 351 .H 
set of (of a holomorphic mapping between 

analytic spaces) 23.C 
degeneracy index 17.C 
degeneracy operator (in a semisimplicial complex) 

70.E 
degenerate 

(critical point) 106.L 279.B 
(eigenvalue) 390.A,B 
(mapping) 208.B 
(quadratic surface) 350.B 
(simplex) 70.E 
totally 234.B 

degenerate kernel 217.F 
degenerate module l18.D 
degenerate series 

(of unitary representations of a complex semi- 
simple Lie group) 437.W 

complementary (of unitary representations of a 
complex semisimple Lie group) 437.W 

degree 
(of an algebraic element) 149.F 
(of an algebraic equation) 10.A 
(of an algebraic variety) 16.G 
(of an angle) 139.D 
(of a central simple algebra) 29.E 
(of a divisor class) I l.D 
(of a divisor of an algebraic curve) 9.C 
(of an element with respect to a prime ideal of a 

Dedekind domain) 439.F 
(of an extension) 149.F 
(of a graph) 186.B 
(of a Jordan algebra) 231.B 
(of a linear representation) 362.D 
(of a matrix representation) 362.D 
(of an ordinary differential equation) 313.A 
(of a permutation representation) 362.B 
(of a polynomial) 337.A 
(of a prime divisor) 9.D 
(of a rational homomorphism) 3.C 
(of a representation of a Lie algebra) 248.B 
(of a representation of a Lie group) 249.0 
(of a square matrix) 269.A 
(of a term of a polynomial) 337.B 
(of a valuation) 439.1 
(of a O-cycle on an algebraic variety) 16.M 
complementary (of a spectral sequence) 200.5 
of covering (of a nonsingular curve; 9.1 
filtration 200.5 
formal (of a unitary representation) 437.M 
of freedom (of the dynamical system) 271.F 
of freedom (of error sum of squares) 403.E 
of freedom (of sampling distributions) 374.B 
in- 186.B 
Leray-Schauder 286.D 
local, of mapping 99.B 



1963 Subject Index 
De Rbam theorem (on a C”-manifold) 

mapping 99.A 
of mapping 99.A 
out- 186.B 
of the point 99.D 
of a prime divisor of an algebraic function field 

of dimension I 9.D 
of ramification (of a branch point) 367.B 
of recursive unsolvability 97 
relative (of a finite extension) 257.D 
relative (of a prime ideal over a field) 14.1 
of symmetry 43 1 .D 
total (of a spectral sequence) 200.J 
transcendence (of a field extension) 149.K 
of transcendency (of a field extension) 149.K 
of unsolvability 97 

degree k 
holomorphic differential forms of 72.A 
tensor space of 256.3 

degree n 
alternating group of 151.G 
component of 200.B 
general linear group of 60.8 
projective general linear group of 60.B 
Siegel modular function of 32.F 
Siegel modular group of 32.F 
Siegel space of 32.F 
Siegel upper half-space of 32.F 
special linear group of 60.8 
symmetric group of 15 I .G 

degree p, contravariant tensor of 256.5 
degree 4, covariant tensor of 256.5 
degree r 

differential form of 105.Q 
differential form of (on an algebraic variety) 

16.0 
mean of (of a function with respect to a weight 

function) 21 I .C 
Dehn lemma (on 3.manifolds) 65.E 
Dejon-Nickel method 301.G 
Delaunay curve 93.H 
delay convention, perfect 5 I .F 
delay-differential equation 163.A 
delayed recurrent event 260.C 
Delos problem (in geometric construction) 179.A 
delta, Kronecker 269.A, App. A, Table 4.11 
delta function. Dirac App. A, Table 12.11 
demography 40.D 
de Moivre formula 74.C 
de Moivre-Laplace theorem 250.B 
de Morgan law 3X I .B 

in a Boolean algebra 42.A 
Denjoy-Carleman condition 168.B 
Denjoy integrable in the wider sense 100.D 
Denjoy integrals 100 

in the restricted sense 100.D 
Denjoy-Luzin theorem 159.1 
denominator, partial (of an infinite continued frac- 

tion) 83.A 
dense 

(set) 425.N 
(totally ordered set) 31 l.B 
locally 154.D 
nowhere 425.N 
relatively 126.E 
Zariski 16.A 

dense in itself 425.0 
denseness of rational numbers 355.8 
density 

(on a maximal torus) 248.Y 

(of a set of prime ideals) 14,s 
(of a subset of integers) 4.A 
angular momentum 150.B 
beta 397.D 
bivariate normal 397.1 
conditional 397.1 
cospectral 397.N 
electric flux 130.A 
energy 195.B 
4-current 150.B 
free Lagrangian 150.B 
gamma 397.D 
joint 397.1 
kinetic 218.A 
Lagrangian 150.B 
magnetic flux 130.A 
point of (of a measurable set of the real line) 

100.B 
posterior 401.B 
prior 401.B 
probability 341.D 
sojourn time 45.G 

density function 397.D 
hispectral 421.C 
marginal 397.1 
normal 397.D 
rational spectral 176.F 

density matrix 35 I .B 
density theorem 

(on discrete subgroups of a Lie group) 122.F 
Chehotarev 14,s 
Kaplansky 308.C 
Lehesgue 100.8 
von Neumann 308.C 

dependence, domain of 325.8 
dependent 

algebraically (elements of a ring) 369.A 
algebraically (on a family of elements of a field) 

149.K 
functionally (components of a mapping) 208.C 
functionally, of class C’ (components of a 
mapping) 208.C 

linearly (elements in a linear space) 256.C 
linearly (elements in an additive group) 2.E 
linearly (with respect to a difference equation) 

104.D 
path, d-trial 346.G 

dependent points 
(in an affme space) 7.A 
(in a projective space) 343.B 

dependent set 66.G 
dependent variable 165.C 
depending choice, principle of 33.F 
depth (of an ideal) 67.E 
de Rham cohomology group 201.H 
de Rham cohomology group (of a differentiable 

manifold) 105.R 
de Rham cohomology ring (of a differentiable 

manifold) 105.R 
de Rham cohomology ring (of a topological space) 

201.1 
de Rham complex (as an elliptic complex) 237.H 
de Rham decomposition (of a Riemannian manifold) 

364.E 
de Rham equations 274.G 
de Rham homology theory 114.L 
de Rham system, partial 274.G 
de Rham theorem (on a P-manifold) 105.V 201.H 

analog of 21.L 



Subject Index 
Derivable 

1964 

derivable 
approximately (measurable function) 100.B 
in the general sense (a set function) 380.D 
in the ordinary sense (a set function) 380.D 

derivation 
(of an algebra) 200.L 
(of an algebraic function field) 16.0 
(of a commutative ring) 113 
(of a field) 149.L 
(of a Lie algebra) 248.H 
(of a linear operator in a C*-algebra) 36.K 
*- 36.K 
inner (in an associative algebra) 200.L 
inner (in a Lie algebra) 248.H 
invariant (on an Abelian variety) 3.F 
over k 149.L 
Lie algebra of 248.H 

derivation tree 31.E 
derivative 

(of a distribution) 125.E 
(of a function) 106.A 
(of a holomorphic function) 198.A 
(of a hyperfunction) 125.X 
(of a polynomial) 337.G 
(of an element in a differential ring) 113 
angular (of a holomorphic function) 43.K 
approximate (of a measurable function) 100.B 
covariant (of a tensor field) 80.1, App. A, 

Table 4.11 
covariant (of a tensor field in the direction of a 

tangent vector) 417.B 
covariant (of a vector field) 80.1 
covariant (of a vector field along a curve) 80.1 
directional 106.G 
distribution 125.E 
exterior (of a differential form) 105.Q 
first-order 106.A 
FrCchet 286.E 
free 235.C 
Glteaux 286.E 

general (of a set function) 380.D 
generalized 125.E 
general lower (of a set function) 380.D 
general upper (of a set function) 380.D 
higher-order (of a differentiable function) 

106.D, App. A, Table 9.111 
higher-order partial 106.H 
Lagrangian 205.A 
left (on the left) 106.A 
Lie (of a differential form) 105.Q 
Lie (of a tensor field) 105.0 
normal 106.G 
nth (of a differentiable function) 106.D 
ordinary (of a set function) 380.D 
ordinary lower (of a set function) 380.D 
ordinary upper (of a set function) 380.D 
partial 106.F,K 
partial, nth order 106.H 
at a point 106.A 
Radon-Nikodym 380.C 
right (on the right) 106.A 
Schwarzian App. A, Table 9.111 
spherical (for an analytic or meromorphic 
function) 435.E 

variational 46.B 
weak 125.E 

derivatives and primitive functions App. A, Table 9.1 
derived (language) 31.D 
derived algebra (of a Lie algebra) 248.C 
derived function 106.A 

nth 106.D 
derived group (of a group) 190.H 
derived neighborhood 65.C 

second barycentric 65.C 
derived normal model (of a variety) 16.F 
derived series (of a Lie algebra) 248.C 
derived set (of a set) 425.0 
derived sheaf 125.W 
derived unit 414.P 
Desarguesian geometry, non- 155.E 343.C 
Desargues theorem 155.E 343.C 
Descartes, R. 101 

folium of 93.H 
Descartes theorem 10.E 
descending central series (of a Lie algebra) 248.C 
descending chain 

(in a lattice) 243.F 
(of (normal) subgroups of a group) 190.F 
(in an ordered set) 31 l.C 

descending chain condition 
(for a (normal) subgroup of a group) 190.F 

desce(ni an ordered set) 3 1 l.C 

curve of steepest 46.A 
line of swiftest 93.H 
method of steepest 212.C 

descriptive set theory 
classical 356.H 
effective 356.H 

design 
block (-block design) 
central composite 102.M 
completely randomized 102.A 
factorial 102.H 
first-order 102.M 
fractional factorial 102.1 
second-order 102.M 
Youden square 102.K 

design matrix 102.A 403.D 
design-of-experiment analysis 403.D 
design of experiments 102 
designs for estimating parameters 102.M 
designs for exploring a response surface 102.M 
designs for two-way elimination of heterogeneity 

102.K 
desingularization (of an analytic space) 23.D 
de Sitter space 355.D 
desuspend 114.L 
detecting, error- 63.A 
determinacy 

axiom of 22.H 
projective 22.H 

determinant(s) 103 
(of an element of the general linear group over 

a noncommutative field) 60.0 
(of a nuclear operator) 68.L 
Casorati 104.D 
critical 182.B 
cyclic 103.G 
Fredholm 217.E 
Gramian 103.G 208.E 
Hankel 142.E 
Hill 268.B 
intinite (in Hill’s method of solution) 268.B 
Jacobian 208.B 
of a lattice 182.B 
Lopatinski 325.K 
Pfaffian 103.G 
Vandermonde 103.G 
Wronskian 208.E 



1965 Subject Index 
Differentiable 

determinantal equation, Hill 268.B 
determinant factor (of a matrix) 269.E 
determinateness, axiom of 33.F 
determination, coefficient of 397.H,J 
determination, orbit 309.A 
determined system 

of differential operators 112.R 
of partial differential equations 320.F 

determining set (of a domain in C”) 21.C 
deterministic 

(in prediction theory) 395.D 
(Turing machine) 3 1 .B 

deterministic linear bounded automaton 31.D 
deterministic process 127.B 
Deuring-Heilbronn phenomenon 123.D 
developable function, asymptotically 30.A 
developable space 425.AA 
developable surface 111.1 
development 

along a curve 364.B 
of a curve 80.N 11 l.H 364.8 

deviation 
large 250.B 
mean absolute 397.C 
standard 341.B 342.C 397.C 

deviation point 335.B 
devices, peripheral 75.B 
de Vries equation, Korteweg- 387.A 
(DF)-space 424.P 
DFT (Discrete Fourier Transform) 142.D 
diagonal (of a Cartesian product of sets) 381.B 

436.A 
diagonalizable (linear transformation) 269.L 
diagonalizable operator (in an Abelian van Neu- 

mann algebra) 308.G 
diagonal mapping (of a graded coalgebra) 203.B,F 
diagonal matrix 269.A 
diagonal morphism (in a category) 52.E 
diagonal partial sum (of a double series) 379.E 
diagonal sum (of a matrix) 269.F 
diagram 52.C 

(of a symmetric Riemann space) 413.F 
arrow 281 .D 
associated (in irreducible representations of 

orthogonal groups) 60.5 
in a category 52.C 
commutative 52.C 
Coxeter (of a complex semisimple Lie algebra) 

248,s 
Dynkin (of a complex semisimple Lie algebra) 

248.S App. A, Table 5.1 
extended Dynkin App. A, Table 5.1 
Feynman 146.B 
mutually associated 60.5 
Newton 254.D 
Satake (of a compact symmetric Riemannian 
space) 437.AA 

Satake (of a real semisimple Lie algebra) 
248.U, App. A, Table 5.11 

scatter 397.H 
Schlafli (of a complex semisimple Lie algebra) 
248,s 

Young 362.H 
diameter 

(of a central conic) 78.G 
(of a solid sphere) 140 
(of a subset in a metric space) 273.B 
conjugate (of a diameter of a central conic) 

78.G 
transtinite 48.D 

diathermal wall 419.A 
dichotomy 398.C 
Dido’s problem 228.A 
dielectric constant 130.B 
Dieudonne complete 436.1 
Dieudonne theorem 425.X 
diffeomorphic Cm-manifolds 105.J 
diffeomorphism(s) 

Anosov 126.5 136.G 
Axiom A 126.J 
C’- (in nonlinear functional analysis) 286.E 
of class C’ 105.J 
group of orientation-preserving 114.1 
horse-shoe 126.5 
minimal 126.N 
Morse-Smale 126.J 
Y- 136.G 

diffeotopy theorem 178.E 
difference 102.E 104.A 

backward 223.C App. A, Table 21 
central 223.C 304.E, App. A, Table 21 
divided 223.0 
finite 223.C 
forward 304.E 
of the nth order 104.A 
primary 305.C 
second 104.A 
symmetric 304.E 
of two sets 381.B 

difference analog 304.E 
difference cocycle 305.B 
difference-differential equation 163.A 
difference equation 104 

geometric 104.G 
homogeneous 104.C 
inhomogeneous 104.C 
linear 104.C 
nonhomogeneous 104.C 

difference group (of an additive group) 190.C 
difference method 303.A 
difference product 337.1 
difference quotient 104.A 
difference scheme 304.F 

of backward type 304.F 
of forward type 304.F 

difference set 102.E 
difference table 223.C 
different 

(of an algebraic number field) 14.5 
(of a maximal order) 27.B 
relative 14.5 

differentiable 
complex function 21.C 
Frechet 286.E 
Gdteaux 286.E 
infinitely 106.K 
left (on the left) 106.A 
n-times 106.D 
n-times continuously 106.K 
with respect to the parameter (a distribution) 

125.H 
partially 106.F 
at a point (a complex function) 198.A 
at a point (a real function) 106.A 
right (on the right) 106.A 
in the sense of Stolz 106.G 
on a set 106.A 
termwise (infinite series with function terms) 

379.H 
totally 21.C 106.G 



Subject Index 
Differentiable dynamical system of class C’ 

1966 

differentiable dynamical system of class Cr 126.B 
differentiable manifold(s) 105 

with boundary of class C’ 105.E 
of class C 105.D 
Riemann-Roth theorem for 237.G 

differentiable mapping of class c’ 105.J 
differential of (at a point) 105.J 

differentiable pinching problem 178.E 
differentiable semigroup 378.F 
differentiable slice theorem 431.C 
differentiable structure(s) 114.B 

of class c 105.D 
group of oriented (on a combinatorial sphere) 

1 14.1 
differentiable transformation group 431.C 
differential 

(=boundary operator) 200.H 
(=coboundary operator) 200.F 
(of a differentiable function) lO6.B 
(of a differentiable mapping at a point) 105.J 
(of a function on a differentiable manifold) 

105.1 
(Frechet derivative) 286.E 
Abelian (of the first, second, third kind) 1l.C 

367.H 
analytic (on a Riemann surface) 367.H 
conjugate (on a Riemann surface) 367.H 
covariant (of a differential form) 80.G 
covariant (of a tensor field) 80.1,L 417.B 
covariant (of a vector field) 80.1 
exterior (of a differential form) 105.Q 
harmonic (on a Riemann surface) 367.H 
holomorphic (on a Riemann surface) 367.H 
kernel 188.G 
meromorphic (on a Riemann surface) 367.H 
nth lot” a differentiable function) 106.D 
of nth order (of a differentiable function) 

106.D 
e- (on an algebraic curve) 9.F 
partial 200.H 
quadratic (on a Riemann surface) 1I.D 
rth (Frechet derivative) 286.E 
stochastic 406.C 
total 106.G 200.H 367.H 

differential analyzer 19.E 
differential and integral calculus App. A, Table 9 
differential automorphism 113 
differential calculus 106 
differential coefficient 106.A 

partial 106.A 
differential cross section 375.A 386.8 
differential divisor (of an algebraic curve) 9.C 
differential divisor class (of a Riemann surface) 

1l.D 
differential equation(s) 313.A 

adjoint 252.K 
algebraic II3 288.A 
almost periodic 290.A 
Beltrami 352.B 
Bernoulli App. A, Table 14.1 
Bessel 39.B, App. A, Table 14.11 
Briot-Bouquet 288.B 289.B 
Caianiello 29 1 .F 
Cauchy-Riemann 198.A 
Cauchy-Riemann (for a holomorphic function 

of several complex variables) 21 .C 
Cauchy-Riemann (for a holomorphic function 

of IWO complex variables) 320.F 
Chaplygin 326.B 
Chebyshev App. A, Table 14.1 

Cherwell-Wright 291.F 
Clairaut App. A, Table 14.1 
Clairaut partial App. A, Table 1 5.11 
confluent 167.A 
confluent hypergeometric 167.A, App. A, 
Table 14.11 

delay 163.A 
with deviating argument 163.A 
difference- 163.A 
Dufhng 290.C 
elliptic partial App. A, Table 15. VI 
Emden 291.F 
Euler (in dynamics of rigid bodies] 271.E 
Euler-Lagrange 46.8 
Euler linear ordinary App. A, Table 14.1 
exact App. A, Table 14.1 
Fokker-Planck partial 115.A 
functional- 163.A 
Gauss hypergeometric App. A, Table 14.11 
Gaussian 206.A 
generalized Lame 167.E 
generalized Riccati App. A, Table 14.1 
Hamilton 324.E 
Hamilton-Jacobi 23.B 324.E 
Helmholtz I88.D, App. A, Table 15.VI 
Hermite App. A, Tables 14.11 20.111 
Hill 268.B 
Hodgkin-Huxley 291.F 
hyperbolic 325 
hyperbolic partial 325 
hypergeometric 206.A, App. A, Table 18.1 
hyperspherical 393.E 
integro- 163.A 222 
integro-, of Fredholm type 222.A 
integro-, of Volterra type 222.A 
Jacobi App. A, Tables 14.11 20.V 
Killing 364.F 
Kummer App. A, Table 19.1 
with lag 163.A 
Lagrange 320.A, App. A, Table 14.1 
Lagrange partial App. A, Table 5.11 
Laguerre App. A, Tables 14.11 2Ci.VI 
Lame 113.B 
Laplace 323.A, App. A, Table 15 III 
Laplace, in the 2-dimensional case App. A, 
Table 15.VI 

Laplace, in the 3-dimensional case App. A, 
Table 15.VI 

Legendre 393.B, App. A, Table 14.11 
Legendre associated 393.A 
Lienard 290.C 
linear ordinary 252.A 313.A 
linear partial 320.A 
Lowner 438.B 
Mathieu 268.A 
matrix Riccati 86.E 
modified Mathieu 268.A 
Mongc 324.F 
Monge-Ampere 278.A, App. A, Table 15.111 
nonlinear ordinary 313.A 
nonlinear partial 320.A 
ordinary 3 I3 
partial 3 13.A 320 
partial, of elliptic type 323 
partial, of hyperbolic type 325 
partial, of mixed type 326 
partial, of parabolic type 327 
Poisson 323.A. App. A, Table 15.111 
polytropic 291 .F 
rational 288.A 



1967 Subject Index 
Dimension 

related 254.F 
with retardation 163.A 
retarded 163.A 
Riccati App. A, Table 14.1 
Riemann App. A, Table 18.1 
self-adjoint 252.K 
self-adjoint system of 252.K 
stochastic 342.A 406 
Stokes 167.E 188.E 
strongly nonlinear 290.C 
system of. of Maurer-Cartan 249.R 
system of hyperbolic (in the sense of Petrovskii) 

325.G 
system of linear, of the first order 252.G 
system of ordinary 313.B 
system of partial, of order 1 (on a differentiable 

manifold) 428.F 
system of total 428.A 
Tissot-Pochhammer 206.C 
total 42&A, App. A, Table 15.1 
Tricomi 326.C 
van der Pol 290.C 
weakly nonlinear 290.C 
Weber 167.C, App. A, Table 20.111 
Weber-Hermite 167.C 
Whittaker 167.8, App. A, Tables 14.11 19.11 

differential extension ring 113 
differential field 113 

Galois theory of 1 I3 
differential form 105.Q 

closed 105.Q 
of degree I 105.0 
of degree r 105.Q 
of degree r (on an algebraic variety) 16.0 
divisor of (on an algebraic variety) 16.0 
exact 105.Q 
exterior, of degree r 105.Q 
of the first kind (on an algebraic variety) 16.0 
of the first kind (on a nonsingular curve) 9.E 
harmonic 194.B 
holomorphic, of degree k 72.A 
invariant (on an Abelian variety) 3.F 
of Maurer-Cartan 249.R 
primitive 232.B 
of the second kind (on a nonsingular curve) 
9.E 

of the third kind (on a nonsingular curve) 9.E 
of type (r, s) 72.C 

differential geometry 109, App. A, Table 4 
affine llO.C 
conformal 110.D 
projective 11O.B 

differential geometry in specific spaces 110 
differential geometry of curves and surfaces 

111 
differential ideal 113 

of a differential ring 113 
involutive 428.E 
prime (of a differential ring) 113 
semiprime (of a differential ring) 113 
sheaf on a real analytic manifold 428.E 

differential index (in a covering of a nonsingular 
curve) 9.1 

differential invariant 
fundamental (of a surface) 110.B 
on an m-dimensional surface 110.A 
Poincare 74.G 

differential law 107.A 
differential operator(s) 112 223.C 306.8 

Beltrami, of the first kind App. A, Table 4.11 

Beltrami, of the second kind App. A, Table 
4.11 

elliptic 112.A 
of the kth order 237.H 
ordinary 112.A 
partial 112.A 
pseudo- 345 
strongly elliptic 112.G 323.H 
system of 112.R 

differential polynomial(s) 113 
ring of 113 

differential quotient (at a point) 106.A 
differential representation (of a unitary representa- 

tion of a Lie group) 439,s 
differential rings 113 
differential subring 113 
differential system 191.1 

restricted 191.1 
differential topology 114 
differential variable 113 
differentiation 

(in a commutative ring) 113 
(of a differential function) 106.A 
graphical 19.B 
higher (in a commutative ring) 113 
logarithmic App. A, Table 9.1 
numerical 299.E 
partial 106.F 
theorem of termwise (on distribution) 125.G 
of a vector field App. A, Table 3.11 

diffraction (of waves) 446 
diffusion, Ehrenfest model of 260.A 
diffusion-convection equation 304.B 
diffusion kernel 338.N 
diffusion process 115 

on manifolds 115.D 
multidimensional 115.C 

digamma function 174.B 
digital computer 75.B 
digital quantity 138.8 
dihedral group 151.G 
dilatation 

in Laguerre geometry 76.B 
maximal 352.B 

dilated maximum principle (in potential theory) 
338.C 

dilation (of a linear operator) 251.M 
power 251.M 
strong 251.M 
unitary 251.M 

dilation theorem 251.M 
dimension 

(of an affine space) 7.A 
(of an algebraic variety) 16.A 
(of an analytic set) 23.B 
(of an automorphic form) 32.B 
(of a cell complex) 70.D 
(of a convex cell in an shine space) 7.D 
(of a divisor class on a Riemann surface) 1 l.D 
(of a Euclidean simplicial complex) 70.B 
(of a free module) 277.G 
(of a Hilbert space) 197.C 
(of a linear space) 256.C 
(of a linear system of divisors) 9.C 16.N 
(of a physical quantity) 116 
(of a projective space) 343.B 
(of a simplicial complex) 70.C 
(of a topological space) 117 
algebraic (of an algebraic surface) 72.F 
capacity 48.G 



Subject Index 
Dimension -k 

1968 

cohomological (of an associative algebra) 
2OO.L 

cohomological (of a scheme) 16.E 
cohomological (of a topological space) 117.F 
complex (of a complex manifold) 72.A 
covering (of a normal space) 117.B 
decomposition theorem for 117.C 
geometric (of a vector bundle) 114.D 
global (of an analytic set) 23.B 
global (of a ring) 200.K 
harmonic (of a Heins end) 367.E 
Hausdorff 117.G 234.E 246.K 
homological (of a module) 200.K 
homological (of a topological space) 117.F 
injective (of a module) 200.K 
Kodaira (of a compact complex manifold) 72.1 
Krull 67.E 
large inductive 117.B 
Lebesgue (of a normal space) 117.B 
left global (of a ring) 200.K 
local (of an analytic set at a point) 23.B 
product theorem for 117.C 
projective (of a module) 200.K 
right global (of a ring) 200.K 
small inductive 117.B 
sum theorem for 117.C 
theorem on invariance of, of Euclidean spaces 

117.D 
weak (of a module) 200.K 
weak global (of a ring) 200.K 

dimension -k 
automorphic form of 32.B 
Fuchsian form of 32.B 
Hilbert modular form of 32.G 
Siegel modular form of 32.F 

dimensional analysis 116 
dimensional formula 116 
dimension function (on a continuous geometry) 

85.A 
dimension theorem 

(of alline geometry) 7.A 
(on modular lattice) 243.F 
(of projective geometry) 343.B 

dimension theory 117 
dimension type (of a topological space) 117.H 
Dini-Hukuhara theorem 314.D 
Dini-Lipschitz test (on the convergence of Fourier 

series) 159.B 
Dini series 39.C 
Dini surface 111.1 
Dini test (on the convergence of Fourier series) 

159.8 
Dini theorem (on uniform convergence) 435.B 
Diocles, cissoid of 93.H 
Diophantine (relation) 97 
Diophantine analysis 296.A 
Diophantine approximation 182.F 
Diophantine equations 118 
Dirac delta function App. A, Table 12.11 
Dirac distribution 125.C 
Dirac equation 377.C 415.G 
Dirac field, free 377.C 
Dirac y-matrix 415.G 
Dirac hole theory 415.G 
Dirac matrix 377.C 
direct analytic continuation 198.G 
direct circle 78.D 
direct closed path 186.F 
direct decomposition (on a group) 19O.L 
directed family 165.D 

directed graph 186.B 
directed set 311.D 
direct factor 

(of a direct product of sets) 381.1~ 
(of a group) 19O.L 

direct image (of a sheaf) 383.G 
direct integral 308.G 

of unitary representations 437.H 
direction 

asymptotic 11 l.H 
Bore1 (of a meromorphic function) 272.F 
Julia (of a transcendental entire function) 
429.C 

positive (in a curvilinear integral) 198.B 
principal (of a surface) 11 l.H 

directional derivative 106.G 
direction ratio (of a line in an afIine sp.ace) 7.F 
direct limit (of a direct system of sets) 210.B 
direct method 46.E 302.B 
direct path 186.F 
direct product 

(of algebras) 29.A 
(of distributions) 125.K 
(of a family of lattices) 243.C 
(of a family of ordered sets) 311.F 
(of a family of sets) 381.E 
(of a family of topological groups] 423.C 
(of a family of topological spaces) 425.K 
(of groups) 190.L 
(of G-sets) 362.B 
(of Lie groups) 249.H 
(of mappings) 381.C 
(of measurable transformations) 136.D 
(of modules) 277.F 
(of objects of a category) 52.E 
(of rings) 368.E 
(of sets) 381.B 
(of sheaves) 383.1 
restricted (of an infinite number of groups) 

19O.L 
restricted (of locally compact groups) 6.B 
semi- (of groups) 190.N 

direct product decomposition 19O.L 
dual 422.H 

directrix (of an ellipse) 78.B 
of Wilczynski 110.B 

direct set, increasing 308.A 
direct sum 

(of a family of ordered sets) 311.F 
(of a family of sets) 381.E 
(of G-sets) 362.B 
(of Hilbert spaces) 197.E 
(of ideals of a ring) 368.F 
(of an infinite number of groups) 19O.L 
(of Lie algebras) 248.A 
(of linear representations) 362.C 
(of linear spaces) 256.F 
(of modules) 277.B,F 
(of a mutually disjoint family of ssts) 381.D 
(of quadratic forms) 348.E 
(of sheaves) 383.1 
(of topological groups) 423.C 
(of two objects) 52.E 
(of unitary representations) 437.G 
integral 308.G 
topological (of topological spaces.) 425.M 

direct summand (of a direct sum of se1.s) 381.E 
direct system (of sets) 210.B 
direct transcendental singularity 19FI.P 
Dirichlet, P. G. L. 119 



1969 Subject Index 
Distance function 

Dirichlet algebra 164.8 
weak* 164.G 

Dirichlet character 295.D 
Dirichlet discontinuous factor App. A, Table 9.V 
Dirichlet distribution 341.D, App. A, Table 22 
Dirichlet divisor problem 242.A 
Dirichlet domain 120.A 
Dirichlet drawer principle 182.F 
Dirichlet form 261.C 

regular 261.C 
Dirichlet function 84.D 221.A 
Dirichlet functional 334.C 
Dirichlet integral 

(in the Dirichlet problem) 120.F 
(in Fourier’s single integral theorem) 160.B 

Dirichlet kernel 159.B 
Dirichlet L-function 450.C 
Dirichlet principle 120.A 323.C 
Dirichlet problem 120 293.F 323.C 
Dirichlet problem with obstacle 440.B 
Dirichlet region 234.C 
Dirichlet series 121.A 

ordinary 121.A 
of the type I,&} 121.A 

Dirichlet space 338.4 
Dirichlet test (on Abel partial summation) 379.D 
Dirichlet test (on the convergence of Fourier series) 

159.B 
Dirichlet theorem 

(of absolute convergence) 379.C 
(on the distribution of primes in arithmetical 

progression) 123.D 
Dirichlet unit theorem 14.D 
discharge of double negation 411.1 
discharging 157.D 
disconnected, extremely 37.M 
disconnected metric space, totally 79.D 
discontinuity 

of the first kind 84.B 
fixed point of (of a stochastic process) 407.A 
at most of the first kind 84.B 
region of 234.A 

discontinuity formula 146.C 386.C 
discontinuity point 84.B 

of the first kind 84.B 
of the second kind 84.B 

discontinuous distribution, purely 341.D 
discontinuous factor, Dirichlet App. A, Table 9.V 
discontinuous groups 122 

of the tirst kind 122.B 
discontinuous transformation group 122.A 

properly 122.A 
discontinuum, Cantor 79.D 
discrete covering 425.R 

CT- 425.R 
discrete C’-flow 126.B 
discrete dynamical system of class C’ 126.B 
discrete flow 126.B 

of class C’ 126.B 
discrete Fourier transform 142.D 
discrete mathematics 66.A 
discrete memoryless channels 213.F 
discrete metric space 273.B 
discrete semiflow 126.B 

of class C’ 126.B 
discrete series (of unitary representations of a semi- 

simple Lie group) 437.X 
discrete series, principal 258.C 
discrete set 425.0 

discrete spectrum 136.E 390.E 
quasi- 136.E 

discrete topological space 425.C 
discrete topology 425.C 
discrete uniformity 436.D 
discrete valuation 439.E 
discrete valuation ring 439.E 
discrete variable method 303.A 
discrete von Neumann algebra 308.E 
discretization error 303.B 
discriminant 

(of an algebraic equation) 337.5 
(of an algebraic number field) 14.B 
(of a binary quadratic form) 348.M 
(of a curve of the second order) 78.1 
(of a family of curves) 93.1 
(of a quadratic form) 348.A 
(of a simple ring) 27.B 
fundamental 295.D 
relative 14.5 

discriminant function, linear 280.1 
discriminant theorem, Dedekind 14.5 
disintegration 270.L 
disjoint family, mutually (of sets) 381.D 
disjoint sets 381.B 
disjoint sum 381.B 
disjoint union 381.B 

of a mutually disjoint family of sets 381.D 
disjoint unitary representations 437.C 
disjunction (of propositions) 41 l.B 
disjunctive cuts 215.C 
disjunctive programming 264.C 
disk 140 

circular 140 
n- 140 
open 140 
open n- 140 
unit 140 

disk algebra 164.B 
disk theorem (on meromorphic functions) 272.3 
dispersion 397.C 
dispersion relations 132.C 
dispersive 

(now) 126.E 
(linear operator) 286.Y 

dispersive wave 446 
displacement 

electric 130.A 
parallel (of a tangent vector space) 80.H 364.B 
parallel, along a curve 80.C 

dissection, Farey 4.B 
dissipative (operator) 251.5 286.C 

maximal 251.5 
dissipative part (of a state space) 260.B 
distance 

(in Euclidean geometry) 139.E 
(in a metric space) 273.B 
Euclidean 139.E 
extremal 143.B 
Frbchet (between surfaces) 246.1 
Hamming 63.B 136.E 
Ltvy 341.F 
Mahalanobis generalized 280.E 
non-Euclidean (in a Klein model) 285.C 
optical 180.A 
perihelion 309.B 
reduced extremal 143.B 

distance function 273.B 
pseudo- 273.B 



Subject Index 
Distinct differentiable structures 

1970 

distinct differentiable structures 114.B 
distinct system of parameters 284.D 
distinguishable, finitely (hypothesis) 400.K 
distinguished basis, strongly 418.F 
distinguished pseudopolynomial 21.E 
distortion function, rate 213.E 
distortion inequalities 438.B 
distortion measure 213.E 
distortion theorem 438.8 
distributed 

asymptotically 374.D 
uniformly 182.H 

distribution(s) 125 
(on a differentiable manifold) 125.R 
(of random variables) 342.C 
(of a vector bundle) 428.D 
a posteriori 39X.B 
a priori 398.B 
asymptotically normal 399.K 
beta 34l.D, App. A, Table 22 
Beurling generalized 125.U 
binomial 341.D 397.F, App. A, Table 22 
bivariate 397.H 
capacity mass 338.K 
Cauchy 341.D, App. A, Table 22 
chi-square 374.A, App. A, Table 22 
conditional probability 342.E 
continuous 341.D 
converge in (a sequence of random variables) 
342.D 

covariance 395.C 
cumulative 397.B 
Dirac 125.C 
Dirichlet 341.D, App. A, Table 22 
double, potential of 338.A 
entropy of a 403.B 
equilibrium, Gibbs 136.C 
equilibrium mass 338.K 
exponential 341.D, App. A, Table 22 
exponential family of 396.G 
F- 341.D 374.B, App. A, Table 22 
fiducial 401 .F 
finite-dimensional 407.A 
of finite order 125.5 
function, empirical 374.D 
gamma 341.D, App. A, Table 22 
Gaussian 341.D 
geometric 341.D, App. A, Table 22 
hypergeometric 341.D 397.F, App. A, Table 22 
infinitely divisible 341.G 
initial 261.A 
initial law 406.D 
integrable 125.N 
invariant (of a Markov chain) 260.A 
invariant (second quantization) 377.C 
involutive (on a differentiable manifold) 428.D 
joint 342.C 
k-dimensional normal 341.D 
k-Erlang 260.H 
kth-order asymptotic 399.0 
L- 341.G 
lattice 341.D 
law, Maxwell-Boltzmann 402.B 
least favorable 400.8 
least favorable a priori 398.H 
limit 250.A 
logarithmic App. A, Table 22 
logarithmic normal App. A, Table 22 
marginal 342.C 397.H 

multidimensional hypergeometric App. A, 
Table 22 

multidimensional normal App. A, Table 22 
multinomial 341.D 
multiple hypergeometric 341.D 
multivariate normal 397.5 
n-dimensional 342.C 
n-dimensional probability 342.C 
negative binomial 341.D 397.F, App. A, 
Table 22 

negative multinomial 341.D 
negative polynomial App. A, Table 22 
noncentral chi-square 374.8 
noncentral F- 374.B 
noncentral r- 374.B 
noncentral Wishart 374.C 
normal 341.D 397.C, App. A, Table 22 
one-dimensional probability, of a *andom 
variable 342.C 

one-side stable for exponent l/2 App. A, 
Table 22 

operator-valued 150.D 
p-dimensional noncentral Wishart 374.C 
Pearson 397.D 
pluriharmonic 21.C 
Poisson 341.D 397.F, App. A, Table 22 
polynomial App. A, Table 22 
population 396.B 401.F 
positive 125.C 
posterior 401.B 403.G 
predictive 403.G 
of prime numbers 123 
prior 401.B 403.G 
probability 342.B, App. A, Table 22 
probability, of a random variable 342.C 
purely discontinuous 341.D 
quasistable 341.G 
random 39S.H 407.C 
random, with independent values It every point 
407.c 

random, in the wider sense 395.C 407.C 
rapidly decreasing 125.0 
rectangular App. A, Table 22 
sampling 374.A 
semistable 341.G 
simple, potential of 338.A 
simultaneous 342.C 
slowly increasing 125.N 
stable 341.G 
standard Gaussian 176.A 
standard normal 341.D 
strictly stationary random 395.H 
strongly stationary random 395.H 
substituted 125.Q 
t- 341.D 374.B, App. A, Table 22 
tempered 125.N 
two-sided exponential App. A, Table 22 
of typical random variables App. A, Table 22 
ultra-, of class {M,} or (M,) 125.U,BB 
uniform 341.D, App. A, Table 221 
unit 341.D 
value 124.A 
of values of functions of a complex variable 

124 
waiting time 307.C 
weakly stationary random 395.C 
Wishart 374.C 
Z- 341.D 374.B. App. A. Table 221 

distribution curve. cumulative 397.B 



1971 Subject Index 
Divisor 

distribution derivative 125.E 
distribution-free (test) 371.A 
distribution-free method 371.A 
distribution function 168.B 341.B 342.C 

cumulative 341.B 342.C 
empirical 250.F 396.C 
n-dimensional 342.C 
symmetric 341.H 
unimodal 341 .H 

distribution kernel 338.P 
distribution law, Maxwell-Boltzmann 402.B 
distribution polygon, cumulative 397.8 
distribution semigroup 378.F 
distributive algebra 231.A 
distributive lattice 243.E 
distributive law 

(in algebra of sets) 381 .B 
(on cardinal numbers) 49.C 
(in a lattice) 243.E 
(on natural numbers) 294.B 
(in a ring) 368.A 
complete (in a lattice-ordered group) 243.G 

disturbance 128.C 
diurnal aberration 392 
div (divergence) 442.D 
diverge 87.B,E 379.A 

to r/ 87.D 
divergence 

(of a differentiable vector field) 442.D 
(of a vector field with respect to a Ricmannian 

metric) 105.W 
(of a vector held with respect to a volume 

element) 105.W 
infrared 146.8 
ultraviolet 146.B 

divergence form 323.D 
divergence theorem 94.D 
divergent 

(double series) 379.E 
(inhnite product) 379.G 
(integral) 216.E 
(sequence of real numbers) 87.B 
(series) 379.A 
properly 379.A 

divide (a bounded domain) 384.F 
divided difference 223.D 
dividing cycle (on an open Riemann surface) 367.1 
divisibility relation (in a ring) 67.H 
drvisible 

(Abelian p-group) 2.D 
(addnive group) 2.E 
(element of ring) 67.H 277.D 
(fractional ideal) 14.E 
(general Siegel domain) 384.F 
(number) 297.A 

divisible A-module 277.D 
divisible subgroup (of a discrete Abelian group) 

422.G 
division (of a pseudomanifold) 65.A 

simplicial 65.A 
division algebra 29.A 
division algorithm 

of natural numbers 297.A 
of polynomials 337.C 

division ring 368.B 
division theorem 

Spath type (for microdifferential operators) 
274.E 

Weierstrass type (for microdifferential opera- 
tors) 274.E 

iisor 
(in an algebraic curve) 9.C 
(of an algebraic function field of dimension 1) 

9.D 
(of an algebraic number field) 14.F 
(in an algebraic variety) 16.M 
(in a closed Riemann surface) 1l.D 
(in a complex manifold) 72.F 
(of an element of a ring) 67.H 
(of a fractional ideal) 14.E 
(of a number) 297.A 
ample 16.N 
branch (in a covering) 9.1 
canonical (of an algebraic curve) 9.C 
canonical (of an algebraic variety) 16.0 
canonical (of a Jacobian variety) 9.E 
canonical (of a Riemann surface) ll.D 
Cartier 16.M 
common (of elements of a ring) 67.H 
complete linear system defined by 16.N 
complex line bundle determined by 72.F 
differential (of an algebraic curve) 9.C 
of a differential form (on an algebraic variety) 

16.0 
effective (on an algebraic curve) 9.C 
effective (on a variety) 16.M 
elementary (of a matrix) 269.E 
embedded prime (of an ideal) 67.F 
finite prime 439.H 
of a function (on an algebraic curve) 9.C 
of a function (on an algebraic variety) t6.M 
greatest common 297.A 
greatest common (of an element of a ring) 

67.H 
imaginary infinite prime 439.H 
infinite prime 439.H 
integral (of an algebraic curve) 9.C 
integral (of an algebraic number held) 14.F 
integral (on a Riemann surface) ll.D 
isolated prime (of an ideal) 67.F 
k-rational (on an algebraic curve) 9.C 
linearly equivalent (of a complex manifold) 

72.F 
maximal prime (of an ideal) 67.F 
minimal prime (of an ideal) 67.F 
nondegenerate 16.N 
nondegenerate (on an Abelian variety) 3.D 
numerically connected 232.D 
D-linearly equivalent (on an algebraic curve) 
9.F 

pole (of a function on an algebraic variety) 
16.M 

positive (of an algebraic curve) 9.C 
positive (on a Riemann surface) 1 l.D 
prime (of an algebraic function field of dimen- 
sion 1) 9.D 

prime (of an algebraic number held or an 
algebraic function field of one variable) 
439.H 

prime (of an ideal) 67.F 
prime (on a Riemann surface) 11 .D 
prime rational, over a field (on an algebraic 

curve) 9.C 
principal (on an algebraic curve) 9.C 
principal (on a Riemann surface) 1 l.D 
real infinite prime 439.H 
real prime 439.H 
sheaf of ideals of (of a complex manifold) 72.F 
special 9.C 
very ample 16.N 



Subject Index 
Divisor class (on a Riemann surface) 

1972 

zero (of a function on an algebraic variety) 
16.M 

zero (of a ring) 368.B 
zero, with respect to M/P 284.A 

divisor class (on a Riemann surface) 1 l.D 
canonical 1 l.D 
differential 1 l.D 

divisor class group (of a Riemann surface) 1 l.D 
divisor function 295.C 

generalized 295.C 
divisor group (of a compact complex manifold) 

12.F 
divisor problem, Dirichlet 242.A 
Dixmier theorem, Rellich- 351.C 
Dixon-Ferrar formula App. A, Table 19.IV 
DK method 301.F 
DKA method 301.F 
DLR equation 402.G 
dn App. A, Table 16.111 
dodecahedron 357.B 
Doetsch three-line theorem 43.E 
Dolbeault cohomology group 72.D 
Dolbeault complex 72.D 
Dolbeault lemma 72.D 
Dolbeault theorem 72.D 
domain(s) 

(of a correspondence) 358.B 
(of a mapping) 37.C 381.C 
(in a topological space) 79.A 
(of a variable) 165.C 
angular 333.A 
annular 333.A 
of attraction 374.G 
Brouwer theorem on the invariance of 117.D 
Cartan pseudoconvex 21.1 
circular 333.A 
of class Cl,” 323.F 
closed plane 333.A 
complete Reinhardt 21.B 
convergence (of a power series) 21.B 
Courant-Cheng, theorem 391.H 
of dependence 325.B 
Dirichlet 120.A 
divisible bounded 284.F 
d-pseudoconvex 21.G 
effective 88.D 
fundamental 234.C 
generated Siegel 384.F 
holomorphically complete 21.F 
holomorphically convex 21.H 
of holomorphy 21.F 
homogeneous bounded 384.A 412.F 
individual 411.H 
of influence 325.B 
integral 368.B 
of integration 216.F 
irreducible symmetric bounded 412.F 
Jordan 333.A 
Levi pseudoconvex 21.1 
of a local homomorphism 423.0 
locally Cartan pseudoconvex 21.1 
locally Levi pseudoconvex 21.1 
nodal 391.H 
Noetherian 284.A 
Noetherian integral 284.A 
object 411.G 
of operator 409.A 
operator (of a group) 190.E 
plane 333 
principal ideal 67.K 

pseudoconvex 21.G 
with regular boundary (in a Cm-manifold) 

105.u 
Reinhardt 21.B 
Siegel 384.A 
Siegel, generalized 384.F 
Siegel, irreducible 384.E 
Siegel, of the first kind 384.A 
Siegel, of the second kind 384.A 
Siegel, of the third kind 384.A 
slit 333.A 
with smooth boundary (in a C”-manifold) 

105.u 
spectrum of 39 1 .A 
strongly pseudoconvex 21.G 
sweepable bounded 284.F 
symmetric bounded 412.F 
unique factorization 40.H 
universal 16.A 
Weil 21.G 

domain kernel (of a sequence of domains) 333.C 
dominant (of a sequence of functions) 435.A 
dominant integral form (on a Cartan subalgebra) 

248.W 
dominate (an imputation of a game) 173.D 
dominated 

(by a family of topological spaces) 425.M 
(statistical structures) 396.F 
weakly (statistical structure) 396.F 

dominated ergodic theorem 136.B 
dominating set 186.1 
domination, number of 186.1 
domination principle 338.L 

inverse 338.L 
Donsker invariance principle 250.E 
Doob-Meyer decomposition theorem 262.D 
Doolittle method 302.B 
dotted indices 258.B 
dotted spinor of rank k 258.B 
Douady space 23.G 
double chain complex 200.E 
double complex 200.H 
double coset (of two subgroups of a gr’oup) 190.C 
double distribution, potential of 338.A 
double exponential formula 299.B 
double integral 216.F 
double integral theorem, Fourier 16O.B 
double layer, potential of 338.A 
double mathematical induction 294.1~ 
double negation, discharge of 411.1 
double point, rational 418.C 
double ratio 343.E 
double sampling inspection 404.C 
double sequence 379.E 
double series 379.E 

absolutely convergent 379.E 
conditionally convergent 379.E 
convergent 379.E 
divergent 379.E 
Weierstrass theorem of 379.H 

double suspension theorem 65.C 
double-valued representation 258.B 
doubly invariant 164.H 
doubly periodic function 134.E 
Douglas algebra 164.1 
Douglas functional 334.C 
Douglas-Radb solution (to Plateau’s problem) 

215.c 
downhill method 3Ol.L 

1 down-ladder 206.B 



1973 Subject Index 
E-flat 

drawer principle, Dirichlet 182.F 
drift 

transformation by 261.F 
transformation of 406.B 

drift part 406.B 
dual 

(cell) 65.B 
(graded module) 203.B 
(graph) 186.H 
(matroid) 66.H 
(proposition in a projective space) 343.B 
(regular polyhedron) 357.B 
(symmetric Riemannian space) 412.D 
(topological group) 422.C 437.5 

dual algebra 203.F 
dual basis (of a linear space) 256.G 
dual bundle 147.F 
dual category 52.F 
dual cell, (n - q)- 65.B 
dual coalgebra 203.F 
dual complex 65.B 
dual cone 125.BB 
dual convex cone 89.F 
dual curve (of a plane algebraic curve) 9.B 
dual direct product decomposition 422.H 
dual frame 417.B 
dual homomorphism 

(of a homomorphism of algebraic tori) 13.D 
(of lattices) 243.C 

dual Hopf algebra 203.C 
dual isomorphism 

(of lattices) 243.C 
(between ordered sets) 311 .E 

duality 
(in field theory) 150.E 
(for symmetric Riemannian space) 412.D 
Martineau-Harvey 125.Y 
Poincare (in manifolds) 201.0 
Poincare (in Weil cohomology) 450.4 
principle of (in projective geometry) 343.B 

duality mapping 251.5 
duality principle 

(for closed convex cone) 89.F 
(for ordering) 3 11 .A 

duality property (of linear space) 256.G 
duality theorem 

(on Abelian varieties) 3.D 
(of linear programming) 255.B 
(in mathematical programming) 292.D 
Alexander 201.0 
for R-module 422.L 
Poincare-Lefschetz 201.0 
Pontryagin (on topological Abelian groups) 

192.K 422.C 
Serre (on complex manifolds) 72.E 
Serre (on projective varieties) 16.E 
of Takesaki 308.1 
Tannaka (on compact groups) 69.D 
Tannaka (on compact Lie group) 249.U 

dual lattice 243.C 310.E 450.K 
dual linear space 256.G 

self- 256.H 
dually isomorphic (lattices) 243.C 
dual mapping (of a linear mapping) 256.G 
dual Martin boundary 260.1 
dual module 277.K 
dual operator 

in Banach space 37.D 
of a differential operator 125.F 
of a linear operator 251.D 

dual ordering 31 l.A 
dual passive boundary point 260.1 
dual problem 255.B 349.B 
dual process 261.F 
dual representation 362.E 
dual resonance model 132.C 
dual semigroup 378.F 
dual space 

(of a C*-algebra) 36.G 
(of a linear space) 256.G 
(of a linear topological space) 424.D 
(of a locally compact group) 437.J 
(of a normed linear space) 37.D 
(of a projective space) 343.B 
quasi- (of a locally compact group) 437.1 
strong 424.K 

dual subdivision 65.B 
dual vector bundle 147.F 
du Bois-Reymond and Dedekind, test of 379.D 
du Bois Reymond problem 159.H 
DufIing differential equation 290.C 
Duhamel method 322.D 
Duhem relation, Gibbs- 419.B 
dummy index (of a tensor) 256.5 
Dunford integrable 443.F 
Dunford integral 251.G 443.F 
Dunford-Pettis theorem 68.M 
Donford-Schwartz integral, Bartle- 443.G 
duo-trio test 346.D 
Dupin, cyclide of 11 l.H 
Dupin indicatrix 11 l.H 
duplication of a cube 179.A 
Durand-Kerner-Aberth (DKA) method 301.F 
Durand-Kerner (DK) method 301.F 
Dvoretzky-Rogers theorem 443.D 
dyadic compactum 79.D 
dynamical system(s) 126 

classical 126.L 136.G 
continuous 126.B 
differential 126.B 
discrete 126.B 
linear 86.B 

dynamic programming 127 264.C 
dynamic programming model 307.C 
dynamics 

analytical 271 .F 
fluid 205.A 
magnetofluid 259 
quantum flavor 132.D 

dynamo theory, hydromagnetic 259 
Dynkin class 270.B 
Dynkin class theorem 270.B 
Dynkin diagram (of a complex semisimple Lie 

algebra) 248,s 
extended App. A, Table 5.1 

Dynkin formula 261.C 
Dynkin representation of generator 261.C 

E 

E (topology) 424.R 
E, Eddington’s App. A, Table 4.11 
6-(Q) (=C?(Q)) 125.1 168.B 
&‘(!A) 125.1 

p;e2;; ;;g 

s-entropy 213.E 
s-expansion 111 .C 
s-factor 450.N 
e-flat 178.D 



Subject Index 
Alermitian form 

1974 

c-Hermitian form 60.0 
E-independent partitions 136.E 
i:-induction, axiom of 33.B 
z-neighborhood (of a point) 273.C 
a-number 3 12.C 
i:-operator, Hilbert 41 l.J 
E-quantifier, Hilbert 41 l.J 
c-sphere (of a point) 273.C 
a-symbol, Hilbert 41 I.J 
e-tensor product 424.K 
s-theorem (in predicate logic) 411.J 
[:-trace form 60.0 
6-function 46.C 
C-space 193.N 
E-function 430.D 
E-optimality 102.E 
E waves 130.B 
Eberlein-Shmul’yan theorem 37.G 
Eberlein theorem 424.V 
eccentric angle 

of a point on a hyperbola 78.E 
of a point on an ellipse 78.E 

eccentric anomaly 309.8 
eccentricity (of a conic section) 78.B 
echelon space 168.8 
ecliptic 392 
econometrics 128 
Eddington’s E App. A, Table 4.11 
edge 

(of a convex cell in an affine space) 
(in a graph) 186.B 
(of a linear graph) 282.A 
reference 281 .C 

edge homomorphism 200.5 
edge of the wedge theorem 125.W 
Edgeworth expansion 374.F 
effect 403.D 

block 102.8 
factorial 102.H 
fixed 102.A 
fixed, model 102.A 
main 102.H 
random 102.A 
random, model 102.A 
treatment 102.B 

effective descriptive set theory 356.H 
effective divisor 

(on an algebraic curve) 9.C 
(on a variety) 16.M 

effective domain 88.D 
effective genus (of an algebraic curve) 9 
effectively (act on a G-space) 431.A 

almost 43 1 .A 
effectively calculable function 356.C 
effectively given (object) 22.A 
effectively parametrized (at o) 72.G 
effect vector 102.A 
efficiency 399.D 

asymptotic 399.N 
Bahadur 4OO.K 
second-order 399.0 
second-order asymptotic 399.0 

efficiency-balanced block design 102.E 
efficient 

kth order asymptotic 3Y9.0 
efficient estimator 399.D 

asymptotically 399.N 
first-order 399.0 
lirst-order asymptotic 399.0 

Egervhry theorem, K&rig- 281.E 

Egorov theorem 270.5 
Ehrenfest model of diffusion 260.A 
Ehrenpreis-Malgrange theorem 112.13 
Eichler approximation theorem 27.D 
eigenchain 390.H 
eigenelement (of a linear operator) 39O.A 
eigenfunction 

(of a boundary value problem) 31S.B 
(for an integral equation) 217.F 
(of a linear operator) 390.A 
generalized 375.C 

eigenspace 
(of a linear mapping) 269.L 
(of a linear operator) 390.A 
generalized 3YO.B 
in a weaker sense 269.L 

eigenvalue(s) 
(of a boundary value problem) 315.B 
(of an integral equation) 217.F 
(of a linear mapping) 269.L 
(of a linear operator) 390.A 
(of the Mathieu equation) 268.B 
(of a matrix) 269.F 
degenerate 390.A 
generalized 375.C 
geometrically simple 390.A 
index of 217.F 
multiplicity of 217.F 
numerical computation of 298 

eigenvalue problem 390.A 
generalized 298.G 

eigenvector 
(of a linear mapping) 269.L 
(of a linear operator) 3YO.A 
(of a matrix) 269.F 
generalized 390.B 

eightfold way 132.D 
eikonal 82.D 18O.C 
eikonal equation 324.E 325.L 
Eilenberg-MacLane complexes 7O.F 
Eilenberg-MacLane space 70.F 
Eilenberg-MacLane spectrum 202.T 
Eilenberg-Postnikov invariants (of a CW complex) 

70.G 
Eilenberg-Steenrod axioms 201.Q 
Eilenbcrg-Zilber theorem 201.5 
Einstein, A. 129 
Einstein convention (on tensors) 256.5 
Einstein-Kahler metric 232.C 
Einstein metric 364.1 
Einstein relation (in diffusion) 1..8.A 
Einstein space 364.D, App. A, Table 4.11 
Einstein summation convention 417.B 
Eisenstein-Poincare series 32.F 
Eisenstcin series 32.C 

generalized 450.T 
Eisenstein theorem 337.F 
elastic, total, cross section 386.1~ 
elasticity 

modulus of, in shear 271.G 
modulus of, in tension 27 l.G 
small-displacement theory cf 271.G 
theory of 27 l.G 

elastic limit 271.G 
elastic scattering 375.A 
elation 1lO.D 
electric displacement 130.A 
electric field 130.A 
electric flux density 130.A 
electric network 282.B 



1975 Subject Index 
Elementary Hopf algebra 

electric polarization 130.A 
electric susceptibility 130.B 
electric waves 130.B 

transverse 130.B 
electrodynamics, quantum 132.C 
electromagnetic wave 446 

theory of 130.8 
transverse 130.B 

electromagnetism 130 
electron 377.9 
electronic analog computer 19.E 
electronic computer 75.A 
electrostatics 130.B 
clement(s) 381.A 

affine arc IIO.C 
algebraic (of a field) 149.E 
areal (in a Cartan space) 152.C 
atomic (in a complemented modular lattice) 

243.F 
boundary (in a simply connected domain) 
333.B 

canonical (in the representation of a functor) 
52.L 

Casimir (of a Lie algebra) 248.5 
central (in a lattice) 243.E 
compact (of a topological Abelian group) 
422.F 

conformal arc 1lO.D 
conjugate (in a field) 149.5 
conjugate (in a group) 19O.C 
contact 428.E 
contact (in a space with a Lie transformation 
group) I I0.A 

cyclic 251.5 
even (of a Clifford algebra) 61 .B 
finite, method 304.C 
function 198.1 339.A 
function, in the wider sense 198.0 
gcnerahzed nilpotent (in a commutative Banach 

algebra) 36.E 
generating 390.G 
greatest (in an ordered set) 3 11 .B 
homogeneous (of a graded ring) 369.B 
homogeneous (of a homogeneous ring) 369.9 
hypersurface 324.B 
idempotent (of a ring) 368.B 450.0 
identity (of an algebraic system) 409.C 
identity (of a held) 149.A 
identity (of a group) 190.A 
identity (of a ring) 368.A 
inseparable (of a held) 149.H 
integral (of a system of total diffcrcntial equa- 

tions) 428.E 
inverse (in a group) 190.A 
inverse (in a ring) 368.B 
inverse function 198.L 
invertible (of a ring) 368.B 
irreducible (of a ring) 67.H 
isotropic (with respect to a quadratic form) 

348.E 
k-dimensional integral 19 I .I 
Kepler orbital 309.B 
least (in an ordered set) 31 I .B 
left inverse (of an element of a ring) 368.B 
line lll.C 
linearly dependent 2.E 
linearly independent 2.E 
matrix 351.B 
maximal (in an ordered set) 31 l.B 
maximum (in an ordered set) 3 1 I .B 

minimal (in an ordered set) 3 11 .B 
minimum (in an ordered set) 3 11 .B 
negative (of an ordered field) 149.N 
neutral (in a lattice) 243.F 
nilpotent (of a ring) 368.9 
odd (of a Clifford algebra) 61.B 
ordinary 191.1 
ordinary integral 428.E 
oriented (in a covering manifold of a homoge- 
neous space) llO.A 

orthogonal (of a ring) 368.9 
osculating 309.D 
polar (of an analytic function in the wider sense) 

198.0 
polar (of an integral element) 428.E 
positive (of an ordered field) 149.N 
prime (of a ring) 67.H 
prime (for a valuation) 439.E 
primitive (of an extension of a field) 149.D 
projective line 110.B 
purely inseparable (of a field) 149.H 
quasi-inverse (in a ring) 368.B 
quasi-invertible (of a ring) 368.B 
quasiregular (of a ring) 368.B 
ramified 198.0 
rational 198.0 
regular (of a connected Lie group) 249.P 
regular (of a ring) 368.B 
regular integral 428.E 
right inverse (in a ring) 368.B 
separable (of a field) 149.H 
singular (of a connected Lie group) 249.P 
singular (with respect to a quadratic form) 
348.E 

surface 324.B 
surface, union of 324.B 
torsion (of an A-module) 277.D 
transcendental (of a field) 149.E 
transgressive (in the spectral sequence of a fiber 

space) 148.E 
triangular 304.C 
unit (of a field) 149.A 
unit (of a group) 190.A 
unit (of a ring) 368.A 
unity (of a field) 149.A 
unity (of a ring) 368.A 
volume (oi an oriented ?-manifold) 105.W 
volume, associated with a Riemannian metric 

105.w 
zero (of an additive group) 2.E 190.A 
zero (of a field) 149.A 
zero (of a linear space) 256.A 
zero (of a ring) 368.A 

elementarily equivalent structures 276.D 
elementary (Kleinian group) 234.A 
elementary (path) 186.F 
elementary Abelian functions 3.M 
elementary Abelian group 2.B 
elementary catastrophe 51.E 
elementary collapsing 65.C 
elementary contract 102.C 
elementary divisor 

(of a matrix) 269.E 
simple (of a matrix) 269.E 

elementary event(s) 342.9 
space of 342.B 

elementary extension 276.D 
elementary function(s) 131 

of class n 131.A 
elementary Hopf algebra 203.D 



Subject Index 
Elementary ideal 

1976 

elementary ideal 235.C 
elementary kernel (of a linear partial differential 

operator) 320.H 
elementary number theory 297 

fundamental theorem of, 297.C 
elementary particle(s) 132 
elementary solution App. A, Table 15.V 

(of a differential operator) 112.B 
(of a linear partial differential operator) 320.H 
(of partial differential equations of elliptic 
type 323.B 

elementary symmetric function 337.1 
elementary symmetric polynomial 337.1 
elementary topological Abelian group 422.E 
eliminate (variables from a family of polynomials) 

369.E 
elimination 

design for two-way, of heterogeneity 102.K 
forward 302.B 
Gaussian 302.B 
Gauss-Jordan 302.B 

elimination method, Sylvester 369.E 
ellipse 78.A 
ellipsoid 350.B 

of inertia 271.E 
of revolution 350.B 

ellipsoidal coordinates 90.C 133.A, App. A, Table 
3.v 

ellipsoidal harmonics 133.B 
four species of 133.C 

ellipsoidal type, special function of 389.A 
elliptic 

(differential operator) 112.A 323.A 237.H 
(pseudodifferential operator) 323.K 
(Riemann surface) 77.B 367.D 
(solution) 323.D 
analytically hypo- 323.1 
analytic hypo- 112.D 
hypo- 112.D 189.C 323.1 
microlocally 345.A 
strongly 112.G 323.H 

elliptic omplex (on a compact Cm-manifold) 237.H 
elliptic coordinates 90.C 350.E, App. A, Table 3.V 
elliptic curve 9.C 

L-functions of 450.S 
elliptic cylinder 350.B 
elliptic cylinder function 268.B 
elliptic cylindrical coordinates App. A, Table 3.V 
elliptic cylindrical surface 350.B 
elliptic domain 77.B 
elliptic function(s) 134 

of the first kind 134.G 
Jacobi App. A, Table 16.111 
of the second kind 134.G 
of the third kind 134.H 
Weierstrass App. A, Table 16.IV 

elliptic function field 9.D 
elliptic geometry 285.A 
elliptic integral 1 l.C 134.A, App. A, Table 16.1 

complete App. A, Table 16.1 
of the first kind 134.A, App. A, Table 16.1 
of the lirst kind, complete 134.B 
of the first kind, incomplete 134.B 
of the second kind 134.A, App. A, Table 16.1 
of the second kind, complete 134.C 
of the third kind 134.A, App. A, Table 16.1 

elliptic integrals and elliptic functions App. A, 
Table 16 

elliptic irrational function 134.A 

elliptic modular group 122.D 
elliptic motions 55.A 
elliptic operator 323.H 

microlocally 345.A 
strongly 323.H 

elliptic paraboloid 350.B 
of revolution 350.B 

elliptic point 
(of a Fuchsian group) 122.C 
(on a surface) 11 l.H 

elliptic quadric hypersurface 350.G 
elliptic singularity 418.C 

minimally 418.C 
elliptic space 285.C 
elliptic surface 72.K 
elliptic theta function 134.1, App. A, Table 16.11 
elliptic transformation 74.F 
elliptic type 323.A,D 

(Lie algebra) 191.D 
partial differential equation of 323, App. A, 
Table 15.VI 

elongation strain 271.G 
embedded 

(into a topological space) 425.5 
hyperbolically 21.0 

embedded Markov chain 260.H 
embedded primary component (of an ideal) 67.F 
embedded prime divisor (of an ideal) 67.F 
embedding 105.K 

(of categories) 52.H 
(of a Y-manifold) 105.K 
(of a topological space) 425.5 
formula of, form 303.D 
generalized Bore1 384.D 
PL 65.D 
regular 105.K 
Tanaka 384.D 
toroidal 16.2 
torus 16.2 

embedding principle (in dynamic programming) 
127.B 

embedding theorem 
full (of an Abelian category) 52.N 
Irwin 65.D 
Menger-Niibeling 117.D 
Sobolev-Besov 168.B 
Tikhonov 425.T 

Emden differential equation 291.F 
Emden function, Lane- 291.F 
emission 325.A 

backward 325.A 
forward 325.A 

empirical characteristic function 396.C 
empirical constant 19.F 
empirical distribution function 250.F 374.E 396.C 
empirical formula 19.F 
empiricism, French 156.C 
empty set 33.B 381.A 

axiom of 33.B 
enantiomorphic pair 92.A 
enantiomorphous 92.A 
encoder 213.D 
encoding 63.A 
end 

(of an arc) 93.B 
(of a noncompact manifold) 178 F 
(of a segment) 155.B 
(of a segment in an afhe space) 7.D 
Heins 367.E 



1977 Subject Index 
Equation(s) 

lower (of a curvilinear integral) 94.D 
upper (of a curvilinear integral) 94.D 

endogenous variable 128.C 
endomorphism 

(of an algebraic system) 409.C 
(of a group) 190.D 
(of a polarized Abelian variety) 3.G 
(of a probability space) 136.E 
(of a ring) 368.D 
anti- (of a group) 190.D 
anti- (of a ring) 368.D 
aperiodic 136.E 
entropy of 136.E 
exact (of a measure space) 136.E 
periodic (at a point) 136.E 
ring of (of an Abelian variety) 3.C 

endomorphism ring 
(of an Abelian variety) 3.C 
(of a module) 277.B 368.C 

endpoint 
(of an ordinary curve) 93.C 
left (of an interval) 355.C 
right (of an interval) 355.C 

end vertex 186.B 
energy 195.B 338.B 

binding 351.D 
free 340.B 402.G 
Gibbs free 419.C 
Helmholtz free 419.C 
internal 419.A 
kinetic 271.C 351.D 
mean 402.G 
mean free 340.B 402.G 
mutual 338.B 
potential 271.C 
rest 359.C 
total 271.C 

energy density 195.B 
energy equation (for a fluid) 205.A 
energy function 126.L 279.F 
energy inequality 325.C 
energy integral 420.A 
energy minimum principle 419.C 

Gibbs 419.C 
energy-momentum 4-vector 258.C 
energy-momentum operator 258.D 
energy-momentum tensor 150.B 359.D 
energy principle 338.D 
energy spectrum function 433.C 
energy spectrum tensor 433.C 
energy surface 126.L 402.C,G 
Enestriim theorem, Kakeya- (on an algebraic equa- 

tion) 10.E 
Engel theorem 248.F 
engulfing lemma 65.C 
enlargement 293.B 
Enneper formula, Weierstrass- 275.A 
Enneper surface 275.B 
Enriques surface 72.K 
ensemble 402.D 

canonical 402.D 
grand canonical 402,D,G 
microcanonical 402.D 

Enskog method 217.N 
enthalpy 419.C 
enthalpy minimum principle 419.C 
entire algebroidal function 17.B 
entire function 429.A 

rational 429.A 
transcendental 429.A 

entire linear transformation 74.E 
entrance 281.C 
entrance boundary (of a diffusion process) 115.B 
entrance boundary point 260.1 
entropy 212.B 

(of an endomorphism) 136.E 
(in information theory) 213.B 
(in statistical mechanics) 402.B 
(in thermodynamics) 419.A 
closed system 402.G 
completely positive 136.E 
conditional 213.B 
of a distribution 403.B 
of the endomorphism cp 136.E 
E- (of source coding theorem) 213.E 
maximal 136.C,H 
mean 402.G 
open system 402.G 
of a partition 136.E 
relative 212.B 
topological 136.H 
topological, off with respect to c( 126.K 

entropy condition 204.G 
entropy conjecture 126.K 
entropy maximum principle 419.A 
entropy production, equation of 205.A 
entry (of a matrix) 269.A 
enumerable predicate, recursively 356.D 
enumerable set, recursively 356.D 
enumerating predicate 356.H 
enumeration method, implicit 215.D 
enumeration theorem 356.H 

Polya’s 66.E 
envelope 

(of a family of curves) 93.1 
of holomorphy 21.F 
injective 200.1 
lower 338.M 
upper (of a family of subharmonic functions) 

193.R 
envelope power function 400.F 
enveloping algebra 231.A 

special universal (of a Jordan algebra) 231.C 
universal (of a Lie algebra) 248.5 

enveloping surface 111 .I 
enveloping von Neumann algebra 36.G 
epicycloid 93.H 
epidemiology 40.E 
epimorphism (in a category) 52.D 200.Q 
epitrochoid 93.H 
Epstein zeta function 450.K 
equality 

Chapman-Kolmogorov 261.A 
Jacobe-Beihler 328 
Parseval 18.B 159.A 160.C 192.K 197.C 
ZOO.B,C,E 

equal weight, principle of 402.D 
equation(s) 

Abelian 172.G 
adjoint differential 252.K 
algebraic 10, App. A, Table 1 
algebraic differential 113 288.A 
approximate functional (for zeta function) 

450.B 
basic 320.E 
Bellman 405.B 
bifurcation 286.V 
binomial 10.C 
biquadratic App. A, Table 1 
Boltzmann 41.A 402.B 



Subject Index 
Equation(s) 

1978 

Boussinesq 387.F 
Briot-Bouquet differential 288.B 
Callan-Symanzik 361.B 
canonical 324.E 
canonical forms of the (of surfaces) 350.B 
Cauchy-Riemann (differential) 21.C 198.A 
274.G 320.F 

characteristic (for a homogeneous system of 
linear ordinary differential equations) 252.5 

characteristic (of a linear difference equation) 
104.E 

characteristic (of a linear ordinary differential 
equation) 252.E 

characteristic (of a matrix) 269.F 
characteristic (of an autonomous linear system) 

163.F 
characteristic (of a partial differential equation) 

320.D 
characteristic (of a partial differential equation 

of hyperbolic type) 325.A,F 
Chaplygin differential 326.B 
Chapman-Kolmogorov 260.A 261.A 
Charpit subsidiary 82.C 320.D 
of Codazzi 365.C 
Codazzi-Mainardi 11 l.H, App. A, Table 4.1 
of a conic section 78.C 
of a conic section, canonical form of 78.C 
of continuity 130.A 204.B 205.A 
cubic lO.D, App. A, Table 1 
cyclic 172.G 
delay-differential 163.A 
de Rham 274.G 
difference - difference equation 
difference-differential 163.A 
differential - differential equation(s) 
diffusion-convection 304.B 
Diophantine 118.A 
Dirac 377.C 415.G 
DLR 402.G 
eikonal 324.E 325.L 
energy (for a fluid) 205.A 
of entropy production 205.A 
Ernst 359.D 
estimating 399.P 
Euler (calculus of variations) 46.B 
Euler (of a perfect fluid) 204.E 
Euler, of motion (of a perfect fluid) 205.A 
Euler differential (dynamics of rigid bodies) 
271.E 

Euler-Lagrange 46.B 
evolution 378.G 
exterior field 359.D 
field 150.B 
Fokker-Planck 402.1 
functional - functional equation 
functional-differential 163.A 
Galois 172.G 
of Gauss (on an isometric immersion) 365.C 
Gauss (on surfaces) 111 .H 
Gel’fand-Levitan-Marchenko 287.C 387.D 
general 172.G 
general Navier-Stokes 204.F 
Hamilton differential 324.E 
Hamilton-Jacobi 108.B 
Hamilton-Jacobi differential 271.F 324.E 
heat 327.A, App. A, Table 15.VI 
of heat conduction 327.A 
Hill determinantal 268.B 
indicial 254.C 
induction 259 

integral - integral equation(s) 
integrodifferential 163.A 222 
integrodifferential, of Fredholm type 222.A 
integrodifferential, of Volterra type 222.A 
interior field 359.D 
Kadomtsev-Petvyashvili 387.F 
KdV 387.B 
Kepler 309.B 
Klein-Gordon 377.C 415.G 
Kolmogorov backward 115.A 260.F 
Kolmogorov forward 115.A 260.F 
Konigs-Schriider 44.B 
Korteweg-de Vries 387.A 
Lagrange, of motion 271.F 
Landau 146.C 
Landau-Nakanishi 146.C 
Langevin 45.1402.K 
Lewy-Mizohata 274.G 
likelihood 399.M 
linear 10.D 
linear, system of 269.M 
linear integral 217.A 
linear ordinary differential 252.A 
linear structure, system 128.C 
Lippman-Schwinger 375.C 
local (of a divisor on an open set) 16.M 
logistic 263.A 
master 402.1 
matrix Riccati differential 86.E 
Maxwell 130.A 
microdifferential 274.G 
minimal surface 275.A 
of motion (of a fluid) 205.A 
of motion (of a model) 264 
of motion (in Newtonian mechanics) 271.A 
of motion (of a particle in a gravitational field) 

359.D 
of motion, Euler (of a perfect fluid) 205.B 
of motion, Heisenberg 351.D 
of motion, Lagrange 271.F 
natural (of a curve) 11 l.D 
natural (of a surface) 110.A 
Navier-Stokes 204.B 205.C 
normal (in the method of least squares) 403.E 
302.E 397.J 

ordinary differential - ordinary differential 
equation(s) 

of oscillation App. A, Table 15.VI 
Painlevi: 288.C 
parabolic cylindrical App. A, Table 14.11 
partial differential - partial difIerentia1 
equation(s) 

Pell 118.A 
PfafIian 428.A 
Pfaffian, system of 428.A 
Poisson 338.A 
Prandtl boundary layer 205.C 
Prandtl integrodiNerentia1 222.C 
pressure 205.B 
primitive 172.G 
quadratic lO.D, App. A, Table 1 
quartic lO.D, App. A, Table 1 
radial 3 15.E 
random Schriidinger 340.E 
of a rarefied gas 41.A 
rational differential 288.A 
reciprocal 10.C 
regular local (at an integral point) 428.E 
renewal 260.C 
renormalization 11 l.B 



1979 Subject Index 
Equivalent 

resolvent 251.F 
retarded differential 163.A 
Ricci 365.C 
Schlesinger 253.E 
Schriidinger 35 1 .D 
secular 55.B 269.F 
self-adjoint differential 252.K 
self-adjoint system of differential 252.K 
Sine-Gordon 387.A 
singular integral 217.5 
of sound propagation 325.A 
special functional 388 
of state 419.A 
structure (of an afline connection) 417.B 
structure (for a curvature form) 80.G 
structure (for a torsion form) 80.H 
of structure (of a Euclidean space) 1ll.B 
of structure (for relative components) 11O.A 
system of 10.A 
system of linear ordinary differential 252.G 
telegraph 325.A, App. A, Table 15.111 
time-dependant Schrodinger 351.D 
time-independant Schriidinger 351.D 
transport 325.L 
two-dimension KdV 387.F 
variational 316.F 394.C 
of a vibrating membrane 325.A 
of a vibrating string 325.A 
wave 325.A 446.A, App. A, Table 15.111 
Wiener-Hopf integrodifferential 222.C 
Yang-Mills 80.Q 
Yule-Walker 421.D 

equator (of a sphere) 140 
equiangular spiral 93.H 
equianharmonic range of points 343.D 
equicontinuous (family of mappings) 435.D 
equicontinuous group of class (C”) 378.C 
equicontinuous semigroup of class (Co) 378.B 
equidistant hypersurface (in hyperbolic geometry) 

285.C 
equilateral hyperbola 78.E 
equilateral hyperbolic coordinates 9O.C App. A, 

Table 3.V 
equilateral triangle solution 420.B 
equilibrium, Nash 173.C 
equilibrium figures 55.D 
equilibrium Gibbs distribution 136.C 
equilibrium mass distribution 338.K 
equilibrium point 

(of a flow) 126.D 
(in an N-person differential game) 108.C 
(in a two-person zero-sum game) 173.C 

equilibrium potential 260.D 
equilibrium principle 338.K 
equilibrium state 136.H 340.B 419.A 
equilibrium statistical mechanics 402.A 
equilibrium system, transformation to 82.D 
equilong transformation 76.B 
equipollent sets 49.A 
equipotential surface 193.5 
equipotent sets 49.A 
equivalence 

(of categories) 52.H 
(in a category) 52.D 
(of complexes) 200.H 
(of coverings) 91.A 
anti- (of categories) 52.H 
chain 200.H 
cochain 200.F 
combinatorial 65.A 

c’- 126.B 
CR- 344.A 
homotopy 202.F 
Kakutani 136.F 
Lax, theorem 304.F 
natural 52.5 
principle of (in insurance mathematics) 214.A 
principle of (in physics) 359.D 
simple homotopy 65.C 
topological 126.B 

equivalence class 135.B 
linear (of divisors) 16.M 

equivalence properties 135.A 
equivalence relations 135 358.A 

proper (in an analytic space) 23.E 
equivalent 

(additive functionals) 261.E 
(arc) 246.A 
(coordinate bundle) 147.B 
(covering) 91.A 
(extension by a C*-algebra) 36.5 
(fiber bundle) 147.B 
(formula) 411.E 
(functions with respect to a subset of C”) 21.E 
(G-structures) 19l.A 
(knot) 235.A 
(linear representation) 362.C 
(measure) 225.5 
(methods of summation) 379.L 
(proposition) 411 .B 
(quadratic form) 348.A 
(quadratic irrational numbers) 182.G 
(relation) 135.B 
(space group) 92.A 
(stochastic process) 407.A 
(surfaces in the sense of Frechet) 246.1 
(system of neighborhoods) 425.E 
(unfolding) 51.E 
(unitary representation) 437.A 
(valuation) 439.B 
(word) 31.B 
algebraically (cycles) 16.R 
algebraically, to 0 16.P 
arithmetically 92.B 276.D 
C- 114.H 
certainty 408.B 
chain 200.C 
x- 431.F 
combinatorially 65.A 
conformally 77.A 19l.B 367.A 
countably (under a nonsingular bimeasurable 
transformation) 136.C 

C’- 126.B 
elementarily 276.D 
fiber homotopy (vector bundles) 237.1 
finitely (under a nonsingular bimeasurable 

transformation) 136.C 
flow 126.B 
F- (points) 122.A 
geometrically 92.B 
homotopy (systems of topological spaces) 

202.F 
k- (Cm-manifolds) 114.F 
linearly (divisors) 16.M 72.F 
locally (G-structure) 19l.H 
numerically (cycles) 16.4 
D-linearly, divisors 9.F 
Q- 126.H 
(PL) 65.D 
properly (binary quadratic forms) 348.M 



Subject Index 
Equivalent affinity 

1980 

pseudoconformally 344.A 
quasi- (unitary representations) 437.C 
rationally (cycles) 16.R 
right 51.C 
simple homotopy 65.C 
stably (vector bundles) 237.B 
stably fiber homotopy (vector bundles) 237.1 
topologically 126.B,H 
uniformly (uniform spaces) 436.E 
unitarily (self-adjoint operators) 390.G 

equivalent affinity 7.E 
equivariant Atiyah-Singer index theorem 237.H 
equivariant cohomology 431.D 
equivariant J-group 43 1 .F 
equivariant J-homomorphism 43 I .F 
equivariant K-group 237.H 
equivariant mapping (map) 431.A 
equivariant point (of a mapping) 153.B 
equivariant point index (of a mapping) 153.B 
Eratosthenes’ sieve 297.B 
Erdiis theorem, Chung- 342.B 
ergodic 

(Markov chain) 260.5 
(transformation) 136.B 

ergodic capacity 213.F 
ergodic class 260.B 

positive recurrent 260.B 
ergodic decomposition (of a Lebesgue measure 

space) 136.H 
ergodic homeomorphism 

strictly 136.H 
uniquely 136.H 

ergodic hypothesis 136.A 402.C 
ergodic information source 213.C 
ergodic lemma, maximal 136.B 
ergodic Szemertdi theorem 136.C 
ergodic theorem I36.A,B 

Abelian 136.B 
dominated 136.B 
individual 136.8 
local 136.B 
mean 136.B 
multiplicative 136.B 
pointwise 136.B 
ratio 136.B 
subadditive 136.B 

ergodic theory 136 342.A 
Erlang distribution, k- 260.1 
Erlangen program 137 
Ernst equation 359.D 
error(s) 138.A 

accumulated 138.C 
burst 63.E 
discretization 303.B 
of the first kind 400.A 
of input data 138.B 
local truncation 303.E 
mean square 399.E 403.E 
propagation of 138.C 
roundoff 138.B 303.B 
of the second kind 400.A 
theory of 138.A 
truncation 138.B 303.B 

error analysis I38 
backward 302.B 

error constant 303.E 
error-correcting 63.A 
error-correcting capability 63.B 
error-detecting 63.A 
error estimate, one-step-two-half-steps 303.D 

error function 167.D, App. A, Table 19.11 
error matrix 405.G 
error probability 213.D 
error space 403.E 
error sum of squares (with n--s degree of freedom) 

403.E 
error term 403.D 
error vector 102.A 
essential (conformal transformation group) 364.F 
essentially bounded (measurable function) 168.B 
essentially complete class 398.B 
essentially normal 390.1 
essentially self-adjoint 251.E 390.1 
essentially singular point (with respect to an analytic 

set) 21.M 
essentially unitary 390.1 
essential part 260.1 
essential singularity 

(of an analytic function in the wider sense) 
198.P 

(of a complex function) 198.D 
essential spectrum 390.E,H 
essential support (of a distribution) 274.D 
essential supremum (of a measurable function) 

168.B 
Estes stimulus sampling model 346.G 
estimable (parametr,ic function) 399.C 
estimable parameter 403.E 

linearly 403.E 
estimate 399.B 

a priori 323.C 
nonrandomized 399.B 
one-step-two-half-steps error 30.3.D 
Schauder 323.C 

estimating equation 399.P 
estimating function 399.P 

likelihood 399.M 
estimating parameters, design for 102.M 
estimation 

Hadamard App. A, Table 8 
interval 399.Q 4Ol.C 
point 371.H 399.B 4Ol.C 
region 399.0 
statistical 399.A, App. A, Table 23 

estimation space 403.E 
estimator 399.B 

asymptotically efficient 399.N 
BAN 399.K,N 
based on an estimating function ,399.P 
Bayes 399.F 
best asymptotically normal 399.K 
best invariant 399.1 
best linear unbiased 403.E 
CAN 399.K 
consistent 399.K 
consistent and asymptotically normal 399.K 
efficient 399.D 
first-order asymptotic efficient 399.0 
tirst-order efficient 399.0 
generalized least squares 403.E 
invariant 399.1 
kth-order AMU 399.0 
kth-order asymptotically median unbiased 

399.0 
L- 371.H 
least squares 403.E 
M- 371.H 
maximum likelihood 399.M 
mean unbiased 399.C 
median unbiased 399.C 



1981 Subject Index 
Exact 

ML 399.M 
modal unbiased 399.C 
moment method 399.L 
Pitman 399.G 
R- 371.H 
randomized 399.B 
ratio 373.C 
state 86.E 
Stein shrinkage 399.G 
superefficient 399.N 
UMV unbiased 399.C 
unbiased 399.C 
uniformly minimum variance unbiased 399.C 

eta function 
(of a Riemann manifold) 391.L 
Dedekind 328.A 

etale morphism 16.F 
&ale neighborhood 16.AA 
etale site 16.AA 
&ale topology 16.AA 
Euclid axiom 139.A 
Euclidean algorithm 297.A 

of polynomials 337.D 
Euclidean cell complex 70.B 
Euclidean complex 70.B 
Euclidean connection 364.B 

manifold with 109 
Euclidean distance 139.E 
Euclidean field 150.F 
Euclidean field theory 150.F 
Euclidean geometry 139 

n-dimensional 139.B 181 
non- - non-Euclidean geometry 285 
in the wider sense 139.B 

Euclidean group, locally 423.M 
Euclidean Markov field theory 150.F 
Euclidean method 150.F 
Euclidean polyhedron 70.B 
Euclidean simplicial complex 70.B 
Euclidean space(s) 140 

locally 259.B 425.V 
non- 285.A 
theorem on invariance of dimension of 117.D 

Euclidean space form 412.H 
Euclidean type (building) 13.R 
Euclid ring 67.L 
Euler, L. 141 
Euler angles 9O.C App. A, Table 3.V 
Euler characteristic (of a finite Euclidean cellular 

complex) 201.B 
Euler class (of M) 201.N 
Euler constant 174.A 
Euler criterion 297.H 
Euler differential equation (dynamics of rigid 

bodies) 271.E 
Euler equation 

(calculus of variations) 46.B 
(of a perfect fluid) 204.E 

Euler equation of motion (of a perfect fluid) 205.A 
Euler formula 131.G 
Euler function 295.C 
Euler graph 186.F 
Euler infmite product expansion 450.B 
Euler integral 

of the tirst kind 174.C 
of the second kind 174.A 

Euler-Lagrange differential equation 46.B 
Euler linear ordinary differential equation App. A, 

Table 14.1 
Euler-Maclaurin formula 379.5 

Euler method 
of describing the motion of a fluid 205.A 
of numerical solution of ordinary differential 
equations 303.E 

summable by 379.P 
of summation 379.P 

Euler number 177.C 201.B, App. B, Table 4 
Euler path 186.F 
Euler-Poincare characteristic 16.E 201.B 
Euler-Poincart class 56.B 

(of a manifold) 56.F 
universal 56.B 

Euler-Poincare formula 201.B,F 
Euler polynomial 177.C 
Euler product 450.B 
Euler relation 419.B 
Euler square 241.B 
Euler summation formula 295.E 
Euler theorem on polyhedra 201.F 
Euler transformation (of infinite series) 379.1 
evaluable (locally convex space) 424.1 
evaluation and review technique program 376 
Evans-Selberg theorem 48.E 338.H 
Evans theorem 48.E 
even element (of a Clifford algebra) 61.B 
even function 165.B 
even half-spinor 61.E 
even half-spin representation 61.E 
even-oddness conservation laws 150.D 
even permutation 151.G 
even state 415.H 
event(s) 281.D 342.B 

complementary 342.B 
delayed recurrent 260.C 
elementary 342.B 
exclusive 342.B 
impossible 342.B 
independent 342.B 
inferior limit 342.B 
intersection of 342.B 
measurable 342.B 
probability of an 342.B 
with probability 1 342.B 
product 342.B 
random 342.B 
recurrent 250.D 260.C 
space of elementary 342.B 
sum 342.B 
superior limit 342.B 
sure 342.B 
symmetric 342.G 
tail 342.B 

event commutativity 346.G 
event horizon 359.D 
Everett formula (for functions of two variables) 

App. A, Table 21 
Everett interpolation formula App. A, Table 

21 
everywhere 

almost 270.D 342.D 
nearly 338.F 
quasi- 338.F 

evolute (of a curve) 11 l.E 
evolution equation 378 
evolution operator 378.G 

holomorphic 378.1 
exact 

(additive covariant functor) 200.1 
(differential on a Riemann surface) 367.H 
(endomorphism) 136.E 



Subject Index 
Exact differential equation 

1982 

(in Galois cohomology) 172.5 
(in sheaf theory) 383.C 
half- 200.1 
left- 200.1 
right- 200.1 

exact differential equation App. A, Table 14.1 
exact differential form 105.Q 
exact functor 52.N 
exact sampling theory 401.F 
exact sequence 

(of A-homomorphisms of A-modules) 277.E 
of cohomology 200.F 
cohomology 2Ol.L 
of Ext 200.G 
fundamental (on cohomology groups) 200.M 
Gysin (of a fiber space) 148.E 
of homology 200.C 
homology (of a fiber space) 148.E 
homology (for simplicial complexes) 2Ol.L 
homotopy 202.L 
homotopy (of a fiber space) 148.D 
homotopy (of a triad) 202.M 
homotopy (of a triple) 202.L 
Mayer-Vietoris (for a proper triple) 2Ol.C 
Puppe 202.G 
reduced homology 201.F 
relative Mayer-Vietoris 2Ol.L 
(R, S)- (of modules) 200.K 
short 200.1 
of Tor 200.D 
Wang (of a fiber space) 148.E 

exceptional 
(Jordan algebra) 23 1 .A 
(leaf) 154.D 

exceptional compact real simple Lie algebra 248.T 
exceptional compact simple Lie group 249.L 
exceptional complex simple Lie algebra 248,s 
exceptional complex simple Lie group 249.M 
exceptional curve 15.G 

of the first kind 15.G 
of the second kind 15.G 

exceptional function, Julia 272.F 
exceptional orbit 431.C 
exceptional sets 192.R 
exceptional value 

(of a transcendental entire function) 429.B 
Bore1 272.E 
Nevanlinna 272.E 
Picard 272.E 

excess 178.H, App. A, Table 6.111 
coefficient of 341.H 396.C 
spherical 432.B 
total 178.H 

excessive (function) 260.D 261.D 
a- 261.D 

excessive measure 261.F 
exchange 420.D 
exchange of stability 286.T 
excision isomorphism 201.F,L 
excluded middle, law of 156.C 41 l.L 
exclusive events 342.B 
exhaustion 178.F 
existence theorem 

(in class field theory) 59.C 
(for ordinary differential equations) 316.C 
Cartan-KLhler 191.1428.E 
Cauchy 320.B 
Cauchy-Kovalevskaya 321.A 

existential proposition 41 l.B 
existential quantifier 41 l.C 

exit 281.C 
exit boundary (of a diffusion process) 115.B 
exit boundary point 260.1 
exit time 261.B 
exogenous variable 128.C 
exotic sphere 114.B 
exp A (exponential function of matrix A) 269.H 
expansion 65.C 

asymptotic 30.A, App. A, Table 17.1 
asymptotic (of a pseudodifferential operator) 

345.A 
Cornish-Fisher 374.F 
Edgeworth 374.F 
E- 361.C 
Laurent 198.D 
method of matched asymptotic 112.B 
Minakshisundaram-Pleijel asymptotic 391.B 
orthogonal 317.A 
partial wave 375.E 386.B 
Taylor (of an analytic function of several vari- 

ables) 21.B 
Taylor (of a holomorphic function:1 339.A 
Taylor, and remainder App. A, Table 9.IV 
Taylor, formal 58.C 

expansion coefficient 3 17.A 
expansion formula, q- 134.1 
expansion method 205.B 
expansion theorem 306.B 

Hilbert-Schmidt 217.H 
Laplace (on determinants) 103.D 

expansive 126.5 
expectation 115.B 342.C 

conditional 342.E 
mathematical 341.B 

expectation value (of an operator) 351.B 
expected amount of inspection 404.C 
expected value (of a random variable) 342.C 
experiment(s) 

design of 102 
factorial 102.H 
Sk factorial 102.H 
statistical 398.G 

experimental analysis 385.A 
experimentation model 385.A 
explanatory variable 403.D 
explicit 

(difference equation in a multistep method) 
303.E 

(Runge-Kutta method) 303.D 
explicit function 165.C 
explicit method 303.E 
explicit reciprocity laws 14.R 
explicit scheme 304.F 
exploratory procedures 397.4 
exploring a response surface, designs for 102.M 
explosion, R- 126.5 
explosion time 406.D 
exponent 

(of an Abelian extension) 172.F 
(of an algebra class) 29.E 
(of a finite group) 362.G 
(of a Kummer extension) 172.F 
(of a power) 131.B 
(of a regular singular point) 254.C 
(of a stable distribution) 341.G 
characteristic (of an autonomous linear system) 

163.F 
characteristic (of the Hill differential equation) 

268.B 
characteristic (of a variational equation) 394.C 



1983 Subject Index 

External (in nonstandard analysis) 

conjugate 168.C 
of convergence 429.B 
critical 111 .C 
integral 167.D 
one-sided stable process of 5.F 
of the stable process 5.F 
subordinator of 5.F 

exponential curve 93.H 
exponential dichotomy 290.B 
exponential distribution 341.D, App. A, Table 22 

two-sided App. A, Table 22 
exponential family of distributions 396.G 
exponential formula 286.X 

double 299.B 
exponential function 131.D 

with the base a 131.B 
of an operator 306.C 

exponential generating function 177.A 
exponential group 437.U 
exponential Hilbert space 377.D 
exponential integral 167.D, App. A, Table 19.11 
exponential lattice 287.A 
exponential law (on cardinal numbers) 49.C 
exponentially decreasing Fourier hyperfunction 

125.BB 
exponentially decreasing real analytic function 

125.BB 
exponentially stable 163.G 394.B 
exponential mapping 

(of a Lie algebra into a Lie group) 249.Q 
(of a Riemannian manifold) 178.A 364.C 

exponential method, Bore1 379.0 
exponential series 131 .D 
exponential valuation 439.B 

p-adic 439.F 
exposed, strongly 443.H 
expression 

field of rational 337.H 
rational 337.H 

expx 131.D 
Ext 200.G 

exact sequence of 200.G 
Ext groups 200.G 
Ext;h(A, B) 200.K 
Ext;(M, N) 200.G 
extended Dynkin diagram App. A, Table 5.1 
extended hypergeometric function, Barnes 206.C 
extended real number 87.E 
extension 

(of a connection) 80.F 
(of a field) 149.B 
(of a fractional ideal) 14.1 
(of a group) 190.N 
(of an ideal of compact operators) 36.5 390.5 
(of an isomorphism of subfields) 149.D 
(of a mapping) 38 1 .C 
(of modules) 200.K 
(of an operator) 251.B 
(of a solution of an ordinary differential 

equation) 316.C 
(of a valuation) 439.B 
Abelian (of a field) 172.B 
algebra 200.L 
algebraic (of a field) 149.E 
Artin-Schreier (of a field) 172.F 
basic Z,- 14.L 
central (of a group) 190.N 
of the coefficient ring 29.A 
cone 65.D 
cyclic (of a field) 172.B 

cyclotomic Z,- 14.L 
elementary 276.D 
finite 149.F 
Friedrichs 112.1 251.E 
Galois 172.B 
r- 14.L 
group 200.M 
inseparable (of a field) 149.H 
Kummer (of a field) 172.F 
Lebesgue 270.D 
linear (of a rational mapping to an Abelian 

variety) 9.E 
maximal Abelian 257.F 
maximal separable (of a field) 149.H 
natural (of an endomorphism) 136.E 
normal 149.G 251.K 
p- (of a field) 59.F 
p-adic 439.F 
purely inseparable (of a field) 149.H 
Pythagorean (of a field) 155.C 
regular (of a field) 149.K 
scalar (of an algebra) 29.A 
scalar (of an A-module) 277.L 
scalar (of a linear representation) 362.F 
separable (of a field) 149.H,K 
separably generated (of a field) 149.K 
simple (of a held) 149.D 
split (of a group) 190.N 
strong (of a differential operator) 112.E,F 
transcendental 149.E 
transitive (of a permutation group) 151.H 
unramified 14.1257.D 
weak (of a differential operator) 112.E,F 
z,- 14.L 

extensionality, axiom of (in axiomatic set theory) 
33.B 

extension field 149.B 
Picard-Vessiot 113 
strongly normal 113 

extension theorem 
first (in the theory of obstructions) 305.B 
Hahn-Banach 37.F 
Hopf (in measure) 270.E 
Kolmogorov 341.1 
second (in the theory of obstructions) 305.C 
third (in the theory of obstructions) 305.C 
Tietze 425.Q 
Whitney 168.B 

extensive thermodynamical quantity 419.A 
exterior 

(of an angle) 155.B 
(of a polygon) 155.F 
(of a segment) 155.B 
(of a subset) 425.N 

exterior algebra (of a linear space) 256.0 
exterior capacity, Newtonian 48.H 
exterior derivative (of a differential form) 105.Q 
exterior differential form of degree r 105.Q 
exterior field equation 359 
exterior point (of a subset) 425.N 
exterior power, p-fold 

(of a linear space) 256.0 
(of a vector bundle) 147.F 

exterior problem (for the Dirichlet problem) 120.A 
exterior product 

(of differential forms) 105.Q 
(of elements of a linear space) 256.0 
(of a p-vector and a q-vector) 256.0 
(of two vectors) 442.C 

external (in nonstandard analysis) 293.B 



Subject Index 
External irregular point 

1984 

external irregular point 338.L 
external language 75.C 
external law of composition 409.A 
externally stable set 186.1 
external product 200.K 
external space (in the static model in catastrophe 

theory) 51.B 
external variable 264 
extinction probability 44.B 
extrapolation 176.K 223.A 
extrapolation method 

polynomial 303.F 
rational 303.F 

extremal (Jordan curve) 275.C 
extremal distance 143.8 

reduced 143.B 
extremal function, Koebe 438.C 
extremal horizontal slit mapping 367.G 
extremal length 143 

defined by Hersch and Pfluger 143.A 
with weight 143.B 

extremal quasiconformal mapping 352.C 
extremal vertical slit mapping 367.G 
extremely disconnected 37.M 
extreme point 

of a convex set 89.A 
of a subset of a linear space 424.V 

extremum 
conditional relative (of a function) 106.L 
relative (of a function) 106.L 

F 

f (cardinal number of all real-valued functions 
on [0, 11) 49.A 

F, (finite field with 4 elements) 450.4 
f-metric 136.F 
&-metric 136.F 
F-compactification 207.C 
F-distribution 341.D 374.B, App. A, Table 22 

noncentral 374.B 
F-free (compact oriented G-manifold) 431.E 
F-test 400.G 
(F, F’)-free (compact oriented G-manifold) 431.G 
F, set 270.C 
(F)-space 424.1 
face 

(of a complex) 13.R 
(of a convex cell) 7.D 
ith (of a singular q-simplex) 201 .E 
q- (of an n-simplex) 70.B 

face operator (in a semisimplicial complex) 70.E 
factor 

(of an element of a ring) 67.H 
(of a factorial experiment) 102.H 
(of a van Neumann algebra) 308.F 
of automorphy 32.A 
composition (in a composition factor series in 

a group) 190.G 
determinant (of a matrix) 269.E 
direct (of a direct product of sets) 381.E 
direct (of a group) 190.L 
Dirichlet discontinuous App. A, Table 9.V 
first (of a class number) 14.L 
integrating App. A, Table 14.1 
Krieger 308.1 
p- (of an element of a group) 362.1 
Powers 308.1 
proper (of an element of a ring) 67.H 
second (of a class number) 14.L 

Ulm (of an Abelian p-group) 2.D 
factor A-module 277.C 
factor analysis 280.G 
factor analysis model 403.C 
factor group 190.C 
factorial 330, App. A, Table 17.11 

Jordan 330 
factorial cumulant 397.G 
factorial cumulant generating function 397.G 
factorial design 102.H 

balanced fractional 102.1 
fractional 102.1 
orthogonal fractional 102.1 

factorial effect 102.H 
factorial experiment 102.H 

S’ 102.H 
factorial function 174.A 
factorial moment 397.G 
factorial moment generating functions 397.G 
factorial series 104.F 121.E 
factorization 

incomplete 302.C 
regular 251.N 
triangular 302.B 

factorization method 206.B 
factorization theorem 

(of an HP-function) 43.F 
Neyman 396.F 
unique (in an integral domain) 67 H 

factor loading 280.G 346.F 
factor representation 

of a topological group 437.E 
of type I, II, or III 437.E 

factor ring 368E,F 
factor score 280.G 346.F 
factor set(s) 

(in cohomology of groups) 200.M 
(of a crossed product) 29.D 
(in extensions of groups) 190.N 
(of a projective representation) 362.5 
associated (in extensions of groups) 190.N 

factor transformation (of a measure-preserving 
transformation) 136.D 

Faddeev-Popov ghost 132.C 150.G 
fading memory 163.1 
faithful 

(functor) 52.H 
(linear representation) 362.C 
(permutation representation) 362.8 
(weight on a von Neumann algebra) 308.D 
fully (functor) 52.H 

faithfully flat A-module 277.K 
faithfully flat morphism 16.D 
false 411.E 

regular 3Ol.C 
false position, method of 3Ol.C 
family 165.D 

algebraic (of cycles on an algebraic variety) 
16.R 

of compact complex manifolds 72.G 
of confocal central tonics 78.H 
of confocal parabolas 78.H 
of confocal quadrics 350.E 
covering 16.AA 
crystal 92.B 
directed 165.D 
equicontinuous (of mappings) 435.D 
exponential, of distributions 396.G 
of frames (on a homogeneous space) 110.A 
of frames of order 1 110.B 



1985 Subject Index 
Field(s) 

of functions 165.B,D 
of functions indexed by a set 165.B 
indexed by a set 165.D 
of mappings 165.D 
normal (of functions) 435.E 
parameter space 72.G 
of points 165.D 
of quasi-analytic functions 58.A 
quasinormal (of analytic functions) 435.E 
separating 207.C 
of sets 165.D 381.B,D 
of sets indexed by a set 381.D 
tight (of probability measures) 341.F 
uniform, of neighborhood system 436.D 

fan 16.2 
Fannes-Verbeure inequality, Roebstorff- 402.G 
FANR 382.C 
FAR 382.C 
Farey arc 4.B 
Farey dissection 4.B 
Farey sequence 4.B 
Farkas theorem, Minkowski- 255.B 
fast Fourier transform 142.D 
fast wave 259 
Fatou theorem 

on bounded functions in a disk 43.D 
on the Lebesgue integral 221.C 

favorable a priori distribution, least 398.H 
F.D. generator 136.E 
F.D. process 136.E 
feasible (flow) 281.B 
feasible directions, method of (in nonlinear 

programming) 292.E 
feasible region 264.B 292.A 
feasible solution 255.A 264.B 

basic 255.A 
feedback control 405.C 
Fefferman-Stein decomposition 168.B 
Feit-Thompson theorem (on finite groups) 151.D 
FejCr kernel 159.C 
Fejer mean 159.C 
Fejitr theorem 159.C 
Feller process 261.B 
Feller transition function 261.B 
Fermat, P. de 144 

last theorem of 145 
Fermat number 297.F 
Fermat principle 180.A 441.C 
Fermat problem 145 
Fermat theorem 297.G 
fermions 132.A 351.H 
Fermi particle 132.A 
Fermi statistics 377.8 402.E 
Ferrar formula, Dixon- App. A, Table 19.IV 
Ferrari formula App. A, Table 1 
Feynman amplitude 146.B 
Feynman diagram 146.B 
Feynman graphs 146.A,B 386.C 
Feynman integrals 146 
Feynman-Kac formula 35 1 .F 
Feynman-Kac-Nelson formula 150.F 
Feynman rule 146.A,B 
F.F. 136.F 
FFT 142.D 
fiber 

(of a fiber bundle) 147.B 
(of a fiber space) 148.B 
(of a morphism) 16.D 
geometric (of a morphism) 16.D 
integration along (of a hyperfunction) 274.E 

fiber bundle(s) 147 
associated 147.D 
of class C 147.0 
complex analytic 147.0 
equivalent 147.B 
isomorphic 147.B 
orientable 147.L 
principal 147.C 
real analytic 147.0 

tibered manifold 428.F 
fiber homotopy equivalent 237.1 

stably 237.1 
fiber homotopy type, spherical G- 431.F 
libering, Hopf 147.E 
fiber mapping (map), linear 114.D 
fiber product 52.G 
fiber space(s) 72.1 148 

algebraic 72.1 
locally trivial 148.B 
n-connective 148.D 
spectral sequence of (of singular cohomology) 

148.E 
Spivak normal 114.5 

liber sum 52.G 
fiber term (of a spectral sequence) 200.5 
Fibonacci sequence 295.A 
libration (of a topological space) 148.B 
libration, Milnor 418.D 
fictitious state 260.F 
fiducial distribution 401.F 
fiducial interval 401.F 
field(s) 149 

(of sets) 270.B 
(of stationary curves) 46.C 
absolute class 59.A 
algebraically closed 149.1 
algebraic function, in n variables 149.1 
algebraic number 14.B 
alternative 231.A 
Anosov vector 126.5 
Archimedean ordered 149.1 
asymptotic 150.D 
Axiom A vector 126.5 
basic (of a linear space) 256.A 
Bore1 270.B,C 
C,- 118.F 
C,(d)- 118.F 
canonical 377.C 
class 59.B 
coefficient (of an afline space) 7.A 
coefficient (of an algebra) 29.A 
coefficient (of a projective space) 343.C 
coefficient (of a semilocal ring) 284.D 
commutative 368.B 
composite 149.D 
conjugate 149.5 377.C 
cyclotomic 14.L 
decomposition (of a prime ideal) 14.K 
of definition (for an algebraic variety) 16.A 
differential 113 
electric 130.B 
Euclidean 150.F 
extension 149.B 
finite 149.C 
formal power series, in one variable 370.A 
of formal power series in one variable 370.A 
formally real 149.N 
free 150.A 
free Dirac 377.C 
free scalar 377.C 



Subject Index 
Field equation 

1986 

function 16.A 
Galois 149.M 
Galois theory of differential 113 
ground (of an algebra) 29.A 
ground (of a linear space) 256.A 
Hamiltonian vector 126.L 219.C 
holomorphic vector 72.A 
imaginary quadratic 347.A 
imperfect 149.H 
inertia (of a prime ideal) 14.K 
intermediate 149.D 
invariant 172.B 
Jacobi 178.A 
Lagrangian vector 126.L 
local 257.A 
local class 257.A 
local class, theory 59.G 
linearly disjoint 149.K 
magnetic 130.B 
of moduli 73.B 
Morse-Smale vector 126.5 
noncommutative 149.A 
number 149.C 
ordered 149.N 
p-adic number 257.A 439.F 
perfect 149.H 
Picard-Vessiot extension 113 
power series, in one variable 370.A 
prime 149.B 
Pythagorean 139.B 155.C 
Pythagorean ordered 60.0 
quadratic 347.A 
quasi-algebraicagy closed 118.F 
of quotients 67.G 
ramification (of a prime ideal) 14.K 
random 407.B 
of rational expressions 337.H 
rational function, in n variables 149.K 
of rational functions 337.H 
real 149.N 
real closed 149.N 
real quadratic 347.A 
relative algebraic number 14.1 
residue class 149.C 368.F 
residue class (of a valuation) 439.B 
scalar 108.0 
scalar (in a 3-dimensional Euclidean space) 
442.D 

of scalars (of a linear space) 256.A 
skew 149.A 368.B 
splitting (for an algebra) 362.F 
splitting (for an algebraic torus) 13.D 
splitting (of a polynomial) 149.G 
strongly normal extension 113 
tension 195.B 
tensor -tensor field 
topological 423.P 
totally imaginary 14.F 
totally real 14.F 
transversal 136.G 
vector (in a differentiable manifold) 108.M 
vector (in a 3-dimensional Euclidean space) 
442.D 

Wightman 150.D 
Yang-Mills 150.G 

field equation 150.B 
exterior 339.D 
interior 339.D 

field theory 150 

constructive 150.F 
Euclidean 150.F 
Markov 150.F 
nonsymmetric unified 434.C 
quantum 150.C 
unified 434 
unitary 434.C 

fifth postulate (in Euclidean geometry) 139.A 
fifth problem of Hilbert 423.N 
figure(s) 137 

absolute (in the Erlangen program) 137 
central 420.B 
equilibrium 55.D 
fundamental (in a projective space) 343.B 
linear fundamental 343.B 
P’- 343.B 

file 96.B 
filing, inverted, scheme 96.F 
fill-in 302.E 
filter 87.1 

Cauchy (on a uniform space) 436.G 
Kalman 86.E 
Kalman-Bucy 86.E 405.G 
linear 405.F 
maximal 87.1 
nonlinear 405.F,H 
Wiener 86.E 

filter base 87.1 
filtering 395.E 

stochastic 342.A 405.F 
Iiltration 200.5 

discrete 200.5 
exhaustive 200.5 

filtration bounded from below 200.5 
filtration degree 200.5 
Iinal object 52.D 
final set 

(of a correspondence) 358.B 
(of a linear operator) 251.E 

final state 31.B 
finely continuous 261.C 
finely open (set) 261.D 
Iine moduli scheme 16.W 
finer relation 135.C 
liner topology 425.H 
fine topology (on a class of measures) :!61.D 338.E 
fmitary standpoints 156.D 
finite 

(cell complex) 70.D 
(measure) 270.D 
(morphism) 16.D 
(potency) 49.A 
(simplicial complex) 70.C 
(triangulation) 70.C 
(von Neumann algebra) 308.E 
approximately 36.H 308.1 
geometrically 234.C 
hyper- 308.1 
locally -locally finite 
point- (covering) 425.R 
pro-, group 210.C 
semi- 308.1 
CT- - u-finite 
star- (covering) 425.R 

finite automaton 31.D 
finite-band potentials 387.E 
finite basis (for an ideal) 67.B 
finite branch (of a curve of class CL) 93.G 
Iinite character, condition of 34.C 



1987 Subject Index 
Fixed point 

finite cochain (of a locally finite simplicial complex) 
2Ol.P 

fjnite continued fraction 83.A 
finite covering (of a set) 425.R 
finite differences 223.C 
finite-dimensional distribution 407.A 
tinite-dimensional linear space 256.C 
finite-dimensional projective geometry 343.B 
finite-displacement theory 271.G 
finite element method 233.G 290.E 304.C 
tinite extension 149.F 
finite field 149.C 
finite field F, 149.M 
finite-gap potentials 387.E 
finite groups 151.A 19O.C 
finite intersection property 425,s 
finite interval (in R) 355.C 
finite length 277.1 
finitely additive (vector measure) 443.G 
finitely additive class 270.B 
finitely additive measure 270.D 
finitely additive set function 380.B 
finitely determined process 136.E 
finitely distinguishable (hypothesis) 400.K 
finitely equivalent sets (under a nonsingular bi- 

measurable transformation) 136.C 
finitely fixed 136.F 
finitely generated 

(A-module) 277.D 
(group) 19O.C 

finitely presented (group) 16l.A 
finite memory channel 213.F 
finiteness condition for integral extensions 284.F 
finiteness theorem 16.AA 

Ahlfors 234.D 
finite order (distribution) 125.5 
finite ordinal number 312.B 
finite part (of an integral) 125.C 
finite population 373.A 
tinite presentation 16.E 
finite prime divisor 439.H 
finite projective plane 241.B 
finite rank (bounded linear operator) 68.C 
finite sequence 165.D 
finite series 379.A, App. A, Table 10.1 
finite set 49.A 381.A 

hereditary 33.B 
finite subset property 396.F 
finite sum, orthogonality for a 19.G 317.D, App. A, 

Table 2O.VII 
finite type 

(graded module) 203.B 
(module) 277.D 
(morphism of schemes) 16.D 
(@module) 16.E 
algebraic space of 16.W 
locally of 16.D 
subshift of 126.5 

finite-type power series space 168.B 
finite-valued function 443.B 
linitistic (topological space) 431.B 
Finsler manifold 286.L 
Finsler metric 152.A 
Finsler space 152 
firmware 75.C 
first axiom, Tietze 425.4 
first boundary value problem 193.F 323.C 
first category, set of 425.N 
first classfication theorem (in theory of obstructions) 

305.B 

first complementary law of the Legendre symbol 
297.1 

first countability axiom 425.P 
first definition (of algebraic K-group) 237.5 
first extension theorem (in the theory of obstruc- 

tions) 305.B 
first factor (of a class number) 14.L 
first fundamental form (of a hypersurface) 1ll.G 
first fundamental quantities (of a surface) 1ll.H 
first fundamental theorem (Morse theory) 279.D 
first homotopy theorem (in the theory of obstruc- 

tions) 305.B 
first incompleteness theorem 185.C 
first-in first-out memory 96.E 
first-in last-out memory 96.E 
first integral (of a completely integrable system) 

428.D 
first isomorphism theorem (on topological groups) 

423.5 
first kind 

(integral equations of Fredholm type of the) 
217.A 

Abelian differential of 1l.C 
Abelian integral of 1 l.C 
differential form of 16.0 

first law of cosines 432.A, App.A, Table 2.11 
first law of thermodynamics 419.A 
first maximum principle (in potential theory) 338.C 
first mean value theorem (for the Riemann integral) 

216.B 
first negative prolongational limit set 126.D 
first-order asymptotic efficient estimator 399.0 
first-order derivatives 106.A 
first-order designs 102.M 
first-order efficient estimator 399.0 
first-order predicate 411.K 
first-order predicate logic 4ll.K 
first positive prolongational limit set 126.D 
first problem, Cousin 21.K 
first prolongation (of P) 191.E 
first quadrant (of a spectral sequence) 200.5 
first quartile 396.C 
first regular integral 126.H 
first-return mapping (map) 126.B 
first separation axiom 425.Q 
first variation 46.B 
first variation formula 178.A 
Fisher consistent 399.K 
Fisher expansions, Cornish- 374.F 
Fisher inequality 102.E 
Fisher information 399.D 
Fisher information matrix 399.D 
Fisher problem, Behrens- 400.G 
Fisher theorem 43.G 
Fisher theorem, Riesz- 168.B 317.A 
Fisher three principles 102.A 
Fisher-Yates-Terry normal score test 371.C 
Fisher z-transformation 374.D 
tisheye, Maxwell 180.A 
tit, chi-square test of goodness of 400.K 
tit, goodness of 397.Q 
fitting, curve 19.F 
live-disk theorem, Ahlfors 272.5 
fixed branch points (of an algebraic differential 

equation) 288.A 
fixed component (of a linear system) 16.N 
fixed effect 102.A 
fixed-effect model 102.A 
fixed point 

(of a discontinuous group) 122.A 



Subject Index 
Fixed-point index (of a continuous mapping) 

1988 

(of a flow) 126.D equivalent 126.B 
(of a mapping) ,153.A,D geodesic 126.L 136.G 
(of a transformation group) 431.A harmonic 193.K 
of discontinuity (of an additive process) 5.B hornentropic 205.B 
of discontinuity (of a stochastic process) 407.A horocycle 136.G 
hyperbolic 126.G hypersonic 205.C 
isolated 126.G K- 136.E 

fixed-point index (of a continuous mapping) 153.B Kolmogorov 136.E 
fixed point method 138.B Kronecker 136.G 
fixed-point theorem(s) 153 laminar 205.E 433.A 

Atiyah-Bott 153.C maximum, minimum cut theorem 281 
Atiyah-Singer 153.C maximum, problem 281 
Brouwer 153.B measurable 136.D 
Kakutani 153.D minimal 126.N 
Lefschetz 153.B minimum-cost, problem 281.C 
Leray-Schauder 286.D Morse-Smale 126.5 
Poincart-Birkoff 153.8 multicommodity, problem 281.F 
Schauder 153.D 286.D network, model 307.C 
Tikhonov 153.D network, problem 281 282.B 

fixed singularity (of an algebraic differential S- 136.D 
equation) 288.A single-commodity, problem 281:F 

fixed variates 403.D special 136.D 
fixed vector 442.A translational 126.L 136.G 
FKG 212.A transonic 205.B 
Fl (f&he) 52.A transversal 136.G 
flabby resolution 125.W turbulent 205.E 433.A 
flabby sheaf 383.E Y-, 136.G 
flag (in an aMine space) 139.B flow-shop scheduling problem 376 
flag manifold 199.B fluctuation-dissipation theorem 402.K 

proper 199.B fluid 205.A 
flat compressible 205.B 

(connection) 80.E incompressible 205.B 
(morphism of schemes) 16.D Newtonian 205.C 
(Riemannian manifold) 364.E non-Newtonian 205.C 
(sphere pair) 235.G perfect 205.B 
conformally 191 .B fluid dynamics 205.A 
E- 178.D flux 
faithfully (A-module) 277.K (of a regular tube) 193.K 
faithfully (morphism of schemes) 16.D vector (through a surface) 442.D 
locally (connection) 80.E flux density 
locally (PL embedding) 65.D electric 130.A 
locally (Riemannian manifold) 364.E magnetic 130.A 
normally (along a subscheme) 16.L focal conic (of a quadric) 350.E 

flat A-module 277.K focal length 180.B 
flat deformation 16.W focal point (of a submanifold of a Riemannian 
flat F-bundle 154.B manifold) 364.C 
flat function 58.C Fock representation 150.C 
flat point (of a surface) 11 l.H Fock space 377.A 
flat site 16.AA antisymmetric 377.A 
flat space symmetric 377.A 

concircularly App. A, Table 4.11 focus 
conformally App. A, Table 4.11 (of a conic section ellipse) 78.B 
projectively App. A, Table 4.11 (of an optimal system) 180.B 

flavor dynamics, quantum 132.D (of a quadric) 350.E 
flex 9.B Fokker-Planck partial differential equation- 115.A 
flip model, spin 340.C 402.1 
floating point method 138.B Foiag model, Sz. Nagy- 25 1 .N 
Floquet theorem 252.5 268.B folding (of a chamber complex) 13.R 
flow foliated bundle 154.B,H 

(in ergodic theory) 136.D foliated cobordant (C”-foliations) 154.H 
(on a network) 281.B foliated cobordism 154.H 
(on a topological space) 126.B foliated structure 105.Y 
Anosov 126.B 136.G foliation 154 
associated 136.F Anosov 126.5 
Axiom A 126.5 compact 154.H 
built under a function 136.D C’- 154.B,G 
C’- 126.B r,- 154.H 
of class c’ 126.B holomorphic 154.H 
continuous 126.B real analytic 154.H 
discrete 126.B Reeb 154.B 



1989 Subject Index 
Formmally self-adjoint (differential operator) 

Riemannian 154.H 
transverse to 154.H 

foliation cycles 154.H 
folium cartesii 93.H 
folium of Descartes 93.H 
foot of the perpendicular 139.E 
force 

apparent 271.D 
body 271.G 
centrifugal 271.D 
Corioli 271.D 
line of 193.5 
Lorentz 130.A 
restitutive 318.B 

forced oscillation 318.B 
force polygon 19.C 
Ford fundamental region 234.C 
forgetful functor 52.1 
form(s) 337.B 

anti-Hermitian 256.Q 
associated (of a projective variety) 16.S 
automorphic 437.DD 450.0 
automorphic, of weight k (or of dimension -k) 

32.B 
automorphic, of weight m 32.A 
basic (in linear programming) 255.A 
bilinear 256.H 277.5 424.G 
bilinear, associated with a quadratic form 
256.H 

canonical (of F(M)) 191.A 
canonical (of a linear hypothesis) 400.H 
canonical, of the equation (of a quadric) 350.B 
canonical l- (of the bundle of tangent n-frames) 
80.H 

Cantor normal 312.C 
compact (of a complex semisimple Lie algebra) 
248.P 

complex (of a Fourier series) 159.A 
complex (of a real Lie algebra) 248.P 
complex space 365.L 
connection 80.E 417.B 
contact 1lO.E 
covariant of n-ary, of degree d 226.D 
covariant with ground 226.D 
curvature 80.G 364.D 
cusp (in the case of one variable) 32.B 
cusp (in Siegel upper half-space) 32.F 
differential -differential form 
Dirichlet 261.C 
divergence 323.D 
dominant integral (on a Cartan subalgebra) 
248.W 

s-Hermitian 60.0 
e-trace 60.0 
Euclidean space 412.H 
first fundamental 11 l.G, App. A, Table 4.1 
formula of embedding 303.D 
Fuchsian, of weight k (or of dimension -k) 

32.B 
fundamental (associated with a Hermitian 
metric) 232.A 

fundamental (of a Finsler space) 152.A 
games in partition-function 173.D 
generalized Levi 274.G 
ground 226.D 
Hermitian - Hermitian form 256.Q 
Hesse normal (of a hyperplane) 139.H 
Hilbert modular, of dimension -k 32.G 
Hilbert modular, of weight k 32.G 
holomorphic k- 72.A 

hyperbolic space 412.H 
integral (on a Cartan subalgebra) 248.W 
invariants of n-ary, of degree d 226.D 
Jordan normal 269.G 
k- (of an algebraic group) 13.M 
kernel 348.F 
Khinchin canonical 341.G 
Killing 248.B 
Kolmogorov canonical 341.G 
Legendre-Jacobi standard 134.A, App. A, 
Table 16.1 

Levi 344.A 
Levy canonical 341.G 
limit of an indeterminate 106.E 
linear (on an A-module) 277.E 
linear (on a linear space) 256.B 
modular, of level N 32.C 
multilinear 256.H 
n-person 173.B-D 
norm 118.D 
normal (of an ordinal number) 312.C 
normal (of an ordinary differential equation) 
313.B 

normal (of partial differential equations) 321.B 
normal (of a partial differential equation of the 
first order) 324.E 

normal (of a surface) 410.B 
normal real (of a complex semisimple Lie 
algebra) 248.Q 

normic (in a field) 118.F 
Pfafftan 105.Q 428.A 
polar (of a complex number) 74.C 
primitive 232.C 
pseudotensorial 80.G 
quadratic -quadratic form 
real (of a complex algebraic group) 60.0 
real (of a complex Lie algebra) 248.P 
reduced (of a linear structural equation system) 

128.C 
regular Dirichlet 261.C 
second fundamental 11 l.G 365.C App. A, 
Table 4.1 

sesquilinear - sesquilinear form 
Siegel modular, of dimension -k 32.F 
Siegel modular, of weight k 32.F 
skew-Hermitian 256.4 
skew-symmetric multilinear 256.H 
space 285.E 412.H 
spherical space 412.H 
standard (of a difference equation) 104.C 
standard (of a latin square) 241.A 
symmetric multilinear 256.H 
symplectic 126.L 
tensorial 80.G 
third fundamental App. A, Table 4.1 
torsion 80.H 
Weierstrass canonical (for an elliptic curve) 
9.D 

Weierstrass canonical (of the gamma function) 
174.A 

Weyl 351.C 
formal adjoint operator 322.E 
formal degree (of a unitary representation) 437.M 
formal dimension n, Poincare pair of 114.5 
formal geometry 16.X 
formal group 13.C 
formalism 156.A,D 

Gupta-Bleuler 150.G 
formally real field 149.N 
formally self-adjoint (differential operator) 112.1 



Subject Index 
Formally undecidable proposition 

1990 

formally undecidable proposition 185.C 
formal power series 370.A 

field of, in one variable 370.A 
rings of 370.A 

formal power series field in one variable 370.A 
formal power series ring 370.A 
formal scheme 16.X 

separated 16.X 
formal solution (for a system of ordinary differential 

equations) 289.C 
formal spectrum (of a Noetherian ring) 16.X 
formal system 156.D 411.1 
formal Taylor expansion 58.C 
formal vector fields 105.AA 
formation 

class 59.H 
pattern 263.D 

formation, class 59.H 
formation rule 41 l.D 
form ring 284.D 
formula(s) 41 l.D 

Abramov 136.E 
addition (for e’) 13 l.G 
addition (for sine and cosine) 432.A 
Adem App.A, Table 6.11 
algebraic addition 3.M 
atomic 41 l.D 
atomic (of a language) 276.A 
Bayes 342.F 405.1 
Bessel interpolation App. A, Table 21 
Binet 174.A 295.A 
Bouquet (on space curves) 11 l.F 
Campbell-Hausdorff 249.R 
Cardano App. A, Table 1 
Cartan (for Steenrod pth power operations) 

64.B 
Cartan (for Steenrod square operations) 64.B 
Cauchy-Hadamard (on the radius of conver- 
gence) 339.A 

Cauchy integral 198.B 
Chebyshev (in numerical integration) 299.A 
Chern (in integral geometry) 218.D 
Christoffel-Darboux 317.D 
Clenshaw-Curtis 299.A 
closed 41 l.J 
closed (of a language) 276.A 
closed type (in numerical integration) 299.A 
connection 253.A 
constant variational 163.E 
Crofton (in integral geometry) 218.B 
decomposition, of Radon 125.CC 
De Moivre 74.C 
dimensional 116 
discontinuity 146.C 386.C 
Dixon-Ferrar App. A, Table 19.IV 
double exponential 299.B 
Dynkin 261.C 
of embedding form 303.D 
empirical 19.F 
Euler (for cos z, sin z, cash z) 131.G 
Euler (for eiy) 131.G 
Euler-Maclaurin 379.5 
Euler-Poincare (for a finite Eulidean cellular 
complex) 201.B,F 

Euler summation 295.E 
Everett App. A, Table 21 
Everett interpolation 224.B, App. A, Table 21 
exponential 286.X 
Ferrari App. A, Table 1 
Feynman-Kac 315.F,G 

Feynman-Kac-Nelson 150.G 
first variation 178.A 
Fourier inversion 160.C 
Fredholm 68.L 
Frenet (on curves) 11 l.D 
Frenet-Serret (on curves) 11 l.D 
Gauss (on Gauss sum) 295.D 
Gauss (on harmonic functions) 193.D 
Gauss (for integration of a vector field) 

App. A, Table 3.111 
Gauss (for isometric immersion) 365.C 
Gauss (in numerical integration) 299.A 
Gauss (for the surface integral) 94.F 
Gauss (in theory of surfaces) 11 l.H, App. A, 

Table 4.1 
Gauss backward interpolation 2213.C 
Gauss-Bonnet 1 ll.H 364.D, App. A, Table 4.1 
Gauss-Bonnet-Sasaki-Nitsche 275.C 
Gauss-Chebyshev (in numerical integration) 
299.A 

Gauss forward interpolation 223.C 
Gauss-Hermite (in numerical integration) 
299.A 

Gauss integration (in the narrow sense) 299.A 
Gauss interpolation App. A, Table 21 
Gauss-Laguerre (in numerical integration) 

299.A 
Green (for differential operators) App. A, 
Table 15.VI 

Green (for harmonic functions) 1’33.D 
Green (for Laplace operator) App. A, 
Tables 3.1114.11 

Green (for ordinary differential equations) 
252.K 

Green (for partial differential equations of 
parabolic type) 327.D 

Green (on the plane) 94.F 
Green-Stokes 94.F 
Hansen-Bessel App. A, Table 19.1II 
Heron (for plane triangles) App. A, Table 2.11 
Heron (for spherical triangles) App. A, 
Table 2.111 

identically true 41 l.G 
IMT 299.B 
interpolation 223.A 
interpolatory 299.A 
inversion (for a characteristic function) 341.C 
inversion (of cosine transform) 160.C 
inversion (of Fourier transform) 16O.C 
inversion (of Fourier transform of distributions) 

160.H 
inversion (of Fourier transform on a locally 
compact Abelian group) 192.K 

inversion (of generalized Fourier transform) 
220.B 

inversion (of Hilbert transform) 220.E 
inversion (of integral transform) 220.A 
inversion (of Laplace-Stieltjes transform) 

240.D 
inversion (on a locally compact group) 437.L 
inversion (of Mellin transform) 220.C 
inversion (for a semigroup of operators) 240.1 
inversion (of Stieltjes transform) 220.D 
ItB 45.G 406.B 
Jensen 198.F 
Klein-Nishina 415.G 
Kneser-Sommerfeld App. A, Table 19.111 
Kostant (on representations of compact Lie 
groups) 248.2 

Kronecker limit 450.B 



1991 Subject Index 
Fourier series 

Kubo 402.K 
Kiinneth (in an Abelian category) 200.H 
Kiinneth (in Weil cohomology) 450.4 
Lagrange (for the vector triple product) 442.C 
of a language 276.A 
lattice-point 222.B 
Lefschetz fixed-point 450.Q 
Leibniz (in differentiation) 106.D, App. A, 
Table 9.111 

Leibniz (in infinite series) App. A, Table 10.111 
Liouville 252.C 
Machin 332 
Mehler App. A, Table 19.111 
Milne-Simpson 303.E 
Mobius inversion (in combinatorics) 66.C 
Mobius inversion (in number theory) 295.C 
Nakano-Nishijima-Gell-Mann 132.A 
Newton (on interpolation) App. A, Table 21 
Newton (on symmetric functions) 337.1 
Newton backward interpolation 223.C 
Newton-Cotes (in numerical integration) 
299.A 

Newton forward interpolation 223.C 
Newton interpolation App. A, Table 21 
Nicholson App. A, Table 19.IV 
open (in numerical integration) 299.A 
Ostrogradskii 94.F 
overall approximation 303.C 
Picard-Lefschetz 418.F 
Plancherel (on a unimodular locally compact 
group) 437.L 

Plucker (on plane algebraic curves) 9.B 
Poincart (in integral geometry) 218.C 
Poisson (on Bessel functions) App. A, 
Table 19.111 

Poisson (for a flat torus) 391.5 
Poisson integral 198.B 
Poisson summation 192.C,L 
prime 411 .D 
prime (of a language) 276.A 
principal, of integral geometry 218.C 
product (for the Hilbert norm-residue symbol) 

14.R 
product (on invariant Haar measures) 225.F 
product (for the norm-residue symbol) 14.Q 
product (on valuations) 439.H 
q-expansion (on theta functions) 134.1 
recurrence, for indefinite integrals App. A, 

Table 9.11 
reduction (of a surface) 110.A 
Ricci 417.B, App. A, Table 4.11 
Riemann-Hurwitz (on coverings of a non- 
singular curve) 9.1 

Rodrigues 393.B 
SchlPfli App. A, Table. 19.111 
Schwarz-Christoffel transformation 77.D 
second variation 178.A 
set-theoretic 33.B 
Sommerfeld App. A, Table 19.111 
Sonine-Schalheitlin App. A, Table 19.111 
Steinberg (on representations of compact 

Lie groups) 248.2 
Stirling 174.A 212.C App. A, Table 17.1 
Stirling interpolation App. A, Table 21 
Stokes 94.F 
Stokes (on a Cm-manifold) 108.U 
Stokes (for integration of a vector field) 

App. A, Table 3.111 
Taylor (for a function of many variables) 

106.5 

Taylor (for a function of one variable) 106.E, 
App. A, Table 9.IV 

theoretical 19.E 
O- (on ideles) 6.F 
trace (on unitary representations) 437.DD 
transformation (for the generating function 

of the number of partitions) 328.A 
transformation (of a theta function) 3.1 
transformation (for theta series) 348.L 
Trotter product 351.F 
valid 41 l.G 
Villat integration App. A, Table 15.VI 
Wallis App. A, Table lO.VI 
Watson 39.D, App. A, Table 19.IV 
Watson-Nicholson App. A, Table 19.111 
Weber App. A, Table 19.IV 
Weber-Sonine App. A, Table 19.111 
Weierstrass-Enneper 275.A 
Weingarten (for isometric immersion) 365.C 
Weingarten (in theory of surfaces) 11 l.H, 

App. A, Table 4.1 
Weyl 323.M 
Weyl character (on representations of compact 

Lie groups) 248.2 
Weyl integral 225.1 
Weyrich App. A, Table 19.111 
Wiener 160.B 
Wu’s App. A, Table 6.V 

Forti paradox, Burali- 319.B 
forward analysis 138.C 
forward difference 304.E, App. A, Table 21 
forward emission 325.A 
forward equation, Kolmogorov 115.A 260.F 
forward interpolation formula 

Gauss 223.C 
Newton 223.C 

forward type 304.D,F 
foundation, axiom of 33.B 
foundations of geometry 155 
foundations of mathematics 156 
four arithmetic operations 294.A 
four color conjecture 186.1 
four-color problem 157 
4-current density 150.B 
four-group 151.G 
Fourier, J. B. J. 158 
Fourier analysis App. A, Table 11 
Fourier analysis on the adele group 6.F 
Fourier-Bessel series 39.D 
Fourier-Bessel transform 39.D 
Fourier coefficient 159.A, App. A, Table 11.1 

(of an almost periodic function) 18.B 
(in a Hilbert space) 197.C 
(in an orthogonal system) 317.A 

Fourier cosine series App. A, Table 11.1 
Fourier cosine transform 16O.C App. A, 

Table 11.11 
Fourier double integral theorem 160.B 
Fourier-Her-mite polynomial 176.1 
Fourier hyperfunction 125.BB 

exponentially decreasing 125.BB 
modified 125.BB 

Fourier integral 160.A 
conjugate 160.D 

Fourier integral operator 274.C 345.B 
Fourier inversion formula 160.C 
Fourier kernel 220.B 
Fourier-Laplace transform 192.F 
Fourier reciprocity 160.C 
Fourier series 159, App. A, Table 11.1 



Subject Index 
Fourier sine series 

1992 

(of an almost periodic function) 18.8 
(of a distribution) 125.P 
(in a Hilbert space) 197.C 

Fourier sine series App. A, Table 11.1 
Fourier sine transform 16O.C App. A, Table 11.11 
Fourier single integral theorem 160.C 
Fourier-Stieltjes transform 192.B,O 
Fourier theorem (on real roots of an algebraic 

equation) 10.E 
Fourier transform 160, App. A, Table 11 .I1 

(of a distribution) 125.0 
(in topological Abelian groups) 36.L 192.1 
discrete 142.D 
fast 142.D 
generalized 220.B 
inverse 125.0 

Fourier ultrahyperfunction 125.BB 
4-momentum operators 258.A,D 
fourth separation axiom 425.4 
four-vector 258.C 359.C 
four-vector, energy-momentum 258.C 
four-vertex theorem 11 l.E 
fractal 246.K 
fraction(s) 

continued 83 
partial App. A, Table 10.V 

fractional cutting algorithm 215.B 
fractional factorial design 102.1 

balanced 102.1 
orthogonal 102.1 

fractional group, linear 60.8 
fractional ideal 67.5 

of an algebraic number field 14.E 
principal 67.K 

fractional power 378.D 
fractional programming 264.D 
fractional step 304.F 
Fraenkel set theory, Zermelo- 33.A,B 
fractional transformation, linear 74.E 
frame(s) 90.B 

(of an affine space) 7.C 
(of a C”-manifold) 191.A 
(in E”) lll.B 
(of a group manifold) 1lO.A 
(in projective geometry) 343.C 
(of a real line) 355.E 
affine 7.C 
bundle of tangent r- 105.H 
Darboux 110.B 
dual 417.B 
family of (on a homogeneous space) 1lO.A 
family of, of order 1 1lO.B 
Frenet 110.A 111 .D 
Gaussian (of a surface) lll.H 
k- (in R”) 199.B 
method of moving 1lO.A 
moving 90.B 11 l.C 417.B 
natural moving 417.B 
normal 1lO.B 
of order 0 1lO.C 
of order 1 1 lO.B,C 
of order 2 11 O.B,C 
of order 3 1 lO.B,C 
of order 4 1lO.B 
orthogonal (in a Euclidean space) 1 ll.B 139.E 
orthogonal k- (in R”) 199.B 
orthogonal moving 417.D 
projective 343.C 
Stiefel manifold of k- 199.B 
stochastic moving 406.G 

tangent r- 105.H 
frame bundle 

orthogonal 364.A 
tangent orthogonal n- 364.A 
tangent r- 105.H 147.F 

framed link 114.L 
framing 114.L 
Frechet axiom 425.4 
Frechet curve 246.A 
Frechet derivative 286.E 
Frechet differentiable function 286.E 
Frechet differential 286.E 
Frechet distance (between surfaces) 246.1 
Frechet L-space 87.K 
Frechet manifold 286.K 
Frechet space 

(quasinormed space) 37.0 
(topological linear space) 424.1 
(topological space) 425.CC 
locally convex 424.1 
in the sense of Banach 37.0 
in the sense of Bourbaki 424.1 

Frtchet surface 246.1 
Frechet-Uryson space 425.CC 
Fredholm alternative theorem 68.E 217.F 
Fredholm determinant 217.E 
Fredholm first minor 217.E 
Fredholm formula 68.L 
Fredholm integral equation 217.A 

of the first kind 217.A 
of the second kind 217.A 
of the third kind 217.A 

Fredholm mapping 286.E 
Fredholm operator 68.F 251.D 

(in the sense of Grothendieck) 68.:K 
Fredholm rth minor 217.E 
Fredholm type 

integral equation of 217.A 
integrodifferential equation of 222.A 

free 
(discontinuous group) 122.A 
distribution- 371.A 
F- (oriented G-manifold) 431.E 
(F, F’)- (oriented G-manifold) 431.E 

free Abelian group 2.C 
free additive group 2.E 
free derivative 235.C 
free Dirac field 377.C 
freedom 

asymptotic 361.B 
degrees of (of a dynamical system) 271.F 
n degrees of (sampling distribution) 374.B,C 

free energy 340.B 402.G 
Gibbs 419.C 
Helmholtz 419.C 
mean 340.B 402.G 

free fields 150.A 
free grammar, context- 31.D 
free groups 161 
free Hamiltonian 351.D 
free homotopy 202.B 
free Lagrangian density 150.B 
freely act 122.A 431.A 
free module 277.G 
free product (of groups) 190.M 
free scalar field 377.C 
free semigroup 161.A 
free special Jordan algebra 231.A 
free vacuum vector 1.50.C 
free variable 41 l.C 



1993 Subject Index 
Function(s) 

free vector 442.A 
French empiricism 156.C 
Frenet formula 11 l.D 
Frenet frame 110.A 11 l.D 
Frenet-Serret formulas (on curves) 11 l.D, 

App. A, Table 4.1 
frequency 

(of an oscillation) 318.A 
(of samples) 396.C 397.B 
(of a translational flow) 126.L 136.G 
(of a wave) 446 
angular (of a wave) 446 
circular (of a simple harmonic motion) 318.B 
relative (of samples) 396.C 

frequency distribution 397.B 
frequency function 397.D 
frequency response function 421.E 
Fresnel integral 167.D, App. A, Tables 9.V 19.11 
Freudenthal theorem 202.U 
Friedrichs extension 112.1 251.1 
Friedrichs scheme 304.F 
Friedrichs theorem 323.H 326.D 
frieze group 92.F 
Frobenius algebra 29.H 

quasi- 29.H 
Frobenius automorphism (of a prime ideal) 14.K 
Frobenius group 15 1 .H 
Frobenius integrability condition 154.B 
Frobenius method App. A, Table 14.1 
Frobenius morphism 450.P 
Frobenius substitution (of a prime ideal) 14.K 
Frobenius theorem 

(on Abelian varieties) 3.D 
(on matrices with nonnegative entries) 269.N 
(on polynomials of a matrix) 390.B 
(on representations of finite groups) 362.G 
(on total differential equations and on foliations) 

154.B 286.H 428.D 
Frobenius theorem, Perron- 310.H 
Froissart bound 386.B 
Froissart-Martin bound 386.B 
frontier point (of a subset) 425.N 
front set, analytic wave 274.D 
front set, wave 274.B 345.A 
Frostman maximum principle 338.C 
Froude number 116.B 
Fubini theorem 221.E 
Fuchsian form of weight k (or of dimension -k) 

32.B 
Fuchsian function 32.B 
Fuchsian group 122.C 

of the first kind 122.C 
of the second kind 122.C 

Fuchsian relation 253.A, App. A, Table 18.1 
Fuchsian type (visibility manifold) 178.F 
Fuchsian type, equation of 253.A 
Fuchsoid group 122.C 
Fuks cohomology, Gel’fand- 105.AA 
full discrete approximation 304.B 
full embedding theorem (of an Abelian category) 

52.N 
full group 136.F 258.A 
full homogeneous Lorentz group 258.A 
full inhomogeneous Lorentz group 258.A 
full international notation 92.E 
full linear group 60.B 
full matrix algebra 269.B 
full Poincare group 258.A 
full subcategory 52.A 
fully complete (locally convex space) 424.Y 

fully faithful functor 52.H 
fully normal space 425.X 
fully transitive 92.C 
Fulton and Hansen, general connectedness theorem 

of 16.1 
function(s) 165 381.C 

Abelian 3.5 
absolutely integrable 214.E 
additive interval 380.B 
additive set 380.C 
admissible 46.A 304.B 
Ahlfors 43.G 77.E 
algebraic 1 l.A 
almost periodic 18 
almost periodic, on a group 18.C 
almost periodic, with respect to p 18.C 
almost periodic, in the sense of Bohr 18.B 
a-excessive 261.D 
alternating 337.1 
amplitude (of a Fourier integral operator) 

274.C 345.B 
analytic -analytic function(s) 
analytic almost periodic 18.D 
analytic operator 37.K 
Anger 39.G, App. A, Table 19.IV 
Appell hypergeometric, of two variables 

206.D, App. A, Table 18.1 
argument 46.A 
arithmetic 295.A 
Artin-Hasse 257.H 
associated Legendre 383.C App. A, 

Table 18.111 
asymptotically developable 30.A 
automorphic 32 
automorphic, with respect to I 32.A 
b- 125.EE 418.H 
%-measurable 270.5 
Baire 84.D 
Barnes extended hypergeometric 206.C, 
App. A, Table 18.1 

base 304.B 
Bellman 127.G 
Bergman kernel 188.G 
Bessel 39, App. A, Table 19.111 
beta 174.C App. A, Table 17.1 
bispectral density 421.C 
Bore1 measurable 270.5 
boundary 160.E 
bounded 43.A 
of bounded variation 166 
Busemann 178.F 
Cm- (of many variables) 58.B 
Cm-, slowly increasing 125.0 
c’-, in a Cm-manifold 105.G 
canonical (on a nonsingular curve) 9.E 
characteristic (of a density function) 397.G 
characteristic (of a graded R-module) 369.F 
characteristic (of a meromorphic function) 
272.B 

characteristic (of an n-person cooperative game) 
173.D 

characteristic (for an optical system) 180.C 
characteristic (of a probability measure) 341.C 
characteristic (of a subset) 381.C 
characteristic operator 251.N 
Chebyshev App. A, Table 20.11 
Chebyshev q- 19.G, App. A, Table 2O.VII 
choice 33.B 34.A 
circular 131.F 432.A 
class (on a compact group) 69.B 



Subject hdex 
Function(s) 
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of class C”, Co, Cl, C”, or C” 106.K 
of class C’ at a point 105.G 
of class C’ in a P-manifold 105.G 
of class C” (of many variables) 58.B 
of class n, 0, 1, 5, or w 84.D 
cn App. A, Table 16.111 
completely additive set 380.C 
completely monotonic 240.E,K 
completely multiplicative number-theoretic 
295.B 

complex 165.B 
complex-valued 165.B 
composite 106.1 
concave 88.A 
of confluent type 167 
of confluent type and Bessel functions APP. A, 

Table 19 
conical App. A, Table 18.11 
conjugate 159.E 160.D 
conjugate harmonic 193.C 
constant 381.C 
continuous (on a metric space) 84 
continuous additive interval 380.B 
convex 88.A 
coordinate (of a fiber bundle) 147.B 
coordinate (in the Ritz method) 304.B 
cosigma 134.H, App. A, Table 16.IV 
counting (of a meromorphic function) 272.B 
covariance 386.A 395.A 
criterion 127.A 
cross spectral density 421.E 
cumulative distribution 341.B 342.C 
cylindrical 39.B, App. A, Table 19.111 

Daniell-Stone integrable 3lO.E 
decision 398.A 
decision, space of 398.A 
Dedekind eta 328.A 
Dedekind zeta 14.C 450.D 
defining (of a hyperfunction) 125.V 
density 397.D 
derived 106.A 
digamma 174.B 
dimension (on a continuous geometry) 85.A 
D-integrable 1OO.D 
Dirac delta App. A, Table 12.11 
Dirichlet 84.D 221.A 
distance 273.B 
distribution 168.B 341.8 342.C 
divisor 295.C 
divisor of (on an algebraic curve) 9.C 
divisor of (on an algebraic variety) 16.M 
dn App. A, Table 16.111 
doubly periodic 134.E 
E- 430.D 
8- 46.C 
effectively calculable 356.C 
eigen- (of a boundary value problem) 315.B 
eigen- (for an integral equation) 271.F 
eigen- (of a linear operator) 390.A 
elementary 131 
elementary, ofclass n 131.A 
elementary Abelian 3.M 
elliptic 134 323.A,D 
elliptic, of the first kind 134.G 
elliptic, of the second kind 134.G 
elliptic, of the third kind 134.H 
elliptic cylinder 268.B 
elliptic irrational 134.A 
elliptic theta 134.1, App. A, Table 16.11 
empirical characteristic 396.C 

empirical distribution 250.F 374.E 396.C 
energy 126.L 279.F 
energy spectrum 433.C 
entire 429.A 
entire algebroidal 17.B 
envelope power 400.F 
error 167.D, App. A, Table 19.11 
estimating 399.D 
q- 391.L 
Euler 295.C 
even 165.B 
explicit 165.C 
exponential 131.D 
exponential, with the base a 131.8 

exponential, of an operator 306.C 
exponential generating 177.A 
factorial 174.A 
family of quasi-analytic 58.A 
Feller transition 261.B 
finitely additive set 380.B 
finite-valued 443.B 
flat 58.C 
Frechet differentiable 286.E 
frequency 397.D 
frequency response 421.E 
Fuchsian 32.B 
gamma 150.D 174, App. A, Table 17.1 
Gel’fand-Shilov generalized 125,s 
generalized 125,s 
generalized divisor 295.C 
generalized rational 142.B 
general Mathieu 268.B 
general recursive 356.C,F 
generating (of an arithmetic function) 295.E 
generating (of a contact transformation) 

82.A 271.F 
generating (of a sequence of functions) 

177.A 
of Gevrey class 168.B 
global implicit, theorem 208.D 
grand partition 402.D 
Green 188.A 189.B 
Green (a-order) 45.D 
Green (of a boundary value problem) 315.B 
Green, method 402.5 
Gudermann 131.F, App. A, Table 16.111 
half-Bessel 39.B 
Hamiltonian 219.C 271.F 
Hankel 39.B, App. A, Table 19.III 
harmonic 193 
harmonic kernel 188.H 
hazard 397.0 
Heaviside 125.E 306.B, App. A, Table 12.11 
Hey zeta 27.F 
higher transcendental 289.A 
Hilbert characteristic (of a coheren: sheaf on 

a projective variety) 16.E 
Hilbert modular 32.G 
Hill 268.E 
holomorphic 198 
holomorphic (of many variables) 21.C 
holomorphic (on an open set in a complex 

manifold) 72.A 
holomorphic, germ of 21.E 
hyper- 125.V 
hyperarithmetical 356.H 
hyperbolic 13l.F 
hypergeometric 206.A, App. A, Table 18.1 
hypergeometric (of the hyperspheri’cal dif- 

ferential equation) 393.E 



1995 Subject Index 
Function(s) 

hypergeometric, of confluent type 167.A, 
App. A, Table 19.1 

hypergeometric, with matrix argument 206.E 
identity 381.C 
implicit 165.C 208 
implicit, theorem 208.A 286.G 
implicit, theorem (in Banach algebra) 36.M 
implicit, theorem (in locally convex spaces) 
286.5 

impulse 306.B, App. A, Table 12.11 
incomplete beta 174.C App. A, Table 17.1 
incomplete gamma 174.A, App. A, Table 17.1 
increment 380.B 
indicator (of a subset) 342.E 376.C 
inner 43.F 
integral 429.A 
integral of, with respect to a volume element 
(on a C”‘-manifold) 105.W 

interpolation 223.A 
interval 380.A 
invariant decision 398.E 
inverse 198.L 381.C 
inverse analytic 198.L 
inverse trigonometric 131.E 
Jacobi elliptic App. A, Table 16.111 
joint density 397.5 
Julia exceptional 272.F 
jump 306.C 
K-pseudoanalytic 352.B 
K-quasiregular 352.B 
k-valued algebroidal 17.A 
Kelvin 39.G, App. A, Table 19.IV 
kernel 188.G 
Koebe extremal 438.C 
Kummer 167.A, App. A, Table 19.1 
L- - L-function 
Lagrangian 271.F 292.A 
Laguerre App. A, Table 2O.VI 
I- 32.C 
Lame, of the first kind 133.B 
Lame, of the lirst species 133.C 
Lame, of the fourth species 133.C 
Lame, of the second kind 133.C 
Lame, of the second species 133.C 
Lame, of the third species 133.C 
Lane-Emden 291.F 
Laplace spherical 393.A 
Lebesgue measurable 270.5 
Legendre 393.B, App. A, Table 18.11 
likelihood 374.5 399.M 
likelihood estimating 399.M 
linear 74.E 
linear discriminant 280.1 
linear fractional 74.E 
linear regression 397.H,J 403.D 
locally integrable 168.B 
logarithmic, to the base a 131.B 
loss 398.A 
lower limit 84.C 
lower semicontinuous (in a set) 84.C 
Lyapunov 126.F 163.G 
major 100.F 
Mangoldt 123.B 
many-valued 165.B 
of many variables 165.C 
Mathieu 268 
Mathieu, of the first kind 268.B 
Mathieu, of the second kind 268.D 
maximal concentration 341.E 
mean concentration 341.E 

measurable 270.5 
measurable vector 308.G 
meromorphic 21.5 272 
meromorphic (on an analytic space) 23.D 
meromorphic (on a complex manifold) 72.A 
minimax decision 398.B 
minor 100.F 
Mobius 66.C 295.C 
modified Bessel 39.G, App. A, Table 19.IV 
modified indicator 341.C 
modified Mathieu 268.A 
modified Mathieu, of the first kind 268.D 
modified Mathieu, of the second kind 268.D 
modified Mathieu, of the third kind 268.D 
modular (of a locally compact group) 225.D 
modular, of level N 32.C 
moment-generating 177.A 341.C 
monotone 166.A 
monotone decreasing 166.A 
monotone increasing 166.A 
monotonic 166.A 
Morse 279.B 
of at most class 1 84.D 
p-conformal 352.B 
multidimensional gamma 374.C 
multiplicative 32.A 
multiplicative automorphic 32.A 
multiplicity (of a mapping) 246.G 
multivalent 438 
multivalued 165.B 
Nash-Moser implicit, theorem 286.J 
n-dimensional distribution 342.C 
nth derived 106.D 
n-times continuously differentiable 106.K 
n-times differentiable 106.D 
of n variables 165.C 
nice (on a Cm-manifold) 114.F 
nondecreasing 166.A 
nondegenerate theta 3.1 
nonincreasing 166.A 
nontangential maximal 168.B 
normal (of ordinal numbers) 312.C 
normal density 397.D 
null 310.1 
number-theoretic 295.A 356.A 
objective 264.B 307.C 
odd 165.B 
operating 192.N 
order (of a meromorphic function) 272.B 
orthogonal 317, App. A, Table 20 
orthogonal, Haar system of 3 17.C 
orthogonal, Rademacher system of 317.C 
orthogonal, Walsh system of 317.C 
outer 43.F 
P-, of Riemann 253.B 
@-, of Weierstrass 134.F, App. A, Table 16.IV 
Painlevi: transcendental 288.C 
parabolic cylinder 167.C 
parametric 102.A 399.A 
partial 356.E 
partition 402.D 
payoff 173.B 
pentagamma 174.B 
periodic 134.E 
phase (of a Fourier integral operator) 274.C 

345.B 
piecewise continuous 84.B 
plurisubharmonic 21.G 
point 380.A 
polygamma 174.B, App. A, Table 17.1 



Subject Index 
Function(s) 

1996 

positive real 282.C 
of positive type 192.B,J 
power 400.A 
primitive 216.C 
primitive, derivatives and App. A, Table 9.1 
primitive recursive 356,A,B,F 
probability generating 341.F 
proper (of a boundary value problem) 315.B 
proper convex 88.D 
propositional 41 l.C 
proximity (of a meromorphic function) 272.B 
pseudo- 125.C 
psi 174.B 
quadratic loss 398.A 399.E 
quasi-analytic 58.F 
quasi-analytic, family of 58.A 
quasi-analytic, set of 58.F 
quasicontinuous 338.1 
radial maximal 168.B 
rank 66.F 
rapidly decreasing Cm- 168.B 
rate distortion 213.E 
rational, field of 337.H 
rational, on a variety 16.A 
rational entire 429.A 
real 165.B 
real analytic 106.K 198.H 
real-valued 165.B 
recursive -recursive function(s) 
regression 397.1 
regular 198 
regular, on an open set (of a variety) 16.B 
regular, at a subvariety 16.B 
representative (of a compact Lie group) 249.U 
representing (of a predicate) 356.B 
representing (of a subset) 381.C 
reproduction 263.A 
Riemann (of a Cauchy problem) 325.D 
Riemann integrable 216.A 
Riemann P App. A, Tables 14.1 18.1 
Riemann theta 3.L 
Riemann i- 450.B 
right continuous 84.B 
right majorizing 316.E 
right superior 316~ 
risk 398.A 
sample 407.A 
sample covariance 395.G 
with scattered zeros 208.C 
schlicht 438.A 
Schwinger 150.F 
selection 354.E 
self-reciprocal 220.B 
semicontinuous (at a point) 84.C 
sequential decision 398.F 
set 380 
of several variables 106&J 
shape 223.G 
Siegel modular, of degree n 32.F 
o-, of Weierstrass 134.F, App. A, Table 16.IV 
simple 221.B 443.B 
simple loss 398.A 
simplest Chebyshev q- 19.G 
simply periodic 134.E 
single-valued 165.B 
singular inner function 43.F 
slope 46.C 
sn App. A, Table 16.111 
special App. A, Table 14.11 
spec:ial, of confluent type 389.A 

special, of ellipsoidal type 389.A 
special, of hypergeometric type X39.A 
spherical (on a homogeneous space) 437.~ 
spherical Bessel 39.B 
spherical harmonic 193.C 
spheroidal wave 133.E 
standard defining 125.2 
stationary 46.B 
statistical decision 398.A 
stream 205.B 
strictly concave 88.A 
strictly convex 88.A 
strictly decreasing 166.A 
strictly increasing 166.A 
strictly monotone 166.A 
strictly monotone (of ordinal numbers) 312.C 
strictly monotone decreasing 166.A 
strictly monotone increasing 16CI.A 
strictly monotonic 166.A 
structure 191.C 
Struve 39.G, App. A, Table 19.IV 
subharmonic 193.A 
superharmonic 193.P 
supporting 125.0 
symmetric 337.1 
SzegB kernel 188.H 
T- 150.D 
test 130.DD 400.A 
tetragamma 174.B 
Theodorsen 39.E 
theory of 198.Q 
theory of, of a complex variable 198.4 
theta 134.1 
theta (on a complex torus) 3.1 
time ordered 150.D 
torus App. A, Table 18.111 
transcendental, of Painlevk 288.C 
transcendental entire 429.A 
transcendental meromorphic 272.A 
transfer 86.D 
tra’nsfinite logical choice 411.J 
transition (of a fiber bundle) 147 B 
transition (of a Markov chain) 2~50.A 261.B 
trigamma 174.B 
trigonometric 432.A, App. A, Table 2 
truncated Wightman 150.D 
truth 341.A 411.E 
ultradifferentiable 168.B 
uniformly almost periodic 18.B 
unit 306.B, App. A, Table 12.11 
universally measurable 270.L 
upper limit 84.C 
upper semicontinuous 84.C 
value 108.B 
on a variety 16.A 
von Neumann 39.B 188.H, App. A, 
Table 19.111 

Wagner 39.E 
wave 351.D 
Weber 39.G 167.C, App. A, Tables 19.IV, 2O.IV 
Weierstrass elliptic App. A, Table 16.IV 
Weierstrass @- 134.F, App. A, Table 16.IV 
Weierstrass sigma 134.F, App. A, Table 16.IV 
weight (interpolatory) 299.A 
weight (for the mean of a function1 21 l.C 
weight (in orthogonality) 317.A 
Whittaker 167.B, App. A, Table 19.11 
Wightman 150.D 
X-valued holomorphic 251.G 
zeta -zeta functions 



1997 Subject Index 
Fundamental period parallelogram 

zonal spherical (on a homogeneous space) 
431.Y 

functional 46.A 162 165.B 
additive (of a Markov process) 261.E 
algebraic linear 424.B 
analytic 168.C 
area1 334.B 
bilinear 424.G 
Brownian 176.1 
characteristic (of a probability distribution) 

407.c 
Dirichlet 334.C 
Douglas 334.C 
linear 37.C 197.F 424.B 
martingale additive 261.E 
multiplicative (of a Markov process) 261.E 
multiplicative, transformation by (in Markov 

process) 261.F 
perfect additive 261.E 
subadditive 88.8 
supporting (of a convex set) 89.G 
Yang-Mills S0.Q 

functional analysis 162 
functional analysis, nonlinear 286 
functional cohomology operation 202,s 
functional-differential equation 163 

system of 163.E 
functional equation 

Abel 388.D 
approximate (of zeta function) 450.B 
Schroder 388.D 
special 388.A 
of zeta function 450.B 

function algebra 164.A 
functionally dependent (components of mapping) 

208.C 
of class C’ 208.C 

functional model 251.N 
functional paper 19.D 
functional @-operation 202,s 
functional relation 208.C 

of class C’ 208.C 
of gamma function 174.A 

function element 198.1 339.A 
inverse 198.L 
in the wider sense 198.0 

function field 
(of an algebraic curve over a field) 9.C 
(of an algebraic variety) 16.A 
Abelian 3.5 
algebraic, over k of dimension 1 9.D 
algebraic, over k of transcendence degree 1 

9.D 
algebraic, in n variables 149.K 
elliptic 9.D 
rational, in n variables 149.K 

function group 234.A 
function matrix 

rational 86.D 
transfer 86.B 

functions on a variety 16.A 
function space(s) 168 435.D 

test 125,s 
function symbol 411.H 
function-theoretic null sets 169 
function variable 41 l.H 
functor 52.H 

a- 200.1 
ii*- 200.1 
additive 52.N 

adjoint 52.K 
cohomological 200.1 
connected sequences of 200.1 
contravariant 52.H 
covariant 52.H 
derived 200.1 
exact 52.N 200.1 
faithful 52.H 
forgetful 52.1 
fully faithful 52.H 
half-exact 200.1 
homological 200.1 
left adjoint 52.K 
left balanced 200.1 
left derived 200.1,Q 
left exact 200.1 
partial derived 200.1 
relative derived 200.K 
representable 53.L 
right adjoint 52.K 
right balanced 200.1 
right derived 200&Q 
right exact 200.1 
spectral 200.5 
universal % 200.1 

functorial isomorphism 53.5 
functorial morphism 53.5 
fundamental absolute neighborhood retract (FANR) 

382.C 
fundamental absolute retract (FAR) 382.C 
fundamental cell (of a symmetric Riemann space) 

413.F 
fundamental class 

(of an Eilenberg-MacLane space) 70.F 
(of a Poincare pair) 114.5 
(of a Thorn complex) 114.G 
with coefftcient 2, 65.B 

fundamental conjecture (in topology) 70.C 
fundamental curve (with respect to a birational 

mapping) 16.1 
fundamental cutset matrix 186.G 
fundamental cycle 

(of an oriented pseudomanifold) 65.B 
(in a resolution of a singularity) 418.C 

fundamental differential invariants (of a surface) 
110.B 

fundamental discriminant 295.D 
fundamental domain 234.C 
fundamental exact sequence 200.M 
fundamental figure(s) 343.B 

linear 343.B 
fundamental form 

(associated with a Hermitian metric) 232.A 
(of a Finsler space) 152.A 
first 11 l.G, App. A, Table 4.1 
second 11 l.G 360.G 365.C 

fundamental group 170 
algebraic 16.U 

fundamental homology class 201.N 
around K 201.N 

fundamental invariants (of a space with a Lie trans- 
formation group) 110.A 

fundamental kernel 320.H 
fundamental lemma 

in the calculus of variations 46.B 
Neyman-Pearson 400.B 

fundamental open set 122.B 
fundamental operator 163.H 
fundamental period (of a periodic function) 134.E 
fundamental period parallelogram 134.E 



Subject Index 
Fundamental point 

1998 

fundamental point 
(with respect to a birational mapping) 16.1 
(of a projective space) 343.C 

fundamental quantities 
first 111.H 
second 111 .H 

fundamental region (of a discrete transformation 
group) 122.B 

Ford 234.C 
fundamental relations 

(of gamma functions) 174.A 
(among the generators of a group) 161.A 
(in thermodynamics) 419.A 

fundamental retract 382.C 
fundamental root system (of a semisimple Lie 

algebra) 248.N 
fundamental sequence 

of cross cuts (in a simply connected domain) 
333.B 

of rational numbers 294.E 
of real numbers 355.B 
in a uniform space 436.G 

fundamental set (of a transformation group) 122.B 
fundamental solution(s) 

(of a differential operator) 112.B 189.C 
(of an elliptic equation) 323.B 
(of an evolution equation) 189.C 
(of a hyperbolic equation) 325.D 
(of a parabolic equation) 327.D 
(of a partial differential equation) 320.H 
system of (of a system of linear equations) 

269.M 
fundamental space 12% 
fundamental subvariety (with respect to a birational 

mapping) 16.1 
fundamental system 

(of eigenfunctions to an eigenvalue for 
an integral equation) 217.F 

(for a linear difference equation) 104.D 
(of a root system) 13.5 
of irreducible representations (of a complex 
semisimple Lie algebra) 248.W 

of neighborhoods 425.E 
of solutions (of a homogeneous linear ordinary 
differential equation) 252.B 

of solutions (of a homogeneous system of linear 
differential equations of the first order) 252.H 

fundamental tensor(s) 
(of a Finsler space) 152.A 
(of a Riemannian manifold) 364.A 
Lie 413.G 
second 417.F 

fundamental theorem(s) 
of algebra 10.E 
Bonnet (on surfaces) 11 l.H 
of calculus 216.C 
of elementary number theory 297.C 
the first (of Morse theory) 279.D 
Gentzen 411.5 
Nevanlinna first 272.B 
Nevanlinna second 272.E 
of the principal order D 14.C 
of projective algebraic varieties 72.F 
of projective geometry 343.D 
of proper mapping 16.X 
the second (of Morse theory) 279.D 
of Stein manifolds 21.L 72.E 
on symmetric polynomials 337.1 
of the theory of curves 11 l.D 
of the theory of surfaces 11 l.G 

Thorn 114.H 
of the topology of surfaces 410.B 
of ultraproducts 276.E 

fundamental tieset matrix 186.G 
fundamental unit 414.A 116 
fundamental units (of an algebraic number field) 

14.D 
fundamental vector field 191.A 
fundamental vectors (in a vector space) 442.A 
future cone 258.A 

G 

Y -gamma 
GL(n, k) (general linear group) 60.B 
y-matrices, Dirac 415.G 
y-perfect 186.5 
y-perfectness 186.5 
y-point of the kth order (of a holomorphic 

198.C 
I-equivalent (points) 122.A 
I-extension 14.L 
I,-foliation 154.H 
I-structure 90.D 105.Y 
I,-structure 154.H 
I;-structure 154.E 
g-lattice (of a separable algebra) 27.A 

integral 27.A 
normal 27.A 

G-bundle 147.B 
G-connections, Yang-Mills 80.4 
G-fiber homotopy type, spherical 431.F 
G-group 172.J 
G-invariant 

(element) 226.A 
(statistics) 396.1 
almost 396.1 

G-invariant measure 225.B 
G-isomorphism 191.A 
G-manifold 431.C 

oriented 431.E 
G-mapping (G-map) 362.B 431.A 
G-set 

k-ply transitive 362.B 
left 362.B 
quotient 362.B 
right 362.B 
simply transitive 362.B 
sub- 362.B 

G-space 178.H 431.A 
with nonpositive curvature 178.1~ 

G-stationary 
strictly 395.1 
weakly 395.1 

G-structure 191 
G-subset 362.B 
G-surface 178.H 
G-vector bundle 237.H 
G,-set 270.C 
gain, heat 419.A 
Galerkin method 290.E 303.1 304.B 
Galilei transformation 359.C 
Galois, E. 171 
Galois cohomology 172.5 200.N 
Galois equation 172.G 
Galois extension (of a held) 172.B 
Galois field 149.M 
Galois group 

of an algebraic equation 172.G 
of a Galois extension 172.B 



1999 Subject Index 
Gel’fand-Pettis integrable 

of a polynomial 172.G (in numerical integration) 299.A 
Galois theory 172 (for the surface integral) 94.F 

of differential tields 113 (in theory of surfaces) 11 l.H, App. A, Table 4.1 
Galton-Watson process 44.B Gauss forward interpolation formula 223.C 

multi +)-type 44.C Gauss-Hermite formula (in numerical integration) 
game 299.A 

bimatrix 173.C Gauss hypergeometric differential equation 
constant-sum 173.A App. A, Table 14.11 
cooperative 173.A Gaussian 
differential 108 (system of random variables) 176.A 
general-sum 173.A complex 176.B 
with infinitely many players 173.D Gaussian curvature 
matrix 173.C (of a surface) 11 l.H, App. A, Table 4.1 
multistage 173.C total (of a surface) 1ll.H 
noncooperative 173.A Gaussian differential equation 206.A 
n-person, in extensive form 173.B Gaussian distribution 341.D 
n-person, in normal form 173.C standard 176.A 
n-person cooperative, in characteristic- Gaussian elimination 302.B 

function form 173.D Gaussian frame (of a surface) 1ll.H 
in partition-function form 173.D Gaussian integer 14.U 
without side payments 173.D Gaussian plane 74.C 
zero-sum 173.A Gaussian process 176 342.A 
zero-sum two-person 108.B complex 176.C 

game-theoretic model 307.C N-ple Markov 176.F 
game theory 173 N-ple Markov, in the restricted sense 176.F 
gamma density 397.D stationary 176.C 
gamma distribution 34l.D, App. A, Table 22 Gaussian random field 
gamma function 150.D 174, App. A, Table 17.1 Markov, in the McKean sense 176.F 

incomplete 174.A, App. A, Table 17.1 Markov, in the Nelson sense 176.F 
multidimensional 374.C Gaussian random measure 407.D 

gamma function and related functions App. A, Gaussian random variable, complex 176.B 
Table 17 Gaussian source, autoregressive 213.E 

gap (at a point) 84.B Gaussian sum 295.D 450.C 
gap theorem 339.D local 450.F 

Hadamard 339.D Gaussian system 
gap value (of a point on a Riemann surface) 1l.D (of random variables) 176.A 
Carding, hyperbolic in the sense of 325.F complex 176.B 
Carding inequality 112.G 323.H Gaussian white noise 407.C 
Garnier system 253.E Gauss integral 338.5 
Garside-Jarratt-Mack method 301.N Gauss integration formula (in the narrow sense) 
gases, kinetic theory of 402.B 299.A 
Glteaux derivative 286.E Gauss interpolation formula App. A, Table 21 
GLteaux differentiable 286.E Gauss-Jordan elimination 302.B 
gauge theory 105.G Gauss kernel 327.D 

lattice 150.G Gauss-Laguerre formula (in numerical integration) 
gauge transformation 299.A 

(in electromagnetism) 130.A Gauss-Manin connection (of a variety) 16.V 
(in a lattice spin system) 402.G Gauss mapping (in geometric optics) 180.B 
(of a principal fiber bundle) S0.Q Gauss-Markov theorem 403.E 
(in unified field theory) 434.B Gauss-Seidel method 302.C 
of the first kind 150.B Gauss series 206.A 

Gauss, C. F. 175 Gauss symbol 83.A 
Gauss-Argand plane 74.C Gauss theorem 
Gauss backward interpolation formula 223.C (on algebraic closedness of C) 10.E 
Gauss-Bonnet formula 11 l.H 364.D, App. A, (on primitive polynomials) 337.D 

Table 4.1 Gauss theorema egregium (on surfaces) 1ll.H 
Gauss-Bonnet-Sasaki-Nitsche formula 275.C Gauss transformation App. A, Table 16.111 
Gauss-Chebyshev formula (in numerical integration) Gauss variational problem 338.5 

299.A G.C.D. (greatest common divisor) 67.H 297.A 
Gauss circle problem 242.A GCR algebra 36.H 
Gauss criterion App. A, Table 10.11 Gegenbauer polynomials 317.D 393.E, App. A, 
Gauss equation Table 20.1 

(on an isometric immersion) 365.C Gel’fand-Fuks cohomology 105.AA 
(on surfaces) 1ll.H Gel’fand integrable 443.F 

Gauss formula Gel’fand-Levitan-Marchenko equation 
(on Gauss sum) 295.D (for KdV equations) 387.D 
(on harmonic functions) 193.D (for nonlinear lattice) 287.C 
(for integration of a vector field) App. A, Gel’fand-Mazur theorem 36.E 

Table 3.111 ~ Gel’fand-Naimark theorem 36.G 
(for isometric immersion) 365.C Gel’fand-Pettis integrable 443.F 



Subject Index 
Gel’fand-Pettis integral 

2000 

Gel’fand-Pettis integral 443.F 
Gel’fand-Pyatetskii-Shapiro reciprocity law 

437.DD 
Gel’fand representation (of a commutative Banach 

algebra) 36.E 
Gel’fand-Shilov generalized function 125,s 
Gel’fand theorem, Stone- 168.B 
Gel’fand topology 36.E 
Gel’fand transform 36.E 
Gel’fand triplet 424.T 
Gell-Mann formula, Nakano-Nishijima- 132.A 
general addition theorem 388.C 
general analytic space 23.G 
general angle 139.D 
general associative law (for group composition) 

19o.c 
general boundary value problem 323.H 
general Cantor set 79.D 
general Cayley algebra 54 
general connectedness theorem due to Fulton and 

Hansen 16.1 
general curve 93.D 
general derivative (of a set function) 380.D 
general geometry of paths 152.C 
generalization (in &tale topology) 16.AA 
generalized absolute continuity (*) 100.C 
generalized absolute continuity in the restricted 

sense 100.C 
generalized absolutely continuous function 100.C 
generalized Bayes solution 398.B 
generalized Bernoulli shift 136.D 
generalized Bernshtein problem 275.F 
generalized Boolean algebra 42.B 
generalized Boolean ring 42.C 
generalized Bore1 embedding 384.D 
generalized Clifford torus 275.F 
generalized cohomology theories 201.A 
generalized cohomology theory with E-coefficient 

202.T 
generalized conformal mapping 246.1 
generalized continuum hypothesis 49.D 
generalized convergence 331.C 
generalized convolution (of distributions) 125.M 
generalized coordinates (in analytical dynamics) 

271.F 
generalized cylindrical coordinates App. A, 

Table 3.V 
generalized decomposition number (of a finite 

group) 362.1 
generalized derivative 125.E 
generalized distance, Mahalanobis 280.E 
generalized distribution, Beurling 125.U 
generalized divisor function 295.C 
generalized eigenfunction 375.C 
generalized eigenspace (of a linear operator) 

390.B 
generalized eigenvalue 375.C 
generalized eigenvalue problem 298.G 
generalized eigenvector 390.B 
generalized Eisenstein series 450.T 
generalized Fourier transform 220.B 
generalized function 125,s 
generalized Hardy class 164.G 
generalized helix 11 l.F 
generalized homology theory 201.A 
generalized homology theory with E-coefficient 

202.T 
generalized Hopf homomorphism 202.U 
generalized Hopf invariant 202.Q 
generalized Hurewicz theorem 202.N 

generalized isoperimetric problem 46.A 228.A 
generalized Jacobian (of a set function) 246.H 
generalized Jacobian variety 9.F 1 l.C 
generalized Lame differential equation 167.E 
generalized least squares estimator 403.E 
generalized Lebesgue measure 270.E 
generalized Levi form 274.G 
generalized limit 37.F 
generalized minimal immersion 275.B 
generalized module 143.B 
generalized momentum 271.F 
generalized nilpotent (operator) 251.F 
generalized nilpotent element 36.E 
generalized nilpotent group 190.K 
generalized peak point 164.D 
generalized peak set 164.D 
generalized Pfaff problem 428.B 
generalized Poincart conjecture 65.C 
generalized quaternion group 15 1 .B 
generalized rational function 142.B 
generalized Riccati differential equation App. A, 

Table 14.1 
generalized Riemann-Roth theorem (on algebraic 

curves) 9.F 
generalized Schlomilch series 39.C 
generalized solvable group 190.K 
generalized stochastic process 407.C 
generalized suspension theorem 202.T 
generalized Tauberian theorem 36.L 160.G 

of Wiener 192.D 
generalized topological space 425.D 
generalized trigonometric polynomial 18.B 
generalized trigonometric series 18.B 
generalized uniserial algebra 29.1 
generalized valuation 439.B 
generalized variance 280.E 397.5 
generalized variance, sample 280.E 
generalized wave operator 375.B 
generalized Whitehead theorem 202.N 
general knot conjecture 235.B 
general law of reciprocity 14.0 

Artin 59.C 
general linear group 60.B 226.B 256.D 

of degree n over K 60.B 226.B 256.D 
over a noncommutative field 60.0 
projective 60.B 

general linear hypothesis 400.C 
general linear Lie algebra 248.A 
general lower derivative (of a set function) 380.D 
general Markov chain 260.5 
general Mathieu function 268.B 
general Navier-Stokes equations 204.F 
general position 

(complexes) 70.B 
(PL mappings) 65.D 
(in a projective space) 343.B 
theorem 65.D 

general principle of relativity 358 
general projective geometry 343.B 
general random walk 260.A 
general recursive function 356.C,F 
general recursive predicate 356.C 
general recursive set 97 
general Runge-Kutta method 303.D 
general sense, derivable in the 380.D 
general set theory 33.B 
general solution 

(of a difference equation) 104.D 
(of an ordinary differential equation) 313.A 
(of a partial differential equation) 320.C 



2001 Subject Index 
Geometric realization (of the S.S. complex) 

(of a system of partial differential equations) 
428.B 

general sum 173.A 
general theory 

of perturbations 420.E 
of relativity 358 

general topology 426 
general type 72.H 

surface of 72.K 
general uniformization theorem 367.G 
general upper derivative (of a set function) 380.D 
generate 

(an A-module) 277.D 
(a completely additive class) 270.B 
(a field over k) 149.D 
(a filter) 87.1 
(an ideal) 67.B 
(a linear subspace) 256.F 
(a subgroup) 190.C 
(a subring) 368.E 
(a topology) 425.F 

generated, finitely 277.D 
generating curve 111.1 
generating element (with respect to a self-adjoint 

operator) 390.G 
generating function(s) 

(of an arithmetic function) 295.E 
(of a canonical transformation) 82.~ 
(of a contact transformation) 82.A 
(of an infinitesimal transformation) 271.F 
(of a sequence of functions) 177.A 
exponential 177.A 
factorial cumulant- 397.G 
factorial moment 397.G 
joint moment 397.1,J 
moment- 177.A 341.C 397,G,J 
probability- 341.F 397.G 

generating line 
(of a circular cone) 78.A 
(of a quadric hypersurface) 343.E 
(of a quadric surface) 350.B 
(of a ruled surface in differential geometry) 

111.1 
generating representation (of a compact Lie group) 

249.U 
generating space (of a quadric hypersurface) 343.E 
generator 

(of an Abelian category) 200.1 
(of a cyclic code) 63.D 
(of an endomorphism) 136.E 
(of a group) 190.C 
(of a Markov process) 261.C 
(of a semigroup) 378.D 
Bott 237.D 
Dynkin representation of 261.B 
F.D. 136.E 
infinitesimal 378.B 
system of (of an A-module) 277.D 
topological (of a compact Abelian group) 

136.D 
two-sided 136.E 

generic (property) 126.H 
generic point 16.A 
Gentzen fundamental theorem 411.J 
genuine solution 323.G 
genus 

(of an algebraic curve) 9.C 
(of a differential ideal) 428.E 
(of an ideal group) 59.E 
(in integral representation theory) 362.K 

(of a knot) 235.A 
(of a lattice group) 13.P 
(of a quadratic field) 347.F 
(of a quadratic form) 348.H 
(of a surface) 410.B 
(of a transcendental integral function) 429.B 
arithmetic (of an algebraic curve) 9.F 
arithmetic (of an algebraic surface) 15.C 
arithmetic (of a complete variety) 16.E 
arithmetic, of a divisor (on an algebraic surface) 

15.c 
boundary 410.B 
effective (of an algebraic curve) 9.C 
of the function field K/k 9.D 
geometric (of an algebraic surface) 15.E 
geometric (of a complete variety) 16.0 
geometric (of a singular point) 418.C 
i- 15.E 
linear 15.G 
measure of (of a positive definite symmetric 

matrix) 348.K 
n (of an algebraic curve) 9.F 
principal (of an ideal group) 59.E 
principal (of a quadratic field) 347.F 
virtual arithmetic (of a divisor) 16.E 

geocentric parallax 392 
Geiicze area (of a surface) 246.E 
Geocze problem 246.D 
geodesic 8O.L,1 111.H 178 364.C App. A, Table 4.1 

null 359.D 
totally, submanifold 365.D 

geodesic arc 178.H 364.8 
geodesic coordinates 80.5 
geodesic coordinate system in the weak sense 

232.A 
geodesic correspondence (between surfaces) 111.1 
geodesic curvature 111.1, App. A, Table 4.1 
geodesic flow 126.L 136.G 
geodesic line 178.H 
geodesic point 11 l.H 365.D 
geodesic polar coordinates 90.C 
geodesic triangle 178.A 
geodesic variation 178.A 
geometrically finite 234.C 
geometrically reductive 226.B 
geometrically simple eigenvalue 390.A 
geometrical mean 397.C 
geometric complex 70.B 
geometric construction problem 179.A 
geometric crystal class 92.B 
geometric difference equation 104.G 
geometric dimension (of a vector bundle) 114.D 
geometric distribution 341.D, App. A, Table 22 
geometric fiber (of a morphism) 16.D 
geometric genus 

of an algebraic surface 15.E 
of a complete variety 16.0 
of a singular point 418.C 

geometric mean 
(of a function) 21 l.C 
(of numbers) 21 l.C 

geometric multiplicity (of an eigenvalue) 390.A 
geometric number theory 296.B 
geometric optics 180 
geometric point (of a scheme) 16.D 
geometric probability 218.A 
geometric programming 264.D 
geometric progression 379.1, App. A, Table lO.VI 
geometric quotient 16.W 
geometric realization (of the S.S. complex) 70.E 



Subject Index 
Geometric series 
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geometric series 379.B, App. A, Table 10.1 Gibbs measure 136.C 
geometry 181 Gibbs phenomenon 159.D 

alIme 7 Gibbs state 340.B 
affix, in the narrower sense 7.E Gilbert-Sacks bound, Varsharmov 63.B 
alline differential 1lO.C Gill method, Runge-Kutta- 303.D 
algebraic 12.A Gini coefficient of concentration 397.E 
analytic 181 Giraud theorem 323.C 
circle 76.C Girsanov theorem 406.B 
conformal 76.A Girsanov transformation 406.B 
conformal differential 1lO.D Girshick-Savage theorem 399.F 
continuous 85.A Givens method 298.D 
differential 109 Givens transformation 302.E 
differential, of curves and surfaces 111 GKS first inequality 212.A 
differential, in specilic spaces 110 GKS second inequality 212.A 
elliptic 285.A Glashow-Weinberg-Salam model 132.D 
Euclidean, in the wider sense 139.B Glauert approximation, Prandtl- 205.B 
finite-dimensional projective 343.B Glauert law of similarity, Prandtl- 205.D 
formal 16.X g.1.b. (greatest lower bound) 31 l.B 
general, of paths 152.C Gleason part (for a function algebra) 164.F 
general projective 343.B Gleason theorem 351.L 
hyperbolic 285.A glide operation 92.E 
hypersphere 76.C glide reflection 92.E 
integral 218.A Glivenko-Cantelli theorem 374.E 
Laguerre 76.B global analysis 183 
Lobachevskii non-Euclidean 285.A global dimension 
Mobius 76.A (of an analytic set) 23.B 
natural 1lO.A (of a ring) 200.K 
n-dimensional Euclidean 139.B 181 left (of a ring) 200.K 
non-Archimedean 155.D right (of a ring) 200.K 
non-Desarguesian 155.D 343.C weak (of a ring) 200.K 
non-Euclidean 285.A global discretization error 303.B 
parabolic 285.A global Hecke algebra 450.0 
plane 181 global implicit function theorem 208.D 
projective 343.B globally asymptotically stable 126.F 
projective, of paths 109 globally symmetric Riemannian space 412.A 
projective differential 1lO.B global property (in differential geometry) 109 
pseudoconformal 344.A global roundoff error 303.B 
pure 181 global truncation error 303.B 
Riemannian 137, App. A, Table 4.11 gluing theorem 21.1 
Riemann non-Euclidean 285.A gluons 132.D 
solid 181 GNS construction 308.D 
space 181 Godbillion-Vey ciasses 154.G 
of a space subordinate to a group 137 Giidel, Kurt 184 
spectral 391 Godel completeness theorem 411.J 
sphere 76.C Godel incompleteness theorem 156.E 
spherical 285.D Giidel number(s) 185 356.C,E 
on a surface 1ll.G Godel numbering 185.A 
synthetic 181 Godel set theory 33.C 
wave 434.C Bernays- 33.A 

geometry of numbers 182 Goldbach problem 4.C 
germ(s) 383.B Golden-Thompson inequality 212.B 

of an analytic set 23.B Goldstein method, Ince- 268.C 
of a ?-function at the origin 58.C Goldstone boson, Nambu- 132.C 
of a holomorphic function 21.E Goldstone theorem 132.C 
irreducible 23.B Gomory cut 215.B 
reducible 23.B Goodner-Kelley theorem, Nachbin- 37.M 
sheaf of, of holomorphic functions 23.C goodness of lit 397.4 
sheaf of, of regular functions 16.B test 401.E 

Germain curvature (of a surface) 11 l.H, App. A, good reduction (of an Abelian variety) 3.N 
Table 4.1 potential (of an Abelian variety) 3.N 

Gevrey class 58.G 125.U 325.1 good resolution 418.C 
function of 168.B Goppa code 63.E 

ghost component (of an infinite-dimensional vector) Gordan coefficients, Clebsch- 258.B 353.B 
449.A Gordan equation, Klein- 351.G 377.C 

ghost, Faddeev-Popov 132.C 150.G Gordon equation, Sine- 387.A 
GHS inequality 212.A Gorenstein ring 200.K 
Gibbs distribution, equilibrium 136.C Goursat kernel, Pincherle- 217.F 
Gibbs-Duhem relation 419.B Goursat theorem 198.B 
Gibbs free energy 419.C grad (gradient) 442.D 

minimum principle 419.C graded algebra 203.B 



2003 Subject Index 
Group(s) 

graded A-module 200.B 
graded coalgebra 203.B 
graded Hopf algebra 203.C 
graded ideal 369.B 
graded module 

connected 203.B 
dual 203.B 

graded object 200.B 
graded ring 369.B 

associated 284.D 
gradient 442.D, App. A, Table 3.11 
gradient method 292.E 

Arrow-Hurwicz-Uzawa 292.E 
conjugate (CG) 302.D 

gradient projection method, Rosen 292.E 
Graeffe method 301.N 
Gramian (determinant) 103.G 208.E 
grammar 

Chomsky 3 1.D 
context-free 31.D 
context-sensitive 31.D 
regular 3 1 .D 

Gram-Schmidt orthogonalization 3 17.A 
Gram theorem 226.E 
grand canonical ensemble 402.D 
grand partition function 402.D 
graph 186.B 

(of a knot) App. A, Table 7 
(=linear graph) 282.A 
(of a mapping) 38 1 .C 
(of a meromorphic mapping) 23.D 
(of an operator) 251.B 
(of a relation) 358.R 
bipartite 186.C 
complete 186.C 
complete bipartite 186.C 
direct 186.8 
Euler 186.F 
Feynman 146.A,B 386.C 
labeled 186.B 
linear 282.A 
oriented 186.B 
partial 186.C 
planar 186.H 
regular 186.C 
reoriented 186.B 
section 186.C 
sub- 186.D 
undirected 186.B 
unicursal, theorem (Euler’s) 186.F 
unlabeled 186.B 
unoriented 186.B 

graphic 66.H 
graphical calculation 19.B 
graphical differentiation 19.B 
graphical integration 19.B 
graphical mechanics 19.D 
graphical method of statistical inference 19.B 
graph norm 251.D 
graph theorem, closed 37.1 251.D 424.X 
graph theory 186 
Grashoff number 116.B 
Grassmann algebra (of a linear space) 256.0 
Grassmann coordinates (in a Grassmann manifold) 

90.B 
Grassmann manifold 119.B 427.D 

complex 199.B 
formed by oriented subspaces 199.B 
infinite 147.1 

real 199.B 
Grauert theorem (on proper holomorphic mappings) 

23.E 72.E 
gravitation, law of universal 271.B 
gravitational units, system of 414.B 
gravity, center of 271.E 
gravity wave 205.F 

long 205.F 
grazing ray 325.L 
great circle (of a sphere) 140 
greater than (another compactification) 207.B 
greatest common divisor 67.H 297.A 
greatest element (in an ordered set) 311.B 
greatest lower bound (of an ordered set) 310.C 

311.8 
greedy algorithm 66.G 
Greek mathematics 187 
Greek quadratrix 187 
Greek quadrivium 187 
Greek three big problems 187 
Green formula 

(for differential operators) App. A, Table 15.VI 
(for harmonic functions) 193.D 
(for Laplace operator) App. A, Tables 3.111,4.11 
(for ordinary differential equations) 252.K 
(for partial differential equations of parabolic 
type) 327.D 

(on the plane) 94.F 
Green function method 402.5 
Green functions 188 189.B 

(a-order) 4S.D 
(of a boundary value problem) 315.B 

Green line 193.5 
Green measure 193.5 
Green operator 189.A,B 194.C 
Green space 193.N 
Green-Stokes formula 94.F 
Green tensor 188.E 
Green theorem 105.W 
Griffith first inequality 212.A 
Griffith second inequality 212.A 
Gross area (of a Bore1 set) 246.G 
Grossencharakter 6.D 

Hecke L-function with 450.F 
Gross theorem 272.1 
Grothendieck category 200.1 
Grothendieck construction 237.B 
Grothendieck criterion of completeness 424.L 
Grothendieck group 

(of a compact Hausdorff space) 237.B 
(of a ring) 237.5 

Grothendieck theorem of Riemann-Roth type 
366.D 

Grothendieck topology 16.AA 
ground field (of a linear space) 256.A 
ground form 226.D 

covariant with 226.E 
ground ring (of a module) 277.D 
group(s) 190.A 

Abelian 2 190.A 
Abelian linear 60.L 
absolute homology 2Ol.L 
additive 2.E 190.A 
adele (of an algebraic group) 13.P 
adele (of a linear algebraic group) 6.C 
adjoint (isogenous to an algebraic group) 13.N 
adjoint (of a Lie algebra) 248.H 
adjoint (of a Lie group) 249.P 
of afftne transformations 7.E 



Subject Index 
Group(s) 

2004 

afline Weyl (of a symmetric Riemann space) 
413.G 

algebra 192.H 
algebra class 29.E 
algebraic 13 
algebraic fundamental 16.U 
algebraic homotopy 16.U 
alternating, of degree n 151.G 
automorphism (of a Lie algebra) 248.A 
of automorphisms (of a group) 190.D 
*-automorphism 36.K 
Betti (of a complex) 201.B 
black and white 92.D 
black and white point 92.D 
boundary 234.B 
braid 235.F 
Brauer (of algebra classes) 29.E 
Brauer (of a commutative ring) 29.K 
Bravais 92.B 
bundle (of a fiber bundle) 147.B 
V 52.M 
of canonical transformations 271.F 
category of 52.B 
cellular homology 201.F,G 
character (of an Abelian group) 2.G 
character (of a topological Abelian group) 

422.B 
Chevalley 151.1 
of classes of algebraic correspondences 9.H 
classical 60.A 
Clifford 61.D 
closed 362.5 
coefficient (of a homology group) 201.Q 
cohomology (of a complex) 200.0 
cohomology (of a group) 200.M 
cohomology (of a Lie algebra) 200.0 
cohomology, with coefftcient sheaf S 283.E 
cohomotopy 202.1 
of collineations 343.D 
color point 92.D 
color symmetry (colored symmetry) 92.D 
commutative 2.A 190.A 
commutator (of two elements) 190.H 
commutator (of two subsets of a group) 190.H 
compact 69.A 
completely reducible 190.L 
complex 60.L 
complex cobordism 114.H 
complex orthogonal 60.1 
complex special orthogonal 60.1 
complex symplectic 60.L 
of congruence classes modulo m* 14.H 
of congruent transformations 285.C 
covering 91.A 423.0 
covering transformation 91.A 
Coxeter 13.R 
crystallographic 92.A 
crystallographic space 92.A 
cyclic 190.C 
decomposition (of a prime ideal) 14.K 
defect (of a block of representations) 362.1 
defect (of a conjugate class in a group) 362.1 
derived (of a group) 190.H 
difference (of an additive group) 190.C 
of differentiable structures on combinatorial 
spheres App. A, Table 6.1 

differentiable transformation 431.C 
dihedral 151.G 
direct product 190.L 
discontinuous, of the first kind 122.B 

discontinuous transformation 122.A 
divisor (of a compact complex manifold) 72.F 
divisor class (of a Riemann surface) 1 l.D 
elementary topological Abelian 422.E 
elliptic modular 122.D 
equicontinuous, of class (Co) 378.C 
equivariant J- 431.C 
exponential 437.U 
extension (cohomology of groups) 200.M 
factor 190.C 
finite 151.A 190.C 
finitely generated 190.C 
finitely presented 161.A 
of the first kind 122.C 
formal 13.C 
four- 151.G 
free 161.A 
free product (of the system of groups) 190.M 
frieze 92.F 
Frobenius 151.H 
Fuchsian 122.C 
Fuchsoid 122.C 
full 136.F 
full linear 60.B 
full Poincare 258.A 
function 234.A 
fundamental (of a topological space) 170 
Galois (of an algebraic equation) 172.G 
Galois (of a Galois extension) 172.B 
Galois (of a polynomial) 172.G 
generalized nilpotent 190.K 
generalized quaternion 151.B 
generalized solvable 190.K 
general linear 60.B 226.B 
general linear (over a noncommutative field) 

60.0 
Grothendieck (of a compact Hausdorff space) 

237.B 
Grothendieck (of a ring) 237.5 
h-cobordism (of homotopy n-spheres) 114.1, 
App. A, Table 6.1 

Hamilton 151.B 
Hausdorff topological 423.B 
Hilbert modular 32.G 
holonomy 80.D 364.E 
homogeneous holonomy 364.E 
homogeneous Lorentz 359 
homology (of a chain complex) 201.B 
homology (of a group) 200.M 
homology (of a Lie algebra) 200.0 
homology (of a polyhedron) 201.D 
homotopy 202.5 
hyper- 190.P 
icosahedral 151.G 
ideal, modulo m* 14.H 
ideal class 14.E 67.K 
idele 6.C 
idele class 6.D 
indecomposable 190.L 
inductive limit 210.C 
inductive system of 210.C 
inertia (of a finite Galois extension) 257.D 
inertia (of a prime ideal) 14.K 
infinite 190.C 
infinite classical 147.1 202.V 
infinite orthogonal 202.V 
infinite symplectic 202.V 
infinite unitary 202.V 
inhomogeneous Lorentz 359 
of inner automorphisms (of a group) 190.D 



2005 Subject Index 
Group(s) 

of inner automorphisms (of a Lie algebra) 
248.H 

integral homology (of a polyhedron) 201.D 
integral homology (of a simplicial complex) 
2Ol.C 

integral singular homology 201.E 
isotropy 362.B 
J- 237.1 
of Janko-Ree type 151.5 
k- 13.A 
K- (of a compact Hausdorff space) 237.B 
Klein four- 151.G 
Kleinian 122.C 243.A 
knot 235.8 
L- 450.N 
lattice 182.B 
lattice (of a crystallographic group) 92.A 
lattice-ordered Archimedean 243.G 
Lie 249.A 423.M 
Lie transformation 431.C 
linear fractional 60.B 
linear isotropy (at a point) 199.A 
linear simple 15 1 .I 
link 235.D 
little 258.C 
local Lie 423.L 
local Lie, of local transformations 431.G 
locally Euclidean 423.M 
local one-parameter, of local transformations 

105.N 
Lorentz 60.5 258 359.B 
magnetic 92.D 
Mathieu 151.H 
matric 226.B 
matrix 226.B 
maximally almost periodic 18.1 
minimally almost periodic 18.1 
mixed 190.P 
Mobius transformation 76.A 
modular 122.D 
monodromy (of an n-fold covering) 91.A 
monodromy (of a system of linear ordinary 
differential equations) 253.B 

monothetic 136.D 
of motions 139.B 
of motions in the wider sense 139.B 
multiplicative 190.A 
multiplicative (of a field) 149.A 190.B 
N&on-Severi (of a variety) 15.D 16.P 
nilpotent 151.C 190.J 
octahedral 151.G 
n 190.E 
one-parameter, of transformations (of a Cm- 

manifold) 105.N 
one-parameter, of transformations of class C 

126.B 
one-parameter semi-, of class Co 378.B 
one-parameter sub- 249.Q 
ordered 243.G 
ordered additive 439.B 
of orientation-preserving diffeomorphisms 

114.1 
oriented cobordism 114.H 
of oriented differentiable structures on 
a combinatorial sphere 114.1 

orthogonal 60.1 139.B 151.1 
orthogonal (over a field with respect to 
a quadratic form) 60.K 

orthogonal (over a noncommutative field) 
60.0 

orthogonal transformation 60.1 
of outer automorphisms (of a group) 190.D 
of outer automorphisms (of a Lie algebra) 
248.H 

p- 151.B 
periodic 2.A 
permutation 190.B 
permutation, of degree n 151.G 
II- 151.F 
n-solvable 15f.F 
Picard (of a commutative ring) 237.5 
Poincare 170 258.A 
point (of a crystallographic group) 92.A 
polychromatic 92.D 
principal isotropy 431.C 
profmite 210.C 
projective class 200.K 
projective general linear 60.B 
projective limit 210.C 
projective special linear 6O.B,0 
projective special unitary 60.H 
projective symplectic 60.L 
projective system of 210.C 
of projective transformations 343.D 
projective unitary 60.F 
proper Lorentz 60.5 258.A 359.B 
proper orthogonal 60.1 258.A 
pseudo- (of topological transformations) 

105.Y 
p-torsion, of exceptional groups App. A, 
Table 6.IV 

qth homology 201.B 
quasi- 190.P 
quasi-Fuchsian 234.B 
quaternion 151.B 
quaternion unimodular 412.G 
quotient 190.C 
quotient (of a topological group) 423.E 
of quotients (of a commutative semigroup) 

19O.P 
ramification (of a finite Galois extension) 

257.D 
ramification (of a prime ideal) 14.K 
rational cohomology 200.0 
reductive 13.4 
Ree 151.1 
of Ree type 151.5 
regular polyhedral 151.G 
relative homotopy 202.K 
relative singular homology 2Ol.L 
renormalization 11 l.A 
restricted holonomy 364.E 
restricted homogeneous holonomy 364.E 
Riemann-Roth 366.D 
Riesz 36.H 
rotation 60.1 258.A 
Schottky 234.B 
semi- 190.P 396.A 
separated topological 423.B 
sequence of factor (of a normal chain) 190.G 
shape 382.C 
Siegel modular (of degree n) 32.F 
simple 190.C 
simply connected (isogenous to an algebraic 
group) 13.N 

singular homology 201.G,L 
solvable 151.D 190.1 
space 92.A 
special ClitTord 6 l.D 
special linear 60.B 



Subject Index 
Group algebra 

2006 

special linear (over a noncommutative field) 
60.0 

special orthogonal 60.1,K 
special unitary 60.F,H,O 
spinor 60.1 61.D 
stability 362.B 
stable homotopy 202.T 
stable homotopy (of classical group) 202.V 
stable homotopy (of the Thorn spectrum) 

114.G 
Steinberg (of a ring) 237.5 
structure (of a fiber bundle) 147.B 
supersolvable 151.D 
Suzuki 151.1 
symmetric 190.B 
symmetric, of degree n 15 1 .G 
symplectic 60.L 151.1 
symplectic (over a noncommutative field) 
60.0 

symplectic transformation 60.L 
Tate-Shafarevich 118.D 
tetrahedral 151.G 
theoretic approach 215.C 
Tits simple 151.1 
T,-topological 423.B 
topological 423 
topological Abelian 422.A 
topological transformation 431.A 
torsion 2.A 
torsion (of a finite simplicial complex) 201.B 
torus 422.E 
totally ordered 243.G 
totally ordered additive 439.B 
total monodromy 418.F 
transformation 431, App. A, Table 14.111 
transitive permutation 151.H 
of translations 7.E 258.A 
of twisted type 151.1 
type I 308.L 437.E 
underlying (of topological group) 423.A 
unimodular 60.B 
unimodular locally compact 225.C 
unit (of an algebraic number field) 14.D 
unitary 60.F 151.1 
unitary (over a field) 60.H 
unitary (relative to an s-Hermitian form) 60.0 
unitary symplectic 60.L 
unitary transformation 60.F 
universal covering 91.B 423.0 
unoriented cobordism 114.H 
value (of a valuation) 439.B,C 
vector 422.E 
Wall 114.5 
WC (Weil-Chltelet) 118.D 
weakly wandering under 136.F 
web 234.B 
weight 92.C 
Weil 6.E 450.H 
Weil-Chltelet 118.D 
Weyl (of an algebraic group) 13.H 
Weyl (of a BN pair) 13.R 
Weyl (of a Coxeter complex) 13.R 
Weyl (of a root system) 13.5 
Weyl (of a semisimple Lie algebra) 248.R 
Weyl (of a symmetric Riemannian space) 
413.F 

Weyl, affine 413.F 
Weyl, k- 13.4 
White 92.D 
Whitehead (of a ring) 237.5 

Witt (of nondegenerate quadratic forms) 
348.E 

Zassenhaus 151 .H 
group algebra 29.C 36.L 

C*- 36.L 
group code 63.C 
group extension 200.M 
grouplike 203.F 
group manifold (of a Lie transformation group) 

110.A 
group measure space construction 136.F 
group minimization problem 215.C 
group object (in a category) 52.M 
groupoid 190.P 

hyper- 190 
group pair (of topological Abelian groups) 422.1 

orthogonal 422.1 
group ring (of a compact group) 69.A 
group scheme 16.H 
group system 235.B 
group theorem (on fractional ideals) 67.5 
group-theoretic approach 215.C 
group variety 13.B 16.H 

algebraic 13.B 
group velocity 446 
growth, infra-exponential 125.AA 
Grunsky inequality 438.B 
Gudermann function (Gudermannian) 131.F, 

App. A, Table 16.111 
guide, wave 130.B 
Guignard constraint qualification 292.B 
Gupta-Bleuler formalism 150.G 
Gysin exact sequence (of a fiber space) 148.E 
Gysin homomorphism 201.0 
Gysin isomorphism, Thorn- 114.G 

of a fiber space 148.E 

H 

HP (Hardy spaces) 168.B 
H’(R) (Sobolev spaces) 168.B 
H;(Q) (Sobolev spaces) 168.B 
h-cobordant oriented manifolds 114.1 
h-cobordism group of n-dimensional homotopy 

spheres 114.1, App. A, Table 6.1 
h-cobordism theorem 114.F 
H-function 402.B 
H-series, principal 437.X 
H-space 203.D 
H-theorem 402.B 
(H, p)-summable 379.M 
H-closed space 425.U 
Haag-Araki axioms 150.E 
Haag-Kastler axioms 150.E 
Haag-Ruelle scattering theory 150.D 
Haag theorem 150.C 
Haar condition (on best approximation) 336.B 
Haar measure 

left-invariant 225.C 
right-invariant 225.C 

Haar space 142.B 
Haar system of orthogonal functions 317.C 
Haar theorem 225.C 
Hadamard estimation App. A, Table 8 
Hadamard formula, Cauchy- 339.A 
Hadamard gap theorem 339.D 
Hadamard multiplication theorem 339.D 
Hadamard theorem 

(on meromorphic functions) 272.E 
(on singularities of power series) 339.D 



2007 Subject Index 
Hasse norm-residue symbol, Hilbert- 

Hadamard three-circle theorem 43.E 
hadrons 132.B 
Haefliger structure 154.E 

C’- 154.E 
Hahn-Banach (extension) theorem 

(in a normed space) 37.F 
(in a topological linear space) 424.C 

half Bessel function 39.B 
half-exact (functor) 200.1 
half-life 132.A 
half-line 155.B 

closed (in afhne geometry) 7.D 
half-periodic solution (of Hill equation) 268.E 
half-plane 155.B 333.A 
half-space 

of an afline space 7.D 
closed (of an affme space) 7.D 
principal (of a flag) 139.B 
Siegel upper (of degree n) 32.F 
supporting (of a convex set) 89.A 

half-spinor (even, odd) 61.E 
half-spin representation (even, odd) 61.E 
half-trajectory 

negative 126.D 
positive 126.D 

half-width 132.A 
Hall subgroup 151.E 
Hallstrom-Kametani theorem 124.C 
Halmos theorem, von Neumann- 136.E 
Hamburger moment problem 240.K 
Hamilton canonical equation 271.F 
Hamilton-Cayley theorem 269.F 
Hamilton differential equation 324.E 
Hamilton group 151.B 
Hamiltonian 271.F 351.D 442.D 

bilinear 377.A 
cluster decomposition 375.F 
free 351.D 

Hamiltonian function 219.C 271.F 
Hamiltonian operator 351.D 
Hamiltonian system 126.L 
Hamiltonian vector field 126.L 219.C 
Hamilton-Jacobi differential equation 271.F 324.E 
Hamilton-Jacobi equation 108.B 
Hamilton path 186.F 
Hamilton principle 441.B 
Hamilton quaternion algebra 29.B 
Hammerstein integral equation 217.M 
Hamming bound (of a code) 63.B 
Hamming code 63.C 
Hamming distance 63.B 136.E 
handle 410.B 

attaching 114.F 
Casson 114.K 
manifold with 114.F 

handlebody 114.F 
Hankel asymptotic representation App. A, 

Table 19.111 
Hankel determinant 142.E 
Hankel functions 39.B, App. A, Table 19.111 
Hankel transform 220.B 
Hansen, general connectedness theorem due to 

Fulton and 16.1 
Hansen-Bessel formula App. A, Table 19.111 
hard, NP- 71.E 
hard Lefschetz theorem 450.Q 
hardware 75.C 
Hardy class 43.F 159.G 

generalized 164.E 
Hardy inequality App. A, Table 8 

Hardy-Littlewood-Sobolev inequality 224.E 
Hardy-Littlewood supremum theorem App. A, 

Table 8 
Hardy-Littlewood theorem 

on bounded functions 43.E 
on trigonometric systems 317.B 

Hardy space 168.B 
Hardy theorem 

on bounded functions 43.E 
on the Cauchy product of two series 379.F 

harmonic 
(form) 194.B 
(function) 193.A 
(function on a state space) 260.D 
(mapping) 195.B 

harmonically separated points (in a projective space) 
343.D 

harmonic analyzer 19.E 
harmonic analysis 192 
harmonic boundary 207.B 
harmonic conjugates 343.D 
harmonic continuation 193.M 198.G 
harmonic differential (on a Riemann surface) 367.H 
harmonic dimension (of a Heins end) 367.E 
harmonic flow 193.K 
harmonic functions 193 

conjugate 193.C 
spherical 193.C 

harmonic integrals 194 
harmonic kernel function 188.H 
harmonic majorant (of subharmonic function) 

193,s 
harmonic mapping 195 
harmonic mean 

(of a distribution) 397.C 
(of a function) 21 l.C 
(of numbers) 211.C 

harmonic measure 
inner 169.B 
outer 169.B 

harmonic motion, simple 318.B 
harmonic oscillation 318.B 
harmonic range of points 343.D 
harmonics 

ellipsoidal 133.B 
ellipsoidal, of four species 133.C 
solid 393.A 
spherical 193.C 393.A 
surface 393.A 
tesseral 393.D 
zonal 393.D 

Harnack condition (on the D-integral) 100.E 
Harnack first theorem 193.1 
Harnack lemma 193.1 
Harnack second theorem 193.1 
Hartogs continuation theorem 21.F 
Hartogs-Osgood theorem 21.H 
Hartogs theorem 

of continuity 21.H 
of holomorphy 21.C 

Hartshorne conjecture 16.R 
Harvey duality, Martineau- 125.Y 
hashing 96.B 
Hasse character, Minkowski- (of a nondegenerate 

quadratic form) 348.D 
Hasse conjecture 45O.S 
Hasse function, Artin- 257.H 
Hasse invariant (of a central simple algebra over 

a p-adic field) 29.G 
Hasse norm-residue symbol, Hilbert- 14.R 



Subject Index 
Hasse principle 

2008 

Hasse principle 348.G minimum principle 419.C 
Hasse theorem, Minkowski- (on quadratic forms Helmholtz theorem (on vector fields) 442.D, 

over algebraic number fields) 348.G App. A, Table 3.111 
Hasse-Witt matrix 9.E Helmholtz vorticity theorem 205.B 
Hasse zeta function 450,s Helson set 192.R 
Haupt theorem 268.E hemisphere 
Hauptvermutung (in topology) 65.C 70.C northern 140 
HausdorB axiom 425.4 southern 140 
Hausdorff dimension 117.G 234.E 246.K Henselian ring 370.C 
Hausdorff formula, Campbell- 249.R Henselization 370.C 
Hausdorff measure 169.D Hensel lemma 118.C 
Hausdorff moment problem 240.K Hensel ring 370.C 
Hausdorff space 425.Q Herbrand lemma 200.N 

collectionwise 425.AA Herbrand quotient 200.N 
Hausdorff theorem, Baire- 273.5 425.N hereditarily normal space 425.Q 
Hausdorff topological group 423.B hereditarily quotient mapping 425.G 
Hausdorff uniform space 436.C hereditarily weak topology 425.M 
Hausdorff-Young inequality 224.E hereditary finite set 33.B 
Hausdorff-Young theorem 317.B hereditary ring 200.K 
Hawaiian earring 79.C left 200.K 
hazard function 397.0 right 200.K 
hazard rate 397.0 Herglotz integral representation 43.1 
heat Herglotz theorem 192.B 

Joule 130.B Hermite differential equation App. A, Table 14.11 
specific, at constant pressure 419.B Hermite differential equation, Weber- 167.C 
specific, at constant volume 419.B Hermite formula, Gauss- (in numerical integration) 

heat bath 419.B 299.A 
heat conduction, equation of 327.A Hermite interpolation polynomial 223.E 
heat equation 327.A, App. A, Table 15.VI Hermite polynomials 317.D, App. A, Table 2O.IV 
heat gain 419.A Hermite polynomials, Fourier- 176.1 
heat loss 419.A Hermitian (integral operator) 251.0 
Heaviside calculus 306.A Hermitian form 256.Q 348.F 
Heaviside function 125.E 306.B, App. A, Table 12.11 anti- 256.Q 
Hecke algebra 29.C 32.D E- 60.0 

global 450.0 indefinite 348.F 
Hecke character 6.D negative definite 348.F 
Hecke L-function 450.E positive definite 348.F 

with Grossencharakter 450.F semidefinite 398.F 
Hecke operator 32.D skew- 256.Q 

zeta function defined by 450.M v- 384.A 
Hecke ring 32.D Hermitian homogeneous space, complex 199.A 
Heegaard decomposition 65.C Hermitian hyperbolic space 412.G 
height Hermitian inner product 256.4 

(of an algebraic number) 430.B Hermitian kernel 217.H 
(of an element in a lattice) 243.F Hermitian linear space 256.Q - 
(of an ideal) 67.E Hermitian matrix 269.1 
(of an isogeny) 3.F anti- 269.1 
(of a lattice) 243.F skew 269.1 
(of a prime ideal) 67.E Hermitian metric 232.A 
infinite (element of an Abelian p-group) 2.D Hermitian operator 251.E 

Heilbronn phenomenon, Deuring- 123.D Hermitian space 
Heine-Bore1 theorem 273.F irreducible symmetric 412.E 
Heine series 206.C symmetric 412.E 
Heins end 367.E Heron formula 
Heisenberg equation of motion 351.D (for plane triangles) App. A, Table 2.11 
Heisenberg picture 351.D (for spherical triangles) App. A, Table 2.111 
Heisenberg uncertainty relation 351.C Hersch and Pfluger, extremal length defined by 
helicity 258.C 143.A 
helicoid Hersch problem 391.E 

ordinary 111.1 Hessenberg method 298.D 
right 111.1 Hesse normal form (of a hyperplane) 139.H 

helicoidal surface 111.1 Hessian 
Helinger-Hahn theorem 390.G (on a differential manifold) 279.B,F 
helix (form) 226.D 

generalized 11 l.F (of a plane algebraic curve) 9.B 
ordinary 11 l.F heterogeneity, design for two-way elimination of 

Helly theorem 94.B 102.K 
Helmholtz differential equation 188.D, App. A, heuristic algorithm 215.E 

Table 15.VI Hewitt-Savage zero-one law 342.G 
Helmholtz free energy 419.C hexagon 155.F 



2009 Subject Index 
Holomorpbic 

hexagonal (system) 92.E adjoint 251.E 
hexahedron 357.B channel 375.F 
Hey zeta function 27.F complex 197.B 
hidden variable theories 351.L exponential 377.D 
hierarchy 356.H physical 150.G 

analytic 356.H pre- 197.B 
arithmetical 356.H real 197.B 
arithmetical, of degrees of recursive unsolvability rigged 424.T 

356.H Hilbert-Speiser theorem 172.5 
C-analytic 356.H Hilbert system of axioms (foundations of geometry) 
C-arithmetical 356.H 155.B 
Chomsky 31.D Hilbert syzygy theorem 369.F 
hyperarithmetical, of degrees of recursive Hilbert theorem 90 172.5 

unsolvability 356.H Hilbert transform 160.D 220.E 
hierarchy theorem 356.H Hilbert zero point theorem 369.D 
Higgs mechanism 132.D Hilferty approximations, Wilson- 374.F 
higher algebraic K-theory 237.5 Hill determinant 268.B 
higher differentiation (in a commutative ring) 113 Hill determinantal equation 268.B 
higher order, of (for infinitesimals) 87.G Hill differential equation 268.B 
higher-order derivative (of a differentiable function) Hille-Yosida theorem 378.B 

106.D Hill function 268.E 
higher-order ordinary differential equation Hill method of solution 268.B 

App. A, Table 14.1 Hirsch theorem, Leray- 201.5 
higher-order partial derivative 106.G Hirzebruch index theorem (for differentiable 
higher-order predicate logic 41 l.K manifolds) 56.G 
higher-transcendental function 389.A Hirzebruch signature theorem (on algebraic surface) 
highest weight (of a representation of a Lie algebra) 72.K 

248.W Hirzebruch surface 15.G 
high-precision computation 138.B Hirzebruch theorem of Riemann-Roth type 366.B 
Hilbert, D. 196 histogram 397.B 
Hilbert basis theorem 284.A Hitchcock method 301.E 
Hilbert characteristic function hitting probability 5.G 

(of a coherent sheaf) 16.E hitting time 260.B 261.B 407.B 
(of a graded module) 369.F Hlawka theorem, Minkowski- 182.D 

Hilbert cube ,382.B Hochschild cohomology group 200.L 
Hilbert s-operator 411.J Hodge conjecture 450.S 
Hilbert s-quantifier 41 l.J Hodge index theorem 15.D 
Hilbert s-symbol 411.J Hodge manifold 232.D 
Hilbert fifth problem 423.N Hodge metric 232.D 
Hilbert-Hasse norm-residue symbol 14.R Hodges-Lehmann theorem 399.E,H 
Hilbertian space, countably 424.W Hodge spectral sequence 16.U 
Hilbert inequality App. A, Table 8 Hodge structure (of a vector space) 16.V 
Hilbert invariant integral 46.C mixed 16.V 
Hilbert irreducibility theorem (on polynomials) polarized 16.V 

337.F Hodgkin-Huxley differential equation 291.F 
Hilbert manifold 105.Z 286.K hodograph method 205.B 
Hilbert modular form hodograph plane 205.B 

of dimension -k 32.G hold almost everywhere (in a measure space) 270.D 
of weight k 32.G hold at almost all points 

Hilbert modular function 32.G in a measure space 270.D 
Hilbert modular group 32.G Holder condition of order a 84.A 
Hilbert modular surface 15.H Holder inequality 2ll.C App. A, Table 8 
Hilbert norm-residue symbol 14.R Holder integral inequality 21 l.C 
Hilbert Nullstellensatz 369.D Holder method of order p, summable by 379.M 
Hilbert polynomial Holder sequence, Jordan- (in a group) 190.G 

(of an algebraic curve) 9.F Holder space 168.B 
(of a coherent sheaf) 16.E Hdlder theorem 104.F 
(of a graded module) 369.F Holder theorem, Jordan- (in group theory) 190.G 

Hilbert problem (in calculus of variations) 46.A Holder theorem, Jordan- (on representations 
Hilbert problem, Riemann- of algebras) 362.D 

(for integral equations) 217.5 hole theory, Dirac 415.G 
(for ordinary differential equations) 253.D Holmgren type theorem (of Kashiwara-Kawai) 

Hilbert scheme 16.S 125.DD 
Hilbert-Schmidt class 68.1 Holmgren uniqueness theorem 321.F 
Hilbert-Schmidt expansion theorem 217.H holohedral 92.B 
Hiibert-Schmidt norm 68.1 holohedry 92.B 
Hilbert-Schmidt type holomorphic 

integral operator of 68.C (family of linear operators) 331.C 
kernel of 217.1 (function) 198.A 

Hilbert spaces 197 (in the sense of Riemann) 21.C 



Subject Index 

Holomorpbically complete domain 
2010 

(vector-valued function) 37.K 
holomorphically complete domain 21.F 
holomorphically complete space 23.F 
holomorphically convex domain 21.H 
holomorphic automorphism 21.5 
holomorphic differential (on a Riemann surface) 

367.H 
holomorphic differential form of degree k 72.A 
holomorphic distribution (with respect to a param- 

eter) 125.H 
holomorphic evolution operator 378.1 
holomorphic foliation 154.H 
holomorphic function(s) 198 

(on a complex manifold) 72.A 
(of many variables) 21.A,C 
germ of a 21.E 
sheaf of germs of 23.C 383.D 

holomorphic functional calculus 36.M 
holomorphic hull 21.H 
holomorphic k-form 72.A 
holomorphic local coordinate system 72.A 
holomorphic mapping 21.5 

(of a complex manifold) 72.A 
nondegenerate (between analytic spaces) 23.C 

holomorphic microfunction 274.F 
holomorphic modification (of an analytic space) 

23.D 
holomorphic part (in a Laurent expansion) 198.D 
holomorphic sectional curvature 364.D 
holomorphic semigroup 378.D 
holomorphic tangent vector 72.A 
holomorphic vector field 72.A 
holomorphy 

domain of 21.F 
envelop of 21.F 
Hartogs theorem of 21.C 

holonomic (coherent &-module) 274.H 
holonomic systems 

with regular singularities 274.H 
simple 274.H 

holonomy 154.C 
holonomy group 80.D 154.C 364.D 

homogeneous 364.E 
restricted 80.D 364.E 
restricted homogeneous 364.E 

holonomy homomorphism 154.C 
linear 154.C 

holosymmetric class 92.B 
homentropic flow 205.B 
homeomorphic 425.G 
homeomorphism 425.G 

minimal 136.H 
PL 65.A 
strictly ergodic 136.H 
uniquely ergodic 136.H 

homeomorphism problem 425.G 
homoclinic point 126.5 

transversal 126.5 
homogeneous 

(A-submodule) 200.B 
(boundary value problem) 315.B 
(difference equation) 104.C 
(lattice) 182.B 
(linear ordinary differential equation) 252.A 
(system of linear differential equations of 

the first order) 252.G 
spatially (process) 261.A 
temporally (additive process) 5.B 
temporally (process) 261.A 
weighted (analytic function) 418.D 

homogeneous bounded domain 384.A 412.F 
homogeneous coordinate ring 16.A 
homogeneous coordinates 343.C 
homogeneous difference equation 104.C 
homogeneous element 

of a graded ring 369.B 
of a homogeneous ring 369.B 

homogeneous equations, system of linear 269.M 
homogeneous holonomy group 364.E 

restricted 364.E 
homogeneous hypersurface 344.A 
homogeneous ideal 

of a graded ring 369.B 
of a polynomial ring 369.B 

homogeneous integral equation 217.F 
homogeneous Lorentz group 258.A 359 
homogeneously regular 275.C 
homogeneous Markov process 5.H 261.A 
homogeneous n-chain (for a group) 200.M 
homogeneous ordinary differential equation 

App. A, Table 14.1 
of higher order App. A, Table 14.1 

homogeneous part (of a formal power series) 370.A 
homogeneous polynomial 337.B 
homogeneous ring 369.B 
homogeneous Siegel domain, irreducible 384.E 

topology of Lie groups and 427 
homogeneous space(s) 199 249.F 362.B 

complex Hermitian 199.A 
Klhler 199.A 
linearly connected 199.A 
reductive 199.A 
Riemannian 199.A 
symmetric 412.B 
symmetric Riemannian 412.B 

homogeneous turbulence 433.C 
homological algebra 200 

relative 200.K 
homological dimension 

of a module 200.K 
of a topological space 117.F 

homological functor 200.1 
homological mapping 200.C 
homologous 201.B 
homologous to zero 198.B 
homology 200.H 

intrinsic 114.H 
homology basis, canonical 1 l.C 
homology class 200.H 

fundamental 201.N 
fundamental, around K 201.N 
q-dimensional 201.B 

homology exact sequence 2Ol.L 
(of fiber space) 148.E 
reduced 201.F 

homology group(s) 
(of a chain complex) 201.B 
(of a group) 200.M 
(of a Lie algebra) 200.0 
(of a polyhedron) 201.0 
(of a simplicial complex) 201.G 
absolute 2Ol.L 
Tech 201.M 
cellular 201.F,G 
with coefficients in G 201.G 
integral 201.C,D 
integral singular 201.E 
local 201.N 
reduced 201.E 
relative Tech 201.M 



2011 Subject Index 
Homotopy set 

relative singular 2Ol.L 
simplicial 201.D 
singular ZOl.G,L,R 

homology manifold 65.B 
homology module 200.C 
homology theory 201 

generalized 201.Q 
generalized, with E-coefficient 202.T 
uniqueness theorem of 201.Q 

homomorphic 
(algebraic system) 409.C 
(groups) 190.D 
(topological groups) 423.5 
order (ordered sets) 31 l.E 

homomorphic image (of a measure-preserving 
transformation) 136.D 

homomorphism 
(of Abelian varieties) 3.C 
(of algebraic systems) 409.C 
(of fields) 149.B 
(of groups) 190.D 
(of lattices) 243.C 
(of Lie algebras) 248.A 
(of linear representations) 362.C 
(of presheaves) 383.A 
(of rings) 368.D 
(of sheaves) 363.B 
A- (of A-modules) 277.E 
A-, of degree p (of graded A-modules) 200.B 
admissible (of n-groups) 190.E 
algebra 29.A 
allowed (of A-modules) 277.E 
analytic (of Lie groups) 249.N 
anti- (of groups) 190.D 
anti- (of rings) 368.D 
bialgebra 203.G 
Bokshtein 64.B 
boundary (on homology groups) 201.L 
boundary (in homotopy exact sequences) 

202.L 
C”-(between Lie groups) 249.N 
canonical (on direct products of rings) 368.E 
coalgebra 203.F 
coboundary (on cohomology groups) 201.L 
connecting (in homology) 200.C 2Ol.L 
connecting (on homology groups) 201 .C 
continuous (of topological groups) 423.5 
crossed (of an associative algebra) 200.L 
dual (of a homomorphism of algebraic tori) 

13.D 
dust (of lattices) 243.C 
edge 200.5 
equivariant J- 431.F 
generalized Hopf 202.V 
Gysin 201 .O 
holonomy 154.C 
Hopf algebra 203.H 
Hurewicz 202.N 
induced by a continuous mapping (between 
homotopy groups) 202.K 

J- (in homotopy theory) 202.V 
J- (in K-theory) 237.1 
Jordan (of Jordan algebras) 23 l.A 
lattice- 243.C 
local (of a topological group) 423.0 
module of (of modules) 277.B 
module of A- (of A-modules) 277.E 
Cl- (of R-groups) 190.E 
open continuous (of topological groups) 423.3 
operator (of A-modules) 277.E 

operator (of n-groups) 190.E 
order 311.E 
rational (of Abelian varieties) 3.C 
rational (of algebraic groups) 13.A 
ring 368.D 
*- 36.F 
Umkehr 201.0 
unitary (of rings) 368.D 
zero (of two A-modules) 277.H 

homomorphism theorem 
on groups 190.D 
on Lie algebras 248.A 
on topological groups 423.5 
on topological linear spaces 424.X 

homothetic correspondence (between surfaces) 
111.1 

homothety 
in conformal differential geometry 1lO.D 
in Euclidean geometry 139.B 

homotopic 154.E,F 202.B 
chain (chain mappings) 200.C 
integrably 154.F 
null- (continuous mapping) 202.B 
regularly (immersions) 114.D 
relative to a subspace 202.B 
to zero 202.B 

homotopy 202.B 
composite 202.B 
free 202.B 
linear 114.D 
restricted 202.B 

homotopy-associative (multiplication) 203.D 
homotopy category of topological spaces 52.B 
homotopy chain 200.C 
homotopy class 202.B 

compact 286.D 
homotopy cochain 200.F 
homotopy commutative (multiplication) 203.D 
homotopy equivalence 202.F 

simple 65.C 
weak 202.F 

homotopy equivalent systems (of topological 
spaces) 202.F 

homotopy exact sequence 202.L 
of a fiber space 148.D 
of a triad 202.M 
of a triple 202.L 

homotopy extension property 202.E 
homotopy group(s) 202.5 

algebraic 16.U 
of a compact connected Lie group App. A, 
Table 6.VII 

realization theorem of 202.N 
of a real Stiefel manifold App. A, Table 6.VII 
relative 202.K 
of a sphere App. A, Table 6.VI 
stable 202.T, App. A, Table 6.VII 
stable (of classical groups) 202.V 
stable (of the k-stem) 202.U 
stable (of Thorn spectrum) 114.G 
of a triad 202.M 

homotopy identity (of an H-space) 203.D 
homotopy invariance (of a homology group) 201.D 
homotopy invariant 202.B 
homotopy inverse (for an H-space) 203.D 
homotopy n-spheres 

group of 114.1 
h-cobordism group of 114.1 

homotopy operations 202.0 
homotopy set 202.8 



Subject Index 

Homotopy sphere 
2012 

homotopy sphere 65.C 
homotopy theorem 

first (in obstruction theory) 305.B 
second (in obstruction theory) 305.C 
simple 65.C 
third (in obstruction theory) 305.C 

homotopy theory 202 
de Rham 114.L 

homotopy type 202.F 
(of a link) 235.D 
spherical G-fiber 431.F 

homotopy type invariant 202.F 
Hooke law 271.G 
Hopf algebra(s) 203 

dual 203.C 
elementary 203.D 
graded 203.C 

Hopf algebra homomorphism 203.H 
Hopf bifurcation 126.M 
Hopf bundle 147.E 
Hopf classification theorem 202.1 
Hopf comultiplication 203.D 
Hopf coproduct 203.D 
Hopf extension theorem 270.E 
Hopf fibering 147.E 
Hopf homomorphism, generalized (of homotopy 

groups of spheres) 202.U 
Hopf integrodifferential equation, Wiener- 222.C 
Hopf invariant 202.U 

generalized 202.Q 
modulo p 202,s 

Hopf mapping (Hopf map) 147.E 
Hopf surface 72.K 
Hopf theorem (continuous vector field) 153.B 
Hopf weak solution 204.C 
horizon, event 359.F 
horizontal components 

of a homogeneous space 110.A 
of a vector field 80.C 

horizontal slit mapping, extremal 367.G 
horizontal subspace 191.C 
horizontal vector (in a differentiable principal fiber 

bundle) 80.C 
Hiirmander theorem 112.C,D 
horned sphere, Alexander 65.G 
Horner method 301 .C 
horocycle flow 136.G 
horosphere 218.G 
horseshoe diffeomorphism 126.J 
Hosokawa polynomial 235.D 
Hotelling T2 statistic 280.8 

noncentral 374.C 
Householder method 298.D 
Householder transformation 302.E 
Hugoniot relation, Rankine- 204.G 205.B 
Hukuhara theorem, Dini- 314.D 
Hukuhara problem 315.C 
hull 

closed convex 424.H 
convex 89.A 
convex (in an afline space) 7.D 
convex (of a boundary curve) 275.A 
convex (in linear programming) 255.D 
holomorphic 21.H 

hull-kernel topology 36.D 
human death and survival, model of 214.A 
Hunt process 261.B 
Hunt-Stein lemma 400.F 

Hurewicz homorphism 202.N 
Hurewicz isomorphism theorem 202.N 
Hurewicz-Steenrod isomorphism theorem 148.D 
Hurewicz theorem, generalized 202.N 
Hurewicz-Uzawa gradient method, Arrow- 292.E 
Hurwitz formula, Riemann- (on coverings of 

a nonsingular curve) 9.1 
Hurwitz relation 

(on homomorphisms of Abelian varieties) 3.K 
Riemann- 367.B 

Hurwitz theorem 10.E 
Hurwitz zeta function 450.B 
Huxley differential equation, Hodgkin- 291.F 
Huygens principle 325.B 446 

in the wider sense 325.D 
hybrid computer 19.E 
hydrodynamics 205 
hydromagnetic dynamo theory 259 
hydromagnetics 259 
hydrostatics 205.A 
hyperalgebra 203.1 
hyperarithmetical function 356.H 
hyperarithmetical hierarchy of degrees of recursive 

unsolvability 356.H 
hyperarithmetical predicate 356.H 
hyperbola 78.A 

conjugate 78.E 
equilateral 78.E 
rectangular 78.E 

hyperbolic 
(closed invariant set of a dynamical system) 

126.5 
(differential operator) 112.A 325.H 
(linear mapping) 126.G 
(partial differential equation) 325.A,E 
(Riemann surface) 367.D,E 
(simply connected domain) 77.B 
(space form) 412.H 
complete 21.0 
regularly 325.A,F 
in the sense of Girding 325.F 
in the sense of Petrovskii 325.F 
in the strict sense 325.F 
strongly 325.H 
symmetric (in the sense of Friedrichs) 325.G 
weakly 325.H 

hyperbolically embedded 21.0 
hyperbolic closed orbit 126.G 
hyperbolic coordinates 

equilateral 9O.C App. A, Table 3.V 
rectangular 90.C 

hyperbolic cosecant 131.F 
hyperbolic cosine 131.F 
hyperbolic cotangent 131.F 
hyperbolic cylinder 350.B 
hyperbolic cylindrical coordinates App. A, 

Table 3.V 
hyperbolic cylindrical surface 350.B 
hyperbolic differential equations, system of (in 

the sense of Petrovskii) 325.G 
hyperbolic-elliptic motion 420.D 
hyperbolic fixed point 126.G 
hyperbolic function 131.F 
hyperbolic geometry 285.A 
hyperbolic knot 235.E 
hyperbolic manifold 21.0 235.E 
hyperbolic motion 420.D 
hyperbolic-parabolic motion 420.D 



2013 Subject Index 
Hypotrochoid 

hyperbolic paraboloid 350.B 
hyperbolic plane 122.C 
hyperbolic point (on a surface) 11 l.H 
hyperbolic quadric hypersurface 350.1 
hyperbolic secant 13 1 .F 
hyperbolic sine 13 1 .F 
hyperbolic singular point 126.G 
hyperbolic space 285.C 

Hermitian 412.G 
quaternion 412.G 
real 412.G 

hyperbolic spiral 93.H 
hyperbolic tangent 131.F 
hyperbolic transformation 76.F 
hyperbolic type, partial differential equation of 

321.E 325 
hyperbolic type, primitive 92.C 
hyperboloidic position 350.B 
hyperboloid of one sheet 350.B 
hyperboloid of revolution of one or two sheets 

350.B 
hyperboloid of two sheets 350.B 
hypercohomology 200.J 
hyperconstructive ordinal 81.E 
hypercubic type, primitive 92.C 
hyperelliptic curve 9.D 
hyperelliptic integral 1l.C 
hyperelliptic Riemann surface 11 .C 
hyperelliptic surface 72.K 
hyperlinite 293.B 308.1 
hyperfunction 125 

in the Dirichlet problem 120.C 
exponentially decreasing Fourier 125.BB 
Fourier 125.BB 
Fourier ultra- 125.BB 
modified Fourier 125.BB 
Sato 125.V 

hypergeometric differential equation 260.A, 
App. A, Table 18.1 

confluent 167.A, App. A, Tables 14.IL19.1 
Gauss App. A, Table 14.11 

hypergeometric distribution 341.D 397.F, 
App. A, Table 22 

multidimensional App. A, Table 22 
multiple 341.D 

hypergeometric function(s) 209, App. A, Table 18.1 
Appell, of two variables 206.D, App. A, 

Table 18.1 
Barnes extended 206.G, App. A, Table 18.1 
of confluent type 167.A, App. A, Table 19.1 
of the hyperspherical differential equation 

393.E 
with matrix argument 206.E 
and spherical functions App. A, Table 18 

hypergeometric integral 253.B 
hypergeometric series 206.A 
hypergeometric type, special function of 389.A 
hypergroup 190.P 
hypergroupoid 190.P 
hyperinvariant (under an operator) 251.L 
hyperplanar symmetry (of an alline space) 139.B 
hyperplane(s) 

in an alline space 7.A 
characteristic (of a partial differential equation 
of hyperbolic type) 325.A 

at infinity (in afline geometry) 7.B 
pencil of (in a projective space) 343.B 
in a projective space 343.B 

regression 403.D 
tangent (of a quadric hypersurface) 343.E 

hyperplane coordinates 
of an afline frame 7.C 
in projective geometry 343.C 

hyperplane section 418.1 
hyperquadric 

in an a&e space 350.G 
in a projective space 343.D 350.1 

hypersonic flow 205.C 
hypersphere 76.A 

imaginary 76.A 
limiting (in hyperbolic geometry) 285.C 
non-Euclidean 285.C 
oriented real 76.A 
point 76.A 
proper (in hyperbolic geometry) 285.C 
real 76.A 

hypersphere geometry 76.A 
hyperspherical coordinates, (n + 2)- 76.A 90.B 
hyperspherical differential equation 393.E 
hypersurface(s) 

(of an algebraic variety) 16.A 
(in a Euclidean space) 11 l.A 
central quadric 350.G 
characteristic (of a partial differential equation 
of hyperbolic type) 325.A 

coordinate (in a Euclidean space) 90.C 
elliptic quadric 350.G 
homogeneous 344.A 
hyperbolic quadric 3SO.G 
integral (partial differential equations) 320.A 
noncentral quadric 350.G 
nondegenerate 344.A 
parabolic quadric 350.G 
pencil of quadric 343.E 
properly (n - I)-dimensional quadric 350.G 
quadric 343.D 35O.G,1 
quadric conical 350.Q 
quadric cylindrical 350.4 
regular quadric 343.E 
singular quadric (of the hth species) 343.E 
spherical real 344.C 

hypersurface element(s) 82.A 324.B 
union of 82.A 

hypocontinuous (bilinear mapping) 424.4 
hypocylcoid 93.H 
hypo-Dirichlet 164.B 
hypoelliptic 112.D 189.C 323.1 

analytically 112.D 323.1 
hypofunction (in the Dirichlet problem) 120.C 
hyponormal 251.K 
hypothesis 

alternative 400.A 
composite 400.A 
continuum -continuum hypothesis 
ergodic 136.A 402.C 
general linear 400.H 
Lindeldf 123.C 
null 400.A 
Riemann 450.B,P 
simple 400.A 
statistical 400.A 
Suslin 33.F 

hypothesis testing 4Ol.C App. A, Table 23 
statistical 400, App. A, Table 23 

hypothetical infinite population 397.P 
hypotrochoid 93.H 



Subject Index 
i-genus 

2014 

1 

i-genus 15.E 
I-adic topology (of a ring) 16.X 
ith component (of an n-tuple) 256.A,C 
ith coordinate 256.C 
ith coordinate axis (of a Euclidean space) 140 
icosahedral group 15 1 .G 
icosahedron 357.B 
ideal(s) 

(of an algebra) 29.A 
(of an algebraic number field) 14.B 
(of a lattice) 42.C 
(of a Lie algebra) 248.A 
(of a ring) 368.F 
Abelian (of a Lie algebra) 248.C 
Alexander (of a knot) 235.C 
ambig (of a quadratic field) 347.F 
conjugate (of a fractional ideal) 14.1 
defining (of a formal spectrum) 16.X 
differential (of a differential ring) 113 
differential (on a real analytic manifold) 428.E 
elementary 235.C 
fractional (of an algebraic number held) 14.E 
graded 369.B 
homogeneous (of a graded ring) 369.B 
homogeneous (of a polynomial ring) 369.B 
integral (of an algebraic number field) 14.C 
integral left 27.A 
integral right 27.A 
integral two-sided o- 27.A 
involutive differential 428.E 
largest nilpotent (of a Lie algebra) 248.D 
left (of a ring) 368.F 
left e- 27.A 
maximal 67.C 
maximal (left or right) 368.F 
maximal (with respect to S) 67.C 
maximal, space (of a Banach algebra) 36.E 
minimal (left or right) 368.F 
mixed 284.D 
nilpotent (of a Lie algebra) 248.C 
order (of a vector lattice) 310.B 
p-primary 67.F 
primary 67.F 
prime 67.C 
prime (of a maximal order) 27.A 
prime differential (of a differential ring) 113 
primitive (of a Banach algebra) 36.E 
principal 67.K 
principal (of an algebraic number field) 14.E 
principal, theorem (in class field theory) 59.D 
principal fractional 67.K 
pure 284.D 
right (of a ring) 368.F 
right o, 27.A 
semiprime (of a commutative ring) 113 
semiprime differential (of a differential ring) 

113 
sheaf of (of a divisor of a complex manifold) 

72.F 
solvable (of a Lie algebra) 248.C 
two-sided (of a ring) 368.P 
two-sided o- 27.A 
unmixed 284.D 
valuation (of a valuation) 439.B 

ideal boundary 207.A 
in the narrow sense 14.G 

ideal class 14.E 
ideal class group 14.E 67.K 

ideal group modulo m* 14.H 
ideal point (in hyperbolic geometry) 285.C 
idele (of an algebraic number field) 6.C 

principal 6.C 
idele class 6.D 
idele class group 6.D 
idele group 6.C 
idempotent element (of a ring) 368.B 

elementary 450.0 
primitive 368.B 

idempotent law (in a lattice) 243.A 
idempotent measure 192.P 
idempotent set (of a ring) 368.B 
idempotent theorem 36.M 
identically true formula 411.G 
identification (in factor analysis) 280.G 
identification space (by a partition) 425.L 
identified equation 128.C 

just 128.C 
over- 128.C 

identity (identities) 231.A 
Bianchi 80.5 417.B 
Bianchi first App. A, Table 4.11 
Bianchi second App. A, Table 4.11 
homotopy (of an H-space) 203.D 
Jacobi (on the bracket of two vector fields) 

105.M 
Jacobi (in a Lie algebra) 248.A 
Jacobi (with respect to Whitehead product) 

202.P 
in Jordan algebras 231.A 
Lagrange 252.K 
Parseval t8.B 159.A 160.C 192.K 197.C 

220.B,C,E 
resolution of 390.D 
theorem of (of one variable) 198.C 
theorem of (of several variables) 21.C 

identity character (of an Abelian group) 2.G 
identity component (of a topological group) 423.F 
identity element 

of an algebraic system 409.C 
of a field 149.A 
of a group 190.A 
of a local Lie group 423.L 
of a ring 368.A 

identity function 381 .C 
identity mapping 381.C 
identity matrix 269.A 
identity operator (in a linear space) 37.C 
identity relation 102.1 
Ihara zeta function 450.U 
Ikehara-Landau theorem, Wiener- 123.B 
ill-conditioned (coefficient matrix in numerical 

solution of linear equations) 302.D 
image 

(of a group homomorphism) 190.D 
(of a linear mapping) 256.F 
(of a line in P3) 343.E 
(of a mapping) 38 1 .C 
(of a morphism) 52.N 
(of an operator homomorphism) 277.E 
(of a sheaf homomorphism) 383.D 
closed (of a variety) 18.1 
continuous 425.G 
direct (of a sheaf) 383.G 
homomorphic (of a measure preserving 

transformation) 136.D 
inverse (of a set) 381.C 
inverse (of a sheaf) 383.G 
inverse (of a uniformity) 436.E 



2015 Subject Index 
Independent 

perfect 425.CC 
perfect inverse 425.CC 

image measure 270.K 
imaginary axis 74.C 
imaginary field, totally 14.F 
imaginary hypersphere 76.A 
imaginary intinite prime divisor 439.H 
imaginary number 74.A 

purely 14.A 
imaginary part 74.A 
imaginary prime divisor 439.H 
imaginary quadratic field 347.A 
imaginary root (of an algebraic equation) 10.E 
imaginary transformation, Jacobi’s 134.1, App. A, 

Table 16.111 
imaginary unit 74.A 294.F 
imbedded Markov chain 260.H 
imbedding 105.K 
imbedding principle 127.B 
immersed submanifold (of a Euclidean space) 

lll.A 
immersion 

(of a Cm-manifold) 105.K 
(of a Riemann surface) 367.G 
branched minimal 275.B 
generalized minimal 275.B 
isometric 365.A 
Klhler 365.L 
minimal 275.A 
minimum 365.0 
tight 365.0 
totally real 365.T 

imperfect field 149.H 
implication 411 .B 

strict 411.L 
implicit 

(difference equation in a multistep method) 
303.E 

(Runge-Kutta method) 303.D 
implicit enumeration method 215.D 
implicit functions 165.C 208 
implicit function theorem 208.A 286.G 

(in Banach algebras) 36.M 
(in locally convex spaces) 286.5 
global 208.D 
Nash-Moser 286.5 

implicit method 303.E 
implicit scheme 304.F 
impossible construction problem 179.A 
impossible event 342.B 
impredicative (object) 156.8 
imprimitive (permutation group) 151.H 
improper integral 216.D,E 

convergent 216.E 
divergent 216.E 

improper Riemann integral 216.E 
improvement, iterative 302.C 
impulse control 405.E 
impulse function 306.B, App. A, Table 12.11 
imputation 173.D 
imputed costs 292.B 
imputed prices 292.C 
IMT formula 299.B 
inaccessible, strongly 33.F 
inaccessible cardinal number 

strongly 33.E 
weakly 33.E 

inaccessible ordinal number 
strongly 312.E 
weakly 312.E 

Ince definition 268.D 
Ince-Goldstein method 268.C 
incidence matrix 

of a block design 102.B 
of a graph 186.G 

incidence number 146.B 201.B 
incidence relation 282.A 
inclination, curve of constant 11 l.F 
inclination problem, critical 55.C 
inclusion 381 .C 
inclusion mapping 381.C 
incoming wave operator 375.B 
incompatible system (of partial differential 

equations) 428.B 
incomplete beta function App. A, Table 17.1 
incomplete blocks 102.B 
incomplete elliptic integral of the first kind 134.B 
incomplete factorization 302.C 
incomplete gamma function 174.A, App. A, 

Table 17.1 
incompleteness theorem, Giidel 156.E 

first 185.C 
second 185.C 

incompressible (measurable transformation) 136.C 
incompressible fluid 205.B 
inconsistent problem (of geometric construction) 

179.A 
inconsistent system (of algebraic equations) 10.A 
increasing (sequence function or distribution) 

monotone 166.A 380.B 
monotonically 87.B 
non- 166.A 
slowly (P-function) 125.0 
slowly (distribution) 125.N 
slowly (in the sense of Deny) 338.0 
slowly, sequence 168.B 
strictly 166.A 
strictly monotone 166.A 

increasing directed set 308.A 
increasing process 406.B 

integrable 406.B 
increment 

of a function 106.B 
process with independent 5.B 

increment function 380.B 
Ind (large inductive dimension) 117.B 
ind (small inductive dimension) 117.B 
indecomposable A-module 277.1 
indecomposable continuum 79.D 
indecomposable group 190.L 
indecomposable linear representation 362.C 
indecomposable vector bundle 16.Y 
indefinite D-integral 100.D 
indefinite Hermitian form 348.F 
indefinite integral 198.B 

in Lebesgue integral 221.0 
in Riemann integral 216.C 

indetinite quadratic form 348.C 
indefinite sum (of a function) 104.B 
in degree 186.B 
independence, number of 186.1 
independence theorem (on valuations) 439.G 
independent 

(axioms) 35.B 
(complexes) 70.B 
(differential operators) 324.C 
(events) 342.B 
(frequency) 126.L 
(partitions) 136.E 
(points) 7.A 



Subject Index 
Independent increments, process with 

2016 

(random variables) 342.C 
algebraically 149.K 369.A 
analytically (in a complete ring) 370.A 
E- (partitions) 136.E 
linearly 2.E 256.C,E 277.G 
path 346.G 

independent increments, process with 5.B 
independent of the past history 406.D 
independent process 136.E 
independent set 66.G 186.1 
independent system, maximal (of an additive group) 

2.E 
independent variable 165.C 
independent vector 66.F 
indeterminacy, set of points of (of a proper 

meromorphic mapping) 23.D 
indeterminate 369.A 

in the algebraic sense 337.C 
indeterminate coefficients, Lagrange’s method of 

106.L 
indeterminate form, limit of 106.E 
indeterminate system (of algebraic equations) 10.A 
Ind,a 297.G 
index 

(of a central simple algebra) 29.G 
(of a critical point) 279.B,E 286.N 
(of a divisor) 3.D 
(of an s-Hermitian form) 60.0 
(of an eigenvalue) 217.F 
(of a Fredholm mapping) 286.E 
(of a Fredholm operator) 68.F 251.D 
(of a manifold) 56.G 
(of a number) 297.G 
(of an orthogonal array) 102.L 
(of a quadratic form) 348.E 
(of a recursive function) 356.F 
(of the Riemann-Hilbert problem) 217.5 
(of a stable distribution) 341.G 
(of a stable process) 5.F 
(of a subgroup) 190.C 
analytic (of an elliptic complex) 237.H 
analytic (of an elliptic differential operator) 
237.H 

contravariant (of a component of a tensor) 
256.5 

covariant (of a component of a tensor) 256.5 
cycle 66.E 
deficiency (of a closed symmetric operator) 

251.1 
deficiency (of a differential operator) 112.1 
degeneracy 17.C 
differential (in a covering of a nonsingular 

curve) 9.1 
dummy (of a tensor) 256.J 
fixed-point (of a continuous mapping) 153.B 
of inertia (of a quadratic form) 348.E 
Keller-Maslov 274.C 
Kronecker 201.H 
multi- 112.A 
o-speciality (of a divisor) 9.F 
p- (on a central simple algebra) 29.G 
ramification (of an algebroidal function) 

17.c 
ramification (of a finite extension) 257.D 
ramification (of a prime ideal) 14.1 
ramification (of a valuation) 439.1 
ramification, relative (of a prime ideal) 14.1 
of relative nullity 365.D 
Schur (of a central simple algebra) 29.E 
Schur (of an irreducible representation) 362.F 

of a singular point (of a continuous vector field) 
153.B 

speciality (of a divisor) 9.C 15.D 
topological (of an elliptic complex) 237.H 
of total isotropy (of a quadratic form) 348.E 

indexing set (of a family of elements) 381.D 
index set 

(of a balanced array) 102.L 
(of a family) 165.D 381.D 

index theorem 
Atiyah-Singer 237.H 
for differentiable manifolds 56.G 
Hirzebruch (for differentiable manifolds) 56.G 
of Hodge 15.D 
Morse 279.F 

Indian mathematics 209 
indicator function 

modified 341.C 
of a subset 342.E 

indicatrix 
Dupin 11 l.H 
spherical (of a space curve) 11l.F 

indicial equation 254.C 
indirect least squares method 128.C 
indirect transcendental singularity (of an analytic 

function) 198.P 
indiscrete pseudometric space 273.B 
indiscrete topology 425.C 
individual 41 l.H 
individual domain 411.H 
individual ergodic theorem 136.B 
individual risk theory 214.C 
individual symbol 411.H 
individual variables 41 l.H 
indivisibilis 265 
induced 

(Cartan connection) 80.0 
(unfolding) 51.D 

induced bundle 147.G 
induced homomorphism 202.K 
induced module 277.L 
induced representation 

(of a finite group) 362.G 
(of a unitary representation) 437.0 

induced topology 425.1 
induced von Neumann algebra 308.C 
induction 

(of a von Neumann algebra) 308.C 
axiom of mathematical 294.B 
complete 294.B 
double mathematical 294.B 
magnetic 130.A 
mathematical 294.B 
multiple mathematical 294.B 
translinite (in a well-ordered set) 31 l.C 

induction equation 259 
inductive dimension 

small 117.B 
large I 17.B 

inductive limit 
(in a category) 210.D 
(of an inductive system of sets) 210.B 
(of a sequence of topological spaces) 425.M 
(of sheaves) 383.1 
strictly (of a sequence of locally convex spaces) 

424.W 
inductive limit and projective limit 210 
inductive limit group 210.C 
inductive limit space 210.C 
inductively ordered set 34.C 



2017 Subject Index 
Infinitesimal transformation 

inductive system 
(in a category) 210.D 
(of groups) 210.C 
(of sets) 210.B 
of topological spaces 210.C 

inelastic (scattering) 375.A 
inequality (inequalities) 211, App. A, Table 8 

absolute 21 l.A 
Bell’s 351.L 
Bernshtein (for trigonometric polynomials) 

336.C 
Bessel 197.C 
Bhattacharyya 399.D 
Bunyakovskii 21 l.C, App. A, Table 8 
Carleman App. A, Table 8 
Cauchy 21 l.C, App. A, Table 8 
Cauchy-Schwarz 21 l.C, App. A, Table 8 
Chapman-Robbins-Kiefer 399.D 
Chebyshev 342.C 
conditional 21 l.A 
correlation 212.A 
Cramer-Rao 399.D 
distortion 438.B 
energy 325.C 
Fisher 102.E 
FKG 212.A 
Girding 112.G 
GHS 212.A 
GKS first 212.A 
GKS second 212.A 
Golden-Thompson 212.B 
Griffith& first 212.A 
Grifhths’s second 212.A 
Grunsky 438.B 
Hardy App. A, Table 8 
Hardy-Littlewood-Sobalen 224.E 
Haussdorff-Young 224.E 
Hilbert App. A, Table 8 
Holder 2 11 .C, App. A, Table 8 
Holder integral 211.C 
isoperimetric 228.B 
Jordan App. A, Table 8 
Klein 212.B 
Markov (for polynomials) 336.C 
maximal (maximal ergodic lemma) 136.B 
Minkowski 21 l.C, App. A, Table 8 
Morse 279.D,E 
Peierls-Bogolyubov 212.B 
Powers-Stormer 212.B 
quasivariational 440.D 
Riemann’s period 3.L 
Riemann-Roth (on algebraic surfaces) 15.D 
Roepstorff-Araki-Sewell 402.G 
Roepstorff-Fannes-Verbeure 402.G 
Schwarz 21 l.C 
stationary variational 440.B 
triangle 273.A 
variational, of evolution 440.C 
von Neumann 251.M 
Wirtinger App. A, Table 8 
Wolfowitz 399.5 
Young 224.E, App. A, Table 8 

inertia 
ellipsoid of 271.E 
index of (of an a quadratic form) 348.B 
law of 271.A 
law of, Sylvester (on a quadratic form) 348.B 
moment of 271.E 
principal axis of 27 1 .E 
principal moment of 271.E 

product of 271.E 
inertia field (of a prime ideal) 14.K 
inertia group 14.K 257.D 
inertial system 271.D 359 
inf (infimum) 31 l.B 
inference 

rule of 411.1 
statistical 401 
statistical, graphical method of 19.B 

inferior limit 
(of a sequence of real numbers) 87.C 
(of a sequence of subsets of a set) 270.C 

inferior limit event 342.B 
intimum 

(of an ordered set) 31 l.B 
(of a subset of a vector lattice) 310.C 

infinite, purely (von Neumann algebra) 308.E 
infinite branch (of a curve of class Ck) 93.G 
infinite cardinal number 49.A 
infinite classical group 147.1 202.V 
infinite continued fraction 83.A 
infinite determinant (in Hill’s method of solution) 

268.B 
infinite-dimensional complex projective space 56.C 
infinite-dimensional linear space 256.C 
infinite-dimensional normal space 117.B 
infinite-dimensional real projective space 56.B 
infinite Grassmann manifold 147.1 
infinite group 190.C 
infinite height (element of an Abelian p-group) 2.D 
infinite interval 355.C 
infinite lens space 91.C 
infinitely differentiable (function) 106.K 
infinitely divisible distribution 341.G 
infinitely recurrent (measurable transformation) 

136.C 
infinite matrix 269.K 
infinite order (of an element in a group) 190.C 
infinite orthogonal group 202.V 
infinite population 401.E 
infinite prime divisor 439.H 

imaginary 439.H 
real 439.H 

intinite product 379.G, App. A, Table lO.VI 
divergent 379.G 

infinite product expansion, Euler’s 436.B 450.B 
infinite sequence 165.D 
infinite series 379.A, App. A, Table 10.111 
infinite set 49.F 381.A 

countably 49.A 
infinitesimal 

(for a function) 87.G 
(for a hyperreal number) 293.D 
(for a sequence of random variables) 250.B 
order of (of a function) 87.G 

infinitesimal birth rate 260.G 
infinitesimal calculus (in nonstandard analysis) 

293.D 
infinitesimal death rate 260.G 
infinitesimal deformation to the direction a/& 

72.G 
infinitesimal element (in nonstandard Hilbert space) 

276.E 
infinitesimal generator (of a semigroup) 378.B 
infinitesimal motion (of a Riemannian manifold) 

364.E 
infinitesimal real number 276.E 
infinitesimal transformation 

(of a differentiable transformation group) 
431.G 



Subject Index 
Infinitesimal wedge 

2018 

(of a one-parameter transformation group) 
105.N 

infinitesimal wedge 125.V 
infinite Stiefel manifold 147.1 
infinite symplectic group 202.V 
infinite type (Lie algebra) 191.D 
infinite type power series space 168.B 
infinite unitary group 202.V 
infinity 87.D,G 

axiom of 33.B 381 .G 
axiom of strong 33.E 
hyperplane at (in atline geometry) 7.B 
minus 87.D 
negative 87.D 355.C 
order of (of a function) 87.G 
plus 87.D 
point at 7.B 74.D 178.F 285.C 
positive 87.D 355.C 
regular at the point at 193.B 
space at (in affine geometry) 7.B 

inflation 200.M 
inflection, point of 9.B 93.G 
influence, domain of 325.B 
influence curve 371.1 
information 

Fisher 399.D 
limited (in maximum likelihood method) 

128.C 
loss of 138.B 
mutual 213.E 
self- 213.B 

information bit 63.C 
information compression 96.B 
information matrix 102.1 399.D 
information number, Kullback-Leibler (K-L) 

398.G 
information retrieval 96.F 
information retrieval system 96.F 
information sciences 75.F 
information set 173.B 
information source 213.A 

ergodic 213.C 
information theory 213 
informatiques 75.F 
informative, more (statistical experiment) 398.G 
infra-exponential growth 125.AA,BB 
infrared divergence 132.C 146.B 
ingoing subspaces 375.H 
inhomogeneous 

(boundary value problem) 315.B 
(difference equation) 104.C 
(linear ordinary differential equation) 252.A 
(system of linear differential equations) 252.G 

inhomogeneous coordinates 343.C 
inhomogeneous lattice (in R”) 182.B 
inhomogeneous Lorentz group 359.B 
inhomogeneous polarization 3.G 
initial blocks 102.E 
initial-boundary value problem 325.K 
initial condition 

(for ordinary differential equations) 316.A 
(for partial differential equations) 321.A 

initial data 321.A 
initial distribution 

(of a Markov process) 261.A 
(for a stochastic differential equation) 406.D 

initial function (of a functional-differential 
equation) 163.C 

initial law (for a stochastic differential equation) 
406.D 

initial number 312.D 
initial object 52.D 
initial ordinal number 49.E 
initial phase (of a simple harmonic motion) 318.B 
initial point 

(of a curvilinear integral) 94.D 
(of a path) 170 
(of a position vector) 7.A 
(of a vector) 442.A 

initial set 
(of a correspondence) 358.B 
(of a linear operator) 251.E 

initial state 31.B 
initial surface 321.A 
initial term (of an infinite continued fraction) 

83.A 
initial value 

(for an ordinary differential equation) 316.A 
(for a partial differential equation) 321.A 
(for a stochastic differential equation) 406.D 

initial value problem 
(for functional-differential equations) 163.D 
(for hyperbolic partial differential equations) 

App. A, Table 15.111 
(for integrodifferential equations) 222.B 
(for ordinary differential equations) 313.C 

316.A 
(for partial differential equations) 321.A 
Navier-Stokes 204.B 
singular (for partial differential equations of 
mixed type) 326.C 

initial vertex 186.B 
injection 381.C 

(in a category) 52.D 
(homomorphism of cohomology groups) 

200.M 
canonical 38 1 .C,E 
canonical (on direct sums of modules) 277.F 
canonical (on free products of group) 190.M 
canonical (from a subgroup) 190.D 
natural (from a subgroup) 190.D 

injective 
(Banach space) 37.M 
(C*-algebra) 36.H 
(mapping) 381.C 
(object in an Abehan category) 200.1 

injective A-module 277.K 
injective class 200.4 
injective dimension 200.K 
injective envelope 200.1 
injective module, (R, S)- 200.K 
injective resolution (in an Abehan category) 200.1 

j- 200.Q 
right (of an A-module) 200.F 

injectivity, rational 200.0 
injectivity radius 178.C 
inner area 216.F 270.G 
inner automorphism 

(of a group) 190.D 
(of a ring) 368.D 
group of (of a group) 190.D 
group of (of a Lie algebra) 248.H 

inner capacity, Newtonian 48.F 
inner derivation 

(of an associative algebra) 200.L 
(of a Lie algebra) 248.H 

inner function 43.F 
inner harmonic measure 169.B 
inner measure 270.E 

Lebesgue 270.F 



2019 Subject Index 
Integral(s) 

inner product 
(in a Hermitian linear space) 256.Q 
(in a Hilbert space) 197.B 
(of hyperspheres) 76.A 
(between a linear space and its dual space) 

256.G 
(in a metric vector space) 256.H 
(of a pair of linear spaces) 424.G 
(of vectors) 256.A 442.B 
Hermitian 256.4 

inner product space 442.8 
inner solution 112.B 
inner topology (of a Lie subgroup) 249.E 
inner transformation (in the sense of Stoilow) 

367.B 
inner variable 112.B 
inner volume 270.G 
innovation 405.H 
input, Poisson 260.H 
input data, error of 138.B 
inrevolvable oval 89.E 
inscribe (in a sphere) 139.1 
inscribed circle (of a regular polygon) 357.A 
inseparable, purely (rational mapping) 16.1 
inseparable element (of a field) 149.H 

purely 149.H 
inseparable extension (of a field) 149.H 

purely 149.H 
inseparable polynomial 337.G 
inspection 

expected amount of 404.C 
sampling (-sampling inspection) 404.C 

instantaneous state 260.F 261.B 
in-state 150.D 386.A 
instruction 31.B 

single-address 75.C 
insurance 

amount of 214.A 
cost of 214.B 
death 214.B 
mixed 214.B 
survival 214.B 

insured, amount 214.A 
integer(s) 294.C 

algebraic 14.A 
Cartan (of a semisimple Lie algebra) 248.N 
Gaussian 14.U 
p-adic 439.F 
p-adic, ring of 439.F 
rational 294.B 

integer polyhedron 215.C 
integer programming 215 264.C 
integer programming problem 

all- 215.A 
mixed 215.A 
pure 215.A 
O-1 215.A 

integrability 
(of multivalued vector functions) 443.1 
strong 443.1 

integrability condition, complete 428.C 
integrable 

(function) 221.B 
(G-structure) 191.A 
(increasing process) 262.D 406.B 
(representation) 437.X 
(in the sense of Riemann) 216.A 
absolutely 216.E,F 
BirkhoB(function) 443.E 
Bochner (function) 443.C 

completely (system of independent l-forms) 
154.B 428.D 

D- (function) 100.D 
Daniell-Stone (function) 310.1 
Denjoy (in the wider sense) 100.D 
Dunford 443.F 
Gel’fand-Pettis (function) 443.F 
Lebesgue (function) 221.B 
locally, function 168.B 
p- (function) 221.B 
Perron (function) 100.F 
Pettis 443.F 
Riemann (function) 216.A 
scalarly 443.FJ 
square (function) 168.B 
square (unitary representation) 437.M 
termwise (series) 216.B 
uniformly (family of random variables) 262.A 
weakly (function) 443.E 

integrable distribution 125.N 
integrable increasing process 262.D 406.B 
integrable process of bounded variation 406.B 
integrable system 287.A 
integrably homotopic 154.F 
integral(s) 

(of differential forms) 105.T 
(of a distribution with respect to %) 125.H 
(of a function) 221.B 
(=integrally dependent) 67.1 
(of a Mange-Ampere equation) 278.B 
(of multivalued vector functions) 443.1 
(scheme) 16.D 
Abelian 1 l.C 
action 8O.Q 
Airy App. A, Table 19.W 
almost (element of a ring) 67.1 
of angular momentum 420.A 
Banach 310.1 
Bartle-Dunford-Schwartz 443.G 
Bessel 39.B 
Birkhoff 443.E 
Bochner 443.C 
Bromwich 240.D 322.D, App. A, Table 12.1 
Carson App. A, Table 12.11 
of Cauchy type 198.B 
of the center of mass 420.A 
complete additivity of the (in Lebesgue integral) 

221.c 
complete elliptic App. A, Table 16.1 
complete elliptic, of the first kind 134.B 
complete elliptic, of the second kind 134.C 
conjugate Fourier 160.D 
constant 216.C 
cosine 167.D. App. A, Table 19.11 
curvilinear 94.A 
curvilinear (with respect to a line element) 

94.D 
curvilinear (with respect to a variable) 94.D 
D(*)- 100.D 
Daniell-Stone 310.1 
definite App. A, Table 9.V 
definite (of a hyperfunction) 125.X 
definite (in a Riemann integral) 216.C 
definite D- 100.D 
Denjoy 100 
Denjoy (in the restricted sense) 100.D 
Denjoy (in the wide sense) 100.D 
direct 308.G 
direct (of unitary representations) 437.H 
Dirichlet (in Dirichlet problem) 120.F 



Subject Index 
Integral bilinear functional 

2020 

Dirichlet (in Fourier’s single integral theorem) 
160.B 

double (in Riemann integral) 216.F 
Dunford 251.G 443.F 
elliptic 1 l.C 134.A, App. A, Table 16.1 
elliptic, of the first kind 134.A 
elliptic, of the second kind 134.A 
elliptic, of the third kind 134.A 
energy 420.A 
Euler, of the first kind 174.C 
Euler, of the second kind 174.C 
exponential 167.D, App. A, Table 19.11 
Feynman 146 
first (of a completely integrable system) 428.D 
Fourier 160.A 
Fresnel 167.D, App. A, Tables 9.V 19.11 
of a function with respect to a volume element 

105.w 
Gauss 338.5 
Gel’fand 443.F 
Gel’fand-Pettis 443.F 
harmonic 194.A 
Hilbert’s invariant 46.C 
hyperelliptic 11 .C 
hypergeometric 2.53.B 
improper (in Riemann integral) 216.D,E 
incomplete elliptic (of the first kind) 134.B 
indelinite (in Lebesgue integral) 221.D 
indefinite (in Riemann integral) 198.B 216.C 
indefinite D- 100.D 
intermediate App. A, Table 15.111 
intermediate (of a Monge-Ampere equation) 

278.B 
iterated (in Lebesgue integral) 221.E 
iterated (in Riemann integral) 216.G 
Jacobi 420.F 
L- 221.B 
with respect to I (of a distribution) 125.H 
Lebesgue 221.B 
Lebesgue-Radon 94.C 
Lebesgue-Stieltjes 94.C 166.C 
logarithmic 167.D, App. A, Table 19.11 
Lommel 39.C 
multiple (in Lebesgue integral) 221.E 
multiple (in Riemann integral) 216.F 
n-tuple (in Riemann integral) 216.F 
over an oriented manifold 105.T 
Pettis 443.F 
Poisson 168.B 193.G 
probability App. A, Table 19.11 
regular first 126.H 
repeated (in Lebesgue integral) 221.E 
repeated (in Riemann integral) 216.G 
Riemann 37.K 216.A 
Riemann lower 216.A 
Riemann-Stieltjes 94.B 166.C 
Riemann upper 2 16.A 
scalar 443.F,I 
sine 167.D, App. A, Table 19.11 
singular 217.5 
over a singular chain 105.T 
spectral 390.D 
Stieltjes 94.B 
stochastic 261.E 406.B 
stochastic, of Stratonovich type 406.C 
surface 94.A,E 
surface (with respect to a surface element) 

94.E 
trigonometric 160.A 

vector 443.A 
of a vector field App. A, Table 3.111 
vector-valued 443.A 

integral bilinear functional 424.R 
integral calculus 216 
integral character (of the homology group of 

a Riemann surface) 1 l.E 
integral closure (of a ring) 67.1 
integral cohomology group 201.H 
integral constant 216.C 
integral cosine 167.D 
integral current 275.G 
integral curvature (of a surface) 11 l.H 
integral curve 

(of a Monge equation) 324.F 
(of ordinary differential equations) 316.A 

integral direct sum 308.G 
integral divisor 

(of an algebraic curve) 9.C 
(of an algebraic number field) 14.F 
(on a Riemann surface) 1 l.D 

integral domain 368.B 
Noetherian 284.A 

integral element 428.E 
k-dimensional 19 1 .I 
ordinary 428.E 
regular 428.E 

integral equation(s) 217 
Abel 217.L 
associated 217.F 
Fredholm 217.A 
of Fredholm type 217.A 
Hammerstein 217.M 
homogeneous 2 17.F 
linear 217.A 
nonlinear 217.M 
numerical solution of 217.N 
singular 217.5 
transposed 217.F 
Volterra 217.A 
of Volterra type 217.A 

integral exponent 167.D 
integral form 248.W 
integral formula 

Cauchy 198.B 
Poisson 198.B 
Villat App. A, Table 15.VI 
Weyl 225.1 

integral function 429.A 
integral g-lattice 27.A 
integral geometry 218 

principal formula of 218.C 
integral homology group 

of a polyhedron 201.D 
of a simplicial complex 2Ol.C 

integral hypersurface (of a partial differential 
equation) 320.A 

integral ideal (of an algebraic number field) 14.C 
integral inequality, Holder 21 l.C 
integral invariant(s) 219 

absolute 219.A 
Cartan’s relative 219.B 
relative 219.A 

integral kernel 217.A 251.0 
integral left ideal 27.A 
integral logarithm 167.D 
integrally closed 

(in a ring) 67.1 
completely (ring) 67.1 



2021 Subject Index 

Intersect 

integrally closed ring 67.1 
integrally dependent element (of a ring) 67.1 
integral manifold 428.A,B,D 

k-dimensional 191.1 
ordinary (of a differential ideal) 428.E 
regular (of a differential ideal) 428.E 
singular (of a differential ideal) 428.E 

integral method, summable by Borel’s 379.0 
integral operator 68.N 100.E 250.0 

Calderon-Zygmund singular 217.5 251.0 
Fourier 274.C 345.B 
of Hilbert-Schmidt type 68.C 

integral point 428.E,F 
integral quotient (in the division algorithm of 

polynomials) 337.C 
integral representation 362.0,K 

Cauchy 21.C 
Herglotz 43.1 
Laplace-Mehler App. A, Table 18.11 
Schlafli 393.8 

integral right ideal 27.A 
integral sine 167.D 
integral singular homology group 201.E 
integral test, Cauchy (for convergence) 379.B 
integral theorem 

Cauchy 198.A,B 
Fourier double 160.B 
Fourier single 160.B 
stronger form of Cauchy 198.8 

integral transforms 220.A 
integral two-sided o-ideal 27.A 
integral vector 428.E 
integrand 2 16.A 
integrate 216.A 

(an ordinary differential equation) 313.A 
integrating factor App. A, Table 14.1 
integration 

along a hber (of a hyperfunction) 274.E 
automatic, scheme 299.C 
contour of (of curvilinear integral) 94.D 
domain of 216.F 
graphical 19.B 
Jacobi’s second method of 324.D 
numerical 299 
path of (of curvilinear integral) 94.D 
Romberg 299.C 

integration by parts 216.C 
(on D-integral) 100.G 
(in the Stieltjes integral) 94.C 

integration constant (in a general solution of 
a differential equation) 313.A 

integration formula 
based on variable transformation 299.B 
Gauss (in the narrow sense) 299.A 
Poisson App. A, Table 15.VI 
Villat App. A, Table 15.VI 

integrodifferential equation(s) 163.A 222 
of Fredholm type 222.A 
Prandtl’s 222.C 
of Volterra type 222.A 
Wiener-Hopf 222.C 

intensity, traffic 260.H 
intensive (thermodynamical quantity) 419.A 
interaction 102.H 
interest, assumed rate of 214.A 
interference (of waves) 446 
interior 

(of an angle) 139.D 155.B 
(of a manifold) 105.B 
(of a polygon) 155.F 

(ofa segment) 155.B 
(of a set) 425.B 
(of a simplex) 70.C 

interior capacity, Newtonian 48.F 
interior cluster set 62.A 
interior field equation 359.D 
interior operator 425.B 
interior point 425.B 
interior problem (in Dirichlet problems) 120.A 
interior product (of a differential form with a vector 

field) 105.Q 
intermediate convergent (of an irrational number) 

83.B 
intermediate held 149.D 
intermediate integrals App. A, Table 15.111 

of Monge-Ampere equation 278.B 
intermediate-value theorem 84.C 
intermittent structure 433.C 
internal (in nonstandard analysis) 293.B 
internal energy 419.A 
internal irregular point 338.L 
internal law of composition (of a set) 409.A 
internally stable set 186.1 
internally thin set 338.G 
internal product 200.K 
internal space in catastrophe theory (in static 

model) 51.B 
internal state 31.B 
internal symmetry 150.B 
international notation (for crystal classes) 92.B 
international system of units 414.A 
interpolating (for a function algebra) 164.D 
interpolating sequence 43.F 
interpolation 

(of a function) 223, App. A, Table 21 
(of a stationary process) 176.K 395.E 
Chebyshev 223.A 336.5 
inverse 223.A 
Lagrange 223.A 
of operators 224 
spline 223.F 

interpolation coefficient, Lagrange’s 223.A 
interpolation formula 223.A 

Bessel App. A, Table 21 
Everett App. A, Table 21 
Gauss App. A, Table 21 
Gauss’s backward 223.C 
Gauss’s forward 223.C 
Newton App. A, Table 21 
Newton’s backward 223.C 
Newton’s forward 223.C 
Stirling App. A, Table 21 

interpolation function 223.A 
interpolation method 224.A 
interpolation polynomial 223.A 

Hermite 223.E 
Lagrange 336.G, App. A, Table 21 
Newton 336.G 
trigonometric 336.E 

interpolation problem 43.F 
interpolation scheme, Aitken 223.B 
interpolation space 224.A 

complex 224.B 
real 224.C 

interpolation theorem 224.B,C 
interpolatory formula 299.A 
interquartile range 397.C 
intersect 155.B 

properly (on a variety) 16.G 
transversally 105.L 



Subject Index 

Intersection 
2022 

intersection 
(of events) 342.B 
(of projective subspaces) 343.B 
(of sets) 381.8 
(of subspaces of an afline space) 7.A 
complete 16.A 

intersection chart 19.D 
intersection multiplicity (of two subvarieties) 16.Q 
intersection number 

(of divisors) 15.C 
(of homology classes) 65.B 201.0 
(of sheaves) 16.E 
self- 15.C 

intersection product 
(in algebraic varieties) 16.Q 
(in homology theory) 201.0 

intersection property, finite 425,s 
intersection theorem 

(of alline geometry) 7.A 
(of projective geometry) 343.B 
Cantor’s 273.F 
Krull 284.A 

interval 
(in a Boolean algebra) 42.B 
(in a lattice) 243.C 
(in a vector lattice) 3lO.B 
(in an ordered set) 311.B 
(in real number space) 355.C 
of absolute stability 303.G 
basic 4.B 
closed 140 355.C 
confidence 399.Q 
of continuity (for a probability distribution) 

341.c 
fiducial 401.F 
finite 355.C 
infinite 355.C 
open 140 355.C 
principle of nested 87.C 
of relative stability 303.G 
supplementary 4.B 
tolerance 399.R 

interval estimation 399.Q 401.C 
interval function 380.A 

additive 380.B 
continuous additive 380.B 

in the large (in differential geometry) 109 
in the small (in differential geometry) 109 
intrablock analysis 102.D 
intransitive (permutation group) 151.H 
intrinsic angular momentum 415.G 
intrinsic homology 114.H 
intuitionism 156.A 

semi- 156.C 
intuitionistic logic 41 l.L 
invariance 

of a confidence region 399.Q 
of dimension, theorem on (of Euclidean spaces) 

117.D 
of domain, Brouwer theorem on 117.D 
homotopy 201.D 
isospin 351.5 
Lorentz 150.B 
of speed of light, principle of 359.B 
topological (homology groups) 201.A 

invariance principle 
(of hypothesis testing) 400.E 
(of wave operators) 375.B 
Donsker’s 250.E 
Strassen’s 250.E 

invariance theorem of analytic relations 198.K 
invariant(s) App. A, Table 14.111 

(of an Abelian group) 2.B 
(of a cohomology class of a Galois group) 

59.H 257.E 
(decision problem) 398.E 
(element under a group action) 226.A 
(of an elliptic curve) 73.A 
(in the Erlangen program) 137 
(under flow) 126.D 
(function algebra) 164.H 
(hypothesis) 400.E 
(measure) 136.B 225 270.L 
(S-matrices) 386.B 
(of a normal simple algebra) 257.G 
(subspace of a Banach space) 25 1.L 
absolute 12.A 226.A 
absolute integral 219.A 
almost G- 396.1 
Arf-Kervaire 114.5 
basic 226.B 
birational 12.A 
Browder-Livesay 114.L 
Cartan (of a finite group) 362.1 
Cartan relative integral 219.B 
conformal 77.E 
covering linkage 235.E 
differential (on an m-dimensional surface) 

1lO.A 
Eilenberg-Postnikov (of a CW-complex) 70.G 
fundamental (of a space with a Lie transforma- 

tion group) 110.A 
fundamental differential (of a surface) 1lO.B 
G- (element) 226.A 
G- (measure) 225.A 
G- (statistics) 396.1 
generalized Hopf 202.Q 
Hasse (of a central simple algebra) 29.G 
homotopy 202.B 
homotopy type 202.F 
Hopf 202S,U 
Hopf, modulo p 202.S 
integral 219 
isomorphism (on a measure space) 136.E 
Iwasawa 14.L 
k- (of a CW-complex) 70.G 
left (metric in a topological group) 423.1 
left, Haar measure 225.C 
left, tensor field 249.A 
metric (on a measure space) 136.E 
Milnor 235.D 
of n-ary form of degree d 226.D 
negatively 126.D 
normal 114.5 
of order p 1lO.A 
p- (of a central simple algebra) 29.G 
PCT 386.B 
Poincart’s differential 74.G 
positively 126.D 
rearrangement 168.B 
relative 12.A 226.A 
relative integral 219.A 
right, Haar measure 225.C 
right, tensor field 249.A 
sampling procedure 373.C 
semi- 226.A 
semi- (of a probability distribution) 341.C 
shape 382.C 
spectral 136.E 
TCP- 386.B 



2023 Subject Index 
Involutory (involutive) system 

topological 425.G 
U- (subspace of a representation space of 
a unitary representation) 437.C 

uniformly most powerful 399.Q 
vector 226.C 
of weight w 226.D 

invariant decision function 398.E 
invariant derivation (on an Abelian variety) 3.F 
invariant differential form (on an Abelian variety) 

3.F 
invariant distribution(s) 

(of a Markov chain) 260.A 
(of second quantization) 377.C 

invariant estimator 399.1 
best 399.1 

invariant field 172.B 
invariant integral, Hilbert’s 46.C 
invariant level a test, uniformly most powerful 

(UMP) 400.E 
invariant Markov process 5.H 
invariant measure(s) 225 

(of a Markov chain) 260.A 
(of a Markov process) 261.F 
(under a transformation) 136.B 
G- 225.B 
quasi- 225.5 
relatively 225.H 
smooth 126.5 
sub- 261.F 
transverse 154.H 

invariant measure problem 136.C 
invariants and covariants 226 
invariant statistic 396.1 

maximal 396.1 
invariant subgroup (of a group) 190.C 
invariant subspace (of a linear operator) 164.H 

doubly 164.H 
invariant tensor field 

left 249.A 
right 249.A 

invariant test 400.E 
almost 400.E 

invariant torus 126.L 
inventory control 227 
inventory model 307.C 
inverse 

(in a group) 190.A 
(of a mapping) 381.C 
homotopy (for an H-space) 203.D 
quasi- (on a Banach algebra) 36.C 
right (in nonlinear functional analysis) 286.G 

inverse analytic function 198.L 
inverse assumption 304.D 
inverse correspondence 358.8 
inverse domination principle 338.L 
inverse element 

(in a group) 190.A 
(in a ring) 368.B 
left (in a ring) 368.B 
quasi- (in a ring) 368.B 
right (in a ring) 368.B 

inverse Fourier transform (of a distribution) 
125.0 

inverse function 198.L 381.C 
inverse function element 198.L 
inverse image 

(of a set) 381.C 
(of a sheaf) 383.G 
(of a uniformity) 436.E 
perfect 425.CC 

inverse interpolation 223.A 
inverse iteration 298.C 
inverse limit (of an inverse system of sets) 210.B 
inverse mapping 381.C 
inverse mapping theorem 208.B 
inverse matrix 269.B 
inverse morphism 52.D 
inverse operator 37.C 251.B 
inverse path 170 
inverse problem 

(in potential scattering) 375.G 
Jacobi 3.L 

inverse relation 358.A 
inverse system (of sets) 210.B 
inverse transform (of an integral transform) 220.A 
inverse trigonometric function 131.E 
inversion 

(with respect to a circle) 74.E 
(of a domain in R”) 193.B 
(with respect to a hypersphere) 76.A 
Laguerre 76.B 
space 258.A 
space-time 258.A 

inversion formula 
(for a characteristic function) 341.C 
(of a cosine transform) 160.C 
(of a Fourier transform) 160.C 
(of a Fourier transform of distributions) 160.H 
(of a Fourier transform on a locally compact 

Abelian group) 192.K 
(of a generalized Fourier transform) 220.B 
(of a Hilbert transform) 220.E 
(of an integral transform) 220.A 
(of a Laplace-Stieltjes transform) 240.D 
(on a locally compact group) 437.L 
(of a Mellin transform) 220.C 
(for a semigroup of operators) 240.1 
(of a Stieltjes transform) 220.D 
Fourier 160.C 
Mobius (in combinatorics) 66.C 
Mobius (in number theory) 295.C 

inverted tiling scheme 96.F 
invertible element 

quasi- 368.B 
of a ring 368.B 

invertible jet 105.X 
invertible knot 235.A 
invertible matrix 269.B 
invertible sheaf 16.E 
involute (of a curve) 11 l.E 
involution 

(of an algebraic correspondence) 9.H 
(in a Banach algebra) 36.F 
(of a division ring) 348.F 
(of a homotopy sphere) 114.L 
Cartan 427.X 

involutive 
(cross section) 286.H 
(differential ideal) 428.E 
(differential system) 191.1 
(distribution) 154.B 428.D 
(Lie group) 191.H 

involutive automorphism (of a Lie group) 412.B 
involutive correlation 343.D 
involutive distribution (on a differentiable manifold) 

428.D 
involutive subspace 428.F 
involutory (involutive) system 

(of differential forms) 428.F 
(of nonlinear equations) 428.C 



Subject Index 

Irrational function, elliptic 
2024 

(of partial differential equations) 428.F 
(of partial differential equations of first order) 

324.D 
irrational function, elliptic 134.E 
irrational number(s) 294.E 355.A 

space of 22.A 
irrational real number 294.E 
irreducibility theorem, Hilbert’s (on polynomials) 

337.F 
irreducible 

(algebraic curve) 9.B 
(algebraic equation) 10.B 
(algebraic variety) 16.A 
(coalgebra) 203.F 
(complemented modular lattice) 243.F 
(continuous geometry) 85.A 
(continuum) 79.D 
(Coxeter complex) 13.R 
(discrete subgroup of a semisimple Lie group) 

122.F 
(germ of an analytic set) 23.B 
(linear representation) 362.C 
(linear system) 16.N 
(linear system in control theory) 86.C 
(3-manifold) 65.E 
(Markov chain) 260.B 
(polynomial) 337.F 
(positive matrix) 269.N 3 10.H 
(projective representation) 362.5 
(representation of a compact group) 69.8 
(Riemannian manifold) 364.E 
(root system) 13.L 
(scheme) 16.D 
(Siegel domain) 384.E 
(transition matrix) 126.5 
(unitary representation) 437.A 
absolutely (representation) 362.F 
at 0 (for an algebraic set) 23.B 

irreducible character 
(of an irreducible representation) 362.E 
absolutely 362.E 

irreducible component 
(of an algebraic variety) 16.A 
(of an analytic space) 23.C 
(of a linear representation) 362.D 

irreducible element (of a ring) 67.H 
irreducible representation(s) 

(of a Banach algebra) 36.D 
fundamental system of (of a complex semisimple 

Lie algebra) 248.W 
irreducible symmetric bounded domain 412.F 
irreducible symmetric Hermitian space 412.E 
irreducible symmetric Riemannian space 412.C 

App. A, Table 5.111 
irreducible tensor of rank k 353.C 
irredundant (intersection of primary ideals) 67.F 
irregular 

(boundary point) 120.D 
(prime number) 14.L 

irregularity 
(of an algebraic surface) 15.E 
number of (of an algebraic variety) 16.0 

irregular point 
(of Brownian motion) 45.D 
(of a Markov process) 261.D 
(in potential theory) 338.L 
external 338.L 
internal 338.L 

irregular singular point 
(of a solution) 254.B 

(of a system of linear ordinary differential 
equations) 254.B 

irreversible processes, statistical mechanics of 
402.A 

irrotational 
(fluid) 205.B 
(vector field) 442.D 

Irwin’s embedding theorem 65.D 
Ising model 340.B 402.G 

stochastic 340.C 
island (in a Riemann surface) 272.5 
isobaric polynomial 32.C 
isogenous 

(Abelian varieties) 3.C 
(algebraic groups) 13.A 

isogeny 13.A 
isolated fixed point 126.G 
isolated ordinal number 312.B 
isolated point 

(of a curve) 93.G 
(in a topological space) 425.0 

isolated primary component (of an ideal) 67.F 
isolated prime divisor (of an ideal) 67.F 
isolated singularity (of an analytic function) 

198.D,M 
isolated singular point 198.D 418.D 
isolated vertex 186.B 
isometrically isomorphic (normed spaces) 37.C 
isometric immersion 365.A 
isometric mapping 11 l.H 273.B 
isometric operator 251.E 

partially 251.E 
isometric Riemannian manifolds 364.A 
isometric spaces 273.B 
isometry 

(=isometric operator) 251.E 
(between Riemannian manifold) 364.A 

isomonodromic deformation 253.E 
isomorphic 

(algebraic systems) 409.C 
(block bundles) 147.Q 
(cohomology theories) 201.4 
(complex manifolds) 72.A 
(fiber bundles) 147.B 
(groups) 190.D 
(Lie algebras) 248.A 
(Lie groups) 249.N 
(measure spaces) 398.D 
(normed spaces) 37.C 
(objects) 52.D 
(PL-embeddings) 65.D 
(representations) 362.C 
(simplicial complexes) 70.C 
(s.s. complexes) 70.E 
(structures) 276.E 
(topological groups) 423.A 
(unitary representations) 437.A 
anti- (lattices) 243.C 
Bore1 270.C 
dually (lattices) 243.C 
isometrically (normed spaces) 37.C 
locally 423.0 
metrically (automorphisms on a measure space) 

136.E 
order 311.E 
similarly (ordered fields) 149.N 
spatially (automorphisms on a measure space) 

136.E 
spectrally 136.E 
weakly 136.E 



2025 Subject Index 
Iwasawa decomposition 

isomorphic mapping, Bore1 270.C 
isomorphic relations among classical Lie algebras 

App. A, Table 5.IV 
isomorphism 

(of Abelian varieties) 3.C 
(of algebraic systems) 409.C 
(of block bundles) 147.Q 
(of fields) 149.B 
(of functors) 52.5 
(of groups) 190.D 
(of lattices) 243.C 
(of Lie algebras) 248.A 
(of linear spaces) 256.B 
(of objects) 52.D 
(of prealgebraic varieties) 16.C 
(of rings) 368.D 
(of topological groups) 423.A 
(of unfoldings) 51 .D 
admissible (of R-groups) 190.E 
algebra 29.A 
analytic 21.5 
analytic (of Lie groups) 249.N 
anti- (of groups) 190.D 
anti- (of lattices) 243.C 
anti- (of ordered sets) 311 .E 
anti- (of rings) 368.D 
birational (of Abelian varieties) 3.C 
birational (of algebraic groups) 13.A 
Bott 237.D 
C”- (of Lie groups) 249.N 
dual (of lattices) 243.C 
dual (of ordered sets) 31 l.E 
excision (on homology groups) ZOl.F,L 
functorial 52.5 
G- 191.A 
k- (of algebraic groups) 13.A 
k- (of extension fields of k) 149.D 
lattice- 243.C 
local (of topological groups) 423.0 
mod p (in a class of Abelian groups) 202.N 
R- (of D-groups) 190.E 
operator (of R-groups) 190.E 
order 3 1 l.E 
ring 368.D 
suspension (for homology) 201.E 
Thorn-Gysin 114.G 
Thorn-Gysin (of a fiber space) 148.E 
uniform 436.E 

isomorphism invariant (on a measure space) 136.E 
isomorphism problem 

(in ergodic theory) 136.E 
(for graphs) 186.J 
(for integral group algebras) 362.K 

isomorphism theorem 
(in class field theory) 59.C 
(on groups) 190.D 
(on rings) 368.F 
(on topological groups) 423.5 
Ax-Kochen (on ultraproduct) 276.E 
tirst (on topological groups) 423.5 
Hurewicz 202.N 
Hurewicz-Steenorod (on homotopy groups of 
fiber spaces) 148.D 

Keisler-Shelah (in model theory) 276.E 
second (on topological groups) 423.5 
third (on topological groups) 423.5 

isoparametric (hypersurface) 365.1 
isoparametric method 304.C 
isoperimetric (curves) 228.A 
isoperimetric constant 391.D 

isoperimetric inequality 228.B 
isoperimetric problem(s) 11 l.E 228.A 

generalized 46.A 228.A 
special 228.A 

isospectral 391.B 
isospectral deformation 387.C 
isospin 351.5 
isospin invariance 351.5 
isothermal compressibility 419.B 
isothermal coordinates 90.C 
isothermal curvilinear coordinate system App. A, 

Table 3.V 
isothermal parameter 334.B 

(for an analytic surface) 111.1 
isothermal process 419.B 
isotopic 65.D 202.B 

(braids) 235.F 
(embeddings) 114.D 
(latin square) 241.A 
ambient 65.D 

isotopy 65.D 202.B 
ambient 65.D 

isotopy lemma, Thorn’s first 418.G 
isotopy type (of knots) 235.A 
isotropic 

(with respect to a quadratic form) 348.E 
k- (algebraic group) 13.G 
totally (subspace) 60.0 348.E 

isotropic point 365.D 
isotropic submanifold 365.D 
isotropic turbulence 433.C 
isotropy, index of total (of a quadratic form) 348.E 
isotropy group 362.B 

linear 199.A 
principal 431.C 

isotropy representation 431.C 
isotropy subgroup (of a topological group) 431.A 
isotropy type (of a transformation group) 431.A 
iterated integral 

(in Lebesgue integral) 221.E 
(in Riemann integral) 216.G 

iterated kernel (for a Fredholm integral equation) 
217.D 

iterated logarithm 
Khinchin’s law of 250.C 
law of 45.F 

iterated series 
by columns (of a double series) 379.E 
by rows (of a double series) 379.E 

iteration 
(in a Banach space) 286.B 
inverse 298.C 
method of successive (for Fredholm integral 
equations) 217.D 

two-body 271.C 
iteration matrix 302.C 
iterative improvement 302.C 
iterative method 302.C 
iterative process, linear stationary 302.C 
It8 circle operation 406.C 
It8 decomposition, Wiener- 176.1 
It8 formula 45.G 406.B 
It6 process 406.B 
ItB theorem, Levy- (on Levy processes) 5.E 
It8 type, stochastic integral of 406.C 
ITPFI 308.1 
Iversen-Beurling-Kunugi theorem 62.B 
Iversen theorem 272.1 
Iwahori subgroup 13.R 
Iwasawa decomposition 
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(of a Lie group) 249.T 
(of a real semisimple Lie algebra) 248.V 

Iwasawa group 384.C 
Iwasawa invariant 14.L 
Iwasawa main conjecture 450.5 
Iwasawa theorem, Cartan-Mal’tsev- (on maximal 

compact subgroups) 249,s 

J 

J-group 237.1 
equivariant 431.F 

J-homomorphism 202.V 237.1 
equivariant 431.F 

J-method 224.C 
Jackson’s theorem (on the degree of approximation 

336.C 
Jacobi, C. G. J. 229 
Jacobian 208.B 
Jacobian, generalized (of a set function) 246.H 
Jacobian criterion (on regularity of local rings) 

370.B 
Jacobian determinant 208.B 
Jacobian matrix 208.B 
Jacobian variety 9.E 1 l.C 16.P 

canonically polarized 3.G 9.E 
generalized 9.F 1 l.C 

Jacobi-Biehler equality 328 
Jacobi condition 46.C 
Jacobi differential equation App. A, Tables 14.11 

20.v 
Hamilton- 271.F 324.E 

Jacobi elliptic functions App. A, Table 16.111 
Jacobi equation, Hamilton- 108.B 
Jacobi field 178.A 
Jacobi identity 

(on the bracket of two vector fields) 105.M 
(in a Lie algebra) 248.A 
(with respect to Whitehead product) 202.P 

Jacobi imaginary transformation 134.1 
Jacobi integral 420.F 
Jacobi inverse problem 3.L 
Jacobi last multiplier App. A, Table 14.1 
Jacobi matrix 390.G 
Jacobi method 

(in numerical computation of eigenvalues) 
298.8 

(in numerical solution of linear equations) 
302.C 

cyclic 298.B 
threshold 298.B 

Jacobi polynomial 317.D, App. A, Table 20.V 
Jacobi second method of integration 324.D 
Jacobi symbol 297.1 

complementary law of 297.1 
law of quadratic reciprocity of 297.1 

Jacobi standard form, Legendre- 134.A, App. A, 
Table 16.1 

Jacobi transformation App. A, Table 16.111 
Jacobson radical (of a ring) 67.D 
Jacobson topology 36.D 
James theorem 37.G 
Janko-Ree type, group of 151.5 
Janzen area (of a Bore1 set) 246.G 
Japanese mathematics (wasan) 230 
Japanese ring, universally 284.F 
Jarrat-Mack method, Garside- 301.N 
Jeffreys method 112.B 
Jensen formula 198.F 
Jensen measure 164.K 

jet 
invertible 105.X 
of order r 105.X 

job 281.D 
job-shop scheduling 307.C 
job-shop scheduling problem 376 
John-Nirenberg space (= BMO) 168.B 
join 

(in a Boolean algebra) 42.A 
(in a lattice) 243.A 
(of points) 155.B 
(of projective spaces) 343.B 
(of sets) 381.B 
(of simplicial complexes) 70.C 
(of subgroups of a group) 190.G 
reduced (of homotopy classes) 202.Q 
reduced (of mappings) 202.F 
reduced (of topological spaces) 202.F 

joined by an arc 79.8 
joint cumulant 397.1 
joint density 397.1 
joint distribution 342.C 
joint moment generating function 397.1,J 
joint random variable 342.C 
joint sensity function 397.5 
joint spectrum 36.M 
Jordan algebras 231 

exceptional 231 .A 
free special 231.A 
semisimple 231.B 
special 231.A 

Jordan arc 93.B 
Jordan canonical form (of a matrix) 269.G 
Jordan content 270.G 
Jordan curve 93.B 
Jordan curve theorem 93.K 
Jordan decomposition 

(of an additive set function) 380.C 
(of a function of bounded variation) 166.B 
(of a linear mapping) 269.L 
(in an ordered linear space) 310.B 
multiplicative 269.L 

Jordan domain 333.A 
Jordan elimination, Gauss- 302.B 
Jordan factorial 330 
Jordan-Holder sequence (in a group) 190.G 
Jordan-Holder theorem (in group theory) 

190.G 
Jordan-Holder theorem (on representations of 

algebras) 362.D 
Jordan homomorphism (between Jordan alge- 

bras) 231.A 
Jordan inequality App. A, Table 8 
Jordan measurable set (of R”) 270.G 
Jordan measure 270.D,G 
Jordan module 231 .C 
Jordan normal form 269.G 
Jordan test (on the convergence of Fourier series) 

159.B 
Jordan-Zassenhaus theorem (on integral represen- 

tation of a group) 362.K 
Joule heat 130.B 
Joule’s law 130.B 
Julia’s direction (of a transcendental entire function) 

272.F 429.C 
Julia’s exceptional function 272.F 
jump (at a point) 84.8 
jump function 306.C 
jumping of the structures 72.G 
just identified (equation) 128.C 
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Kernel 

K 

K-recursiveness 356.G 
k-almost simple algebraic group 13.0 
k-anisotropic algebraic group 13.G 
k-array 330 
k-Bore1 subgroup (of an algebraic group) 13.G 
k-closed algebraic set 13.A 
k-combination 330 
k-compact algebraic group 13.G 
k-connect (graph) 186.F 
k-dimensional integral element 191.1 
k-dimensional integral manifold 191 .I 
k-dimensional normal distribution 341.D 
k-equivalent C”-manifolds 114.F 
k-Erlang distribution 260.H 
k-fold mixing automorphism 136.E 
k-fold screw glide with pitch 92.E 
k-form 

(of an algebraic group) 13.M 
holomorphic 72.A 

k-frame 199.B 
orthogonal 199.B 

k-group 13.A 
k-invariants (of a CW-complex) 70.G 
k-isomorphism (between algebraic groups) 13.A 
k-isotropic algebraic group 13.G 
k-morphism (between algebraic groups) 13.A 
k-movable 382.C 
k-permutation 330 
k-ply transitive G-set 362.B 
k-ply transitive permutation group 151.H 
k-quasisplit algebraic group 13.0 
k-rank (of a connected reductive algebraic group) 

13.4 
k-rational divisor (on an algebraic curve) 9.C 
k-rational point (of an algebraic variety) 16.A 
k-root 13.Q 
k-sample problem 371.D 
k-simple algebraic group 13.0 
k-solvable algebraic group 13.F 
k-space 425.CC 
k-split algebraic group 13.N 
k-split torus 13.D 

maximal 13.Q 
k-step method, linear 303.E 
k-subgroup 

minimal parabolic 13.Q 
standard parabolic 13.4 

k-subset 330 
k-transitive permutation group 151.H 
k-trivial torus 13.D 
k-valued algebroidal function 17.A 
k-vector bundle, normal 114.3 
k-way contingency table 397.K 
k-Weyl group 13.Q 
k’-space 425.CC 
kth prolongation 

(of G structure) 191.E 
(of a linear Lie algebra) 19l.D 
(of a linear Lie group) 191 .D 

kth saturated model 293.B 
kth transform 160.F 
K-complete analytic space 23.F 
K-complete scheme 16.D 
K-flow 136.E 
K-group 237.B 

equivariant 237.H 
K-method 224.C 
K-pseudoanalytic function 352.B 

K-quasiregular function 352.B 
K-rational ( = algebraic over K) 369.C 
K-regular measure 270.F 
K-theory 237 

algebraic 237.5 
higher algebraic 237.5 

K3 surface 15.H 72.K 
marked 72.K 

Kac formula, Feynman- 351.F 
Kac- Nelson formula, Feynman- 150.F 
Kadomtsev-Petvyashvili equation 387.F 
Kahler existence theorem, Cartan- 191.1 

428.E 
Kahler homogeneous space 199.A 
Kahler immersion 365.L 
Kahler manifold 232 
Kahler metric 232.A 

standard (of a complex projective space) 
232.D 

Kahler metric, Einstein- 232.C 
Kahler submanifold 365.L 
Kakeya-Enestriim theorem (on an algebraic 

equation) 10.E 
Katutani equivalence 136.F 
Kakutani fixed point theorem 153.D 
Kakutani theorem 

(on complemented subspace problems of 
Banach spaces) 37.N 

(on statistical decision problems) 398.G 
Kakutani unit 310.G 
KHllen-Lehmann representation 150.D 
Kalltn-Lehmann weight 150.D 
Kalman-Bucy lilter 86.E 405.G 
Kalman tilter 86.E 
Kaluza’s 5-dimensional theory 434.C 
Kametani theorem, Hallstrom- 124.C 
Kan complex 70.F 
Kaplansky’s density theorem 308.C 
Kapteyn series 39.D, App. A, Table 19.111 
Karlin’s theorem 399.G 
Kastler axioms, Haag- 150.E 
Kato perturbation 351.D 
Kato theorem, Rellich- 331.B 
Kawaguchi space 152.C 
KdV equation 387.8 

two-dimensional 387.F 
Keisler-Shelah isomorphism theorem 276.E 
Keller-Maslov index 274.C 
Kelly theorem, Nachbin-Goodner- 37.M 
Kelvin function 39.G, App. A, Table 19.IV 
Kelvin transformation 193.B 
Kendall notation 260.H 
Kendall’s rank correlation 371.K 
Kepler’s equation 309.B 
Kepler’s first law 271.B 
Kepler’s orbital elements 309.B 
Kepler’s second law 271.B 
Kepler’s third law 271.B 
Kertkjarto-Stoilow compactification 207.C 
kernel 

(of a bargaining set) 173.D 
(distribution) 125.L 
(of a group homomorphism) 190.D 
(of an integral equation) 217.A 
(of an integral operator) 251.0 
(of an integral transform) 220.A 
(of a linear mapping) 256.F 
(of a morphism) 52.N 
(of an operator homomorphism) 277.E 
(of a potential) 338.B 



Subject Index 
Kernel differential 

2028 

(of a set) 425.0 
(of a sheaf homomorphism) 383.C 
(of a system of S&in) 22.B 
adjoint 338.B 
of Calderon-Zygmund type 217.5 
of Carleman type 217.5 
consistent 338.E 
degenerate 217.F 
diffusion 338.N 
Dirichlet 159.B 
distribution 338.P 
domain (of a sequence of domains) 333.C 
elementary 320.H 
Fejer 159.C 
Fourier 220.B 
fundamental 320.H 
Hermitian 217.H 
of Hilbert-Schmidt type 217.1 
Hunt 338.0 
integral 217.A 251.0 
iterated 217.D 
Kuramochi 207.C 
Martin 207.C 
perfect (in potential theory) 338.E 
Pincherle-Goursat 217.F 
Poisson 159.C 
positive 2 17.H 
positive definite 217.H 338.D 
positive semidelinite 217.H 
reproducing 188.G 
semidefinite 217.H 
separated 217.F 
singular 217.5 
symmetric 217.G 
symmetric, of positive type 338.D 
weak potential 260.D 
Wiener 95 

kernel differential 188.G 
kernel form 348.E 
kernel function 188.G 

Bergman 188.G 
harmonic 188.H 
SzegG 188.H 

kernel representation (of a Green’s operator) 
189.8 

kernel theorem (of Schwartz) 125.L 424,s 
Kerner-Aberth (DKA) method, Durand- 301.F 
Kerner (DK) method, Durand- 301.F 
Kerr metric 359.E 
Kervaire invariant, Arf- 114.5 
Khachiyan’s method 255.C 
Khinchin canonical form (of an intinitely divisible 

probability distribution) 341.G 
Khinchin decomposition (of a covariance function) 

395.B 
Khinchin’s law of the iterated logarithm 250.C 
Kiefer inequality, Chapman-Robbins- 399.D 
killing 261.F 
Killing curvature, Lipschitz- 279.C 
Killing differential equation 364.F 
Killing form 248.B 
killing measure I 15.B 
killing method (of obtaining a homotopy group) 

202.N 
killing time 260.A 
Killing vector field 364.F 
kind 

Abelian differential of the first, second, third 
11.c 

Abelian integral of the first, second, third 11.C 

associated Legendre function of the first, second 
393.c 

Beltrami differential operator of the first, second 
App. A, Table 4.11 

Bessel function of the first, second. third 39.B 
complete elliptic integral of the first, second 

134.B,C 
differential form of the first (on an algebraic 

variety) 16.0 
canonical coordinates of the tirst, second 

249.Q 
dfferential form of the first, second, third (on a 

nonsingular curve) 9.E 
discontinuity of the first, second 84.B 
discontinuous group of the first 122.B 
elliptic function of the first, second, third 

134.G,H 
elliptic integral of the first, second. third 134.A 
error of the first, second 400.A 
Euler integral of the first, second 174.A,C 
exceptional curve of the first, second 15.G 
Fredholm integral equation of the first, second, 

third 217.A 
Fuchsian group of the first, second 122.C 
Hankel function of the first, second 39.B 
incomplete elliptic integral of the first 134.B 
Lame function of the first, second 133.C 
Legendre function of the first, second 393.B 
Mathieu function of the first, second 268.B 
modified Mathieu function of the first, second, 

third 268.D 
perfect members of the second 297.D 
Stirling number of the second 66.D 

kinetic density 218.A 
kinetic energy 271.C 351.D 
kinetic measure 218.A 
kinetic theory of gases 402.B 
Kirby calculus 114.L 
Kirchhoff laws 282.B 
Kirchhoff solution 325.D 
Kleene’s normal form theorem 356.C 
Klein, F. 233 
Klein bottle 410.B 
Klein combination theorem 234.D 
Klein four-group 151.G 
Klein-Gordon equation 351.G 377.C 
Kleinian group 122.C 234.A 
Klein inequality 212.B 
Klein line coordinates 90.B 
Klein model (of non-Euclidean geometry) 285.C 
Klein-Nishina formula 351.G 
Klein transform 150.D 
K-L (= Kullback-Leibler) information number 

398.G 
Kloosterman sum 32.C 
KMS condition 308.H 402.G 
Kneser-Nagumo theorem 316.E 
Kneser-Sommerfeld formula App. A, Table 19.111 
Knopp-Schmidt theorem 208.C 
Knopp-Schnee theorem (on method of summation) 

379.M 
knot 235.A 

alternating 235.A, App. A, Table 7 
amphicheiral 235.A 
clover leaf 235.C 
equivalent 235.A 
hyperbolic 235.E 
invertible 235.A 

(P> d- 235.G 
(p. q)-ball 235.G 



2029 Subject Index 
L-space 

slice 235.G 
trefoil 235.C 

knot cobordism 235.G 
knot complement conjecture 235.B 
knot conjecture, general 235.B 
knot group (of a knot) 235.B 
knot projection, regular 235.A 
knotted 235.A 
knot theory 235, App. A, Table 7 
knot types 235.A 
Kobayashi pseudodistance 21.0 
Kochen isomorphism theorem, Ax- 276.E 
Kodaira dimension (of a compact complex manifold) 

72.1 
Kodaira-Spencer mapping (map) 72.G 
Kodaira theorem 

(on Hodge manifolds) 232.D 
Chow- 72.F 

Kodaira theory, Weyl-Stone-Titchmarsh- 112.0 
Kodaira vanishing theorem 232.D 
Koebe extremal function 438.C 
Koebe theorem 193.E 
Kojima-Schur theorem (on linear transformations 

of sequences) 379.L 
Kolchin theorem, Lie- (on solvable algebraic groups) 

13.F 
Kollektiv 342.A 
Kolmogorov automorphism 136.E 
Koimogorov axiom To 425.Q 
Kolmogorov backward equation 115.A 260.F 
Kolmogorov canonical form 341.G 
Kolmogorov-Chaitin complexity 354.D 
Kolmogorov equality, Chapman- 261.A 
Kolmogorov equation, Chapman- 260.A 
Kolmogorov extension theorem 341.1407.D 
Kolmogorov flow 136.E 
Kolmogorov forward equation 115.A 260.F 
Kolmogorov-Smirnov test 371.F 
Kolmogorov-Smirnov test statistic 374.E 
Kolmogorov space 425.Q 
Kolmogorov-Spanier cohomology theory, Alex- 

ander- 201.M 
Kolmogorov spectrum 433.C 
Kolmogorov test 45.F 
Kolmogorov theorem 250.F 
Kolmogorov zero-one law 342.G 
KondB uniformization theorem 22.F 
Konig-Egervary theorem 281.E 
Kbnigs-Schroder equation 44.B 
Korteweg-de Vries (KdV) equation 387.A 
Kostant’s formula (on representations of compact 

Lie groups) 248.2 
Kovalevskaya existence theorem, Cauchy- 321.A 
Kovalevskaya theorem, abstract Cauchy- 286.2 
Krein-Mil’man property 443.H 
Krein-Mil’man theorem 424.U 
Krein-Schmul’yan theorem 37.E 424.0 
Krein theorem 424.V 
Krieger’s factor 308.1 
Kronecker, L. 236 
Kronecker approximation theorem 422.K 
Kronecker delta 269.A, App. A, Table 4.11 
Kronecker flow 136.G 
Kronecker index 

(in homology theory) 201.H 
(of divisors on a surface) 15.C 

Kronecker limit formula 450.B 
Kronecker product (of matrices) 269.C 
Kronecker set 192.R 
Kronecker symbol (for a quadratic field) 347.D 

Kronecker theorem 
(on an Abelian extension of Q) 14.L 
(on an algebraic equation) 10.B 

Krull-Akizuki theorem 284.F 
Krull altitude theorem 28.A 
Krull-Azumaya lemma 67.D 
Krull dimension 

(of a commutative ring) 67.E 
(of an ideal) 67.E 

Krull intersection theorem 284.A 
Krull-Remak-Schmidt theorem (in group theory) 

19O.L 
Krull ring 67.5 
Krull topology (for an infinite Galois group) 172.1 
Kruskal coordinates 359.F 
Kruskal-Wallis test 371.D 
Kubo formula 402.K 
Kuhn-Tucker theorem 292.B 
Kullback discrimination information 213.D 
Kullback-Leibler (K-L) information number 398.G 
Kummer criterion 145, App. A, Table 10.11 
Kummer differential equation App. A, Table 19.1 
Kummer extension 172.F 
Kummer function 167.A, App. A, Table 19.1 
Kummer surface 15.H 
Kiinneth formula 

(in Abelian category) 200.H 
(in Weil cohomology) 450.4 

Kiinneth theorem 2OO.E 201.5 
Kunugi theorem, Iversen-Beurling- 62.B 
Kuo (PLK) method, Poincare-Lighthill- 25.B 
Kuramochi compactilication 207.C 
Kuramochi kernel 207.C 
Kuranishi prolongation theorem 428.G 
Kuranishi space 72.G 
Kuratowski space 425.4 
kurtosis 396.C 397.C 

population 396.C 
Kutta-Gill method, Runge- 303.D 
Kutta methods, Runge- 303.D 

L 

A” (Lipschitz spaces) 168.B 
I-function 32.C 
(1,) or I, (a sequence space) 168.B 
L, @) (the space of measurable functionsf(x) on R 

such that If(x)lp, 1 < p < co, is integrable) 
168.B 

L, (cl) 168.B 
L,p,I) (n) (the Lorentz spaces) 168.B 
[-adic cohomology 450.Q 
I-adic coordinate system 3.E 
I-adic representation 3.E 
L-distribution 341.G 
L-estimator 371.H 
L-function 

Artin 450.G,R 
of automorphic representation 450.N 
Dirichlet 450.C 
of elliptic curves 450,s 
Hecke 450.E 
Hecke (with Grossencharakter) 450.F 
p-adic 450.5 
Weil 450.H 

L-group 450.N 
L-integral 221.B 
L-space 87.K 

abstract 310.G 
Frechet 87.K 



Subject Index 

L 1 -algebra 
2030 

L, -algebra (of a locally compact Hausdorff group) of the third species 133.C 
36.L lamellar vector field 442.D 

L,-space, abstract 310.G laminar flow 205.E 433.A 
c-space 87.K ’ Lanczos method 298.D,E 301.N 
(LF)-space 424.W Landau constant 77.F 
labeled graph 186.B Landau equation 146.C 
lacunas for hyperbolic operators 325.5 Landau-Nakanishi equation 146.C 
lacunary structure (of a power series) 339.E Landau-Nakanishi variety 146.C 386.C 
ladder Landau symbols (0, o) 87.G 

down- 206.B Landau theorem 43.5 
up- 206.B Wiener-Ikehara 123.B 
ladder method 206.B Landau variety 146.C 

lag 163.A Landen transformation 134.B, App. A, Table 
lagged variables 128.C 274.C 16.111 
Lagrange, J. L. 238 Lane-Emden function 29 1 .F 
Lagrange bracket 82.A 324.0 Langevin equation 45.1402.K 
Lagrange-Charpit method 322.B, App. A, Table language 3 1 .D 276.A 

15.11 accepted by 3 1 .D 
Lagrange differential equation 320.A, App. A, external 75.C 

Table 14.1 machine 75.C 
Lagrange differential equation, Euler- 46.B Laplace, P. S. 239 
Lagrange equations of motion 271.F Laplace-Beltrami operator 194.B 
Lagrange formula (for vector triple product) Laplace differential equation 323.A, App. A, 

442.C Table 15.111 
Lagrange identity 252.K 2-dimensional case App. A, Table 15.VI 
Lagrange interpolation 223.A 3-dimensional case App. A, Table 15.VI 
Lagrange interpolation coefficients 223.A Laplace expansion theorem (on determinants) 
Lagrange interpolation polynomial 223.A 336.G, 103.D 

App. A, Table 21 Laplace-Mehler integral representation App. A, 
Lagrange manifold, conic 345.B Table 18.11 
Lagrange method Laplace method 30.B 

(of describing the motion of a fluid) 205.A Laplace operator 323.A 442.D 
of indeterminate coefficients 106.L Laplace spherical functions 393.A 
of variation of constants 252.D Laplace-Stieltjes transform 240.A 

Lagrange multiplier 46.8 Laplace theorem, de Moivre- 250.B 
method of 106.L Laplace transform 240, App. A, Table 12.1 

Lagrange partial differential equation App. A, Fourier- 192.F 
Table 15.11 Laplace transform and operational calculus App. 

Lagrange problem (in calculus of variations) 46.A A, Table 12 
Lagrange remainder App. A, Table 9.IV Laplacian 323.A 442.D, App. A, Table 3.11 
Lagrange resolvent 172.F in the large 109 
Lagrange stable 126.E large deviation 250.B 

negatively 126.E large inductive dimension (Ind) 117.B 
positively 126.E large numbers 

Lagrange-stable motion 420.D law of 250.B 
Lagrangian density 150.B strong law of 250.C 

free 150.B weak law of 395.B 
Lagrangian derivative 205.A larger, stochastically 371.C 
Lagrangian function 271.F 292.A larger topology 425.H 
Lagrangian manifold, conic 274.C large sample theory 40 1 .E 
Lagrangian vector field 126.L large semigroup algebra 29.C 
Laguerre differential equation App. A, Tables large sieve method 123.E 

14.11 2O.VI largest nilpotent ideal (of a Lie algebra) 248.D 
Laguerre formula, Gauss- (in numerical integration) Lashnev space 425.CC 

299.A last multiplier, Jacobi App. A, Table 14.1 
Laguerre function App. A, Table 2O.VI last-out memory, first-in 96.E 
Laguerre geometry 76.B last theorem of Fermat 145 
Laguerre inversion 76.B last theorem of Poincart 153.B 
Laguerre polynomials 3 17.D, App. A, Table 2O.VI latin rectangle 241.E 

associated 317.D Latin square(s) 102.K 241 
Laguerre transformation 76.B lattice(s) 
Lambert series 339.C (of a crystallographic group) 92.A 
Lame differential equation 133.B (=lattice ordered set) 243 

generalized 167.E (of a Lie group) 122.G 
Lame function (in R”) 182.B 

of the first kind 133.B A- 92.E 
of the first species 133.C anti-isomorphic 243.C 
of the fourth species 133.C Archimedean vector 310.C 
of the second kind 133.C I?- 92.E 
of the second species 133.C Banach 310.F 
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Law(s) 

black and white 92.D 
Boolean 42.A 243.E 
Boolean, of sets 243.E 
Bravais 92.B 
C- 92.E 
color 92.D 
complemented 243.E 
complete 243.D 
complete vector 310.C 
conditionally complete 243.D 
conditionally a-complete 243.D 
critical, in M with respect to S 182.B 
distributive 243.E 
dual 243.C 310.E 450.K 
dually isomorphic 243.C 
F- 92.E 
g- (of a separable algebra) 27.A 
homogeneous (in R”) 182.B 
integral R- 27.A 
I- 92.E 
inhomogeneous (in R”) 182.B 
modular 243.F 
normal g- 27.A 
normal vector 3 t0.F 
one-dimensional 287.A 
P- 92.E 
primitive 92.E 
quotient 243.C 
of sets 243.E 
u-complete 243.D 
o-complete vector 310.C 
Toda 287.A 387.A 
vector 310.B 
weight 92.C 

lattice constants (of a lattice group) 92.C 
lattice distribution 341.D 
lattice equivalent 92.D 
lattice gauge theory 150.G 
lattice group(s) 182.B 

(of a crystallographic group) 92.A 
lattice-homomorphism 243.C 
lattice-isomorphism 243.C 
lattice-ordered group 243.G 

Archimedean 243.G 
lattice-ordered linear space 310.B 
lattice-ordered set 243.A 
lattice-point formula 220.B 
lattice-point problems 242 
lattice-spin systems 402.G 
latus rectum 78.D,E 
Laurent expansion 198.D 
Laurent series 339.A 
law(s) 

(of a solution of a stochastic differential 
equation) 406.D 

absorption (in algebra of sets) 381.B 
absorption (in a lattice) 243.A 
of action and reaction 271.A 
adiabatic 205.8 
alternating (in a Lie algebra) 248.A 
antisymmetric (for ordering) 3 1 l.A 
arcsine (for Brownian motion) 45.E 
arcsine (for distribution function) 250.D 
arcsine (for random walk) 260.E 
associative (for addition) 294.B 
associative (in algebra of sets) 381.B 
associative (of correspondences) 358.B 
associative (of group composition) 190.A 
associative (in a lattice) 243.A 
associative (for multiplication) 294.B 

associative (in a ring) 368.A 
Blumenthal zero-one 261.B 
Brandt’s 241.C 
cancellation (for addition) 294.B 

I cancellation (in a commutative semigroup) 
19O.P 

cancellation (for multiplication) 294.B 
commutative (for addition) 294.B 368.A 
commutative (in algebra of sets) 381.B 
commutative (of group composition) 190.A 
commutative (in a lattice) 243.A 
commutative (for multiplication) 294.B 368.A 
complementary, of quadratic reciprocity of 

Jacobi symbol 297.1 
complementary, of reciprocity 14.0 
of complementation (in a Boolean algebra) 
42.A 

complete distributive (in a lattice-ordered 
group) 243.G 

of composition 409.A 
of composition, external 409.A 
of composition, internal 409.A 
of cosines (on spherical triangles) 432.B, App. 

A, Table 2.111 
of cosines, first 432.A, App. A, Table 2.11 
ofcosines, second 432.A, App. A, Table 2.11 
of cotangents App. A, Table 2.111 
de Morgan’s (in algebra of sets) 381.B 
de Morgan’s (in a Boolean algebra) 42.A 
differential 107.A 
distributive (in algebra of sets) 381.B 
distributive (in a lattice) 243.E 
distributive (of natural numbers) 294.B 
distributive (in a ring) 368.A 
even-oddness conservation 150.D 
of excluded middle 156.C 41 l.L 
explicit reciprocity (of norm-residue symbol) 

14.R 257.H 
first complementary, of quadratic reciprocity of 

Legendre symbol 297.1 
Gel’fand-Pyatetskii-Shapiro reciprocity (on 
unitary representations) 437.DD 

general associative (for group composition) 
19o.c 

Hewitt-Savage zero-one 342.G 
Hooke’s 271.G 
idempotent (in a lattice) 243.A 
of inertia 271.A 
of inertia, Sylvester (for a quadratic form) 

348.C 
initial (for stochastic differential equation) 
406.D 

of iterated logarithm 45.F 
of iterated logarithm, Khinchin 250.C 
Joule’s 130.B 
Kepler’s first 271.B 
Kepler’s second 271.B 
Kepler’s third 271.B 
Kirchhoff 282.B 
Kolmogorov zero-one 342.G 
of large numbers 250.B 395.B 
of large numbers, strong 250.C 
Maxwell-Boltzmann distribution 402.B 
modular (in a lattice) 243.F 
of motion 271.A 
of motion, Newton’s three 271.A 
Newton (on frictional stresses) 205.C 
Newton’s first 271.A 
Newton’s second 271.A 
Newton’s third 271.A 
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Ohm 130.B 259 
of quadratic reciprocity of Jacobi symbol 
297.1 

of quadratic reciprocity of Legendre symbol 
297.1 

of reaction 271.A 
of reciprocity 14.0 297.1 
of reciprocity, Artin general 59.C 
of reciprocity, general 14.0 
reciprocity, of Shafarevich 257.H 
reflexive (for an equivalence relation) 135.A 
reflexive (for ordering) 31 l.A 
second complementary, of quadratic reciprocity 

of Legendre symbol 297.1 
of similarity, Prandtl-Glauert 205.D 
of similarity, Reynolds 205.C 
of similitude 116 
of sines 432.A, App. A, Table 2.11 
of sines (for spherical triangles) 432.B, App. 

A, Table 2.111 
of sines and cosines App. A, Table 2.111 
of small numbers 250.B 
symmetric (for an equivalence relation) 135.A 
of symmetry (for the Hilbert norm-residue 
symbol) 14.R 

of tangents App. A, Table 2.111 
transitive (for an equivalence relation) 135.A 
transitive (for ordering) 31 l.A 
of universal gravitation 271.B 
zero-one 342.G 

Lax equivalence theorem 304.F 
Lax representation 287.B 387.C 
Lax-Wendroff scheme 304.F 
layout, two-way 155.H 
layer 

boundary 205.C 
potential of double 338.A 
potential of single 338.A 

LBA problem 31.F 
L.B. (loosely Bernoulli) 136.F 
LCL (lower control limit) 404.B 
L.C.M. (least common multiple) 67.H 297.A 
leaf (leaves) 

(of a foliation) 154.B 
compact 154.D 
growth of 154.H 

leaf topology 154.D 
learning model 346.G 
least action, principle of 441.B 
least common multiple 67.H 297.A 
least element (in an ordered set) 31 l.B 
least favorable distribution 400.B 
least favorable a priori distribution 398.H 
least square approximation 336.D 
least squares, method of 

(for estimation) 403.E 
(for higher-dimensional data) 397.5 
(for numerical solution) 303.1 

least squares estimator 403.E 
generalized 403.E 

least squares method 
indirect (in econometrics) 128.C 
three-stage 128.C 
two-stage 128.C 

least squares problem, linear 302.E 
least upper bound (ordered sets) 310.C 31 l.B 
Lebesgue, H. L. 244 
Lebesgue area (of a surface) 246.C 
Lebesgue convergence theorem 221.C 
Lebesgue decomposition theorem 270.L 380.C 

Lebesgue density theorem 100.B 
Lebesgue dimension 117.B 
Lebesgue extension 270.D 
Lebesgue integrable 221.B 
Lebesgue integral 221.B 
Lebesgue measurability and the Baire property 

33.F 
Lebesgue measurable (set) 270.G 
Lebesgue measurable function 270.5 
Lebesgue measure 270.G 

generalized 270.E 
Lebesgue measure space (with a finite cr-finite 

measure) 136.A 
Lebesgue method of summation 379.S 
Lebesgue number 273.F 
Lebesgue outer measure 270.G 
Lebesgue-Radon integral 94.C 
Lebesgue spectrum, countable 136.E 
Lebesgue-Stieltjes integral 94.C 166.C 
Lebesgue-Stieltjes measure 166.C 270.L 
Lebesgue test (on the convergence of Fourier series) 

159.B 
Lebesgue theorem 

(on the dimension of R”) 117.D 
Borel- 273.H 
Cantor- 159.J 
Riemann- 159.A 160.A 

Le Cam theorem 399.K 
Lefschetz duality theorem, Poincart- 201.0 
Lefschetz fixed-point formula 450.Q 
Lefschetz fixed-point theorem 153.B 
Lefschetz formula, Picard- 418.F 
Lefschetz number 

(of a continuous mapping) 153.B 
(of a variety) 16.P 

Lefschetz pencil 16.U 
Lefschetz theorem 

strong 16.U 
weak 16.U 

Lefschetz transformation, Picard- 16.U 
left, limit on the 87.F 
left A-module 277.D 
left adjoint functor 52.K 
left adjoint linear mapping 256.4 
left annihilator 29.H 
left Artinian ring 368.F 
left balanced functor 200.1 
left continuous 84.B 
left coset 190.C 
left coset space 423.E 
left decomposition, Peirce (in a unitary ring) 368.F 
left derivative 106.A 
left derived functor 200.1,Q 
left differentiable 106.A 
left distributive law 312.C 
left endpoint (of an interval) 355.C 
left exact functor 200.1 
left G-set 362.B 
left global dimension (of a ring) 200.K 
left hereditary ring 200.K 
left ideal 368.F 

integral 27.A 
left invariant Haar measure 225.C 
left invariant metric (of a topological group) 423.1 
left invariant tensor field (on a Lie group) 249.A 
left inverse element (in a ring) 368.B 
left linear space 256.A 
left Noetherian ring 368.F 
left O,-ideal 27.A 
left operation 409.A 
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Lie algebra(s) 

left order (of a g-lattice) 27.A 
left parametrix 345.A 
left projective resolution (of an A-module) 200.C 
left projective space 343.F 
left quotient space (of a topological group) 423.E 
left regular representation 

(of an algebra) 362.C 
(of a group) 362.B 

left resolution (of an A-module) 200.C 
left satellite 200.1 
left semihereditary ring 200.K 
left semi-integral 68.N 
left shunt 115.B 
left singular point (of a diffusion process) 115.B 
left translation 249.A 362.B 
left uniformity (of a topological group) 423.G 
Legendre associated differential equation 393.A 
Legendre coefficient 393.B 
Legendre differential equation 393.B, App. A, 

Table 14.11 
Legendre function 393.B, App. A, Table 18.11 

associated App. A, Table 18.111 
associated (of the first kind) 393.C, App. A, 
Table 18.111 

associated (of the second kind) 393.C App. 
A, Table 18.111 

of the first kind 393.B, App. A, Table 18.11 
of the second kind 393.B, App. A, Table 18.11 

Legendre-Jacobi standard form 134.A, App. A, 
Table 16.1 

Legendre polynomial 393.B, App. A, Table 18.11 
Legendre relation 134.F, App. A, Table 16.1 
Legendre symbol 297.H 

first complementary law of reciprocity of 297.1 
law of quadratic reciprocity of 297.1 
second complementary law of reciprocity of 
297.1 

Legendre transform 419.C 
Legendre transformation (contact transform) 82.A, 

App. A, Table 15IV 
Lehmann representation, Kallen- 150.D 
Lehmann-SchetIe theorem 399.C 
Lehmann-Stein theorem 400.B 
Lehmann theorem 371.C 

Hodges- 399.E,H 
Lehmann weight, Kallen- 150.D 
Lehmer method 301.K 
Leibler (K-L) information number, Kullback- 

398.G 
Leibniz, G. W. 245 
Leibniz formula (in differentiation) 106.D, App. 

A, Table 9.111 
Leibniz test (for convergence) 379.C 
lemniscate 93.H 

Bernoulli 93.H 
length 246 

(of a broken line) 139.F 
(of a curve) 93.F 246.A 
(of a descending chain in a lattice) 243.F 
(of a module) 277.1 
(of a multi-index) 112.A 
(of a normal chain in a group) 190.G 
(of a path) 186.F 
(of a segment) 139.C 
(of a Witt vector) 449.B 
affine 1lO.C 
afline arc 11O.C 
extremal (of a family of curves) 143.A 
extremal, defined by Hersch-Pfluger 143.A 
extremal, with weight 143.B 

of finite (module) 277.1 
focal 180.B 
x- (of a group) 151.F 
queue 260.H 
wave 446 

lens, Luneburg’s 180.A 
lens space 9 1 .C 

inlinite 91.C 
Leopoldt’s conjecture 450.J 
leptons 132.B 
Leray-Hirsch theorem 201.5 
Leray-Schauder degree 286.D 
Leray-Schauder fixed-point theorem 286.D 323.D 
letter 

(in information theory) 63.A 213.B 
(=variable) 369.A 

level 
(of a factor) 102.H 
(of a modular form) 32.C 
(of a modular function) 32.C 
(of an orthogonal array) 102.L 
(of a principal congruence subgroup) 122.D 
(of a test) 400.A 
(of a tolerance region) 399.R 
average outgoing quality 404.C 
confidence 399.Q 

level c( test 400.A 
minimax 400.F 
most stringent 400.F 
unbiased 400.C 
uniformly most powerful (UMP) invariant 
400.E 

uniformly most powerful (UMP) unbiased 
4OO.c 

level n structure (on an Abelian variety) 3.N 
level set (of a Cm-function) 279.D 
level surface 193.5 
Levi-Civita, parallel in the sense of 1 ll.H 
Levi-Civita connection 364.B 
Levi condition 321.G 325.H 
Levi decomposition 

(on algebraic groups) 13.4 
(on Lie algebras) 248.F 

Levi form 344.A 
generalized 274.G 

Levi problem 21.1,F 
Levi pseudoconvex domain 21.1 

locally 21.1 
Levi subgroup 13.4 
Levitan-Marchenko equation, Gel’fand- 

(for KdV equations) 387.D 
(for a nonlinear lattice) 287.C 

Levy canonical form 341.G 
Levy continuity theorem 341.F 
Levy distance 341.F 
Levy-It6 theorem (on Levy processes) 5.E 
Levy measure 5.E 
Levy process 5.B 
Levy theorem, Wiener- 159.1 
Lewy-Mizohata equation 274.G 
lexicographic linear ordering 248.M 
lexicographic ordering 31 l.G 
liability reserve 214.B 
Lie, M. S. 247 
Lie algebra(s) 248, App. A, Table 5.1 

(of an algebraic group) 13.C 
(of a Lie group) 249.B 
Abelian 248.C 
adjoint 248.B 
algebraic 13.C 
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Lie derivative 
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classical compact real simple 248.T 
classical complex simple 248,s 
compact real 248.P 
compact real simple App. A, Table 5.1 
complex 248.A 
complex (of a complex Lie group) 249.M 
complex simple App. A, Table 5.1 
of derivations 248.H 
exceptional compact real simple 248.T 
exceptional complex simple 248,s 
general linear 248.A 
isomorphic 248.A 
nilpotent 248.C 
noncompact real simple App. A, Table 5.11 
quotient 248.A 
real 248.A 
reductive 248.G 
restricted 248.V 
semisimple 248.E 
simple 248.E 
solvable 248.C 

Lie derivative lOS.O,Q 
Lie fundamental theorem (on a local Lie group of 

local transformations) 431.G 
Lie group(s) 249 423.M 

Abelian 249.D 
Banach 286.K 
classical compact simple 249.L 
classical complex simple 249.M 
commutative 249.D 
complex 249.A 
direct product of 249.H 
exceptional compact simple 249.L 
exceptional complex simple 249.M 
isomorphic 249.N 
local 423.L 
local (of local transformations) 431.G 
nilpotent 249.D 
quotient 249.G 
semisimple 249.D 
simple 249.D 
simply connected covering 249.C 
solvable 249.D 
topology of, and homogeneous spaces 427 

Lie-Kolchin theorem (on solvable algebraic groups) 
13.F 

Lie line-sphere transformation 76.C 
Lie minimal projection 76.B 
Lienard differential equation 290.C 
lies over (of a compactitication) 207.B 
Lie subalgebra 248.A 

associated with a Lie subgroup 249.D 
Lie subgroup 

(of a Lie group) 249.D 
connected 249.D 

Lie theorem (on Lie algebras) 248.F 
Lie transformation (in circle geometry) 76.C 
Lie transformation group (of a differentiable mani- 

fold) 431.C 
lifetime 260.A 261.B 

(of a particle by a scattering) 132.A 
lift 

(along a curve in a covering surface) 367.B 
(of a differentiable curve) 80.C 
(of a vector field) 80.C 
inflation 200.M 

lifting (in nonstandard analysis) 293.D 
lifting theorem 251.M 
light cone 258.A 
Lighthill-Kuo (P.L.K.) method, Poincare- 25.B 

Lighthill method 25.B 
lightlike 258.A 359.B 
likelihood 374.5 
likelihood equation 399.M 
likelihood estimating function 399.M 
likelihood estimator, maximum 399.M 
likelihood function 374.5 399.M 
likelihood method, maximum 399.M 
likelihood ratio 400.1 

monotone 374.5 
likelihood ratio test 400.1 
limacon of Pascal 93.H 
liminal C*-algebra 36.H 
limit 

(of a function) 87.F 
(of an indeterminate form) 106.E 
(of a mapping) 87.F 
(of a net) 87.H 
(of a sequence of lattices) 182.B 
(of a sequence of points) 87.E 273.D 
(of a sequence of real numbers) 87.B 355.B 
(of a sequence of sets) 270.C 
(of a spectral sequence) 200.5 
Banach 37.F 
confidence 399.Q 
direct (of a direct system) 210.B 
elastic 271.G 
generalized 37.F 
inductive (in a category) 210.D 
inductive (group) 210.C 
inductive (of an inductive system) 210.B 
inductive (of sheaves) 383.1 
inductive (space) 210.C 
inductive (of topological spaces) 425.M 
inferior (event) 342.B 
inferior (of a sequence of real numbers) 87.C 
inferior (of a sequence of sets) 270.C 
inverse (of an inverse system) 210.8 
on the left (of a real-valued function) 87.F 
lower (function) 84.C 
lower (of a Riemann integral) 216.A 
lower (of a sequence of real numbers) 87.C 
lower control 404.B 
in the mean 168.B 
order (of an order convergent sequence) 310.C 
projective (in a category) 210.D 
projective (of a family of continuous homomor- 

phisms) 423.K 
projective (group) 210.C 
projective (of a projective system) 210.B 
projective (space) 210.C 
on the right (of a real-valued function) 87.F 
strictly inductive (of a sequence of locally 
convex spaces) 424.W 

superior (event) 342.B 
superior (of a sequence of real numbers) 87.C 
superior (of a sequence of sets) 270.C 
thermodynamic 402.G 
tolerance 399.R 
upper (function) 84.C 
upper (of a Riemann integral 216.A 
upper (of a sequence of real numbers) 87.C 
upper control 404.B 

limit circle type (boundary point) 112.1 
limit cycle 126.1 
limit distribution 250.A 
limit formula, Kronecker’s 450.B 
limited information maximum likelihood method 

128.C 
limit inferior 
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Linearly dependent 

(of a sequence of real numbers) 87.C 
(of a sequence of sets) 270.C 

limiting absorption principle 375.C 
limiting hypersphere (in hyperbolic geometry) 

285.C 
limit ordinal number 312.B 
limit point 

(of a discontinuous group) 122.C 
(of a sequence) 87.B,E 
c(- 126.D 
negative 126.D 
w- 126.D 
positive 126.D 

limit point type (boundary point) 112.1 
limit set 234.A 

IX- 126.D 
first negative prolongational 126.D 
first positive prolongational 126.D 
co- 126.D 
residual 234.E 

limit superior 
(of a sequence of real numbers) 87.C 
(of a sequence of sets) 270.C 

limit theorem(s) 250.A 
basic 260.C 
central 250.B 
local 250.B 
in probability theory 250 

limit value (of a mapping) 87.F 
Lindeberg condition 250.B 
Lindeliif asymptotic value theorem 43.C 
Lindelijf hypothesis 123.C 
Lindeliif space 425,s 
Lindeliif theorem 43.F 

Phragmen- 43.C 
Lindemann-Weierstrass theorem 430.D 
Lindstedt-Poincart method 290.E 
line(s) 7.A 93.A 155.B 

(of a graph) 186.B 
broken 155.F 
complexes, linear 343.E 
complex of 110.B 
concurrent (in projective geometry) 343.B 
congruence of 1lO.B 
congruences, linear 343.E 
of curvature (on a surface) 11 l.H 
of force 193.J 
generating (of a circular cone) 78.A 
generating (of a quadric hypersurface) 343.E 
generating (of a quadric surface) 350.B 
generating (of a ruled surface) Ill.1 
geodesic 178.H 
Green 193.5 
Green, regular 193.5 
half- 155.B 
long 105.B 
normal (to a curve) 93.G 
Pascal 78.K 
pencil of (in a projective plane) 343.13 
projective 343.8 
real 355.E 
regression 403.D 
of regression 111 .F,I 
straight 93.A 155.B 
stream 205.B 
supporting (function) 89.C 
supporting (of an oval) 89.C 
of swiftest descent 93.H 
tangent 93.G I 11 .C,F 

tangent, oriented 76.B 
vector (of a vector field) 442.D 
vortex 205.B 

linear algebra 8 
linear algebraic group 13.A 
linear boundary operators, 315.B 
linear bounded automation 

deterministic 31.D 
nondeterministic 31.D 

linear code 63.C 
linear combination 256.C 

of ovals 89.D 
linear connection 80.H 
linear difference equation 104.C 
linear differential equations, system of (of the first 

order) 252.G 
linear discriminant function 280.1 
linear dynamical system 86.B 
linear equation(s) 10.D 16.M 269.M 
linear equivalence class (of divisors) 16.M 
linear extension (of a rational mapping to an 

Abelian variety) 9.E 
linear fiber mapping (map) 114.D 
linear filter 405.F 
linear form 256.B 277.E 
linear fractional function 74.E 
linear fractional group 60.B 
linear fractional programming 264.D 
linear fractional transformation 74.E 
linear function 74.E 
linear functional 37.C 197.F 424.B 

algebraic 424.B 
linear fundamental figure (of a projective space) 

343.B 
linear genus 15.G 
linear graph 282.A 
linear group . 

Abelian (over K) 60.L 
full 60.B 
general 60.B 256.D 
general (of degree n over K) 60.B 226.B 
general (over a noncommutative field) 60.0 
projective general 60.B 
projective general (of degree n over K) 60.B 
projective special 60.B 
projective special (over a noncommutative field) 
60.0 

special 60.B 
special (of degree n over K) 60.B 
special (over a noncommutative field) 60.0 

linear holonomy 154.C 
linear homogeneous equations, system of 269.M 
linear homotopy 114.D 
linear hypothesis, general 400.H 
linear integral equation 217.A 
linear isotropy group (at a point) 199.A 
linearized operator 183 286.E 
linearized stability, principle of 286,s 
linear k-step method 303.E 
linear least squares problem 302.E 
linear Lie algebra, general 248.A 
linear line complex 343.E 
linear line congruence 343.E 
linear logistic model 403.C 
linearly compact 422.L 

locally 422.L 
linearly connected homogeneous space 199.A 
linearly dependent (with respect to a difference 

equation) 104.D 
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linearly dependent elements 
(in an additive group) 2.E 
(in a linear space) 256.C 

linearly disjoint (fields) 149.K 
linearly equivalent (divisors) 16.M 172.F 

o- (on an algebraic curve) 9.F 
linearly estimable parameter 403.E 
linearly independent elements 

(in an A-module) 277.G 
(in an additive group) 2.E 
(in a linear space) 256.C 

linearly independent family (of elements in a linear 
space) 256.E I 

linearly ordered set 31 l.A 
linearly reductive 226.B 
linearly representable 66.H 
linear mapping 70.C 256.B 

A- (of an A-module) 277.E 
piecewise 70.C 

linear model 403.D 
log 403.c 
multivariate 280.B 
normal 403.C 

linear multistep method 303.E 
linear network 282.C 
linear operator(s) 37.C 251 

(between linear spaces) 256.B 
bounded 37.C 

linear ordering 31 l.A 
lexicographic 248.M 
theorem of 155.B 

linear ordinary differential equation(s) 252 253 254 
313.A 

with constant coefhcients App. A, Table 14.1 
of the first order App. A, Table 14.1 
of higher order App. A, Table 14.1 

linear parameter 102.A 
linear partial differential equation 320.A 
linear pencil 16.N 
linear prediction theory 395.D 
linear predictor 395.D 

optima1 395.D 
linear programming 255 264.C 
linear programming problem 255.A 
linear recurrent sequence 295.A 
linear regression 397.5 
linear regression function 397.5 403.D 
linear representation 

(of an algebra) 362.C 
(of a group) 362.C 
(of a Lie algebra) 248.B 
associated with representation module 362.C 
completely reducible 362.C 
direct sum of 362.C 
equivalent 362.C 
faithful 362.C 
homomorphism of 362.C 
indecomposable 362.C 
irreducible 362.C 
isomorphic 362.C 
reciprocal (of an algebra) 362.C 
reducible 362.C 
semisimple 362.C 
similar 362.C 
simple 362.C 
tensor product of 362.C 

linear simple group 151.1 
linear space(s) 256 

category of (over a ring) 52.B 
complex 256.A 

dual 256.G 
over a field 256.A 
finite-dimensional 256.C 
Hermitian 256.4 
infinite-dimensional 256.C 
lattice-ordered 310.B 
left 256.A 
normed 37.B 
ordered 310.B 
quasinormed 37.0 
quotient 256.F 
real 256.A 
right 256.A 
self-dual 256.H 

linear stationary iterative process 302.C 
linear structural equation system 128.C 
linear structure 96.C 
linear subspace 

closed 197.E 
of a linear space 256.F 

linear system 
(of divisors) 15.C 16.N 
(of functional-differential equations) 163.E 
ample 16.N 
characteristic (of an algebraic family) 15.F 
complete 9.C 16.N 
complete (defined by a divisor) 16.N 
irreducible 16.N 
reducible 16.N 
very ample 16.N 

linear time-invariant (dynamical system) 86.8 
linear time-varying system 86.B 
linear topological space 424.A 
linear topology 422.L 
linear transformation 

(on a Banach space) 251.A 
(on a linear space) 256.B 
(on a Riemann sphere) 74.E 
(of series) 379.L 
entire 74.E 
semisimple 256.P 
triangular 379.L 

linear unbiased estimator, best 403.E 
linear variety 422.L 

linearly compact 422.L 
line bundle 147.F 

complex 72.F 
complex (determined by a divisor) 72.F 
tautological 16.P 

line coordinates (of a line) 343.C 
line element 11 l.C 

characteristic 82.C 
of higher order, space of 152.C 
projective 110.B 

line-sphere transformation, Lie 76.C 
linguistics, mathematical 75.E 
link 235.D 

framed 114.L 
linkage invariant, covering 235.E 
link group 235.D 
linking number 99.C 
link polynomial 235.D 

reduced 235.D 
link type 235.D 
Linnik’s constant 123.D 
Liouville formula 252.C 
Liouville number 430.B 
Liouville operator, Sturm- 112.1 
Liouville problem, Sturm- 315.B 
Liouville theorem 
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Local property 

on bounded entire functions 272.A 
first 134.E 
fourth 134.E 
on integral invariants 219.A 
second 134.E 
third 134.E 

Lip c( (Lipschitz) 84.A 
of order c( 84.A 

Lippman-Schwinger equation 375.C 
Lipschitz condition 84.A 163.D 286.B 316.D 

of order c( 84.A 
Lipschitz-Killing curvature 279.C 
Lipschitz space 168.B 
Lipschitz test, Dini- (on the convergence of Fourier 

series) 159.B 
list (representation) 96.D 186.D 
little group 258.C 
Littlewood-Paley theory 168.B 
Littlewood-Sobolev inequality, Hardy- 224.E 
Littlewood supremum theorem, Hardy- App. A, 

Table 8 
Littlewood theorem, Hardy- 

(on bounded functions) 43.E 
(on trigonometric systems) 317.B 

lituus 93.H 
Livesay invariant, Browder- 114.L 
loading 214.A 

factor 280.G 346.F 
Lobachevskiii non-Euclidean geometry 285.A 
local base (in a topological space) 425.E 
local canonical parameter (for power series) 339.A 
local class field theory 59.G 
local cohomology group 125.W 
local concept (in differential geometry) 109 
local continuity 45.F 
local control 102.A 
local coordinates 

(on an algebraic variety) 16.0 
(on a differentiable manifold) 105.C 
transformation of 90.D 

local coordinate system 90.D 105.C 
holomorphic 72.A 

local cross section (in a topological group) 147.E 
local degree of a mapping 99.B 
local dimension (of an analytic set at a point) 

23.B 
local equation 

(of a divisor) 16.M 
regular (at an integral point) 428.E 

local ergodic theorem 136.B 
local field 257.A 
local Gaussian sum 450.F 
local homology group 201.N 
local homomorphism (of a topological group) 

423.0 
local isomorphism (of topological groups) 423.0 
localization 

of a linear representation relative to a prime 
ideal 362.F 

principle of (on convergence tests of Fourier 
series) 159.B 

strict 16.AA 
local Lie group 423.L 

(of local transformations) 431.G 
local limit theorem 250.B 
locally (on a topological space) 425.5 
locally absolutely p-valent (function) 438.E 
locally arcwise connected (space) 79.B 
locally Cartan pseudoconvex (domain) 21.1 
locally closed (set) 425.5 

locally compact space 425.V 
uniformly 425.V 

locally connected (space) 79.A 
locally constructible (constant sheaf) 16.AA 
locally contractible 

(at a point) 79.C 
(space) 79.C 202.D 

locally convex (topological linear space) 424.E 
locally convex Frechet space 424.1 
locally countable cell complex 70.D 
locally countable simplicial complex 70.C 
locally dense 154.D 
locally equicontinuous semigroup 378.F 
locally equivalent (G-structure) 191.H 
locally Euclidean group 423.M 
locally Euclidean space 425.V 
locally finite 

(algebra) 29.5 
(cell complex) 70.D 
(covering) 425.R 
(simplicial complex) 70.C 
c- (covering) 425.R 

locally flat 
(connection) 80.E 
(injection between topological manifolds) 

65.D 
(PL embedding) 65.D 
(Riemannian manifold) 364.E 

locally integrable function 168.B 
locally isomorphic (topological groups) 423.0 
locally Levi pseudoconvex (domain) 21.1 
locally linearly compact (Q-module) 422.L 
locally Macaulay ring 284.D 
locally n-connected 

(at a point) 79.C 
(space) 79.C 

locally Noetherian (scheme) 16.D 
locally Noetherian formal scheme 16.X 
locally of finite type (for a morphism) 16.D 
locally w-connected (space) 79.C 
locally p-valent 438.E 
locally quadratic transformation 

(of an algebraic surface) 15.G 
(of an algebraic variety) 16.K 
(of a complex manifold) 72.H 

locally rectifiable (curve) 143.A 246.A 
locally symmetric Riemannian space 412.A, App. 

A, Table 4.11 
locally symmetric space 364.D 

affine 80.5 
locally symmetrizable (diffusion processes) 115.D 
locally totally bounded (uniform space) 436.H 
locally trivial fiber space 148.B 
locally uniformized 367.C 
local martingale 262.E 
local maximum modulus principle 164.C 
local moduli space (of a compact complex manifold) 

72.G 
local one-parameter group of local transformations 

105.N 
local operator 125.DD 
local orientation (in an oriented manifold) 201.N 
local parameter 

(around a cusp of a Fuchsian group) 32.B 
(of a nonsingular algebraic curve) 9.C 
(of a Riemann surface) 367.A 

local problem (on the solutions of differential 
equations) 289.A 

local property 
(in differential geometry) 109 
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(of a pseudodifferential operator) 345.A 
micro-pseudo- 345.A 
pseudo- (of a pseudodifferential operator) 
345.A 

local regime (in static model in catastrophe theory) 
51.B 

local ring 284.D 
(of a prime ideal) 67.G 
(of a subvariety) 16.B 
analytically normal 284.D 
analytically unramified 284.D 
complete 284.D 
Macaulay 284.D 
Noetherian 284.D 
Noetherian semi- 284.D 
quasi- 284.D 
quasisemi- 284.D 
regular 284.D 
semi- 284.D 
structure theorem of complete 284.D 

local-ringed space 383.H 
local section 126.E 
local strategy 173.B 
local system of groups (over a topological space) 

201.R 
local time 45.G 
local transformations, local Lie group of 431.G 
local truncation error 303.E 
local uniformizing parameter 367.A 
location parameter 396.1 400.E 
locus 

cut 178.A 
singular (of a variety) 16.F 

Loeb measure 293.D 
Loeb space 293.D 
log-x 131.D 
log,x 131.B 
Logz (logarithm) 131.G 
logarithm 131.B 

common 131.C 
integral 167.D 
Khinchin law of the iterated 250.C 
law of iterated 45.F 
Napierian 13 1 .D 
natural 131.D 

logarithmically convex 21.B 
logarithmic branch point (of a Riemann surface) 

367.B 
logarithmic capacity 48.B 
logarithmic criterion App. A, Table 10.11 
logarithmic curve 93.H 
logarithmic decrement (of a damped oscillation) 

318.B 
logarithmic differentiation App. A, Table 9.1 
logarithmic distribution App. A, Table 22 
logarithmic function to the base a 13 1 .B 
logarithmic integral 167.D, App. A, Table 19.11 
logarithmic normal distribution App. A, Table 

22 
logarithmic paper 19.F 

semi- 19.F 
logarithmic potential 338.A 
logarithmic series 13 1 .D 
logarithmic singularity 

(of an analytic function) 198.M 
(of an analytic function in the wider sense) 

198.P 
logarithmic spiral 93.H 
logic 

algebra of 41 l.A 

classical 411 .L 
intuitionistic 41 l.L 
many-valued 41 l.L 
mathematical 41 l.A 
modal 41 l.L 
predicate 41 l.G 
predicate, with equality 41 l.J 
propositional 41 l.E 
quantum 351.L 
symbolic 41 l.A 
three-valued 41 l.L 
two-valued 4 11 .L 

logical axiom 411.1 
logical choice function, transtinite 411.J 
logical operator 41 l.E 
logical product (of propositions) 411.B 
logical sum (of propositions) 41 l.B 
logical symbol 411 .B 
logicism 156.A,B 
logistic equation 263.A 
logistic model, linear 403.C 
log linear model 403.C 
logmodular algebra 164.B 
Lommel integral 39.C 
Lommel polynomials App. A, Table 19.IV 
long gravity wave 205.F 
longitude (of a knot) 235.B 
longitudinal wave 446 
long line 105.B 
long water wave 205.F 
look-up, table 96.C 
Looman-Men’shov theorem 198.A 
loop 170 19O.P 

self- 186.B 
loop space 202.C 
loop theorem (on 3-manifolds) 65.E 
loosely Bernoulli 136.F 
Lopatinskii condition, Shapiro- 323.H 
Lopatinskii dterminant 325.K 
Lorentz condition 130.A 
Lorentz force 130.A 
Lorentz group 60.5 258.A 359.B 

full homogeneous 258.A 
full inhomogeneous 258.A 
homogeneous 359.B 
inhomogeneous 359.B 
proper 60.5 359.B 
proper complex 258.A 

Lorentz invariance 150.B 
Lorentz space 168.B 1 

Lorentz transformation 359.B 
Lorenz curve 397.E 
loss 

heat 419.A 
of information 138.B 

loss function 398.A 
quadratic 398.A 399.E 
simple 398.A 

lot tolerance percent defective 404.C 
Lowenheim theorem, Skolem- 156.E 
lower bound 31 l.B 

greatest 310.C 311.8 
lower central series (of a group) 190.J 
lower class 

with respect to local continuity 45.F 
with respect to uniform continuity 45.F 

lower control limit 404.B 
lower derivative 

general (of a set function) 380.D 
ordinary (of a set function) 380.D 
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Manifold(s) 

lower end (of a curvilinear integral) 94.D 
lower envelope principle 338.M 
lowering the superscripts 417.D 
lower integral, Riemann 216.A 
lower limit 

(of a Riemann integral) 216.A 
(of a sequence of real numbers) 87.C 

lower limit function 84.C 
lower order 

(for infinity) 87.G 
(of a meromorphic function) 272.C 

lower semicontinuity (of length) 264.A 
lower semicontinuous (at a point) 84.C 
lower semicontinuous function 84.C 
lower semilattice 243.A 
lower triangular matrix 269.B 
lower variation (of a set function) 380.B 
Lowner differential equation 438.B 
loxodromic transformation 74.F 
LP (linear programming) 255 
LSZ asymptotic condition 150.D 
1.u.b. (least upper bound) 31 l.B 
Lubanski vector, Pauli- 258.D 
Luenberger observer 86.E 
lumping, mass 304.D 
Luneburg lens 180.A 
Liiroth theorem 16.5 
Lutz-Mattuck theorem 118.E 
Luzin first principle (in analytic set theory) 22.C 
Lurin second principle (in analytic set theory) 22.C 
Luzin space 22.1 425.CC 
Luzin theorem 270.3 

Denjoy- 159.1 
Luzin unicity theorem (in analytic set theory) 22.C 
Lyapunov characteristic number 3 14.A 
Lyapunov condition 250.B 
Lyapunov convexity theorem 443.G 
Lyapunov function 126.F 163.G 394.C 
Lyapunov-Schmidt procedure 286.V 
Lyapunov stable 126.F 

in both directions 394.A 
in the negative direction 394.A 
in the positive direction 394.A 
uniformly 126.F 

Lyapunov theorem 398.C 
Lyusternik- Shnirel’man theory 286.Q 

M 

M(R) (the set of all essentially bounded measurable 
fuctions on fi) 168.B 

(M,}, ultradistribution of class 125.U 
(M,), ultradistribution of class 125.U 
n-absolutely continuous (additive set function) 

38O.C 
p-completion 270.D 
p-conformal function 352.B 
p-constant stratum 418.E 
p-integrable 221.8 
p-measurable 270.D 
p-null set 370.D 
p-operator, bounded 356.B 
p-singular (additive set function) 380.C 
m-dissipative 251.5 
m x n matrix 269.A 
mth root 10.C 
M-estimator 371.H 
M-port network 282.C 
M-set 159.5 
M-space 425.Y 

(Ml-space (= Monte1 space) 424.0 
M space, abstract 310.G 
M waves 130.B 
Macaulay local ring 284.D 
Macaulay ring 284.D 

locally 284.D 
Mach cone 205.B 
machine 

Turing 3 l.B 
universal Turing 3 1 .C 

machine-language program 75.~ 
machine scheduling problem 376 
machine sequencing problem 376 
Machin formula 322 
Mach number 116.B 205.B 
Mach wave 205.B 
Mackey-Arens theorem 424.N 
Mackey space 424.N 
Mackey theorem 424.M 
Mackey topology 424.N 
Mack method, Garside-Jarratt- 301.N 
MacLane complexes, Eilenberg- 70.F 
MacLane space, Eilenberg- 70.F 
MacLane spectrum, Eilenberg- 202.1 
Maclaurin formula, Euler- 379.5 
macroeconomic data 128.A 
macroscopic causality (of S-matrix) 386.C 
magnetic field 130.A 
magnetic flux density 130.A 
magnetic group 92.D 
magnetic induction 130.A 
magnetic quantum number, orbital 351.E 
magnetic permeability 130.B 
magnetic polarization 130.A 
magnetic Reynolds number 259 
magnetic susceptibility 130.B 
magentic viscosity 259 
magnetic wave 130.B 

transverse 130.B 
magnetofluid dynamics 259 
magnetohydrodynamics 259 
magnetostatics 130.B 
magnitude (of a vector) 442.B 
Mahalanobis generalized distance 280.E 
Mainardi equations, Codazzi- 11 l.H, App. A, 

Table 4.1 
main classes 241 .A 
main effect 102.H 
main theorem 

(in class field theory) 59.C 
Zariski’s 16.1 

majorant 
(of a sequence of functions) 435.A 
harmonic (of a subharmonic function) 193,s 
method of 3 16.G 

majorant series 316.G 435.A 
major arc 4.B 
major axis (of an ellipse) 78.C 
major function 100.F 
majorizing function, right 316.E 
Malfatti problem (in geometric construction) 179.A 
Malgrange theorem, Ehrenpreis- 112.B 
Mal’tsev-Iwasawa theorem, Cartan- (on maximal 

compact subgroups) 249,s 
Mal’tsev theorem, Wedderburn- (on algebras) 29.F 
Malus theorem 180.A 
Mandelstam representation 132.C 
Mangoldt function 123.B 
manifold(s) 

almost complex 72.B 
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almost contact 110.E 
almost parallelizable 114.1 
analytic - analytic manifold 
Banach 105.2 286.K 
Blaschke manifold 178.G 
with boundary 105.B 
without boundary 105.B 
c’- 105.D 
c’-, with boundary 105.E 
C’-, without boundary 105.E 
center, theorem 286.V 
characteristic (of a partial differential equation) 

320.B 
characteristic classes of 56.F 
closed 105.B 
coherently oriented pseudo- 65.B 
combinatorial 65.C 
compact C’- 105.D 
complex - complex manifold(s) 
complex analytic 72.A 
conic Lagrange 345.B 
conic Lagrangian 274.C 
contact 110.E 
covering 91 .A 
covering differentiable 91.A 
differentiable, with boundary of class c’ 105.E 
differentiable, of class C’ 105.D 
with Euclidean connection 109 
tibered 428.F 
Finsler 286.L 
flag 199.B 
Frechet 286.K 
G- 431.c 
Grassmann - Grassmann manifold 
group (of a Lie transformation) 1lO.A 
with a handle attached by f 114.F 
h-cobordant oriented 114.1 
Hilbert 105.Z 286.K 
Hodge 232.D 
homology 65.B 
Hopf 232.E 
hyperbolic 21.0 235.E 
integral 428.A,B,D 
irreducible 3- 65.E 
Kahler 232 
k-dimensional integral 191.1 
nontrivial 3- 65.E 
ordinary integral (of a differential ideal) 428.E 
orientable (C-manifold) 105.F 
orientation 201.N 
oriented 105.F 201.N 
oriented G- 431.E 
paracompact C’- 105.D 
parallelizable 1 14.1 
K- 114.1 
PL- 65.C 
Poincare 105.A 
at a point 178.G 
prime 3- 65.E 
proper flag 199.B 
pseudo- 65.B 
pseudo-Hermitian 344.F 
Q- 382.D 
real analytic 105.D 
regular integral (of a differential ideal) 428.E 
Riemannian - Riemannian manifold 
singular integral (of a differential ideal) 428.E 
SC”- 178.G 
smooth 105.D 114.B 
space-time 359.D 

s-parallelizable 114.1 
stable 126.G,J 
stably almost complex 114.H 
stably parallelizable 114.1 
Stein 21.L 
Stiefel - Stiefel manifold 
symplectic 219.C 
topological 105.B 
triangulated 65.B 
unstable 126.G,J 
visibility 178.F 
weakly almost complex 114.H 
weakly l-complete 21.L 

Manin connection, Gauss- (of a variety) 16.V 
Mannheim curve 11l.F 
Mann-Whitney U-test 371.C 
MANOVA (multivariate analysis of variance) 

280.B 
mantissa (of the common logarithm) 131.C 
many body problem 402.F 420.A 
many-valued (analytic function) 198.5 
many-valued function 165.B 
many-valued logic 411.L 
map 381.C (also - mapping) 

bundle 147.B 
covering 91 .A 
cubic 157.B 
equivariant 431.A 
first-return 126.C 
G- 431.A 
Gauss lll.G 
Kodaira-Spencer 72.G 
linear fiber 114.D 
normal 114.5 
PL 65.A 
Poincare 126.C 
time-one 126.C 
trivalent 157.B 

mapping 381.C 
A-balanced 277.5 
afline 7.E 
alternating multilinear 256.H 
analytic 21.5 
antiholomorphic 195.B 
antisymmetric multilinear 256.H 
biadditive 277.5 
biholomorphic 21.5 
bijective 381.C 
bilinear 256.H 277.5 
birational 16.1 
biregular (between prealgebraic varieties) 

16.C 
Bore1 isomorphic 270.C 
of bounded variation 246.H 
bundle 147.B 
c’- 105.J 
cl- 237.G 
CE 382.D 
cellular (between cell complexes) 70.D 
chain 200.C 
chain (between chain complexes) 201.B 
characteristic (in the classification theorem of 
fiber bundles) 147.G 

class 202.B 
of class C’ 208.B 
classifying 147.G 
closed 425.G 
cochain 200.F 201.H 
complete 241.C 
conformal 198.A 



2041 Subject Index 

Markov subshift 

conjugation (of a Hopf algebra) 203.E 
constant 381.C 
continuous 425.G 
covering 91 .A 
degenerate 208.B 
degree 99.A 
degree of 99.A 
diagonal (of a graded coalgebra) 203.B,F 
differentiable, of class C’ 105.J 
dual (of a linear mapping) 256.G 
duality 251.5 
equivariant 431 .A 
essential 202.B 
exponential 178.A 249.4 364.C 
extremal horizontal slit 367.G 
extremal quasiconformal 352.C 
extremal vertical slit 367.G 
first-return 126.C 
Fredholm 286.E 
G- 362.B 431.A 
Gauss (in geometric optics) 180.B 
generalized conformal 246.1 
of group algebra 192.Q 
harmonic 195.B 
hereditarily quotient 425.G 
holomorphic 21.5 72.A 
homological 200.C 
homotopy-associative 203.D 
Hopf 147.E 
identity 381.C 
inclusion 38 1 .C 
inverse 381 .C 
inverse, theorem 208.B 
isometric 11 l.H 273.B 
Kodaira-Spencer 72.G 
linear (between linear spaces) 256.B 
linear (between polyhedrons) 70.C 
linear fiber 114.D 
local degree of 99.B 
meromorphic 23.D 
monotone 311.E 
multilinear 256.H 
nondegenerate holomorphic (between analytic 

spaces) 23.C 
nonexpansive 286.B 
nonsingular, of class Ci 208.B 
normal 114.5 
normal coordinate 364.C 
one-to-one 381.C 
onto 38f.C 
open 425.G 
order-preserving 31 l.E 
orientation-preserving 99.A 
orientation-reversing 99.A 
partial (of a mapping) 38 I .C 
perfect 425.W 
perspective (in projective geometry) 343.B 
piecewise aftine 192.Q 
piecewise linear (between polyhedra) 70.C 
PL 65.A 
Poincare 126.C,G 
product 425.K 
projective (in projective geometry) 343.B 
proper 425.W 
purely inseparable rational 16.1 
quasiconformal 352.B 
quasiperfect 425.CC 
quotient 425.G 
rational 16.1 
regular (between prealgebraic varieties) 16.C 

regular, of class C’ 208.B 
semicontinuous (in a topological linear space) 

153.D 
semilinear 256.P 277.L 
separable (rational) 16.1 
simplicial 70.C 
simplicial (between polyhedra) 70.C 
simplicial (relative to triangulations) 70.C 
skew-symmetric multilinear 256.H 
space 202.C 
space of continuous 435.D 
spin 237.G 
S.S. (semisimplicial ) (between S.S. complexes) 
70.E 

s.s., realization of 70.E 
surjective 381.C 
symmetric multilinear 256.H 
Teichmiiller 352.C 
time-one 126.C 
topological 425.G 
topology induced by a 425.1 
transposed (of a diffusion kernel) 338.N 
transposed (of a linear mapping) 256.G 
uniformly continuous 273.1436.E 
unit 203.F 

mapping chain 201.B 
mapping class 202.B 
mapping cone 202.E 

reduced 202.F 
mapping cylinder 202.E 
mapping space 435.D 
mapping theorem 

Brouwer 99.A 
open 37.1424.X 
Riemann 77.B 
spectral 251.G 

mapping truck 202.G 
Marchenko equation, Gel’fand-Levitan- 

(for KdV equations) 387.D 
(for a nonlinear lattice) 287.C 

Marcinkiewicz theorem 224.E 
marginal density functions 397.1 
marginal distribution 342.C 397.H 
marked K3 surface 72.K 
Markov branching process 44.D 

multitype 44.E 
Markov chains 260.A 342.A 

embedded 260.H 
general 260.5 
imbedded 260.H 
(non) recurrent 260.B 

Markov field theory, Euclidean 150.F 
Markovian decision process 127.E 
Markovian policy 405.C 
Markovian type (stochastic differential equation) 

406.D 
Markov inequality (for polynomials) 336.C 
Markov measure 136.D 
Markov operators 136.B 
Markov partition (for an automorphism) 136.G 
Markov process(es) 261 342.A 

branching 44.E 
homogeneous 5.H 
invariant 5.H 
strong 261.B 

Markov property 261.B 
strong 261.B 

Markov shift 136.D 
Markov statistical mechanics 340.C 
Markov subshift 126.5 
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Markov theorem, Gauss- 403.E 
Markov time 261.B 407.B 
Martin axiom (in set theory) 33.F 
Martin bound, Froissart- 386.B 
Martin boundary 207.C 260.1 

dual 260.1 
Martin compactilication 207.C 
Martineau-Harvey duality 125.Y 
martingale 262 342.A 

{F,}-Wiener 406.B 
local 262.E 

martingale additive functional 261.E 
martingale part 406.B 
martingale problem 115.C 261.C 406.A 
Martin kernel 207.C 
Maslov bundle 274.C 
Maslov index, Keller- 274.C 
mass 132.A 258.C 271.E 

(of a current) 275.G 
center of 271.E 
integrals of the center of 420.A 

mass distribution 
capacitary 338.K 
equilibrium 338.K 

Massey theorem, Blakers- 202.M 
mass lumping 304.D 
mass matrix 304.D 
master equation 402.1 
matched asymptotic expansions, method of 25.B 
mathematical axiom 411.1 
mathematical expectation (of a probability distribu- 

tion) 341.B 
mathematical induction 294.B 

axiom of 294.B 
definition by 294.B 
doulbe 294.B 
multiple 294.B 

mathematical linguistics 75.E 
mathematical logic 41 l.A 
mathematical modeling 40.G 300 
mathematical models in biology 263 
mathematical object 52.A 
mathematical programming 264.A 
mathematical programming problem 264.B 
mathematical structure 409.B 
mathematical system (for a structure) 409.B 
mathematics 

actuarial 214.A 
combinatorial 66.A 
discrete 66.A 

mathematics in the 18th century 266 
mathematics in the 19th century 267 
mathematics in the 17th century 265 
Mathieu diIIerentia1 equation 268.A 

modified 268.A 
Mathieu functions 268 

modified 268.A 
modified, of the first kind 268.D 
modilied, of the second kind 268.D 
modified, of the third kind 268.D 
of the second kind 268.D 

Mathieu group 151.H 
Mathieu method 268.C 
matric group 226.B 
matrix (matrices) 269 

adjacement 186.G 
adjoint 269.1 
Alexander (of a knot) 23S.C 
alternating 269.B 

amplification 304.F 
anti-Hermitian 269.1 
antisymmetric 269.B 
association 102.5 
asymptotic covariance 399.K 
of a bilinear form 256.H 
bounded 269.K 
circuit 254.B 
column finite 269.K 
companion 301.1 
complex orthogonal 269.5 
correlation 397.5 
covariance 341.B 397.5 
density 351.B 
design 102.A 403.D 
diagonal 269.A 
Dirac 377.C 
Dirac’s y 351.G 
error 405.G 
Fisher information 399.D 
fundamental cutset 186.G 

fundamental tieset 186.G 
group 226.B 
Hasse-Witt 9.E 
Hermitian 269.1 
identity 269.A 
incidence (of a block design) 102.B 
incidence (of a graph) 186.G 
infinite 269.K 
information 102.1 
inverse 269.B 
invertible 269.B 
iteration 302.C 
Jacobi 390.G 
Jacobian 208.B 
lower triangular 269.B 
mass 304.D 
m by n 269.A 
of (m, n)-type 269.A 
m x n 269.A 
moment 341.B 
monodromy 254.B 
nilpotent 269.F 
noncentrality 374.C 
nonsingular 269.B 
normal 269.1 
orthogonal 269.5 
parity check 63.C 
Pauli spin 258.A 351.G 
period (of a closed Riemann surface) 1 l.C 
period (of a complex torus) 3.H 
port-admittance 282.C 
port-impedance 282.C 
positive definite 269.1 
positive semidelinite 269.1 
principal 3.1 
projection 269.1 
proper orthogonal 269.5 
Q- 260.F 
of quadratic form 348.A 
rational function 86.D 
rectangular 269.A 
regular 269.B 
Riemann 3.1 
row finite 269.K 
S- 150.D 386 
sample correlation 280.E 
scalar 269.A 
scale 374.C 



2043 Subject Index 
Mean 

Seifert 235.C 
semisimple 269.G 
of sesquihnear form 256.4 
similar square 269.G 
skew h- 269.1 
skew-Hermitian 269.1 
skew-symmetric 269.B 
square 269.A 
stiffness 304.C 
stochastic 260.A 
of the sum of squares between classes 280.B 
of the sum of squares within classes 280.B 
symmetric 269.B 
symplectic 60.L 
transfer function 86.B 
transition 126.5 260.A 
transposed 269.B 
triangular 269.B 
tridiagonal 298.D 
unipotent 269.F 
unit 269.A 
unitary 269.1 
upper triangular 269.B 
variance 341.B 
variance-covariance 341.B 397.5 
weighting 86.B 
zero 269.B 

matrix algebra 
full 269.B 
total 269.B 

matrix convex of order m 212.C 
matrix element 351.B 
matrix game 173.C 
matrix group 226.B 
matrix monotone decreasing of order m 212.c 
matrix montone increasing of order m 212.c 
matrix representation 362.D 
matrix Riccati differential equation 86.E 
matrix Riccati equation 405.G 
matrix unit 269.B 
matroid 66.G 

p-ary 66.H 
poly- 66.F 
operations for 66.H 

Mattuck theorem, Lutz- 118.E 
Maupertuis principle 180.A 
Maurer-Cartan 

differential form of 249.R 
system of differential equations of 249.R 

maximal 
(hypersurface in Minkowski space) 275.H 
(ideal) 368.F 
(in prediction theory) 395.D 
(Riemann surface) 367.F 

maximal concentration function 341.E 
maximal condition 3 11 .C 
maximal deficiency (of an algebraic surface) 15.E 
maximal dilatation 352.B 
maximal dissipative operator 251.5 
maximal element (in an ordered set) 31 l.B 
maximal entropy 136.C,H 
maximal ergodic lemma 136.B 
maximal lilter 87.1 
maximal function 

nontangential 168.B 
radial 168.B 

maximal ideal 67.C 368.F 
with respect to S 67.C 

maximal ideal space (of a Banach algebra) 36.E 

maximal independent system (of an additive group) 
2.E 

maximal inequality (=maximal ergodic lemma) 
136.B 

maximal invariant statistic 396.1 
maximal k-split torus 13.Q 
maximally almost periodic group 18.1 
maximally overdetermined (= holonomic) 274.H 
maximal operator 112.E 
maximal order 27.A 
maximal prime divisor (of an ideal) 67.F 
maximal separable extension (of a field) 149.H 

~ maximal toroidal subgroup (of a compact Lie group) 
248.X 

maximal torsion subgroup (of an Abelian group) 
2.A 

maximal torus (of a compact Lie group) 248.X 
maximum, relative (of a function) 106.L 
maximum element (in an ordered set) 311.B 
maximum-flow minimum-cut theorem 281.C 
maximum-flow problem 281.C 
maximum likelihood estimator 399.M 
maximum likelihood method 399.M 

limited information 128.C 
maximum modulus principle (for a holomorphic 

function) 43.B 
local 164.C 
Cartan 338.L 
complete 338.M 

maximum principle 
(for analytic functions) 43.B 
(in control theory) 86.F 
(for harmonic functions) 193.E 
(for minimal surface) 275.B 
(for parabolic operators) 327.D 
dilated (in potential theory) 338.C 
entropy 419.A 
first (in potential theory) 338.C 
Frostman’s 338.C 
Hopf (for equations of elliptic type) 323.C 
strong (for equations of elliptic type) 323.C 
Ugaheri’s 338.C 

maximum return 127.B 
maximum-separation minimum-distance theorem 

281.C 
maximum solution (of a scalar equation) 316.E 
maximum spectral measure 390.G 
Maxwell-Boltzmann distribution law 402.B 
Maxwell convention 51.F 
Maxwell equations 130.A 
Maxwell fisheye 180.A 
Maxwell relations 419.B 
Maxwell stress tensor 130.A 
Maxwell theorem (on spherical functions) 393.D 
Mayer-Vietoris exact sequence (for a proper triple) 

201.c 
relative 2Ol.L 

Mazur theorem 37.F 
Gel’fand- 36.E 

meager set 425.N 
non- 425.N 

mean 
(of an almost periodic function) 18.B,E 
(of numbers or a function) 21 l.C 
(of a probability distribution) 341.B 
(of a random variable) 342.C 
(of a statistical data) 397.C 
(of a weakly stationary process) 395.A 
a-trimmed 371.H 



Subject Index 
Mean absolute deviation 

2044 

arithmetic 211.C 397.C 
arithmetico-geometric 134.B 
bounded, oscillation 168.B 
conditional (of a random variable) 342.E 397.1 
continuous in the 217.M 407.A 
convergence in the, of order p 168.B 342.0 
407.A 

convergence in the, of power p 168.B 
of degree r (of a function with respect to a 
weight function) 211.C 

Fejer 159.C 
geometric 21 l.C 
geometrical 397.C 
harmonic 21 l.C 397.C 
limit in the 168.B 
moment about the (kth) 341.B 
population 396.C 
sample 396.C 

mean absolute deviation 397.C 
mean anomaly 309.B 
mean concentration function 341.E 
mean content (of a tolerance region) 399.R 
mean curvature 11 l.H 364.D 365.D, App. A, Table 

4.1 
total 365.0 

mean curvature vector 365.D 
mean energy 402.G 
mean entropy 402.G 
mean ergodic theorem 136.B 
mean free energy 340.B 402.G 
mean motion 309.B 
mean number of sheets (of a covering surface of 

a Riemann sphere) 272.5 
mean oval (of two ovals) 89.D 
mean p-valent, areally 438.E 
mean p-valued, circumferentially 438.E 
mean recurrence time 260.C 
mean square error 399.E 403.E 
mean unbiased, asymptotically 399.K 
mean unbiased estimator 399.C 
mean value 

(of a continuous function on a compact group) 
69.A 

(of a weakly stationary process) 395.C 
mean value theorem 

(in differential calculus) 106.E 
(on harmonic functions) 193.E 
first (in the Riemann integral) 216.B 
second (in the D-integral) 100.G 
second (in the Riemann integral) 216.B 
second (for the Stieltjes integral) 94.C 
Siegel 182.E 
Vinogradov 4.E 

mean vector 341.B 
measurability 443.1 

strong 443.1 
measurability theorem, Pettis 443.B 
measurable 

(flow) 136.D 
(multivalued vector function) 443.1 
(operator function) 308.G 
(set) 270.D,G 
(in set theory) 33.F 
(stochastic process) 407.A 
(transformation) 136.B 
(vector valued function) 443.B 
absolutely 270.L 
d- 270.C 
Baire 270.L 
Jordan 270.D,G 

Lebesgue 270.G 
p- 270.D 
nearly Bore1 261.D 
progressively (stochastic process) 407.A 
real-valued (in set theory) 33.F 
with respect to a family of random variables 

342.C 
with respect to p* 270.E 
scalarly 443.1 
strongly 443.B,I 
universally 270.L 
weakly 443.B,I 

measurable cardinal number 33.E 
measurable event 342.B 
measurable function 270.5 

2% 270.5 
Baire 270.L 
Bore1 270.5 
Lebesgue 270.5 
universally 270.L 

measurable space(s) 270.C 
analytic 270.C 
complete 270.D 
isomorphic 398.D 
standard 270.C 

measurable vector function 308.G 
measure 270.D,G 

of an angle 139.D 
of association 397.K 
atomless probability 398.C 
b-regular 270.F 
Bore1 270.G 
bounded 270.D 
canonical 115.B 260.G 
characteristic 407.D 
Carathtodory 270.E 
Carathiodory outer 270.E 
complete 270.D 
completely additive 270.D 
complex spectral 390.D 
convergence in 168.B 
6- 270.D 
distortion 213.E 
excessive 261.F 
finitely additive 270.D 
G-invariant 225.B 
Gaussian random 407.D 
generalized Lebesgue 270.E 
of genus (of a positive definite symmetric 

matrix) 348.K 
Gibbs 136.C 
Green 193.5 
Haar 225.C 
harmonic 120.C 169.B 207.B 260.1 
Hausdorff 169.D 
idempotent 192.P 
image 270.K 
inner harmonic 169.B 
invariant 136.B 255.B 260.AJ261.F 
Jensen 164.K 
Jordan 270.D,G 
killing 115.B 
kinetic 228.A 
K-regular 270.F 
Lebesgue 270.G 
Lebesgue outer 270.G 
Lebesgue-Stieltjes 166.C 270.L 
left invariant Haar 225.C 
of length 139.C 
Levy 5.E 
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of location 397.C 
Loeb 293.D 
Markov 136.D 
orthogonal 164.C 
outer 270.E,G 
outer harmonic 169.B 
Plancherel (of a locally compact group) 437.L 
Poisson random 407.D 
positive Radon 270.1 
probability 341 342.B 
product 270.H 
quasi-invariant 225.5 
quotient 225.H 
Radon 270.G 
real spectral 390.D 
regular 270.F 
relatively invariant 225.H 
representing 164.C 
right invariant Haar 225.C 
a-additive 270.D 
u-finite 270.D 
signed 380.C 
smooth (for a Riemannian metric) 136.G 
smooth invariant 126.5 
spectral 390.D,K 395.B,C 
speed 115.B 
subinvariant 261.F 
superharmonic 260.1 
of variability 397.C 
vector 443.G 
Weil 225.G 
Wiener 45.B 250.E 

measure algebra 192.0 
measure-preserving (transformation) 136.B 
measure problem, invariant 136.C 
measure space 270.D 

bounded 270.D 
complete 270.D 
complete product 270.H 
Lebesgue, with a finite (or u-finite) measure 

136.A 
product 270.H 
u-finite 270.D 

measure theory 270 
mechanics 

celestial 55.A 
classical 271 .A 
classical statistical 402.A 
equilibrium statistical 402.A 
graphical 19.C 
Markov statistical 340.C 
Newtonian 271.A 
nonlinear 290.A 
quantum 351 
quantum statistical 402.A 
statistical 342.A 402 

mechanism, Higgs 132.D 
median 341.H 396.C 397.C 

sample 396.C 
mediant (of two fractions in Farey sequence) 4.B 
median unbiased estimator 399.C 
medieval mathematics 372 
meet 

(in a Boolean algebra) 42.A 
(in an ordered set) 243.A 
(of sets) 381.B 

Mehler formula App. A, Table 19.111 
Mehler integral representation, Laplace- App. A, 

Table 18.11 
Mellin transform 220.C 

member (of a set) 381.A 
membrane 

equation of a vibrating 325.A 
permeable 419.A 

memory 
fading 163.1 
first-in first-out 96.E 
first-in last-out 96.E 

memory channel 
almost finite 213.F 
finite 213.F 

memoryless channel 213.C 
discrete 213.F 

memory unit 75.B 
Menelaus theorem (in afIine geometry) 7.A 
Menger-Ntibeling embedding theorem 117.D 
Men’shov theorem, Looman- 198.A 

Rademacher- 317.B 
Mercer theorem 217.H 
merging 96.C 
meridian 

(of a knot) 235.B 
(of a surface of revolution) 11 l.H 

meromorphic (in a domain) 272.A 
meromorphic curve 272.L 
meromorphic differential (on a Riemann surface) 

367.H 
meromorphic function(s) 21.5 272.A 

(on an analytic set) 23.D 
(on a complex manifold) 72.A 
transcendental 272.A 

meromorphic mapping, proper (between analytic 
spaces) 23.D 

meromorphy 
circle of (of a power series) 339.D 
radius of (of a power series) 339.D 

Mersenne number 297.E, App. B, Table 1 
Mersenne prime 297.E 
Mertens theorem (on the Cauchy product of two 

series) 379.F 
mesh of a covering (in a metric space) 273.B 
mesons 132.B 
meta-Abelian group 190.H 
metabolic model (in catastrophe theory) 51.F 
metamathematics 156.D 
metastable range (of embeddings) 114.D 
method(s) 

Abel, of summation 379.N 
Adams-Bashforth 303.E 
Adams-Moulton 303.E 
AD1 304.F 
alternating direction implicit (ADI) 304.F 
Arrow-Hurwicz-Uzawa gradient 292.E 
of averaging 290.D 
Bairstow 301.E 
Bernoulli 301.5 
Borel, of summation 379.0 
branch and bound 215.D . 

Ces$ro, of summation of order a 379.M 
Cholesky 302.B 
circle 4.8 
collocation 303.1 
congruence 354.B 
conjugate gradient (C.G.) 302.D 
constructive 156.D 
continuation 301.M 
Crout 302.B 
cyclic Jacobi 298.B 
d’Alembert, of reduction of order 252.F 
Danilevskii 298.D 
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Davidenko, of differentiation with respect to a 
parameter 301.M 

Dejon-Nickel 301.G 
difference 303.A 
direct (in the calculus of variations) 46.E 
discrete variable 303.A 
distribution-free 371.A 
Doolittle 302.B 
downhill 3Ol.L 
Duhamel 322.D 
Durand-Kerner (DK) 301.F 
Durand-Kerner-Aberth (DKA) 301.F 
Enskog 217.N 
Euclidean 150.F 
Euler (of describing the motion of a fluid) 
205.A 

Euler (of numerical solution of ordinary differ- 
ential equations) 303.E 

Euler (of summation) 379.P 
expansion 205.B 
extrapolation 303.F 
factorization 206.B 
of false position 301.C 
of feasible directions (in nonlinear program- 
ming) 292.E 

finite element 223.G 304.C 
fixed point 138.B 
floating point 138.B 
Frobenius App. A, Table 14.1 
Galerkin 303.1 304.B 
Garside-Jarratt-Mack 301.N 
Gauss-Seidel 302.C 
Givens 298.D 
gradient 292.E 
Graeffe 301.N 
graphical, of statistical inference 19.B 
Green function 402.5 
of harmonic balance 290.D,E 
Hessenberg 298.D 
Hill, of solution 268.B 
Hitchcock 301.E 
hodograph 205.B 
Horner 3Ol.C 
Householder 298.D 
implicit 303.E 
implicit enumeration 215.D 
Ince-Goldstein 268.C 
indirect least squares 128.C 
interpolation 224.A 
isoparametric 304.C 
Jacobi (of numerical computation of eigen- 

values) 298.B 
Jacobi (in numerical solution of linear 

equations) 302.C 
Jacobi second, of integration 324.D 
Jeffreys 25.B 
killing (of obtaining a homotopy group) 202.N 
ladder 206.B 
Lagrange (of describing the motion of a fluid) 
205.A 

Lagrange (of indeterminate coefficients) 106.L 
Lagrange, of variation of constants 252.D 
Lagrange, of variation of parameters 252.D 
Lagrange-Charpit 322.B, App. A, Table 15.11 
of Lagrange multipliers 106.L 
Lanczos 298.D 301.N 
Laplace 30.B 
of least squares (for estimation) 403.E 
of least squares (for numerical solution of linear 
equations) 397.5 

I of least squares (for numerical solution of 
ordinary differential equations) 303.1 

Lebesgue, of summation 379,s 
Lehmer 301.K 
Lighthill 25.B 
limited information maximum likelihood 

128.C 
of linearization 290.D 
linear k-step 303.E 
linear multistep 303.E 
of majorants 316.G 
of matched asymptotic expansions 25.B 
Mathieu 268.C 
maximum likelihood 399.M 
middle-square 354.B 
Milne 303.E 
modified minimum chi-square 400.K 
moment 399.L 
Monte Carlo 385.C 
of moving frames llO.A 
of multiple scales 290.E 
multistep 303.E 
multivalue 303.E 
Newton-Raphson 301.D 
nonparametric 371.A 
Norlund, of summation 379.4 
of orthogonal projection 323.G 
(p + 1)-stage 303.D 
penalty 292.E 
Perron (in Dirichlet problem) 120.C 
perturbation 25.B 
Poincare 25.B 
Poincare-Lighthill-Kuo (P.L.K.) 25.B 
polynomial extrapolation 303.F 
power 298.C 
predictor-corrector (PC) 303.E 
projective approximation 304.B 
QR 298.F 
of quadrature 313.D 
QZ 298.G 
rational extrapolation 303.F 
Rayleigh-Ritz 46.F 271.G 
renormalization 361.A 
Richardson 302.C 
Riemann, of summation 379,s 
Riesz, of summation of the kth order 379.R 
Ritz 46.F 303.1 304.B 
robust 371.A 
Rosen gradient projection 292.E 
Runge-Kutta 303.D 
Runge-Kutta-Gill 303.D 
saddle point 25.C 
scaling 346.E 
scoring 397.M 
simplex 255.C 
spectral 304.B 
stationary phase 30.B 
of steepest descent 25.C 
step by step 163.D 
Strum 3Ol.C 
of successive approximation (for an elliptic par- 
tial differential equation) 323.D 

of successive approximation (for Fredholm 
integral equations of the second kind) 217.D 

of successive approximation (for ordinary 
differential equations) 316.D 

of successive iteration (for Fredholm integral 
equations of the second kind) 217.D 

summable by Abel’s 379.N 
summable by Borel’s exponential 379.0 
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Minimal operator 

summable by Borel’s integral 379.0 
summable by Cesaro’s, of order G( 379.M 
summable by Euler’s 379.P 
summable by Holder’s, of order p 379.M 
summable by Niirlund’s 379.4 
summable by M. Riesz’s, of order k 379.R 
of summation 379.L 
Sylvester elimination 369.E 
three-stage least squares 128.C 
threshold Jacobi 298.B 
two-phase simplex 255.C 
two-stage least squares 128.C 
variational 438.B 
of variation of constants 55.B 252.1 
of variation of parameters App. A, Table 14.1 
WKB 25.B 
WKBJ 25.B 

metric 273.B 
Bergman 188.G 
Einstein 364.1 
Einstein-Kahler 232.C 

f- 136.F 
fN- 136.F 
Finsler 152.A 
Hermitian 232.A 
Hodge 232.D 
Kahler 232.A 
Kerr 359.E 
left invariant (in a topological group) 423.1 
Petersson 32.B 
Poincare 74.G 
pseudo- 273.B 
pseudo-Riemannian 105.P 
Riemannian 105.P 
Robertson-Walker 359.E 
standard Klhler (of a complex projective space) 

232.P 
Teichmiiller 416 

metrically isomorphic automorphisms (on a measure 
space) 136.E 

metric comparison theorem 178.A 
metric connection 80.K 
metric invariant (on a measure space) 136.E 
metric multidimensional scaling 346.E 
metric space(s) 273 

compact 273.F 
complete 273.J 
discrete 273.B 
indiscrete pseudo- 273.B 
induced by a mapping 273.B 
precompact 273.B 
product 273.8 
pseudo- 273.B 
separable 273.E 
totally bounded 273.B 

metric structure 
almost contact 110.E 
contact 1lO.E 

metric subspace 273.B 
metric topology 425.C 
metric vector space 256.H 
metrizable topological group 423.1 
metrizable topological space 273.K 
metrizable uniform space 436.F 

pseudo- 436.F 
Meusnier theorem (on surfaces) llI.H 
Meyer decomposition theorem, Doob- 262.D 
Michael theorem 425.X 
micro-analytic 12S.CC 274.E 
microboundle 147.P 

normal PL 147.P 
PL 147.P 
tangent PL 147.P 

microcanonical ensemble 402.D 
microdifferential equation 274.G 
microdifferential operator 274.F 

of finite order 274.F 
of infinite order 274.F 

microfunction 274.E 
holomorphic 274.F 

microlocal analysis 274 345.A 
microlocally elliptic (operator) 345.A 
microlocal operator 274.F 
micro-pseudolocal property 345.A 
middle point 7.C 
middle-square method 354.B 
midpoint 7.C 
midpoint rule 303.E 
midrange 374.G 
Mikusinski operator 306.B 
Mills equation, Yang- 80.G 
Mills field, Yang- 150.G 
Mills functional, Yang- 80.4 
Mills G-connection, Yang- 80.4 
Mil’man property, Krein- 443.H 
Mil’man theorem 37.G 

Krein- 424.U 
Milne corrector 303.F 
Milne method 303.E 
Milne predictor 303.E 
Milne-Simpson formula 303.E 
Milnor libering theorem 418.D 
Milnor libration 418.D 
Milnor invariant 235.D 
Milnor monodromy 418.D 
Milnor number (in Milnor ftbering theorem) 418.D 
Minakshisundaram-Pleijel asymptotic expansion 

391.B 
minimal 

(algebraic surface) 15.G 
(algebraic variety) 16.1 
(ideal) 368.F 
(immersion) 275.A 
(superharmonic function) 260.1 
(transformation) 136.H 
relatively 15.G 16.1 

minimal basis (of a principal order or an algebraic 
number field) 14.B 

minimal chain (for a transition probability) 260.F 
minimal complete class 398.B 
minimal complex 70.E 
minimal condition 

(in an ordered set) 3 1 l.C 
restricted (in a commutative ring) 284.A 

minimal diffeomorphism 126.N 
minimal element (in an ordered set) 31 l.B 
minimal flow 126.N 
minimal function, X- 367.E 
minimal immersion 275.A 

branched 275.B 
generalized 275.B 

minimality 16.1 
absolute 16.1 

minimally almost periodic group 18.1 
minimally elliptic singularity 418.C 
minima1 model 15.G 

(for the algebra of differential forms) 114.L 
Ntron (of an Abelian variety) 3.N 
relatively 15.G 

minimal operator 112.E 
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minimal parabolic k-subgroup 13.4 
minimal polynomial 

(of an algebraic element) 149.E 
(of a linear transformation) 269.L 
(of a matrix) 269.F 

minimal prime divisor (of an ideal) 67.F 
minimal projection, Lie 76.B 
minimal realization 86.D 
minimal resolution 418.C 
minimal set 126.E 
minimal splitting field (of a polynomial) 149.G 
minimal submanifold 275.A 365.D 
minimal sufhcient u-field 396.E 
minimal surface 111.1 334.B 

atline 1lO.C 
branched 275.B 

minimal surface equation 275.A 
minimal variety 275.G 
minimax (estimator) 399.H 
minimax decision function 398.B 
minimax level a: test 400.F 
minimax principle 

(for eigenvalues of a compact operator) 68.H 
(for statistical decision problem) 398.B 
for I, 391.G 

minimax solution 398.B 
minimax theorem 173.C 
minimization problem, group 215.C 
minimizing sequence 46.E 
minimum (minima) 

of a function 106.L 
relative (at a point) 106.L 
successive (in a lattice) 182.C 
weak 46.C 

minimum chi-square method, modified 400.K 
minimum-cost flow problem 281.C 
minimum curvature property 223.F 
minimum element (in an ordered set) 311.B 
minimum immersion 365.0 
minimum norm property 223.F 
minimum principle 

energy 419.C 
enthalpy 419.C 
Gibbs free energy 419.C 
Helmhoitz free energy 419.C 
for A, 391.G 
ofl 391.D 

minimum solution (of a scalar equation) 316.E 
minimum variance unbiased estimator, uniformly 

399.c 
Minkowski-Farkas theorem 255.B 
Minkowski-Hasse character (of a nondegenerate 

quadratic form) 348.D 
Minkowski-Hasse theorem (on quadratic forms 

over algebraic number fields) 348.G 
Minkowski-Hlawka theorem 182.D 
Minkowski inequality 21 l.C, App. A, Table 8 
Minkowski reduction theory (on fundamental 

regions) 122.E 
Minkowski space 258.A 
Minkowski space-time 359.B 
Minkowski theorem 182.C 

on discriminants 14.B 
on units 14.D 

Minlos theorem 424.T 
minor 

(of a matrix) 103.D 
(of a matroid) 66.H 
Fredholm’s tirst 203.E 

Fredholm’s rth 203.E 
principal (of a matrix) 103.D 

minor arc 4.B 
minor axis (of an ellipse) 78.C 
minor function 100.F 
minus infinity 87.D 
minute (an angle) 139.D 
Mittag-Lefller theorem 272.A 
mixed Abelian group 2.A 
mixed area (of two ovals) 89.D 
mixed group 190.P 
mixed Hodge structure 16.V 
mixed ideal 284.D 
mixed initial-boundary value problem (for hyper- 

bolic operator) 325.K 
mixed insurance 214.B 
mixed integer programming problem 215.A 
mixed model 102.A 
mixed periodic continued fraction 83.C 
mixed problem 322.D 
mixed spinor rank (k, n) 258.B 
mixed strategy 173.C 
mixed tensor 256.5 
mixed type, partial differential equation of 304.C 

326.A 
mixing (automorphism) 

k-fold 136.E 
strongly 136.E 
weakly 136.E 

mixture 351.B 
Mizohata equation, Lewy- 274.G 
ML estimator 399.M 
mobility, axiom of free (in Euclidean geometry) 

139.B 
Mobius band 410.B 
Mobius function 66.C 295.C 
Mobius geometry 76.A 
Mobius strip 410.B 
Mobius transformation 74.E 76.A 
Mobius transformation group 76.A 
mod 1, real number 355.D 
mod p (modulo p) 

Hopf invariant 202,s 
isomorphism (in a class of Abelian groups) 
202.N 

modal logic 41 l.L 
modal proposition 41 l.L 
modal unbiased estimator 399.C 
mode 396.C 397.C 

sample 396.C 
model 

(of an algebraic function field) 9.D 
(of a mathematical structure) 409.B 
(of a symbolic logic) 276.D 41 l.G 
Bayesian 403.G 
Bradley-Terry 346.C 
Bush-Mosteller 346.G 
canonical 251.N 
component 403.F 
components-of-variance 403.C 
countable (of axiomatic set theory) 156.E 
derived normal (of a variety) 16.F 
dual resonance 132.C 
Estes stimulus-sampling 346.G 
factor analysis 403.C 
fixed effect 102.A 
functional 251.N 
game theoretic 307.C 
Glashow-Weinberg-Salam 132.D 
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Modulus (mod&) 

of human death and survival 214.A 
Ising 340.B 402.G 
Klein (of non-Euclidean geometry) 285.C 
learning 346.G 
linear 403.D 
linear logistic 403.C 
log linear 403.C 
Lute b- 346.G 
mathematical, in biology 263 
metabolic (in catastrophe theory) 51.F 
minimal 15.G 
minimal (for the algebra of differential forms) 

114.L 
mixed 102.A 
multiple 403.E 
multivariate linear 280.B 
natural (in axiomatic set theory) 33.C 
normal linear 403.C 
Poincare (of geometry) 285.D 
queuing 260.H 
random-effects 102.A 403.C 
relatively minimal 15.G 
Sakata 132.D 
Scheffe 346.C 
simple 403.F 
spin-flip 340.C 
static (in catastrophe theory) 51.B 
stochastic Ising 340.C 
stochastic programming 307.C 
string 132.C 
Sz.-Nagy-Foiag 251.N 
Thurstone-Mosteller 346.C 
Veneziano 132.C 386.C 
Whittaker 450.0 

model experimentation 385.A 
modeling, mathematical 300 
model scheduling 307.C 
model selection 401 .D 
model theory 276 
modification 

(of a stochastic process) 407.A 
holomorphic (of an analytic space) 23.D 
proper (of an analytic space) 23.D 
spherical 114.F 

modified Bessel functions App. A, Table 19.IV 
modified Fourier hyperfunction 125.BB 
modified indicator function 341.C 
modified Mathieu differential equation 268.A 
modified Mathieu function 268.A 

of the first kind 268.D 
of the second kind 268.D 
of the third kind 268.D 

modified minimum chi-square method 400.K 
modified wave operator 375.B 
modular, weakly (in quantum mechanics) 351.L 
modular automorphism 308.H 
modular character (of a modular representation) 

362.1 
modular form 

Hilbert, of dimension -k 32.G 
Hilbert, of weight k 32.G 
of level N 32.C 
Siegel, of dimension -k 32.F 
Siegel, of weight k 32.F 

modular function 
(of a locally compact group) 225.D 
Hilbert 32.G 
of level N 32.C 
Siegel, of degree n 32.F 

modular group 122.D 
elliptic 122.D 
Hilbert 32.G 
Siegel, of degree n 32.F 

modular lattice 243.F 
modular law (in a lattice) 243.F 
modular operator 308.H 
modular represenation (of a finite group) 362.G 
modular surface, Hilbert 15.H 
module(s) 277 

(of a family of curves) 143.A 
A- 211.C 
over A 277.C 
of A-homomorphisms (between A-modules) 

277.E 
Artinian 277.1 
of boundaries 200.C 
category of left (right) R- 52.B 
character (of an algebraic group) 13.D 
of coboundaries 200.F 
of cocycles 200.F 
coefficient 200.L 
cohomology 200.F 
connected graded 203.B 
of cycles 200.C 
defining (of a linear system) 16.N 
degenerate 118.D 
divisible A- 277.D 
dual 277.K 
dual graded 203.B 
duality theorem for D- 422.L 
factor A- 277.C 
faithfully flat A- 277.K 
of linite length 277.1 
flat A- 277.K 
free 277.G 
generalized 143.B 
graded A- 200.B 
homology 200.C 
of homomorphisms (between two modules) 

277.B 
induced 277.L 
injective A- 277.K 
Jordan 231.C 
left A- 277.D 
Noetherian 277.1 
Lo-, 383.1 
with operator domain A 277.C 
projective A- 277.K 
of quotients of an R-module with respect to S 

67.G 
(R, S)-injective 200.K 
(R, S)-projective 200.K 
representation (of a linear representation) 

362.C 
of representations (of a compact group) 69.D 
right A- 277.D 
torsion A- 277.D 

moduli functor 16. W 
moduli scheme 16.W 

coarse 16.W 
tine 16.W 

moduli space 16.W 72.G 
of curves of genus 9 9.J 
local 72.G 

modulus (moduli) 
(of a complex number) 74.B 
(of a complex torus of dimension I) 32.C 
(=a conformal invariant) 1 l.B 77.E 
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(of a congruence) 297.G 
(of an elliptic integral) 134.A, App. A, Table 

16.1 
(in Jacobi elliptic functions) 134.5, App. A, 

Table 16.111 
(of a locally multivalent function) 438.E 
(of a ring) 77.E 
complementary (of an elliptic integral) App. A, 

Table 16.1 
complementary (in Jacobi elliptic functions) 

134.5, App. A, Table 16.111 
of continuity (of a function) 84.A 
of continuity of kth order (of a continuous 
function) 336.C 

of elasticity in shear 271.G 
of elasticity in tension 271.G 
held of 73.B 
local maximum, principle 164.C 
maximum, principle (for a holomorphic func- 
tion) 43.B 

periodicity (of an elliptic integral) 134.A 
of rigidity 271.G 
Young’s 271.G 

modulus number 418.E 
modus ponens 411.1 
Moishezon criterion, Nakai- (of ampleness) 16.E 
Moishezon space 16.W 
mole numbers 419.A 
moment 397.C 

absolute (kth) 341.B 
bivariate 397.H 
central 397.C 
conditonal 397.1 
factorial 397.G 
of inertia 271.E 
(kth) 341.B 
about the mean (kth) 341.B 
population (of order k) 396.C 
principal, of inertia 271.E 
sample (of order k) 396.C 

moment generating function 177.A 341.C 397.G,J 
moment matrix 341.B 
moment method 399.L 
moment method estimator 399.L 
moment problem 

Hamburger 240.K 
Hausdorff 240.K 
Stieltjes 240.K 

momentum 271.A,E 
angular 271.E 
generalized 27 1 .F 
integrals of angular 420.A 
intrinsic angular 351.G 
orbital angular 351.E 
theorem of 271.E 
theorem of angular 271.E 

momentum density, angular 150.B 
momentum 4-vector, energy- 258.C 
momentum operator 

angular 258.D 
energy- 258.D 

momentum phase space 126.L 
momentum representation 351.C 
momentum tensor 

angular 258.D 
energy- 150.D 359.D 

monad 
(in homology theory) 200.Q 
(in nonstandard analysis) 293.D 

Monge-Ampere equations 278, App. A, Table 
15.111 

Monge differential equation 324.F 
manic polynomial 337.A 
monoclinic system 92.E 
monodromy group 

(of an n-fold covering) 91.A 
(of a system of linear ordinary differential equa- 

tions) 253.B 
Milnor 418.D 
total 418.F 

monodromy matrix 254.B 
monodromy theorem (on analytic continuation) 

198.5 
monogenic function 

in the sense of E. Bore1 198.4 
in the sense of Cauchy 198.4 

monoid, unitary 409.C 
monoidal transformation 

(of an analytic space) 23.D 
(of a complex manifold) 172.H 
(by an ideal sheaf) 16.K 
with center IV 16.K 
real 274.E 

monomial 337.B 
(module) 277.D 
admissible (in Steenrod algebra) 64.B 

monomial representation (of a finite group) 362.G 
monomorphism (in a category) 52.D 
monothetic group 136.D 
monotone 

(curve) 281.B 
operator 212.C 

monotone class 270.B 
monotone class theorem 270.B 
monotone decreasing 

(set function) 380.B 
matrix, of order m 212.C 

monotone decreasing function 166.A 
strictly 166.A 

monotone function 166.A 
strictly 166.A 
strictly (of ordinal numbers) 312.C 

monotone increasing 
(set function) 380.B 
matrix, of order m 212.C 

monotone increasing function 166.A 
strictly 166.A 

monotone likelihood ratio 374.5 
monotonely very weak Bernoulli 136.F 
monotone mapping 31 l.E 
monotone operator (in a Hilbert space) 286.C 
monotone sequence (of real numbers) 87.B 
monotonically decreasing (sequence of real numbers) 

87.B 
monotonically increasing (sequence of real numbers) 

87.B 
monotonic function, completely 240.E,K 
Monte Carlo method 385.C 
Monte1 space 424.0 
Monte1 theorem 435.E 
moon argument, behind-the- 351.K 
Moore-Smith convergence 87.H 
Moore space 273.K 425.AA 
Moore space problem, normal 425.AA 
Mordell conjecture 118.E 
Mordell-Weil theorem 118.E 

weak 118.E 
more informative (experiment) 398.G 
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Morera theorem 198.A 
Morgenstern solution, von Neumann 173.D 
morphism 

(in a category) 52.A 
(of chain complexes) 200.H 
(of complexes) 13.R 
(of filtered modules) 200.5 
(of inductive systems) 210.D 
(of unfoldings) 5 1 .D 
atline 16.D 
connecting 200.H 
diagonal (in a category) 52.E 
ttale 16.F 
finite 16.D 
flat 16.D 
faithfully flat 16.D 
Frobenius 450.P 
functorial 52.5 
inverse 52.D 
k- (between algebraic groups) 13.A 
projective 16.E 
proper (between schemes) 16.D 
quasiprojective 16.E 
s- 52.G 
of schemes 16.D 
separated 16.D 
shape 382.A 
smooth 16.F 
strict (between topological groups) 423.5 
structure 52.G 

Morse function 279.B 
Morse index theorem 279.F 
Morse inequalities 279.D 
Morse lemma 279.B 
Morse-Smale diffeomorphism 126.5 
Morse-Smale flow 126.5 
Morse-Smale vector tield 126.5 
Morse theory 279 

fundamental theorems of 279.D 
Morsitication 418.F 
Moser implicit function theorem, Nash- 286.5 
Mosteller model 

Bush- 346.G 
Thurstone- 346.C 

most powerful (test) 400.A 
most probable cause 401.E 
most probable value 401.E 
most stringent level d( test 400.F 
motion(s) 

(in dynamical system) 126.B 
(Euclidean) 139.B 
Brownian 5.D 45 342.A 
Brownian (d-dimensional) 45.C 
Brownian, on Lie groups 406.G 
Brownian, with an N-dimensional time para- 
meter 45.1 

central 126.E 
elliptic 55.A 
equation of (of a fluid) 205.A 
equation of (of a particle in a gravitation field) 
359.D 

equations of (in Newtonian mechanics) 271.A 
Euler equation of (of a perfect fluid) 205.8 
{.e}-Brownian 45.B 406.B 
group of (in Euclidean geometry) 139.B 
group of, in the wider sense 139.B 
Heisenberg equation of 351.D 
hyperbolic 420.D 
hyperbolic-elliptic 420.D 

hyperbolic-parabolic 420.D 
infinitesimal (of a Riemannian manifold) 364.F 
Lagrange equation of 271.F 
Lagrange-stable 420.D 
law of 271.A 
mean 309.B 
Newton three laws of 271.A 
Ornstein-Uhlenbeck Brownian 45.1 
oscillating 420.D 
parabolic 420.D 
parabolic-elliptic 420.D 
perpetual 402.G 
proper (in Euclidean geometry) 139.B 
proper (of a star) 392 
quasiperiodic 136.G 
right-invariant Brownian 406.G 
simple harmonic 318.B 
space-time Brownian 45.F 

Moulton method, Adams- 303.E 
movability 382.C 
movable 382.C 

k- 382.C 
movable branch point (of an algebraic differential 

equation) 288.A 
movable singularity (of an algebraic differential 

equation) 288.A 
move 173.B 

chance 173.B 
moving average 397.N 

weighted 397.N 
moving average process 421.D 

autoregressive 421.D 
autoregressive integrated 421.G 

moving average representation 
backward 395.D 
canonical backward 395.D 

moving coordinates App. A, Table 3.IV 
moving coordinate system 90.B 
moving frame(s) 90 111.C 417.B 

method of 110.A 
natural 417.B 
orthonormal 417.D 
stochastic 406.G 

multicollinearity 128.B 
multicommodity flow problem 281.F 
multidiagonal type 304.C 
multidimensional diffusion process 115.A,C 
multidimensional gamma function 374.c 
multidimensional hypergeometric distribution 

App. A, Table 22 
multidimensional normal distribution App. A, 

Table 22 
multidimensional scaling 346.E 

nonmetric 346.E 
multi-index 112.A 168.B 
multilinear form 256.H 
multilinear mapping 256.H 

alternating 256.H 
antisymmetric 256.H 
skew-symmetric 256.H 
symmetric 256.H 

multinomial distribution 341.D 
negative 341.D 

multinomial theorem 330 
multi-objective model 307.C 
multiobjective programming 264.C 
multiplanar coordinates 90.C 
multiple 297.A 

(of an element of a ring) 67.H 
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(of a fractional ideal) 14.E 
common (of elements of a ring) 67.H 
least common 297.A 
least common (of elements of a ring) 67.H 
scalar (of an element of a module) 277.D 
scalar (of a linear operator) 37.C 
scalar (in a linear space) 256.A 
scalar (of a vector) 442.A 

multiple complex 200.H 
multiple correlation coefficient 397.5 

sample 280.E 
multiple covariant 226.E 

absolute 226.E 
multiple hypergeometric distribution 341.D 
multiple integral 

(in Lebesgue integral) 227.E 
(in Riemann integral) 216.F 

multiple mathematical inductions 294.B 
multiple model 403.F 
multiple point 

(on an arc) 93.B 
(of a plane algebraic curve) 9.B 
(on a variety) 16.F 

multiple root (of an algebraic equation) 10.B 
multiple sampling inspection 404.C 
multiple-valued (analytic function) 198.J 
multiple Wiener integral 176.1 
multiplication 

(of an algebra) 203.F 
(of a graded algebra) 203.B 
(in a group) 190.A 
(of an H-space) 203.D 
(of local Lie groups) 423.L 
(by a natural number) 294.B 
(in a ring) 368.A 
associative (of a graded algebra) 203.B 
commutative (of a graded algebra) 203.B 
commutative law for (in a ring) 368.A 
complex 73.A 
homotopy associative 203.D 
homotopy commutative 203.D 
Pontryagin 203.D 
scalar (in a module) 277.D 
scalar (on vectors) 442.A 
symmetric 406.C 

multiplication theorem, Hadamard 339.D 
multiplicative (arithmetic function) 295.B 
multiplicative automorphic function 32.A 
multiplicative class 270.B 
multiplicative congruence 14.H 
multiplicative ergodic theorem 136.B 
multiplicative function 32.A 295.B 
multiplicative functional 

(of a Markov process) 261.E 
transformation by 261.F 

multiplicative group 149.A 190.A 
of a field 190.B 

multiplicative Jordan decomposition (of a linear 
transformation) 269.L 

multiplicatively closed subset (of a ring) 67.C 
multiplicative valuation 439.C 
multiplicator (of a relative invariant measure) 

225.H 
multiplicity 

(of a covering surface) 367.B 
(of an eigenvalue for an integral equation) 

217.F 
(of an eigenvalue of a matrix) 390.B 
(of a Gaussian process) 176.E 
(of a local ring) 284.D 

(of a representation) 362.D 
(of a root of an algebraic equation) 10.B 
(of a weight) 248.W 
algebraic (of an eigenvalue) 390.B 
geometric (of an eigenvalue) 390.A 
intersection (of two subvarieties) 16.Q 
representation without 437.G 
set of 159.J 

multiplicity function (of a mapping) 246.G 
multiplier 

(of a group) 362.5 
(of a semi-invariant) 226.A 
characteristic (of a closed orbit) 126.G 
characteristic (of a periodic linear system) 

163.F 
Jacobi’s last App. A, Table 14.1 
Lagrange 46.B 
method of Lagrange 106.L 
Stokes 254.D 

multiplier algebra 36.K 
multiply connected domain 333.A 
multiply transitive (permutation group) 151.H 
multipolar coordinates 90.C 
multiprocessor scheduling problem 376 
multistage allocation process 127.A 
multistage choice process 127.A 
multistage game 173.C 
multistage programming 264.C 
multistage sampling 373.E 
multistep method 303.E 

linear 303.E 
multitype Galton-Watson process 44.C 
multitype Markov branching process 44.E 
multivalent function 438.E 
multivalued function 165.B 
multivalue method 303.E 
multivariate (data) 397.A 
multivariate analysis 280 

of variance 280.B 
multivariate linear model 280.B 
multivariate normal distribution 397.5 
Muntz theorem (on polynomial approximation) 

336.A 
mutual energy 338.B 
mutual information 213.E 
mutually associated diagrams (for O(n) diagrams) 

60.5 
mutually disjoint family (of sets) 381.D 
mutually noncomparable (summations) 379.L 
mutually orthogonal (latin squares) 241.B 
M.V.W.B. (= monotonely very weak Bernoulli) 

136.F 

N 

N (natural numbers) 294.A,B 
NP 71.E 
nary predicate 41 l.G 
n-ary relation 41 l.G 
n-ball 140 

open 140 
n-body problem 420.A 
n-cell 70.D 140 

open 70.D 
topological 140 

n-classifying space (of a topological group) 
147.G 

n-cochain (for an associative algebra) 200.L 
n-connected 

(pair of topological spaces) 202.L 
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(space) 79.C 202.L 
locally 79.C 

n-connective fiber space 148.D 
n-cube, unit 140 
n-cylinder set 270.H 
n-decision problem 398.A 
n degrees of freedom (sampling distribution) 

374.B,C 
n-dimensional (normal space) 117.B 
n-dimensional distribution 342.C 
n-dimensional distibution function 342.C 
n-dimensional Euclidean geometry 139.B 181 
n-dimensional probability distribution 342.C 
n-dimensional random variable 342.C 
n-dimensional sample space 396.B 
n-dimensional statistic 396.B 
n-disk 140 

open 140 
n-element 140 
n-fold covering 91.A 
n-fold reduced suspension (of a topological space) 

202.F 
n-gon, regular 357.A 
n-gonal number 296.A 
n-particle subspace 377.A 
n-person game 173.B-D 
n-ply connected (plane domain) 333.A 
n-section (in a cell complex) 70.D 
n-sheeted (covering surface) 367.B 
n-simple 

(pair of topological spaces) 202.L 
(space) 202.L 

n-simplex 
(in a Euclidean simplicial complex) 70.B 
(in a semisimplicial complex) 70.E 
(in a simplicial complex) 70.C 

n-sphere 140 
open 140 
solid 140 

n-sphere bundle 147.K 
n-times continuously differentiable (function) 

106.K 
n-times differentiable (function) 106.D 
n-torus 422.E 
n-tuple 256.A 381.B 
n-universal bundle 147.G 
n-valued (analytic function) 198.5 
(n + 2)-hyperspherical coordinates 79.A 90.B 
N-ple Markov Gaussian process 176.E 

in the restricted sense 176.F 
nth approximation (of an n-times differentiable 

function) 106.E 
nth convergent (of an infinite continued fraction) 

83.A 
nth derivative (of a differentiable function) 

106.D 
nth derived function 106.D 
nth differential (of a differentiable function) 

106.D 
nth partial quotient 83.A 
nth order, differential of 106.D 
nth order partial derivatives 106.H 
nth term 165.D 
nabla 442.D, App. A, Table 3.11 
Nachbin-Goodner-Kelley theorem 37.M 
Nagumo theorem, Kneser- 316.E 
Naimark theorem, Gel’fand- 36.G 
Nakai-Moishezon criterion (of ampleness) 16.E 
Nakanishi equation, Landau- 146.C 
Nakanishi variety, Landau- 146.C 386.C 

Nakano-Nishijima-Gell-Mann formula 132.A 
Nakayama lemma 67.D 
Nambu-Goldstone boson 132.C 
Napier analogies App. A, Table 2.111 
Napierian logarithm 131.D 
Napier number 131.D 
Napier rule App. A, Table 2.H 
Nash bargaining solution 173.C 
Nash equilibrium 173.C 
Nash-Moser implicit function theorem 286.5 
nat 213.B 
natural additive functional 261.E 
natural boundary 

(of an analytic function) 198.N 
(of a diffusion process) 115.B 

natural equation 
(ofacurve) lll.D 
(of a surface) llO.A 

natural equivalence 52.5 
natural extension (of an endomorphism) 136.E 
natural geometry 1lO.A 
natural injection (from a subgroup) 190.D 
naturality (of a homotopy operation) 202.0 
natural logarithm 131.D 
natural model (in axiomatic set theory) 33.C 
natural moving frame 417.B 
natural number 294.A,B 

nonstandard 276.E 
Skolem theorem on impossibility of 156.E 

natural positive cone 308.K 
natural scale 260.G 
natural spline 223.F 
natural surjection (to a factor group) 190.D 
natural transformation 52.5 
Navier-Stokes equation(s) 204.B 205.C 

general 204.F 
Navier-Stokes initial value problem 204.B 
nearly Bore1 measurable set 261.D 
nearly everywhere (in potential theory) 338.F 
necessary (statistic) 396.E 
necessity 41 l.L 
necklace, Antoine’s 65.G 
negation (of a proposition) 41 l.B 
negative 

(complex) 200.H 
(element of a lattice-ordered group) 243.G 
(element of an ordered field) 149.N 
(rational number) 294.D 

negative binomial distribution 341.D 397.F, App. 
A, Table 22 

negative curvature 178.H 
negative definite (function) 394.C 
negative definite Hermitian form 348.F 
negative definite quadratic form 348.B 
negative half-trajectory 126.D 
negative infinity 87.D 355.C 
negative limit point 126.D 
negatively invariant 126.D 
negatively Lagrange stable 126.E 
negatively Poisson stable 126.E 
negative multinomial distribution 341.D 
negative number 355.A 
negative orientation (of an oriented C-manifold) 

105.F 
negative part (of an element of a vector lattice) 

310.B 
negative polynominal distribution App. A, Table 

22 
negative prolongational limit set, first 126.D 
negative resistance 318.B 
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negative root (of a semisimple Lie algebra) 248.M 
negative semidefinite quadratic form 348.C 
negative semiorbit 126.D 
negative variation 

(of a mapping) 246.H 
(of a real bounded function) 166.B 

neighborhood 425.8 
analytic (of a function element in the wider 

sense) 198.0 
analytic (in a Riemann surface) 367.A 
conoidal 274.D 
convex 364.C 
coordinate (in a tiber bundle) 147.B 
coordinate (in a topological manifold) 105.C 
coordinate, of class C’ 105.D 
derived 65.C 
E- (of a point) 273.C 
&tale 16.AA 
fundamental system of 425.E 
open 425.E 
open tubular 114.B 
regular 65.C 
regular, theorem 65.C 
relative 425.5 
tubular 105.L 114.B 364.C 

neighborhood deformation retract 202.D 
neighborhood retract 202.D 

absolute 202.D 
fundamental absolute (FANR) 382.C 

neighborhood system 425.B 
base for 425.E 
uniform 436.D 
uniform family of 436.D 

Nelson formula, Feynman-Kac- 150.F 
Nelson symmetry 150.F 
Nernst postulate 419.A 
Ntron minimal model (of an Abelian variety) 

3.N 
N&on-Severi group 

(of a surface) 15.D 
(of a variety) 16.P 

nerve (of a covering) 70.C 
nested intervals, principle of (for real numbers) 

87.C 355.B 
net (in a set) 87.H 

Cauchy (in a uniform space) 436.G 
square 304.E 
universal (in a set) 87.H 

net premium 214.A 
network(s) 282 425.F 

bilateral 282.C 
capacitated 28 1 .C 
contact 282.B 
electric 282.B 
linear 282.C 
M-port 282.C 
passive 282.C 
reciprocal 282.C 
time-invariant 282.C 
two-terminal 281.C 

network flow model 307.C 
network flow problem 281 282.B 
network programming 264.C 
network scheduling 307.C 
Neumann function 39.B 188.H, App. A, Table 

19.111 
Neumann polynomial App. A, Table 19.IV 
Neumann problem 193.F 323.F 
Neumann series 217.D 
neutral element (in a lattice) 243.E 

neutral type (of functional differential equation) 
163.B 

Nevanlinna exceptional value 272.E 
Nevanlinna first fundamental theorem 272.B 
Navanlinna second fundamental theorem 272.E 
Nevanlinna theory 

(of meromorphic functions) 124.B 272.B 
(for several complex variables) 21.N 

Newton, I. 329 
Newton backward interpolation formula 223.C 
Newton boundary 418.D 

nondegenerate 418.D 
Newton-Cotes formula (in numerical integration) 

299.A 
Newton diagram 254.D 
Newton first law 271.A 
Newton formula (on interpolation) App. A, Table 

21 
Newton formula (on symmetric functions) 337.1 
Newton forward interpolation formula 223.C 
Newtonian capacity 48.B 
Newtonian exterior capacity 48.H 
Newtonian fluid 205.C 
Newtonian inner capacity 48.F 
Newtonian interior capacity 48.F 
Newtonian mechanics 271.A 
Newtonian outer capacity 48.H 
Newtonian potential 271.C 338.A 
Newton interpolation formula App. A, Table 21 
Newton interpolation polynomial 336.G 
Newton iterative process 301.D 
Newton law (on frictional stresses) 205.C 
Newton law of universal gravitation 271.B 
Newton-Raphson method 301.D 
Newton second law 271.A 
Newton third law 271.A 
Newton three laws of motion 271.A 
Neyman factorization theorem 396.F 
Neyman-Pearson lemma 400.B 
Neyman structure 400.D 
nice function (on a Cm-manifold) 114.F 
Nicholson formula App. A, Table 19.IV 
Nicholson formula, Watson- App. A, Table 19.111 
Nickel method, Dejon- 301.G 
Nicomedes conchoid 93.H 
Nijenhuis tensor 72.B 
Nikodym derivative, Radon- 270.L 380.C 
Nikodym property, Radon- 443.H 
Nikodym theorem, Radon- 270.L 380.C 
Nikodym theorem for vector measures, Radon- 

443.H 
nilalgebra 23 1 .A 
nilmanifold 178.D 
nilpotent 

(Lie algebra) 248.C 
(Lie group) 249.D 
(subset of a ring) 368.B 
(zero-divisor) 284.A 
generalized (linear operator) 251.F 

nilpotent algebraic group 13.F 
nilpotent component (of a linear transformation) 

269.L 
nilpotent element 

(of a ring) 368.B 
generalized (in a Banach algebra) 36.E 

nilpotent group 190.J 
finite 151.C 
generalized 190.K 

nilpotent ideal 
(of a Lie algebra) 248.C 
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largest (of a Lie algebra) 248.D 
nilpotent matrix 269.F 
nilpotent radical (of a Lie algebra) 248.D 
nilradical 

(of a commutative ring) 67.B 
(of a ring) 368.H 

9j symbol 353.C 
Nirenberg space, John- (= BMO) 168.B 
NishijimaaGell-Mann formula, Nakano- 132.A 
Nishina formula, Klein- 351.G 
Nitsche formula, Gauss-Bonnet-Sasaki- 275.C 
niveau surface 193.5 
Nobeling embedding theorem, Menger- l17.D 
no cycle condition 126.5 
nodal curve 391.H 
nodal domain 391.H 
nodal point 304.C 
nodal set 391.H 
node 

(of a curve) 93.G 
(of a graph) 186.B 282.A 
(of a plane algebraic curve) 9.B 
completion 281.D 
start 281.D 

Noetherian domain 284.A 
Noetherian integral domain 284.A 
Noetherian local ring 284.D 
Noetherian module 277.1 
Noetherian ring(s) 284.A 

left 368.F 
right 368.F 

Noetherian scheme 16.D 
locally 16.D 

Noetherian semilocal ring 284.D 
Noether number, Brill- 9.E 
Noether theorem 150.B 
noise 

thermal 402.K 
white 176.D 

noisy channel 213.A 
nomograms 19.A,D 
non-Abelian cohomology 200.M 
nonadaptive scheme 299.C 
nonanticipative 406.D 
non-Archimedean geometry 155.D 
non-Archimedean valuation 14.F 439.C 
nonassociative algebra 231.A 
nonatomic 168.C 443.G 
non-Bayesian approach 401 .B 
noncentral (quadric hypersurface) 7.F 350.G 
noncentral chi-square distribution 374.B 
noncentral F-distribution 374.B 
noncentral Hotelling TZ statistic 374.C 
noncentrality (sampling distribution) 374.B,C 
noncentrality matrix 374.C 
noncentral f-distribution 374.8 
noncentral Wishart distribution 374.C 

p-dimensional 374.C 
noncommutative field 149.A 
noncompact real simple Lie algebra App. A, 

Table 5.11 
noncompact type (symmetric Riemannian homoge- 

neous space) 412.D 
noncomparable, mutually 379.L 
nonconforming type 304.C 
nonconvex quadratic programming 264.D 
noncooperative (game) 173.A 
nondecreasing function 166.A 
nondegenerate 

(analytic mapping) 23.C 

(bilinear form) 256.H 
(critical point) 106.L 279.B 286.N 
(function on a Hilbert manifold) 279.E 
(quadratic form) 348.A 
(representation) 437.N 
(sesquilinear form) 256.Q 
(theta-function) 3.1 

nondegenerate critical manifold 279.D,E 
nondegenerate divisor 3.D 16.N 
nondegenerate hypersurface 344.A 
nondegenerate Newton boundary 418.D 
non-Desarguesian geometry 155.E 343.C 
nondeterministic 

(Turing machine) 31.B 
purely (weakly stationary process) 395.D 

nondeterministic linear bounded automaton 31.D 
nonelementary (Kleinian group) 234.A 
non-Euclidean angle (in a Klein model) 285.C 
non-Euclidean distance 285.C 
non-Euclidean geometry 285 
non-Euclidean hypersphere 285.C 
non-Euclidean space 285.A 
nonexpansive mapping 286.B 
nonexpansive operator 37.C 
nonhomogeneous difference equation 104.C 
nonhomogeneous n-chain (for a group) 200.M 
nonincreasing function 166.A 
nonlinear differential equation 291.D 
nonlinear filter 405.F,H 
nonlinear functional analysis 286 
nonlinear integral equation 217.M 
nonlinear lattice dynamics 287 
nonlinear mechanics 290.A 
nonlinear ordinary differential equations 313.A 

(global theory) 288 
(local theory) 289 

nonlinear oscillation 290 
nonlinear partial differential equations 320.A 
nonlinear problems 291 
nonlinear programming 264.C 
nonlinear semigroup 88.E 378.F 

of operators 286.X 
nonmeager set 425.N 
nonmetric MDS 346.E 
nonnegative (matrix) 269.N 
nonnegative terms, series of 379.B 
non-Newtonian fluid 205.C 
nonparametric method 371 
nonparametric test 371.A 
nonpositive curvature 178.H 

G-space with 178.H 
nonprimitive character 450.C,E 
nonrandomized (decision function) 398.A 
nonrandomized estimate 399.B 
nonrandomized test 400.A 
nonrecurrent (chain) 260.B 
nonrecurrent (transient) 260.B 
nonresidue, quadratic 297.H 
nonsaddle set 126.E 
nonsingular (flow) 126.G 

(point for a flow) 126.D 
(point of a variety) 16.F 

nonsingular mapping of class C’ 208.B 
nonsingular matrix 269.B 
nonsingular transformation 

(of a linear space) 256.B 
(on a measure space) 136.B 

nonsingular variety 16.F 
nonstandard 33.B 

(element) 293.B 
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nonstandard analysis 293 
nonstandard natural number 276.E 
nonstandard real number 276.E 
nonstandard set theory 293.E 
nonstationary oscillations 290.F 
nonsymmetric unified field theory 343.C 
nontangential maximal function 168.B 
nontangential path 333.B 
nontrivial (3-manifold) 65.E 
nontrivially (to act on a G-space) 431.A 
nonwandering 126.E 

set 126.E 
Norlund method of summation 379.Q 
norm 

(of an algebraic element) 149.5 
(of an element of a general Cayley algebra) 54 
(of an element of a quaternion algebra) 29.D 
(of an operator) 37.C 
(of a separable algebraic element) 149.5 
(of a vector) 37.B 
absolute (of an integral ideal) 14.C 
C*-cross 36.H 
C’- 126.H 
graph 251.D 
Hilbert-Schmidt 68.1 
minimum, property 223.F 
nuclear 68.K 
pseudo- (on a topological linear space) 424.F 
reduced (of an algebra) 362.E 
relative (of a fractional ideal) 14.1 
semi- (on a topological linear space) 424.F 
spinorial 6 1 .D 
supremum 168.B 
trace 68.1 
uniform 168.B 

normal 62.C 110.E 354.F 
(almost contact structure) llO.E 
(analytic space) 23.D 
(current) 275.G 
(fundamental region) 122.B 
(*-isomorphism) 308.C 
(state) 351.B 
(for a valuation) 439.H 
(weight on a von Neumann algebra) 308.D 
afline 11O.C 
afhne principal llO.C 
analytically 284.D 
principal 11 I .F 

normal algebraic variety 16.F 
normal analytic structure 386.C 
normal basis 172.E 
normal block bundle 147.Q 
normal bundle 

(of a foliation) 154.B,E 
(of an immersion) 114.B 
(of a submanifold) 105.L 274.E 364.C 

normal Cartan connection 80.N 
normal chain 

(in a group) 190.G 
(in a Markov chain) 260.D 

normal commutation relation 150.D 
normal connection 365.C 
normal contact Riemannian manifold 110.E 
normal continued fraction 83.E 
normal coordinate(s) 90.C 

mapping 364.C 
normal covering 425.R 
normal crossings 16.L 

only 16.L 
normal curvature (of a surface) 11 l.H 

normal density function 397.D 
normal derivative 106.G 
normal distribution 341.D 397.D, App. A, Table 

k-dimensional 341.D, App. A, Table 22 
logarithmic App. A, Table 22 
multidimensional App. A, Table 22 
standard 341.D 

normal duration 28.1 
normal equation 

(in the method of least squares) 302.E 403.E 
(in statistical data analysis) 397.5 

normal estimator, best asymptotically 399.K 
normal estimator, consistent and asymptotically 

399.K 
normal extension 149.G 251.K 
normal extension held, strongly 113 
normal family 435.E 
normal fiber space, Spivak 144.5 
normal form 

(of differential equations) 313.B 324.E 
(of a surface) 410.B 
Cantor (for an ordinal number) 3 12.C 
Hesse (of a hyperplane) 139.H 
Jordan (for a matrix) 269.G 
n-adic (for an ordinal number) 312.C 
prenex (in predicate logic) 41 l.J 

normal form theorem, Kleene 356.C 
normal frame 110.B 
normal function (of ordinal numbers) 312.C 
normal g-lattice 27.A 
normal invariant 114.5 
normality, asymptotic 399.K 
normalization 

(of an analytic space) 23.D 
(of a variety) 16.F 

normalization theorem 
for finitely generated rings 369.D 
for polynomial rings 369.D 

normalized 
(function) 317.A 
(into an orthonormal set) 197.C 
(vector) 139.G 

normalized contrast 102.C 
normalized valuation 439.E 
normalizer 136.F 190.C 
normal j-algebra 384.C 
normal k-vector bundle 114.5 
normal line 93.G, App. A, Table 4.1 
normal linear model 403.C 
normally cobordant 114.5 
normally distributed, asymptotically 399.K 
normally flat along a subscheme (a scheme) 16.L 
normal mapping (map) 114.5 
normal matrix 269.1 
normal model, derived (of a variety) 16.F 
normal Moore space problem 425.AA 
normal number 354.F 
normal operator 390.E 

(of Sario) 367.G 
normal PL microbundle 147.P 
normal plane lll.F 
normal point 16.F 23.D 
normal polygon 234.C 
normal process 176.C 
normal real form (of a complex semisimple Lie 

algebra) 248.Q 
normal representation 308.C 
normal ring 67.1 
normal score test, Fisher-Yates-Terry 371.C 
normal section 410.B 

22 
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Number(s) 

normal sequence (of coverings) 425.R 
normal simple algebra 29.E 
normal space 425.Q 

collectionwise 425.AA 
completely 425.4 
fully 425.X 
hereditarily 425.Q 
perfectly 425.4 

normal sphere bundle 274.E 
normal stress 271 .G 
normal structure 276.D 
normal subgroup 190.C 

admissible 190.E 
normal system (of E-functions) 430.D 
normal transformation (of a sequence) 379.L 
normal valuation 439.E,H 
normal variety 16.F 
normal vector 105.L lll.H 364.A 
normal vector bundle 105.L 
normal vibration 318.B 
normed linear space 37.B 
normed ring 36.A 
normed space, countably 424.W 
normed vector lattice 310.F 
norm form 118.D 
normic form 118.F 
norm-residue 14.P 
norm-residue symbol 14.4 

(in local class field theory) 257.F 
Hilbert 14.R 
Hilbert-Hasse 14.R 

norm resolvent convergence 331.C 
northern hemisphere 140 
north pole 74.D 140 
notation 

full international 92.E 
Kendall 260.H 
Schoenflies (for crystal classes) 92.E, App. B, 
Table 6.IV 

short international 92.E 
system of (for ordinal numbers) 81 

notion, common 35.A 
Novikov closed leaf theorem 154.D 
nowhere dense set 425.N 
NP 71.E 

co- 71.E 
NP-complete 71.E 
NP-completeness 71 .E 
NP-hard 71.E 
NP-space 71.E 
NP-time 71.E 
NR (neighborhood retract) 202.D 
nuclear (C*-algebra) 36.H 
nuclear class 68.1 
nuclear norm 68.K 
nuclear operator 68.1,K 
nuclear space 424.S 
nucleolus 173.D 
null (vector in the Minkowski space-time) 359.B 
null-bicharacteristic 320.B 
null boundary, open Riemann surface of 367.E 
null cobordant 235.G 
null function 310.1 
null geodesic 399.D 
null homotopic (continuous mapping) 202.B 
null hypothesis 400.A 
nullity 

(of a critical point) 279.B 
(of a graph) 186.G 
(of a linear mapping) 256.F 

(of a linear operator) 251.D 
(of a matrix) 269.D 
column (of a matrix) 269.D 
of relative 365.D 
row (of a matrix) 269.D 

null recurrent (point) 260.D 
null sequence (in a-adic topology) 284.B 
null set 270.D 310.1 381.A 

of class N, 169.E 
function-theoretic 169 

null space 251.D 
null system 343.E 
number(s) 294 

A- 43o.c 
abundant 297.D 
algebraic 14.A 
amicable 297.D 
average sample 404.C 
azimuthal quantum 315.E 
Bell 177.D 
Bernoulli 177.B 
Betti 200.K 201.B 
Brill-Noether 9.E 
calculable 22.G 
Cantor’s theory of real 294.E 
cardinal 49.A 312.D 
Cayley 54 
characteristic (of a compact operator) 68.1 
characteristic (of a manifold) 56.F 
Chern 56.F 
chromatic 157.E 186.1 
class (of an algebraic number field) 14.E 
class (of a Dedekind domain) 67.K 
class (of a simple algebra) 27.D 
Clifford 61.A 
coincidence (of a mapping) 153.B 
of colors 92.D 
completeness of real 294.E 
complex 74.A 294.F 
composite 297.B 
condition 302.A 
connectedness of real 294.E 355.B 
continuity of real 294.E 
cyclomatic 186.G 
decomposition (of a finite group) 362.1 
Dedekind’s theory of real 294.E 
deficient 297.D 
of denominator 186.1 
Euler 177.C 201.B, App. B, Table 4 
Fermat 297.F 
Froude 116.B 
generalized decomposition (of a finite group) 

362.1 
geometry of 182 
Giidel 185 356C,E 
Grashoff 116.B 
imaginary 74.A 
incidence 146.B 201.B 
of independence 186.1 
initial 312.D 
intersection (of divisors) 15.C 
intersection (of homology classes) 65.B 201.0 
intersection (of sheaves) 16.E 
irrational 294.E 355.A 
irrational real 294.E 
of irregularity (of an algebraic variety) 16.P 
Kullback-Leibler information 398.G 
Lebesgue 273.F 
Lefschetz 153.B 
Lefschetz (of a variety) 16.P 



Subject Index 
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linking 99.C 
Liouville 430.B 
Lyapunov characteristic 314.A 
Mach 116.B 205.B 
magnetic Reynolds 259 
mean (of sheets) 272.5 
Mersenne 297.E, App. B, Table 1 
Milnor 418.D 
modulus 418.E 
mole 419.A 
n-gonal 296.A 
Napier 131.D 
natural 294.A,B 
negative 355.A 
negative rational 294.D 
normal 354.F 
Nusselt 116.B 
orbital magnetic quantum 315.E 
ordinal 312.B 
p-adic 439.F 
of partitions 177.D 328 
P&let 116.B 
pentagonal 4.D 
perfect 297.D 
perfect, of the second kind 297.D 
Picard (of a variety) 15.D 16.P 
Poisson 271.G 
polygonal, of order K 4 5 
Pontryagin 56.F 
positive 355.A 
positive rational 294.D 
Prandtl 116.B 
prime 297.B 
principal quantum 315.E 
pseudorandom 354.B 
Pythagorean 145 
ramification 14.K 
random 354 
rational 294.D,E 
rational real 294.E 
real 294.E 355.A,D 
real, mod 1 355.0 
relatively prime 297.A 
of replications 102.B 
Reynolds 116.B 205.C 
rotation 99.D 11 l.E 126.1 
s- 43o.c 
s*- 43o.c 
self-intersection 15.C 
of sheets (of an analytic covering space) 

23.E 
of sheets (of covering surface) 367.B 
Stiefel-Whitney 56.F 
Stirling, of the second kind 66.D 
T- 43o.c 
T*- 430.C 
Tamagawa 13.P 
transcendental 430.A 
translation 18B,D 
of treatment combinations 102.L 
type 314.A 
cl- 43o.c 
u*- 43o.c 
wave (of a sine wave) 446 
wave, vector (of a sine wave) 205.F 
weakly compact cardinal 33.E 
weakly inaccessible cardinal 33.E 
Weil 3.C 

number field 149.C 
algebraic 14.B 

p-adic 439.F 
p-adic 257.A 439.F 
relative algebraic 14.1 

numbering, Giidel 185.A 
number operator 377.A 
number system, point range of 343.C 
number-theoretic function(s) 295.A 356.A 

additive 295.B 
completely additive 295.B 
completely multiplicative 295.B 
multiplicative 295.B 

number theory 296 
analytic 296.B 
consistency proof for pure 156.E 
elementary 297 
fundamental theorem of elementary 297.C 
geometric 296.B 
pure 156.E 

numerals, Arabic 26 
numerator, partial (of an infinite continued 

fraction) 83.A 
numerical analysis 300 
numerical differentiation 299.E 
numerical integration 299 
numerically connected (divisor) 232.D 
numerically equivalent (cycles) 16.Q 
numerically semipositive 15.D 
numerical method 300 
numerical range (of a linear operator) 251.E 
numerical solution 

of algebraic equations 301 
of integral equations 217.N 
of linear equations 302 
of ordinary differential equations 303 
of partial differential equations 304 

numerical tensor App. A, Table 4.11 
Nusselt number 116.B 
nutation 392 
Nyquist criterion 86.A 
Nyquist theorem 402.K 

0 

0(n) (space of holomorphic functions in 0) 168.B 
o,(n) 168.B 
O(n) (orthogonal group) 60.1 
o-connected space 79.C 

locally 79.C 
w-consistent (system) 156.E 
w-limit point 126.D 
w-limit set 126.D 
a-conjugate 126.H 
R-equivalent 126.H 
R-explosion 126.5 
R-group 190.E 
R-homomorphism (between R-groups) 190.E 
n-isomorphism (between a-groups) 190.E 
R-modules, duality theorem for 422.L 
n-stability theorem 126.5 
R-stable, C’- 126.H 
!&subgroup (of an R-group) 190.E 
o-ideal 

integrated two-sided 27.A 
two-sided 27.A 

o,-ideal, left 27.A 
o,-ideal, right 27.A 
D-differential (on an algebraic curve) 9.F 
D-genus (of an algebraic curve) 9.F 
D-linearly equivalent divisors (on an algebraic 

curve) 9.F 



2059 Subject Index 
Operation(s) 

D-specialty index (of a divisor of an algebraic one-dimensional statistic 396.B 
curve) 9.F lOOa%-point 396.C 

O-module 383.1 l-1 (mapping) 381.C 
(o)-convergent 87.L one-parameter group 
(o)-star convergent 87.L local (of local transformations) 105.N 
OA (orthogonal array) 102.L of transformations 105.N 126.B 
Ob (object) 52.A one-parameter semigroup of class (Co) 378.B 
object 52.A 41 l.G one-parameter subgroup (of a Lie group) 249.Q 

cotinal 52.D one-parameter variation 178.A 
final 52.D one-point compactification 425.T 
graded 200.B one-point union 202.F 
group (in a category) 52.M one-sided (surface) 410.B 
initial 52.D one-sided stable for exponent l/2 App. A, Table 22 
injective 200.1 one-sided stable process (of the exponent a) 5.F 
isomorphic 52.D one-step-two-half-steps errors estimate 303.D 
mathematical 52.A one-to-one correspondence 358.B 
in predicate logic 41 l.G one-to-one mapping 381.C 
projective 200.1 only normal crossings 16.L 
quotient 52.D Onsager reciprocity relation 402.K 
S-, category of 52.G onto mapping 381.C 
of type i + 1 356.F open 
of type 0 356.F (Riemann surface) 367.A 
zero 52.N (system) 419.A 

object domain 41 l.G (topological manifold) 105.B 
objective function 264.B 307.C finely 261.D 
objective probability 401.B Zariski 16.A 
object variable 41 l.G open arc 93.B 
oblate App. A, Table 3.V open ball 140 
oblique circular cone 350.B open base 425.F 
oblique coordinates (in a Euclidean space) 90.B open circle 140 
observability 86.C open continuous homomorphism 423.5 
observables 351.B open covering (of a set) 425.R 
observation open disk 140 

complete 405.C open formulas 199.A 
cost of 398.F opening 186.E 
partial 405.C open interval 140 355.C 

observation process 405.F open mapping 425.G 
observation vector 102.A open mapping theorem 
observer, Luenburger 86.E (in Banach space) 37.1 
obstacle, Dirichlet problem with 440.B (in topological linear spaces) 424.X 
obstruction(s) 305 open n-ball 140 

to an n-dimensional homotopy 305.B open n-cell 140 
to an (n + 1)-dimensional extension 305.B open n-disk 140 
primary 147.L 305.C open n-sphere 140 
secondary 305.D open neighborhood 425.E 
surgery 114.5 open parallelotope (in an affine space) 7.D 
tertiary 305.D open set 425.B 

obstruction class 56.E basic 425.F 
obstruction cocycle 147.L 305.B relative 425.5 
obtuse angle (in Euclidean geometry) 139.D system of 425.B 
OC-curve (operative characteristic curve) 404.C open simplex 7.D 70.C 
octahedral group 151.G open sphere 140 
octahedron 357.B open star (in a complex) 70.B,C 
odd element (of a Clifford algebra) 61.B open subgroup (of a topological group) 423.D 
odd function 165.B open surface 410.B 
odd half-spinor 61.E open system entropy 402.G 
odd half-spin representation 61.E open tubular neighborhood 105.L 114.B 
odd permutation (in a symmetric group) 151.G operate 
odd ratio 397.K (in a function algebra) 192.N 
odd state 315.H from the left (on a set) 362.B 
of bounded variation 443.G from the right (on a set) 362.B 
Ohm’s law (for a moving medium) 130.B 259 operating characteristic 404.C 
Oka’s principle 147.0 operating function 192.N 
Oka’s theorem 72.E operating systems 75.C 
l-complete manifold, weakly 2i.L operation(s) 
one cycle 16.R (of an operator domain on a module) 277.C 
one-dimensional diffusion processes 115.A (on a set) 409.A 
one-dimensional lattice 287.A Adams 237.E 
one-dimensional probability distribution (of random Bokshtein 64.B 

variables) 342.C Boolean 42.A 
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cohomology 64 
compatible with 277.C 
four arithmetic 294.A 
functional cohomology 202,s 
functional @- 202.S 
glide 92.E 
homotopy 202.0 
left 409.A 
primary cohomology 64.B 
Pontryagin (pth) power 64.B 
primitive (of a group) 362.B 
rational 294.A 
reduced square 64.B 
right 409.A 
ring 368.A 
stable cohomology 64.B 
stable primary cohomology 64.B 
stable secondary cohomology 64.C 
Steenrod (pth) power 64.B 
Steenrod square 64.B 
transitive (of a group) 362.B 

operation A (in set theory) 22.B 
operational calculus 251.G 306, App. A, Table 12.11 
operator 

(in functional analysis) 162 251.A 
(on a set) 409.A 
Abelian 308.E 
accretive (in a Hilbert space) 286.C 
additive 251.A 
adjoint (in Banach spaces) 37.D 251.D 
adjoint (in Hilbert spaces) 251.E 
adjoint (of a linear partial differential operator) 

322.E 
adjoint (of a microdifferential operator) 274.F 
adjoint (of a microlocal operator) 274.F 
amplification (of the scheme) 304.F 
angular momentum 258.D 
annihilation 377.A 
Beltrami differential, of the first kind App. A, 
Table 4.11 

Beltrami differential, of the second kind App. 
A, Table 4.11 

boundary 200.C 201.B 
with a boundary condition 112.F 
bounded linear 37.C 
Calderon-Zygmund singular integral 217.5 
251.0 

Cartier 9.E 
channel wave 375.F 
closable 251 .D 
closed 39.1 251.D 
closure 425.B 
coboundary 200.F 
compact 68 
completely continuous 68.B 
conjugate (in Banach spaces) 37.D 
conjugate (of a differential operator) 125.F 
conjugate (of a linear operator) 251.D 
conjugation (in function algebras) 164.K 
creation 377.A 
decomposable (on a Hilbert space) 308.G 
degeneracy (in a semisimplicial complex) 70.E 
diagonalizable (in an Abelian von Neumann 

algebra) 308.G 
differential 112 223.C 306.B 
differential, of the kth order 237.H 
differentiation 223.C 
dissipative 286.C 
domain (of an Q-group) 190.E 
domain of 409.A 

down-ladder 206.B 
dual (in Banach spaces) 37.D 
dual (of a differential operator) 125.F 
dual (of a linear operator) 251.D 
elliptic 112.A 
energy-momentum 258.D 
evolution 378.G 
exponential function of 306.C 
face (in a semisimplicial complex) 70.E 
formal adjoint 322.E 
4-momentum 258.D 
Fourier integral 274.C 
Fredholm 68.F 251.D 
fundamental 163.E 
generalized wave 375.B 
Green’s 189.A,B 194.C 
Hamiltonian 351.D 
Hecke 32.D 
Hermitian 251.E 
Hilbert’s a- 41 l.J 
holomorphic evolution 378.1 
identity (on a Banach space) 37.C 
incoming wave 375.8 
with index 68.F 
integral 68.N 100.E 251.0 306.B 
integral, of Hilbert-Schmidt type 68.C 
interior 425.B 
inverse 37.C 251.B 
isometric 251.E 
Laplace 323.A 442.D 
Laplace-Beltrami 194.B 
linear 251 
linear (in Banach spaces) 37.C 
linear (in linear spaces) 256.B 
linear boundary 3 15.B 
linearized 286.E 
local 125.DD 
logical 41 l.E 
Markov 136.B 
maximal (of a differential operator) 112.E 
maximal dissipative 251.5 
microdifferential 274.F 
microlocal 274.F 
microlocally elliptic 345.A 
Mikusinski’s 306.B 
minimal (of a differential operator) 112.E 
modified wave 375.B 
modular 308.H 
monotone (in a Hilbert space) 286.C 
nonlinear semigroups of 286.X 
nonnegative 251.E 
normal 390.E 
normal (of Sario) 367.G 
normal linear 251.E 
nuclear 68.1,K 
number 377.A 
ordinary differential 112.A 
outgoing wave 375.B 
partial differential 112.A 
positive (in vector lattices) 310.E 
positive semidefinite 251.E 
projection (in a Hilbert space) 197.E 
pseudodifferential 251.0 345 
pseudodifferential (in microlocal analysis) 

274.F 
resolvent (of a Markov process) 261.D 
ring of 308.C 
S- 150.D 
scalar 390.K 
scattering 375.F,H 
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Order 

Schrodinger 351.D 
self-adjoint 251.E 390.E 
shift 223.C 251.0 306.C 
spectral 390.K 
Steenrod App. A, Table 6.11 
step-down 206.B 
step-up 206.B 
strongly elliptic 112.G 323.H 
Sturm-Liouville 112.1 
of summable pth power 68.K 
symmetric 251.E 
system of differential 112.R 
T- 375.C 
TCP 150.D 
Toeplitz operator 251.0 
total boundary 200.E 
trace 168.B 
translation 306.C 
transposed 112.E 189.C 322.E 
unilateral shift 390.1 
unitary 390.E 
up-ladder 206.B 
Volterra 68.5 
wave 375.B,H 

operator algebra 308.A 
operator convex 212.C 
operator domain 277.C 

module with 277.C 
operator homomorphism 

(of A-modules) 277.E 
(of R-groups) 190.E 

operator isomorphism 190.E 
operator monotone 212.C 
operator topology 

strong 251.C 
uniform 251.C 
weak 251.C 

operator-valued distribution 150.D 
opposite 

(simplex) 2Ol.C 
orientation 105.F 
root 13.R 

optical axis 180.B 
optical direction cosines 180.A 
optical distance 180.A 
optical theorem 386.B 
optics, geometric 180 
optimal 

(design) 102.E 
asymptotically 354.0 

optimal control 46.D 86.B,C 405.A 
optimal control problem, time 86.E 
optimality 

A- 102.E 
D- 102.E 
E- 102.E 
principle of 127.A 

optimal policy 127.A 
optimal regular problem 86.F 
optimal solution 255.A 264.B 292.A 

basic 255.A 
optimal stopping 405.E 
optimization model 307.C 
optimum allocation 373.E 
optimum predictor, linear 395.D 
optional (stochastic process) 407.B 
optional a-algebra 407.B 
optional sampling 262.C 
optional sampling theorem 262.A 
orbit 

(of a dynamical system) 126.B 
(of a permutation group) 151.H 
(= system of transitivity) 362.B 
(of a topological transformation group) 1lO.A 
431.A 

closed 126.D 
exceptional 431.C 
principal 431.C 
pseudo-, G(- 126.5 
pseudo-, tracing property 126.5 
singular 43 1 .C 

orbital angular momentum 351.E 
orbital elements, Kepler’s 309.B 
orbitally stable 126.F 
orbital stability (of a solution of a differential 

equation) 394.D 
orbit determination 309.A 
orbit space (of a topological group) 431.A 
orbit type 431.A 

principal 43 1 .C 
order 

(of an algebraic number field) 14.B 
(of a covering) 425.R 
(of a differential equation) 313.A 320.A 
(of a differential operator) 112.A 
(of an element of a group) 190.C 
(of an elliptic function) 134.E 
(of a function defined by a Dirichlet series) 

121.c 
(of a function on an algebraic curve) 9.C 
(of a generating point of a simple maximally 

overdetermined system) 274.H 
(of a group) 190.C 
(of a homomorphism of Abelian varieties) 3.C 
(of an infinitesimal) 87.G 
(of an infinity) 87.G 
(of a Lie algebra) 191.D 
(of a meromorphic function) 272.C 
(of a microdifferential operator) 274.F 
(of a multistep method) 303.E 
( = order relation) 31 l.A 
(of a plane algebraic curve) 9.B 
(of a point in an ordinary curve) 93.C 
(of a point with respect to a cycle) 99.D 
(of a pole of a complex function) 198.D 
(of the precision of numerical solution) 303.B 
( = a subring) 27.A 
(of a system of differential equations) 313.B 
(of a transcendental entire function) 429.B 
(of a zero point of a complex function) 198.C 
d’Alembert’s method of reduction of 252.F 
derivatives of higher App. A, Table 9.111 
difference of the nth 104.A 
finite (distribution) 125.5 
y-point of the kth (of a holomorphic function) 

198.C 
of higher 87.G 
inlinite (element in a group) 190.C 
left (of a g-lattice) 27.A 
of lower 87.G 
maximal (of a g-lattice) 27.A 
at most (a function) 87.G 
of the nth 87.G 
principal (of an algebraic number held) 14.B 
principal (fundamental theorem of) 14.C 
right (of a g-lattice) 27.A 
of the same 87.G 
small set of 436.G 
space of line elements of higher 152.C 
surface of the second 350.A 
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Order tl 
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zero point of the kth (of a holomorphic func- 
tion) 198.C 

zero point of the - kth (of a complex function) 
198.D 

order a 
capacity of 169.C 
Cesaro method of summation of 379.M 
Holder condition of 84.A 
Lipschitz condition of 84.A 
potential of 338.B 
summable by Cesaro’s method of 379.M 

order k 
coefficient of llO.A 
converge in the mean of 173.B 342.D 
invariants of 110.A 
population moment of 396.C 
principal components of llO.A 
quantile of 341.H 
Riesz method of summation 379.R 
summable by Holder’s method of 379.M 
summable by M. Riesz’s method of 379.R 

order p 
contravariant tensor field of 105.0 
jet of 105.X 

orders, covariant tensor field of 105.0 
order 0, frame of llO.C 
order 1 

family of frames of 1lO.B 
frame of 11O.C 

order 2, frame of 1 lO.B,C 
order 3, frame of 1 lO.B,C 
order 4, frame of 110.B 
order bounded 310.B 
order convergent sequence (in a vector lattice) 

3lO.C 
order-disorder transition 402.F 
ordered additive group 439.B 

totally 439.B 
ordered complex (of a semisimplicial complex) 

70.E 
ordered field 149.N 

Archimedean 149.N 
Pythagorean 60.0 

ordered group 243.G 
lattice- 243.G 
totally 243.G 

ordered linear spaces 3lO.B 
lattice- 310.B 

ordered pair 33.B 381.B 
ordered set 311 .A 

inductively 34.C 
lattice- 243.A 
linearly 311.A 
partially 31 l.A 
semi- 3ll.A 
totally 311 .A 

ordered simplex (in a simplicial complex) 70.E 
ordered simplicial complex 70.C 
order function (meromorphic function) 272.B 
order homomorphic (ordered sets) 3 1 l.E 
order homomorphism 311.E 
order ideal (of a vector lattice) 3lO.B 
ordering 96.C 3 1 l.A 

dual 311.A 
duality principle for 311.A 
lexicographic 3 11 .G 
lexicographic linear 248.M 
linear 311.A 
partial 31 l.A 

pre- 311.H 
total 311.A 
well- 31 l.C 

order isomorphic (ordered sets) 31 l.E 
order isomorphism 31 l.E 
order limit (in a vector lattice) 310.~ 
order-preserving mapping 311.E 
order-preserving semigroup 286.Y 
order relation 31 l.A 
order statistic 396.C 
order topology 425.C 
order type 312.A 
ordinal numbers 312.B 

admissible 356.G 
cardinality of 49.E 
constructive 81.B 
countable 49.E 
finite 312.B 
of the first, second, or third number class 
312.D 

of a higher number class 312.D 
hyperconstructive 81.E 
initial 49.E 
isolated 312.B 
limit 312.B 
strongly inaccessible 312.E 
transfinite 312.B 
transfinite initial 49.E 
weakly inaccessible 312.E 

ordinal product (of a family of ordered sets) 3ll.G 
ordinal scale 397.M 
ordinal sum (of a family of ordered sets) 31 l.G 
ordinary curve 93.C 
ordinary derivative (of a set function) 380.D 
ordinary differential equation(s) 313, App. A, Table 

14 
(asymptotic behavior of solutions) 314 
(boundary value problems) 315 
(initial value problems) 316 
Euler linear App. A, Table 14.1 
higher-order App. A, Table 14.1 
homogeneous App. A, Table 14.1 
homogeneous (of higher order) App. A, Table 

14.1 
linear 252 313.A 
linear (with constant coefficients) App. A, 

Table 14.1 
linear (of the first order) App. A. Table 14.1 
linear (global theory) 253 
linear (of higher order) App. A, Table 14.1 
linear (local theory) 254 
nonlinear 3 13.A 
nonlinear (global theory) 288 
nonlinear (local theory) 289 
system of 313.B 

ordinary differential operator 112.A 
ordinary Dirichlet series 12l.A 
ordinary double point (of a plane algebraic curve) 

9.B 
ordinary element 191.1 
ordinary helicoid 111.1 
ordinary helix 11 l.F 114.F 
ordinary integral element 428.E 
ordinary integral manifold (of a differential ideal) 

428.E 
ordinary lower derivative (of a set function) 380.D 
ordinary point 

(of an analytic set) 23.B 
(of a curve) 93.G 



2063 Subject Index 
Ortbonomic system, passive 

(in hyperbolic geometry) 285.C 
(of an ordinary curve) 93.C 
(on a Riemann surface) 1 l.D 

ordinary representation (of a finite group) 362.G 
ordinary sense, derivable in the 380.D 
ordinary singularity 

(of an analytic function) 198.P 
in the wider sense 198.P 

ordinary solution (of a differential ideal) 428.E 
ordinary upper derivative (of a set function) 380.D 
ordinate set 221.E 
orientable 

(manifold) 105.F 201.N 
(pseudomanifold) 65.B 
transversely 154.8 

orientable fiber bundle 147.L 
orientation 

(of an afhne space) 139.B 
(of a contact element) llO.A 
(of a manifold) 105.F 201.N 
local (in an oriented manifold) 201.N 
negative (of an oriented manifold) 105.F 
opposite (of oriented atlases) 105.F 
positive (of an oriented manifold) 105.F 
same (of oriented atlases) 105.F 

orientation cohomology class 201.N 
orientation manifold 201.N 
orientation sheaf 201.R 
orientation-preserving mapping 99.A 
orientation-reversing mapping 99.A 
oriented atlas (of an orientable differentiable mani- 

fold) 105.F 
oriented cobordism 

class 114.H 
group 114.H 

oriented differentiable structures, group of (on the 
combinatorial sphere) 114.1 

oriented element (in a covering manifold) llO.A 
oriented G-manifold 43 1 .E 
oriented graph 186.B 
oriented manifold 105.F 201.N 

integrals over 105.T 
oriented pseudomanifold 65.B 

coherently 65.B 
oriented q-simplex 2Ol.C 
oriented real hypershpere 76.A 
oriented segment 442.A 
oriented simplicial chain complex 2Ol.C 
oriented singular r-simplex of class C” 105.T 
oriented tangent line 76.B 
origin 

(of an affme space) 7.C 
(of a Euclidean space) 140 
(of a projective frame) 343.C 

Orlicz-Pettis theorem 443.D 
Orlicz space 168.B 
Ornstein-Uhlenbeck Brownian motion 45.1 
orthant, positive 89.G 
orthochronous 258.A 
orthocomplement (of a subspace of a linear space) 

139.G 
orthogonal 

(block design) 102.5 
(elements of a ring) 368.B 
(in Euclidean geometry) 139.E,G 
(functions) 317.A 
(in a Hilbert space) 197.C 
(linear subspaces) 256.G 
mutually (latin squares) 241.B 

orthogonal array 102.L 

orthogonal complement (of a subset of a Hilbert 
space) 197.E 

orthogonal component (of an element of a linear 
space) 139.G 

orthogonal coordinate system adapted to (a flag) 
139.E 

orthogonal curvilinear coordinates 90.C 
orthogonal curvilinear coordinate system App. A, 

Table 3.V 
orthogonal expansion 317.A 
orthogonal for a finite sum 19.G 
orthogonal fractional factorial design 102.1 
orthogonal frame 11 l.B 139.E 
orthogonal frame bundle 364.A 

tangent 364.A 
orthogonal function(s) 317, App. A, Table 20 

Haar system of 317.C 
Rademacher system of 317.C 
Walsh’s system of 3 17.C 

orthogonal group 60.1 139.B 151.1 
(over a noncommutative group) 60.0 
complex 60.1 
complex special 60.1 
infinite 202.V 
over K with respect to Q 60.K 
pair 422.1 
proper 60.1258.A 
reduced 61.D 
special 60.1 

orthogonality for a finite sum 317.D, App. A, Table 
2O.VII 

orthogonality relation 
(on irreducible characters) 362.G 
(for square integrable unitary representations) 

437.M 
orthogonalization 

Gram-Schmidt 317.A 
Schmidt 317.A 

orthogonal k-frame (in R”) 199.B 
orthogonal matrix 269.5 

complex 269.5 
proper 269.5 

orthogonal measure 164.C 
orthogonal polynomial(s) 19.G, App. A, Table 

2O.VII 
Chebyshev 19.G 
simplest 19.G 
system of 317.D 

orthogonal projection 
(in Euclidean geometry) 139.E,G 
(in a Hilbert space) 197.E 
method of 323.G 

orthogonal series (of functions) 317.A 
orthogonal set 

(of functions) 317.A 
(of a Hilbert space) 197.C 
(of a ring) 368.B 

orthogonal system 
(of functions) 317.A 
(of a Hilbert space) 197.C 
complete 217.G 

orthogonal trajectory 193.5 
orthogonal transformation 139.B 348.B 

(over a noncommutative field) 60.0 
(with respect to a quadratic form) 60.K 

orthogonal transformation group 60.1 
over Ii with respect to Q 60.K 

orthomodular 351.L 
orthonomic system, passive (of partial differential 

equations) 428.B 



Subject Index 
Ortbonormal basis 
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orthonormal basis 197.C 
orthonormalization 139.G 
orthonormal moving frame 417.D 
orthonormal set 

(of functions) 317.A 
(of a Hilbert space) 197.C 
complete (of a Hilbert space) 197.C 

orthonormal system 
complete 217.G 
complete (of fundamental functions) 217.G 

orthorhombic system 92.E 
oscillate (for a sequence) 87.D 
oscillating (series) 379.A 
oscillating motion 420.D 
oscillation(s) 318 

(of a function) 216.A 
bounded mean 168.B 
damped 3 18.B 
equation of App. A, Table 15.VI 
forced 3 18.B 
harmonic 318.B 
nonlinear 290.A 
relaxation 318.C 
nonstationary 290.F 

oscillator process 351.F 
oscillatory 314.F 
osculating circle 11 l.F 
osculating elements 309.D 
osculating plane 11 l.F 
osculating process 77.B 
Oseen approximation 205.C 
Osgood theorem, Hartogs- 21.H 
O-S positivity 150.F 
Osterwalder-Schrader axioms 150.F 
Ostrogradskii formula 94.F 
outdegree 186.B 
outer area 216.F 270.G 
outer automorphisms 

group of (of a group) 190.D 
group of (of a Lie algebra) 248.H 

outer capacity, Newtonian 48.H 
outer function 43.F 
outer harmonic measure 169.B 
outer measure 270.E,G 

Carathtodory 270.E 
Lebesgue 270.G 

outer solution 25.B 
outer variable 25.B 
outer volume 270.G 
outgoing subspace 375.H 
outgoing wave operator 375.B 
outlier test 397.4 
out-state 150.D 386.A 
oval 89.C 111 .E 

Cassini 93.H 
mean (of two ovals) 89.D 
width of the lll.E 

ovaloid 89.C 111.1 
overall approximation formula 303.C 
overconvergence 339.E 
overcrossing point 235.A 
overdetermined system 

(of differential operators) 112.1 
(of partial differential equations) 320.F 
maximally (= holonomic) 274.H 

overlield 149.B 
overidentified 128.C 
overrelaxation 

successive (SOR) 302.C 

I p 

PSL(n, k) (projective special linear group) 60.B 
PS,(n, k) (projective symplectic group over K) 60.L 
PU(n) (projective unitary group) 60.F 
P”(K) (projective space) 343.H 
q-subsequence 354.E 
x-group 151.F 
n-length (of a group) 151.F 
r-c-manifold 114.1 
n-series (of a group) 151.F 
n-solvable group 151.F 
n theorem 116 
A topology 424.R 
II: set 22.A 
IZ,f set 22.D 
p-adic exponential valuation 439.F 
p-adic extension (of the field of quotients of a 

Dedekind domain) 439.F 
p-index (of a central simple algebra over a finite 

algebraic number field) 29.G 
p-invariant (of a central simple algebra over a finite 

algebraic number field) 29.G 
p-primary ideal 67.F 
p-function, Weierstrass 134.F, App. A, Table 

16.IV 
g-acyclic 200.Q 
p-adic integer(s) 439.F 

ring of 439.F 
p-adic Lfunction 450.5 
p-adic number 439.F 
p-adic number field 257.A 439.F 
p-adic regulator 450.5 
p-adic valuation 439.F 
p-ary matroid 66.H 
p-atom 168.8 
p-covector 256.0 
p-dimensional noncentral Wishart distribution 

374.c 
p-extension (of a field) 59.F 
p-factor (of an element of a group) 362.1 
p-fold exterior power 

(of a linear space) 256.0 
(of a vector bundle) 147.F 

p-form 
tensorial 417.C 
vectorial 417.C 

p-group 151.B 
Abelian 2.A 
complete (Abelian) 2.D 
divisible (Abelian) 2.D 

p-parabolic type 327.H 
p-rank (of a torsion-free additive group) 2.E 
p-regular (element of a finite group) 362.1 
p-Sylow subgroup 151.B 
pth power, operator of summable 68.K 
pth power operation 

Pontryagin 64.B 
Steenrod 64.B 

p-torsion group of an exceptional group App. A, 
Table 6.IV 

p-valent (function) 438.E 
absolutely 438.E 
circumferentially mean 438.E 
locally 438.E 
locally absolute 438.E 
mean 438.E 
quasi- 438.E 

p-vector 256.0 



2065 Subject Index 
Parameter(s) 

bundle of 147.F 
(p, q)-ball knot 235.G 
(p, q)-knot 235.G 
(p + l)-stage method 303.D 
P-convex (for a differential operator) 112.C 

strongly 112.C 
P-function, Riemann 253.B, App. A, Tables 

14.11 18.1 
P-projective resolution 200.Q 
P-wave 351.E 
P. set 22.D 
P’-figure 343.B 
p-space 425.Y 
P-space 425.Y 
Pad& approximation 142.E 
Padt table 142.E 
Painleve equation 288.C 
Painlevt theorem 198.G 
Painleve transcendental function 288.C 
pair 381.B 

(in axiomatic set theory) 33.B 
ball 235.G 
BN- 13.R 
contact (in circle geometry) 76.C 
group (of topological Abelian groups) 422.1 
order 381.B 
ordered (in axiomatic set theory) 33.B 
orthogonal group 422.1 
Poincare, of formal dimension n 114.5 
simplicial 2Ol.L 
sphere 65.D 235.G 
topological 2Ol.L 
unordered 381.B 
unordered (in axiomatic set theory) 33.B 

paired comparison 346.C 
pairing 

(of linear spaces) 424.G 
axiom of 381.G 

pair test 346.D 
pairwise sufficient (statistic) 396.F 
Palais-Smale condition (C) 279.E 286.4 
Paley theorem 317.B 
Paley theory, Littlewood- 168.B 
Paley-Wiener theorem 125.0,BB 
pantograph 19.E 

paper 
binomial probability 19.B 
functonal 19.D 
logarithmic 19.F 
probability 19.F 
semilogarithmic 19.F 
stochastic 19.B 

Pappus theorem 
(on conic sections) 78.K 
(in projective geometry) 343.C 

parabola(s) 78.A 
family of confocal 78.H 

parabolic 
(differential operator) 112.A 
(Riemann surface) 367.D,E 
(simply connected domain) 77.B 
(visibility manifold) 178.F 

parabolic coordinates 9O.C App. A, Table 3.V 
parabolic cusp (of a Fuchsian group) 122.C 
parabolic cylinder 350.B 
parabolic cylinder function 167.C 
parabolic cylindrical coordinates 167.C App. A, 

Table 3.V 
parabolic cylindrical equation App. A, Table 14.11 

parabolic cylindrical surface 350.B 
parabolic-elliptic motion 420.D 
parabolic geometry 285.A 
parabolic motion 420.D 
parabolic point (on a surface) 110.B 11 l.H 
parabolic quadric hypersurface 350.1 
parabolic subalgebra (of a semisimple Lie algebra) 

248.0 
parabolic subgroup 

(of an algebraic group) 13.G 
(of the BN-pair) 13.R 
(of a Lie group) 249.5 
cuspidal 437.X 
minimal k- 13.4 
standard k- 13.Q 

parabolic transformation 74.F 
parabolic type 

(equation of evolution) 378.1 
partial differential equation of 327 

paraboloid 
elliptic 350.B 
elliptic, of revolution 350.B 
hyperbolic 350.B 

paracompact (space) 425,s 
countably 425.Y 
strongly 425,s 

paracompact C-manifold 105.D 
paradox(es) 3 19 

Burali-Forti 319.B 
d’Alembert 205.C 
Richard 319.B 
Russel 319.B 
Skolem 156.E 
Zen0 319.C 

parallax 
annual 392 
geocentric 392 

parallel(s) 
(afftne subspaces) 7.B 
(lines) 139.A 155.B 
(lines in hyperbolic geometry) 285.B 
(tensor field) 364.B 
axioms of 139.A 
in the narrow sense (in an afline space) 7.B 
in the sense of Levi-Civita 1 ll.H 
in the wider sense (in an atline geometry) 7.B 

parallel coordinates (in an affme space) 7.C 
parallel displacement 

(in an affine connection) 80.H 
(in a connection) 80.C 
(in the Riemannian connection) 364.B 

parallelepiped, rectangular 14.0 
parallelism, absolute 191.B 
parallelizable 

(flow) 126.E 
(manifold) 114.1 
almost 114.1 
s- 114.1 
stably 114.1 

parallelogram, period 134.E 
parallelotope 425.T 

(in an aftine space) 7.D 
open (in an afline space) 7.D 

parallel projection (in an afline space) 7.C 
parallel translation 80.C 364.B 
parameter(s) 165.C 

(of an elliptic integral) 134.A 
(in a population distribution) 401.F 
(of a probability distribution) 396.B 



Subject Index 
Parameter space 
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acceleration 302.C 
canonical (of an arc) 1ll.D 
design for estimating 102.M 
distinct system of 284.D 
estimable 403.E 
isothermal 334.B 
isothermal (for an analytic surface) 111.1 334.B 
Lagrange’s method of variation of 252.D 
linear 102.A 
linearly estimable 403.E 
local (Fuchsian groups) 32.B 
local (of a nonsingular algebraic curve) 9.C 
local (of a Riemann surface) 367.A 
local canonical (for power series) 339.A 
local uniformizing (of a Riemann surface) 

361.A 
location 396.1400.E 
one- (group of transformations) 105.N 
one- (subgroup of a Lie group) 249.Q 
one-, semigroup of class (C”) 378.B 
of regularity (of a Lebesgue measurable set) 
380.D 

regular system of 284.D 
scale 396.14OO.E 
secondary 1lO.A 
selection 396.F 
system of 284.D 
time (of a stochastic process) 407.A 
transformation 396.1 
transformation of 11 l.D 
true value of 398.A 

parameter space 
(of a family of compact complex manifolds) 

72.G 
(of a family of probability measures) 398.A 
(of a probability distribution) 396.8 

parametrically sustained vibration 318.B 
parametric function 102.A 399.A 
parametric programming 264.C 
parametric representation 165.C 

(of Feynman integrals) 146.B 
(of a subspace of an afhne space) 7.C 

parametrix 189.C 
left 345.A 
right 345.A 

parametrized, effectively (at 0) 72.G 
paraxial ray 180.B 
parity check matrix 63.C 
parity check polynomial 63.D 
parity transformation 359.B 
Parreau-Widom type 164.K 
Parseval equality 18.B 197.C 
Parseval identity 18.B 159.A 160.C 192.K 

220.B,C,E 
parsing 31.E 

part(s) 
(for a function algebra) 164.F 
connected 150.D 
cyclic (of an ergodic class) 260.B 
dissipative (of a state space) 260.B 
essential 260.1 
linite (of an integral) 125.C 
Gleason (for a function algebra) 164.F 
holomorphic (in a Laurent expansion) 198.D 
homogeneous (of a formal power series) 370.A 
imaginary 74.A 
integration by (for the D-integral) 1OO.G 
integration by (for the Stieltjes integral) 94.C 
integration by (for the Riemann integral) 

216.C 

negative (of an element of a vector lattice) 
3lO.B 

positive (of an element of a vector lattice) 
3lO.B 

principal (of a differential operator) 112.A 
principal (of a Laurent expansion1 198.D 
principal (of a partial differential operator) 

320.B 
purely contractive 251.N 
real 74.A 
semisimple (of an algebraic group) 13.E 
semisimple (of a nonsingular matrix) 13.E 
singular (of a Laurent expansion) 198.D 
unipotent (of an algebraic group) 13.E 
unipotent (of a nonsingular matrix) 13.E 

partial boundary operator 200.E 
partial capture 420.D 
partial correlation coefficient 397.5 

sample 280.E 
partial denominator (of an infinite continued frac- 

tion) 83.A 
partial de Rham system 274.G 
partial derivative 106.F,K 

nth-order 106.H 
partial derived functor 200.1 
partial differential 200.H 
partial differential coefficient 106.E 
partial differential equation(s) 313.A 320 

(initial value problems) 321 
(method of integration) 322 
of elliptic type 323, App. A, Table 15.VI 
of the first order 324 
Fokker-Planck 115.A 
hyperbolic 325 
of hyperbolic type 325 
of mixed type 326 
of parabolic type 327 
solution, of the first order App. A, Table 15.11 
solution, of the second order App. A, Table 

15.111 
system of, of order 1 (on a differentiable mani- 
fold) 428.F 

partial differential operator 112.A 
partial differentiation 106.F 
partial fraction App. A, Table 1O.V 
partial function 356.E 
partial graph 186.C 
partially balanced incomplete block design 102.J 

406.J 
partially confounded (with blocks) 102.5 
partially conserved axial-vector currents 132.G 
partially differentiable (function) 106.F 
partially isometric (operator) 251.E 
partially ordered set 311.A 
partial mapping (of a mapping) 381.C 
partial numerator (of an infinite continued fraction) 

83.A 
partial observation 405.C 
partial ordering 3 11 .A 
partial pivoting 302.B 
partial product 379.G 
partial quotient, nth 83.A 
partial recursive (in a partial recursive function) 

356.E,F 
partial sum (of a series) 379.A 

diagonal (of a double series) 379.E 
partial summation, Abel 379.D 
partial wave 386.B 
partial wave expansion 375.E 386.B 
partial wave scattering amplitude 375.E 



2067 Subject Index 
Percolation process 

particle(s) 
Bose 132.A 
composite 132.A 
elementary 132 
Fermi 132.A 

particular solution 
(of a differential equation) 313.A 
(of partial differential equations) 320.C 
(for a system of differential equations) 313.C 

particular transformation (of bg) 248.R 
partition(s) 

(in ergodic theory) 136.E 
(of an interval) 216.A 
(of a set) 381.D 
(of a space) 425.L 
entropy of 136.E 
s-independent 136.E 
independent sequence of 136.E 
Markov (for an automorphism) 136.C,G 
number of 177.D 328 
of numbers 328 
Pinsker 136.E 
principal 66.H 
of unity 425.R 
of unity of class C” 105,s 
of unity subordinate to a covering 425.R 
upper semicontinuous 425.L 

partition function 402.D 
grand 402.D 

partitioning algorithm 215.E 
Pascal, B. 329 

limacon of 93.H 
Pascal configuration 78.K 
Pascal line 78.K 
Pascal theorem 

(on conic sections) 78.K 
(in geometry) 155.E 
(in projective geometry) 343.E 

Pascal triangle 330 
Pasch’s axiom (in geometry) 155.B 
passive 

(state) 402.G 
completely 402.G 

passive boundary point 260.1 
dual 260.1 

passive network 282.C 
passive orthonomic system (of partial differential 

equations) 428.B 
past cone 258.A 
past history, independent of the 406.D 
pasting together the boundaries 114.F 
path 

(in a Finsler space) 152.C 
(in a graph) 186.F 
(of a Markov process) 261.B 
(of a stochastic process) 407.A 
(in a topological space) 148.C 170 
asymptotic (for a meromorphic function) 
272.H 

closed (in a graph) 186.F 
closed (in a topological space) 170 
closed, space of 202.C 
critical 376 
direct 186.F 
direct closed 186.F 
Euler (in a graph) 186.F 
general geometry of 152.C 
Hamilton 186.F 
of an integration (curvilinear integral) 94.D 
inverse 170 

nontangential 333.B 
projective geometry of 109 
quasi-independent of (response probability) 

346.G 
sample 407.A 
simple 186.F 
Stolz (in a plane domain) 333.B 

path-component 79.B 
path-connected 79.B 
path-dependent, d-trial 346.G 
path-independent (response probability) 346.G 
path integral 351.F 
pathological (space) 65.F 
path space 148.C 261.B 
pathwise uniqueness of solution 406.D 
pattern formation 263.D 
Pauli approximation 351.G 
Pauli-Lubanski vector 258.D 
Pauli principle 35 1 .G 
Pauli spin matrix 258.A 351.G 
payoR 108.B,C 173.B 
payoff function 173.C 
PBIBD (partially balanced incomplete block 

design) 102.5 
PC (predictor-corrector) method 303.E 
PCT invariance 386.B 
PCT theorem 386.B 
peak point 164.D 

generalized 164.D 
peak set 164.D 

generalized 164.D 
Peano area (of a surface) 246.F 
Peano continuum 93.D 
Peano curves 93.5 
Peano postulates 294.B 
Pearson distribution 397.D 
Pearson lemma, Neyman- 400.B 
P&let number 116.B 
pedal curve 93.H 
Peierls-Bogolyubov inequality 212.B 
Peirce decomposition (of a Jordon algebra) 231.B 
Peirce left decomposition (in a unitary ring) 368.F 
Peirce right decomposition (in a unitary ring) 

368.F 
Peirce space 231.B 
Pelczynski theorem, Bessaga- 443.D 
Pell equation 118.A 
penalized problems 440.B 
penalty method 292.E 
penalty term 440.B 
pencil 

algebraic 15.C 
of tonics 343.E 
of hyperplanes (in a projective space) 343.B 
Lefschetz 16.U 
linear 16.N 
of lines (in a projective plane) 343.B 
of planes (in a 3-dimensional projective space) 
343.B 

of quadric hypersurfaces 343.E 
of quadrics 343.E 

peninsula (in a Riemann surface) 272.5 
pentagamma function 174.B 
pentagon 155.F 
pentagonal number 4.D 
pentagonal number theorem 328 
pentaspherical coordinates 90.B 
percolation process 340.D 

bond 340.D 
site 340.D 



Subject Index 
Perfect 
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perfect 
(image) 180.A 
G(- (graph) 186.K 
y- (graph) 186.K 

perfect additive functional 261.E 
perfect code 63.B 
perfect delay convention 51.F 
perfect held 149.H 
perfect fluid 205.B 
perfect image 425.CC 
perfect inverse image 425.CC 
perfect kernel (in potential theory) 338.E 
perfectly normal space 425.Q 
perfectly separable space 425.P 
perfect mapping 425.W 

quasi- 425CC 
perfectness theorem 186.K 
perfect number 297.D 

of the second kind 297.D 
perfect set 425.0 
perigon, straight 139.D 
perihelion distance 309.B 
period 

(of an Abelian differential form) 1 l.C 
(of an ergodic class) 260.B 
(of a marked K3 surface) 72.K 
(of an orbit) 126.D 
(of an oscillation) 318.A 
(of a periodic continued fraction) 83.C 
(of a periodic function) 134.B 
(of a wave) 446 
fundamental 134.E 

periodgram 421.C 
periodic (trajectory) 126.D 

almost 126.F 
periodic continued fraction 83.C 
periodic endomorphism (at a point) 136.E 
periodic function 134.E 

almost (on a graph) 18.E 
almost (with respect to p) 18.C 
almost (in the sense of Bohr) 18.B 
analytic almost 18.D 
doubly 134.E 
simply 134.E 
uniformly almost 18.B 

periodic group 2.A 
maximally almost 18.1 
minimally almost 18.1 

periodic inequality, Riemann 3.L 
periodicity 390.5 
periodicity modulus (of an elliptic integral) 134.A 
periodicity theorem, Bott 202.V 237.D, App. A, 

Table 6.VII 
periodic solution (of Hill’s equation) 268.E 
period matrix 

(of a closed Riemann surface) 1 l.C 
(of a complex torus) 3.H 

period parallelogram 134.E 
fundamental 134.E 

period relation, Riemann’s 3.L 1 l.C 
peripheral devices 75.B 
peripheral system 235.B 
permeability, magnetic 130.B 
permeable membrane 419.A 
permutation 190.B 

(in a symmetric group) 151.G 
even 151.G 
k- 330 
odd 151.G 

permutation group 190.B 

of degree n 151.G 
imprimitive 151.G 
intransitive 151.H 
K-transitive 151.H 
K-ply transitive 151.H 
multiply transitive 151.H 
primitive 151.H 
regular 151.H 
transitive 151.H 

permutation representation (of a group) 362.B 
degree of 362.B 
faithful 362.B 
primitive 362.B 
reciprocal 362.B 
similar 362.B 

perpendicular 
(to a hyperplane) 139.E 
foot of the 139.E 

perpetual motion 402.G 
Perron-Brelot solution (of Dirichlet problem) 

12o.c 
Perron-Frobenius theorem 310.H 
Perron integrable (function) 100.F 
Perron method (in Dirichlet problem) 120.C 
Perron theorem 

(on linear transformations of sequences) 379.L 
(on ordinary differential equations) 316.E 
(on positive matrices) 269.N 

Perron-Wiener-Brelot solution (of Dirichlet 
problem) 120.C 

persistent 260.5 
perspective 343.B 
perspective mapping (in projective geometry) 343.B 
PERT 307.C 376 
perturbation(s) 

analytic 331.D 
asymptotic 331.D 
general theory of 420.E 
Kato 351.D 
of linear operators 331 
method 25.A 
regular 331.D 
secular 55.B 
singular 289.E 
special theory of 420.E 

Petersson conjecture, Ramanujan- 32.D 
Petersson metric 32.B 
Peter-Weyl theory 

(on compact groups) 69.B 
(on compact Lie groups) 249.U 

Petrovskii, hyperbolic in the sense of 325.F 
Petrovskii theorem 112.D 
Pettis completely additivity theorem 443.G 
Pettis integrable 443.F 

Gel’fand- 443.F 
Pettis integral 443.F 

Gel’fand- 443.F 
Pettis measurability theorem 443.B 
Pettis theorem 

Dunford- 68.M 
Orlicz- 443.D 

Petvyashvili equation, Kadomtsev- 387.F 
Pfafhan 103.G 
Pfaffian equation(s) 428.A 

system of 428.A 
Pfaffian form 428.A 
Pfaff problem 428.A 

generalized 428.B 
Pfluger extremal length, Hersch- 143.A 
phase 



2069 Subject Index 
Pliicker relations (on Pliicker coordinates) 

initial (of a simple harmonic motion) 318.B 
pure 402.G 

phase average 402.C 
phase constant (of a sine wave) 446 
phase function (of a Fourier integral operator) 

274.C 345.B 
phase portrait 126.B 
phase shift 375.E 386.B 
phase space 

(of a dynamical system) 126.C 290.C 
(for functional-differential equation) 163.C 
(in statistical mechanics) 402.C 
momentum 126.L 
velocity 126.L 

phase transition 340.B 
phase velocity (of a sine wave) 446 
phenomenon 

Gibbs 159.D 
Runge 223.A 
Stokes 254.D 

photon 132.B 377.B 
Phragmen-Lindelof theorem 43.C 
physical Hilbert space 150.G 
physically contains 351.K 
PI-algebra (algebra with polynomial identities) 

29.5 
Picard exceptional value 272.E 
Picard group (of a commutative ring) 237.J 
Picard-Lefschetz formula 418.F 
Picard-Lefschetz transformation 16.U 
Picard number (of a variety) 16.P 
Picard scheme 16.P 
Picard theorem 

(on transcendental entire functions) 429.B 
(on transcendental meromorphic functions) 

272.E 
Picard variety 16.P 

(of a compact Kahler manifold) 232.C 
Picard-Vessiot extension field 113 
Picard-Vessiot theory 113 
picture 

Heisenberg 351.D 
Schrodinger 351.D 

piecewise afhne mapping 192.Q 
piecewise continuous function 84.B 
piecewise linear mapping 65.A 70.C 
piecewise smooth curve 364.A 
Pincherle-Goursat kernel 217.F 
Pinching problem (differentiable) 178.E 
Pinsker partition 136.E 
Pitman estimator 399.G 
pivot 302.B 
pivoting 

complete 302.B 
partial 302.B 

PL category 65.A 
PL embedding 65.D 
PL homeomorphism 65.A 
PL isomorphism 65.A 
PL k-ball 65.C 
PL (k - I)-sphere 65.C 
PL mapping (map) 65.A 
PL microbundle 147.P 
PL (n, m)-ball knot 65.D 
PL (n, m)-knot 65.D 
PL normal 147.P 
PL structure 65.C 
PL tangent 147.P 
PL topology 65.A 
place (of a field) 439.5 

placement problem 235.A 
planar 367.G 
planar character 367.G 
planar curvilinear coordinates App. A, Table 3.V 
planar graph 186.H 
planarity (of a graph) 186.H 
Plancherel formula (on a unimodular locally com- 

pact group) 437.L 
Plancherel measure (of a locally compact group) 

437.L 
Plancherel theorem 160.H 192.A,K 

(with respect to the Radon transform) 218.G 
Planck constant 351.A 
Planck (partial differential) equation, Fokker- 

115.A 402.1 
plane(s) 155.B 

(as an afftne space) 7.A 
(in a projective space) 343.B 
Cayley projective 54 
complex 74.C 
conjugate (with respect to a quadric surface) 

35o.c 
coordinates (of a plane) 343.C 
finite projective 241.B 
Gauss-Argand 74.C 
Gaussian 74.C 
half- 155.B 333.A 
hodograph 205.B 
hyperbolic 122.C 
normal 111 .F 
osculating 11 l.F 
pencil of (in a 3-dimensional projective space) 

343.B 
polar (with respect to a quadric surface) 350.C 
principal (of a quadric surface) 350.B 
projective 343.B 
rectifying 11 l.F 
tangent 11 l.H, App. A, Table 4.1 
w- 74.D 
z- 74.D 

plane algebraic curve 9.B 
plane coordinates (of a plane) 343.C 
plane curve App. A, Table 4.1 

continuous 93.B 
plane domains 333 

closed 333.A 
multiply connected 333.A 
n-ply connected 333.A 

plane geometry 181 
plane polygon 155.F 
plane triangle App. A, Table 2.11 
plane trigonometry 432.A 
plane wave 446 
plane wave decomposition 125.CC 
planimeter 19.A 
planning 

production 376 
statistical 102.A 

plasticity, theory of 271.G 
Plateau problem 334 
playable 108.B 
Pleijel asymptotic expansion, Minakshisundaram- 

391.B 
PLK (Poincare-Lighthill-Kuo) method 25.B 
Plotkin bound 63.B 
plots 102.B 
Plucker coordinates (in a Grassman manifold) 

90.B 
Plucker formulas (on plane algebraic curves) 9.B 
Plucker relations (on Plucker coordinates) 90.B 
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Plurigenera 
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plurigenera 15.E 
pluriharmonic distribution 21.C 
plurisubharmonic function 21.G 
plus infinity 87.D 
Pochhammer differential equation, Tissot- 206.C 
Poincart, H. 335 

last theorem of 153.B 
theta-Fuchsian series of 32.B 

Poincare-Birkhoff fixed-point theorem 153.B 
Poincare-Birkhoff-Witt theorem (on Lie algebras) 

248.5 
Poincare-Bruns theorem 420.A 
Poincare characteristic, Euler- 16.E 201.B 
Poincare class 

Euler- 56.B,F 
universal Euler- 56.B 

Poincare complete reducibility theorem 3.C 
Poincart complex 114.5 
Poincare condition (in Dirichlet problem) 120.A 
Poincare conjecture 65.C 

generalized 65.C 
Poincare differential invariant 74.G 
Poincare duality 201.0 450.4 
Poincare formula (in integral geometry) 218.C 
Poincare formula, Euler- 201.B,F 
Poincare group 170 258.A 
Poincare-Lefschetz duality theorem 201.0 
Poincart-Lighthill-Kuo (PLK) method 25.B 
Poincare manifold 105.A 
Poincare mapping (map) 126.C,G 
Poincare method 25.B 
Poincare method, Lindstedt- 290.E 
Poincari metric 74.G 
Poincare model (of geometry) 285.D 
Poincari pair (of formal dimension n) 114.5 
Poincare polynomial (of a finite simplicial complex) 

201.B 
Poincare series 32.B 
Poincare series, Eisenstein- 32.F 
Poincare theorem 383.E 

(on Abelian varieties) 3.D 
Poincare-Volterra theorem 198.5 
Poinsot representation 271.E 
point(s) 

(of an affine space) 7.A 
(in the foundations of geometry) 155.B 
(of a graph) 186.B 
(in projective geometry) 343.B 
accessible boundary (of a plane domain) 333.B 
accumulation 425.0 
accumulation (of a sequence of real numbers) 

87.C 
adherent 425.B 
algebraic (over a field) 369.C 
algebraic branch (of a Riemann surface) 367.B 
almost all, of a variety 16.A 
G(- (of a meromorphic function) 272.B 
cc-limit 126.D 
ambiguous 62.D 
antipodal (on a sphere) 140 
apparent singular 254.C 
base (of a linear system) 16.N 
base (of a loop) 170 
base (of a topological space) 202.B 
bifurcation 126.M 217.M 286.R 
boundary (of a subset) 425.N 
branch (of a covering surface) 367.B 
branch (of a harmonic mapping) 275.B 
branch (of an ordinary curve) 93.C 
catastrophe 51.F 

cluster 425.0 
coincidence (of maps) 153.B 
collinear (in projective geometry) 343.B 
complete accumulation 425.0 
condensation 425.0 
conjugate 46.C 364.C 
conjugate (in a projective space) 343.E 
corresponding (with respect to confocal qua- 
dries) 350.E 

critical (of a Cm-function) 279.B 
critical (of a function) 106.L 
critical (of a mapping) 105.J 193.J 208.B 
critical (of a trajectory) 126.D 
cut (on a geodesic) 178.A 
degenerate critical 106.L 279.B 
degree of 99.D 
of density (of a measurable set of the real line) 

1OO.B 
dependent (in an alIme space) 7.A 
dependent (in a projective space) 343.B 
deviation 336.B 
discontinuity 84.B 
discontinuity, of the first kind 84.B 
discontinuity, of the second kind 84.B 
dual passive boundary 260.1 
elliptic (of a Fuchsian group) 122.C 
elliptic (on a surface) 11 l.H 
end (of an ordinary curve) 93.C 
entrance boundary 260.1 
equianharmonic range of 343.D 
equilibrium 108.C 
equilibrium (in the theory of games) 173.C 
equilibrium (of a trajectory) 126.D 
equivariant (of a mapping) 153.B 
equivariant, index (of a mapping) 153.B 
essentially singular (with respect to an analytic 

set) 21.M 
estimation 399.B 4Ol.C 
exit boundary 260.1 
exterior (of a subset) 425.N 
externally irregular 338.L 
extreme (of a convex set) 89.A 
extreme (of a subset of a linear space) 424.T 
fixed (of a discontinuous transformation group) 

122.A 
fixed (of a flow) 126.D 
fixed (of a mapping) 153.A 
fixed (of a mapping in a topological linear 

space) 153.D 
fixed (method of roundoff) 138.B 
fixed (of a topological transformation group) 
431.A 

fixed, of discontinuity 5.B 407.A 
fixed, index (of a mapping) 153.B 
fixed branch (of an algebraic differential equa- 
tion) 288.A 

fixed, theorem 153 
flat (of a surface) 11 l.H 
focal (of a submanifold of a Riemannian mani- 

fold) 364.C 
frontier (of a subset) 425.N 
functions 380.A 
fundamental (of a projective space) 343.C 
fundamental (with respect to a birational 

mapping) 16.1 
y-, of the kth order (of a holomorphic function) 

198.C 
generalized peak 164.D 
generic 16.A 
geodesic 11 l.H 365.D 
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Points(s) 

geometric (of a scheme) 16.D 
harmonic range of 343.D 
homoclinic 126.5 
hyperbolic (on a surface) 11 l.H 
hyperbolic fixed 126.G 
hyperbolic singular 126.G 
ideal (in hyperbolic geometry) 285.C 
independent (in an afine space) 7.A 
independent (in a projective space) 343.B 
at infinity (in affine geometry) 7.B 
at infinity (of a Gaussian plane) 74.D 
at infinity (in hyperbolic geometry) 285.C 
at infinity (of a Riemann manifold) 178.F 
of inflection (of a curve of class C’) 93.G 
of inflection (of a plane algebraic curve) 9.B 
initial (of a curvilinear integral) 94.D 
initial (of a path) 170 
initial (of a position vector) 7.A 
initial (of a vector) 442.A 
integral 428.E,F 
interior 425.B 
internally irregular 338.L 
irregular (of an analytic set) 45.D 
irregular (of a Markov process) 261.D 
irregular boundary 120.D 
irregular singular 254.B 
isolated 425.0 
isolated (of a curve) 93.G 
isolated fixed 126.G 
isotropic 365.D 
k-rational (of an algebraic variety) 16.A 369.C 
left singular (of a diffusion process) 115.B 
limit (of a discontinuous group) 122.C 
limit (of a sequence of points) 87.E 
limit (of a sequence of real numbers) 87.B 
limit, type 112.1 
logarithmic branch (of a Riemann surface) 

367.B 
middle (of two points of an affine space] 7.C 
movable branch (of an algebraic differential 
equation) 288.A 

multiple (on an arc) 93.B 
multiple (of a plane algebraic curve) 9.B 
multiple (on a variety) 16.F 
negative limit 126..D 
nodal 304.C 
nondegenerate critical 106.L 279.B 
nondegenerate critical (of a function on a 
Hilbert manifold) 286.N 

nonrecurrent 260.B 
nonsingular (of an algebraic variety) 16.F 
normal (of an analytic space) 23.D 
normal (of a variety) 16.F 
null recurrent 260.B 
w-limit 126.D 
100~(%- 396.C 
order of (with respect to a cycle) 99.D 
order of (in an ordinary curve) 93.C 
ordinary (of an analytic set) 23.B 
ordinary (of a curve of class CL) 93.G 
ordinary (in hyperbolic geometry) 285.C 
ordinary (of an ordinary curve) 93.C 
ordinary (of a plane algebraic curve) 9.B 
ordinary (on a Riemann surface) 1 l.D 
overcrossing 235.A 
parabolic (on a surface) llO.B 11 l.H 
passive boundary 260.1 
peak 164.D 
positive limit 126.D 
positive recurrent 260.B 

principal 180.B 
r-ple (of a plane algebraic curve) 9.B 
ramification (of an analytic covering space) 

23.E 
rational 118.E 
rational double 418.C 
recurrent (of a Markov process) 261.B 
reflection (with respect to a circle) 74.E 
regular (of an analytic set) 23.B 45.D 
regular (with respect to an analytic set) 21.M 
regular (in catastrophe theory) 51.F 
regular (of a differentiable mapping) 105.J 
regular (of a diffusion process) 115.B 
regular (with respect to the Dirichlet problem) 
207.B 

regular (of a flow) 126.D 
regular (of a Hunt process) 261.D 
regular (of a polyhedron or cell complex) 65.B 
regular (of a surface in E3) 1ll.J 
regular boundary 120.D 
regular singular 254.B 
rest (of a trajectory) 126.D 
right singular (of a diffusion process) 115.B 
saddle (of a function) 255.B 292.A 
saddle (on a surface) 11l.H 
saddle (of a system of ordinary differential 
equations) 126.G 

saddle (of two-person games) 108.B 
saddle, method 25.C 
sample 342.B 396.B 398.A 
Schwinger 150.F 
semiregular (of a surface in E3) 1ll.J 
simple (of an analytic set) 23.B 418.A 
simple (on a variety) 16.F 
singular (of an analytic set) 23.B 418.A 
singular (of a continuous vector field) 153.B 
singular (of a curve of class Ck) 93.G 
singular (of a linear difference equation) 104.D 
singular (of a plane algebraic curve) 9.B 
singular (of a polyhedron or cell complex) 
65.B 

singular (of a quadric hypersurface) 343.E 
singular (of a surface in E3) 11 l.J 
singular (of a system of linear ordinary dif- 
ferential equations) 254.A 

singular (of a system of ordinary differential 
equations) 289.A 

singular (of a trajectory) 126.D,G 
singular (on a variety) 16.F 
smooth (of variety) 16.F 
stable 16.W 
stationary (of an arc of class C”) 11 l.D 
successive minimum 182.C 
supporting (of a convex set) 89.G 
supporting (of a projective frame) 343.C 
symmetric (with respect to a circle) 74.E 
terminal (of a curvilinear integral) 94.D 
terminal (of a Markov process) 261.B 
terminal (of a path) 176 
terminal (of a vector) 442.A 
transient 260.B 
transition 254.F 
transversal homoclinic 126.5 
turning 25.B 254.F 
ultraintinite (in hyperbolic geometry) 285.C 
umbilical (of a surface) lll.H 365.D 
undercrossing 235.A 
unit (of an affine frame) 7.C 
unit (of a projective frame) 343.C 
unit (of a projective space) 343.C 
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Point(s) at infinity 
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w- (of an entire function) 429.B (of an integral element) 428.E 
wandering (of a trajectory) 126.E polar form (of a complex number) 74.C 
Weierstrass 1 l.D polarity (with respect to a quadric hypersurface) 
zero (of a holomorphic function) 198.C 343.E 
zero (of a polynomial) 337.B 369.C polarization (on an Abelian variety) .3.G 
zero (of a subset of a polynomial ring) 369.C electric 130.A 
zero, of the -kth order (of a complex function) inhomogeneous 3.G 

198.D magnetic 130.A 
zero, of the kth order (of a holomorphic func- principal 3.G 
tion) 198.C polarized 

point(s) at infinity 74.D 285.C (Hodge structure) 16.V 
regular at the 193.B (wave) 446 

pointed coalgebra 203.F polarized Abelian variety 3.G 
pointed set 172.5 polarized Jacobian variety, canonically 3.G 9.E 

morphism of 172.5 polar plane (with respect to a quadric surface) 
pointed shape category 382.A 35o.c 
pointed topological spaces, category of 202.B polar set (in potential theory) 261.D 338.H 
pointer 96.B polar space 191.1 
point estimation 399.B 4Ol.C App. A, Table 23 polar system (in projective geometry) 343.D 
point-finite covering (of a set) 425.R polar tetrahedron 350.C 
point function 380.A 407.D self- 350.C 
point group (of a crystallographic group) 92.A polar triangle 78.5 
point hypersphere 76.A self- 78.5 
point process 407.D pole 
point range (in projective geometry) 343.B (of a complex function) 198.D 

of the number system (in projective geometry) (of a function on an algebraic curve) 9.C 
343.c (of a function on an algebraic variety) 16.M 

point set 381.B (of a polar with respect to a conic) 78.5 
points of indeterminacy, set of 23.D (of a polar plane) 350.C 
point spectrum 390.A (of a polar of a quadric hypersurface) 158.E 

pure 136.E (of a roulette) 93.H 
pointwise convergent sequence 435.B north (of a complex sphere) 74.1) 
pointwise ergodic theorem 136.B north (of a sphere) 140 
Poisson bracket 82.B 271.F 324.C,D order of 198.D 

(of two vector fields) 105.M Regge 132.C 386.C 
Poisson differential equation 323.A, App. A, Table resonance 331.F 

15.111 I 
south (of a complex sphere) 74.1) 

Poisson distribution 341.D 397.F, App. A, Table south (of a sphere) 140 
22 , 

Poisson equation 338.A 
Poisson formula App. A, Table 19.111 ’ 

pole divisor (of a function on an algebraic variety) 

policyl”E7.A 405.C 
of 7’” = Em/l- 391.5 Markovian 405.C 

Poisson input 260.H optimal 127.A 
Poisson integral 168.B 193.G Polish space 22.1 273.5 
Poisson integral formula 198.B Pblya’s enumeration theorem 66.E 
Poisson integration formula App. A, Table 15,VI Pblya type 374.5 
Poisson kernel 159.C strictly of 374.5 
Poisson number 271.G polychromatic group 92.D 
Poisson point process, stationary 407.D polydisk 21.B 
Poisson process 5.D polygamma functions 174.B, App. A. Table 17.1 

compound 5.F polygon(s) 155.F 
Poisson random measure 407.D Cauchy 316.C 
Poisson ratio 271.G decomposition-equal 155.F 
Poisson solution 325.D force 19.C 
Poisson stable 126.E normal 234.C 

negatively 126.E plane 155.F 
positively 126.E regular 357.A 

Poisson summation formula 192.C simple 155.F 
(of Fourier transforms) 192.C supplementation-equal 155.F 
(on a locally compact Abelian group) 192.L polygonal number of order r 4.D 

polar polyharmonic 193.0 
(with respect to a conic) 78.5 polyhedral, convex rational 16.2 
(in projective geometry) 343.E polyhedral angle, regular 357.B 
(relative to pairing) 424.H polyhedral cone, convex 89.F 

polar coordinates 90.C polyhedral group, regular 151.G 
geodesic 90.C ‘polyhedron (polyhedra) 
tangential 90.C (in an allme space) 7.D 

polar decomposition 251.E (of a simplicial complex) 65.A 7O.C 
polar element analytic 21.G 

(a function element in the wider sense) 198.0 convex 89.A 
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Positive cycle (on an algebraic variety) 

corner 215.C 
Euclidean 70.B 
Euler theorem on 201.F 
integer 215.C 
regular 357.B 
topological 65.A 

polymatroid 66.F 
polynomial(s) 337 

Alexander (of a knot) 235.C,D 
alternating 337.1 
associated Laguerre 317.D 
Bernoulli 177.B 
Bernshtein 336.A 
Bernshtein (generalized) 418.H 
characteristic (of a differential operator) 112.A 
321.A 

characteristic (of a linear mapping) 269.L 
characteristic (of a matrix) 269.F 
Chebyshev 317.D 336.H, App. A, Table 20.11 
Chebyshev orthogonal 19.G 
cyclotomic 14.L 
differential 113 
Euler 177.C 
Fourier-Hermite 176.1 
Galois group of the 172.G 
Gegenbauer 317.D 393.E, App. A, Table 20.1 
generalized trigonometric 18.B 
Hermite 317.D 
Hermite interpolation 223.E 
Hilbert (of an algebraic curve) 9.F 
Hilbert (of a graded R-module) 369.F 
Hilbert (of a sheaf) 16.E 
homogeneous of degree n 337.B 
Hosokawa 235.D 
inseparable 337.G 
irreducible 337.F 
isobaric 32.C 
Jacobi 317.D, App. A, Table 20.V 
Lagrange interpolation 223.A 336.G, App. A, 
Table 21 

Laguerre 3 17.D, App. A, Table 2O.W 
Legendre 393.B, App. A, Table 18.11 
link 235.D 
Lommel App. A, Table 19.IV 
in m variables 337.B 
minimal (of an algebraic element) 149.E 
minima1 (of a linear mapping) 269.L 
minimal (of a matrix) 269.F 
manic 337.A 
Neumann App. A, Table 19.IV 
Newton interpolation 336.G 
orthogonal 19.G, App. A, Table 2O.VII 
parity check 63.E 
Poincare 201.B 
primitive 337.D 
reduced link 235.D 
reducible 337.F 
ring of 337.A 369 
ring of differential 113 
Sato-Bernshtein 125.EE 
Schlafli App. A, Table 19.IV 
separable 337.G 
simplest orthogonal 19.G 
Snapper 16.E 
Sonine 3 17.D, App. A, Table 2O.VI 
symmetric 337.1 
system of orthogonal 317.D 
trigonometric interpolation 336.E 
ultraspherical 317.D 
zonal 374.C 

polynomial approximation 336 
best (in the sense of Chebyshev) 336.H 

polynomial approximation theorem (for Cm- 
functions) 58.E 

polynomial distribution App. A, Table 22 
negative App. A, Table 22 

polynomial extrapolation method 303.F 
polynomial identity (on an algebra) 29.5 
polynomially transformable 71.E 
polynomial representation (of GL( V)) 60.D 
polynomial ring 337.A 369 

of m variables 337.B 
polynomial time 71.B 
polytropic differential equation 291.F 
Pomeranchuk theorem 386.B 
Pontryagin class(es) 

(of an R”-bundle) 56.D 
combinatorial 56.H 
of a manifold 56.F 
rational 56.F 
total 56.D 
universal 56.D 

Pontryagin duality theorem (on topological Abelian 
groups) 192.K 422.C 

Pontryagin multiplication 203.D 
Pontryagin number 56.F 
Pontryagin pth power operation 64.B 
Pontryagin product 203.D 
Popov ghost, Faddeev- 132.C 150.G 
population (in statistics) 397.B 401.E 

finite 373.A 
infinite 401.E 

population characteristic 396.C 
population correlation coefficient 396.D 
population covariance 396.D 
population distribution 396.B 401.F 

hypothetical infinite 397.P 
population kurtosis 396.C 
population mean 396.C 
population moment of order k 396.C 
population standard deviation 396.C 
population variance 396.C 
port-admittance matrix 282.C 
porter 168.C 
port-impedance matrix 282.C 
port network, M- 282.C 
portrait, phase 126.B 
position 

genera1 (complexes) 70.B 
genera1 (of a PL mapping) 65.D 
general (in a projective space) 343.B 
general, theorem 65.D 
hyperboloid 350.D 
method of false 3Ol.C 

position representation 351.C 
position vector 442.A 

(of a point of an alline space) 7.A 
positive 

(chain complex) 200.C 
(class of vector bundles) 114.D 
(complex) 200.H 
(functional on a C*-algebra) 36.G 
(function on a C*-algebra) 308.D 
(Hermitian operation) 308.A 
(square matrix) 310.H 
completely (linear mapping between C*- 
algebras) 36.H 

positive boundary, open Riemann surface of 367.E 
positive cone, natural 308.K 
positive cycle (on an algebraic variety) 16.M 



Subject Index 
Positive definite 
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positive definite 
(function) 192.B,J 394.C 
(Hermitian form) 348.F 
(matrix) 269.1 
(potential) 338.D 
(sequence) 192.B 
(on a topological group) 36.L 437.B 

positive definite kernel 217.H 
positive definite quadratic form 348.C 
positive direction (in a curvilinear integral) 198.B 
positive distribution 125.C 
positive divisor 

(of an algebraic curve) 9.C 
(on a Riemann surface) 1 l.D 

positive element 
(in a lattice-ordered group) 243.G 
(of an ordered field) 149.N 
strictly 310.H 
totally 14.G 

positive entropy, completely 136.E 
positive half-trajectory 126.D 
positive infinity 87.D 355.C 
positive kernel 217.H 
positive limit point 126.D 
positively invariant 126.D 
positively Lagrange stable 126.E 
positively Poisson stable 126.E 
positively regular process 44.C 
positive matrix 269.N 
positive number 355.A 
positive operator (in vector lattices) 310.E 
positive orientation (of an oriented C-manifold) 

105.F 
positive orthant 89.G 
positive part (of an element of a vector lattice) 

310.B 
positive prolongational limit set, first 126.D 
positive Radon measure 270.1 
positive real function 282.C 
positive recurrent ergodic class 260.B 
positive recurrent point 260.B 
positive root (of a semisimple Lie algebra) 248.M 
positive semidetinite (operator) 251.E 
positive semidefinite kernel 217.H 
positive semidefinite matrix 269.1 
positive semidefinite quadratic form 348.C 
positive semiorbit 126.D 
positive system, symmetric 112,s 326.D 
positive terms, series of 379.B 
positive type 

(function of) 192.B,J 
(sequence of) 192.B 
(symmetric kernel of) 338.D 

positive variation 
(of a mapping) 246.H 
(of a real bounded function) 166.B 

positive Weyl chamber 248.R 
positivity 

O-S 150.F 
reflection 1 SO.F 
T- 150.F 

possibility 41 l.L 
possible construction problem 179.A 
posterior density 401.B 
posterior distribution 398.B 401.B 403.G 
posterior risk 399.F 
postliminal C*-algebra 36.H 
Postnikov complex 70.G 
Postnikov system (of a CW complex) 148.D 
Post problem 356.D 

Post theorem 356.H 
postulate(s) 35.A 

fifth (in Euclidean geometry) 139.A 
Nernst 419.A 
Peano 294.B 

potency of a set 49.A 
potential 338.A 

(of a force) 271.C 
(of a Hamiltonian) 375.8 
(for a lattice spin system) 402.G 
(in a Markov chain) 260.D 
(on a network) 281.B 
central 351.E 
chemical 402.D 419.B 
of a double distribution 338.A 
of a double layer 338.A 
equilibrium 260.D 
finite-band 387.E 
finite-gap 387.E 
logarithmic 338.A 

. Newtonian 271.C 338.A 
of order G( 338.B 
reflectionless 387.D 
Riesz 338.B 
scalar 130.A 442.D 
of a simple distribution 338.A 
of a single layer 338.A 
vector 130.A 442.D 
velocity 205.B 
Yukawa 338.M 

potential energy 271.G 
potential good reduction (of an Abelian variety) 

3.N 
potential kernel, weak 260.D 
potential stable reduction (of an Abelian variety) 

3.N 
potential theory 338 
power 

(of a cardinal number) 49.C 
(of an ordinal number) 312.C 
(of a test) 400.A 
of a with exponent x 131.B,G 
fractional 378.D 
p-fold exterior (of a linear space) 256.0 
p-fold exterior (of a vector bundle) 147.F 
Pontryagin (pth) operation 64.B 
residue of the nth 14.M 
of a set 49.A 
Steenrod (pth) operation 64.B 

power associative algebra 231.A 
power dilation 251.M 
powerful invariant, uniformly most 399.4 
powerful unbiased, uniformly most 399.4 
power function 400.A 

envelope 400.F 
power method 298.C 
power-residue symbol 14.N 
power series 21.B 339 370 

with center at the point of infinity 339.A 
convergent 370.B 
field of, in one variable 370.A 
formal 370.A 
formal, held in one variable 370.A 
ring of 370.A 
ring of convergent 370.B 
ring of formal 370.A 

power series space 
finite type 168.B 
infinite type 168.B 

power set 



2075 Subject Index 
Prime formula 

(of a set) 381.B 
axiom of 33.B 381.G 

power sum theorem 123.D 
Powers factor 308.1 
Powers-Stormer inequality 212.B 
Poynting vector 130.A 
Prandtl boundary layer equation 205.C 
Prandtl-Glauert approximation 250.B 
Prandtl-Glauert law of similarity 205.D 
Prandtl integrodifferential equation 222.C 
Prandtl number 116.B 
prealgebraic variety 16.C 
precession 392 
precompact 

(metric space) 273.B 
(set in a metric space) 273.B 

precompact uniform space 436.H 
preconditioned (in numerical solution of linear 

equations) 302.D 
predator relation, prey- 263.B 
predecessor (of an element in an ordered set) 31 l.B 
predetermined variables 128.C 
predicate 41 l.G 

analytic 356.H 
arithmetical 356.H 
complete 356.H 
decidable (number-theoretic) 356.C 
enumerating 356.H 
first-order 41 l.K 
general recursive 356.C 
hyperarithmetical 356.H 
of n-argument 41 l.G 
nary 41 l.G 
primitive recursive 356.B 
second-order 41 l.K 

predicate (object) 156.B 
predicate calculus 41 l.J 

with equality 411.J 
predicate logic 411 .J 

with equality 41 l.J 
first-order 41 l.K 
higher-order 41 l.K 
second-order 411.K 
third-order 41 l.K 

predicate symbol 41 l.H 
predicate variable 41 l.G,H 
predictable (c-algebra) 407.B 
prediction sufficiency 396.5 
prediction theory 395.D 

linear 395.D 
predictive distribution 403.C 
predictor 303.E 

(in a multistep method) 303.E 
linear 395.D 
Mime’s 303.E 
optimal linear 395.D 

predictor-corrector (PC) method 303.E 
predual 308.D 
prefix condition code 213.D 
pre-Hilbert space 197.B 
prehomogeneous vector space 450.V 

zeta function associated with 450.V 
premium 214.A 

net 214.A 
risk 214.B 
savings 214.B 

prenex normal form (in predicate logic) 41 l.J 
preordering 3 11 .H 
preparation theorem 

for Cm-functions 58.C 
Weierstrass 21.E 370.B 
Weierstrass type (for microdifferential opera- 
tors) 274.F 

presentation 235.B 
of finite (LO-Modules) 16.E 
Wirtinger (of a knot group) 235.B,D 

presheaf 383.A 
sheaf associated 383.C 

presheaf on a site 16.AA 
pressure 402.G 419.A 
pressure, topological 136.H 
pressure equation 205.B 
prestratification, Whitney 418.G 
preventive maintenance model 307.C 
prey-predator relation 263.~ 
price 

imputed 292.C 
shadow 255.B 

primal problem 255.B 
primary Abelian group 2.A 
primary cohomology operation 64.B 

stable 64.B 
primary component 

(of an ideal) 67.F 
embedded (of an ideal) 67.F 
isolated (of an ideal) 67.F 

primary difference 305.C 
primary ideal 67.F 

p 67.F 
primary obstruction 147.L 305.C 
primary problem 255.B 
primary ring 368.H 

completely 368.H 
semi- 368.H 

primary solution (of a homogeneous partial dif- 
ferential equation) 320.E 

primary submodule 284.A 
prime(s) 

(3-manifold) 65.E 
over an element (in a lattice) 243.F 
under an element (in a lattice) 243.F 
Mersenne 297.E 
relatively (fractional ideals) 14.E 
relatively (numbers) 297.A 
twin 123.C 

prime differential ideal (of a differential ring) 113 
prime divisor 

(of an algebraic function field of dimension 1) 
9.D 

(of an algebraic number field or an algebraic 
function field of one variable) 439.H 

(of an ideal) 67.F 
(on a Riemann surface) 1 l.D 
embedded (of an ideal) 67.F 
finite 439.H 
imaginary infinite 439.H 
infinite 439.H 
isolated (of an ideal) 67.F 
maximal (of an ideal) 67.F 
minimal (of an ideal) 67.F 
real 439.H 
real (infinite) 439.H 

prime element 
(of a ring) 67.H 
(for a valuation) 439.E 

prime field 149.B 
prime formula 41 l.D 

(of a language) 276.A 



Subject Index 
Prime ideal 
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prime ideal 67.C 
(of a maximal order) 27.A 
associated (of an ideal) 67.F 
ramified 14.1 
unramitied 14.1 

prime ideal theorem 123.F 
prime knot 235.A 
prime number(s) 297.B 

regular 14.L 
relatively 297.A 

prime number theorem 123.B 
for arithmetic progression 123.D 

prime quotient (in a lattice) 243.F 
prime rational divisor over a field (on an algebraic 

curve) 9.C 
prime spot (of an algebraic number field or an 

algebraic function field) 439.H 
primitive 427.B 

(differential form) 232.B 
(element of coalgebra) 203.1 
(element of an extension of a field) 149.D 
(generator of the cohomology algebra of a 
compact Lie group) 427.B 

primitive binary quadratic form 348.M 
primitive character 295.D 450.C,E 

non- 450.C,E 
primitive equation 172.G 
primitive form 232.B 
primitive function(s) 216.C 

derivatives and App. A, Table 9.1 
primitive hyperbolic type (reduced basis of) 92.C 
primitive hypercubic type (reduced basis of) 92.C 
primitive ideal (of a Banach algebra) 36.D 
primitive idempotent element (of a ring) 368.B 
primitive lattice 92.E 
primitive operation (of a group) 362.B 
primitive permutation group 151.H 
primitive permutation representation (of a group) 

362.B 
primitive polynomial 337.D 
primitive recursive 356.B 
primitive recursive function 356,A,B,F 

uniformly 356.B 
primitive recursive in $i, _. , I/& 356.B 
primitive recursive predicate 356.B 
primitive root of unity 14.L 

module m 297.G 
primitive solution (of a partial differential equation) 

320.E 
principal adele (of an algebraic number field) 6.C 
principal analytic set 23.B 
principal antiautomorphism (of a Clifford algebra) 

61.B 
principal automorphism (Clifford algebras) 61.B 
principal axis (axes) 

(of a central conic) 78.C 
(of inertia) 271.E 
(of a parabola) 78.C 
(of a quadric surface) 350.B 
transformation to 390.B 

principal bundle 147.C 
associated 147.D 
reduced 147.5 
reducible 147.5 

principal character 295.D 
(of an Abelian group) 2.G 

principal component(s) 
(in principal component analysis) 280.F 
of order p 1lO.A 

principal component analysis 280.F 

principal congruence subgroup of level N 122.D 
principal convergent (of an irrational number) 83.B 
principal curvature 

(of a surface) 1ll.H 365.C 
radius of (of a surface) 11 l.H 

principal directions (of a surface) llI.H 
principal discrete series 258.C 
principal divisor 

(on an algebraic curve) 9.C 
(on a Riemann surface) 1 l.D 

principal fiber bundle 147.C 
principal formula of integral geometry 218.C 
principal fractional ideal 67.K 
principal genus 

(for an ideal group) 59.E 
of a quadratic field 347.F 

principal half-space (of a flag) 139.B 
principal H-series 437.X 
principal ideal 67.K 

of an algebraic number field 14.E: 
principal ideal domain 67.K 
principal ideal ring 67.K 
principal ideal theorem (in class field theory) 59.D 
principal idele (of an algebraic number field) 6.C 
principal isotropy group(s) 431.C 
principal matrix (belonging to a Riemann matrix) 

3.1 
principal minor (of a matrix) 103.D 
principal moment of inertia 271.E 
principal normal 11 l.F 
principal orbit(s) 43 1 .C 

type 431.C 
principal order (of an algebraic number field) 14.B 

fundamental theorem of 14.C 
principal part 

(of a differential operator) 112.A 
(of a Laurent expansion) 198.D 
(of a partial differential operator) 320.B 

principal partition 66.H 
principal plane (of a quadric surface) 350.B 
principal point(s) 

(for a Gauss mapping) 180.B 
principal polarization (of an Abelian variety) 3.G 
principal quantum number 315.E 
principal series 258.C 

(in an R-group) 190.G 
(of unitary representations of a complex semi- 

simple Lie group) 437.W 
(of unitary representations of a real semisimple 

Lie group) 437.X 
principal solution 104.B 
principal space (of a flag) 139.B 
principal subspace (of a linear operator) 390.B 
principal symbol 237.H 

(of a microdifferential operator) 274.F 
(of a simple holonomic system) 274.H 

principal theorem, Ahlfors 367.B 
principal value 

(of inverse trigonometric functions) 131.E 
Cauchy (of an improper integral) 216.D 
Cauchy (of the integral on infinite intervals) 

216.E 
oflog 131.G 

principle(s) 
argument 198.F 
balayage 338.L 
Bellman 405.B 
Cartan maximum 338.L 
complete maximum 338.M 
of condensation of singularities 37.H 



2071 Subject Index 
Problem(s) 

of conditionality 4Ol.C 
continuity 21.H 
continuity (in potential theory) 338.C 
contraction 286.B 
correspondence 351.D 
of counting constants 16,s 
Dedekind (in a modular lattice) 243.F 
of depending choice (DC) 33.F 
dilated maximum (in potential theory) 338.C 
Dirichlet 120.A 323.E 
Dirichlet drawer 182.F 
domination 338.L 
Donsker invariance 250.E 
duality (for closed convex cones) 89.F 
duality, for ordering 31 l.A 
of duality (in projective geometry) 343.B 
embedding (in dynamic programming) 127.B 
energy 338.D 
energy minimum 419.A 
enthalpy minimum 419.C 
entropy maximum 419.A 
of equal weight 402.E 
equilibrium 338.K 
of equivalence (in insurance mathematics) 

214.A 359.D 
Fermat 180.A 441.C 
first maximum (in potential theory) 338.C 
Fisher three 102.A 
Frostman maximum 338.C 
general, of relativity 359.D 
Gibbs free energy minimum 419.C 
Hamilton 441.B 
Hasse 348.G 
Helmholtz free energy minimum 419.C 
Huygens 325.B 446 
Huygens, in the wider sense 325.D 
invariance 375.B 400.E 
of invariance of speed of light 359.B 
inverse domination 338.L 
of least action 441.B 
limiting absorption 375.C 
of linearized stability 286,s 
of localization (on convergence tests of Fourier 
series) 159.B 

local maximum modulus 164.C 
lower envelope 338.M 
Maupertuis 180.A 
maximal 193.E 
maximum (for control theory) 86.F 
maximum (for a holomorphic function) 43.B 
maximum (for minimal surfaces) 275.B 
maximum modulus (for a holomorphic func- 

tion) 43.B 
minimax (for eigenvalues of a compact opera- 
tor) 68.H 

minimax (for 1,) 391.G 
minimax (for statistical decision problem) 

398.B 
minimum (for 1) 391.D 
minimum (for 1,) 391.G 
of nested intervals (for real numbers) 87.C 

355.B 
Oka 21.K 147.0 
of optimality 127.A 
Pauli 351.H 
quasicontinuity (in potential theory) 338.1 
Rayleigh 68.H 
reflection 45.E 
of reflection 74.E 
Schwarz, of reflection 198.G 

separation 405.C 
special, of relativity 359 
stochastic maximum 405.D 
stored program 75.B 
Strassen invariance 250.E 
of sufficiency 4Ol.C 
of superposition 252.B 322.C 
sweeping-out 338.L 
Ugaheri maximum 338.C 
uniqueness (in potential theory) 338.M 
upper boundedness (in potential theory) 338.C 
variational 441 
variational (in statistical mechanics) 340.B 
402.G 

variational (in the theory of elasticity) 271.G 
variational, with relaxed continuity requirement 
271.G 

variational, for topological pressure 136.H 
Pringsheim theorem 58.E 
prior density 401.B 
prior distribution 401.B 403.G 
probabilistic model 397.P 
probability 342 

additivity of 342.B 
a posteriori 342.F 
a priori 342.F 
binomial, paper 19.B 
conditional 342.E 
continuous in 407.A 
converge in 342.D 
converge with, 1 342.D 
critical percolation 340.D 
error 213.D 
of an event 342.B 
that event E occurs 342.B 
event with, 1 342.B 
extinction 44.B 
geometric 218.A 
hitting, for single points 5.G 
objective 401.B 
regular conditional 342.E 
ruin 214.C 
standard transition 260.F 
subjective 401.B 
theory of 342.A 
transition 260.A 261.A 351.B 

probability amplitude 351.D 
probability density 341.D 
probability distribution(s) 342.B, App. A, Table 22 

(one-dimensional, of random variable) 342.C 
(of random variables) 342.C 
conditional 342.E 
n-dimensional 342.C 

probability generating function 341.F 397.G 
probability integral App. A, Table 19.11 
probability measure 341 342.B 
probability of loss 307.C 
probability paper 19.F 

binomial 19.B 
probability ratio test, sequential 400.L 
probability space 342.B 
probable cause, most 401.E 
probable value, most 401.E 
problem(s) 

Abel 217.L 
abstract Cauchy 286.X 
acous&c 325.L 
adjoint boundary value 315.B 
all-integer programming 215.A 
Appolonius (in geometric construction) 179.A 
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Problem(s) 
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Behrens-Fisher 400.G 
Bernshtein, generalized 275.F 
boundary value (of ordinary differential equa- 

tions) 303.H 315.A 
Burnside (in group theory) 161.C 
Cauchy (for ordinary differential equations) 

316.A 
Cauchy (for partial differential equations) 

320.B 321.A 325.B 
class held tower 59.F 
combinatorial App. A, Table 17.11 
combinatorial triangulation 65.C 
concave programming 292.A 
conditional, in the calculus of variations 46.A 
connection 253.A 
construction 59.F 
convex programming 292.A 
corona 43.G 
correctly posed (for partial differential equa- 

tions) 322.A 
Cousin, first 21.K 
Cousin, second 21.K 
Cramer-Castillon (in geometric construction) 

179.A 
critical inclination 55.C 
decision 71.B 97 186.5 
Delos (in geometric construction) 179.A 
Dido 228.A 
differentiable pinching 178.E 
Dirichlet 120 193.F 323.C 
Dirichlet, with obstracle 440.B 
Dirichlet divisor 242.A 
dual 255.B 349.B 
du Bois Reymond 159.H 
eigenvalue 390.A 
exterior (Dirichlet problem) 120.A 
first boundary value 193.F 323.C 
flow-shop scheduling 376 
four-color 157 
Gauss circle 242.A 
Gauss variational 338.5 
general boundary value 323.H 
generalized eigenvalue 298.G 
generalized isoperimetric 46.A 228.A 
generalized Pfaff 428.B 
Ge6cze 246.D 
geometric construction 179.A 
Goldbach 4.C 
group-minimization 215.C 
Hamburger moment 240.K 
Hausdorff moment 240.K 
Hersch 391.E 
Hilbert (in calculus of variations) 46.A 
Hilbert fifth 423.N 
homeomorphism 425.G 
homogeneous boundary value (of ordinary 
differential equations) 315.B 

Hukuhara 315.C 
of identification (in econometrics) 128.C 
impossible construction 179.A 
inconsistent (of geometric construction) 179.A 
inhomogeneous boundary value (of ordinary 

differential equations) 315.B 
initial value (for functional differential equa- 
tions) 163.D 

initial value (of ordinary differential equations) 
313.C 316.A 

initial value (for partial differential equations) 
321.A 

initial value, for a hyperbolic partial differential 
equation App. A, Table 15.111 

interior (Dirichlet problem) 120.A 
interpolation 43.F 
invariant measure 136.C 
inverse (in potential scattering) 375.G 
isomorphism (for graphs) 186.5 
isomorphism (for integral group algebra) 

362.K 
isoperimetric 11 l.E 228.A 
Jacobi inverse 3.L 
job-shop scheduling problem 376 
k-sample 371.D 
Lagrange (in calculus of variations) 46.A 
LBA 31.D 
Levi 21.1 
linear least squares 302.E 
linear programming 255.A 
local (on the solutions of diNerentia1 equations) 
289.A 

machine scheduling 376 
machine sequencing 376 
Malfatti (in geometric construction) 179.A 
many-body 402.F 420.A 
martingale 115.C 261.C 406.A 
maximum flow 281.C 
minimum-cost flow 281.C 
mixed integer programming 215.A 
multicommodity flow 281.C 
multiprocessor scheduling 376 
n-body 420.A 
n-decision 398.A 
network-flow 281 282.B 
Neumann (for harmonic functions) 193.F 
Neumann (for partial differential equations of 

elliptic type) 323.F 
nonlinear 291 
normal Moore space 425.AA 
optimal regulator 86.F 
penalized 440.B 
Pfaff 428.A 
placement 235.A 
Plateau 334.A 
possible construction 179.A 
primal 255.B 
primary 255.B 
properly posed 322.A 
pure integer programming 215.A 
quadratic programming 292.A 349.A 
random walk 260.A 
representation (on surface) 246.1 
restricted Burnside (in group theory) 161.C 
restricted three-body 420.F 
Riemann 253.D 
Riemann-Hilbert (for integral equations) 217.5 
Riemann-Hilbert (for ordinary differential 

equations) 253.D 
Robin 323.F 
of satistiability (of a proposition) 97 
Schoenflies 65.G 
second boundary value (for harmonic functions) 

193.F 
second boundary value (for partial differential 
equations of elliptic type) 323.F 

second Cousin 21.K 
self-adjoint boundary value 315.B 
sequential decision 398.F 
shortest path 281.C 

single- commodity flow 281 



2079 Subject Index 
Process 

singular initial value (for partial differential 
equations of mixed type) 326.C 

smoothing 114.C 
special isoperimetric 228.A 
of specification 397.P 
statistical decision 398.A 
Steiner (in geometric construction) 179.A 
Stieltjes moment 240.K 
Sturm-Liouville 315.B 
third boundary value (for harmonic functions) 

193.F 
third boundary value (for partial differential 
equations of elliptic type) 323.F 

three big 187 
three-body 420.A 
Thues (general) 31.B 
time optimal control 86.F 
transformation (in a finitely presented group) 

161.8 
transient 322.D 
transportation 255.C 
transportation, on a network 255.C 
Tricomi 326.C 
two-body 55.A 
two-point boundary value (of ordinary dif- 

ferential equations) 3 15.A 
two-terminal 281 
type (for Riemann surfaces) 367.D 
of universal validity of a proposition 97 
Waring 4.E 
weak form of the boundary value 304.8 
well-posed (in general case) 322.A 
word (in a finitely presented group) 161.B 
O-l integer programming 215.A 

procedure 
classification 280.1 
exploratory 397.Q 
Lyapunov-Schmidt 286.V 
random sampling 373.A 
sampling 373.A 
shortest-path 281.C 
statistical decision 398.A 

process 
(in catastrophe theory) 51.F 
Jon a measure space) 136.E 
( = stochastic process) 407.A 
additive 5 342.A 
age-dependent branching 44.E 
asymmetric Cauchy 5.F 
autoregressive 421.D 
autoregressive integrated moving average 

421.G 
autoregressive moving average 421.D 
Bernoulli 136.E 
Bernoulli, very weak 136.E 
Bernoulli, weak 136.E 
birth 260.G 
birth and death 260.G 
bond percolation 340.D 
branching 44 342.A 
branching Markov 44.E 1 
Cauchy 5.F 
centered 5.B 
compound Poisson 5.F 
contact 340.C 
continuous-state branching 44.E 
death 260.G 
diffusion 115 
dual 261.F 

exponent of the stable 5.F 
Feller 261.~ 
finitely determined (F.D.) 136.E 
Galton-Watson branching 44.B 
Gaussian 176 342.A 
Gaussian, complex 176.C 
generalized stochastic 407.C 
homogeneous Markov 5.H 
Hunt 261.~ 
increasing 262.D 
independent 136.E 
with independent increments 5.B 
integrable, of bounded variation 406.B 
integrable increasing 406.B 
invariant Markov 5.H 
irreversible 402.A 
isothermal 419.B 
It8 406.B 
Levy 5.B 
linear stationary iterative 302.C 
Markov 261 342.A 
Markov branching 44.D 
Markovian decision 127.E 
moving average 421.D 
multistage allocation 127.A 
multistage choice 127.A 
multitype Galton-Watson 44.C 
multitype Markov branching 44.E 
Newton iterative 301 .D 
normal 176.C 
observation 405.F 
one-sided stable, of the exponent. a 5.F 
oscillator 315.F 
osculating 77.B 
percolation 340.D 
point 407.D 
Poisson 5.D 
positive regular 44.C 
progressive 407.B 
quadratic variation 406.B 
quasistatic adiabatic 419.B 
recurrent 261.B 
reversed 261.F 
sample 407.A 
shift associated with the stationary 136.D 
u- (of a complex manifold) 72.H 
signal 405.F 
site percolation 340.D 
spatially homogeneous 261.A 
stable 5.F 
stationary 342.A 395.A 
stationary Gaussian 176.C 
strictly stable 5.F 
strictly stationary 395.A 
stochastic 342.A 407 
stochastic, with stationary increments of order n 

395.1 
strongly stationary 395.A,F 
strong Markov 261.B 
subadditive 136.B 
sweeping-out 338.L 
symmetric Cauchy 5.F 
symmetric stable 5.F 
system 405.F 
temporally homogeneous 261.A 
temporally homogeneous additive 5.B 
transient 261.B 
very weak Bernoulli (V.W.B.) 136.E 
weak Bernoulli (W.B.) 136.E 
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weakly stationary 395.A 
weakly stationary, of degree k 395.1 
Wiener 5.D 45.B 

processing, data 96 
processor, central 75.B 
producer’s risk 404.C 
product(s) 

(of algebraic varieties) 16.A 
(of cardinal numbers) 49.C 
(of completely additive classes) 270.H 
(of elements of a graded algebra) 203.8 
(of elements of a group) 190.A 
(of hyperfunctions) 125.X 274.E 
(of ideals) 67.B 
(of knots) 235.A 
(of linear operators) 37.C 251.B 
(of matrices) 269.B 
(of objects) 52.E 
(of ordinal numbers) 312.C 
(of paths) 170 
(in quadrangular set of six points) 343.C 
(of real numbers) 355.B 
(of sets) 381.B 
(of tensors) 256.K 
amalgamated (of a family of groups) 190.M 
Blaschke 43.F 
bracket (in a Lie algebra) 248.A 
cap (in (co)homology groups of a space) 201.K 
cap (in homological algebra) 200.K 201.K 
cardinal (of a family of ordered sets) 31 l.F 
Cartesian (of a family of sets) 381.E 
Cartesian (of mappings) 381.C 
Cartesian (of ordered simplicial complexes) 

7o.c 
Cartesian (of S.S. complexes) 70.E 
Cartesian (of sets) 381.B 
Cauchy (of series) 379.F 
complex (of cell complexes) 70.D 
cross- (in cohomology groups of a space) 201.5 
cross- (in homology groups of a space) 201.5 
cross- (of vector bundles) 237.C 
crossed (of a C*-algebra) 36.1 
crossed (of a commutative ring and a group) 
29.D 

crossed (in von Neumann algebra theory) 
308.1 

cup (of cohomology classes) 201.1 
cup (in K-theory) 237.C 
cup, reduction theorem 200.M 
cup of derived functors 200.K 
difference 337.1 
direct -direct product 
divergent infinite 374.F 
exterior (of differential forms) 105.Q 
exterior (of elements of a linear space) 256.0 
exterior (of a p-vector and q-vector) 256.0 
exterior (of two vectors) 442.C 
external (of derived functors) 200.K 
Euler 450.V 
fiber, over S 52.G 
free (of groups) 190.M 
Hermitian inner 256.Q 
of ideals of a commutative ring 67.8 
of inertia 271.E 
infinite 379.G 
infinite App. A, Table lO.VI 
inner (in a Hermitian linear space) 256.4 
inner (in a Hilbert space) 197.B 
inner (in a metric vector space) 256.H 

inner (for a pairing) 424.G 
inner (with respect to a linear space and its dual 
space) 256.G 

inner (of two hyperspheres) 76.A 
inner (of two n-tuples) 256.A 
inner (of two vectors) 442.B 
inner, space 442.B 
internal (of derived functors) 200.K 
interior (of a differential form with a vector 
field) 105.Q 

intersection (of homology classes) 201.0 
intersection (of two subvarieties) 16.Q 
Kronecker (of matrices) 269.C 
logical (of propositions) 411.B 
ordinal (of a family of ordered sets) 311.G 
partial 379.G 
Pontryagin 203.D 
projective C*-tensor 36.H 
proper (of two normal g-lattices) 27.A 
restricted direct 6.B 
Riemannian (of Riemannian manifolds) 364.A 
scalar (of linear operators) 37.C 
scalar (of two vectors) App. A, Table 3.1 
scalar triple (of three vectors) 442.C 
skew (of measurable transformations) 136.D 
slant 201.K 
smash 202.F 
spatial tensor 36.H 
sum of 216.A 
symmetric (of a topological spac:e) 70.F 
tensor (of A-homomorphisms) 277.5 
tensor (of algebras) 29.A 
tensor (of A-modules) 277.5 
tensor (of chain complexes) 201.5 
tensor (of cochain complexes) 201.5 
tensor (of distributions) 125.K 
tensor (of Hilbert spaces) 308.C 
tensor (of linear mappings) 256.1 
tensor (of linear representations) 362.C 
tensor (of linear spaces) 256.1 
tensor (of locally convex spaces) 424.R 
tensor (of sheaves) 383.1 
tensor (of vector bundles) 147.F 
tensor (of von Neumann algebras) 308.C 
torsion (in a category) 200.K 
torsion (of two A-modules) 2OO,D,K 
vector 442.C App. A, Table 3.1 
vector triple 442.C, App. A, Table 3.1 
wedge (of derived functors) 200.K 
Weierstrass canonical 429.B 
Whitehead 202.P 

product algebraic variety 16.A 
product bundle 147.E 
product category 52.B 
product complex 200.H 350.D 
product decomposition, dual direct 422.H 
product double chain complex 200.E 
product event 342.B 
product formula 

(for the Hilbert norm-residue symbol) 14.R 
(on invariant Ham measures) 225.E 
(for the norm-residue symbol) 14.Q 
(on valuations) 439.H 
Trotter 3 15.F 

production planning 376 
production rule 3 1 .B 
product mapping 425.K 
product measure 270.H 
product measure space 270.H 

I 
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Projective set of class n 

complete 270.H 
product metric space 273.B 
product of inertia 271.E 
product rule 299.D 
product space 425.L 

reduced 202.Q 
product theorem for dimension 117.C 
product topological space 425.L 
product topology 425.L 
product uniformity 436.E 
product uniform space 436.E 
profjnite groups 210.C 
program 75.C 

machine-language 75.C 
program evaluation and review technique 376 
programming 75.C 385.B 

bilinear 364.D 
chance-constrained 408.A 
convex 264.C 
disjunctive 264.C 
dynamic 127.A 264.C 
fractional 264.C 
geometric 264.D 
integer 264.C 
linear 264.C 
linear mathematical 264.D 
mathematical 264.A 
multiobjective 264.C 
multistage 264.C 
network 264.C 
nonconvex 264.D 
parametric 264.C 
stochastic 264.C 408.A 
stochastic, model 307.C 
two-stage linear, under uncertainty 255.F 
two-stage stochastic 408.A 

programming problem 
all-integer 215.A 
concave 292.A 
convex 292.A 
linear 255.A 
mathematical 264.B 
mixed integer 215.A 
nonlinear 264.C 
pure-integer 215.A 
quadratic 292.A 349.A 
O-1 integer 215.A 

progression 
arithmetic 379.1, App. A, Table 10.1 
geometric 379.1, App. A, Table 10.1 

progressive (set) 407.B 
progressively measurable (stochastic process) 407.B 
progressive process 407.B 
projecting (in a projective space) 343.B 
projection 

(of a covering space) 367.B 
(from a direct product set) 381.E 
(of a fiber bundle) 147.B 
(of a fiber space) 148.B 
(of a Hilbert space) 197.E 
(onto a homogeneous space) 199.A 
(in a projective space) 343.B 
(to a quotient set defined by an equivalence 

relation) 135.B 
(on a tangent bundle of a Banach manifold) 
286.K 

canonical (on modules) 277.F 
canonical (onto a quotient set) 135.B 
center of (in projective geometry) 343.B 
Lie minimal 76.B 

method of orthogonal (of H. Weyl) 323.G 
orthogonal 139.E,G 
orthogonal (on a Hilbert space) 197.E 
parallel (in an affine space) 7.C 
regular knot 235.A 
relaxation with 440.E 
stereographic 74.D 
unramified (of a covering surface) 367.B 

projection matrix 269.1 
projection method, Rosen’s gradient 292.E 
projection operator (in a Hilbert space) 197.E 
projective 

(Banach space) 37.M 
(object in an Abelian category) 200.1 

projective (object) 200.1 
projective algebraic variety 16.A 

fundamental theorems of 72.F 
quasi- 16.C 

projective A-module 277.K 
projective approximation method 304.B 
projective C*-tensor product 36.H 
projective class 200.4 
projective class group 200.K 
projective collineation 343.D 

in the wider sense 343.D 
projective connection 80.0 
projective coordinates 343.C 
projective coordinate system 343.C 
projective curvature tensor App. A, Table 4.11 
projective deformation (between surfaces) 110.B 
projective determinacy 22.H 
projective differential geometry 1lO.B 
projective dimension (of a module) 200.K 
projective frame (in projective geometry) 343.C 
projective general linear group 60.B 

of degree n over K 60.B 
projective geometry 343 

finite-dimensional 343.B 
fundamental theorem of 343.D 
general 343.B 
of paths 109 

projective limit 
(in a category) 210.D 
(of a projective system of sets) 210.B 
(of a projective system of topological groups) 
423.K 

projective limit group 210.C 
projective limit space 210.C 
projective line 343.B 
projective line element 110.B 
projectively flat space App. A, Table 4.11 
projectively related (fundamental figures) 343.B 
projective mapping (in projective geometry) 343.B 
projective module, (R, S)- 200.K 
projective morphism 16.E 

quasi- 16.E 
projective plane 343.B 

Cayley 54 
finite 241.B 

projective representation 
(of a group) 362.5 
irreducible 362.5 
similar 362.5 

projective resolution 
(in an Abelian category) 200.1 
left (of an A-module) 200.C 
‘$- 200.4 

projective scheme 16.E 
quasi- 16.E 

projective set of class n 22.D 
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Projective space 

2082 

projective space 343.B 
complex 343.D 
infinite-dimensional complex 56.C 
infinite-dimensional real 56.B 
over A 147.E 
left 343.F 
real 343.D 
right 343.F 

projective special linear group 60.B 
(over a noncommutative field) 60.0 

projective special unitary group over K 60.H 
projective symplectic group over K 60.L 
projective system 

(in a category) 210.D 
(of groups) 210.C 
(of sets) 210.B 
(of topological groups) 423.K 
(of toplogical spaces) 210.C 

projective topology 424.R 
projective transformation 343.D 364.F 

group of 343.D 
regular 343.D 
singular 343.D 
singular, of the kth species 343.D 

projective transformation group 343.D 
projective unitary group 60.F 
projective variety 16.A 
prolate App. A, Table 3.V 
proliferation (of errors) 138.D 
prolongable (Riemann surface) 367.F 
prolongation 

(along a curve in a covering surface) 367.B 
(of a Riemann surface) 367.F 
(of a solution of an ordinary differential equa- 

tion) 316.C 
(of a system of partial differential equations) 
428.B,F 

(of a valuation) 439.B 
analytic 198.G 
first (of P) 191.E 
kth (of G) 191.D 
kth (of a Lie subalgebra) 191.D 
kth (of P) 191.E 

prolongational limit set 
first negative 126.D 
first positive 126.D 

proof, consistency 156.D 
for pure number theory 156.E 

proof theory 156.D 
propagation 

of chaos 340.F 
equation of sound 325.A 
of errors 138.C 
of singularities 325.M 
wave 446 

proper 
(continuous mapping) 425.W 
(equivalence relation in an analytic space) 

23.E 
(leaf) 154.D 
(Lorentz group) 258.A 
(morphism of scheme) 16.D 
(PL embedding) 65.D 

proper affine transformation 7.E 
proper class (in set theory) 381.G 
proper complex Lorentz group 258.A 
proper component (of an intersection of subvarietie 

16.G 
proper convex function 88.D 
proper factor (of an element of a ring) 67.H 

.s) 

proper flag manifold 199.B 
proper function (of a boundary value problem) 

315.B 
proper hypersphere (in hyperbolic geometry) 

285.C 
proper Lorentz group 60.3 
properly convex (subset of a sphere) 274.E 
properly discontinuous transformation group 

122.A 
properly divergent 379.A 
properly equivalent (binary quadratic forms) 

348.M 
properly infinite 308.E 
properly intersect (on a variety) 16.G 
properly (n - I)-dimensional quadric hypersurface 

350.G 
properly posed 

(initial value problem) 321.E 
(problems for partial differential equations) 

322.A 
proper mapping(s) 425.W 

fundamental theorem of 16.X 
proper meromorphic mapping (between analytic 

spaces) 23.D 
proper modification (of an analytic space) 23.D 
proper motion 

in Euclidean geometry 139.B 
of a star 392 

proper orthogonal group 60.1258.A 
proper orthogonal matrix 269.5 
proper product (of two normal g-lattices) 27.A 
proper quadric surface 350.B 
proper rotation group 258.A 
proper subset 38 l.A 
proper time 258.A 
proper transform (of a subvariety) 16.1 
property (properties) 41 l.G 

approximation 37.L 
asymptotic (of solutions of a system of linear 

ordinary differential equations) 314.A 
Baire 425.N 
basic (of a structure) 409.B 
bounded approximation 37.L 
clustering 402.G 
combinatorial 65.A 
continuity, for Tech theory 201.M 
of continuity (in a continuous geometry) 85.A 
countably productive 425.Y 
covering homotopy 148.B 
duality (of linear spaces) 256.G 
equivalence 135.A 
finite intersection 425,s 
finite subset 396.F 
global (in differential geometry) 109 
homotopy extension 202.E 
in the large (in differential geometry) 109 
local (in differential geometry) 109 
local (of a pseudodifferential operator) 345.A 
Markov 261.8 
micro-pseudolocal (of a pseudodifferential 

operator) 345.A 
minimum curvature 223.F 
minimum norm 223.F 
P conjecture 235.B 
pseudolocal (of a pseudodifferential operator) 

345.A 
pseudo-orbit tracing 126.J 
reproducing (of a probability distribution) 

341.E, App. A, Table 22 
in the small (in differential geometry) 109 



2083 Subject Index 
q-expansion formula 

spectral 136.E 
star-finite 425,s 
strong Markov 261.B 
topological 425.G 
uniformity 399.N 
universal mapping 52.L 

proper value 
(of a boundary value problem) 315.B 
(of a linear mapping) 269.L 
(of a linear operator) 390.A 
(of a matrix) 269.F 

proper variation 279.F 
proper vector 

(belonging to an eigenvalue) 269.F 
(of a linear operator) 390.A 
(of a linear transformation) 269.L 

proposition(s) 
existential 41 l.B 
modal 411 .L 
universal 41 l.B 
variables 41 l.E 

propositional calculus 41 l.F 
propositional connectives 41 l.E 
propositional function 4Jl.C 
propositional logic 41 l.E 
provable (formula) 411.1 
proximity function (of a meromorphic function) 

272.B 
Priifer ring 200.K 
pseudoanalytic function, K- 352.B 
pseudo-arc 79.D 
pseudocompact (space) 425.S 
pseudoconformal geometry 344.A 
pseudoconformally equivalent 344.A 
pseudoconformal transformation 344.A 
pseudoconvex (domain) 21.G 

Cartan 21.1 
d- 21.G 
Levi 21.1 
locally Cartan 2 1 .I 
locally Levi 21.1 
strictly 344.A 
strongly 21.G 

pseudodifferential operator 251.0 274.F 345 
pseudodistance 

Carathtodory 21.0 
Kobayashi 21.0 

pseudodistance function 273.B 
pseudofunction 125.C 
pseudogeometric ring 284.F 
pseudogroup (of topological transformations) 

105.Y 
of transformations (on a topological space) 
90.D 

pseudogroup structure 105.Y 
pseudo-Hermitian manifold 344.F 
pseudointerior 382.B 
pseudo-isotopic 65.D 
pseudo-isotopy 65.D 
pseudolocal property (of a pseudodifferential opera- 

tor) 345.A 
micro- 345.A 

pseudomanifold 65.8 
pseudometric 273.B 
pseudometric space 273.B 

indiscrete 273.8 
pseudometric uniformity 436.F 
pseudometrizable 436.F 
pseudonorm (on a topological linear space) 37.0 

424.F 

1 pseudo-orbit 126.5 
I CL- 126.5 
I tracing property 126.5 
~ pseudo-ordering 311.H 

pseudopolynomial, distinguished 21.E 
pseudorandom numbers 354.B 
pseudo-Riemannian metric 105.P 
pseudo-Runge-Kutta method 303.D 
pseudosphere 111.1 285.E 
pseudotensorial form 80.G 
pseudovaluation 439.K 

$-collective 354.E 
psi function 174.B 
psychometrics 346 
Puiseux series 339.A 
pullback 

(of a differential form) 105.Q 
(of a distribution) 125.4 
(of a divisor) 16.M 

Puppe exact sequence 202.G 
pure 

(continued fraction) 83.C 
(differential form) 367.H 
(state) 351.B 

pure geometry 18 1 
pure ideal 284.D 
pure integer programming problem 215.A 
purely contractive 251.N 
purely contractive part 251.N 
purely d-dimensional analytic set 23.B 

(at a point) 23.B 
purely discontinuous distribution 341.D 
purely imaginary number 74.A 
purely infinite (von Neumann algebra) 308.E 
purely inseparable 

(extension of a held) 149.H 
(rational mapping) 16.1 

purely inseparable element (of a field) 149.H 
purely n-codimensional 125.W 
purely nondeterministic 395.D 
purely transcendental extension 149.K 
pure number theory 156.E 
pure periodic continued fraction 83.C 
pure phase 402.G 
pure point spectrum 136.E 
pure strategy 173.B 
pursuit, curve of 93.H 
push-down automaton 31.D 
push-down storage 96.E 
Putnam’s theorem 251.K 
Pyatetskii-Shapiro reciprocity law, Gel’fand- 

437.DD 
Pythagorean closure (of a field) 155.C 
Pythagorean extension (of a field) 155.C 
Pythagorean field 139.B 155.C 
Pythagorean number 145 
Pythagorean ordered field 60.0 
Pythagorean theorem 139.D 

Q 

Q (rational numbers) 294.A,D 
q-block bundle 147.Q 
q-block structure 147.Q 
q-boundary 201.B 
q-chains 201.B 
q-cochains, singular 201.H 
q-cycle 201. B 
q-dimensional homology classes 201. B 
q-expansion formula 134.1 
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q-face 
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q-face 70.B 
q-function 

Chebyshev 19.G, App. A, Table 2O.VII 
simplest Chebyshev 19.G 

q-numbers 130.A 
q-representation 351.C 
q-simplex 

oriented 201 .C 
singular 201 .E 
standard 201.E 

qth homology group 201.8 
Q-manifold 382.D 
Q-matrix 260.F 
Q-spaces 425.BB 
QR method 298.E 
QZ method 298.C 
QCD (=quantum chromodynamics) 132.D 
q.e. (= quasi-everywhere) 338.F 
QFD (= quantum flavor dynamics) 132.D 
quadrangles 155.F 

complete 343.C 
quadrangular set of six points 343.C 
quadrant, first (of a spectral sequence) 200.5 
quadratic differential (on a Riemann surface) 1 l.D 
quadratic equation lO.D, App. A, Table 1 
quadratic field(s) 347 

complex 347.A 
imaginary 347.A 
real 347.A 

quadratic form(s) 348 
(on a linear space) 256.H 
bilinear form associated with 256.H 
binary 348.M 
complex 348.A.B 
definite 348.C 
equivalent 348.A 
indefinite 348.C 
matrix of 348.A 
negative definite 348.C 
negative semidefinite 348.C 
nondegenerate 348.A 
positive definite 348.C 
positive semidefinite 348.C 
primitive binary 348.M 
properly equivalent binary 348.M 
real 348.A,C 
reduced 348.1 
Siegel zeta function of indefinite 450.K 

quadratic irrational number, irreducible 83.C 
quadratic loss function 398.A 399.E 
quadratic nonresidue 297.H 
quadratic programming 349 

nonconvex 264.D 
quadratic programming problem 292.A 349.A 
quadratic reciprocity of Jacobi symbol, law of 

297.1 
quadratic reciprocity of Legendre symbol, law of 

297.1 
quadratic residue 297.H 
quadratic transformation 16.1 

locally 16.K 
locally (of an algebraic surface) 15.G 
locally (of a complex manifold) 72.H 

quadratrix 187 
quadrature 107.A, App. A, Table 15.111 

of a circle 179.A 
method of 313.D 
solution by App. A, Table 14.1 
spectral density 397.N 

quadric(s) 350.A 

confocal, family of 350.E 
Darboux llO.B 
pencil of 343.E 

quadric cone 350.B,G 
quadric conical hypersurface 350.G 
quadric conical surface 350.B 
quadric cylindrical hypersurface 350.G 
quadric hypersurface 350G,I 

(in a projective space) 343.D 350 I 
central 350.G 
elliptic 350.G 
of the hth species, singular (in a projective 
space) 343.E 

hyperbolic 350.G 
noncentral 350.G 
parabolic 350.G 
pencil of 343.E 
properly (n - l)-dimensional 350.G 
regular (in a projective space) 343.E 

quadric surface(s) 350 
canonical form of the equation of 350.B 
central 350.B 
degenerate 350.B 
proper 350.B 

quadrivium 187 
qualification 

Gauignard’s constraint 292.B 
Slater’s constraint 292.B 

qualitative (data) 397.A 
quality 404.A 
quality characteristic 404.A 
quality control 404.A 

statistical 404.A 
quantilier 411 .C 

bounded 356.B 
existential 41 l.C 
Hilbert’s c- 411.J 
universal 41 l.C 

quantile 
a- 396.C 
of order p 341.H 
restricted 33.8 

quantitative (data) 397.A 
quantity (quantities) 

analog 138.B 
digital 138.B 
first fundamental (of a surface) 11 l.H 
second fundamental (of a surface) 11 l.H 
thermodynamical 419.A 

quantization 351.D 
second 377.B 

quantized contact transformation 274.F 
quantum chromodynamics (QCD) 132.C,D 
quantum electrodynamics 132.C 
quantum field theory 132.C 150.C 
quantum flavor dynamics (QFD) 132 D 
quantum logic 351.L 
quantum mechanics 351 
quantum number 

azimuthal 351.E 
orbital magnetic 351.E 
principal 351.E 

quantum statistical mechanics 402.A 
quartic equation lO.D, App. A, Table 1 
quartile(s) 396.C 

first 396.C 
third 396.C 

quasi-affne (algebraic variety) 16.C 
quasi-algebraically closed field 118.F 
quasi-analytic function 58.F 
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r-section 

family of %.A 
in the generalized sense 58.F 
set of 58.F 

quasi-Banach space 37.0 
quasibarreled (locally convex space) 424.1 
quasibounded harmonic function 193.G 
quasicomplete (locally convex space) 424.F 
quasiconformal mappings 352 

extremal 352.C 
quasiconformal reflection, theorem of 352.C 
quasicontinuity principle (in potential theory) 338.1 
quasicontinuous function 338.1 
quasidiscrete spectrum 136.E 
quasidual space (of a locally compact group) 437.1 
quasi-equivalent unitary representation 437.C 
quasi-everywhere (in potential theory) 338.F 
quasi-Frobenius algebra 29.H 
quasi-Fuchsian group 234.B 
quasigroup 19O.P 241.C 
quasi-independent of path (a response probability) 

346.G 
quasi-invariant measure 225.5 
quasi-inverse (in a Banach algebra) 36.C 
quasi-inverse element (of an element of a ring) 

368.B 
quasi-invertible element (of a ring) 368.B 
quasilinear 

(operator) 224.E 
(partial differential equation) 320.A 323.D 

326.A 
quasilocal ring 284.D 
quasinilpotent (operator) 251.F 
quasinorm (of a vector) 37.0 
quasinormal family (of analytic functions) 435.E 
quasinormed linear space 37.0 
quasi-perfect mapping 425.CC 
quasiperiodic (translational flow) 126.L 
quasiperiodic motion 136.G 404.F 
quasiperiodic solution (of Hill’s differential equation) 

268.B 
quasiprojective algebraic variety 16.C 
quasiprojective morphism 16.E 
quasiprojective scheme 16.E 
quasi-p-valent 438.E 
quasiregular element (of a ring) 368.B 
quasiregular function, K- 352.B 
quasisemilocal ring 284.D 
quasisimple ring 368.E 
quasisplit algebraic group, k- 13.0 
quasistable distribution 341.G 
quasistatic adiabatic process 419.B 
quasistationary electric circuit 130.B 
quasisymmetric 384.E 
quasivariational inequalities 440.D 
quaternion 29.B 
quaternion algebra 29.D 

generalized 29.D 
Hamilton 29.B 
total definite 27.D 

quaternion field 29.B 
quaternion group 151.B 

generalized 15 1 .B 
quaternion hyperbolic space 412.G 
quaternion unimodular group 412.G 
quaternion vector bundle 147.F 
query 96.F 
questions 351.L 
queue 96.E 

length 260.H 
queuing model 260.H 307.C 

queuing theory 260.H 307.C 
quotient(s) 

(of an ideal and a subset of a commutative ring) 
67.B 

(in a lattice) 243.F 
(of numbers) 297.A 
(of an ordered set) 311.B 
difference 104.A 
differential (at a point) 106.A 
lield of 67.G 
geometric 16.W 
group of (of a commutative semigroup) 190.P 
Herbrand 200.N 
integral (in the division algorithm of poly- 
nomials) 337.C 

module of, of an R-module with respect to S 
67.G 

prime (in a lattice) 243.F 
Rayleigh 68.H 304.B 
ring of, of a ring with respect to a prime ideal 

67.G 
ring of, of a ring with respect to S 67.G 
ring of total 67.G 

quotient bialgebra 203.G 
quotient bundle 147.F 

(of a vector bundle on an algebraic variety) 
16.Y 

quotient category 52.N 
quotient chain complex 200.C 
quotient coalgebra 203.F 
quotient complex 201.L 
quotient group 

(of a group) 190.C 
(of a topological group) 423.E 

quotient G-set 362.B 
quotient lattice 243.C 
quotient Lie algebra 248.A 
quotient Lie group 249.G 
quotient (linear) space 

(by a linear subspace) 256.F 
(with respect to an equivalence relation) 256.F 

quotient mapping 425.G 
hereditarily 425.G 

quotient measure 225.H 
quotient object 52.D 
quotient representation (of a linear representation) 

362.C 
quotient set (with respect to an equivalence relation) 

135.B 
quotient singularity 418.C 
quotient space 

(by a discontinuous transformation group) 
122.A 

(of a linear space) 256.F 
(of a topological space) 425.L 
left (of a topological group) 423.E 
right (of a topological group) 423.E 

quotient system (of an algebraic system) 409.C 
quotient topological space 425.L 
quotient topology 425.L 

R 

R (real numbers) 294.A 355.A 
p-set 308.1 
r-closed space 425.U 
r-frame, tangent 105.H 
r-pie point (of a plane algebraic curve) 9.B 
r-section 

(of a Euclidean (simplicial) complex) 70.B 
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r-skeleton (of a Euclidean complex) 
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(of a simplicial complex) 70.C 
r-skeleton (of a Euclidean complex) 70.B 
rth differential 286.E 
rth syzygy 369.F 
R-estimator 371.H 
R-progenerator 29.K 
(R, k)-summable 379,s 
(R, S)-exact sequence (of modules) 200.K 
(R, Qinjective module 200.K 
(R, S)-projective module 200.K 
R-action (continuous) 126.B 
R”-valued random variable 342.C 
Raabe criterion App. A, Table 10.11 
Racah algebra 353.A 
Racah coefficient 353.B 
Rademacher-Men’shov theorem 317.B 
Rademacher system of orthogonal functions 317.C 
radial equation 351.E 
radial maximal function 168.B 
radian 139.D 
radiation condition, Sommerfeld 188.D 
radical(s) 

(of an algebraic group) 13.1 
(of a Banach algebra) 36.D 
(of a commutative Banach algebra) 36.E 
(of a commutative ring) 67.B 
(of an ideal) 67.B 
(of a Jordan algebra) 231.B 
(of a Lie algebra) 248.D 
(of a ring) 368.H 
Jacobson (of a ring) 67.D 
nilpotent (of a Lie algebra) 248.D 
solution by (of an algebraic equation) 10.D 
solvable by 172.H 
unipotent 13.1 

radius (radii) 
(of a solid sphere) 140 
(of a sphere) 139.1 
associated convergence 21 .B 
of convergence (of a power series) 339.A 
of curvature (of a plane curve) 11 l.E 
of curvature (of a space curve) 11 l.F 
injectivity 178.C 
of meromorphy (of a power series) 339.D 
of principal curvature (of a surface) 11 l.H 
spectra1 126.K 251.F 390.A 
of torsion (of a space curve) 11 l.F 

Radb solution, Douglas- (to Plateau problem) 
275.C 

Radon, decomposition formula of 125.CC 
Radon integral, Lebesgue- 94.C 
Radon measure 270.1 

positive 270.1 
Radon-Nikodym derivative 270.L 380.C 
Radon-Nikodym property 443.H 
Radon-Nikodym theorem 270.L 380.C 

for vector measures 443.H 
Radon transform 218.F 

conjugate 218.F 
raising the subscripts (for tensor fields) 417.D 
Ramanujan conjecture 32.D 
Ramanujan-Petersson conjecture 32.D 
Ramanujan sum 295.D 
ramification, degree of (of a branch point) 367.B 
ramilication field (of a prime ideal) 14.K 

mth 14.K 
ramification group 

(of a finite Galois extension) 257.D 
(of a prime ideal) 14.K 

mth 14.K 
ramification index 

(of an algebroidal function) 17.C 
(of a finite-extension) 257.D 
(of a prime ideal over a field) 14.1 
(of a valuation) 439.1 
relative (of a prime ideal over a field) 14.1 

ramification numbers (of a prime ideal) 14.K 
ramification point (of an analytic covering space) 

23.E 
ramification theorem (in the theory of algebroidal 

functions) 17.C 
conductor- (in class field theory) 59.C 

ramified (prime ideal) 14.1 
ramified covering space 23.B 
ramified element 198.0 
ramified type theory 41 l.K 
random, at 401.F 
random current 395.1 
random distribution 395.H 407.C 

with independent values at every point 407.C 
strictly stationary 395.H 
strongly stationary 395.H 
weakly stationary 395.C 
in the wider sense 395.C 
in the wide sense 407.C 

random effect 102.A 
random-effects model 102.A 403.C 
random event 342.B 
random field 407.B 
randomization 102.A 
randomized (decision function) 398.A 
randomized block design 102.B 
randomized design, completely 102.A 
randomized estimator 399.B 
randomized test 400.A 
random measure 

Gaussian 407.D 
Poisson 407.D 

random numbers 354 
pseudo- 354.B 

random sample 374.A 396.B 401.F 
random sampling procedure 373.A 
random Schriidinger equations 340.E 
random sequence 354.E 
random tensor field 395.1 
random variable(s) 342.C 

distribution of 342.C 
independent 342.C 
joint 342.C 
measurable with respect to a family of 342.C 
n-dimensional 342.C 
one-dimensional probability distribution of 
342.C 

probability distribution of 342.C 
R”-valued 342.C 
(S, @)-valued 342.C 

random walk 260.A 
general 260.A 
standard 260.A 

range 
(of a correspondence) 358.B 
(of a linear operator) 37.C 
(of a mapping) 381.C 
(of a population characteristic) 1396.C 
(of statistical data) 397.C 
closed, theorem 37.5 
equianharmonic (of points) 343.D 
harmonic (of points) 343.D 



2087 Subject Index 
Reaction, law of 

interquartile 397.C 
long 375.B 
metastable (of embeddings) 114.D 
numerical (of a linear operator) 251.E 
point (in projective geometry) 343.B 
point, of the number system (in projective 
geometry) 343.C 

sample 396.C 
short 375.B 
stable (of embeddings) 114.D 
of values (of a meromorphic function) 62.A 

rank 
(of an analytic mapping) 23.C 
(of a bilinear mapping) 256.~ 
(of a complex) 13.R 
(of a connected compact Lie group) 248.X 
(of an element of a complex) 13.R 
(of an elliptic curve over Q) 118.D 
(of first-order predicates) 41 l.K 
(of a free Abelian group) 2.C 
(of a free group) 161.A 
(of a free module) 277.G 
(of a graph) 186.G 
(of a Lie algebra) 248.K 
(of a linear mapping) 256.~ 
(of a matrix) 269.D 
(of a module) 2.E 
(of a normalj-algebra) 384.C 
(of a prime ideal) 67.E 
(of a quadratic form) 348.A 
(of a sesquilinear form) 256.Q 
(of a symmetric Riemannian homogeneous 

space) 412.D 
(of a Tits system) 151.5 
(of a valuation) 439.B 
bispinor 258.B 
of finite (operator) 68.C 
k- 13.Q 
p- (of a torsion-free additive group) 2.E 
at a point (of an analytic mapping) 23.C 
rational (of a valuation) 439.B 

rank correlation 
Kendall 371.K 
Spearman 371.K 

rank function 66.F 
Rankine-Hugoniot relation 204.G 205.B 
rank k, irreducible tensor of 353.C 
rank test 

signed 371.B 
Wilcoxon signed 371.B 

Rao inequality, Cramer- 399.D 
Raphson method, Newton- 301.D 
rapidly decreasing ?-function 168.B 
rapidly decreasing distribution 125.0 
rapidly decreasing sequence 168.B 
rarefied gas, equation of 41.A 
rate 

coding 213.D 
hazard 397.0 
infinitesimal birth 260.G 
intinitesimal death 260.G 
of interest, assumed 214.A 
transmission 213.A 

ratio 
anharmonic 343.D 
of the circumference of a circle to its diameter 

332 
cross 343.D 
damping (of a damped oscillation) 318.B 
direction (of a line in an afline space) 7.F 

double 343.D 
likelihood 400.1 
likelihood, test 400.1 
monotone likelihood 374.5 
odds 397.K 
Poisson 271.G 
sequential probability, test 400.L 
stiffness 303.G 

ratio ergodic theorem 136.B 
ratio estimator 373.C 
rational action 226.B 
rational cohomology group 200.0 
rational curve 9.C 93.H 
rational differential equation 288.A 
rational divisor 

k- (on an algebraic curve) 9.C 
prime 9.C 

rational double point 418.C 
rational element 198.0 
rational entire function 429.A 
rational expression 337.H 

lield of 337.H 
rational extrapolation method 303.F 
rational function(s) 

field of 337.H 
generalized 142.B 
on a variety 16.A 

rational function field in n variables 149.K 
rational function matrix 86.D 
rational homomorphism 3.C 13.A 
rational injectivity 200.0 
rational integer 294.C 
rationally equivalent cycles 16.R 
rational mapping 16.1 

defmed along a subvariety 16.1 
purely inseparable 16.1 
separable 16.1 

rational number(s) 294.D 
denseness of 355.B 

rational operation 294.A 
rational point 118.E 

over a field 369.C 
k’- (of an algebraic variety) t6.A 

rational polyhedral, convex 16.2 
rational Pontryagin class 56.F 
rational rank (of a valuation) 439.B 
rational real number 294.E 
rational representation 

(of GL( I’)) 60.D 
(of a matrix group) 226.B 

rational singularity 418.C 
rational surface 15.E 
rational variety 16.5 

uni- 16.5 
ratio set 136.F 

asymptotic 308.1 

ray 
(in atline geometry) 7.D 
(in foundation of geometry) 155.B 
(modulo m*) 14.H 
(in a Riemannian manifold) 178.F 
asymptotic 178.F 
grazing 325.L 
paraxial 180.B 
unit 351.B 

Rayleigh principle 68.H 
Rayleigh quotient 68.H 298.C 304.B 
Rayleigh-Ritz method 46.F 271.G 
Rayleigh-Schriidinger series 331.D 
reaction, law of 271.A 
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real analytic (at a point) 106.K real submanifold, totally 365.M 
real analytic fiber bundle 147.0 real-time (computation) 19.E 
real analytic foliation 154.H real topological vector space 424.A 
real analytic function 106.K 198.H real-valued functions 165.B 

exponentially decreasing 125.BB real-valued measurable (cardinal) 33. F 
real analytic manifold 105.D real variable 165.C 
real analytic structure 105.D rearrangement 168.B 
real axis 74.C rearrangement invariant 168.B 
real closed field 149.N reciprocal equation 10.C 
real-compact space 425.BB reciprocal linear representation (of an algebra) 
real field 149.N 362.C 

formally 149.N reciprocal network 282.C 
totally 14.F reciprocal permutation representation (of a group) 

real form 412 362.B 
(of a complex algebraic group) 60.0 reciprocal spiral 93.H 
(of a complex Lie algebra) 248.P reciprocity 
normal (of a complex semisimple Lie algebra) of annihilators (in topological Abelian groups) 

248.4 422.E 
real function 165.B Artin’s general law of 59.C 
real Grassmann manifold 199.B complementary law of 14.0 
real Hilbert space 197.B Fourier 160.C 
real hyperbolic space 412.G general law of 14.0 
real hypersphere 76.A law of quadratic, of Jacobi symbol 297.1 

oriented 76.A law of quadratic, of Legendre symbol 297.1 
real hypersurface, spherical 344.C relations, Onsager’s 402.K 
real immersion, totally 365.M reciprocity law 297.1 
real infinite prime divisor 439.H for Dedekind sums 328 
real interpolation space 224.C explicit (for Hilbert norm-residue symbol) 
realizable 14.R 

(for a linear representation) 362.F Gel’fand&Pyatetskii-Shapiro (on unitary repre- 
(by a submanifold) 114.G sentation) 437.DD 

realization Shafarevich 257.H 
(of a linear time-varying system) 86.D record 96.B 
(of an S.S. complex) 70.E rectangle 140 
(of an S.S. mapping) 70.E latin 241.E 
minimal 86.D rectangular coordinates (in a Euclidean space) 

realization theorem (of a homotopy group) 202.N 90.B 
realization theory 86.D rectangular distribution App. A, Table 22 
real Lie algebra 248.A rectangular hyperbola 78.E 

compact 248.P rectangular hyperbolic coordinates 90.C 
real line 355.E rectangular matrix 269.A 
real linear space 256.A rectangular parallelepiped 140 
real monoidal transform 274.E rectifiable 
real number(s) 294.E 355 (current) 275.G 

Cantor’s theory of 294.E (curve) 93.F 246.A 
completeness of 294.E 355.B locally 143.A 246.A 
connectedness of 294.E rectifying plane 11 l.F 
continuity of 294.E rectifying surface 11 l.F 
Dedekind’s theory of 294.E rectilinear complex 70.B 
extended 87.E recurrence formulas for indefinite integrals App. 
infinitesimal 276.E A, Table 9.11 
irrational 294.E recurrence theorem 136.A,C 
mod 1 35.5.D recurrence time 260.C 
nonstandard 276.E mean 260.C 
rational 294.E recurrent 

real part 74.A (L&y process) 5.G 
real prime divisor 439.H (Markov chain) 260.B 
real projective space 343.D (Markov process) 261.B 

infinite-dimensional 56.B (nonsingular measurable transformation) 
real quadratic field 347.A 136.C 
real quadratic form 348.A,C (point of a dynamical system) 1:!6.E 
real representation (of a Lie group) 249.0 chain 126.E 
real root (of an algebraic equation) I0.E infinitely (measurable transformation) 136.C 
real simple Lie algebra linear (sequence) 295.A 

classical compact 248.T non- (Markov chain) 260.B 
exceptional compact 248.T null (point) 260.B 

real spectral measure 390.D positive (ergodic class) 260.B 
real Stiefel manifold positive (point) 260.B 

of k-frames 199.B regionally (flow) 126.E 
of orthogonal k-frame 199.B strongly (measurable transformation) 136.C 
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Reflexive law 

recurrent chain 260.B 
recurrent event 250.D 260.C 

delayed 260.C 
recurrent point 

(of a Markov chain) 260.B 
(of a Markov process) 261.B 

recurrent sequence of order r 295.A 
recurrent set 260.E 

chain 126.E 
recursive function(s) 356 

general 356.C,F 
partial 356.E,F 
primitive 356,A,B,F 
uniformly primitive 356.B 

recursively 
(define a partial recursive function) 356.E 
uniformly in Y 356.E 

recursively enumerable predicate 356.D 
recursively enumerable set 356.D 
recursive predicate 

general 356.C 
primitive 356.B 

recursive set 97 356.D 
general 97 

reduced 
(a closed linear subspace) 251.L 
(latin square) 241.A 
(scheme) 16.D 

reduced Abelian group 2.D 
reduced algebra 231.B 
reduced basis (of a lattice) 92.C 
reduced bundle (of a principal G-bundle) 147.5 
reduced character (of an algebra) 362.E 
reduced Clifford group 61.D 
reduced cone (of a topological space) 202.F 
reduced dual 437.L 
reduced extremal distance 143.B 
reduced form (of a linear structural equation 

system) 128.C 
reduced homology exact sequence 201.F 
reduced homology group 201.E 
reduced join 

(of homotopy classes) 202.Q 
(of mappings) 202.F 
(of topological spaces) 202.F 

reduced link polynomial 235.D 
reduced mapping cone 202.F 
reduced norm (of an algebra) 362.E 
reduced orthogonal group 61.D 
reduced product space 202.Q 
reduced quadratic form 348.1 
reduced representation (of an algebra) 362.E 
reduced residue system module m 297.G 
reduced square, Steenrod 64.B 
reduced square operation, Steenrod 64.B 
reduced suspension 

(of a topological space) 202.F 
n-fold 202.F 

reduced trace (of an algebra) 362.E 
reduced von Neumann algebra 308.C 
reducibility, axiom of 156.B 41 l.K 
reducible 

(algebraic equation) 10.B 
(algebraic variety) 16.A 
(continuous geometry) 85.A 
(fiber bundle) 147.5 
(in four color problem) 157.D 
(germ of an analytic set) 23.B 
(linear system) 16.N 
(linear system in control theory) 86.C 

(polynomial) 337.F 
(positive matrix) 269.N 
(representation) 362.C 
(Riemannian manifold) 364.E 
completely (A-module) 277.H 
completely (group) 190.L 
completely (representation) 362.C 

reductio ad absurdum 156.C 411.1 
reduction 

d’Alembert method of, of order 252.F 
good (of an Abelian variety) 3.N 
modulo 9I (of a representation) 277.L 
modulo m (of a linear representation) 362.F 
potential good (of an Abelian variety) 3.N 
potential stable (of an Abelian variety) 3.N 
stable (of an Abelian variety) 3.N 
stable (of a curve) 9.K 

reduction formula (of a surface) 110.A 
reduction theorem, cup product (on cohomology or 

homology of groups) 200.M 
reduction theory, Minkowski (on fundamental 

regions) 122.E 
reductive 

(algebraic group) 13.1 
(homogeneous space) 199.A 
(Lie algebra) 248.G 

reductive action 226.B 
defined by a rational representation 226.B 
geometrically 226.B 
linearly 226.B 
semi- 226.B 

reductive stabilizer 199.A 
Reeb component 154.B 
Reeb foliation 154.B 
Reeb stability theorems 154.D 
Ree group 151.1 
Reeh-Schlieder theorem 150.E 
Rees lemma, Artin- i84.A 
Ree type 

group of 151.5 
group of Janko- 151.5 

reference edge 281.C 
refinement 

(of a covering) 425.R 
(of a descending chain in a lattice) 243.F 
(of a normal chain in a group) 190.G 
barycentric 425.R 
cushioned 425.X 
A- (of a covering) 425.R 
star (of a covering) 425.R 

reflected wave 325.L 
reflecting barrier 115.B,C 
reflection 

(associated with @) 13.R 
(of a principal space) 139.B 
glide 92.E 
Schwartz’s principle of 74.E 198.G 
space 359 
theorem of quasiconformal 352.C 

reflection coefficient 387.D 
reflectionless potential 387.D 
reflection points (with respect to a circle) 74.E 
reflection positivity 150.F 
reflection principle 45.E 
reflexive 

(locally convex space) 424.0 
(relation) 358.A 
Banach space 37.G 

reflexive law 
(for an equivalence relation) 135.A 
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(on ordering) 311 .A 
refraction, atmospheric 392 
Regge behavior 386.C 
Regge poles 132.C 386.C 
regime, local 5 1 .B 
region 19.A 

acceptance 400.A 
confidence 399.4 
confidence, uniformly most powerful 399.Q 
confidence, uniformly most powerful unbiased 

399.Q 
critical 400.A 
Dirichlet 234.C 
of discontinuity 234.A 
estimation 399.Q 
feasible 264.B 292.A 
Ford fundamental 234.C 
fundamental (of a discrete transformation 

group) 122.B 
invariance of a confidence 399.Q 
of relative stability 303.G 
star 339.D 
tolerance 399.R 
unbiased confidence 399.Q 

regionally recurrent (flow) 126.E 
regionally recurrent on an invariant set 126.E 
region of absolute stability (of the Runge-Kutta (P, p) 

method) 303.G 
regression, line of 11 l.F,I 
regression analysis 403.D 
regression coefficient 397.H,J 403.D 
regression function 397.1 

linear 397.H 403.D 
regression hyperplane 403.D 
regression line 403.D 
regula falsi 3Ol.C 
regular 

(almost contact manifold) 110.E 
(almost periodic system) 290.B 
(boundary point) 120.D 
(cell complex) 70.D 
(closed set) 125.5 
(coherent I-module) 274.G 
(differential form on an algebraic variety) 16.0 
(Dirichlet form) 261.C 
(element of a connected Lie group) 249.P 
(element of a real Lie algebra) 248.B 
(estimator) 399.N 
(Green line) 193.5 
(kernel) 125.L 
(left ideal of a Banach algebra) 36.D 
(ordinal number) 312.E 
(permutation group) 151.H 
(point for an additive process) 5.G 
(point of an analytic set) 23.B 45.D 
(point with respect to an analytic set) 21.M 
(point with respect to the Dirichlet problem) 

207.B 
(point of a flow) 126.D 
(prime number) 14.L 
(sampling procedure) 373.A 
(spectra1 sequence) 200.5 
(submartingale) 262.D 
(at a subvariety) 16.B 
homogeneously 275.C 
of the hth species 343.E 
at the point at infinity (for a harmonic function) 

193.B 
along a subvariety (for a rational mapping) 
16.1 

regular afIine transformation 7.E 
regular Banach space 37.G 
regular boundary 

(of a diffusion process) 115.B 
domain with (in a Cm-manifold) 105.U 

regular chain (of integral elements) 428.E 
regular conditional probability 342.E 
regular cone 384.A 

self-dual 384.E 
regular covering (space) 91.A 
regular element 

(of a ring) 368.B 
p- (of a finite group) 362.1 

regular embedding 105.K 
regular extension (of a field) 149.K 
regular factorization 251.N 
regular frst integral 126.H 
regular form 16.0 
regular function(s) 198.A 

on an open set (of a variety) 16.B 
sheaf of germs of 16.B 
at a subvariety 16.B 

regular grammar 31.D 
regular graph 186.C 
regular integral element 191.1428.E 
regular integral manifold (of a differential ideal) 

428.E 
regularity 

abscissa of (of a Dirichlet series) 121.B 
axiom of (in axiomatic set theory) 33.B 
up to a boundary 112.F 
parameter of (of a Lebesgue measurable set) 

380.D 
regularization (of a distribution) 125.M 
regularizing (kernel) 125.L 
regular knot projection 235.A 
regular local equation (at an integral point) 428.E 
regular local ring 284.D 
regularly convex set 89.G 
regularly homotopic (immersion) 114.D 
regularly hyperbolic (partial differential equation) 

325.A,F 
regular mapping 

(between prealgebraic varieties) 16.C 
of class C’ 208.B 

regular matrix 269.B 
regular measure 270.F 

5% 270.F 
K- 270.F 

regular n-gon 357.A 
regular neighborhood 65.C 
regular neighborhood system 65.C 
regular outer measure 270.E 
regular perturbation 331.D 
regular point 

(in catastrophe theory) 51.F 
(of a differentiable mapping) 105 J 
(of a diffusion process) 115.B 
(for a Hunt process) 261.D 
(of a polyhedron or cell complex) 65.B 
(of a surface in ES) 11l.J 
semi- (of a surface in E3) lll.J 

regular polygon 357.A 
regular polyhedra 357.B 
regular polyhedral angle 357.B 
regular polyhedra1 group 151.G 
regular positive Radon measure 270.H 
regular process, positively 44.C 
regular projective transformation 343.D 
regular representation 
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Relative nullity, index of 

(of a group) 362.B orthogonality (on irreducible characters) 
(of a locally compact group) 69.B 362.G 
(of a topological transformation group) 437.A orthogonality (for square integrable unitary 
left (of an algebra) 362.C representations) 437.M 
left (of a group) 362.C period 11 .C 
right (of an algebra) 362.E Plucker (on Plucker coordinates) 90.B 
right (of a group) 362.E prey-predator 263.B 

regular ring 284.D proper equivalence (in an analytic space) 23.E 
regular ring (continuous geometry) 85.B Rankine-Hugoniot 204.G 205.B 
regular sequence (of Lebesgue measurable sets) reciprocity, Onsager’s 402.K 

380.D reflexive 358.A 
regular singularity (of a coherent &?-module) 274.H Riemann-Hurwitz 367.B 
regular singular point 254.B Riemann period 3.L 1 l.C 
regular solution (of a differential ideal) 428.E stronger 135.C 
regular space 425.4 symmetric 358.A 

completely 425.Q transitive 358.A 
regular submanifold (of a Cm-manifold) 105.L weaker 135.C 
regular system relationship algebra 102.5 

of algebraic equations 10.A relative Alexander cohomology group 201.M 
of parameters (of a local ring) 284.D relative algebraic number field 14.1 

regular transformation relative boundary 367.B 
(of a linear space) 256.B relative Bruhat decomposition 13.Q 
(of a sequence) 379.L relative Tech cohomology group 201.M 
totally (of a sequence) 379.L relative Tech homology group 201.M 

regular tube 193.K relative chain complex 200.C 
regular value 105.J relative cochain complex 200.F 
regulator (of an algebraic number field) 14.D relative cohomology group 215.W 

p-adic 450.5 relative complement (at two sets) 381.B 
regulator problem, optimal 80.F relative components (of a Lie transformation group) 
Reinhardt domain 21.B 110.A 

complete 21.B relative consistency 156.D 
reiteration theorem 224.D relative degree 
rejection 400.A (of a finite extension) 257.D 
related differential equation 254.F (of a prime ideal over a field) 14.1 
relation(s) 358 relative derived functor 200.K 

(among elements of a group) 190.C relative different 14.5 
(among the generators of a group) 161.A relative discriminant 14.5 
Adem (for Steenrod pth power operations) relative entropy 212.B 

64.B relative extremum, conditional 106.L 
Adem (for Steenrod square operations) 64.B relative frequency (of samples) 396.C 
analytic, invariance theorem of 198.K relative homological algebra 200.K 
antisymmetric 358.A relative homotopy group 202.K 
binary 358.A 41 l.G relative integral invariant 219.A 
canonical anticommutation 377.A Cartan’s 219.B 
canonical commutation 351.C 377.A,C relative invariant 12.A 226.A 
coarser 135.C relative invariant measure 225.H 
defining (among the generators of a group) relatively ample sheaf 16.E 

161.A relatively bounded (with respect to a linear operator) 
dispersion 132.C 331.B 
equivalence 135.A 358.A relatively closed set 425.J 
Euler 419.B relatively compact 
tiner 135.C (with respect to a linear operator) 331.B 
Fuchsian 253.A (maximum likelihood method) 399.M 
functional (among components of a mapping) (set) 425,s 

208.C (subset) 273.F 
functional, of class C’ 208.C relatively dense 126.E 
fundamental (among the generators of a group) relatively invariant measure 225.H 

161.A 419.A relatively minimal 15.G 16.1 
Gibbs-Duhem 419.B relatively minimal model 15.G 
Heisenberg uncertainty 351.C relatively open set 425.5 
Hurwitz (on homomorphisms of Abelian varie- relatively prime 
ties) 3.K (fractional ideals) 14.E 

identity 102.1 (numbers) 297.A 
incidence 282.A relatively stable 303.G 
inverse 358.A relative maximum (of a function) 106.L 
Legendre 134.F, App. A, Table 16.1 relative Mayer-Vietoris exact sequence 2Ol.L 
Maxwell 419.B relative minimum (of a function) 106.L 
n-ary 41 l.G relative neighborhood 425.5 
normal commutation 150.D relative norm (of a fractional ideal) 14.1 
order 311.A relative nullity, index of 365.D 
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Relative open set 
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relative open set 425.5 
relative ramification indek (of a prime ideal over a 

field) 14.1 
relative singular homology group 2Ol.L 
relative stability 303.G 

interval of 303.G 
region of 303.G 

relative topology 425.5 
relative uniformity 436.E 
relative uniform star convergence 310.F 
relativistically covariant 150.D 
relativity 

general principle of 359 
general theory of 359.A 
special principle of 359 
special theory of 359.A 

relativization 
(of a definition of primitive recursive functions) 

356.B 
(of a topology) 425.5 
(of a uniformity) 436.E 

relativized 356.F 
relaxation 215.A 

with projection 440.E 
relaxation oscillation 318.C 
relaxed continuity requirements, variational prin- 

ciples with 271.G 
Rellich-Dixmier theorem 351.C 
Rellich-Kato theorem 331.B 
Rellich lemma 68.C 
Rellich theorem 323.G 
Rellich uniqueness theorem 188.D 
remainder 297.A 337.C 

(in Taylor’s formula) 106.E 
Cauchy App. A, Table 9.IV 
Lagrange App. A, Table 9.IV 
Roche-Schlamilch App. A, Table 9.IV 

remainder theorem 337.E 
Chinese 297.G 

Remak-Schmidt theorem, Krull- (in group theory) 
19O.L 

Remmert-Stein continuation theorem 23.B 
Remmert theorem 23.C 
removable (set for a family of functions) 169.C 
removable singularity 

(of a complex function) 198.D 
(of a harmonic function) 193.L 

Renaissance mathematics 360 
renewal 

equation 260.C 
theorem 26O.C 

renormalizable 111 .B 132.C 15O.C 
super 15O.C 

renormalization 
constant 150.C 
equation 11 l.B 
group 111 .A 
method 11 l.A 

R&nyi theorem 123.E 
reoriented graph 186.8 
repeated integral 

(for the Lebesgue integral) 221.E 
(for the Riemann integral) 216.G 

repeated series 
by columns 379.E 
by rows 379.E 

replacement, axiom of 33.B 381.G 
replacement, model 307.C 
replica 13.C 
replication 102.A 

number of 102.B 
represent 

(a functor) 52.L 
(an ordinal number) 81.B 

representable 
(functor) 52.L 
linearly (matroid) 66.H 

representation(s) 362.A 
(of an algebraic system) 409.C 
(of a Banach algebra) 36.D 
(of a Jordan algebra) 231.C 
(of a knot group) 235.E 
(of a lattice) 243.E 
(of a Lie algebra) 248.8 
(of a mathematical system) 362.A 
(of a vector lattice) 310.D 
absolutely irreducible 362.F 
adjoint (of a Lie algebra) 248.B 
adjoint (of a Lie group) 249.P 
adjoint (of a representation) 362.E: 
analytic (of GL( V)) 60.B 
in terms of arc length (of a continuous arc) 

246.A 
canonical (of Gaussian processes) 176.E 
completely reducible 362.C 
complex (of a Lie group) 249.0 
complex conjugate 362.F 
conjugate 362.F 
contragredient 362.E 
coregular (of an algebra) 362.E 
cyclic (of a C*-algebra) 36.G 
cyclic (of a topological group) 437.A 
differential (of a unitary representation of a Lie 

group) 437s 
direct sum of 362.C 
double-valued 258.B 
dual 362.E 
equivalent 362.C 
factor (of a topological group) 437.E 
factor, of type I, II, or III 308.M 437.E 
faithful 362.B 
Fock 150.C 
Gel’fand (of a commutative Banach algebra) 
36.E 

generalized canonical (of Gaussian processes) 
176.E 

generating (of a compact Lie group) 249.U 
half-spin (even, odd) 61.E 
Herglotz’s integral 43.1 
induced 362.G 
induced (of a finite group) 362.G 
induced (of a unitary representation of a sub- 
group) 437.0 

integral (of a group) 362.G,K 
integral, Cauchy’s 21.C 
irreducible (of an algebra or a group) 362.C 
irreducible (of a Banach algebra) 36.D 
irreducible projective 362.5 
isomorphic 362.C 
isotropy 431.C 
KU&n-Lehmann 150.D 
kernel (of a Green’s operator) 189.B 
I-adic 3.E 
Lax 287.B,C 387.C 
left regular (of a group) 362.B 
linear - mear representation 
list 186.;’ 
Mandelstam 132.C 
matrix 362.D 
modular (of a finite group) 362.G 
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Resolvent set (of a linear operator) 

module of 69.D 
momentum 351.C 
without multiplicity 437.G 
normal (of a von Neumann algebra) 308.C 
ordinary (of a finite group) 362.G 
parametric 165.C 
parametric (of Feynman integrals) 146.B 
parametric (of a subspace of an atline space) 

7.c 
permutation (of a group) 362.B 
permutation, reciprocal (of a group) 362.B 
polynomial (of GL( V)) 60.D 
position 351.C 
projective (of a group) 362.5 
projective, irreducible 362.5 
quotient (of a linear representation) 362.C 
rational (of CL(V)) 60.D 
rational (of a matrix group) 226.8 
real (of a Lie group) 349.0 
reciprocal linear (of an algebra) 362.C 
reciprocal permutation (of a group) 362.B 
reduced (of an algebra) 362.E 
reducible 362.C 
regular (of a locally compact group) 69.B 
regular (of a topological transformation group) 
437.A 

regular, left (of an algebra) 362.C 
regular, left (of a group) 362.B 
regular, right (of an algebra) 362.E 
regular, right (of a group) 362.B 
Schrodinger 351.C 
semisimple 362.C 
similar 362.C 
similar matrix (semilinear mapping) 256.D 
similar projective 362.5 
simple 362.C 
slice 43 l.C 
special (of a Jordan algebra) 231.C 
spectral 390.E 
spherical (of a differentiable manifold) 11 l.G 
spherical (of a space curve) 11 l.F 
spherical (of a unimodular locally compact 

group) 437.2 
spin 61.E 
spin (of SO(n)) 60.5 
spinor, of rank 258.B 
strongly continuous (of a topological group) 

69.B 
sub- 362.C 
sub- (of a projective representation) 362.5 
tensor (of a general linear group) 256.M 
tensor product of 362.C 
translation, theorem 375.H 
transposed 362.E 
tree 96.D 
unit (of a group) 362.C 
unitary - unitary representation 
vector (of a Clifford group) 61.D 
weakly continuous (of a topological group) 
69.B 

zero (of an algebra) 362.C 
representation module 

(of a linear representation) 362.C 
faithful 362.C 

representation problem (on surfaces) 246.1 
representation ring 237.H 
representation space 

(of a Banach algebra) 36.D 
(of a Lie algebra) 248.B 
(of a Lie group) 249.0 

(of a unitary representation) 437.A 
representative (of an equivalence class) 135.B 
representative function (of a compact Lie group) 

249.U 
representative ring (of a compact Lie group) 

249.U 
, representing function (of a predicate) 356.B 

representing function (of a subset) 381.C 
representing measure 164.C 
reproducing kernel 188.G 
reproducing property (of a probability distribution) 

341.E, App. A, Table 22 
reproduction function 263.A 
requirements, variational principles with relaxed 

continuity 271.G 
reserve, liability 214.B 
residual (subset of a directed set) 311.D 
residual limit set 234.E 
residual set 126.H 425.N 
residual spectrum 390.A 
residue(s) 

(of a complex function) 198.E 
calculus of 198.F 
of the nth power (modulo p) 14.M 
norm- (modulo p) 14.P 
norm- (symbol) 14.4 257.F 
power- (symbol) 14.N 
quadratic 297.H 

residue character 295.D 
residue class (modulo an ideal in a ring) 368.F 
residue (class) algebra 29.A 
residue (class) field 149.C 368.F 439.B 
residue (class) ring (modulo an ideal) 368.F 
residue system modulo m 

complete 297.G 
reduced 297.G 

residue theorem 198.E 
(on a nonsingular curve) 9.E 

resistance, negative 318.B 
resistance, specific 130.B 
resolution 200.H 

complete free (of Z) 200.N 
complex spectral 390.E 
flabby 125.W 
of the identity 390.D 
injective (in an Abelian category) 200.1 
21 102.1 
21 + 1 102.1 
minimal 418.C 
projective (in an Abehan category) 200.1 
right (of an A-module) 200.F 
right injective (of an A-module) 200.F 
of singularities 16.L 
of singularities (of an analytic space) 23.D 
418.B 

spectral 390.E 
standard (of Z) 200.M 

resolutive 207.B 
resolutive compactilication 207.B 
resolvent 

(of a kernel) 217.D 
(of a linear operator) 251.F 
(operator of a Markov process) 261.D 
cubic App. A, Table 1 

resolvent (operator of a Markov process) 261.D 
resolvent convergence 

norm 331.C 
strong 331.C 

resolvent equation 251.F 
resolvent set (of a linear operator) 251.F 390.A 
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Resonance model, dual 
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resonance model, dual 132.C 
resonance pole 331.F 
resonance theorem 37.H 
response 405.A 
response surface 102.M 

designs for exploring 102.M 
rest energy 359.C 
restitutive force 318.B 
rest point (of a trajectory) 126.D 
restricted (Lorentz group) 258.A 
restricted Burnside problem (in group theory) 

161.C 
restricted differential system 191.1 
restricted direct product 6.B 

(of an inlinite number of groups) 190.L 
(of locally compact groups) 6.B 

restricted holonomy group 80.D 364.E 
restricted homogeneous holonomy group 364.E 
restricted homotopy 202.B 
restricted Lie algebra 248.V 
restricted minimal condition (in a commutative ring) 

284.A 
restricted quantifier 33.B 
restricted three-body problem 420.F 
restriction 

(of a connection) 80.F 
(of a continuous flow) 126.D 
(of a distribution) 125.D 
(of a mapping) 38 1 .C 
(in a presheaf) 383.A 
crystallographic 92.A 
scalar (of a B-module) 277.L 
unitary (of a semisimple Lie algebra) 248.P 

resultant(s) 369.E 
system of 369.E 

retardation 163.A 
retarded differential equation 163.A 
retarded type (functional differential equation) 

163.A 
retract 202.D 

absolute 202.D 
absolute neighborhood 202.D 
deformation 202.D 
fundamental 382.C 
fundamental absolute (FAR) 382.C 
fundamental absolute neighborhood (FANR) 

382.C 
neighborhood 202.D 
neighborhood deformation 202.D 
strong deformation 202.D 

retraction 202.D 
retrieval, information (system) 96.F 
retrospective study 40.E 
return 127.C 

first- (mapping, map) 126.C 
maximum 127.B 

Reuleaux triangle 89.E 11 l.E 
reversal, time 258.A 
reversed process 261.F 
review technique, program evaluation and 376 
revolution 

ellipsoid of 350.B 
elliptic paraboloid of 350.B 
hyperboloid of, of one sheet 350.B 
hyperboloid of, of two sheets 350.B 
surface of 111.1 

Reynolds law of similarity 205.C 
Reynolds number 116.B 205.C 
Reynolds number, magnetic 259 

Riccati differential equation App. A, Table 14.1 
generalized App. A, Table 14.1 
matrix 86.E 

Riccati equation, matrix 405.G 
Ricci curvature 364.D 
Ricci equation 365.C 
Ricci formula 417.B, App. A, Table 4.11 
Ricci tensor 364.D 417.B, App. A, Table 4.11 
Richard paradox 3 19.B 
Richardson method 302.C 
Riemann, G. F. B. 363 

P-function of 253.B 
Riemann bilinear relations, Hodge- 16.V 
Riemann continuation theorem 21.F 
Riemann differential equation App. A. Table 18.1 
Riemann (differential) equation, Cauchy- 198.A 

274.G 
(for a holomorphic function of several complex 
variables) 21.C 

(for a holomorphic function of two complex 
variables) 320.F 

Riemann function (of a Cauchy problem) 325.D 
Riemann-Hilbert problem 

(for integral equations) 217.5 
(for linear ordinary differential equations) 
253.D 

Riemann-Hurwitz formula (on coverings of a non- 
singular curve) 9.1 

Riemann-Hurwitz relation 367.B 
Riemann hypothesis 450.A,I,P,Q 
Riemannian connection 80.K 364.B 

coefficients of 80.L 
Riemannian curvature 364.D 
Riemannian foliation 154.H 
Riemannian geometry 137, App. A, Table 4.11 
Riemannian homogeneous space 199..4 

symmetric 412.B 
Riemannian manifold(s) 105.P 286.K ,364 

flat 364.E 
irreducible 364.E 
isometric 364.A 
locally flat 364.E 
normal contact 110.E 
reducible 364.E 

Riemannian metric 105.P 
pseudo- 105.P 
volume element associated with I OS. W 

Riemannian product (of Riemannian manifolds) 
364.A 

Riemannian space 364.A 
irreducible symmetric App. A, Table 5.111 
locally symmetric App. A, Table 4.11 
symmetric - symmetric Riemannian space 

Riemannian submanifold 365 
Riemann integrable (function) 216.A 
Riemann integral 37.K 216.A 
Riemann-Lebesgue theorem 159.A 160.A 
Riemann lower integral 216.A 
Riemann mapping theorem 77.B 
Riemann matrix 3.1 
Riemann method of summation 3798 
Riemann non-Euclidean geometry 285.A 
Riemann period inequality 3.L 
Riemann period relation 3.L 
Riemann P-function App. A, Tables 14.11 18.1 
Riemann problem 253.D 
Riemann-Roth group 366.D 
Riemann-Roth inequality (on algebraic surfaces) 

15.D 
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Ring(s) 

Riemann-Roth theorem(s) 366 right derivative 106.A 
(on algebraic surfaces) 15.D right derived functor 200.1 
(for compact complex surface) 366.C right differentiable 106.A 
(on nonsingular algebraic curves) 9.C right endpoint (of an interval) 355.C 
(on Riemann surfaces) 1 l.D right equivalent 51.C 
for an adjoint system 15.D right exact (functor) 200.1 
for differentiable manifolds 237.G right global dimension (of a ring) 200.K 
generalized (on algebraic curves) 9.F right G-set 362.B 
for a line bundle 366.C right helicoid 111 .I 

Riemann-Roth type right ideal 
Grothendieck theorem of 366.D (of a ring) 368.F 
Hirzebruch theorem of 366.B integral 27.A 

Riemann sphere 74.D right injective resolution (of an A-module) 200.F 
Riemann-Stieltjes integral 94.B 166.C right invariant Haar measure 225.C 
Riemann structure, Cauchy- 344.A right invariant tensor field (on a Lie group) 
Riemann sum 216.A 249.A 
Riemann surface(s) 367 right inverse (of df,(O)) 286.G 

abstract 367.A right inverse element (of an element of a ring) 
classitication theory of 367.E 368.B 
closed 367.A right linear space 256.A 
elliptic 367.D right majorizing function 316.E 
hyperbolic 367.D right Noetherian ring 368.F 
maximal 367.F right o, ideal 27.A 
open 367.A right operation (of a set to another set) 409.A 
open, of null boundary 367.E right order (of a g-lattice) 27.A 
open, of positive boundary 367.E right parametrix 345.A 
parabolic 367.D right projective space 343.H 
prolongable 367.F right quotient space (of a topological group) 

Riemann theorem 423.E 
(on removable singularities) 198.D right regular representation 
(on series with real terms) 379.C (of an algebra) 362.E 

Riemann 0 function 3.L (of a group) 362.B 
Riemann upper integral 216.A right resolution (of an A-module) 200.F 
Riemann [ function 450.V right satellite 200.1 
Riesz convexity theorem 88.C right semihereditary ring 200.K 
Riesz decomposition right semi-integral 68.N 

(in a Markov chain) 260.D right shunt 115.B 
of a superharmonic or subharmonic function right singular point (of a diffusion process) 115.B 

193,s right superior function 3 16.E 
Riesz-Fischer theorem 168.B 317.A right translation 249.A 362.B 
Riesz group 36.H right uniformity (of a topological group) 423.G 
Riesz method of order k, summable by 379.R rigid 
Riesz method of summation of the kth order 379.R (characteristic class of a foliation) 154.G 
Riesz potential 338.B (isometric immersion) 365.E 
Riesz-Schauder theorem 68.E rigid body 271.E 
Riesz space 3 10.B rigidity 
Riesz (F.) theorem (ofasphere) 111.1 

(on L, functions) 317.B modulus of 271.G 
(representation) 197.F rigidity theorem 178.C 

Riesz (F. and M.) theorem 168.C strong 122.G 
(on bounded holomorphic functions on a disk) ring(s) 368 

43.D adele (of an algebraic number field) 6.C 
Riesz-Thorin theorem 224.A afhne 16.A 
Riesz transform 251.0 anchor 410.B 
right, limit on the 87.F Artinian 284.A 
right-adjoint (linear mapping) 256.Q associated graded 284.D 
right adjoint functor 52.K basic (of a module) 277.D 
right A-module 277.D Boolean 42.C 
right angle 151.D Burnside 431.F 
right annihilator (of a subset of an algebra) 29.H category of 52.B 
right Artinian ring 368.F category of commutative 52.B 
right balanced (functor) 200.1 Chow (of a projective variety) 16.R 
right circular cone 350.B cobordism 114.H 
right conoid 111.1 coefficient (of an algebra) 29.A 
right continuous (function) 84.B coefficient (of a semilocal ring) 284.D 
right coset (of a subgroup of a group) 190.C coherent sheaf of 16.E 
right coset space (of a topological group) 423.E cohomology 201.1 
right decomposition, Peirce (in a unitary ring) cohomology, of compact connected Lie groups 

368.F App. A, Table 6.IV 



Subject Index 
Ringed space 

cohomology, of an Eilenberg-MacLane com- 
plex App. A, Table 6.111 

commutative 67 368.A 
complete local 284.D 
completely integrally closed 67.1 
completely primary 368.H 
complete Zariski 284.C 
completion, with respect to an ideal 16.X 
complex cobordism 114.H 
of convergent power series 370.B 
coordinate (of an afftne variety) 16.A 
correspondence (of a nonsingular curve) 9.H 
de Rham cohomology (of a differentiable mani- 

fold) 105.R 201.1 
differential 113 
differential extension 113 
of differential polynomials 113 
discrete valuation 439.E 
division 368.B 
endomorphism (of an Abelian variety) 3.C 
endomorphism (of a module) 277.B 368.C 
of endomorphisms (of an Abelian variety) 
factor, modulo an ideal 368.F 
form 284.D 
of formal power series 370.A 
of fractions 67.G 
generalized Boolean 42.C 
Gorenstein 200.K 
graded 369.B 
ground (of an algebra) 29.A 
ground (of a module) 277.D 
group (of a compact group) 69.A 
Hecke 32.D 
Hensel 370.C 
Henselian 370.C 
hereditary 200.K 
homogeneous 369.B 
homogeneous coordinate 16.A 
integrally closed 67.1 
Krull 67.5 
left Artinian 368.F 
left hereditary 200.K 
left Noetherian 368.F 
left semihereditary 200.K 
local 284.D 
local (of a subvariety) 16.B 
locally Macaulay 284.D 
Macaulay 284.D 
Macaulay local 284.D 
Noetherian 284.A 
Noetherian local 284.D 
Noetherian semilocal 284.D 
normal 67.1 
normed 36.A 
of operators 308.C 
of p-adic integers 439.F 
polynomial 337.A 369.A 
polynomial, in m variables 337.B 
of polynomials 337.A 369 
power series 370.A 
of power series 370 
primary 368.H 
primitive 368.H 
principal ideal 67.K 
Priifer 200.K 
pseudogeometric 284.F 
quasilocal 284.D 
quasisemilocal 284.D 
quasisimple 368.E 
quotient 368.E 

3.c 
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of quotients of a ring with respect to a prime 
ideal 67.G 

of quotients of a ring with respect to a subset of 
the ring 67.G 

regular 85.B 284.D 
regular local 284.D 
representation 237.H 
representative (of a compact Lie group) 249.U 
residue class, modulo an ideal 368.F 
right Artinian 368.F 
right hereditary 200.K 
right Noetherian 368.F 
right semihereditary 200.K 
of scalars (of a module) 277.D 
semihereditary 200.K 
semilocal 284.D 
semiprimary 368.H 
semiprimitive 368.H 
semisimple 368.G 
simple 368.G 
splitting 29.K 
topological 423.P 
of total quotients 67.G 
unitary 368.A 409.C 
universally Japanese 284.F 
of a valuation 439.B 
of valuation vectors 6.C 
Zariski 284.C 
zero 368.A 

ringed space 383.H 
local 383.H 

ring homomorphism 368.D 
ring isomorphism 368.D 
ring operations 368.A 
ripple 205.F 
risk 

Bayes 398.B 
consumer’s 404.C 
posterior 399.F 
producer’s 404.C 

risk function 398.A 
risk premium 214.B 
risk theory 214.C 

classical 214.C 
collective 214.C 
individual 214.C 

Ritt basis theorem (on differential polynomials) 
113 

Ritz method 46.F 303.1 304.B 
Rayleigh- 46.F 271.G 

Robbins-Kiefer inequality, Chapman- 399.D 
Robertson-Walker metrics 359.E 
Robin constant 48.B 
Robin problem 323.F 
robust and nonparametric method 37 L 
robust estimation 371.A 
robust method 371.A 
Roth - Rieman-Roth 
Roche-Schliimilch remainder App. A, Table 9.IV 
Rodrigues formula 393.B 
Roepstorff-Araki-Sewell inequality 402.G 
Roepstorff-Fannes-Verbeure inequality 402.G 
Rogers theorem, Dvoretzky- 443.D 
Rokhlin theorem 114.K 
Rolle theorem 106.E 
rolling curve (of a roulette) 93.H 
Roman and medieval mathematics 372 
Romberg integration 299.C 
Room square 241.D 
root 
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g-discrete (covering of a set) 

(of a chamber complex) 13.R 
(of a polynomial) 337.B 
characteristic (of an autonomous linear system) 

163.F 
characteristic (of a linear mapping) 269.L 
characteristic (for a linear partial differential 
equation with variable coefftcients) 325.F 

characteristic (of a matrix) 269.F 
co- 13.5 
imaginary (of an algebraic equation) 10.E 
k- 13.Q 
mth 10.C 
multiple (of an algebraic equation) 10.B 
negative (of a semisimple Lie algebra) 248.M 
of a polynomial 337.B 
positive (of a semisimple Lie algebra) 248.M 
primitive, modulo m 297.G 
primitive, of unity 14.L 
real (of an algebraic equation) 10.E 
of a semisimple algebraic group 13.5 
of a semisimple Lie algebra 248.K 
simple (of an algebraic equation) 10.B 
simple (in a root system) 13.5 
simple (of a semisimple Lie algebra) 248.M 

root extraction 10.C 
root subspace (of a linear operator) 390.B 
root subspace (of a semisimple Lie algebra) 248.K 
root system 

(of a semisimple algebraic group) 13.5 
(of a semisimple Lie algebra) 248.K 
(of a symmetric Riemannian space) 413.F 
(in a vector space over Q) 13.5 
fundamental (of a semisimple Lie algebra) 

248.N 
irreducible 13.L 

root vector 390.B 
Rosen gradient projection method 292.E 
rot (rotation) 136.D 442.D, App. A, Table 3.11 
rotatable 102.M 
rotation App. A, Table 3.11 

(of a differentiable vector field) 442.D 
(on a locally compact Abelian group) 136.D 
axis of (of a surface of revolution) 111 .I 

rotational 205.B 
rotational coordinates App. A, Table 3.V 
rotation group 60.1 
rotation number 99.D 11 l.E 126.1 
rotation theorem 438.B 
Roth theorem 118.D 182.G 
Rouche theorem 10.E 99.D 198.F 
roulette 93.H 
roundoff error 138.B 

global 303.B 
row (of a matrix) 269.A 

iterated series by (of a double series) 379.E 
repeated series by (of a double series) 379.E 

row finite matrix 269.K 
row nullity (of a matrix) 269.D 
row vector 269.A 
Royden compactification 207.C 
Royden theorem, Arens- 36.M 
Riickert zero-point theorem 23.B 
Ruelle scattering theorey, Haag- 150.D 
ruin probability 214.C 
rule 

Adler-Weisberger sum 132.C 
chain (on the differentiation of composite 

functions) 106.C 
Cramer 269.M 
Feynman 146.A,B 

formation 41 l.D 
of inference 411.1 
midpoint 303.E 
Napier App. A, Table 2.11 
product 299.D 
projection 31.B 
selection 351.H 
sequential decision 398.F 
Simpson’s l/3 299.A 
Simpson’s 3/8 299.A 
slide 19.A 
stopping 398.F 
terminal decision 398.F 
trapezoidal (of numerical integration) 299.A 
trapezoidal (of numerical solution of ordinary 
differential equations) 303.E 

univalence superselection 351.K 
ruled surface 

(algebraic surface) 15.E 
(in differential geometry) 111.1 
criterion of 15.E 

ruler 155.G 179.A 
run (in a sequence of Bernoulli trials) 396.C 
Runge-Kutta-Gill method 303.D 
Runge-Kutta method 303.D 

explicit 303.D 
general 303.D 
implicit 303.D 
pseudo- 303.D 
semi-explicit 303.D 
semi-implicit 303.D 

Runge-Kutta (P, p) method, region of absolute 
stability of 303.G 

Runge phenomenon 223.A 
Runge theorem (on polynomial approximation) 

336.F 
Russell paradox 3 19.B 
Ryser-Chowla theorem, Bruck- 102.E 

S 

Y (the totality of rapidly decreasing P-functions) 
168.B 

Y’ (the totality of tempered distributions) 125.N 
S, space of type 125.T 
SL(n, K) (special linear group) 60.B 
Sp(A) (Spur of a matrix A) 269.F 
SP(n, K) (symplectic group) 60.L 
.SU(n) (special unitary group) 60.F 
S(n) (totality of measurable functions on R that 

take finite value almost everywhere) 168.B 
* -also star 
*-automorphism group 36.K 
*-derivation 36.K 
*-homomorphism 36.F 
*-representation (of a Banach *-algebra) 36.F 
*-subalgebra 443.C 
a-additive measure 270.D 
a-additivity 270.D 
a-algebra 270.B 

optional 407.B 
predictable 407.B 
tail 342.G 
topological 270.C 
well-measurable 407.B 

u-compact space 425.V 
o-complete (vector lattice) 310.C 
u-complete lattice 243.D 

conditionally 243.D 
a-discrete (covering of a set) 425.R 
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a-field 
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a-field 
Bayer sufficient 396.5 
boundedly complete 396.E 
complete 396.E 
D-suflicient 396.5 
decision theoretically sufficient 396.5 
minimal sufficient 396.F 
pairwise sufficient 396.F 
test sufficient 396.5 

cr-tinite (measure space) 270.D 
o-function, of Weierstrass 134.F, App. A, 

Table 16.IV 
a-locally finite covering (of a set) 425.R 
u-process (of a complex manifold) 72.H 
u-space 425.Y 
c-subfield 

necessary 396.E 
sufficient 396.E 

u-weak topology 308.B 
C: set 22.A 
,E,! set 22.D 
C-space 425.Y 
s-cobordism 65.C 
s-cobordism theorem 65.C 
s-field 149.A 
s-handle 114.F 
?-factorial experiment 102.H 
S-admissible (lattice in R”) 182.B 
S-flow 136.D 
S-levels 102.K 
S-matrix 150.D 
S-matrix theory 386.C 
S-morphism 52.G 
S-number 430.C 
S-object 52.G 
S-operator 150.D 386.B 
S-scheme 16.D 
S-set 308.1 
S-topology (on a linear space) 424.K 
S-wave 351.E 
(S)-space 424,s 
S*-number 430.C 
(S, @)-valued random variable 342.C 
s-parallelizable (manifold) 114.1 
Sacks bound, Varshamov-Gilbert- 63.B 
saddle point 

(diflerential game) 108.B 
(of a dynamical system) 126.G 
(of a function) 255.B 
(in nonlinear programming) 292.A 
(on a surface) 11 l.H 

saddle-point method 25.C 
saddle set 126.E 
Sakata model 132.D 
Salam model, Glashow-Weinberg- 132.D 
same kind (of mathematical systems) 409.B 
same orientation (for oriented atlases) 105.F 
same shape 382.A 
sample(s) 373.A 401.E 

Bernoulli 396.B 
random 374.A 396.B 401.F 
small 401 .F 

sample autocovariance 421.B 
sample characteristic 396.C 
sample characteristic value 396.C 
sample correlation coeflicient 396.D 
sample covariance 396.D 
sample covariance function 395.G 
sample function 407.A 
sample generalized variance 280.E 

sample mean 396.C 
sample median 396.C 
sample mode 396.C 
sample moment of order k 396.C 
sample multiple correlation 280.E 
sample number, average 404.C 
sample partial correlation coefficient 280.E 
sample path 407.A 
sample point 342.B 396.B 398.A 
sample problem, k- 371.D 
sample process 407.A 
sample range 396.C 
sample size 373.A 
sample space 342.B 396.B 398.A 
sample standard deviation 396.C 
sample survey 373 
sample theory, large 401.E 
sample value 396.B 
sample variance 396.C 
sampling 

exact, theory 401.F 
multistage 373.E 
optional 262.C 
optional, theorem 262.A 
stratified 373.E 
two-stage 373.E 

sampling distribution 374.A 
sampling inspection 404.C 

with adjustment 404.C 
by attributes 404.C 
double 404.C 
multiple 404.C 
with screening 404.C 
sequential 404.C 
single 404.C 
by variables 404.C 

sampling inspection plan 404.C 
sampling inspection tables 404.C 
sampling procedure 373.A 

invariant 373.C 
random 373.A 
regular 373.A 
uniform 373.A 

Sard theorem 105.J 208.B 
Sard-Smale theorem 286.P 
Sasakian manifold 110.E 
Sasaki-Nitsche formula, Gauss-Bonnet- 275.C 
Satake diagram App. A, Table 5.11 

(of a compact symmetric Riemannian space) 
437.AA 

(of a real semisimple Lie algebra) 248.U 
satellite 

left 200.1 
right 200.1 

satistiability, problem of (of a proposition) 97 
satisfiable (formula) 276.C 
Sato-Bernshtein polynomial 125.EE 
Sat0 conjecture 450,s 
saturated 

((B,N)-pair) 151.5 
(fractional factorial design) 102.1 

saturated model, K- 293.B 
Savage theorem, Girshick- 399.F 
Savage zero-one law, Hewitt- 342.G 
savings premium 214.B 
Sazonov topology 341.5 
SC?‘-manifold 178.G 
scalar(s) 

(in a linear space) 256.A,J 
(of a module over a ring) 277.D 
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Schmidt theorem, Knopp- 

field of (of a linear space) 256.A 
ring of (of a module) 277.D 

scalar change (of a B-module) 277.L 
scalar curvature 364.D, App. A, Table 4.11 
scalar extension 

(of an algebra) 29.A 
(of an A-module) 277.L 
(of a linear representation) 362.F 

scalar field 105.0 
(in a 3-dimensional Euclidean space) 442.D 
free 377.C 

scalar integral 443.FJ 
scalarly integrable 443.FJ 
scalarly measurable 443.BJ 
scalar matrix 269.A 
scalar multiple 

(of an element of a module) 277.D 
(of a linear operator) 37.C 
(in a linear space) 256.A 
(of a vector) 442.A 

scalar multiplication 
(in a module) 277.D 
(on vectors) 442.A 

scalar operator 390.K 
scalar potential 130.A 442.D 
scalar product 442.8, App. A, Table 3.1 
scalar restriction (of a B-module) 277.L 
scalar sum (of linear operators) 37.C 
scalar triple product 442.C 
scale 

of Banach space 286.2 
canonical 115.B 
natural 260.G 
ordinal 397.M 
two-sided 19.D 

scaled, u,- 19.D 
scale matrix 374.C 
scale parameter 396.1 400.E 
scaling, metric multidimensional 346.~ 
scaling, multidimensional 346.E 
scaling method 346.E 
scatter diagram 397.H 
scattered (sheaf) 383.E 
scattered set 425.0 
scattered zeros, function with 208.C 
scattering 375.A 

data 387.D 
elastic 375.A 
inelastic 375.A 

scattering amplitude 375.C 386.B 
partial wave 375.E 

scattering cross section 375.A 
scattering data 387.D 
scattering operator 375.B,F,H 
scattering state 375.B 

completeness of the 150.D 
scattering theory, Haag-Ruelle 150.D 
Schafheithn formula, Sonine- App. A, Table 19.111 
Schauder basis 37.L 
Schauder degree, Leray- 286.D 
Schauder estimate 323.C 
Schauder fixed-point theorem 153.D 286.D 

Leray- 286.D 323.D 
Schauder theorem, Riesz- 68.E 
scheduling 376 

job-shop 307.C 
model 307.C 
network 307.C 

scheduling and production planning 376 
scheduling problem 

flow-shop 376 
job-shop 376 
machine 376 
multiprocessor 376 

Scheffe model 346.C 
Scheffe theorem, Lehmann- 399.C 
Scheja theorem 21.M 
schema of Souslin 22.B 
scheme 16.D 

adaptive 299.C 
aftine 16.D 
Aitken’s interpolation 223.B 
algebraic 16.D 
automatic integration 299.C 
coarse moduli 16.W 
complete 16.D 
consistent-mass 304.D 
deformation of X over a connected 16.W 
difference 304.E 
difference, of backward type 304.F 
difference, of forward type 304.F 
explicit 304.F 
fine moduh 16.W 
formal 16.X 
Friedrichs 304.F 
group 16.H 
Hilbert 16.S 
implicit 304.F 
integral 16.D 
inverted filing 96.F 
irreducible 16.D 
K-complete 16.D 
Lax-Wendroff 304.F 
locally Noetherian formal 16.X 
moduli 16. W 
morphism of 16.D 
Noetherian 16.D 
nonadaptive 299.C 
Picard 16.P 
projective 16.E 
quasiprojective 16.E 
s- 16.D 
over S 16.D 
separated 16.D 
separated formal 16.X 

Scherk’s surface 275.A 
Schlafli diagram (of a complex semisimple Lie 

algebra) 248,s 
Schlafli formula App. A, Table 19.111 
Schlafli integral representation 393.B 
Schlafli polynomial App. A, Table 19.IV 
Schlesinger equations 253.E 
schlicht 438.A 
schlicht Bloch constant 77.F 
schlichtartig 367.G 
Schlieder theorem, Reeh- 150.E 
Schlomilch criterion App. A, Table 10.11 
Schliimilch remainder, Roche- App. A, Table 

9.N 
Schlomilch series 39.D, App. A, Table 19.111 

generalized 39.D 
Schmidt class, Hilbert- 68.1 
Schmidt condition 379.M 
Schmidt expansion theorem, Hilbert- 217.H 
Schmidt norm, Hilbert- 68.1 
Schmidt orthogonalization 317.A 

Gram- 317.A 
Schmidt procedure, Lyapunov- 286.V 
Schmidt theorem 118.D 
Schmidt theorem, Knopp- 208.C 
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Schmidt theorem, Krull-Remak- (in group theory) 
19O.L 

Schmidt type, integral operator of Hilbert- 68.C 
Schmidt type, kernel of Hilbert- 217.1 
Schnee theorem, Knopp- (on method of summation) 

379.M 
Schoenflies notation (for crystal classes) 92.E, 

App. B, Table 6.IV 
Schoenflies problem 65.G 
Schoenflies theorem 65.G 
Schottky group 234.B 
Schottky theorem 43.5 
Schottky uniformization 367.C 
Schrader axioms, Osterwalder- 150.F 
Schreier conjecture (on simple groups) 151.1 
Schreier extension, Artin- (of a field) 172.F 
Schroder equation, Kiinigs- 44.B 
Schroder functional equation 388.D 
Schrodinger equation 351.D 

l-body 351.E 
random 340.E 
time-dependent 351.D 
time-independent 351.D 

Schrljdinger operator 351.D 
Schriidinger picture 351.D 
Schrodinger representation 351.C 
Schriidinger series, Rayleigh- 331.D 
Schubert cycle 56.E 
Schubert variety 56.E 
Schur index 

(of a central simple algebra) 29.E 
(of an irreducible representation) 362.F 

Schur lemma 
(on linear representations) 362.C 
(on simple modules) 277.H 368.G 
(on unitary representations) 437.D 

Schur subgroup 362.F 
Schur theorem (on linear transformations of 

sequences) 379.L 
Schur theorem, Kojima- (on linear transformations 

of sequences) 379.L 
Schur-Zassenhaus theorem (on Hall subgroups) 

151.E 
Schwartz-Christoffel transformation 77.D, 

App. A, Table 13 
Schwartz-Christoffel transformation formula 77.D 
Schwartz integral, Bartle-Dunford- 443.G 
Schwartz space 424.S 
Schwarzian derivative App. A, Table 9.111 
Schwarz inequality 21 l.C 

Cauchy- 211.C App. A, Table 8 
Schwarz lemma 43.B 
Schwarz principle of reflection 198.G 
Schwinger equation, Lippmann- 375.C 
Schwinger function 150.F 
Schwinger points 150.F 
sciences, information 75.F 
scores 

canonical 397.M 
factor 280.G 346.F 

score test, Fisher-Yates-Terry normal 371.C 
scoring method 397.M 
screening, sampling inspection with 404.C 
seasonal adjustment 397.N 
set (secant) 131.E 
secant 432.A 

hyperbolic 131.F 
sech (hyperbolic secant) 131.F 
second (unit of an angle) 139.D 
secondary cohomology operation, stable 64.C 

secondary components (of a homogeneous space) 
110.A 

secondary composition 202.R 
secondary obstruction 305.D 
secondary parameters 110.A 
second axiom, Tietze’s 425.4 
second barycentric derived neighborhood 65.C 
second boundary value problem 

(for harmonic functions) 193.F 
(of partial differential equations of elliptic type) 

323.F 
second category, set of 425.N 
second classification theorem (in the theory of 

obstructions) 305.C 
second complementary law (of Legendre symbols) 

297.1 
second countability axiom 425.P 
second Cousin problem 21.K 
second definition (of an algebraic K-group) 237.5 
second difference 104.A 
second extension theorem (in the theory of 

obstructions) 305.C 
second factor (of a class number) 14.L 
second fundamental form (of an immersion of 

a manifold) 1 ll.G 365.C App. A, Table 4.1 
second fundamental quantities (of a surface) 11 l.H 
second fundamental tensor 417.F 
second fundamental theorem (in Morse theory) 

279.D 
second homotopy theorem 305.C 
second incompleteness theorem 185.C 
second isomorphism theorem (on topological 

groups) 423.5 
second kind 

(Abelian differential of) 1 l.C 
(Abelian integral of) 1 l.C 
(Fuchsian group of) 122.C 
(integral equations of Fredholm type of) 

217.A 
perfect number of 297.D 
Stirling number of 66.D 

second law of cosines 432.A, App. A, Table 2.11 
second law of thermodynamics 419.A 
second mean value theorem 

(for the D-integral) 100.G 
(for the Riemann integral) 216.B 
(for the Stieltjes integral) 94.C 

second-order asymptotic efficiency 399.0 
second-order design 102.M 
second-order efficiency 399.0 
second-order predicate 41 l.K 
second-order predicate logic 411.K 
second quantization 377 
second separation axiom 425.Q 
second variation formula 178.A 
section 

(of a finite group) 362.1 
(of a sheaf space) 383.C 
circular 350.F 
conic 78 
cross- 126.C 286.H 
cross (of a fiber bundle) 147.L 
cross (of a fiber space) 148.D 
cross-, for a closed orbit 126.G 
differential cross 375.A 386.B 
local 126.E 
local cross (of a fiber bundle) 147.E 
n- (in a cell complex) 70.D 
normal (of a surface) 410.B 
r- (of a Euclidean complex) 70.B 
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r- (of a simplicial complex) 70.C 
scattering cross 375.A 
set of (of a sheaf) 383.C 
total (elastic) cross 386.B 
zero- (of a block bundle) 147.Q 

sectional curvature 364.D 
holomorphic 364.D 

section graph 186.C 
sectors, superselection 150.E 351.K 
secular equation 55.B 269.F 
secular perturbation 55.B 
sedenion 29.D 
segment 155.B 178.H 

(in affme geometry) 7.D 
(in an ordered set) 3 1 l.B 
oriented 442.A 

Seidel method, Gauss- 302.C 
Seifert conjecture 126.N 154.D 
Seifert matrix 235.C 
Seifert surface 235.A 
Selberg sieve 123.E 
Selberg theorem, Evans- 48.E 338.H 
Selberg zeta function 450.T 
selection, measurable 443.1 
selection, model 401.D 
selection function 354.E 
selection parameter 396.F 
selection rule 351.H 
selection statistic 396.F 
self-adjoint 

(linear homogeneous ordinary differential 
equation) 315.B 

essentially 251.E 390.1 
self-adjoint differential equation 252.K 
self-adjoint differential operator, formally 112.1 
self-adjoint operator 251.E 390.F 
self-adjoint system of differential equations 252.K 
self-commutator 251.K 
self-dual (linear space) 256.H 
self-dual (regular cone) 384.E 
self-dual, anti- (G-connection) 80.Q 
self-excited vibration 318.8 
self-information 213.B 
self-intersection number 15.C 
self-loop 186.B 
self-polar tetrahedron 350.C 
self-polar triangle 78.5 
self-reciprocal function 220.B 
semicontinuity, lower (of length) 246.A 
semicontinuous 84.C 

(mapping in a topological linear space) 153.D 
lower 84.C 
upper 84.C 

semicontinuous function 84.C 
semicontinuous partition, upper 425.L 
semidelinite Hermitian form 348.F 
semidefinite kernel, positive 217.H 
semidefinite matrix, positive 269.1 
semidefinite operator, positive 251.E 
semidetinite quadratic form, positive or negative 

348.C 
semidirect product (of two groups) 190.N 
semidiscrete approximation 304.B 
semiexact (differential on an open Riemann surface) 

367.1 
semi-explicit 303.D 
semifinite (von Neumann algebra) 308.E 
semifinite (weight on a von Neumann algebra) 

308.D 
semiflow 126.B 

of class C 126.B 
continuous 126.B 
discrete 126.B 
discrete, of class C’ 126.B 

semigroup 88.E 190.P 409.A 
(of a Markov process) 261.B 
of class (Co) 378.B 
differentiable 378.F 
distribution 378.F 
dual 378.F 
equicontinuous, of class (Co) 378.B 
free 161.A 
holomorphic 378.D 
locally equicontinuous 378.F 
nonlinear 378.F 
nonlinear, of operators 286.X 
of operators 378 
order-preserving 286.Y 
unitary 409.C 

semigroup algebra 29.C 
large 29.C 

semigroup bialgebra 203.G 
semihereditary ring 200.K 

left 200.K 
right 200.K 

semi-implicit 303.D 
semi-integral, left 68.N 
semi-integral, right 68.N 
semi-intuitionism 156.C 
semi-invariant 226.A 

G- 226.A 
of a probability distribution 341.C 

semilattice 243.A 
lower 243.A 
upper 243.A 

semilinear (partial differential equations of elliptic 
type) 323.D 

semilinear mapping 256.P 277.L 
semilinear transformation 256.P 
semilocal ring 284.D 

analytically unramified 284.D 
Noetherian 284.D 
quasi- 284.D 

semilogarithmic paper 19.F 
semimartingale 262.E 406.B 

continuous 406.B 
semimartingale decomposition 406.B 
seminorm (on a topological linear space) 424.F 
semiorbit 126.D 

negative 126.D 
positive 126.D 

semiordered set 3 11 .A 
semiordering 3 11 .A 
semipolar set 261.D 
semiprimary ring 368.H 
semiprime differential ideal (of a differential ring) 

113 
semiprime ideal (of a differential ring) 113 
semiprimitive ring 368.H 
semireductive (action defined by a rational 

representation) 226.B 
semireflexive (locally convex space) 424.0 
semiregular point (of a surface in E3) 11l.J 
semiregular transformation (of a sequence) 379.L 
semisimple 

(algebraic group) 13.1 
(Banach algebra) 36.D 
(Jordan algebra) 231.B 
(Lie algebra) 248.E 
(Lie group) 249.D 
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(matrix) 269.G 
semisimple algebra 29.A 
semisimple A-module 277.H 
semisimple component (of a linear transformation) 

269.L 
semisimple linear representation 362.C 
semisimple linear transformation 269.L 
semisimple part 

of an algebraic group 13.E 
of a nonsingular matrix 13.E 

semisimple ring 368.G 
semisimplicial complex 70.E 
semisimplicity, Cartan’s criterion of 248.F 
semistable (coherent sheaf) 16.Y 
semistable distribution 341.G 
semistable reduction theorem 16.2 
semistable vector bundle (algebraic) 16.Y 
semivariation 443.G 
sensitive grammar, context- 31.D 
sensory test 346.B 
separable 

(function in nomograms) 19.D 
(polynomial) 337.G 
(rational mapping) 16.1 
(stochastic process) 407.A 
(topological space) 425.P 
perfectly 425.P 

separable algebra 29.F,K 200.L 
central 29.K 

separable element (of a tield) 149.H 
separable extension 

(of a field) 149.H,K 
maximal (of a field) 149.H 

separable metric space 273.E 
separably generated extension (of a field) 149.K 
separated 

(formal scheme) 16.X 
(morphism) 16.D 

separated convex sets, strongly 89.A 
separated kernel 217.F 
separated scheme 16.D 
separated space 425.4 
separated S-scheme 16.D 
separated topological group 423.B 
separated type App. A, Table 14.1 
separated uniform space 436.C 
separated variable type App. A, Table 15.11 
separately continuous (bilinear mapping) 424.Q 
separating family 207.C 
separating transcendence basis (of a field extension) 

149.K 
separation 

axioms of (in set theory) 33.B 
of variables 322.C 

separation axioms 425.Q 
the lirst 425.Q 
the fourth 425.4 
the second 425.4 
the third 425.4 
Tikhonov 425.4 

separation cochain 305.B 
separation cocycle 305.B 
separation principle 405.C 
separation theorem (on convex sets) 89.A 
separator 186.F 
sequence(s) 165.D 

admissible (in Steenrod algebra) 64.B, App. A, 
Table 6.111 

asymptotic 30.A 
of Bernoulli trials 396.B 

Blaschke 43.F 
Cauchy (in a-adic topology) 284.B 
Cauchy (in a metric space) 273.5 
Cauchy (of rational numbers) 294.E 
Cauchy (of real numbers) 355.B 
Cauchy (in a uniform space) 436.G 
cohomology exact 201.L 
cohomology spectral 200.5 
connected, of functors 200.1 
convergent (of real numbers) 87.B 355.B 
divergent (of real numbers) 87.B 
double 379.E 
exact (of A-homomorphisms of A-modules) 
277.E 

exact, of cohomology 200.F 
exact, of Ext 200.G 
exact, of homology 200.C 
exact, of Tor 200.D 
of factor groups (of a normal chain) 190.G 
Farey 4.B 
Fibonacci 295.A 
finite 165.D 
of functions 165.B,D 
fundamental (in a metric space) 273.5 
fundamental (of rational numbers) 294.E 
fundamental (of real numbers) 355.B 
fundamental (in a uniform space) 436.G 
fundamental, of cross cuts (in a simply 

connected domain) 333.B 
fundamental exact (on cohomology of groups) 

200.M 
Gysin exact (of a fiber space) 148.E 
Hodge spectral 16.U 
homology exact (of a fiber space) 148.E 
homology exact (for simplicial complexes) 

2Ol.L 
homotopy exact 202.L 
homotopy exact (of a fiber space) 148.D 
homotopy exact (of a triad) 202.M 
homotopy exact (of a triple) 202.L 
independent, of partitions 136.E 
infinite 165.D 
interpolating 43.F 
Jordan-Holder (in a group) 190.G 
linear recurrent 295.A 
Mayer-Vietoris exact 2Ol.C 
minimizing 46.E 
monotone (of real numbers) 87.B 
monotonically decreasing (of real numbers) 

87.B 
monotonically increasing (of real numbers) 

87.8 
normal (of open coverings) 425.R 
null (in a-adic topology) 284.B 
of numbers 165.D 
(o)-convergent 87.L 
(o)-star convergent 87.L 
order-convergent (in a vector lattice) 310.C 
oscillating (of real numbers) 87.D 
of points 165.D 
pointwise convergent 435.B 
positive definite 192.B 
of positive type 192.B 
Puppe exact 202.G 
random 354.E 
rapidly decreasing 168.B 
recurrent, of order r 295.A 
reduced homology exact 201.F 
regular (of Lebesgue measurable sets) 380.D 
regular spectral 200.5 
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relative Mayer-Vietoris exact 2Ol.L 
(R, S)-exact (of modules) 200.K 
of sets 165.D 
short exact 200.1 
simply convergent 435.B 
slowly increasing 168.B 
spectral 200.5 
spectral (of singular cohomology of a fiber 

space) 148.E 
standard 400.K 
symbol (in the theory of microdifferential 
operators) 274.F 

of Ulm factors (of an Abelian p-group) 2.D 
uniformly convergent 435.A 
Wang exact (of a fiber space) 148.E 

sequencing problem, machine 376 
sequential decision function 398.F 
sequential decision problem 398.F 
sequential decision rule 398.F 
sequentially compact (space) 425,s 
sequential probability ratio test 400.L 
sequential sampling inspection 404.C 
sequential space 425.CC 
sequential test 400.L 
serial correlation coeffkient 397.N 421.B 
serial cross correlation coefficient 397.N 
series 379, App. A, Table 10 

absolutely convergent 379.C 
absolutely convergent double 379.E 
allied (of a trigonometric series) 159.A 
alternating 379.C 
ascending central (of a Lie algebra) 248.C 
asymptotic 30 
asymptotic power 30.A 
binomial App. A, Table lO.IV 
binomial coefficient 121 .E 
characteristic (in a group) 190.G 
commutatively convergent 379.C 
complementary (of unitary representations of 
a complex semisimple Lie group) 437.W 

complementary degenerate (of unitary represen- 
tations of a complex semisimple Lie group) 
437.w 

composition (in a group) 190.G 
composition (in a lattice) 243.F 
composition factor (of a composition series in 

a group) 190.G 
conditionally convergent 379.C 
conditionally convergent double 379.E 
conjugate (of a trigonometric series) 159.A 
convergent 379.A 
convergent double 379.E 
convergent power 370.B 
convergent power, ring 370.B 
degenerate (of unitary representations of 
a complex semisimple Lie group) 437.W 

derived (of Lie algebra) 248.C 
descending central (of a Lie algebra) 248.C 
Dini 39.D 
Dirichlet 121 
Dirichlet, of the type {A.} 121.A 
discrete (of unitary representations of a semi- 

simple Lie group) 437.X 
divergent 379.A 
divergent double 379.E 
double 379.E 
Eisenstein 32.C 
Eisenstein-Poincare 32.F 
exponential 131 .D 
factorial 104.F 121.E 

field of formal power, in one variable 370.A 
finite 379.A, App. A, Table 10.1 
formal power 370.A 
formal power, field in one variable 370.A 
formal power, ring 370.A 
Fourier 159 197.C App. A, Table 11.1 
Fourier (of an almost periodic function) 18.B 
Fourier (of a distribution) 125.P 
Fourier-Bessel 39.D 
Fourier cosine App. A, Table 11.1 
Fourier sine App. A, Table 11.1 
Gauss 206.A 
generalized Eisenstein 450.T 
generalized Schlomilch 39.D 
generalized trigonometric 18.B 
geometric 379.B, App. A, Table 10.1 
Heine 206.C 
hypergeometric 206.A 
infinite 379.A, App. A, Table 10.111 
iterated, by columns (of a double series) 379.E 
iterated, by rows (of a double series) 379.E 
Kapteyn 39.D. App. A, Table 19.111 
Lambert 339.C 
Laurent 339.A 
logarithmic 131.D 
lower central (of a group) 190.J 
majorant 316.G 
majorant (of a sequence of functions) 435.A 
Neumann 217.D 
of nonnegative terms 379.B 
ordinary Dirichlet 121.A 
orthogonal (of functions) 317.A 
oscillating 379.A 
n- (of a group) 151.F 
Poincart 32.B 
of positive terms 379.B 
power 21.B 339 370.A, App. A, Table IO.IV 
power (in a complete ring) 370.A 
power, with center at the point at infinity 
339.A 

power, ring 370.A 
principal (in an Q-group) 190.G 
principal (of unitary representations of a com- 

plex semisimple Lie group) 258.C 437.W 
principal (of unitary representations of a real 

semisimple Lie group) 258.C 437.X 
principal H- 437.X 
properly divergent 379.A 
Puiseux 339.A 
repeated, by columns (of a double series) 

379.E 
repeated, by rows (of a double series) 379.E 
ring of convergent power 370.B 
ring of formal power 370.A 
ring of power 370.A 
Schlomilch 39.D, App. A, Table 19.111 
simple 379.E 
singular 4.D 
supplementary 258.C 
Taylor 339.A 
termwise integrable 216.B 
theta 348.L 
theta-Fuchsian, of Poincart 32.B 
time 397.A 421 .A 
trigonometric 159.A 
unconditionally convergent 379.C 
uniformly absolutely convergent 435.A 
upper central (of a group) 190.J 

Serre conjecture 369.F 
Serre V-theory 202.N 
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Serre duality theorem 
(on complex manifolds) 72.E 
(on projective varieties) 16.E 

Serre formulas, Frenet- (on curves) 11 l.D, 
App. A, Table 4.1 

Serre theorem (for ample line bundles) 16.E 
sesquilinear form 

(on a linear space) 256.Q 
(on a product of two linear spaces) 256.Q 
matrix of 256.4 
nondegenerate 256.4 

set(s) 381 
A- 22.A 409.A 
absolutely convex (in a linear topological space) 
424.E 

cc-limit 126.D 
analytic 22.A,I 
analytic (in the theory of analytic spaces) 23.B 
analytically thin (in an analytic space) 23.D 
of analyticity 192.N 
analytic wave front 274.D 
of antisymmetry 164.E 
arbitrary 381.G 
asymptotic 62.A 
asymptotic ratio 308.1 
axiom of power 33.B 381.G 
B. 22.D 
%-measurable 270.C 
Baire 126.H 270.C 
bargaining 173.D 
basic (for an Axiom A flow) 126.5 
basic (of a structure) 409.B 
basic open 425.F 
bifurcation 51.F 418.F 
border 425.N 
Bore1 (in a Euclidean space) 270.C 
Bore1 (in a topological space) 270.C 
Bore1 in the strict sense 270.C 
boundary 425.N 
boundary cluster 62.A 
bounded (in an atline space) 7.D 
bounded (in a locally convex space) 424.F 
bounded (in a metric space) 273.B 
C, 22.D 
CA 22.A 
Cantor 79.D 
capacity of 260.D 
catastrophe 51.F 
category of 52.B 
chain recurrent 126.E 
characteristic (of an algebraic family on 

a generic component) t5.F 
characteristic (of a partial differential operator) 

320.B 
choice 34.A 
closed 425.B 
cluster 62.A 
coanalytic 22.A 
compact (in a metric space) 273.F 
compact (in a topological space) 425,s 
complementary 381.B 
complementary analytic 22.A 
complete 241.B 
complete orthonormal (of a Hilbert space) 

197.c 
connected 79.A 
constraint (of a minimization problem) 292.A 
convex 7.D 89 
countably equivalent (under a nonsingular 

bimeasurable transformation) 136.C 

curvilinear cluster 62.C 
cylinder 270.H 
of degeneracy (of a holomorphic mapping 

between analytic spaces) 23.C 
A.’ 22.D 
dense 425.N 
dependent 66.G 
derived 425.0 
determining (of a domain in C”) 21 .C 
difference (of blocks) 102.E 
directed 3ll.D 
discrete 425.0 
disjoint 381.B 
dominating 186.1 
empty (a) 381.A 
externally stable 186.1 
equipollent 49.A 
equipotent 49.A 
F, 270.C 
factor (of a crossed product) 29.D 
factor (of an extension of groups) 190.N 
factor (of a projective representation) 362.5 
family of 165.D 381.B,D 
family of (indexed by A) 38 1 .D 
final (of a correspondence) 358.B 
final (of a linear operator) 251.E 
finite 49.F 381.A 
finitely equivalent (under a nonsingular 
bimeasurable transformation) 136.C 

of the first category 425.N 
of the first kind 319.B 
first negative prolongational limit 126.D 
first positive prolongational limit 126.D 
function 380.A 
function-theoretic null 169.A 
fundamental (of a transformation group) 

122.B 
fundamental open (of a transformation group) 

122.8 
G, 270.C 
general Cantor 79.D 
generalized peak 164.D 
(general) recursive 97 
germ of an analytic 23.B 
homotopy 202.B 
idempotent (of a ring) 368.B 
increasing directed 308.A 
independent 66.G 186.1 
index 102.L 
index (of a family) 165.D 
index (of a family of elements) 381.D 
indexing (of a family of elements) 381.D 
infinite 49.F 381.A 
information 173.B 
initial (of a correspondence) 358.B 
initial (of a linear operator) 251.E 
interior cluster 62.A 
internally stable 186.1 
interpolating (for a function algebra) 164.D 
Kronecker 192.R 
lattice of 243.E 
lattice-ordered 243.A 
Lebesgue measurable 270.G 
Lebesgue measurable (of R”) 270.G 
level 279.D 
limit 234.A 
locally closed 425.J 
M- 159.J 
meager 425.N 
minimal 126.E 



210.5 Subject Index 

Sheaf (sheaves) 

p-measurable 270.D 
p-null 270.D 
of multiplicity 159.J 
n-cylinder 270.H 
nilpotent (of a ring) 368.B 
nodal 391.H 
nonmeager 425.N 
nonsaddle 120.E 
nonwandering 126.E 
nowhere dense 425.N 
null (in a measure space) 270.D 310.1 
null, of class Na 169.E 
null (0) 381.A 
w-limit 126.D 
open 425.B 
ordered -ordered set 
ordinate 221.E 
orthogonal (of functions) 317.A 
orthogonal (of a Hilbert space) 197.C 
orthogonal (of a ring) 368.B 
orthonormal (of functions) 317.A 
orthonormal (of a Hilbert space) 197.C 
P. 22.D 
P-convex (for a differential operator) 112.C 
peak 164.D 
perfect 425.0 
II; 22.A 
IT; 22.D 
point 381.B 
of points of indeterminacy (of a proper 
meromorphic mapping) 23.D 

polar (in potential theory) 261.D 338.H 
power 381.8 
precompact (in a metric space) 273.B 
principal analytic 23.B 
projective, of class n 22.D 
purely d-dimensional analytic 23.B 
of quasi-analytic functions 58.F 
quotient (with respect to an equivalence 
relation) 135.B 

ratio 136.F 
recurrent 260.E 
recursive 356.D 
recursively enumerable 356.D 
regularly convex 89.G 
relative closed 425.5 
relatively compact 425,s 
relatively compact (in a metric space) 273.F 
relatively open 425.5 
removable (for a family of functions) 169.C 
residual 126.H 425.N 
resolvent (of a closed operator) 251.F 
resolvent (of a linear operator) 390.A 
p- 308.1 
S- 308.1 
saddle 126.E 
scattered 425.0 
of the second category 425.N 
of the second kind 319.B 
semipolar 261.D 
Sidon 192.R 194.R 
sieved 22.B 
C; 22.A 
Z; 22.D 
singularity (of a proper meromorphic mapping) 

23.D 
stable 173.D 
stable, externally 186.1 
stable, internally 186.1 

standard 22.1 
strongly P-convex 112.C 
strongly separated convex 89.A 
system of closed 425.B 
system of open 425.B 
ternary 79.D 
thin (in potential theory) 261.D 
totally bounded (in a metric space) 273.B 
totally bounded (in a uniform space) 436.H 
U- 159.J 
of uniqueness 159.J 
universal (for the projective sets of class n) 

22.E 
universal (of set theory) 381.B 
wandering (under a measurable transformation) 

136.C 
wave front 274.B 345.A 
wave front, analytic 274.D 
weakly wandering 136.C 
weakly wandering (under a group) 136.F 
well-ordered 31 l.C 
Z- 382.B 
Zariski closed 16.A 
Zariski dense 16.A 
Zariski open 16.A 

set function(s) 380 
additive 380.C 
of bounded variation 380.B 
completely additive 380.C 
finitely additive 380.B 
monotone decreasing 380.B 
monotone increasing 380.B 
p-absolutely continuous additive 380.C 
n-singular additive 380.C 

set-theoretic formula 33.B 
set-theoretic topology 426 
set theory 381.F 

axiomatic 33 156.E 
Bernays-Godel 33.A,C 
Boolean-valued 33.E 
classical descriptive 356.H 
effective descriptive 356.H 
genera1 33.B 
Godel 33.C 
Zermelo 33.B 
Zermelo-Fraenkel 33.A,B 

Severi group, Neron- 
(of a surface) 15.D 
(of a variety) 16.P 

Sewell inequality, Roepstorff-Araki- 402.G 
sgn P (sign) 103.A 
shadow costs 292.C 
shadow price 255.B 
Shafarevich group, Tate- 118.D 
Shafarevich reciprocity law 257.H 
shallow water wave 205.F 
shape 

pointed 382.A 
same 382.A 

shape category 382.A 
shape dominate 382.A 
shape function 223.G 
shape group 382.C 
shape invariant(s) 382.C 
shape morphism 382.A 
shape theory 382 
Shapiro-Lopatinskii condition 323.H 
Shapley value 173.D 
sheaf (sheaves) 383 
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Sheaf space 
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(in &tale (Grothendieck) topology) 16.AA 
of Abelian groups 383.B 
analytic 72.E 
associated with a presheaf 383.C 
Tech cohomology group with coefficient 

383.F 
coherent, of rings 16.E 
coherent algebraic 16.E 72.F 
coherent analytic 72.E 
constructible 16.AA 
cohomology group with coefficient 383.E 
constant 383.D 
derived 125.W 
flabby 383.E 
of germs of analytic functions 383.D 
of germs of analytic mapping 383.D 
of germs of continuous functions 383.D 
of germs of differentiable sections of a vector 
bundle 383.D 

of germs of differential forms of degree of r 
383.D 

of germs of functions of class C’ 383.D 
of germs of holomorphic functions (on an 
analytic manifold) 383.D 

of germs of holomorphic functions (on an 
analytic set) 23.C 

of germs of holomorphic functions (on an 
analytic space) 23.C 

of germs of regular functions 16.B 
of germs of sections of a vector bundle 383.D 
of groups 383.C 
of ideals of a divisor (of a complex manifold) 
72.F 

invertible 16.E 
locally constructible (constant) 16.AA 
of @modules 383.1 
orientation 201.R 
pre- 383.A 
pre-, on a site 16.AA 
of rings 383.C 
scattered 383.E 
structure (of a prealgebraic variety) 16.C 
structure (of a ringed space) 383.H 
structure (of a variety) 16.B 
trivial 383.D 

sheaf space 383.C 
shear, modules of elasticity in 271.G 
shearing strain 271.G 
shearing stress 271.G 
shear viscosity, coefficient of 205.C 
sheet(s) 

hyperboloid of one 350.B 
hyperboloid of revolution of one 350.B 
hyperboloid of revolution of two 350.B 
hyperboloid of two 350.B 
mean number of (of a covering surface of 

a Riemann sphere) 272.5 
number of (of an analytic covering space) 
23.E 

number of (of a covering surface) 367.B 
sheeted, n- 367.B 
Shelah isomorphism theorem, Keisler- 276.E 
Shields-Zeller theorem, Brown- 43.C 
shift 251.0 

associated with the stationary process 136.D 
automorphism 126.5 
Bernoulli 136.D 
generalized Bernoulli 136.D 
Markov 136.D 
phase 375.E 386.B 

shift operator 223.C 251.0 306.C 
unilateral 390.1 

shift transformation 136.D 
Shilov boundary 

(of a domain) 21.D 
(for a function algebra) 164.C 
(of a Siegel domain) 384.D 

Shilov generalized function, Gel’fand- 125.S 
Shmul’yan theorem 424.V 

Eberlein- 37.G 
Krein- 37.E 424.0 

Shnirel’man theory, Lyusternik- 286.Q 
shock wave 205.B 446 
shortening 186.E 
shortest-path problem 281.C 
shortest representation (of an ideal) 6’7.F 
short exact sequence 200.1 
short international notation 92.E 
short range 375.B 
Shrikhande square 102.K 
shrinking (a space to a point) 202.E 
shunt 

left 115.B 
right 115.B 

SI (international system of units) 414.A 
side 155.B,F 

(of an angle) 139.D 155.B 
(of a complete quadrangle) 343.C 
(on a line) 155.B 
(on a plane) 155.B 
(of a point with respect to a hyperplane) 7.D 
(of a polygon) 155.F 
(of a spherical triangle) 432.B 

side cone 258.A 
Sidon set 192.R 
Siegel domain(s) 384 

of the first kind 384.A 
generated 384.F 
irreducible 384.E 
of the second kind 384.A 
of the third kind 384.A 

Siegel mean value theorem 182.E 
Siegel modular form of weight k (or of dimension 

-k) 32.F 
Siegel modular function of degree n 32.F 
Siegel modular group of degree n 32.F 
Siegel space of degree n 32.F 
Siegel theorem 

(on Diophantine equations) 118.D 
(on positive definite forms) 348.K 

Siegel upper half-space of degree n 32.F 
Siegel zero 123.D 
Siegel zeta function of indefinite quadratic forms 

450.K 
sieve 16.AA 22.B 

Eratosthenes 297.B 
large 123.E 
large, method 123.D 
Selberg 123.E 

sieved set 22.B 
sieve method 4.A 

large 123.D 
sign (of a permutation) 103.A 
signal process 405.F 
signature 

(of a Hermitian form) 348.F 
(of an irreducible representation of GL( V)) 

60.D 
(of a knot) 235.C 
(of a manifold) 56.G 



2107 Subject Index 
Simplicial homology group 

(of a quadratic form) 348.C classical complex 248,s 
Hirzebruch, theorem 72.K exceptional compact real 248.T 

signed Lebesgue-Stieltjes measure 166.C exceptional complex 248.S 
signed measure 380.C simple Lie group 249.D 
signed rank test 371.B classical compact 249.L 
signed rank test, Wilcoxon 371.B classical complex 249.M 
sign test 371.B exceptional compact 249.L 
similar exceptional complex 249.M 

(central simple algebra) 29.E simple loss function 398.A 
(linear representation) 362.C simple model 403.F 
(matrix representation of a semilinear mapping) simple pair (of an H-space and an H-subspace) 

256.P 202.L 
(permutation representation) 362.B n- (of topological spaces) 202.L 
(projective representation) 362.5 simple path 186.F 
(square matrices) 269.G simple point 

similar central simple algebras 29.E (on an algebraic variety) 16.F 
similar correspondence (between surfaces) 111.1 (of an analytic set) 23.B 418.A 
similarity simple ring 368.G 

(of an affine space) 7.E quasi- 368.E 
Prandtl-Glauert law of 205.D simple root 
Reynolds law of 205.C (of an algebraic equation) 10.B 
von Karma, transonic 205.D (in a root system) 13.5 

similarly isomorphic (ordered fields) 149.N (of a semisimple Lie algebra) 248.M 
similar mathematical systems 409.B simple series 379.E 
similar test 400.D simple spectrum 390.G 
similar unitary representations 437.A simplest alternating polynomial 337.1 
simple simplest Chebyshev q-function 19.G 

(A-module) 277.H simplest orthogonal polynomial 19.G 
(Abelian variety) 3.B simple type theory 411.K 
(algebraic group) 13.L simplex 
(eigenvalue) 390.A,B (in an afline space) 7.D 
(function) 438.A (of a complex) 13.R 
(Lie algebra) 248.E (in a locally convex space) 424.U 
(Lie group) 249.D (in a polyhedron of a simplicial complex) 
(linear representation) 362.C 7o.c 
(polygon) 155.F (in a simplicial complex) 70.C 
(subcoalgebra) 203.F (of a triangulation) 70.C 
absolutely (algebraic group) 13.L degenerate (in a semisimplicial complex) 
algebraically (eigenvalue) 390.B 70.D 
almost (algebraic group) 13.L n- (in a Euclidean simplicial complex) 70.B 
geometrically (eigenvalue) 390.A n- (in a semisimplicial complex) 70.E 
k- (algebraic group) 13.0 n- (in a simplicial complex) 70.C 
k-almost (algebraic group) 13.0 open (in an affme space) 7.D 

simple algebra 29.A open (in the polyhedron of a simplicial 
central 29.E complex) 70.C 
normal 29.E ordered (in a semisimplicial complex) 70.E 
zeta function of 27.F ordered (in a simplicial complex) 70.C 

simple arc 93.B oriented q- 2Ol.C 
simple Bravais lattice 92.E oriented singular r-, of class Cm 105.T 
simple character (of an irreducible representation) singular n- (in a topological space) 70.E 

362.E simplex method 255.C 
simple closed curve 93.B two-phase 255.C 
simple component (of a semisimple ring) 368.G simplex tableau 255.C 
simple continued fraction 85.A simplicial approximation (to a continuous mapping) 
simple convergence, abscissa of (of a Dirichlet series) 7o.c 

121.B simplicial approximation theorem 70.C 
simple distribution, potential of 338.A simplicial chain complex, oriented 2Ol.C 
simple extension (of a field) 149.D simplicial complex(es) 65.A 70.C 
simple function 221.B 443.B abstract 70.C 
simple group 190.C countable 70.C 

linear 151.1 Euclidean 70.B 
Tits 151.1 finite 70.C 

simple harmonic motion 318.B isomorphic 70.C 
simple holonomic system 274.H locally countable 70.C 
simple homotopy equivalence 65.C locally finite 70.C 
simple homotopy equivalent 65.C ordered 70.C 
simple homotopy theorem 65.C simplicial decomposition (of a topological space) 
simple hypothesis 400.A 7o.c 
simple Lie algebra 248.E simplicial division 65.A 

classical compact real 248.T simplicial homology group 201.D 
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Simplicial mapping 
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simplicial mapping (map) 70.C 
(between polyhedra) 70.C 
(relative to triangulations) 70.C 

simplicial pair 201.L 
simply connected (space) 79.C 170 
simply connected covering Lie group (of a Lie 

algebra) 249.C 
simply connected group (isogenous to an algebraic 

group) 13.N 
simply convergent sequence 435.B 
simply elliptic (singularity) 418.C 
simply invariant (subspace) 164.H 
simply periodic function 134.E 
simply transitive (G-set) 362.B 
Simpson formula, Milne- 303.E 
Simpson f rule 299.A 
Simpson 2 rule 299.A 
simulation 307.C 385 

analog 385.A 
in the narrow sense 385.A 
system 385.A 

simultaneous distribution 342.C 
simultaneous equations 10.A 
sin (sine) 13 l.E 
sin-’ 131.E 
sine(s) 432.A 

hyperbolic 13 1 .F 
integral 167.D 
laws of 432.A, App. A, Tables 2.11 2.111 
laws of (on spherical trigonometry) 432.B 

sine curve 93.H 
Sine-Gordon equation 387.A 
sine integral 167.D, App. A, Table 19.11 
sines and cosines, law of App. A, Table 2.111 
sine transform 16O.C, App. A, Table 11.11 
sine wave 446 
Singer fixed point theorem, Atiyah- 153.C 
Singer index theorem 

Atiyah- 237.H 
equivariant Atiyah- 237.H 

single-address instruction 75.C 
single-commodity flow problem 281.F 
single integral theorem, Fourier 160.B 
single layer, potential of a 338.A 
single-objective model 307.C 
single sampling inspection 404.C 
single-valued function 165.B 
singular 

(distribution) 374.C 
(element of a connected Lie group) 249.P 
(element of a real Lie algebra) 248.B 
(element with respect to a quadratic form) 

348.E 
(Galton-Watson process) 44.C 
(harmonic function) 193.G 
(mapping) 208.B 
(ordinal number) 270.1 
(set function) 380.C 
essentially (with respect to an analytic set) 
21.M 

of the hth species 343.D,E 
p- 380.C 
relative, homology group 2Ol.L 

singular cardinal problem 33.F 
singular chain complex (of a topological space) 

201.E 
singular cochain complex 201.H 
singular cohomology group 201.H 
singular cohomology ring 201.1 
singular complex (of a topological space) 70.E 

singular fiber 72.K 
singular homology group ZOl.E,G,L,R 

integral 201.E 
singular initial value problem (of a partial differen- 

tial equation of mixed type) 326.C 
singular inner function 43.F 
singular integral 217.5 
singular integral equation 217.5 
singular integral manifold (of a differential ideal) 

428.E 
singular integral operator, Calderon-Zygmund 

217.5 251.0 
singularity (singularities) 51.C 198.M 

algebraic 198.M 
of an analytic function 198.M 
cusp 418.C 
direct transcendental (of an analytic function in 

the wider sense) 198.P 
elliptic 418.C 
essential (of a complex function) 198.D 
fixed (of an algebraic differential equation) 
288.A 

indirect transcendental (of an analytic function 
in the wider sense) 198.P 

isolated (of an analytic function) 198.D 
isolated (of a complex function) 198.M 
logarithmic (of an analytic function) 198.M 
logarithmic (of an analytic function in the wider 
sense) 198.P 

movable (of an algebraic differential equation) 
288.A 

ordinary (of an analytic function in the wider 
sense) 198.P 

principle of condensation of 37.H 
propagation of 325.M 
quotient 418.C 
rational 418.C 
regular (of a coherent b-module) 274.H 
removable (of a complex function) 198.D 
removable (of a harmonic function) 193.L 
resolution of 16.L 23.D 418.B 
space of 390.E 
theory of 418 
transcendental (of an analytic function in the 

wider sense) 198.P 
two-dimensional 418.C 

singularity set (of a proper meromorphic mapping) 
23.D 

singularity spectrum (of a hyperfunction) 125.CC 
274.E 

singularity theorem (in physics) 359.F 
singular kernel 217.5 
singular locus (of a variety) 16.F 
singular n-simplex (in a topological space) 70.E 
singular orbit 43 l.C 
singular part (of a Laurent expansion) 198.D 
singular perturbation 289.E 
singular point 

(of an algebraic variety) 16.F 
(of an analytic set) 23.B 418.A 
(of a continuous vector field) 153.B 
(of a curve of class Cx) 93.G 
(of a flow) 126.D 
(of a linear difference equation) 104.D 
(of a plane algebraic curve) 9.B 
(of a polyhedron) 65.B 
(of a quadratic hypersurface) 343.E 
(of a surface in E3) 1ll.J 
(of a system of linear ordinary differential 

equations) 254.A 
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Smooth boundary, domain with 

(of a system of ordinary differential equations) 
126.G 289.A 

apparent (of a system of linear ordinary dif- 
ferential equations) 254.C 

hyperbolic 126.G 
irregular (of a solution) 254.B 
irregular (of a system of linear ordinary dif- 

ferential equations) 254.B 
isolated 198.D 
left (of a diffusion process) 115.B 
regular (of a solution) 254.B 
regular (of a system of linear ordinary dif- 
ferential equations) 254.B 

right (of a diffusion process) 115.B 
singular projective transformation 343.D 

of the hth species 343.D 
q-cochain 201.H 
q-simplex 201.E 

singular quadric hypersurface of the hth species (in a 
projective space) 343.E 

singular r-chain of class C” 105.T 
singular r-cochain of class C” 105.T 
singular r-simplex of class C”, oriented 105.T 
singular series 4.D 
singular solution 

(of a differential ideal) 428.E 
(of a general partial differential equation) 

320.C 
(of an ordinary differential equation) 313.A, 

App. A, Table 14.1 
(of a partial differential equation) 320.C 
totally (with respect to a quadratic form) 

348.E 
singular spectrum 345.A 390.E 

(of a hyperfunction) 125.CC 274.E 
singular subspace 343.D 
singular subspace, totally 348.E 
singular support 

(of a distribution) 112.C 
(of a hyperfunction) 125.W 

singular value 302.A 
singular value decomposition (SVD) 302.E 
sinh (hyperbolic sine) 131.F 
sink 126.G 281.C 
sinusoid 93.D 
sinusoidal wave 446 
site 16.AA 

&tale 16.AA 
flat 16.AA 
presheaf on 16.AA 
Zariski 16.AA 

site percolation process 340.D 
6j-symbol 353.B 
size 

(of a balanced array) 102.L 
(complexity of computation) 71.A 
(of a population) 397.B 
(of a random sample) 396.B 
(of a sample) 401.E 
(of a test) 400.A 
block 102.B 
sample 373.A 
step 303.B 

skeleton 
(of a domain in C”) 21 .C 
r- (of a Euclidean complex) 70.B 

skew field 149.A 368.B 
skew-Hermitian form 256.Q 
skew-Hermitian matrix 269.P’ 
skew h-matrix 269.1 

skewness 396.C 397.C 
coefficient of 341.H 

skew product (of measure-preserving transforma- 
tions) 136.D 

skew surface 111.1 
skew-symmetric (multilinear mapping) 256.H 
skew-symmetric matrix 269.B 
skew-symmetric tensor 256.N 
Skitovich-Darmois theorem 374.H 
Skolem-Lowenheim theorem 156.E 
Skolem paradox 156.E 
Skolem theorem on the impossibility of characteriz- 

ing the system of natural numbers by axioms 
156.E 

slackness, Tucker theorem on complementary 
255.B 

slack variable 255.A 
slant product 

(of a cochain and a chain) 201.K 
(of a cohomology class and a homology class) 

201.K 
Slater constraint qualification 292.B 
slender body theorem 205.B 
slice knot 235.G 
slice representation 431.C 
slice theorem, differentiable 43 1 .C 
slicing theorem, watermelon- 125.DD 
slide rule 19.A 
sliding block code 213.E 
slit (of a plane domain) 333.A 
slit domain 333.A 
slit mapping 

extremal horizontal 367.G 
extremal vertical 367.G 

slope function 46.C 
slowly increasing Cm-function 125.0 
slowly increasing distribution 125.N 
slowly increasing function in the sense of Deny 

338.P 
slowly increasing sequences 168.B 
slow wave 259 
Smale condition C, Palais- 279.E 286.Q 
Smale diffeomorphism, Morse- 126.5 
Smale flow, Morse- 126.5 
Smale theorem, Sard- 286.P 
Smale vector field, Morse- 126.5 
small-displacement theory of elasticity 271.G 
smaller topology 425.H 
small inductive dimension (ind) 117.B 
small numbers, law of 250.B 
small sample 401.F 
small set of order U 436.G 
smashing (a space to a point) 202.E 
smash product 202.F 
Smirnov test, Kolmogorov- 3 17.F 
Smirnov test statistic, Kolmogorov- 374.E 
Smirnov theorem 250.F 
Smith conjecture 235.E 
Smith convergence, Moore- 87.H 
Smith theorem 431.B 
smooth 

(function) 106.K 
(measure for a Riemann metric) 136.G 
(morphism of schemes) 16.F 
(point of a variety) 16.F 
piecewise (curve) 364.A 
in the sense of A. Zygmund 168.B 
uniformly (normed linear space) 37.G 

smooth boundary, domain with (in a Cm-manifold) 
105.u 



Subject Index 
Smooth characteristic class of foliations 
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smooth characteristic class of foliations 154.G 
smoothing (of a combinatorial manifold) 114.C 
smoothing problem 114.C 
smooth invariant measure 126.5 
smooth manifold 105.D 114.B 
smooth structure 114.B 
smooth variety 16.F 
sn 134.5, App. A, Table 16.111 
Snapper polynomial 16.E 
Sobolev-Besov embedding theorem 168.8 
Sobolev inequality, Hardy-Littlewood- 224.E 
Sobolev space 168.8 
software 75.C 
sojourn time density 45.G 
solenoidal (vector held) 442.D 
solid geometry 181 
solid harmonics 393.A 
solid n-sphere 140 
solid sphere 140 

topological 140 
solitary wave 387.B 
soliton 387.B 
solution 

(of equations of neutral type) 163.H 
(of a functional-differential equation) 163.C 
(of an inequality) 21 l.A 
(of an ordinary differential equation) 313.A 
(of a partial differential equation) 320.A 
(of partial differential equations of first order) 

App. A, Table 15.11 
(of partial differential equations of second 

order) App. A, Table 15.111 
(of a system of differential equations) 313.B 
(of a system of linear equations) 269.M 
(of a system of partial differential equations) 

428.B 
algebraic (of an algebraic equation) 10.D 
asymptotic 325.L 
basic 255.A 
basic feasible 255.A 
basic optimal 255.A 
Bayes 398.B 
Bayes, in the wider sense 398.B 
of boundary value problems App. A, Table 

15.VI 
of the Cauchy problem 325.D 
classical (to Plateau’s problem) 275.C 
complete (of partial differential equations) 

320.C 
d’Alembert 325.D 
Douglas-Radb (to Plateau’s problem) 275.C 
elementary (of a differential operator) 112.B 
elementary (of a linear partial differential 

operator) 320.H 
elementary (of partial differential equations 

of elliptic type) 323.B 
elementary (of a partial differential operator) 

App. A, Table 15.V 
equilateral triangle 420.B 
feasible (of a linear equation in linear program- 

ming) 264.A 
formal (for a system of ordinary differential 

equations) 289.C 
fundamental (of a Cauchy problem) 325.D 
fundamental (of a differential operator) 112.B 
fundamental (of an evolution equation) 189.C 
fundamental (of a linear parabolic equation 

with boundary conditions) 327.F 
fundamental (of a linear partial differential 

operator) 320.H 

fundamental (of a partial differential equation 
of parabolic type) 327.D 

fundamental (of partial differential equations 
of elliptic type) 323.B 

fundamental (of a partial differential operator 
with Cm-coefficients) 189.C 

fundamental system of (of a homogeneous 
linear ordinary differential equation) 252.B 

fundamental system of (of a homogeneous 
system of linear differential equations of first 
order) 252.H 

general (of a differential equation) 313.A 
general (of a general partial differential equa- 
tion) 320.C 

general (of a nonhomogeneous linear difference 
equation) 104.D 

general (of partial differential equations) 
320.C 

general (of a system of differential equations) 
313.c 

general (of a system of partial differential 
equations) 428.B 

generalized Bayes 398.B 
genuine 323.G 
half-periodic (of the Hill equation) 268.E 
Hill’s method of 268.B 
Hopf’s weak 204.C 
inner 25.B 
Kirchhoff 325.D 
to the martingale problem 115.C 
maximum 316.E 
minimax 398.B 
minimum 3 16.E 
Nash bargaining 173.C 
numerical (of algebraic equations) 301 
numerical (of integral equations) 217.N 
numerical (of linear equations) 302 
numerical (of ordinary differential equations) 

303 
numerical (of partial differential equations) 

304 
optimal (of a linear programming problem) 
255.A 

optimal (of a nonlinear programming problem) 
292.A 

ordinary (of a differential ideal) 428.E 
outer 25.B 
particular (of a differential equation) 313.A 
particular (of partial differential equations) 

320.C 
particular (for a system of differential equations) 

313.c 
pathwise uniqueness of 406.D 
periodic (of the Hill equation) 268.E 
Perron-Brelot (of the Dirichlet problem) 

12o.c 
Perron-Wiener-Brelot (of the Dirichlet problem) 

12o.c 
Poisson 325.D 
primary (of a homogeneous partial differential 
equation) 320.E 

primitive (of a partial differential equation) 
320.E 

principal 104.B 
by quadrature App. A, Table 14.1 
quasiperiodic (of the Hill equation) 268.B 
by radicals (of an algebraic equation) 10.D 
regular (of a differential ideal) 428.E 
singular App. A, Table 14.1 
singular (df a differential ideal) 428.E 
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singular (of a general partial differential equa- 
tion) 320.C 

singular (of an ordinary diIIerentia1 equation) 
313.A, App. A, Table 14.1 

singular (of partial differential equations) 
320.C 

stable (of the Hill equation) 268.E 
straight line 420.B 
strong (of Navier-Stokes equation) 204.C 
strong (of stochastic differential equations) 

406.D 
system of fundamental (of a system of linear 

homogeneous equations) 269.M 
trivial (of a system of linear homogeneous 
equations) 269.M 

unique strong 406.D 
uniqueness theorem of (of systems of linear 
differential equations of the first order) 
316.D,G 

unstable (of the Hill equation) 268.E 
von Neumann-Morgenstern 173.D 
weak 204.C 323.G 378.1 

solution curve (of ordinary differential equations) 
316.A 

solution operator 163.E 
solvability, Cartan’s criterion of 248.F 
solvable 

(ideal of a Lie algebra) 248.C 
(Lie algebra) 248.C 
(Lie group) 249.D 
(by a Turing machine) 71.B 
by radicals 172.H 

solvable algebra 231.A 
solvable algebraic group 13.F 

k- 13.F 
solvable group 190.1 

finite 151.D 
generalized 190.K 
K- 151.F 

solve 
(a conditional inequality) 21 l.A 
(by means of a Turing machine) 71.E 
(an ordinary differential equation) 313.A 
(a partial differential equation) 320.A 
(a system of algebraic equations) 10.A 
(a triangle) 432.A 

Sommerfeld formula App. A, Table 19.111 
Kneser- App. A, Table 19.111 

Sommerfeld radiation condition 188.D 
Sonine formula, Weber- App. A, Table 19.111 
Sonine polynomials 317.D, App. A, Table 2O.VI 
Sonine-Schatheitlin formula App. A, Table 19.111 
SOR (successive overrelaxation) 302.C 
sorting 96.C 
soudure 80.N 
sound propagation, equation of 325.A 
source 126.G 28 1 .C 

(of a jet) 105.X 
autoregressive Gaussian 213.E 
ergodic information 213.C 
information 213.A 
stationary 213.C 
without (vector lield) 442.D 

source branch 282.C 
source coding theorem 213.D 

with a fidelity criterion 213.E 
noiseless 213.D 

source coding theory 213.A 
southern hemisphere 140 

south pole 74.D 140 
space(s) 381.B 

of absolute continuity 390.E 
absolutely closed 425.U 
abstract 381.B 
abstract L 310.G 
abstract L, 310.G 
abstract M 310.G 
action 398.A 
adjoint (of a topological linear space) 424.D 
afftne 7.A 
affine locally symmetric 80.J 
afline symmetric 80.5 
K,- 425.Y 
algebraic 16.W 
algebraic fiber 72.1 
analytic 23.C 
analytic, in the sense of Behnke and Stein 23.E 
analytically uniform 125,s 
analytic covering 23.E 
analytic measurable 270.C 
arcwise connected 79.B 
attaching 202.E 
Baire 425.N 
Baire zero-dimensional 273.B 
Banach 37.A,B 
Banach analytic 23.G 
base (of a fiber bundle) 147.B 
base (of a fiber space) 148.B 
base (of a Riemann surface) 367.A 
base for 425.F 
basic (of a probability space) 342.B 
Besov 168.B 
bicompact 408,s 
biprojective 343.H 
Boolean 42.D 
Bore1 270.C 
boundary 112.E 
bundle (of a fiber bundle) 147.B 
C-analytic 23.E 
C-covering 23.E 
Cartan 152.C 
Cartesian 140 
Tech-complete 436.1 
classifying (of a topological group) 147.G,H 
closed half- 7.D 
of closed paths 202.C 
co-echelon 168.B 
collectionwise Hausdorff 425.AA 
collectionwise normal 425.AA 
comb 79.A 
compact 425,s 
compact metric 273.F 
complete 436.G 
completely normal 425.Q 
completely regular 425.4 
complete measure 270.D 
complete product measure 270.H 
complete uniform 436.G 
complex, form 365.L 
complex Hilbert 197.B 
complex interpolation 224.B 
complexity 71.A 
complex projective 343.D 
concircularly flat App. A, Table 4.11 
configuration 126.L 402.G 
conformal 76.A 
conformally flat App. A, Table 4.11 
conjugate (of a normed linear space) 37.D 
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conjugate (of a topological linear space) 424.D 
connected 79.A 
of constant curvature 364.D, App. A, Table 
4.11 

of continuous mapping 435.D 
contractible 79.C 
control (in catastrophe theory) 51.B 
countable paracompact 425.Y 
countably compact 425,s 
countably Hilbertian 424.W 
countably normed 424.W 
covering 91.A 
crystallographic, group 92.A 
decision 398.A 
of decision functions 398.A 
de Sitter 359.D 
developable 425.AA 
(DF)- 424.P 
Dieudonnt complete topological 435.1 
Dirichlet 338.4 
discrete metric 273.B 
discrete topological 425.C 
Douady 23.G 
dual (of a C*-algebra) 36.G 
dual (of a linear space) 256.G 
dual (of a locally compact group) 437.J 
dual (of a normed linear space) 37.D 
dual (of a projective space) 343.B 
dual (of a topological linear space) 424.D 
&- 193.N 
echelon 168.B 
eigen- 269.L 390.A 
Eilenberg-Maclane 70.F 
Einstein 364.D, App. A, Table 4.11 
of elementary events 342.B 
elliptic 285.C 
error 403.E 
estimation 403.E 
Euclidean 140 
external (in static model in catastrophe theory) 

51.B 
(F)- 424.1 
fiber 72.1 148.B 
finite type power series 168.B 
Finsler 152.A 
Fock (antisymmetric) 377.A 
Fock (symmetric) 377.A 
Frechet 37.0 424.1 425.CC 
Frechet, in the sense of Bourbaki 37.0 424.1 
Frtchet L- 87.K 
Frechet-Uryson 425.CC 
fully normal 425.X 
function 168.A 435.D 
fundamental 125.S 
G- 178.H 431.A 
general analytic 23.G 
generalized topological 425.D 
generating (of a quadric hypersurface) 343.E 
globally symmetric Riemannian 412.A 
Green 193.N 
group 92.A 
H- 203.D 
Haar 142.B 
half- (of an afline space) 7.D 
Hardy 168.B 
Hausdorff 425.Q 
Hausdorff uniform 436.C 
H-closed 425.U 
hereditarily normal 425.Q 
Hermitian hyperbolic 412.G 

Hilbert 173.B 197.B 
Hilbert, adjoint 251.E 
Hilbert, exponential 377.D 
Holder 168.B 
holomorphically complete 23.F 
homogeneous -homogeneous space 
hyperbolic 285.C 412.H 
identification (by a partition) 425.L 
indiscrete pseudometric 273.B 
inductive limit 210.C 
infinite-dimensional 117.B 
infinite lens 91.C 
infinite type power series 168.B 
at infmity (in affine geometry) 7.B 
inner product 442.B 
internal (in static model in catastrophe 
theory) 51.B 

interpolation 224.A 
of irrational numbers 22.A 
irreducible symmetric Hermitian 412.A 
isometric 273.B 
John-Nirenberg (= BMO) 168.B 
k- 425.CC 
k’- 425.CC 
K-complete analytic 23.F 
Kawaguchi 152.C 
Kolmogorov 425.4 
Kiithe 168.B 
Kuranishi 72.G 
Kuratowski 425.4 
L- 87.K 
L*- 87.K 
Lashnev 425.CC 
lattice ordered linear 310.B 
Lebesgue (= L,(R)) 168.B 
Lebesgue measure, with (u-) finite measure 

136.A 
left coset (of a topological group) 423.E 
left projective 343.H 
left quotient (of a topological group) 423.E 
lens 91.C 
(LF)- 424.W 
of line elements of higher order 152.C 
linear -linear space 
linear topological 424.A 
Lindelof 425,s 
Lipschitz 168.B 
locally arcwise connected 79.B 
locally compact 425.V 
locally connected 79.A 
locally contractible 79.C 204.C 
locally convex Frechet 424.1 
locally Euclidean 425.V 
locally n-connected 79.C 
locally o-connected 79.C 
locally symmetric 364.D 
locally symmetric Riemannian 412.A 
locally totally bounded uniform 436.H 
locally trivial fiber 148.B 
local moduli, of a compact complex manifold 

72.G 
local ringed 383.H 
Loeb 293.D 
loop 202.c 
Lorentz 168.B 
Luzin 22.1422.CC 
M- 425.Y 
(M)- 424.0 
Mackey 424.N 
mapping 202.C 435.D 
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maximal ideal (of a commutative Banach space) 
36.E 

measurable 270.C 
measure 270.D 
metric -metric space 
metric vector 256.H 
metrizable topological 273.K 
metrizable uniform 436.F 
Minkowski 258.A 
moduli 16.W 72.G 
Moishezon 16.W 
momentum phase 126.L 
Monte1 424.0 
Moor 273.K 425.AA 
n-classifying (of a topological group) 147.G 
n-connected 79.C 202.L 
n-connective fiber 148.D 
n-dimensional 117.B 
n-simple 202.L 
non-Euclidean 285.A 
normal 425.Q 
normal analytic 23.D 
normed linear 37.B 
NP- 71.E 
nuclear 424.S 
null 251.D 
w-connected 79.C 
orbit (of a G-space) 43 1.A 
ordered linear 310.B 
Orlicz 168.B 
P- 425.Y 
p- 425.Y 
paracompact 425,s 
parameter (of a family of compact complex 
manifolds) 72.G 

parameter (for a family of probability measures) 
398.A 

parameter (of a probability distribution) 396.B 
partition of a 425.L 
path 148.C 
path (of a Markov process) 261.B 
path-connected 79.B 
pathological 65.F 
Peirce 231.B 
perfectly normal 425.4 
perfectly separable 425.P 
phase 126.B 163.C 402.C 
physical Hilbert 150.G 
pinching a set to a point 202.E 
polar 191.1 
Polish 22.1 273.5 
precompact metric 273.B 
precompact uniform 436.H 
pre-Hilbert 197.B 
principal (of a flag) 139.B 
principal half- 139.B 
probability 342.B 
product 425.K 
product measure 270.H 
product metric 273.B 
product topological 425.K 
product uniform 436.E 
projective, over A 147.E 
projective limit 210.C 
projectively flat App. A, Table 4.11 
pseudocompact 425,s 
pseudometric 273.B 
pseudometrizable uniform 436.F 
Q- 425.BB 
quasi-Banach 37.0 

I quasicompact 408,s 
quasidual (of a locally compact group) 437.1 
quasinormed linear 37.0 
quaternion hyperbolic 412.G 
quotient 425.L 
quotient (by a discrete transformation group) 

122.A 
I quotient (of a linear space with respect to an 

equivalence relation) 2S6.F 
quotient (by a transformation group) 122.A 
quotient topological 425.L 
r-closed 425.U 
ramified covering 23.B 
real-compact 425.BB 
real Hilbert 197.B 
real hyperbolic 412.G 
real interpolation 224.C 
real linear 256.A 
real projective 343.D 
reduced product 202.4 
reflexive Banach 37.G 
regular 425.Q 
regular Banach 37.G 
representation (for a Banach algebra) 36.D 
representation (of a representation of a Lie 
algebra) 248.B 

representation (of a representation of a Lie 
group) 249.0 

representation (of a unitary representation) 
437.A 

Riemannian 364.A 
Riesz 310.B 
right coset (of a topological group) 423.E 
right projective 343.H 
right quotient (of a topological group) 423.E 
ringed 383.H 
(S)- 424.S 
sample 342.B 396.B 398.A 
scale of Banach 286.2 
Schwartz 424,s 
separable 425.P 
separable metric 273.E 
separated 425.4 
separated uniform 436.C 
sequential 425.CC 
sequentially compact 42S.S 
sheaf 383.C 
shrinking, to a point 202.E 
Siegel, of degree n 32.F 
Siegel upper half-, of degree n 32.F 
C- 425.Y 
o- 425.Y 
c-compact 425.V 
u-finite measure 270.D 
simply connected 79.C 170 
of singularity 390.E 
smashing, to a point 202.E 
Sobolev 168.B 
Spanier cohomology theory, Alexander- 

Kolmogorov- 201.M 
spherical 285.D 
Spivak normal fiber 114.5 
standard Bore1 270.C 
standard measurable 270.C 
standard vector (of an afline space) 7.A 
state (of a dynamical system) 126.B 
state (of a Markov process) 261.B 
state (in static model in catastrophe theory) 

51.B 
state (of a stochastic proccess) 407.B 
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Stein 23.F 
stratitiable 425.Y 
strongly paracompact 425,s 
structure (of a Banach algebra) 36.D 
subbase for 425.F 
Suslin 22.1 425.CC 
symmetric Hermitian 412.E 
symmetric homogeneous 412.B 
symmetric Riemannian 412 
symmetric Riemannian homogeneous 412.B 
Ta- 425.4 
Tl- 425.Q 
Ti-uniform 436.C 
Ta- 425.Q 
Ta- 425.Q 
T4- 425.4 
T,- 425.4 
T6- 425.Q 
tangent 105.H 
tangent vector 105.H 
Teichmiiller 416 
tensor, of degree k 256.5 
tensor, of type (p, q) 256.5 
test function 125,s 
Thorn 114.G 
Tikhonov 425.Q 
time parameter 260.A 
topological -topological space 
topological complete 436.1 
topological linear 424.A 
topological vector 424.A 
total (of a fiber bundle) 147.B 
total (of a fiber space) 148.B 
totally bounded metric 273.B 
totally bounded uniform 436.H 
totally disconnected 79.D 
transformation (of an algebraic group) 13.G 
of type S 125.T 
underlying topological (of a complex manifold) 

72.A 
underlying topological (of a topological group) 
423.A 

uniform -uniform space 
uniformizable topological 436.H 
uniformly locally compact 425.V 
uniform topological 436.C 
unisolvent 142.B 
universal covering 91.B 
universal Teichmiiller 416 
vector, over K 256.A 
velocity phase 126.L 
weakly symmetric Riemannian 412.J 
well-chained metric 79.D 
wild 65.F 

space complexity 71.A 
space form 285.E 412.H 

Euclidean 412.H 
hyperbolic 412.H 
spherical 412.H 

space geometry 181 
space group 92.A 

crystallographic 92.A 
equivalent 92.A 

spacelike 258.A 359.B 
space reflection 359.B 
space-time, Minkowski 359.B 
space-time Brownian motion 45.F 
space-time inversion 258.A 
space-time manifold 359.D 
span 

(of a domain) 77.E 
(a linear subspace by a set) 256.F 
(of a Riemann surface) 367.G 

spanning tree 186.G 
sparse 302.C 
Splth type division theorem (for microdifferential 

operators) 274.F 
spatial (*-isomorphism on von Neumann algebras) 

308.C 
spatially homogeneous (process) 261.A 
spatially isomorphic (automorphisms on a measure 

space) 136.E 
spatial tensor product 36.H 
Spearman rank correlation 371.K 
Spec (spectrum) 16.D 
special Clifford group 61.D 
special divisor 9.C 
special flow 136.D 
special function(s) 389, App. A, Table 14.11 

of confluent type 389.A 
of ellipsoidal type 389.A 
of hypergeometric type 389.A 

special functional equations 388 
special isoperimetric problem 228.A 
speciality index 

(of a divisor of an algebraic curve) 9.C 
(of a divisor on an algebraic surface) 15.D 
o- (of a divisor of an algebraic curve) 9.F 

specialization 16.A 
(in ttale topology) l6.AA 

special Jordan algebra 231.A 
special linear group 60.B 

(over a noncommutative field) 60.0 
of degree n over K 60.B 
projective 60.B 
projective (over a noncommutative field) 60.0 

special orthogonal group 60.1 
complex 60.1 
over K with respect to Q 60.K 

special principle of relativity 359.B 
special relativity 359.B 
special representation (of a Jordan algebra) 231.C 
special surface 110.A 
special theory of perturbations 420.E 
special theory of relativity 359.A 
special unitary group 60.F 

(relative to an s-Hermitian form) 60.0 
over K 60.H 
projective, over K 60.H 

special universal enveloping algebra (of a Jordan 
algebra) 231.C 

special valuation 439.B 
species 

ellipsoidal harmonics of the first, second, third 
or fourth 133.C 

Lame functions of the first, second, third or 
fourth 133.C 

singular projective transformation of the hth 
343.D 

singular quadric hypersurface of the hth (in a 
projective space) 343.E 

specification 401.A 
problem of 397.P 

specific heat 
at constant pressure 419.B 
at constant volume 419.B 

specificity 346.F 
specific resistance 130.B 
spectral analysis 390.A 
spectral concentration 331.F 
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spectral decomposition 126.5 395.B 
spectral density, quadrature 397.N 
spectral functor 200.5 
spectral geometry 391.A 
spectral integral 390.D 
spectral invariant 136.E 
spectrally isomorphic (automorphisms on a measure 

space) 136.E 
spectral mapping theorem 251.G 
spectral measure 390.B,K 395.B,C 

complex 390.D 
maximum 390.G 
real 390.D 

spectral method 304.B 
spectral operator 390.K 
spectral property 136.E 
spectral radius 126.K 251.F 390.A 
spectral representation 390.E 

complex 390.E 
spectral resolution 390.E 

complex 390.E 
spectral sequence 200.5 

(of a fiber space) 148.E 
cohomology 200.5 
Hodge 16.U 

spectral synthesis 36.L 
spectral theorem 390.E 
spectrum 390.A 

(of a commutative ring) 16.D 
(of a domain in a Riemannian manifold) 391.A 
(of an element of a Banach algebra) 36.C 
(in homotopy theory) 202.T 
(of a hyperfunction) 274.E 
(of an integral equation) 217.5 
(of a linear operator) 251.F 390.A 
(of a spectral measure) 390.C 
absolutely continuous 390.E 
continuous (of a linear operator) 390.A 
continuous (of an integral equation) 217.5 
countable Lebesgue 136.E 
discrete 136.E 390.E 
Eilenberg-MacLane 202.T 
essential 390.E,I 
formal (of a Noetherian ring) 16.X 
intermittent 433.C 
joint 36.M 
Kolmogorov 433.C 
for p-forms 391.B 
point 390.A 
pure point 136.E 
quasidiscrete 136.E 
residual 390.A 
simple 390.G 
singular 125.CC 345.A 390.A 
singular (of a hyperfunction) 274.E 
singularity (of a hyperfunction) 125.CC 274.E 
sphere 202.T 
stable homotopy group of the Thorn 114.G 
Thorn 114.G 202.T 

spectrum condition 150.D 
speed measure 115.B 
Speiser theorem, Hilbert- 172.J 
Spencer mapping (map), Kodaira- 72.G 
sphere(s) 139.1 150 

circumscribing (of a simplex) 139.1 
combinatorial, group of oriented differentiable 
structures on the 114.1 

complex 74.D 
E- (of a point) 273.C 
exotic 114.B 

homotopy n- 65.C 
homotopy n-, h-cobordism group of 114.1 
horned, Alexander’s 65.G 
open n- 140 
open 140 
PL (k - l)- 65.C 
pseudo- 111.1 
Riemann 74.D 
solid 140 
solid n- 140 
topological 140 
topological solid 140 
unit 140 
w- 74.D 
z- 74.D 

sphere bundle n- 147.K 
cotangential 274.E 
normal 274.E 
tangential 274.E 
unit tangent 126.L 

sphere geometry 76.C 
sphere pair 235.G 65.D 
sphere spectrum 202.T 
sphere theorem 

(characterization of a sphere) 178.C 
(embedding in a 3-manifold) 65.E 

spherical 
(real hypersurface) 344.C 
(space form) 412.H 

spherical astronomy 392 
spherical Bessel function 39.B 
spherical coordinates 9O.C App. A, Table 3.V 
spherical derivative (for an analytic or meromorphic 

function) 435.E 
spherical excess 432.B 
spherical Fourier transform 437.2 
spherical function(s) 393 

(on a homogeneous space) 437.X 
Laplace 393.A 
zonal (on a homogeneous space) 437.Y 

spherical G-fiber homotopy type 43 1.F 
spherical geometry 285.D 
spherical harmonic function 193.C 
spherical harmonics, biaxial 393.D 
spherical indicatrix (of a space curve) 11 l.F 
spherical modification 114.F 
spherical representation 

of a differentiable manifold 1ll.G 
of a space curve 111 .F 
of a unimodular locally compact group 437.2 

spherical space 285.D 
spherical triangle 432.B, App. A, Table 2.111 
spherical trigonometry 432.B 
spherical type 13.R 
spherical wave 446 
spheroidal coordinates 133.D, App. A, Table 3.V 
spheroidal wave function 133.E 
spin 132.A 258.A 415.G 

continuous 258.A 
spin and statistics, connection of 132.A 150.D 
spin ball 351.L 
spin bundle 237.F 
SpinC bundle 237.F 
spin-flip model 340.C 
spin mapping (map) 237.G 
spin matrix, Pauli 258.A 415.G 
spinor 61.E 

contravariant 258.A 
covariant 258.A 
dotted 258.B 
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even half- 61 .E 
mixed, of rank (k, n) 258.A 
odd half- 61.E 
undotted 258.B 

spinor group 60.1 61.D 
complex 6 1 .E 

spinorial norm 61.D 
spinor representation (of rank k) 258.A 
spin representation 

(of SO(n)) 60.5 
(of Spin(n, C)) 61.E 
even half- 61 .E 
half- 61.E 
odd half- 61.E 

spin-structure 237.F 431.D 
spin systems, lattice 402.G 
spiral 93.H 

Archimedes 93.H 
Bernoulli 93.H 
Cornu 93.H 
equiangular 93.H 
hyperbolic 93.H 
logarithmic 93.H 
reciprocal 93.H 

Spivak normal fiber space 114.5 
spline 223.F 

natural 223.F 
spline interpolation 223.F 
split 

((B,N)-pair) 151.5 
(cocycle in an extension) 257.E 
(exact sequence) 277.K 
k- (algebraic group) 13.N 
K- (algebraic torus) 13.D 
k-quasi- (algebraic group) 13.0 
maximal k-, torus 13.Q 

split extension (of a group) 190.N 
splitting, Heegaard 65.C 
splitting field 

for an algebra 362.F 
for an algebraic torus 13.D 
minimal (of a polynomial) 149.G 
of a polynomial 149.G 

splitting ring 29.K 
split torus, maximal k- 13.Q 
spot prime 439.H 
Spur 269.F 
square(s) 

Euler 241.B 
latin 241 
Latin 102.K 
least, approximation 336.D 
matrix of the sum of, between classes 280.B 
matrix of the sum of, within classes 280.B 
method of least 303.1 
middle-, method 354.B 
Room 241.D 
Shrikhande 102.K 
Youden 102.K 
Youden, design 102.K 

square-free integer 347.H 
square integrable 168.B 
square integrable unitary representation 437.M 
square matrix 269.A 
square net 304.E 
square numbers 4.D 
S.S. complex(es) (semisimplicial complex) 70.E 

geometric realization of 70.E 
isomorphic 70.E 

S.S. mapping (semisimplicial mapping) 70.E 
realization of 70.E 

stability 286.S 303.E 394 
A- 303.G 
A,,- 303.G 
A(a)- 303.G 
absolute 303.G 
conjecture 126.5 
exchange of 286.T 
interval of absolute 303.G 
interval of relative 303.G 
orbital (of a solution of a differential equation) 
394.D 

principle of linearized 286,s 
region of absolute (of the Runge-K.utta (P,p) 

method) 303.G 
region of relative 303.G 
relative 303.G 
stiff- 303.G 
structural 290.A 
structural, theorem 126.5 

stability group 362.B 
stability subgroup (of a topological group) 431.A 
stability theorem 

R- 126.5 
structural 126.J 

stabilizer 
(in an operation of a group) 362.B 
(in a permutation group) 151.H 
(in a topological transformation group) 431.A 
reductive 199.A 

stable 394.A 
(coherent sheaf on a projective variety) 241.Y 
(compact leaf) 154.D 
(discretization, initial value problems) 304.D 
(equilibrium solution) 286,s 
(initial value problem) 304.F 
(invariant set) 126.F 
(linear function) 163.H 
(manifold) 126.G 
(minima1 submanifold) 275.B 
(static model in catastrophe theory) 51.E 
absolutely 303.G 
asymptotically 126.F 286.S 394.B 
in both directions (Lyapunov stable) 394.A 
C’-a- 126.H 
C’-structurally 126.H 
conditionally 394.D 
exponentially 163.G 394.B 
externally, set 186.1 
globally asymptotically 126.F 
internally, set 186.1 
Lagrange 126.E 
Lyapunov 126.F 
Lyapunov, in the positive or negative direction 

394.A 
negatively Lagrange 126.E 
negatively Poisson 126.E 
one-side, for exponent f App. A, Table 22 
orbitally 126.F 
Poisson 126.E 
positively Lagrange 126.E 
positively Poisson 126.E 
relatively 303.G 
uniformly 394.B 
uniformly asymptotically 163.G 394.B 
uniformly Lyapunov 126.F 

stable cohomology operation 64.B 
stable curve 9.K 
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stable distribution 341.G 
quasi- 341 .G 
semi- 341.G 

stable homotopy group 202.T. App. A, Table 6.VII 
(of Thorn spectrum) 114.G 
of classical groups 202.V 
of k-stem 202.U 

stable manifold 126.G,J 
stable point 16.W 
stable primary cohomology operation 64.C 
stable process 5.F 

exponent of 5.F 
one-sided, of the exponent d( 5.F 
strictly 5.F 
symmetric 5.F 

stable range (of embeddings) 114.D 
stable reduction 

(of an Abelian variety) 3.N 
(of a curve) 9.K 
potential (of an Abelian variety) 3.N 

stable reduction theorem 3.N 9.K 
stable secondary cohomology operation 64.C 
stable set 173.D 

externally 186.1 
internally 186.1 

stable solution (of the Hill equation) 268.E 
stable state 260.F 394.A 404.A 
stable vector bundle 

(algebraic) 16.Y 
(topological) 237.B 

stably almost complex manifold 114.H 
stably equivalent (vector bundles) 237.B 
stably fiber homotopy equivalent 237.1 
stably parallelizable (manifold) 114.1 
stack 96.E 
stage method, (P + l)- 303.D 
stalk (of a sheaf over a point) 16.AA 383.B 
standard 

(in nonstandard analysis) 293.B 
(transition probability) 260.F 

standard Bore1 space 270.C 
standard complex (of a Lie algebra) 200.0 
standard defining function 125.2 
standard deviation 

(characteristics of the distribution) 397.C 
(of a probability distribution) 341.B 
(of a random variable) 342.C 
population 396.C 
sample 396.C 

standard form 241.A 
(of a difference equation) 104.C 
of the equation (of a conic section) 78.C 
Legendre-Jacobi (of an elliptic integral) 134.A, 
App. A, Table 16.1 

standard Gaussian distribution 176.A 
standard Kahler metric (of a complex projective 

space) 232.D 
standard measurable space 270.D 
standard normal distribution 341.D 
standard parabolic k-subgroup 13.4 
standard part (in nonstandard analysis) 293.D 
standard q-simplex 201.E 
standard random walk 260.A 
standard resolution (of 2) 200.M 
standard sequence 400.K 
standard set 22.1 
standard vector space (of an aftine space) 7.A 
star - also * 

(in a complex) 13.R 
(in a Euclidean complex) 70.B 

(in a projective space) 343.B 
(in a simplicial complex) 70.C 
(of a subset defined by a covering) 425.R 
open 70.B,C 

star body, bounded 182.C 
star convergence 87.K 

(o)- 87.L 
relative uniform 310.F 

star-finite (covering of a set) 425.R 
star-finite property 425,s 
star refinement (of a covering) 425.R 
star region 339.D 
starting values (in a multistep method) 303.E 
start node 281.D 
star topology, weak (of a normed linear space) 

37.E 424.H 
state(s) 

(of a C*-algebra) 308.D 
(in Ising model) 340.B 
(in quantum mechanics) 351.B 
bound 351.D 
ceiling 402.G 
completeness of the scattering 150.D 
equation of 419.A 
equilibrium 136.H 340.B 419.A 
even 415.H 
fictitious 260.F 
final 31.B 
Gibbs 340.B 
ground 402.G 
in- 150.D 386.A 
initial 31.B 
instantaneous 260.F 261.B 
internal 31.B 
odd 415.H 
out- 150.D 386.A 
scattering 395.B 
stable 260.F 394.A 404.A 
stationary 340.C 351.D 
of statistical control 404.A 
sum over 402.D 
unstable 394.A 

state estimator 86.E 
state space 126.B 

(in catastrophe theory) 51.B 
(of a dynamical system) 126.B 
(of a Markov process) 261.B 
(of a stochastic process) 407.B 

state-space approach 86.A 
state variable 127.A 
static model (in catastrophe theory) 51.B 

stable 51.B 
stationary capacity 213.F 
stationary curve 

(of the Euler-Lagrange differential equation) 
324.E 

(of a variation problem) 40.B 
stationary function 46.B 
stationary iterative process, linear 302.C 
stationary phase method 30.8 
stationary point (of an arc of class C”) 11 l.D 
stationary Poisson point process 407.D 
stationary process(es) 342.A 395 

shift associated with 136.D 
strictly 395.A 
strongly 395.A 
weakly 395.A 
weakly, of degree k 395.1 
in the wider sense 395.A 

stationary random distribution 
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strictly 395.H 
strongly 395.F,H 
weakly 395.C 

stationary source 213.C 
stationary state 340.C 3.51.D 
stationary value (of a function) 106.L 
stationary variational inequality 440.B 
stationary wave 446 
statistic 396 

ancillary 396.H 401 .C 
Hotelling’s T* 280.B 
invariant 396.H 
Kolmogorov-Smirnov test 374.E 
maximal invariant 396.1 
minimal sufficient 396.1 
n-dimensional 396.B 
necessary and suflicient 396.E 
l-dimensional 396.B 
order 396.C 
selection 396.F 
t- 374.B 
L’- 374.1 

statistical control, state of 404.A 
statistical data analysis 397.A 
statistical decision function 398 
statistical decision problem 398.A 
statistical decision procedure 398.A 
statistical estimation 399, App. A, Table 23 
statistical experiment 398.G 
statistical genetics 40.B 
statistical hypothesis 400.A 
statistical hypothesis testing 400, App. A, Table 23 
statistical inference 401 
statistical model 403 
statistical mechanics 342.A 402 

classical 402.A 
equilibrium 402.A 
of irreversible processes 402.A 
Markov 340.C 
quantum 402.A 

statistical planning 102.A 
statistical quality control 404 
statistical structure 396.E 

dominated 396.F 
statistical thermodynamics 402.A 
statistics 397.C 

Bose 377.B 402.E 
Fermi 377.B 402.E 

statistics and spin, connection of 150.D 
Staudt algebra 343.C 
Steenrod algebra 64.B 
Steenrod axioms, Eilenberg- 201.4 
Steenrod isomorphism theorem, Hurewicz- 148.D 
Steenrod operator App. A, Table 6.11 
Steenrod pth power operation 64.B 
Steenrod square operation 64.B 
steepest descent, curve of 46.A 
steepness, wave 205.F 
Stein, analytic space in the sense of Behnke and 

23.E 
Steinberg formula (on representation of compact Lie 

groups) 248.2 
Steinberg group 237.5 
Steinberg symbol 237.5 
Steinberg type 13.0 
Stein continuation theorem, Remmert- 23.B 
Stein decomposition, Fefferman- 168.B 
Steiner problem 179.A 
Steiner symmetrization 228.B 
Steinhaus theorem, Banach- 

(in a Banach space) 37.H 
(in a topological linear space) 424.5 

Stein lemma, Hunt- 400.F 
Stein manifold 21.L 

fundamental theorems of 21.L 72.E 
Stein space 23.F 
Stein theorem, Behnke- 21.H 
Stein theorem, Lehmann- 400.B 
step, fractional 304.F 
step-by-step method 163.D 
step-down operator 206.B 
step size (in numerical solution) 303.B 
step-up operator 206.B 
stereographic projection 74.D 
Stiefel manifold 199.B 

complex 199.B 
infinite 147.1 
of k-frames 199.B 
of orthogonal k-frames 199.B 
real, of k-frames 199.B 
real, of orthogonal k-frames 199.B 

Stiefel-Whitney class 
(of a differentiable manifold) 56.1~ 147.M 
(of an O(n)-bundle) 147.M 
(of an R”-bundle) 56.B 
(of a topological manifold) 56.F 
total 56.B 
universal 56.B 

Stiefel-Whitney number 56.F 
Stieltjes integral 94.E 

Lebesgue- 94.C 166.C 
Riemann- 94.B 166.C 

Stieltjes measure, Lebesgue- 166.C 270.L 
Stieltjes moment problem 240.K 
Stieltjes theorem 133.C 
Stieltjes transform 220.D 

Fourier- 192.B,O 
Laplace- 240.A 

Stiemke theorem 255.B 
stiff 303.G 

in an interval 303.G 
stiffness matrix 304.C 
stiffness ratio 303.G 
stiff-stability 303.G 
stimulus-sampling model, Estes 342.H 346.G 
Stirling formula 174.A 212.C, App. A, Table 17.1 
Stirling interpolation formula App. A., Table 21 
Stirling number of the second kind 66.D 
stochastically larger (random variable) 371.C 
stochastic calculus 406.A 
stochastic control 342.A 405 
stochastic differential 406.C 
stochastic differential equation 342.A 

linear (LSDE) 405.G 
of Markovian type 406.D 

stochastic differential of Stratonovich type 406.C 
stochastic filtering 324.A 405.F 
stochastic inference, graphical method of 19.B 
stochastic integral 261.E 406.B 

of It8 type 406.C 
of Stratonovich type 406.C 

stochastic Ising model 340.C 
stochastic matrix 260.A 
stochastic maximum principle 405.D 
stochastic model 264 
stochastic moving frame 406.G 
stochastic paper 19.B 
stochastic process@) 342.A 407 

generalized 407.C 
with stationary increments of order n 395.1 
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stochastic programming 264.C 307.C 408 
two-stage 408.A 

Stoilow compactification, Kerekjarto- 207.C 
Stoilow type (compactification) 207.B 
Stokes approximation 205.C 
Stokes assumption 205.C 
Stokes differential equation 167.E 188.E 
Stokes equation, general Navier- 204.F 
Stokes equation, Navier- 204.B 205.C 
Stokes formula 94.F 105.0, App. A, Table 3.11 

Green- 94.F 
Stokes initial value problem, Navier- 204.B 
Stokes multiplier 254.C 
Stokes phenomenon 254.C 
Stokes theorem App. A, Table 3.111 
Stokes wave 205.F 
Stolz, differentiable in the sense of 106.G 
Stolz path (in a plane domain) 333.B 
Stone-Tech compactitication 207.C 425.T 
Stone-Gel’fand theorem 168.B 
Stone integrable function, Daniel]- 310.1 
Stone integral, Daniell- 310.1 
Stone theorem 378.C 425.X 437.R 
Stone theorem, Weierstrass- 168.B 
Stone-Titchmarsh-Kodaira theory, Weyl- 112.0 
stopping, optimal 405.E 
stopping rule 398.F 
stopping time 261.B 407.B 
storage, push-down 96.E 
stored program principle 75.B 
Starmer inequality, Powers- 212.B 
straight angle 139.D 
straightening of the angle 114.F 
straight, G-space is 178.H 
straight line(s) 93.A 155.B 
straight line solution 420.B 
strain 271.G 
strain, shearing 271.G 
strain tensor 271.G 
strange attractor 126.N 
Strassen invariance principle 250.E 
strategic variable 264 
strategy (strategies) 33.F 108.B,C 173.C 

behavior 173.B 
local 173.B 
mixed 173.C 
pair 108.B 
pure 173 
winning 33.F 

stratifiable space 425.Y 
stratification, Whitney 418.G 
stratified sampling 373.E 
Stratonovich type 

stochastic differential of 406.C 
stochastic integral of 406.C 

stratum (strata) 373.E 418.G 
p-constant 418.E 

stream function 205.8 
streamlined (body) 205.C 
stream lines 205.B 
strength 102.L 
stress 271.G 

normal 271.G 
shearing 27 1 .G 
tangential 271.G 

stress tensor 150.B 271.G 
Maxwell 130.A 

strict Albanese variety 16.P 
strict implication 411.L 
strict localization 16.AA 

strictly concave function 88.A 
strictly convex function 88.A 
strictly decreasing function 166.A 
strictly ergodic (homeomorphism on a compact 

metric space) 136.H 
strictly G-stationary (system of random variables) 

395.1 
strictly increasing function 166.A 
strictly inductive limit (of a sequence of locally 

convex spaces) 424.W 
strictly monotone function 166.A 

(of ordinal numbers) 312.C 
strictly of Polya type (a family of probability 

densities) 374.5 
strictly positive (element in E”) 310.H 
strictly pseudoconvex 344.A 
strictly stable process 5.F 
strictly stationary process 395.A 
strictly stationary random distribution 395.H 
strict morphism (between topological groups) 423.5 
string 

a- 248.L 
equation of a vibrating 325.A 

string model 132.C 
strip 

bicharacteristic 320.B 
characteristic 320.D 324.B 
Mobius 410.B 

strip condition 320.D 
strong (boundary component) 77.E 
strong convergence (of operators) 251.C 
strong convergence theorem (on distributions) 

125.G 
strong deformation retract 202.D 
strong dilation 251.M 
strong dual (space) 424.K 
stronger 

(equivalence relation) 135.C 
(method of summation) 379.L 
(topology) 425.H 
(uniformity) 436.E 

stronger form of Cauchy’s integral theorem 198.B 
strong extension 

(of a differential operator) 112.E 
(of a differential operator with boundary condi- 
tion) 112.F 

strong infinity, axiom of 33.E 
strong integrability 443.1 
strong lacuna 325.5 
strong law of large numbers 250.C 
strong Lefschetz theorem 16.U 
strongly, converge (in a Banach space) 37.B 
strongly acute type 304.C 
strongly closed subgroup 151.5 
strongly compact cardinal number 33.E 
strongly connected (graph) 186.F 
strongly connected components 186.F 
strongly continuous 

(Banach space-valued function) 37.K 
(in unitary representations) 437.A 

strongly continuous representation (of a topological 
space) 69.B 

strongly continuous semigroup 378.B 
strongly distinguished basis 418.F 
strongly elliptic (differential operator) 112.G 
strongly elliptic operator 323.H 
strongly embedded subgroup 151.5 
strongly exposed (of a convex set) 443.H 
strongly hyperbolic differential operator 325.H 
strongly inaccessible 33.F 312.E 
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strongly inaccessible cardinal number 33.E F- (on a topological space) 90.D 
strongly measurable 443.B,I r;- 154.E 
strongly mixing automorphism 136.E r,- 154.H 
strongly nonlinear differential equation 290.D group of oriented differentiable (on a com- 
strongly normal extension field 113 binatorial sphere) 114.1 
strongly P-convex set 112.C Hodge (of a vector space) 16.V 
strongly paracompact space 425,s isomorphic 276.E 
strongly pseudoconvex domain 21.G jumping of 72.G 
strongly recurrent (measurable transformation) lacunary (of a power series) 339.E 

136.C level n (on an Abelian variety) 3.N 
strongly separated (convex sets) 89.A linear 96.C 
strongly stationary process 395.A mathematical 409.B 
strongly stationary random distribution 395.H mixed 16.V 
strong Markov process 261.B Neyman 400.D 
strong Markov property 261.B normal 276.D 
strong maximum principle 323.C normal analytic 386.C 
strong measurability 443.1 PL 65.C 
strong operator topology 25 1 .C pseudogroup 105.Y 
strong rigidity theorem 122.G real analytic 105.D 
strong solution smooth 114.B 

(of Navier-Stokes equation) 204.C spin- 237.F 431.D 
(of a stochastic differential equation) 406.D statistical 396.E 
unique 406.D symplectic 219.C 

strong topology tensor field of almost complex (induced by a 
(on a direct product space) 425.K complex structure) 72.B 
(on a family of measures) 338.E topological 425.A,B 
(on a normed space) 37.E tree 96.D 
(on a topological linear space) 424.K twinning 92.D 

strong transversality condition 126.5 uniform 436.B 
structural constants (of a Lie algebra) 248.C structure equation 
structural equation system, linear 128.C (of an aftine connection) 417.B 
structurally stable, C’- 126.H (for a curvature form) 80.G 
structural stability 290.A (for a torsion form) 80.H 
structural stability theorem 126.5 linear, system 128.C 
structure(s) 409 structure function 191.C 

(of a language) 276.B structure group (of a tiber bundle) 147.B 
almost complex 72.B structure morphism 52.G 
almost contact 1lO.E structure sheaf 
almost contact metric llO.E (of a prealgebraic variety) 16.C 
almost symplectic 191.B (of a ringed space) 383.H 
analytic (in function algebras) 164.F (of a variety) 16.B 
analytic (on a Riemann surface) 367.A structure space (of a Banach algebra) 36.D 
arithmetically equivalent 276.D structure theorem 
Cauchy Riemann 344.A (on topological Abelian groups) 422.E 
CR 344.A of complete local rings 284.D 
C’- (of a differentiable manifold) 105.D 114.A for von Neumann algebras of type III 308.1 
C’-, Haelliger 154.F Sturm-Liouville operator 112.1 
classifying space for f; 154.E Sturm-Liouville problem 315.B 
coalition 173.D Sturm method 301.C 
compatible with c’- 114.B Sturm theorem (on real roots of an algebraic equa- 
complex 105.Y tion) 10.E 
complex (in a complex manifold) 72.A Struve function App. A, Table 19.W 
complex (on RI”) 3.H Student test 400.G 
complex (on a Riemann surface) 367.A subadditive cuts 215.C 
complex analytic (in a complex manifold) 72.A subadditive ergodic theorem 136.B 
conformal 191.8 subadditive functional 88.B 
conformal (on a Riemann surface) 367.A subadditive process 136.B 
contact 105.Y subalgebra 29.A 
contact metric 110.E Bore1 (of a semisimple Lie algebra) 248.0 
data 96.B Cartan (of a Lie algebra) 248.1 
deformation of complex 72.G Cartan (symmetric Riemann space) 413.F 
differentiable 114.B closed (of a Banach algebra) 36. B 
differentiable, of class C’ 105.D Lie 248.A 
elementarily equivalent 276.D of a Lie algebra associated with a Lie subgroup 
equations (of a Euclidean space) 11 l.B 249.D 
equations of (for relative components) 1lO.A parabolic (of a semisimple Lie algebra) 248.0 
foliated 105.Y *- 308.C 
G- 191 subbase 
f- (on a differentiable manifold) 105.Y for a space 425.F 
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Subset(s) 

for a topology 425.F 
subbialgebra 203.G 
subbundle 

(of an algebraic vector bundle) 16.Y 
(of a vector bundle) 147.F 

subcategory 52.A 
full 52.A 

subcoalgebra 203.F 
subcomplex 

(of a cell complex) 70.D 
(of a chain complex) 200.H 201.B 
(of a cochain complex) 201.H 
(of a complex) 13.R 
(of a Euclidean complex) 70.B 
(of a simplicial complex) 70.C 
(of an S.S. complex) 70.E 
chain 200.C 
cochain 200.F 

subcontraction 186.E 
subcritical (Galton-Watson process) 44.B 
subdifferential 88.D 
subdivision 

(of a Euclidean complex) 70.B 
(of a simplicial complex) 70.C 
(of a triangulation) 70.C 
barycentric (of a Euclidean complex) 70.B 
barycentric (of a simplicial complex) 70.C 
dual (of a triangulation of a homology mani- 
fold) 65.B 

subelliptic 112.D 
subfamily 165.D 
subfield 149.B 

valuation over a 439.B,C 
subgraph 186.E 
subgroup 

(of a group) 190.C 
(of a topological group) 423.D 
admissible 190.E 
admissible normal 190.E 
algebraic 13.A 
arithmetic 13.P 122.F,G 
Bore1 13.G 249.J 
Cartan 13.H 249.1 
Carter 151.D 
closed 423.D 
commutator 190.H 
congruence 122.D 
connected Lie 249.D 
cyclic 190.C 
divisible 422.G 
Hall 151.E 
invariant 190.C 
irreducible discrete 122.F 
isotropy 431.A 
Iwahori 13.R 
k-Bore1 13.G 
Levi- 13.4 
Lie 249.D 
maximal torsion 2.A 
minimal parabolic k- 13.Q 
normal 190.G 
R- 190.E 
one-parameter 249.Q 
open 423.D 
parabolic 13.G 249.5 
parabolic 13.R 
principal congruence, of level N 122.D 
p-Sylow 151.B 
rational 404.B 
Schur 362.F 

sequences of 190.F 
stability 431.A 
standard parabolic k- 13.4 
strongly closed 151.5 
strongly embedded 151.5 
subnormal 190.G 
Sylow 151.B 
toroidal 248.X 
torsion 2.A,C 

subharmonic functions 193 
almost 193.T 

subinvariant measure 261.F 
subjective probability 401.B 
sublattice 243.C 
submanifold 

(of a Banach manifold) 286.N 
(of a combinatorial manifold) 65.D 
(of a Cm-manifold) 105.L 
closed 105.L 
complex analytic 72.A 
immersed (of a Euclidean space) 11 LA 
isotropic 365.D 
KLhler 365.L 
minimal 275 365.D 
regular 105.L 
Riemannian 365.A 
totally geodesic 365.D 
totally real 365.M 
totally umbilical 365.D 

submartingale 262.A 
submedian 193.T 
submersion 105.L 
submodular 66.F 
submodule 

A- 277.C 
allowed 277.C 
complementary 277.H 
homogeneous A- (of a graded A-module) 
200.B 

primary 284.A 
subnet 87.H 

cotinal 87.H 
subnormal (operator in a Hilbert space) 251.K 
subnormal subgroup 190.G 
subobject 52.D 
subordinate 105.D 437.T 
subordination 5 261.F 

of the &h order 261.F 
subordinator of the exponent a 5.F 
subproblems 215.D 
subrepresentation 

(of a linear representation) 362.C 
(of a projective representation) 362.5 
(of a unitary representation) 437.C 

subring 368.E 
differential 113 

subroutine 75.C 
subscripts, raising 417.D 
subsequence 165.D 

q- 354.0 
subset(s) 381.A 

(in axiomatic set theory) 33.B 
analytic (of a complex manifold) 72.E 
axiom of 33.B 381.G 
Bore1 270.C 
circled (of a linear topological space) 424.E 
cotinal 311.D 
G- 362.B 
k- 330 
proper 381.A 
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Subshift 
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residual 3 11 .D 
subshift 126.5 

of finite type 126.5 
Markov 126.5 

subsidiary equation, Charpit 82.C 320.D 
subsonic (Mach number) 205.B 
subsonic flow 326.A 
subspace 

(of an affine space) 7.A 
(of a linear space) 256.F 
(of a projective space) 343.B 
(of a topological space) 425.3 
analytic 23.C,G 
closed linear (of a Hilbert space) 197.E 
complementary (of a linear subspace) 256.F 
horizontal 191.C 
ingoing 375.H 
invariant (of a linear operator) 251.L 
involutive 428.F 
linear (of a linear space) 256.F 
metric 273.B 
n-particle 377.A 
orthogonal (determined by a linear subspace) 

256.G 
orthogonal (of a linear space) 139.G 
outgoing 375.H 
precompact (metric) 273.B 
parallel (in an aftine space) 7.B 
parallel, in the narrower sense (in an aftine 

space) 7.B 
parallel, in the wider sense (in an afline space) 

7.B 
principal (of a linear operator) 390.B 
root (of a linear operator) 390.B 
root (of a semisimple Lie algebra) 248.K 
singular (of a singular projective transforma- 

tion) 343.D 
totally bounded (metric) 273.B 
totally isotropic (relative to an s-Hermitian 
form) 60.0 

totally isotropic (with respect to a quadratic 
form) 348.E 

totally singular (with respect to a quadratic 
form) 348.E 

U-invariant (of a representation space of a 
unitary representation 437.C 

uniform 436.~ 
substituted distribution 125.4 
substitution 

(of a hyperfunction) 125.X 274.E 
axiom of 381.G 
back 302.B 
Frobenius (of a prime ideal) 14.K 

subsystem 
(of an algebraic system) 409.C 
closed (of a root system) 13.L 

subtraction 361.B 
subtraction terms 361.B 
subvariety, Abelian 3.B 
successive approximation 

method of (for an elliptic partial differential 
equation) 323.D 

method of (for Fredholm integral equations of 
the second kind) 217.D 

method of (for ordinary differential equations) 
316.D 

successive minima (in a lattice) 182.C 
successive minimum points 182.C 
successive overrelaxation (SOR) 302.C 
successor 

(of an element in an ordered set) 31 l.B 
(of a natural number) 294.B 

sufficiency 
prediction 396.5 
principle of 4Ol.C 

sufficient (a-field, statistic) 
Bayes 396.5 
D- 396.5 
decision theoretically 396.5 
minimal 396.E 
pairwise 396.F 
test 396.5 

sutliciently many irreducible representations 
437.B 

sum 
(of convergent double series) 379.E 
(of a divergent series by a summation) 379.L 
(of elements of a group) 190.A 
(of elements of a linear space) 256.A 
(a function) 104.B 
(of ideals) 67.B 
(of linear operators) 251.B 
(of linear subspaces) 256.F 
(of matrices) 269.B 
(of ordinal numbers) 312.C 
(of potencies) 49.C 
(of real numbers) 355.A 
(of a quadrangular set of six points) 343.C 
(of a series) 379.A 
(of submodules) 277.B 
(=union of sets) 33.B 381.B 
(of vectors) 442.A 
amalgamated 52.G 
Baer (of extensions) 200.K 
cardinal (of a family of ordered sets) 31 l.F 
Cauchy (of a series) 379.A 
connected (of oriented compact P-manifolds) 

114.F 
connected (of 3-manifolds) 65.E 
constant- (game) 173.A 
Darboux 216.A 
Dedekind 328.A 
diagonal (of a matrix) 269.F 
diagonal partial (of a double series) 379.E 
direct -direct sum 
disjoint 381.B 
fiber 52.G 
Gaussian 295.D 450.C 
general- (game) 173.A 
indefinite (of a function) 104.B 
Kloosterman 32.C 
local Gaussian 450.F 
logical (of propositions) 41 l.B 
ordinal (of a family of ordered sets) 31 l.G 
orthogonality for a tinite 19.G 317.D 
partial (of a series) 379.A 
of products 216.A 
Ramanujan 295.D 
Riemann 216.A 
scalar (of linear operators) 37.C 
over states 402.D 
topological 425.M 
trigonometric 4.C 
Whitney (of vector bundles) 147.F 
zero (game) 173.A 
zero-, two-person game 108.B 

sum event 342.B 
summable 

A- 379.N 
by Abel’s method 379.N 
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absolute Bore1 379.0 
2% 379.0 
IBI- 379.0 
by Borel’s exponential method 379.0 
by Borel’s integral method 379.0 
by Cesaro’s method of order a 379.M 
by Euler’s method 379.P 
by Holder’s method of order p 379.M 
(H, p)- 379.M 
by Norlund’s method 379.Q 
(R, k)- 379,s 
by Riesz’s method of order k 379.R 
T- 379.L 

summable pth power, operator of 68.K 
summand, direct (of a direct sum of sets) 381.E 
summation 

Abel’s method of 379.N 
Abel’s partial 379.D 
Borel’s method of 379.N 
(C, a)- 379.M 
Cesaro’s method of, of order c( 379.M 
Euler’s method of 379.P 
of a function 104.B 
Lebesgue’s method of 379.S 
methods of 379.L 
Norlund’s method of 379.Q 
Riemann’s method of 379,s 
Riesz’s method of, of the kth order 379.R 

summation convention, Einstein’s 417.B 
summation formula 

Euler 295.E 
Poisson (on Fourier transforms) 192.C 
Poisson (on a locally compact Abelian group) 

192.L 
summing, absolutely (operator) 68.N 
sum theorem for dimension 117.C 
Sundman theorem 420.C 
sup (supremum) 31 l.B 
superabundance (of a divisor on an algebraic 

surface) 15.D 
superadditive 173.D 
superconductivity 130.B 
supercritical (Galton-Watson process) 44.B 
superefficient estimator 399.N 
superharmonic (function) 193.P 260.D 
superharmonic measure 260.1 
superharmonic transformation 261.F 
superior function, right 316.E 
superior limit 

(of a sequence of real numbers) 87.C 
(of a sequence of subsets of a set) 270.C 

superior limit event 342.B 
supermartingale 262.A 
supermultiplet theory 351.5 
superposition, principle of 252.B 322.C 
superregular function 260.D 
superrenormalizable 150.C 
superscripts, lowering 417.D 
superselection rule, univalence 351.K 
superselection sector 150.E 351.K 
supersolvable group 151.D 
supersonic 205.B 326.A 
supplementary angles 139.D 
supplementary interval 4.B 
supplementary series 258.C 
supplementation-equal polygons 155.F 
supplemented algebra 200.M 
support 

(of a coherent sheaf) 16.E 
(of a differential form) 105.Q 

(of a distribution) 125.D 
(of a function) 125.B 168.B 425.R 
(of a section of a sheaf) 383.C 
(of a spectral measure) 390.D 
compact (of a singular q-cochain) 2Ol.P 
essential (of a distribution) 274.D 
singular (of a distribution) 112.C 
singular (of a hyperfunction) 125.W 

supporting function 125.0 
supporting functional (of a convex set) 89.G 
supporting half-space (of a convex set) 89.A 
supporting hyperplane (of a convex set) 89.A 
supporting line (of an oval) 89.C 
supporting line function (of an oval) 89.C 
supporting point 

(of a convex set) 89.G 
(of a projective frame) 343.C 

supremum 
(of an ordered set) 168.B 
(of a set of Hermitian operators) 308.A 
(of a subset of a vector lattice) 310.C 
essential (of a measurable function) 168.B 

supremum norm 168.B 
supremum theorem, Hardy-Littlewood App. A, 

Table 8 
sure event 342.B 
surely, almost 342.B,D 
surface(s) 11 l.A 410, App. A, Table 4.1 

Abelian 15.H 
abstract Riemann 367.A 
afline minimal 11O.C 
algebraic 15 
basic (of a covering surface) 367.B 
with boundary 410.B 
branched minimal 275.B 
center 111.1 
characteristic 320.B 
circular cylindrical 350.B 
closed 410.B 
closed (in a 3-dimensional Euclidean space) 

111.1 
closed convex 111.1 
conical 111.1 
of constant curvature 111.1 
covering 367.B 
covering, Ahlfors theory of 367.B 
covering, with relative boundary 367.B 
cylindrical 111.1 
deformation of 110.A 
degenerate quadric 350.8 
developable 111.1, App. A, Table 4.1 
Dini 111.1 
elliptic 72.K 
elliptic cylindrical 350.B 
energy 126.L 402C,G 
Enneper 275.B 
Enriques 72.K 
enveloping 111.1 
equipotential 193.5 
Frtchet 246.1 
fundamental theorem of the theory of 11 l.G 
fundamental theorem of the topology of 410.B 
G- 178.H 
of general type 72.K 
geometry on a 11 l.G 
helicoidal 111.1 
Hilbert modular 15.H 
Hirzebruch 15.G 
Hopf 72.K 
hyperbolic cylindrical 350.B 
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hyperelliptic 72.K 
initial 321.A 
K3 15.H 72.K 
Kummer 15.H 
level 193.5 
marked K3 72.K 
minimal 111.1 334.B 
niveau 193.5 
one-sided 4lO.B 
open 4lO.B 
parabolic cylindrical 350.B 
proper quadric 350.B 
quadric 350.A 
quadric conical 350.B 
rational 15.E 
rectifying 111.1 
response 102.L 
response, design for exploring 102.M 
of revolution 111.1 
Riemann - Riemann surface 
ruled 15.E 
ruled (in differential geometry) 111.1 
of the second class 350.D 
of the second order 350.A 
Scherk’s 275.A 
Seifert 235.A 
skew 111.1 
special 1lO.A 
tangent 11 l.F 
two-sided 4lO.B 
unbounded covering 367.B 
unirational 15.H 
universal covering 367.B 
unramified covering 367.B 
Veronese 275.F 
Iv- 111.1 
Weingarten ( W) 111 .I 

surface area of unit hypersphere App. A, Table 9.V 
surface element 324.B 
surface harmonics 393.A 
surface integral 94.A,E 

(with respect to a surface element) 94.E 
surface wave 446 
surgery 114.F,J 
surgery obstruction 114.J 
surjection 381.C 

(in a category) 52.D 
canonical (on direct products of groups) 19O.L 
canonical (to a factor group) 190.D 
canonical (onto a quotient set) 135.B 
natural (to a factor group) 190.D 

surjective mapping 381.C 
survival insurance 214.B 
susceptibility 

electric 130.B 
magnetic 130.B 

suspension 
(of a discrete dynamical system) 126.C 
(of a homotopy class) 202.4 
(of a map) 202.F 
(of a space) 202.E,F 
n-fold reduced 202.F 
reduced (of a topological space) 202.F 

Suslin 
K- 22.H 
schema of 22.B 
system of 22.B 

Suslin hypothesis 33.F 
Suslin space 22.1425.CC 
Suslin theorem 22.C 

suspension isomorphism (on singular (co)homology 
groups) 201.E 

suspension theorem, generalized 202.T 
Suzuki group 151.1 
SVD (singular value decomposition) 302.E 
sweep (a bounded domain) 384.F 
sweepable (bounded domain) 384.F 
sweeping-out principle 338.L 
sweeping-out process 338.L 
sweep out (a measure to a compact set) 338.L 
Swinnerton-Dyer conjecture, Birch- 118.D 450.S 
Sylow subgroup 15I.B 

p- 151.B 
Sylow theorem 15l.B 
Sylvester elimination method 369.E 
Sylvester law of inertia (on a quadratic form) 348.B 
Sylvester theorem (on determinants) 103.F 
Symanzik equation, Callan- 361.B 
symbol 369.A 

(of a Fourier integral operator) 274.C 
(of a pseudodifferential operator) 251.0 345.B 
(= Steinberg symbol) 237.5 
(of a vector field) 105.M 
Artin 14.K 
Christoffel 80.L 1ll.H 417.D, App. A, Table 
4.11 

function 41 l.H 
Gauss 83.A 
Hilbert E- 411.J 
Hilbert-Hasse norm-residue 14.R 
Hilbert norm-residue 14.R 
individual 411.H 
Jacobi 297.1 
Jacobi, complementary law of 297.1 
Jacobi, law of quadratic reciprocity of 297.1 
Kronecker 347.D 
Landau (0, o) 87.G 
Legendre 297.H 
Legendre, first complementary law of 297.1 
Legendre, law of quadratic reciprocity of 297.1 
Legendre, second complementary law of 297.1 
logical 411.B 
9j- 353.C 
norm-residue 14.4 257.F 
power-residue 14.N 
predicate 411.H 
principal (of a differential operator) 237.H 
principal (of a microdifferential operator) 
274.F 

principal (of a simple holonomic system) 
274.H 

6j- 353.B 
Steinberg (in algebraic K-theory) 237.5 
3j- 353.B 

symbolic logic 411 
symbol sequence (in microlocal analysis) 274.F 
symmetric 

(block design) 102.E 
(factorial experiment) 102.H 
(Fock space) 377.A 
(member of a uniformity) 436.B 
(multilinear mapping) 256.H 
(relation) 358.A 
(tensor) 256.N 

symmetric algebra 29.H 
symmetric bilinear form (associated with a quadratic 

form) 348.A 
symmetric bounded domain 412.F 

irreducible 412.F 
symmetric Cauchy process 5.F 
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symmetric difference 304.E 
symmetric distribution function 341.H 
symmetric event 342.G 
symmetric function 337.1 

elementary 337.1 
symmetric group 190.B 

ofdegree n 151.G 
symmetric Hermitian space 412.E 

irreducible 412.E 
symmetric homogeneous space 412.B 
symmetric hyperbolic system (of partial differential 

equations) 325.G 
symmetric kernel 217.G 335.D 
symmetric law (in an equivalence relation) 135.A 
symmetric Markov process 261.C 
symmetric matrix 269.B 

anti- 269.B 
skew- 269.B 

symmetric multilinear form 256.H 
anti- 256.H 
skew- 256.H 

symmetric multilinear mapping 256.H 
anti- 256.H 
skew- 256.H 

symmetric multiplication 406.C 
symmetric operator 251.E 
symmetric points (with respect to a circle) 74.E 
symmetric polynomial 337.1 

elementary 337.1 
fundamental theorem on 337.1 

symmetric positive system 
(of differential operators) 112,s 
(of first-order linear partial differential equa- 

tions) 326.D 
symmetric product (of a topological space) 70.F 
symmetric Riemannian homogeneous space 412.B 
symmetric Riemannian space(s) 412 

globally 412.A 
irreducible 412.C App. A, Table 5.111 
locally 412.A, App. A, Table 4.11 
weakly 412.J 

symmetric space 412.A 
affme 80.5 
affme locally 80.5 
locally 80.5 364.D 

symmetric stable process 5.F 
symmetric tensor 256.N 

anti- 256.N 
contravariant 256.N 
covariant 256.N 
skew- 256.N 

symmetric tensor field 105.0 
symmetrization 

(in isoperimetric problem) 228.B 
Steiner (in isoperimetric problem) 228.B 

symmetrizer 256.N 
Young 362.H 

symmetry 
(at a point of a Riemannian space) 412.A 
(of a principal space) 139.B 
(in quantum mechanics) 415.H 
broken 132.C 
central (of an afline space) 139.B 
charge 415.5 
crossing 132.C 386.B 
degree of 43 1 .D 
hyperplanar (of an affine space) 139.B 
internal 150.B 
law of (for the Hilbert norm-residue symbol) 

14.R 

Nelson 150.F 
TCP 386.B 

symmetry group, color 92.D 
symmorphic space group 92.8 
symmorphous space group 92.B 
symplectic form 126.L 
symplectic group 60.L 15 1 .I 

complex 60.L 
infinite 202.V 
over a field 60.L 
over a noncommutative field 60.0 
projective (over a field) 60.L 
unitary 60.L 

symplectic manifold 219.C 
symplectic matrix 60.L 
symplectic structure 219.C 
symplectic transformation 60.L 

(over a noncommutative field) 60.0 
symplectic transformation group (over a field) 

60.L 
synchronous (system of circuits) 75.B 
syndrome 63.C 
synthesis (in the theory of networks) 282.C 

spectral 36.L 
synthetic geometry 181 
system 

adjoint (of a complete linear system on an 
algebraic surface) 15.D 

adjoint, of differential equations 252.K 
algebraic 409.B 
algebraic, in the wider sense 409.B 
ample linear 16.N 
asynchronous (of circuits) 75.B 
axiom 35 
axiom (of a structure) 409.B 
axiom (of a theory) 411.1 
of axioms 35.B 
base for the neighborhood 425.E 
categorical (of axioms) 35.B 
C*-dynamical 36.K 
character (of a genus of a quadratic field) 

347.F 
characteristic linear (of an algebraic family) 

15.F 
Chebyshev (of functions) 336.B 
classical dynamical 126.L 136.G 
of closed sets 425.B 
complete (of axioms) 35.B 
complete (of independent linear partial differen- 

tial equations) 324.C 
complete (of inhomogeneous partial differential 
equations) 428.C 

complete (of nonlinear partial differential 
equations) 428.C 

complete linear (on an algebraic curve) 9.C 
complete linear (on an algebraic variety) 16.N 
complete linear, defined by a divisor 16.N 
completely integrable (of independent l-forms) 

428.D 
complete orthogonal 217.G 
complete orthonormal 217.G 
complete orthonormal, of fundamental func- 

tions 217.G 
complete residue, modulo m 297.G 
continuous dynamical 126.B 
coordinate 90.A 
coordinate (of a line in a projective space) 

343.c 
crystal 92.B 
determined (of differential operators) 112.R 
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determined (of partial differential equations) 
320.F 

differentiable dynamical 126.B 
differential 191.1 
of differential equations of Maurer-Cartan 
249.R 

of differential operators 112.R 
direct (of sets) 2lO.B 
discrete dynamical 126.B 
distinct, of parameters 284.D 
dynamical 126 
of equations 10.A 
equilibrium, transformation to 82.D 
formal 156.D 411.1 
of functional differential equations 163.E 
fundamental (of eigenfunctions to an eigenvalue 

for an integral equation) 217.F 
fundamental (for a linear difference equation) 

104.D 
fundamental (of a root system) 13.5 
fundamental, of irreducible representations (of a 
complex semisimple Lie algebra) 248.W 

fundamental, of neighborhoods 425.E 
fundamental, of solutions (of a homogeneous 

linear ordinary differential equation) 252.B 
fundamental, of solutions (of a homogeneous 

system of first-order linear differential equa- 
tions) 252.H 

fundamental root (of a semisimple Lie algebra) 
248.N 

of fundamental solutions (of a system of linear 
homogeneous equations) 269.M 

Garnier 253.E 
of generators (of a A-module) 277.D 
of gravitational units 414.B 
group 235.B 
Haar, of orthogonal functions 317.C 
Hamiltonian 126.L 
holonomic 274.H 
holonomic, with regular singularities 274.H 
homotopy equivalent (of topological spaces) 
202.F 

of hyperbolic differential equations (in the sense 
of Petrovskii) 325.G 

incompatible (of partial differential equations) 
428.B 

inconsistent (of algebraic equations) 10.A 
indeterminate (of algebraic equations) 10.A 
inductive (in a category) 210.D 
inductive (of sets) 210.B 
inductive, of groups 210.C 
inductive, of topological spaces 210.C 
inertial 271.D 359 
information retrieval 96.F 
integrable 287.A 
international, of units 414.A 
inverse (of sets) 210.B 
involutive -involutory 
involutory (of differential forms) 428.F 
involutory (of nonlinear equations) 428.C 
involutory (of partial differential equations) 
428.F 

involutory (of partial differential equations of 
first order) 324.D 

irreducible linear 16.N 
lattice spin 402.G 
linear (on an algebraic variety) 16.N 
of linear differential equations of first order 

252.G 
linear dynamical 86.B 

of linear equations 269.M 
of linear homogeneous equations 269.M 
linear structural equation 128.C 
linear time-varying 86.B 
local, of groups (over a topological space) 

201.R 
local coordinate (of a manifold) 105.C 
local coordinate (of a topological space) 90.D 
local coordinate, holomorphic 72.A 
mathematical (for a structure) 409.B 
maximal independent (of an additive group) 

2.E 
neighborhood 425.B 
of notations (for ordinal numbers) 81.B 
null (in projective geometry) 343.D 
number, point range of (in projective geometry) 

343.c 
of open sets 425.B 
operating 75.C 
of ordinary differential equations 313.B 
orthogonal (of functions) 3 17.A 
orthogonal (of a Hilbert space) 197.C 
of orthogonal functions App. A, Table 20 
of orthogonal polynomials 317.D 
overdetermined (of differential operators) 

112.R 
overdetermined (of partial differential equa- 

tions) 320.F 
of parameters 284.D 
partial de Rham 274.G 
of partial differential equations of order 1 (on a 
differentiable manifold) 428.F 

passive orthonomic (of partial differential 
equations) 428.B 

peripheral 235.B 
of Pfaflian equations 428.A 
polar (in projective geometry) 34.3.D 
Postnikov (of a CW complex) 14.8.D 
projective (in a category) 210.D 
projective (of sets) 210.B 
projective, of groups 210.C 
projective, of topological groups 423.K 
projective, of topological spaces 210.C 
quotient (of an algebraic system) 409.C 
Rademacher, of orthogonal functi’ons 3 17.C 
reduced residue 297.G 
reducible linear 16.N 
regular, of parameters 284.D 
of resultants 369.E 
root (of a symmetric Riemann space) 413.F 
root (in a vector space over Q) 13.5 
self-adjoint, of differential equations 252.K 
simple holonomic 274.H 
of simultaneous differential equations App. A, 
Table 14.1 

of Suslin 22.B 
symmetric positive (of differential operators) 

112s 
symmetric positive (of first-order linear partial 
differential equations) 326.D 

Tits 13.R 151.5 343.1 
of total differential equations 42.8.A 
of transitivity (of a G-set) 362.B 
trigonometric 159.A 
two-bin 227 
underdetermined (of differential operators) 

112.R 
underdetermined (of partial differential equa- 

tions) 320.F 
uniform covering 436.D 



2127 Subject Index 
Teicbmiiller space 

uniform family of neighborhoods 436.D 
uniform neighborhood 436.D 
unisolvent (of functions) 336.B 
of units 414.A 
very ample linear 16.N 
Walsh, of orthogonal functions 317.C 

system process 405.F 
system simulation 385.A 
syzygy 369.F 

first 369.F 
rth 369.F 

syzygy theorem, Hilbert 369.F 
syzygy theory 200.K 369.F 
Szego kernel function 188.H 
Szemeredi theorem, ergodic 136.C 
Sz.-Nagy-Foiag model 251.N 

T 

T-function 150.D 
t-distribution 341.D 374.B, App. A, Table 22 

noncentral 374.B 
r-statistic 374.B 
f-test 400.G 
T-bound 331.B 
T-bounded 331.B 
T-compact 68.F 331.B 
T-operator 375.C 
T*-statistic 

Hotelling’s 280.B 
noncentral Hotelling 374.C 

T-number (transcendental number) 430.C 
T*-number (transcendental number) 43O.C 
To-space 425.Q 
T, -space 425.Q 
T,-space 425.Q 
T,-space 425.Q 
T,-space 425.4 
T,-space 425.Q 
T,-space 425.Q 
T-positivity 150.F 
T-set 308.1 
T-summable (series) 379.L 
T, -uniformity 436.C 
T, -uniform space 436.C 
T,-topological group 423.B 
table 

analysis-of-variance 400.H 
contingency 397.K 400.K 
difference 223.C 
k-way contingency 397.K 
Pade 142.E 

tableau, simplex 255.C 
table look-up 96.C 
tail event 342.G 
tail o-algebra 342.G 
Tait algorithm 157.C 
Tait coloring 157.C 
Takagi, Teiji 415 
Takesaki, duality theorem of 308.5 
Takesaki theory, Tomita- 308.H 
Tamagawa number (of an algebraic group) 13.P 
Tamagawa zeta function 450.L 
Tamano product theorem 425.X 
tame (knot) 235.A 
tan (= tangent) 131.E 
tan’ 131.E 
Tanaka embedding 384.D 
tangent 432.A 

(of pressure) 402.G 

asymptotic 110.B 
Darboux 110.B 
hyperbolic 131.F 
law of App. A, Table 2.111 

tangent bundle 
(of a Banach manifold) 286.K 
(of a differentiable manifold) 105.H 147.F 
(of a foliation) 154.B 

tangent hyperplane (of a quadric hypersurface) 
343.E 

tangential polar coordinates 90.C 
tangential sphere bundle 274.E 
tangential stress 271.G 
tangent line 93.G 11 l.C,F, App. A, Table 4.1 

oriented 76.B 
tangent orthogonal n-frame bundle 364.A 
tangent plane 11 l.H, App. A, Table 4.1 
tangent PL microbundle 147.P 
tangent r-frame(s) 105.H 

bundle of 105.H 
tangent r-frame bundle 147.F 
tangent space 105.H 
tangent sphere bundle, unit 126.L 
tangent surface 11 l.F 
tangent vector 105.H 

holomorphic 72.A 
of type (0,l) 72.C 
of type (1,O) 72.C 

tangent vector bundle 105.H 147.F 
tangent vector space 105.H 
tanh (hyperbolic tangent) 131.F 
Taniyama-Weil conjecture 450,s 
Tannaka duality theorem 69.D 249.U 
target (of a jet) 105.X 
target variable 264 
Tate cohomology 2Ml.N 
Tate conjecture 450,s 
Tate-Shafarevich group 118.D 
Tate theorem 59.H 
Tauberian theorem 121.D 339.B 

generalized 36.L 160.G 
generalized, of Wiener 192.D 

Tauberian type, theorem of 339.B 
Tauber theorem 339.B 
tautochrone 93.H 
tautological line bundle 16.E 
tautology 4ll.E 
Taylor expansion 

(of an analytic function of many variables) 
21.B 

(of a holomorphic function of one variable) 
339.A 

formal 58.C 
Taylor expansion and remainder App. A, Table 

9.IV 
Taylor formula App. A, Table 9.IV 

(for a function of many variables) 106.5 
(for a function of one variable) 106.E 

Taylor series 339.A 
Taylor theorem (in a Banach space) 286.F 
TCP invariance 386.B 
TCP operator 150.D 
TCP symmetry 386.B 
TCP theorem 386.B 
technique, program evaluation and review 376 
TE wave 130.B 
Teichmtiller mapping 352.C 
Teichmiiller metric 416 
Teichmiiller space 416 

universal 416 



Subject Index 
Telegraph equation 

2128 

telegraph equation 325.A, App. A, Table 15.111 
temperature (of states) 419.A 

absolute 419.A 
tempered distribution 125.N 
temporally homogeneous 

(additive process) 5.B 
(Markov process) 261.A 

TEM wave 130.B 
tension 281.B 

modulus of elasticity in 271.G 
tension field 195.B 
tensor 

alternating 256.N 
angular momentum 258.D 
antisymmetric 256.N 
conformal curvature App. A, Table 4.11 
contracted 256.L 
contravariant, of degree p 256.5 
correlation 433.C 
covariant, of degree 4 256.5 
curvature 8O.J,L 364.D 417.B 
energy-momentum 150.B 359.D 
energy spectrum 433.C 
fundamental (of a Finsler space) 152.C 
fundamental (of a Riemannian manifold) 

364.A 
Green 188.E 
irreducible, of rank k 353.C 
Maxwell stress 130.A 
mixed 256.5 
Nijenhuis 72.B 
numerical App. A, Table 4.11 
projective curvature App. A, Table 4.11 
Ricci 364.D, App. A, Table 4.11 
second fundamental 417.F 
skew-symmetric 256.N 
strain 271.G 
stress 150.B 271.G 
symmetric 256.N 
torsion App. A, Table 4.11 
torsion (of an afline connection) 80.5 417.B 
torsion (of an almost contact structure) llO.E 
torsion (of a Frtchet manifold) 286.L 
torsion (of a Riemannian connection) 80.L 
of type (p. q) 256.5 
Weyl’s conformal curvature 80.P 

tensor algebra 
(on a linear space) 256.K 
contravariant 256.K 

tensor bundle (of a differentiable manifold) 147.F 
tensor calculus 417, App. A, Table 4.11 
tensor field 105.0 

of almost complex structure (induced by a 
complex structure) 72.B 

alternating 105.0 
of class C’ 105.0 
contravariant, of order r 105.0 
covariant, of order s 105.0 
covariant derivative of (in the direction of a 

tangent vector) 80.1 
left invariant (on a Lie group) 249.A 
parallel 364.B 
random 395.1 
right invariant (on a Lie group) 249.A 
symmetric 105.0 
of type (r, s) 105.0 
of type (r, s) with value in E 417.E 

tensorial form 80.G 
tensorial p-form 417.C 
tensor product 

(of A-homomorphisms) 277.5 
(of algebras) 29.A 
(of A-modules) 277.5 
(of chain complexes) 201.5 
(of cochain complexes) 201.5 
(of distributions) 125.K 
(of Hilbert spaces) 308.C 
(of linear mappings) 256.1 
(of linear representations) 362.C 
(of linear spaces) 256.1 
(of locally convex spaces) 424.R 
(of sheaves) 383.1 
(of vector bundles) 147.F 
(of von Neumann algebras) 308.C 
continuous 377.D 
E 424.R 
projective C*- 36.H 
spatial 36.H 

tensor representation (of a general linear group) 
256.M 

tensor space 
of degree k 256.5 
of type (p, q) 256.5 

term 
(of a language) 276.A 
(of a polynomial) 337.B 
(in predicate logic) 411.H 
(of a sequence) 165.D 
(of a series) 379.A 
base (of a spectral sequence) 200.5 
closed (of a language) 276.A 
constant (of a formal power series) 370.A 
constant (of a polynomial) 337.B 
error 403.D 
fiber (of a spectral sequence) 200.5 
initial (of an infinite continued fraction) 83.A 
nth (of sequence) 165.D 
penalty 440.B 
subtraction 11 l.B 
undefined 35.B 

terminal decision rule 398.F 
terminal point 

(of a curvilinear integral) 94.D 
(in a Markov process) 261.B 
(of a path) 170 
(of a vector) 442.A 

terminal time 261.B 
terminal vertex 186.B 
termwise differentiable (infinite series with function 

terms) 379.H 
termwise differentiation, theorem of (on distribu- 

tions) 125.G 
termwise integrable (series) 216.B 
ternary set 79.D 
Terry model, Bradley- 346.C 
Terry normal score test, Fisher-Yates- 371.C 
tertiary obstruction 305.D 
tertium non datur 156.C 
tesseral harmonics 393.D 
test 400.A 

Abel 379.D 
almost invariant 400.E 
Cauchy condensation 379.B 
Cauchy integral 379.B 
chi-square 400.G 
chi-square, of goodness of tit 400.K 
comparison 379.B 
consistent 400.K 
Dini (on the convergence of Fourier series) 

159.B 
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Dini-Lipschitz (on the convergence of Fourier 
series) 159.B 

Dirichlet (on Abel’s partial summation) 379.D 
Dirichlet (on the convergence of Fourier series) 

159.B 
of du Bois-Reymond and Dedekind 379.D 
duo-trio 346.D 
F- 400.G 
Fisher-Yates-Terry normal score 371.C 
goodness-of-tit 397.Q 401.E 
invariant 400.E 
Jordan (on the convergence of Fourier series) 

159.B 
Kolmogorov 45.F 
Kolmogorov-Smirnov 371 .F 
Kruskal-Wallis 371.D 
Lebesgue (on the convergence of Fourier series) 

159.B 
Leibniz (for convergence) 379.C 
level tx 400.A 
likelihood ratio 400.1 
Mann-Whitney (i- 371.C 
minimax level OL 400.F 
most powerful 400.A 
most stringent level a 400.F 
nonparametric 371.A 
nonrandomized 400.A 
outlier 397.Q 
pair 346.D 
randomized 400.A 
sensory 346.B 
sequential 400.L 
sequential probability ratio 400.L 
sign 371.B 
signed rank 371.B 
similar 400.D 
Student 400.G 
t- 400.G 
triangle 346.D 
UMP unbiased level a: 4o0.C 
UMP in variant level a 400.E 
unbiased level c( 4o0.C 
uniformly consistent 400.K 
uniformly most powerful (UMP) 400.A 
uniformly most powerful invariant level G( 
400.E 

uniformly most powerful unbiased level a 
4OO.c 

van der Waerden, 371.C 
Welch 400.G 
Wiener (for Brownian motion) 45.D 
Wiener (for Dirichlet problem) 338.G 
Wiener (for random walk) 260.E 
Wilcoxon 371 .C 
Wilcoxon signed rank 371.B 

test channel 213.E 
test function 4OO.A 
test function space 125.S 
testing 

hypothesis 4Ol.C 
statistical hypothesis 400 

test statistics, Kolmogorov-Smirnov 374.E 
test sufficient (a-field) 396.5 
tetracyclic coordinates 90.B 
tetragamma function 174.B 
tetragonal (system) 92.E 
tetrahedral group 15l.G 
tetrahedron 7.D 357.B 

polar 350.C 
self-polar 350.C 

TE waves 130.B 
Theodorsen function 39.E 
theorem(s) -also specific theorems 

of angular momentum 271.E 
Brouwer’s, on the invariance of domain 117.D 
of coding 273.D-F 
on complete form 356.H 
of completeness (in geometry) 155.B 
cup product reduction 200.M 
fundamental - fundamental theorem(s) 
of identity 21.C 
invariance, of analytic relations 198.K 
on invariance of dimension of Euclidean spaces 

117.D 
kernel 125.L 424,s 
of linear ordering (in geometry) 155.B 
local limit 250.B 
of momentum 271.E 
product, for dimension 117.C 
of quasiconformal reflection 352.C 
structure, for von Neumann algebras of type III 

308.1 
of Tauberian type 339.B 
of termwise differentiation (of distributions) 

125.G 
translation (in class field theory) 59.C 
translation representation 375.H 
transversality 105.L 
triangle comparison 178.A 
Tucker’s, on complementary slackness 255.B 
unicursal graph (Euler’s) 186.F 
Weierstrass’s, of double series 379.H 

Theorem A 21.L 72.E,F 
Theorem B 21.L 72.E,F 
theoretical formula 19.F 
theory 

Ahlfors’s, of covering surfaces 272.5 367.B 
of buildings 343.1 
of calculus of variations, classical 46.C 
Cantor’s, of real numbers 294.E 
class field 59 
classification, of Riemann surfaces 367.E 
combinatorial 66.A 
complete cohomology 200.N 
constructive field 150.F 
Dedekind’s, of real numbers 294.E 
de Rham homotopy 114.L 
dimension 117 
of elasticity 271.G 
of electromagnetic waves 130.B 
of errors 138.A 
Euclidean field 150.F 
Euclidean Markov field 150.F 
exact sampling 401.F 
finite-displacement (of elasticity) 271.G 
of functions 198.4 
of functions of a complex variable 198.Q 
Galois 172 
Galois, of differential fields 113 
game 173 
of gases, kinetic 402.B 
graph 186 
Haag-Ruelle scattering 150.D 
hidden variables 351.L 
hydromagnetic dynamo 259 
information 213 
Kaluza’s 5-dimensional 434.C 
large sample 401.E 
lattice gauge 150.G 
Littlewood-Paley 168.B 
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local class field 59.G 
Lyusternik-Shnirel’man 286.Q 
Minkowski reduction (on fundamental regions) 

122.E 
Morse 219 
Morse, fundamental theorems of 279.D 
Nevanlinna (of meromorphic functions) 124.B 
272.B 

nonsymmetric unified field 434.C 
number, analytic 296.B 
number, elementary 297 
number, geometric 296.B 
of perturbations, general 420.E 
of perturbations, special 420.E 
Peter-Weyl (on compact groups) 69.B 
Peter-Weyl (on compact Lie groups) 249.U 
Picard-Vessiot 113 
of plasticity 271.G 
prediction 395.D 
prediction, linear 395.D 
of probability 342.A 
proof 156.D 
quantum field 15O.C 
ramified type 411.K 
realization 86.D 
of relativity, general 359.A 
of relativity, special 359.A 
risk 214.C 
risk, classical 214.C 
risk, collective 214.C 
risk, individual 214.C 
Serre W- 202.N 
set 381.F (- also set theory) 
of singularities 418 
slender body 205.B 
small-displacement, of elasticity 271.G 
S-matrix 386.C 
supermultiplet, Wigner’s 351.5 
syzygy 200.K 
thin wing 205.B 
Tomita-Takesaki 308.H 
type 411.K 
unified field 434.A 
unitary field 434.C 

thermal contact 419.A 
thermal expansion, coefficient of 419.A 
thermal noise 402.K 
thermodynamical quantity 419.A 

extensive 419.A 
intensive 419.A 

thermodynamic limit 402.G 
thermodynamics 419 

first law of 419.A 
second law of 419.A 
statistical 402.A 
third law of 419.A 
0th law of 419.A 

theta formula (on ideles) 6.F 
theta-Fuchsian series of Poincare 32.B 
theta function 134.1 

(on a complex torus) 3.1 
elliptic 134.1, App. A, Table 16.11 
graded ring of 3.N 
Jacobian 134.C 
nondegenerate 3.1 
Riemann 3.L 

theta series 348.L 
thick (chamber complex) 13.R 
thickness (of an oval) 89.C 
thin (chamber complex) 13.R 

thin set 
(in Markov processes) 261.D 
(in potential theory) 338.G 
analytically (in an analytic space) 23.D 
internally 338.G 

thin wing theory 205.B 
third boundary value problem 193.F 323.F 
third classification theorem (in the theory of obstruc- 

tions) 305.C 
third extension theorem (in the theory Iof obstruc- 

tions) 305.C 
third fundamental form App. A, Table 4.1 
third homotopy theorem (in the theory of obstruc- 

tions) 305.C 
third isomorphism theorem (on topological groups) 

423.5 
third kind 

Abelian differential of ll.C 
Abelian integral of 1 l.C 

third law of thermodynamics 419.A 
third-order predicate logic 41 l.K 
third quartiles 396.C 
third separation axiom 425.Q 
Thorn algebra 114.H 
Thorn complex 114.G 

associated with (G,n) 114.G 
Thorn first isotropy theorem 418.G 
Thorn fundamental theorem 114.H 
Thorn-Gysin isomorphism 114.G 

(on a fiber space) 148.E 
Thompson inequality, Golden- 212.B 
Thompson theorem, Feit- (on finite groups) 151.D 
Thorn space 114.G 
Thorn spectrum, stable homotopy group of 114.G 

202.T 
Thorin theorem, Riesz- 224.A 
thorn (of a convergence domain) 21.B 
three big problems 187 
three-body problem 420.A 

restricted 420.F 
three-circle theorem, Hadamard 43.E 
3j-symbol 353.B 
three laws of motion, Newton’s- 271.A 
three-line theorem, Doetsch 43.E 
three-stage least squares method 128.1, 
three-valued logic 41 l.L 
three principles, Fisher’s 102.A 
three-series theorem 342.D 
threshold Jacobi method 298.B 
Thue problem 31.B 
Thue theorem 118.D 
Thullen theorem, Cartan- 21.H 
Thurstone-Mosteller model 346.C 
tieset 186.G 
tieset matrix, fundamental 186.G 
Tietze extension theorem 425.4 
Tietze first axiom 425.Q 
Tietze second axiom 425.4 
tight family (of probability measures) 341.F 
tight immersion 365.0 
tightness 399.M 
Tikhonov embedding theorem 425.T 
Tikhonov fixed-point theorem 153.D 
Tikhonov product theorem 425,s 
Tikhonov separation axiom 425.4 
Tikhonov space 425.Q 
Tikhonov theorem 425.Q 

Uryson- (on metrizability) 273.K 
Tikhonov-Uryson theorem 425.Q 
time 
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exit 261.B 
explosion 406.D 
first splitting 44.E 
hitting 260.B 261.B 407.B 
killing 260.A 
life 260.A 261.B 
local 45.G 
Markov 261.B 407.B 
NP- 71.E 
polynomial 71.E 
proper 258.A 
real- 19.E 
recurrence 260.C 
sojourn, density 45.G 
stopping 261.B 407.B 
terminal 261 .B 
waiting 260.H 
waiting, distribution 307.C 

time change 
(of a Markov process) 261.B 
(of a semimartingale) 406.B 
(of a submartingale) 262.C 

time complexity 71.A 
time-dependent Schrodinger equation 351.D 
time-homogeneous Markovian type 406.D 
time-independent Markovian type 406.D 
time-independent Schriidinger equation 351.D 
time-invariant, linear (dynamical systems) 86.B 
time-invariant network 282.C 
timelike 

(curve) 325.A 
(vector of a Minkowski space) 258.A 359.B 

time-one mapping (map) 126.C 
time optimal control problem 86.F 
time ordered function 150.D 
time parameter (of a stochastic process) 407.A 
time parameter space 260.A 
time reversal 258.A 359.B 
time series 397.A 421.A 
time series analysis 421 
time series data 397.N 
time-varying system, linear 86.B 
Tissot-Pochhammer differential equation 206.C 
Titchmarsh-Kodaira theory, Weyl- Stone- 112.0 
Titchmarsh theorem 306.B 

Brun- 123.D 
Tits simple group 151.1 
Tits system 13.R 151.5 343.1 
TM waves 130.B 
Toda bracket 202.R 
Toda lattice 287.A 387.A 
Todd characteristic 366.B 
Todd class (of a complex vector bundle) 237.F 
Toeplitz operator 251.0 
Toeplitz theorem 379.L 
tolerance interval 399.R 
tolerance limits 399.R 
tolerance percent defective, lot 404.C 
tolerance region 399.R 
Tomita-Takesaki theory 308.H 
Tonelli 

absolutely continuous in the sense of 246.C 
bounded variation in the sense of 246.C 

topological Abelian group(s) 422 
dual 422.C 
elementary 422.E 

topological conjugacy 126.B 
topological entropy 126.K 136.H 
topological equivalence 126.B 
topological field 423.P 

topological generator (of a compact Abelian group) 
136.D 

topological group(s) 423 
completable 423.H 
complete 423.H 
Hausdorff 423.B 
homomorphic 423.5 
isomorphic 423.A 
locally isomorphic 423.0 
metrizable 423.1 
separated 423.B 
T,- 423.B 

topological groupoid 154.C 
topological index (of an elliptic complex) 237.H 

201.A topological invariance (of homology groups) 
topological invariant 425.G 
topological linear spaces 424 
topologically complete space 436.1 
topologically conjugate 126.B 
topologically equivalent 126.B,H 
topological manifold 105.B 

with boundary 105.B 
without boundary 105.B 

topological mapping 425.G 
topological n-cell 140 
topological pair 2Ol.L 
topological polyhedron 65.A 
topological pressure 136.H 
topological property 425.G 
topological ring 423.P 
topological u-algebra 270.C 
topological solid sphere 140 
topological space(s) 425 

category of 52.B 
category of pointed 202.B 
complex linear 424.A 
discrete 425.C 
generalized 425.D 
homotopy category of 52.B 
inductive system of 210.C 
linear 424.A 
metrizable 273.K 
product 425.K 
projective system of 210.C 
quotient 425.L 
real linear 424.A 
underlying (of a complex manifold) 72.A 
underlying (of a differentiable manifold) 105.D 
underlying (of a topological group) 423.A 
uniform 436.C 
uniformizable 436.H 

topological sphere 140 
topological structure 425.A,B 
topological sum 425.M 
topological transformation group 431.A 
topological vector space 424.A 
topology 425.B 426 

284.B a-adic (of an R-module) 
algebraic 426 
base for a 425.F 
of biequicontinuous convergence 424.R 
box 425.K 
coarser 425.H 
combinatorial 426 
compact-open 279.C 435.D 
compact-open Cm 279.C 
differential 114 
discrete 425.C 
etale 16.AA 
fine (on a class of measures) 261.D 338.E 
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liner 425.H 
Gel’fand 36.E 
general 426 
Grothendieck 16.AA 
hereditarily weak 425.M 
hull-kernel 36.D 
I-adic (of a ring) 16.X 
indiscrete 425.C 
induced 425.1 
induced by a mapping 425.1 
inner (of a Lie subgroup) 249.E 
Jacobson 36.D 
Krull (for an infinite Galois group) 172.1 
larger 425.H 
leaf 154.D 
of Lie groups and homogeneous spaces 427 
linear 422.L 
Mackey 424.N 
metric 425.C 
order 425.C 
PL 65.A 
product 425.K 
projective 424.R 
quotient 425.L 
relative 425.5 
S- (on a linear space) 424.K 
Sazonov 341.5 
set-theoretic 426 
u-weak 308.B 
smaller 425.H 
strong (on a class of measures) 338.E 
strong (on a direct product space) 425.K 
strong (on a normed space) 37.E 
strong (on a topological linear space) 424.K 
stronger 425.H 
strong operator 251.C 
subbase for a 425.F 
of surfaces, fundamental theorem of 410.B 
trivial 425.C 
uniform 436.C 
of uniform convergence 424.K 
of the uniformity 436.C 
uniformizable 436.H 
uniform operator 251 .C 
vague (on a class of measures) 338.E 
weak (in a cell complex) 70.D 
weak (on a class of measures) 338.E 
weak (on a direct product space) 425.K 
weak (on a direct sum) 425.M 
weak (on a locally convex space) 424.H 
weak (on a normed linear space) 37.E 
weak, relative to the pairing (E, F) 424.H 
weak C” 279.C 
weaker 425.H 
weak operator 25 I .C 
weak* (on a locally convex space) 424.H 
weak* (on a normed space) 37.E 
Zariski (of a spectrum) 16.D 
Zariski (of a variety) 16.A 

topology E (on the tensor product of locally convex 
spaces) 424.R 

topology a (on the tensor product of locally convex 
spaces) 424.R 

Tor 200.D 
exact sequence of 200.D 

Tor,R(A, B) 200.K 
Tor,A(M, N) 200.D 
Torelli theorem 9.E,J 1 l.C 
Tor groups 200.D 
toric variety 16.2 

toroidal coordinates App. A, Table 3.V 
toroidal embedding 16.2 
toroidal subgroup, maximal (of a compact Lie 

group) 248.X 
torsion 

(of a curve of class C”) 11 l.D 
afline 1lO.C 
analytic 391.M 
conformal 110.D 
radius of (of a space curve) 11 l.F 
Whitehead 65.C 

torsion A-module 277.D 
torsion Abelian group 2.A 

bounded 2.F 
torsion coefficients (of a complex) 201 .B 
torsion element (of an A-module) 277.D 
torsion form 80.H 
torsion-free A-module 277.D 
torsion-free Abelian group 2.A 
torsion group 2.A 

(of a complex) 201.B 
torsion product 

(in a category) 200.K 
(of A-modules) 200.D 

torsion subgroup 
(of an Abelian group) 2.C 
maximal 2.A 

torsion tensor App. A, Table 4.11 
(of an affme connection) 8O.J,L 417.B 
(of an almost contact structure) 110.E 
(of a Frechet manifold) 286.L 

torus 
(algebraic group) 13.D 
(compact group) 422.E 
(surface) 111.1 410.B 
algebraic 13.D 
Clifford 275.F 
complex 3.H 
generalized Clifford 275.F 
invariant 126.L 
K-split 13.D 
K-trivial 13.D 
maximal (of a compact Lie group) 248.X 
maximal K-split 13.Q 
n- 422.E 

torus embedding 16.2 
torus function App. A, Table 18.111 
torus group 422.E 
total (set of functions) 317.A 
total boundary operator 200.E 
total Chern class 56.C 
total cross section 386.B 
total curvature 

(of an immersion) 365.0 
(of a space curve) 11 l.F 
(of a surface) 11 l.H, App. A, Table 4.1 
Gaussian 11 l.H 

total degree 200.5 
total differential 

(of a complex) 200.H 
(of a function) 106.G 
(on a Riemann surface) 367.H 

total differential equation(s) 428, App. A, Table 15.1 
system of 428.A 

total elastic cross section 386.B 
total energy 271.C 
total excess 178.H 
total Gaussian curvature (of a surface) 11 l.H 
total isotropy, index of (with respect to a quadratic 

form) 348.E 
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totally bounded transcendence basis, separating (of field extension) 
(metric space) 273.B 149.K 
(subset of a metric space) 273.B transcendence degree (of a field extension) 149.K 
(subset of a uniform space) 436.H transcendency, degree of (of a field extension) 
(uniform space) 436.H 149.K 
locally 436.H transcendental curve 93.H 

totally definite quaternion algebra 27.D transcendental element (of a field) 149.E 
totally degenerate (group) 234.B transcendental entire functions 429 
totally differentiable transcendental extension 149.E 

(complex function) 21.C purely 149.K 
(real function) 106.G transcendental function 

totally disconnected (topological space) 79.D higher 389.A 
totally geodesic submanifold 365.D of Painlevt 288.C 
totally imaginary tield 14.F transcendental meromorphic function 272.A 
totally isotropic (subspace) 60.0 348.E transcendental numbers 430 
totally ordered additive group 439.B transcendental singularity (of an analytic function 
totally ordered group 243.G in the wider sense), direct, indirect 198 P 
totally ordered set 31 l.A transfer (in group theory) 190.0 
totally positive (element) 14.G transfer function 86.D 
totally real field 14.F transfer function matrix 86.B 
totally real immersion 365.M transferrer of constant lengths 155.G 
totally real submanifold 365.M transtinite cardinal number 49.A 
totally regular transformation (of a sequence) transtinite diameter 48.D 

379.L transfinite induction 
totally singular (subspace) (with respect to a (in a well-ordered set) 31 l.C 

quadratic form) 348.E definition by 31 l.C 
totally umbilical submanifold 365.D translinite initial ordinal number 49.E 
totally unimodular 186.G transtinite logical choice function 411.5 
total matrix algebra 269.B translinite ordinal number 312.B 
total mean curvature 365.0 transform 
total monodromy group 418.F (of a sequence by a linear transformation) 
total ordering 31 l.A 379.L 
total Pontryagin class 56.D Cauchy (of a measure) 164.5 
total quotients, ring of 67.G Cayley (of a closed symmetric operator) 251.1 
total space discrete Fourier 142.D 

(of a fiber bundle) 147.B fast Fourier 142.D 
(of a fiber space) 148.B Fourier 160, App. A, Table 11.11 

total Stiefel-Whitney class 56.B Fourier (of a distribution) 125.0 
total transform (of a subvariety) 16.1 Fourier (in topological Abelian groups) 36.L 
total variation 192.1 

(of a function) 166.B Fourier, generalized 220.B 
(of a mapping from a plane into a plane) Fourier, inverse (of a distribution) 125.0 

246.H Fourier, spherical 437.2 
(of a set function) 380.B Fourier-Bessel 39.D 
(of a vector measure) 443.G Fourier cosine 16O.C App. A, Table 11.11 

tower, class field (problem) 59.F Fourier-Laplace 192.F 
trace Fourier sine 16O.C, App. A, Table 11.11 

(of an algebraic element) 149.5 Fourier-Stieltjes 192.B,O 
(of an element of a general Cayley algebra) Gel’fand 36.E 

54 Hankel 220.B 
(of a linear system of an algebraic surface) Hilbert 160.D 220.E 

15.c integral 220 
(of a matrix) 269.F inverse (of an integral transform) 220.A 
(of a nuclear operator) 68.L Klein 150.D 
(in a von Neumann algebra) 308.D kth 160.F 
reduced (of an algebra) 362.E Laplace 240, App. A, Table 12.1 

trace class 68.1 Laplace-Stieltjes 240.A 
traced, /l- 126.5 Legendre 419.C 
trace form, E- 60.0 Mellin 220.C 
trace formula (on unitary representations) 437.DD proper (of a subvariety) 16.1 
trace norm 68.1 Radon 218.F 
trace operator 168.B Radon, conjugate 218.F 
tracing property, pseudo-orbit 126.5 real monoidal 274.E 
tractrix 93.H Riesz 251.0 
traflic intensity 260.H Stieltjes 220.D 
trajectory 126.B,C total (of a subvariety) 16.1 

negative half- 126.D Watson 160.C 220.B 
orthogonal 193.J transformable, polynomially 71.E 
positive half- 126.D transformation(s) 381.C 

transcendence basis (of a field extension) 149.K (on a measure space) 136.D 
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afftne 7.E 
afhne (of a manifold with an afline connection) 
80.5 

afline (of a Riemannian manifold) 364.F 
afftne, group of 7.E 
afline, proper 7.E 
afline, regular 7.E 
Ampere 82.A 
angular 374.D 
arc sine 374.D 
bimeasurable (on a measure space) 136.B 
birational 16.1 
BRS 150.G 
canonical 82.8 271.F 
canonical, group of 271.F 
Cayley (of a matrix) 269.5 
chain (between complexes) 200.H 
conformal 80.P 364.F 
congruent (in Euclidean geometry) 139.B 
congruent, group of 285.C 
contact 82, App. A, Table 15.IV 
coordinate (of a fiber bundle) 147.B 
coordinate (of a locally free Oz-Module) 16.E 
covering 91.A 367.B 
Cremona 16.1 
by drift 261.F 
of drift 406.B 
elliptic 74.F 
entire linear 74.E 
to an equilibrium system 82.D 
equilong 76.B 
ergodic (on a measure space) 136.B 
Euler (of infinite series) 379.1 
factor (of a measure preserving transformation) 

136.D 
Fisher z- 374.D 
Galilei 359.C 
gauge (in electromagnetism) 130.A 
gauge (in a lattice spin system) 402.G 
gauge (of a principal fiber bundle) S0.Q 
gauge (in unified field theory) 343.B 
gauge, of the first kind 150.B 
Gauss App. A, Table 16.111 
Givens 302.E 
Householder 302.E 
hyperbolic 74.F 
infinitesimal (of a Lie transformation group) 

431.G 
infinitesimal (of a one-parameter group of 

transformations) 105.N 
inner (in the sense of Stoi’low) 367.B 
Jacobi imaginary 134.1, App. A, Table 16.111 
Kelvin 193.B 
Laguerre 76.B 
Landen 134.B, App. A, Table 16.111 
Legendre 82.A, App. A, Table 15.IV 
Lie (in circle geomtry) 76.C 
Lie line-sphere 76.C 
linear (= linear fractional) 74.E 
linear (of a linear space) 251.A 256.B 
linear (of a sequence) 379.L 
linear fractional 74.E 
local, local Lie group of 43 1 .G 
local, local one-parameter group of 105.N 
of local coordinates 90.D 
locally quadratic (of an algebraic surface) 

15.G 
locally quadratic (of an algebraic variety) 16.K 
locally quadratic (of a complex manifold) 72.H 
Lorentz 359.B 

loxodromic 74.F 
measurable (on a measure space) 136.B 
measure-preserving 136.B 
Mobius 74.E 76.A 
monoidal (of an analytic space) 23.D 
monoidal (of a complex manifold) 72.H 
monoidal (by an ideal sheaf) 16.K 
monoidal, with center W 16.K 
by a multiplicative functional (in a Markov 
process) 261.F 

natural 52.5 
nonsingular (of a linear space) 256.B 
nonsingular (on a measure space) 136.B 
normal (of a sequence) 379.L 
one-parameter group of 105.N 
one-parameter group of class C 126.B 
orthogonal 139.B 348.B 
orthogonal (over a noncommutative field) 

60.0 
orthogonal (with respect to a quadratic form) 

60.K 
orthogonal, around the subspace AX 139.B 
parabolic 74.F 
of the parameter 11 l.D 
parity 359.B 
particular (of 6:) 248.R 
Picard-Lefschetz 16.U 
to principal axes 390.B 
projective 343.D 
projective (of a Riemannian manifcmld) 367.F 
projective, group of 343.D 
pseudoconformal 344.A 
pseudogroup of (on a topological space) 90.D 
quadratic 16.1,K 
quantized contact 274.F 
regular (of a linear space) 256.B 
regular (of a sequence) 379.L 
regular projective 343.D 
Schwarz-Christoffel 77.D 
semilinear 256.P 
semiregular (of a sequence) 379.L 
shift 136.D 
singular projective 343.D 
singular projective, of the hth species 343.D 
superharmonic 261.F 
symplectic 60.L 
symplectic (over a noncummutative field) 

60.0 
totally regular (of a sequence) 379.L 
triangular (linear) 379.L 
unitary 348.F 
unitary (relative to an a-Hermitian form) 60.0 
weakly equilvalent 136.F 

transformation tormula 
(for the generating function of the number of 

partitions) 328 
(of a theta function) 3.1 
(for theta series) 348.L 
Schwarz-Christoffel 77.D 

transformation group(s) 431, App. A, Table 14.111 
(of a set) 431.A 
covering 91.A 
differentiable 431.C 
discontinuous 122.A 
free discontinuous 122.A 
Lie 431.C 
Mobius 76.A 
orthogonal 60.1 
orthogonal (over a field with respect to a 

quadratic form) 60.K 
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Triangle 

properly discontinuous 122.A 
symplectic 60.L 
topological 431.A 
unitary 60.F 

transformation parameter 396.1 
transformation problem (in a finitely presented 

group) 161.B 
transformation space (of an algebraic group) 13.G 
transgression 

(homomorphism of cohomology groups) 
200.M 

(in the spectral sequence of a fiber space) 
148.E 

transgressive (element in the spectral sequence of 
a fiber space) 148.E 

transient 
(Levy process) 5.G 
(Markov chain) 260.B 
(Markov process) 261.B 

transient problem 322.D 
transition 

order-disorder 402.F 
phase 340.B 

transition function 
(of a fiber bundle) 147.B 
(of a Markov chain) 260.A 
(of a Markov process) 261.B 
Feller 261.B 

transition matrix 126.5 260.A 
transition point 254.F 
transition probability 

(of a diffusion process) 115.B 
(of a Markov chain) 260.A 
(of a Markov process) 261.A 
(in quantum mechanics) 351.B 
standard 260.F 

transitive 
(dynamical system) 126.1,J 
(operation of a group) 362.B 
(permutation representation) 362.B 
(relation) 358.A 
fully (subgroup of an orthogonal group) 92.C 
k- (permutation group) 151.H 
k-ply (G-set) 362.B 
k-ply (permutation group) 151.H 
multiply (permutation group) 151.H 
simply (G-set) 362.B 

transitive extension (of a permutation group) 
151.H 

transitive law 
(in an equivalence relation) 135.A 
(on ordering) 311.A 

transitively (act on G-space) 431.A 
transitive permutation group 151.H 
transitivity, system of (of a G-set) 362.B 
translation(s) 

(in an afline space) 7.E 
group of (of an afline space) 7.E 
left 249.A 362.B 
parallel 80.C 364.B 
right 249.A 362.B 

translational flow 126.L 136.G 
frequencies of 126.L 136.G 

translation group (of a Lorentz group) 258.A 
translation number 18.B,D 
translation operator 306.C 
translation representation theorem 375.H 
translation theorem (in class field theory) 59.C 
transmission coefficient 387.D 
transmission rate 213.A 

transonic flow 205.B 
transonic similarity, von Karma, 205.D 
transportation problem 255.C 
transport coefficient 402.K 
transport equations 325.L 
transpose 

(of a linear mapping) 256.G 
(of a rational homomorphism) 3.E 

transposed integral equation 217.F 
transposed mapping 

(of a diffusion kernel) 338.N 
(of a linear mapping) 256.G 

transposed matrix 269.B 
transposed operator 112.E 189.C 322.E 
transposed representation 362.E 
transposition (in a symmetric group) 151.G 
transvection 60.0 
transversal (matroid) 66.H 
transversal field 136.G 
transversal flow 136.G 
transversal homoclinic point 126.J 
transversality, condition of (in calculus of variations) 

46.B 
transversality condition 108.B 

strong 126.5 
transversality theorem 105.L 
transverse 

(foliations) 154.H 
(to a submanifold of a differentiable manifold) 

105.L 
to a foliation 154.B 

transverse axis (of a hyperbola) 78.C 
transverse electric waves 130.B 
transverse electromagnetic waves 130.B 
transverse invariant measure 154.H 
transversely (intersect) 105.L 
transversely orientable 154.B 
transverse magnetic waves 130.B 
transverse structure 154.H 
transverse wave 446 
trap 

(of a diffusion process) 115.B 
(of a Markov process) 261.B 

trapezoidal rule 
(of numerical integration) 299.A 
(of numerical solution of ordinary differential 

equations) 303.E 
treatment 102.B 

connected 102.B 
treatment combinations, number of 102.L 
treatment contrast 102.C 
treatment effect 102.B 
tree 93.C 186.G 

co- 186.G 
derivation 31.E 
spanning 186.G 

tree code 213.E 
tree representation 96.D 
tree structure 96.D 
trefoil knot 235.C 
trellis code 213.E 
trend 397.N 
triad 202.M 

homotopy exact sequence of 202.M 
homotopy group of 202.M 

trial path dependent, d- (response probability) 
346.G 

triangle 7.D 155.F 178.H 
geodesic 178.A 
Pascal 330 
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plane App. A, Table 2.11 
polar 78.5 
Reuleaux 89.E 11l.E 
self-polar 78.5 
solving a 432.A 
spherical 432.B, App. A, Table 2.111 

triangle comparison theorem 178.A 
triangle inequality 273.A 
triangle test 346.E 
triangulable 65.A 
triangular (linear transformation) 379.L 
triangular element 304.C 
triangular factorization 302.B 
triangular matrix 269.B 

lower 269.B 
upper 269.B 

triangular number 4.D 
triangulated manifold 65.B 
triangulation 65.A 70.C 

c’- 114.c 
combinatorial 65.C 
combinatorial, problem 65.C 
compatible with 114.C 
finite 70.C 

trick, Alexander’s 65.D 
triclinic (system) 92.E 
Tricomi differential equation 326.C 
Tricomi problem 326.C 
tridiagonal matrix 298.D 
trigamma function 174.B 
trigonal (system) 92.E 
trigonometric function 131.E 432.A, App. A, 

Table 2 
inverse 13l.E 

trigonometric integral 160.A 
trigonometric interpolation polynomial 336.E 
trigonometric polynomial, generalized 18.B 
trigonometric series 159.A 

generalized 18.B 
trigonometric sum 4.C 
trigonometric system 159.A 
trigonometry 432, App. A, Table 2 

plane 432.A 
spherical 432.B 

trilinear coordinates 90.C 
trimmed mean, a- 371.H 
triple ZOO.Q,L 

homotopy exact sequence of 202.L 
triple product, scalar, vector 442.C, App. A, Table 

3.1 
triplet, Gel’fand 424.T 
tripolar coordinates 90.C 
trisection of an angle 179.A 
trivalent map 157.B 
trivial 

(extension) 390.5 
(knot) 65.D 235.A 
K- (torus) 13.D 

trivial bundle 147.E 
trivial fiber space, locally 148.B 
trivialization (of a block bundle) 147.4 
trivially (act on a G-space) 431.A 
trivial sheaf 383.D 
trivial solution (of a system of linear homogeneous 

equations) 269.M 
trivial topology 425.C 
trivial valuation 439.C,F 
trochoid 93.H 
Trotter product formula 351.F 
true 411.E 

true anomaly 309.B 
true value of a parameter 398.A 
truncated Wightman function 150.D 
truncation error 138.B 303.B 

local 303.E 
truth definition 185.D 
truth function 411.E 
truth value (of a formula) 41 l.E 
Tsen theorem 27.E 118.F 
tube 126.E 

regular 193.K 
vector 442.D 

tuboid 125.V 
tubular neighborhood 105.L 114.B 364.C 

open 105.L 114.B 
tubular neighborhood system, controlle’d 418.G 
Tucker theorem on complementary slackness 

255.B 
Tucker theorem, Kuhn- 292.B 
tuple, n- 256.A 381.B 
turbulence 433 

homogeneous 433.C 
isotropic 433.C 

turbulent flow 205.E 433 
Turing machine 3 1 .B 

universal 31.C 
turning point 25.B 254.F 
twinable 92.D 
twinning structure 92.D 
twin primes 123.C 
twisted type, group of 151.1 
two-bin system 227 
two-body interaction 271.C 
two-body problem 55.A 
two-dimensional KdV equation 387.F 
2-isomorphic 186.H 
two-person game, zero-sum 108.B 
two-phase simplex method 255.C 
two-point boundary value problem (of ordinary 

differential equations) 315.A 
two sheets 

hyperboloid of 350.B 
hyperboloid of revolution of 350.13 

two-sided exponential distribution App. A, Table 
22 

two-sided generator (for an automorphism of a 
measure space) 136.E 

two-sided ideal 368.F 
two-sided o-ideal 27.A 

integral 27.A 
two-sided scale 19.D 
two-sided surface 4lO.B 
two-stage least squares method 128.C 
two-stage sampling 373.E 
two-stage stochastic programming 408.A 
two-terminal characteristic 281.C 
two-terminal network 281.C 
two-terminal problem 281.C 
two-valued logic 411.L 
two-way elimination of heterogeneity, design for 

102.K 
two-way layout 102.H 
type 

(of an Abelian group) 2.B,D 
(of an object) 356.F 
(of a quadratic form) 348.E 
(of a structure) 409.B 
(of a transcendental number) 43O.C 
acute 304.C 
backward 304.D 



2137 Subject Index 
Unbiased estimator 

Bravais (of lattices) 92.B 
Bravais, of the class of (K K) 92.B 
compact 412.D 
dimension 117.H 
of finite (graded module) 203.B 
of finite (module) 277.D 
of finite (morphism of schemes) 16.D 
of tinite (&module) 16.E 
of linite, subshift 126.J 
forward 304.D 
Fredholm, integral equation of 217.A 
Fredholm, integrodifferential equation of 
222.A 

Fuchsian (linear ordinary differential equations) 
253.A 

Fuchsian (visibility manifold) 178.F 
general 72.1 
general, surface of 72.K 
homotopy 202.F 
homotopy (of a link) 235.D 
homotopy, invariant 202.F 
isotopy (of knots) 235.A 
isotopy (of a transformation group) 431.A 
k-, Markov branching process 44.E 
knot 235.A 
link 235.D 
locally of finite (morphism of schemes) 16.D 
mixed 304.C 326.A 
multi-, Markov branching process 44.E 
multidiagonal 304.C 
noncompact 412.D 
nonconforming 304.C 
orbit (of a G-space) 431.A 
Parreau-Widom 164.K 
positive (symmetric kernel) 338.D 
principal orbit 43 l.C 
spherical G-fiber homotopy 431.F 
Stoi’low 207.B 
twisted, group of 151 .I 
Volterra, integral equation of 217.A 
Volterra, integrodifferential equation of 222.A 
Weierstrass-, preparation theorem (for micro- 
differential operators) 274.F 

type pm, Abelian group of 2.D 
type (P, 4) 

(of an operator) 224.E 
tensor of 256.5 
tensor space of 256.J 
weak (of an operator) 224.E 

type (r, s), differential form of 72.C 
type S (harmonic boundary) 207.B 
type S, space of 125.T 
type number (of a solution of a system of linear 

ordinary differential equations) 314.A 
type problem (for Riemann surfaces) 367.D 
type theory 41 l.K 

ramified 411 .K 
simple 41 l.K 

type (0, l), tangent vector of 72.C 
type (l,O), tangent vector of 72.C 

type 1 
(von Neumann algebra) 308.E 
C*-algebra of 308.L 
group of 437.E 

type I group 437.E 

type I,,,, (irreducible symmetric bounded domain) 
412.1 

type I, (von Neumann algebra) 308.E 
type II (von Neumann algebra) 308.E 

type 11, 

(ergodic countable group) 136.F 
(von Neumann algebra) 308.E,F 

type II, (irreducible symmetric bounded domain) 
412.1 

We 11, 
(ergodic countable group) 136.F 
(von Neumann algebra) 308E,F 

type III 
(ergodic countable group) 136.F 
(von Neumann algebra) 308.E 
structure theorem for von Neumann algebras of 

308.1 
type III, (factor) 308.1 
type III, (factor) 308.1 
type III, (factor) 308.1 
type III, (irreducible symmetric bounded domain) 

412.1 
type IV, (irreducible symmetric bounded domain) 

412.1 
type AI, AII, AIII, AIV (irreducible symmetric 

Riemannian space) 412.G 
type BDI, BDII (irreducible symmetric Riemannian 

space) 412.G 
type CI, CII (irreducible symmetric Riemannian 

space) 412.G 
type DIII (irreducible symmetric Riemannian space) 

412.G 

U 

U(n) (unitary group) 60.F 
u-chain 260.1 
u-curve 11 l.H 
u,-scale 19.D 
(i-invariant (subspace) 437.C 
U-set 159.5 
u-statistic 274.1 
Li test, Mann-Whitney 371.C 
U-number 430.C 
U*-number 430.C 
UCL (upper control limit) 404.B 
Ugaheri maximum priciple 338.C 
Uhlenbeck Brownian motion, Ornstein- 45.1 
Ulam theorem, Borsuk- 153.B 
Ulm factor(s) 2.D 

sequence of 2.D 
ultrabornological (locally convex space) 424.W 
ultradifferentiable function 168.B 
ultradistribution 125.U,BB 

of class {M,} 125.U 
of class {M,} 125.U 

ultrafilter 87.1 
ultrainfinite point 285.C 
ultrapower 276.E 
ultraproduct 276.E 

fundamental theorem of 276.E 
ultraspherical polynomials 317.D 
ultraviolet divergence 132.C 146.B 
umbilical point (of a surface) 1 ll.H 365.D 
umbilical submanifold, totally 365.D 
Umkehr homomorphism 201.0 
UMP (uniformly most powerful) (test) 400.A 
UMP invariant level G( test 400.E 
UMP unbiased level c( test 400.C 
UMV unbiased estimator 399.C 
unavoidable set 157.D 
unbiased confidence region 399.4 

uniformly most powerful 399.Q 
unbiased estimator 399.C 

asymptotically (mean) 399.K 
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best linear 403.E 
kth order asymptotically median 399.0 
mean 399.C 
median 399.C 
modal 399.C 
UMV 399.C 
uniformly minimum variance 399.C 

unbiased level c( test 400.C 
uniformly most powerful 400.C 

unbiasedness 399.C 
unbounded (covering surface) 367.B 
uncertainty (in observations) 351.C 
uncertainty relation, Heisenberg 351.C 
unconditonally convergent 

(series) 379.C 
(series in a Banach space) 443.D 

undecidable proposition, formally 185.C 
undefined concept 35.B 
undefined term 35.B 
undercrossing point 235.A 
underdetermined system 

of differential operators 112.R 
of partial differential operators 320.F 

underflow 138.B 
underlying group (of a topological group) 423.A 
underlying topological space 

(of a complex manifold) 72.A 
(of a differentiable manifold) 105.D 
(of a topological group) 423.A 

undirected graph 186.B 
undotted index 258.B 
undotted spinor (of rank k) 258.B 
unfolding 

(of a germ of an analytic function) 418.E 
constant 51.D 
r- 51.D 
universal 418.E 

unicity theorem, Luzin’s 22.C 
unicursal (ordinary curve) 93.C 
unicursal curve 9.C 93.H 
unicursal graph theorem (Euler’s) 186.F 
unified field theory 434 

nonsymmetric 434.C 
uniform 

(lattice of a Lie group) 122.K 
(sampling procedure) 373.A 

uniform algebra 164.A 
uniform boundedness theorem 37.H 
uniform continuity 

lower class with respect to 45.F 
upper class with respect to 45.F 

uniform convergence 435 
(of an infinite product) 435.A 
(of operators) 251.C 
(of a series) 435.A 
abscissa of 121.B 240.B 
on compact sets 435.C 
Weierstrass criterion for 435.A 

uniform covering system 436.D 
uniform distribution 182.H 341.D, App. A, Table 

22 
uniform family of neighborhoods system 436.D 
uniform isomorphism 436.E 
uniformity 436.B 

base for the 436.B 
discrete 436.D 
generated by a family of pseudometrics 436.F 
generated by a pseudometric 436.F 
left (of a topological group) 423.G 
product 436.E 

pseudometric 436.F 
relative 436.E 
right (of a topological group) 423.G 
stronger 436.E 
T,- 436.C 
topology of the 436.C 
weaker 436.E 

uniformizable (topological space) 436.H 
uniformization 367.C 

(of a set in a product space) 22.F 
Schottky 367.C 

uniformization theorem 
general 367.G 
Kond8 22.F 

uniformized 367.C 
locally 367.C 

uniformizing parameter, local (of a Riemann surface) 
367.A 

uniformly 
(partial recursive function) 356.E 
(primitive recursive function) 356.B 

uniformly absolutely convergent (series) 435.A 
uniformly almost periodic function 18.B 
uniformly asymptotically stable 

(solution of a differential equation) 394.B 
(solution of a functional differential equation) 

163.G 
uniformly best (estimator) 399.C 
uniformly better (decision function) 398.B 
uniformly consistent test 400.K 
uniformly continuous 

(function) 84.A 
(mapping) 273.1436.E 
on a subset 436.G 

uniformly convergent 
(sequence) 435.A 
on a family of sets 435.C 
in the wider sense 435.C 

uniformly convex (normed linear space] 37.G 
uniformly equivalent (uniform spaces) 436.E 
uniformly integrable (family of random variables) 

262.A 
uniformly locally compact (space) 425.V 
uniformly Lyapunov stable 126.F 
uniformly minimum variance unbiased estimator 

399.c 
uniformly most powerful 

(confidence region) 399.Q 
(test) 400.A 
invariant 399.Q 
invariant level c( 400.E 
unbiased 399.4 
unbiased level OT 400.E 

uniformly recursive in Y (define a partial recursive 
function) 356.E 

uniformly smooth (normed linear space) 37.G 
uniformly stable 394.8 
uniform neighborhood system 436.D 
uniform norm 168.B 
uniform operator topology 251.C 
uniform space(s) 436 

analytically 125,s 
complete 436.G 
Hausdorff 436.C 
locally totally bounded 436.H 
metrizable 436.F 
precompact 436.H 
product 436.E 
pseudometrizable 436.F 
separated 436.C 
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Unit circle 

T,- 436.C 
totally bounded 436.H 

uniform star convergence, relative 310.F 
uniform structure 436.B 
uniform subspace 436.E 
uniform topological space 436.B 
uniform topology 436.B 
unilateral constraints 440.A 
unilateral shift operator 390.1 
unimodal (distribution function) 341.H 
unimodular 

(germ of an analytic function) 418.E 
(locally compact group) 225.D 
totally 186.G 

unimodular group 60.B 
quaternion 412.G 

union 
(in axiomatic set theory) 33.B 
(of matroids) 66.H 
(of sets) 381.B 
axiom of 381.G 
disjoint 381.B,D 
of hypersurface elements 82.A 
of surface elements 324.B 

unipotent 
(algebraic group) 13.E 
(linear transformation) 269.L 

unipotent component 269.L 
unipotent matrix 269.F 
unipotent part 

(of an algebraic group) 13.E 
(of a nonsingular matrix) 13.E 

unipotent radical 13.1 
unique continuation theorem 323.5 
unique decomposition theorem (for a 3-manifold) 

65.E 
unique factorization domain 67.H 
unique factorization theorem (in an integral domain) 

67.H 
uniquely ergodic (homeomorphism (on a compact 

metric space) 136.H 
uniqueness 

in the sense of law of solutions 406.D 
set of 159.J 
of solution, pathwise 406.D 

uniqueness condition (for solutions of ordinary 
differential equations) 316.D 

uniqueness principle (in potential theory) 338.M 
uniqueness theorem 

(for analytic functions) 198.C 
(for class field theory) 59.B 
(for differential equations in a complex domain) 

316.G 
(for Fourier transform) 192.1 
(for harmonic functions) 193.E 
(for an initial value problem of ordinary differ- 

ential equations) 316.D 
of the analytic continuation 198.C,I 
Holmgren 321.F 
of homology theory 201.R 
Rellich 188.D 
von Neumann 351.C 

unique strong solution 406.D 
unirational surface 15.H 
unirational variety 16.5 
uniserial algebra 29.1 

absolutely 29.1 
generalized 29.1 

unisolvent space 142.B 
unisolvent system (of functions) 336.B 

unit(s) 
(of an algebraic number field) 14.D 
(for measure of length) 139.C 
(in a ring) 368.B 
(of a symmetric matrix with rational coordi- 

nates) 348.5 
(of a vector lattice) 310.B 
Archimedean (of a vector lattice) 310.B 
arithmetic 75.B 
auxiliary 414.A 
base 414.A 
circular 14.L 
control 75.B 
derived 414.D 
fundamental 414.A 
fundamental (of an algebraic number field) 

14.D 
gravitational, system of 414.B 
imaginary 74.A 294.F 
international system of 414.A 
Kakutani 310.G 
matrix 269.B 
memory 75.B 
system of 414 

unital 36.A 
unitarily equivalent (self-adjoint operators) 390.G 
unitary 

(homomorphism between rings) 368.D 
(module) 277.D 
essentially 390.1 

unitary algebra 29.A 
unitary dilation 251.M 
unitary field theory 434.C 
unitary group 60.F 151.1 

(relative to an c-Hermitian form) 60.0 
infinite 202.V 
over K 60.H 
over K, projective special 60.H 
over K, special 60.H 
projective 60.F 
special 60.F 
special (relative to an c-Hermitian form) 60.0 

unitary matrix 269.1 
unitary monoid 409.C 
unitary operator 251.E 390.E 
unitary representation(s) 437 

disjoint 437.C 
equivalent 437.A 
induced by a representation of a subgroup 
437.0 

integrable 437.X 
irreducible 437.A 
isomorphic 437.A 
quasi-equivalent 437.C 
similar 437.A 
square integrable 437.M 
sufficiently many irreducible 437.B 

unitary restriction (of a semisimple Lie algebra) 
248.P 

unitary ring 368.A 409.C 
unitary semigroup 409.C 
unitary symplectic group 60.L 
unitary transformation 348.F 

(relative to an c-Hermitian form) 60.0 
unitary transformation group 60.F 
unit ball 

(of a Banach space) 37.B 
(of a Euclidean space) 140 

unit cell 140 
unit circle 74.C 140 
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unit cost 281.D 
unit cube 139.F 140 
unit disk 140 
unit distribution 341.D 
unit element 

(of a field) 149.A 
(of a group) 190.A 
(of a ring) 368.A 

unit function 306.B, App. A, Table 12.11 
unit group (of an algebraic number field) 14.D 
unit impulsive function App. A, Table 12.11 
unit mapping 203.F 
unit matrix 269.A 
unit n-cube 140 
unit point 

(of an affline frame) 7.C 
(of a projective frame) 343.C 

unit ray 351.B 
unit representation (of a group) 362.C 
unit sphere 140 
unit tangent sphere bundle 126.L 
unit theorem, Dirichlet 14.D 
unit vector 7.C 442.B 
unity 

(in the axioms for the real numbers) 355.A 
partition of 425.R 
partition of, of class Cm 105.S 
partition of, subordinate to a covering 425.R 
primitive root of 14.L 

unity element 
(of a field) 149.A 
(of a ring) 368.A 

univalence superselection rule 351.K 
univalent (analytic function) 438.A 
univalent correspondence 358.B 
univalent function 438 
univariate (statistical data) 397.A 
universal 

(d-functor) 200.1 
(*-representation of a Banach *-algebra) 36.G 
(unfolding) 51.D 

universal bundle 147.G,H 
n- 147.G 

universal Chern class 56.C 
universal coefficient theorem 

(in Abelian categories) 200.H 
(for cohomology) 200.G 201.H 
for homology 200.D 201.G 

universal constants (in the theory of conformal 
mapping) 77.F 

universal covering group 91.B 423.0 
universal covering space 91.B 
universal covering surface 367.B 
universal curve 93.H 
universal domain 16.A 
universal enveloping algebra 

(of a Lie algebra) 248.5 
special (of a Jordan algebra) 231 .C 

universal enveloping bialgebra 203.G 
universal Euler-Poincark class 56.B 
universal gravitation, law of 271.B 
universally Japanese ring 16.Y 284.F 
universally measurable 270.L 
universal mapping property 52.L 
universal net (in a set) 87.H 
universal Pontryagin class 56.D 
universal proposition 411.B 
universal quantifier 41 l.C 
universal set 

(for the projective sets of class n) 22.E 

(in set theory) 381.B 
universal Stiefel-Whitney class 56.B 
universal Teichmiiller space 416 
universal Turing machine 3 1 .C 
universal unfolding 418.E 
universal validity of a proposition, problem of 97 
universe 

(in nonstandard analysis) 293.B 
(of a structure) 276.B 

unknotted 
(ball pair) 65.D 235.G 
(knot) 235.A 
(sphere pair) 65.D 235.G 

unknotting conjecture 235.G 
unknotting theorem, Zeeman 65.D 
unlabeled graph 186.B 
unmixed ideal 284.D 
unmixedness theorem 284.D 
unordered pair 381.B 

(in axiomatic set theory) 33.B 
axiom of 33.B 

unoriented cobordism class 114.H 
unoriented cobordism group 114.H 
unoriented graph 186.H 
unramified 

(covering surface) 367.B 
(prime ideal) 14.1 
(projection of a covering surface) 367.B 
analytically (semilocal ring) 284.D 

unramified covering (of a nonsingular curve) 9.1 
unramified extension 14.1257.D 
unrenormalizable 132.C 361.B 
unsolvability 

degree of 97 
recursive, arithmetical hierarchy of degrees of 

356.H 
recursive, degree of 97 
recursive, hyperarithmetical hierarchy of de- 
grees of 356.H 

unstable 
(boundary component) 77.E 
(state) 394.A 
completely (flow) 126.E 

unstable manifold 126.G,J 
unstable solution (of Hill’s equation) :!64.E 
up-ladder 206.B 
upper bound 

(of a subset in an ordered set) 311 .B 
least (ofan ordered set) 311.B 
least (of a subset of a vector lattice)1 310.C 

upper boundedness principle (in potent Ial theory) 
338.C 

upper central series (of a group) 19O.J 
upper class 

with respect to local continuity 45.F 
with respect to uniform continuity 45.F 

upper control limit 404.B 
upper derivative 

general (of a set function) 380.D 
ordinary (of a set function) 380.D~ 

upper end (of a curvilinear integral) 94.D 
upper envelope (of a family of subharmonic func- 

tions) 193.R 
upper half-space of degree n, Siegel 32.F 
upper integral, Riemann 216.A 
upper limit (of a Riemann integral) 216.A 
upper limit function 84.C 
upper semicontinuous 

(at a point) 84.C 
(partition) 425.L 
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in a set 84.C 
upper semilattice 243.A 
upper triangular matrix 269.B 
upper variation (of a set function) 380.B 
Uryson lemma 425.Q 
Uryson space, Frechet- 425.CC 
Uryson theorem, Tikhonov- 425.Q 
Uryson-Tikhonov theorem (on metrizability) 

273.K 
Uzawa gradient method, Arrow-Hurwicz- 292.E 

V 

v-curve 1 I l.H 
vacuum vector 377.A 

free 150.C 
vague topology (on a class of measures) 338.E 
valid formula 41 l.G 
valuation(s) 439 

additive 439.B 
Archimedean 14.F 439.C 
complete 439.D 
completion of 439.D 
discrete 439.E 
equivalent 439.B 
exponential 439.B 
generalized 439.B 
multiplicative 439.C 
non-Archimedean 14.F 439.C 
normal 439.E,H 
normalized 439.E 
p-adic 439.F 
p-adic exponential 439.F 
prolongation of 439.B 
pseudo- 439.K 
special 439.B 
over a subfield 439.B,C 
trivial 439.C,F 

valuation ideal (of a valuation) 439.B 
valuation ring 439.B 

completion of 439.D 
discrete 439.E 

valuation vector(s) 6.C 
ring of 6.C 

value(s) 
(of an infinite continued fraction) 83.A 
(of an infinite product) 379.G 
(of a variable) 165.C 
absolute (of a complex number) 74.B 
absolute (of an element of an ordered field) 

149.N 
absolute (of an element of a vector lattice) 

310.B 
absolute (of a real number) 355.A 
absolute (of a vector) 442.B 
asymptotic (of a meromorphic function) 62.A 

272.H 
boundary (of a conformal mapping) 77.B 
boundary (hyperfunction) 125.V 
boundary (relative to a differential operator) 

112.E 
boundary, problem -boundary value problem 
characteristic (of a linear operator) 390.A 
cluster 62.A 
cluster, theorem 43.G 
critical (in bifurcation theory) 286.R 
critical (of a Cm-function on a manifold) 279.B 
critical (of a contact process) 340.C 
critical (of an external magnetic field) 340.B 
critical (of a mapping u: R” + R”) 208.B 

Subject Index 
Variable(s) 

critical (of a C--mapping cp: M + M’) 105.J 
exceptional (of a transcendental entire function) 

429.B 
exceptional, Bore1 272.E 
exceptional, Nevanlinna 272.E 
exceptional, Picard 272.E 
expectation (of an observable) 351.B 
expected (of a random variable) 342.C 
gap (of a point on a Riemann surface) ll.D 
initial (for ordinary differential equations) 

316.A 
initial (for partial differential equatons) 321.A 
initial (for stochastic differential equations) 

406.D 
initial, problem - initial value problem 
limit (of a mapping) 87.F 
mean (of a function on a compact group) 69.A 
mean (of a weakly stationary process) 395.C 
mean, theorem - mean value theorem 
most probable 401.E 
principal (of inverse trigonometric functions) 

131.E 
principal (of log z) 131.G 
principal, Cauchy (of an improper integral) 

216.D 
principal, Cauchy (of the integral of a function 

in (-co, co)) 216.E 
proper (of a boundary value problem) 315.B 
proper (of a linear mapping) 269.L 
proper (of a linear operator) 390.A 
proper (of a matrix) 269.F 
range of (of a meromorphic function) 62.A 
regular 105.J 
sample 396.B 
sample characteristic 396.C 
Shapley 173.D 
singular 302.A 
singular, decomposition (SVD) 302.E 
starting 303.E 
stationary (of a function) 106.L 
true, of parameter 398.A 
truth (of a formula) 41 l.E 

value distribution 124.A 
value function 108.B 405.A 
value group 

(of an additive valuation) 439.B 
(of a multiplicative valuation) 439.C 

Vandermonde determinant 103.G 
van der Pol differential equation 290.C 
van der Waerden-Bortolotti covariant derivative 

417.E 
van der Waerden test 371.C 
Vandiver conjecture 14.L 
van Hove sense, limit in 402.G 
vanishing cocycle 16.U 
vanishing cycle 418.F 
vanishing theorem 

(on compact complex manifolds) 194.G 
Kodaira 232.D 

van Kampen theorem (on fundamental groups) 
170 

variability, measure of 397.C 
variable(s) 165.C 

(of a polynomial) 369.A 
artificial 255.C 
auxiliary 373.C 
basic 255.A 
bound 41 l.C 
canonical (in analytical dynamics) 271.F 
change of (in integral calculus) 216.C 
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Variable component (of a linear system) 
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complex 165.C 
complex, theory of functions of 198.Q 
dependent 165.C 
differential (of a differential polynomial) 113 
endogenous 128.C 
exogenous 128.C 
explanatory 403.D 
hidden, theories 351.L 
independent 165.C 
individual 41 l.H 
inner 25.B 
lagged 128.C 
object 41 l.G 
outer 25.B 
predetermined 128.C 
predicate 41 l.G,H 
proposition 41 l.E 
random 342.C 
random, independent 342.C 
random, joint 342.C 
random, n-dimensional 342.C 
random, W-valued 342.C 
random, (S, (X)-valued 342.C 
real 165.C 
sampling inspection by 404.C 
separation of 322.C 
slack 255.A 
state 127.A 

variable component (of a linear system) 15.C 16.N 
variable method, discrete 303.A 
variable-step variable-order (VSVO) algorithms 

303.E 
variance 

(of a probability distribution) 341.B 
(of a random variable) 342.C 
(of univariate quantitative data) 397.C 
analysis of 400.H 403.D 
between-group 397.L 
generalized 280.E 397.5 
multivariate analysis of 280.B 
population 396.C 
sample 396.C 
sample generalized 280.E 
uniformly minimum unbiased estimator 399.C 
within-group 397.L 

variance-covariance matrix 341.B 397.5 
variance matrix 341.B 
variate 

canonical 280.E 
fixed 403.D 

variation(s) 
(of an integral) 100.E 
bounded - of bounded variation 
calculus of 46 
calculus of, classical theory of 46.C 
calculus of, conditional problems in 46.A 
calculus of, fundamental lemma in 46.B 
coefficient of 397.C 
of constants, Lagrange’s method of 252.D 
of constants, method of 55.B 252.1 
first 46.B 
first, formula 178.A 
geodesic 178.A 
lower (of a set function) 380.B 
negative (of a mapping) 246.H 
negative (of a real bounded function) 166.B 
one-parameter 178.A 
of parameters, Lagrange method of 252.D 
of parameters, method of App. A, Table 14.1 
positive (of a mapping) 246.H 

positive (of a real bounded function) 166.B 
proper 279.F 
quadratic, process 406.B 
second formula 178.A 
total (of a finitely additive vector measure) 
443.G 

total (of a mapping) 246.H 
total (of a real bounded function) 166.B 
total (of a set function) 380.B 
upper 380.B 

variational derivative 46.B 
variational equation 316.F 394.C 
variational formula, constant 163.E 
variational inequality 440 

of evolution 440.C 
stationary 440.B 

variational method 438.B 
variational principles(s) 441 

(in ergodic theory) 136.G 
(in statistical mechanics) 340.B 402.G 
(in the theory of elasticity) 271.G 
with relaxed continuity requirements 271.G 
for the topological pressure 136.H[ 

variational problem, Gauss 338.5 
variation curve 178.A 
variation vector field 178.A 
variety 

(algebraic variety) 16.A 
(of block design) 102.B 
Abelian 3 
Abelian, isogeneous 3.C 
Abelian, polarized 3.G 
Abelian, simple 3.B 
abstract 16.C 
abstract algebraic 16.C 
afhne 16.A 
atline algebraic 16.A 
Albanese 16.P 
Albanese (of a compact Klhler manifold) 

232.C 
algebraic 16 
algebraic group 13.B 
almost all points of a 16.A 
Brieskorn 418.D 
characteristic (of a microdifferential equation) 

274.G 
Chow 16.W 
complex algebraic 16.T 
function on a 16.A 
generalized Jacobian 9.F 1 l.C 
group 13.B 16.H 
irreducible 16.A 
Jacobian 9.E ll.C 16.P 
Landau 146.C 
Landau-Nakanishi 146.C 386.C 
linear (in an n-module) 422.L 
linear, linearly compact 422.L 
minimal 275.G 
nonsingular 16.F 
normal 16.F 
normal algebraic 16.F 
Picard 16.P 
Picard (of a compact Kahler manifold) 232.C 
prealgebraic 16.C 
product algebraic 16.A 
projective 16.A 
projective algebraic 16.A 
quasi-aNine algebraic 16.C 
quasiprojective algebraic 16.C 
rational 16.5 
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Vector triple product 

rational function on a 16.A 
reducible 16.A 
Schubert 56.E 
smooth 16.F 
strict Albanese 16.P 
toric 16.2 
unirational 16.5 
Zariski topology of a 16.A 

varifold 275.G 
Varshamov-Gilbert-Sacks bound 63.B 
vector(s) 

(in a Euclidean space) 442 
(in a linear space) 256.A 
analytic 437,s 
characteristic (of a linear mapping) 269.L 
characteristic (of a linear operator) 390.A 
characteristic (of a matrix) 269.F 
coherent 377.D 
collinear 442.A 
column 269.A 
contravariant 256.5 
coplanar 442.A 
covariant 256.5 
cyclic (of a representation space of a unitary 

representation) 437.A 
effect 102.A 
eigen- (of a linear mapping) 269.L 
eigen- (of a linear operator) 390.A 
eigen- (of a matrix) 269.F 
eigen-, generalized 390.B 
error 102.A 
fixed 442.A 
four- 359.C 
four-, energy-momentum 258.C 
free 442.A 
free vacuum 15O.C 
fundamental (in a vector space) 442.A 
horizontal 80.C 
independent 66.F 
integral 428.E 
mean 341.B 
mean curvature 365.D 
normal 105.L 11 l.H 364.A 
normalized 409.G 
observation 102.A 
orthogonal 139.G 
p- 256.0 
p-, bundle of 147.F 
positive 7.A 442.A 
Poynting 130.A 
proper (of a linear mapping) 269.L 
proper (of a linear operator) 390.A 
proper (of a matrix) 269.F 
root 390.B 
row 269.A 
tangent 105.H 
tangent, holomorphic 72.A 
tangent. of type (0,l) 72.C 
tangent. of type (LO) 72.C 
unit 442.B 
unit (of an afftne frame) 7.C 
vacuum 377.A 
valuation 6.C 
valuation, ring of 6.C 
vertical 80.B 
wave number (of a sine wave) 446 
Witt 449 
Witt, of length n 449.B 
zero 442.A 

vector algebra App. A, Table 3.1 

vector analysis and coordinate systems App. A, 
Table 3 

vector bundle 147.F 
(algebraic) 16.Y 
ample 16.Y 
complex 147.F 
cotangent 147.F 
dual 147.F 
indecomposable 16.Y 
normal 105.L 
normal k- 114.5 
quaternion 147.F 
semistable 16.Y 
stable 16.Y 237.B 
stably equivalent 237.B 
tangent 105.H 147.F 

vector field 
(on a differentiable manifold) 105.M 
(in a 3-dimensional Euclidean space) 442.D 
Anosov 126.5 
Axiom A 126.5 
basic 80.H 
of class c’ 105.M 
contravariant 105.0 
covariant 105.0 
differentiation of App. A, Table 3.11 
formal 105.AA 
fundamental 191.A 
G- 237.H 
Hamiltonian 126.L 219.C 
holomorphic 72.A 
integral of App. A, Table 3.111 
irrotational 442.D 
Killing 364.F 
Lagrangian 126.L 
lamellar 442.D 
Morse-Smale 126.5 
solenoidal 442.D 
variation 178.A 
without source 442.D 
without vortex 442.D 

vector flux (through a surface) 442.D 
vector function, measurable 308.G 
vector group 422.E 
vectorial form, canonical 417.C 
vectorial p-form 417.C 
vector integral 443.A 
vector invariant 226.C 
vector lattice 310.B 

Archimedean 310.C 
complete 310.C 
normed 310.F 
u-complete 310.C 

vector line (of a vector field) 442.D 
vector measure 443.G 

absolutely continuous 443.G 
bounded 443.G 
completely additive 443.G 
finitely additive 443.G 

vector potential 130.A 442.D 
vector product 442.C App. A, Table 3.1 
vector representation (of a Clifford group) 61.D 
vector space 442.A 

over a field 256.H 
metric 256.H 
prehomogeneous 450.V 
standard (of an affine space) 7.A 
tangent 105.H 
topological 424.A 

vector triple product 442.C App. A, Table 3.1 
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vector tube 442.D 
vector-valued integral 443 
velocity 

group 446 
phase (of a sine wave) 446 

velocity phase space 126.L 
velocity potential 205.B 
Veneziano model 132.C 386.C 
Verbeure inequality, Roepstorff- Fannes- 402.G 
Veronese surface 275.F 
versa1 (unfolding) 5 1 .D 
version (of a stochastic process) 407.A 
vertex (vertices) 

(of an angle) 139.D 155.B 
(in a cell complex) 70.D 
(of a circular cone) 78.A 
(of a complete quadrangle) 343.C 
(of a convex cell in an afftne space) 7.D 
(of a convex polyhedron) 89.A 
(in a Euclidean (simplicial) complex) 70.B 
(of a geodesic triangle) 178.A 
(of a graph) 186.B 
(of a linear graph) 282.A 
(of a parabola) 78.C 
(of a polygon) 155.F 
(in the polyhedron of a simplicial complex) 

7o.c 
(of a simplex in an afftne space) 7.D 
(in a simplicial complex) 70.C 
(of a spherical triangle) 432.B 
(of a star region) 339.D 
adjacent 186.B 
end 186.B 
initial 186.B 
isolated 186.B 
terminal 186.B 

vertical angles 139.D 
vertical component (of a vector field) 80.C 
vertical slit mapping, extremal 367.G 
vertical vector 80.B 
very ample 

(divisor) 16.N 
(linear system) 16.N 
(sheaf) 16.E 

very weak Bernoulli process 136.E 
Vessiot extension field, Picard- 113 
Vessiot theory, Picard- 113 
Vey classes, Godbillon- 154.G 
vibrating membrane, equation of a 325.A 
vibrating string, equation of a 325.A 
vibration 318 

normal 3 18.B 
parametrically sustained 318.B 
self-excited 318.B 

Viete, F. 444 
Vietoris axiom 425.Q 
Vietoris exact sequence, Mayer- (for a proper triple) 

2Ol.C 
Villat integration formula App. A, Table 15.VI 
Vinogradov mean value theorem 4.E 
virtual arithmetic genus (of a divisor) 16.E 
viscosity 205.B 

coefficient of 205.C 
coefficient of bulk 205.C 
coefficient of shear 205.C 
magnetic 259 

visibility manifold 178.F 
Vitali covering theorem 380.D 
Vivanti theorem 339.A 
Volterra integral equation 217.A 

Volterra operator 68.5 
Volterra theorem, Poincart- 198.5 
Volterra type 

integral equation of 217.A 
integrodifferential equation of 222.A 

volume 
(of an idele) 6.D 
(of a lattice in a Euclidean space) 92.D 
(of a polyhedron) 139.F 
(of a simplex in an atline space) 7.E 
inner 270.G 
outer 270.G 

volume element 
(of an oriented Cm-manifold) 105.W 
associated with a Riemannian metric 105.W 
integral of a function with respect to a (on a 
?-manifold) 105.W 

von Karman transonic similarity 205. D 
von Mises theorem 399.K 
von Neumann, J. 445 
von Neumann algebra 308.C 

discrete 308.E 
finite 308.E 
induced 308.C 
purely infinite 308.E 
reduced 308.C 
semitinite 308.E 
structure theorem for, of type III 308.1 
of type I 308.E 
of type II 308.E 
of type II, 308.E 
of type II, 308.E 
of type III 308.E 

von Neumann condition 304.F 
von Neumann density theorem 308.C 
von Neumann-Halmos theorem 136.13 
von Neumann inequality 251.M 
von Neumann-Morgenstern solution 173.D 
von Neumann reduction theory 308.G, 
von Neumann selection theorem 22.F 
von Neumann theorem, Weyl- 390.1 
von Neumann uniqueness theorem 351.C 
vortex, vector field without 442.D 
vortex line 205.B 
vorticity 205.B 
vorticity theorem, Helmholtz 205.B 
Vossen theorem, Cohn- 111.1 
VSVO algorithm 303.E 
V.W.B. process 136.E 

W 

W$Q) (Sobolev space) 168.B 
w-plane 74.D 
w-point (of an entire function) 429.B 
w-sphere 74.D 
W-construction (of an Eilenberg-MacLane complex) 

70.F 
W-surface 111.1 
W*-algebra 308.C 
Wagner function 39.F 
waiting time 260.H 
waiting time distribution 307.C 
Wald theorem 399.H,M 
Walker equation, Yule- 421.D 
Walker metrics, Robertson- 359.E 
wall 

adiabatic 419.A 
diathermal 419.A 

Wall group 114.5 
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Weak topology 

Wallis formula App. A, Table lO.VI 
Wallis test, Kruskal- 371.D 
Walsh system of orthogonal functions 317.C 
wandering 126.E 

weakly, under a group 136.E 
wandering point 126.E 
wandering set 136.C 

weakly 136.C 
Wang exact sequence (of a fiber space) 148.E 
Waring problem 4.E 
Warning second theorem 118.B 
Warning theorem 118.B 
wasan 230 
water wave(s) 205.F 

deep 205.F 
long 205.F 
shallow 205.F 

Watson formula 39.E, App. A, Table 19.IV 
Watson-Nicholson formula App. A, Table 19.111 
Watson process 

Galton- 44.B 
multi (k)-type Galton- 44.C 

Watson transform 160.C 220.B 
wave(s) 446 

Alfven 259 
capillary 205.F 
dispersive 446 
electromagnetic 446 
electromagnetic, theory of 130.B 
fast 259 
gravity 205.F 
gravity, long 205.F 
longitudinal 446 
Mach 205.B 
partial 386.B 
partial, expansion 375.E 386.B 
plane 446 
polarized 446 
shock 205.B 446 
sine 446 
sinusoidal 446 
slow 259 
spherical 446 
stationary 446 
Stokes 205.F 
surface 446 
transverse 446 
water 205.F 
water, deep 205.F 
water, long 205.F 
water, shallow 205.F 

wave equation 325.A 446, App. A, Table 15.111 
wave expansion, partial 375.E 386.B 
wave front set 274.B 345.A 

analytic 274.D 
wave function 351.D 

spheroidal 133.E 
wave guide 130.B 
wavelength (of a sine wave) 446 
wave number (of a sine wave) 446 
wave operator 375.B,H 

generalized 375.B 
incoming 375.B 
modified 375.B 
outgoing 375.B 

wave propagation 446 
wave scattering amplitude, partial 375.E 
wave steepness 205.F 
W.B. process 136.E 
WC group 118.D 

weak (boundary component) 77.E 
weak Bernoulli process 136.E 

very 136.E 
weak convergence 

(of operators) 251.C 
(of probability measures) 341.F 
(of a sequence of submodules) 200.5 

weak Cm topology 279.C 
weak derivative 125.E 
weak dimension (of a module) 200.K 
weaker 

(equivalence relation) 135.C 
(method of summation) 379.L 
(topology) 425.H 
(uniformity) 436.E 

weak extension (of a differential operator) 112.E,F 
weak form of the boundary value problem (of partial 

differential equations) 304.B 
weak global dimension (of a ring) 200.K 
weak homotopy equivalence 202.F 
weak lacuna 325.5 
weak law of large numbers 395.B 
weak Lefschetz theorem 16.U 
weakly, converge 

(in a normal linear space) 37.E 
(in a topological linear space) 424.H 

weakly almost complex manifold 114.H 
weakly compact (linear operator) 68.M 
weakly compact cardinal number 33.E 
weakly continuous (function with values in a Banach 

space) 37.K 
weakly continuous representation (of a topological 

group) 69.B 
weakly dominated (statistical structure) 396.F 
weakly equivalent (transformations) 136.F 
weakly G-stationary (system of random variables) 

395.1 
weakly hyperbolic linear (differential operator) 

325.H 
weakly inaccessible (ordinal number) 312.E 
weakly inaccessible (cardinal number) 33.E 
weakly integrable 443.F 
weakly isomorphic (automorphisms) 136.E 
weakly measurable 443.B,I 
weakly mixing (automorphism) 136.E 
weakly modular 351.L 
weakly nonlinear differential equations 290.D 
weakly I-complete manifold 114.H 
weakly stationary process 395.A 
weakly stationary process of degree k 395.1 
weakly stationary random distribution 395.c 
weakly symmetric Riemannian space 412.5 
weakly wandering set 136.C 
weakly wandering under a group 136.F 
weak minimum 46.C 
weak Mordell-Weil theorem 118.E 
weak operator topology 251.C 
weak potential kernel 260.D 
weak solution 204.C 323.G 378.1 
weak solution, Hopf’s 204.C 
weak* Dirichlet algebra 164.G 
weak star topology 37.E 424.H 
weak topology 

(in a cell complex) 70.D 
(on a class of measures) 338.E 
(on a direct product space) 425.K 
(on a direct sum) 425.M 
(on a locally convex space) 424.H 
(on a normed linear space) 37.E 
(relative to the pairing (E,F)) 424.H 
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hereditarily 425.M (in numerical integration) 299.A 
weak type (p, 4). quasi-linear operator of 224.E (in orthogonality) 317.A 
Weber differential equation 167.C App. A, Table weight group (of a pair (T, K)) 92.C 

20.111 weighting matrix 86.B 
Weber formula App. A, Table 19.IV weight k, automorphic form of 32.B 
Weber function 167.C, App. A, Table 19.IV 20.111 weight k, Fuchsian form of 32.B 
Weber-Hermite differential equation 167.C weight k, Hilbert modular form of 32.8 
Weber-Sonine formula App. A, Table 19.111 weight k, Siegel modular form of 32.F 
web group 234.B weight lattice (of a pair (T, K)) 92.C 
Wedderburn-Mal’tsev theorem (on algebras) 29.F weight m, automorphic form of 32.A 
Wedderburn theorem weight w, invariant of 226.D 

(on commutativity of finite lields) 149.M Weil-Chbtelet group 118.D 
(on simple algebras on a field) 29.E Weil cohomology 450.4 
(on simple rings) 368.G Weil conjecture 450.Q 

wedge 125.V Taniyama- 450,s 
infinitesimal 125.V Weil domain 21.G 

wedge product (of derived functors) 200.K Weil group 6.E 450.H 
wedge theorem, edge of the 125.W Weil L-function 450.H 
Weierstrass, K. 447 Weil measure 225.G 

analytic function in the sense of 198.1 Weil number 3.C 
Weierstrass approximation theorem 336.A Weil theorem 
Weierstrass canonical form Borel- 437.Q 

(of elliptic curves) 9.D Mordell- 118.E 
(of the gamma function) 174.A weak Mordell- 118.E 

Weierstrass canonical product 429.B Weinberg-Salam model, Glashow- 132.D 
Weierstrass criterion for uniform convergence Weingarten formula 

435.A (for an isometric immersion) 365.C 
Weierstrass elliptic functions 134.F, App. A, Table (in the theory of surface) 11 l.H, App. A, Table 

16.IV 4.1 
Weierstrass-Enneper formula 275.A Weingarten surface 111.1 
Weierstrass @-function 134.F, App. A, Table 16.IV Weirich formula App. A, Table 19.111 
Weierstrass point 1 l.D Weisberger sum rule, Adler- 132.C 
Weierstrass preparation theorem 21.E 370.B Welch test 400.G 
Weierstrass sigma function 134.F well-behaved 36.K 
Weierstrass-Stone theorem 168.B well-chained (metric space) 79.D 
Weierstrass theorem well-measurable 407.B 

(on compactness of subsets of R) 355.D well-measurable a-algebra 407.B 
(on continuous functions on a compact set) well-ordered set 31 l.C 

84.C well-ordering 31 l.C 
(on essential singularities) 198.D well-ordering theorem 34.B 
(on expansion of meromorphic functions) well-posed 

272.A (initial value problem) 321.E 
(on transcendental entire functions) 124.B (martingale problem) 115.C 
Bolzano- 140 273.F (problems for partial differential equations) 
Casorati- (on essential singularities) 198.D 322.A 
of double series 379.H Wendroff scheme, Lax- 304.F 
Lindemann- 430.D Weyl, H. 448 

Weierstrass-type preparation theorem (for micro- Weyl canonical basis 248.P 
differential operators) 274.F Weyl chamber 13.5 248.R 

Weierstrass zeta function 134.F positive 248.R 
weight(s) Weyl character formula (on representation of com- 

(of an automorphic form) 32.C pact Lie groups) 248.2 
(in a barycenter) 7.C Weyl conformal curvature tensor 8O.lP 
(of a covariant) 226.D Weyl criterion 182.H 
(of a multiple covariant) 226.E Weyl form 351.C 
(of a representation of a complex semisimple Weyl form of the CCRs (canonical commutation 
Lie algebra) 248.W relations) 337.A 

(on a von Neumann algebra) 308.D Weyl formula 323.M 
(of a weighted homogeneous analytic function) Weyl group 
418.D (of a BN pair) 13.R 

equal, principle of 402.E (of a complex semisimple Lie algebra) 248.R 
extremal length with 143.B (of a connected algebraic group) 13.H 
highest (of a representation of a complex semi- (of a Coxeter complex) 13.R 

simple Lie algebra) 248.W (of a root system) 13.5 
Kallen-Lehmann 150.D (of a symmetric Riemannian space:) 413.F 

weighted homogeneous (analytic function) 418.D affine (of a symmetric Riemannian space) 
weighted moving average 397.N 413.1 
weight function k- 13.4 

(for the mean of a function) 21 l.C Weyl integral formula 225.1 
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Yourden square design 

Weyl lemma 112.D 
Weyl-Stone-Titchmarsh-Kodaira theory 112.0 
Weyl theorem 

(on Lie algebras) 248.F 
Cartan- 248.W 

Weyl theory 
Peter- (on compact groups) 69.B 
Peter- (on compact Lie groups) 249.U 

Weyl-von Neumann theorem 390.1 
white group 92.D 
Whitehead group (of a ring) 237.J 
Whitehead product 202.P 
Whitehead theorem 202.N 

generalized 202.N 
Whitehead torsion 65.C 
white noise 176.D 

Gaussian 407.C 
Whitney class, Stiefel- 56.B,F 147.M 
Whitney class, total Stiefel- 56.B 
Whitney class, universal Stiefel- 56.B 
Whitney condition (b) 418.G 

at a point 418.G 
Whitney extension theorem 168.B 
Whitney mapping (map) 201.5 
Whitney number, Stiefel- 56.F 
Whitney prestratilication 418.G 
Whitney stratification 418.G 
Whitney sum (of vector bundles) 147.F 
Whitney theorem 105.K 
Whitney C/-test, Mann- 371.C 
Whittaker differential equation 167.8, App. A, 

Tables 14.11 19.11 
Whittaker function 167.B, App. A, Table 19.11 
Whittaker model 450.0 
wider sense, Bayes solution in the 398.B 
Widom type, Parreau- 164.K 
width, curve of constant 11 l.E 
width of an oval 11 l.E 
Wiener, generalized Tauberian theorems of 192.D 
Wiener-Brelot solution, Perron- (of Dirichlet prob- 

lem) 120.C 
Wiener compactification 207.C 
Wiener filter 86.E 
Wiener formula 160.B 
Wiener-Hopf integrodifferential equation 222.C 
Wiener-Ikehara-Landau theorem 123.B 
Wiener integral, multiple 176.1 
Wiener-It6 decomposition 176.1 
Wiener kernel 95 
Wiener-Levy theorem 159.1 
Wiener martingales, {.e}- 406.B 
Wiener measure 250.E 
Wiener measure with the initial distribution p 45.B 
Wiener process 5.D 45.B 98.B 
Wiener test 

(for Brownian motion) 45.0 
(for Dirichlet problem) 338.G 
(for random walk) 260.E 

Wiener theorem, Paley- 125.0,BB 
Wightman axiom 150.D 
Wightman field 150.D 
Wightman function 150.D 

truncated 150.D 
Wigner coefficients 353.B 
Wigner rotation 258.C 
Wigner supermultiplet 351.5 
Wigner theorem 258.C 351.H 
Wilcoxon signed rank test 371.B 
Wilcoxon test 371.C 

Wilczynski, directrix of llO.B 
wild 

(knot) 235.A 
(space) 65.F 

Wilson-Hilferty approximations 374.F 
Wilson theorem 297.G 
Wiman theorem 429.B 
winding number 198.B 
window 421.C 
winning strategy 33.F 
Wirtinger inequality App. A, Table 8 
Wirtinger presentation (of a knot group) 235.B,D 
Wishart distribution 374.C 

p-dimensional noncentral 374.C 
witch of Agnesi 93.H 
within-group variance 397.L 
without source (vector field) 442.D 
without vortex (vector field) 442.D 
Witt decomposition (of a quadratic form) 348.E 
Witt group (of nondegenerate quadratic forms) 

348.E 
Witt matrix, Hasse- 9.E 
Witt theorem 

(on s-trace forms) 60.0 
(on quadratic forms) 348.E 
Poincare-Birkhoff- (on Lie algebras) 248.5 

Witt vector 449 
of length n 449.B 

WKB method 25.B 
WKBJ method 25.B 
Wold decomposition 395.D 
Wolfowitz inequality 399.5 
word 31.B 190.M 

cord 63.A 
equivalent 3 1 .B 

word problem (in a finitely presented group) 
161.B 

worst-case complexity 71.A 
Wright differential equation, Cherwell- 291.F 
Wronskian (determinant) 208.E 
Wu class (of a topological manifold) 56.F 
Wu formula App. A, Table 6.V 

X 

x: (distribution) 125.EE 
X-minimal function 367.E 
x,-axis (of a Euclidean space) 140 

Y 

Y-diffeomorphism 136.G 
Y-flow 136.G 
Yamabe problem 183 364.H 
Yang-Mills equation 80.Q 
Yang-Mills field 150.G 
Yang-Mills functional S0.Q 
Yang-Mills G-connection 80.Q 
Yates-Terry normal score test, Fisher- 371.C 
Yosida approximation 286.X 
Yosida theorem, Hille- 378.B 
Young diagram 362.H 
Young inequality 224.E, App. A, Table 8 

Hausdorff- 224.E 
Young modulus 271.G 
Young symmetrizer 362.H 
Young theorem, Hausdorff- 317.B 
Yourden square 102.K 
Yourden square design 102.K 



Subject Index 
Yukawa potential 
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Yukawa potential 338.M 
Yule-Walker equation 421.D 

Z 

Z (integers) 294.A,C 
Z (Zermelo set theory) 33.B 
ZF (Zermelo-Fraenkel set theory) 33.B 
z-distribution 374.B, App. A, Table 22 
z-plane 74.D 
z-sphere 74.D 
z-transformation, Fisher 374.D 
Z-distribution 341.D 
Z-set 382.B 
Z-action (continuous) 126.B 
Z-action of class C’ 126.B 
Z,-extension 14.L 

basic 14.L 
cyclotomic 14.L 

Zariski closed (set) 16.A 
Zariski connectedness theorem 16.X 
Zariski decomposition 15.D 
Zariski dense (set) 16.A 
Zariski main theorem 16.1 
Zariski open (set) 16.A 
Zariski ring 284.C 

complete 284.C 
Zariski site 16.AA 
Zariski topology 

(of a spectrum) 16.D 
(of a variety) 16.A 

Zassenhaus group 151.H 
Zassenhaus theorem 

Jordan- (on integral representation of a group) 
362.K 

Schur- (on Hall subgroups) 151.E 
Zeeman unknotting theorem 65.D 
Zeller theorem, Brown-Shields- 43.C 
zenith angle App. A, Table 3.V 
Zeno, paradoxes of 319.C 
Zermelo-Fraenkel set theory 33.A,B 
Zermelo set theory 33.B 
zero(s) 355.A 

(of a function on an algebraic curve) 9.C 
(of a function on an algebraic variety) 16.M 
homologous to 198.B 
homotopic to 202.B 
scattered, function with 208.C 

zero algebra 29.A 
zero cycles 16.R 
zero-dimensional space, Baire 273.B 
zero divisor 

(of a function on an algebraic variety) 16.M 
(with respect to M/P) 284.A 
(of a ring) 368.B 

zero element 
(of an additive group) 2.E 190.A 
(of a field) 149.A 
(of a linear space) 256.A 
(of a ring) 368.A 

zero homomorphism (between two A-modules) 
277.H 

zero matrix 269.B 
zero object 52.N 
zero-one law 342.G 

Blumenthal 261.B 
Hewitt-Savage 342.G 
Kolmogorov 342.G 

zero point 
(of a holomorphic function) 198.C 

(of a polynomial) 337.B 369.C 
(of a subset of a polynomial ring) 369.C 
of the kth order (of a holomorphrc function) 

198.C 
of the - kth order (of a complex function) 

198.D 
order of (of a homomorphic function) 198.C 

zero-point theorem 
Hilbert 369.D 
Riickert 23.B 

zero representation (of an algebra) 362.C 
zero ring 368.A 
zero-section (of a block bundle) 147.Q 
zero-sum (game) 173.A 
zero-sum two-person game 108.B 
zeroth law of thermodynamics 419.A 
zero vector 442.A 
zeta function(s) 450 

(associated with a prehomogeneous space) 
45d.V 

(of a homeomorphism of a comp.act metric 
space) 126.K 

of an algebraic function field 450.P 
of an algebraic variety over a finite field 450.4 
congruence 450.P 
Dedekind 14.C 450.D 
defined by Hecke operators 450.M 
Epstein 450.K 
Hasse 450.S 
Hey 27.F 
Hurwitz 450.B 
Ihara 450.U 
Riemann 450.B 
of a scheme 450.R 
Selberg 450.T 
Siegel, of indefinite quadratic forms 450.K 
of a simple algebra 27.F 
Tamagawa 450.L 
Weierstrass 134.F, App. A, Table 16.IV 

ZFC 33.B 
Zilber theorem, Eilenberg- 201.5 
zonal harmonics 393.D 
zonal polynomial 374.C 
zonal spherical function (on a homogeneous space) 

437.Y 
Zorn lemma 34.C 
Zygmund, smooth in the sense of 168.B 
Zygmund class 159.E 
Zygmund singular integral operator, Calderon- 

251.0 
Zygmund type, kernal of Calderon 217.5 


