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Abstract

The Genetic Algorithm for Rule-Set Prediction (GARP) is one of several current approaches to modeling species’ distribu-
tions using occurrence records and environmental data. Because of stochastic elements in the algorithm and underdetermination
of the system (multiple solutions with the same value for the optimization criterion), no unique solution is produced. Fur-
thermore, current implementations of GARP utilize only presence data—rather than both presence and absence, the more
general case. Hence, variability among GARP models, which is typical of genetic algorithms, and complications in interpret-
ing results based on asymmetrical (presence-only) input data make model selection critical. Generally, some locality records
are randomly selected to build a distributional model, with others set aside to evaluate it. Here, we use intrinsic and extrinsic
measures of model performance to determine whether optimal models can be identified based on objective intrinsic criteria,
without resorting to an independent test data set. We modeled potential distributions of two rodents (Heteromys anomalus
andMicroryzomys minutus) and one passerine bird (Carpodacus mexicanus), creating 20 models for each species. For each
model, we calculated intrinsic and extrinsic measures of omission and commission error, as well as composite indices of
overall error. Although intrinsic and extrinsic composite measures of overall model performance were sometimes loosely
related to each other, none was consistently associated with expert-judged model quality. In contrast, intrinsic and extrinsic
measures were highly correlated for both omission and commission in the two widespread species (H. anomalusandC. mex-
icanus). Furthermore, a clear inverse relationship existed between omission and commission there, and the best models were
consistently found at low levels of omission and moderate-to-high commission values. In contrast, all models forM. minutus
showed low values of both omission and commission. Because models are based only on presence data (and not all areas are
adequately sampled), the commission index reflects not only true commission error but also a component that results from
undersampled areas that the species actually inhabits. We here propose an operational procedure for determining an optimal
region of the omission/commission relationship and thus selecting high-quality GARP models. Our implementation of this
technique forH. anomalusgave a much more reasonable estimation of the species’ potential distribution than did the original
suite of models. These findings are relevant to evaluation of other distributional-modeling techniques based on presence-only
data and should also be considered with other machine-learning applications modified for use with asymmetrical input data.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Predictive modeling of species’ potential
distributions

Predictive modeling of species’ distributions now
represents an important tool in biogeography, evo-
lution, ecology, conservation, and invasive-species
management (Busby, 1986; Nicholls, 1989; Walker,
1990; Walker and Cocks, 1991; Sindel and Michael,
1992; Wilson et al., 1992; Box et al., 1993; Carpenter
et al., 1993; Austin and Meyers, 1996; Kadmon and
Heller, 1998; Yom-Tov and Kadmon, 1998; Corsi
et al., 1999; Peterson et al., 1999, 2000; Fleishman
et al., 2001; Peterson and Vieglais, 2001; Boone and
Krohn, 2002; Fertig and Reiners, 2002; Scott et al.,
2002). These approaches combine occurrence data
with ecological/environmental variables (both biotic
and abiotic factors: e.g. temperature, precipitation,
elevation, geology, and vegetation) to create a model
of the species’ requirements for the examined vari-
ables. Primary occurrence data exist in the form of
georeferenced coordinates of latitude and longitude
for confirmed localities that typically derive from
vouchered museum or herbarium specimens (Baker
et al., 1998; Funk et al., 1999; Soberón, 1999; Ponder
et al., 2001; Stockwell and Peterson, 2002a). Absence
data are rarely available, especially in poorly sampled
tropical regions where modeling may hold greatest
value (Stockwell and Peters, 1999; Anderson et al.,
2002a). The environmental variables typically exam-
ined in such modeling efforts encompass only rela-
tively few of the possible ecological-niche dimensions
(Hutchinson, 1957). Nevertheless, currently available
digital environmental coverages (digitized computer
maps) provide many variables that commonly influ-
ence species’ macrodistributions (Grinnell, 1917a,b;
Root, 1988; Brown and Lomolino, 1998).

The resulting model is then projected onto a map
of the study region, showing the species’ potential ge-
ographic distribution (e.g.Chen and Peterson, 2000;
Peterson and Vieglais, 2001). Models are generally
based on the species’ fundamental niche (Hutchinson,
1957; including factors controlling distributions put
forward in Grinnell, 1917b; see alsoMacArthur,
1968; Wiens, 1989; Morrison and Hall, 2002). Thus,
some areas indicated by the model as regions of po-
tential presence may be occupied by closely related

species, or may represent suitable areas to which
the species has failed to disperse or in which it
has gone extinct. Rather than a drawback, however,
this “overprediction” resulting from the niche-based
nature of the models actually allows for synthetic
evolutionary and ecological applications comparing
potential and realized distributions (Peterson et al.,
1999; Peterson and Vieglais, 2001; Anderson et al.,
2002a,b).

1.2. Variability among GARP models

The Genetic Algorithm for Rule-Set Predic-
tion (GARP: http://biodi.sdsc.edu/; see http://beta.
lifemapper.org/desktopgarp/for software download)
is an expert-system, machine-learning approach to
predictive modeling (Stockwell and Peters, 1999).
Genetic algorithms constitute one class of artificial-
intelligence applications and were inspired by models
of genetics and evolution (Holland, 1975). They have
been applied to various problems not amenable to
traditional computational methods because the search
space of all possible solutions is too large to search ex-
haustively in a reasonable amount of time (Stockwell
and Noble, 1992). Genetic algorithms present a heuris-
tic solution to this dilemma by scanning broadly across
the search space and refining solutions that show
high values for the optimization (fitness) criterion.
GARP has proven especially successful in predicting
species’ potential distributions under a wide variety
of situations (Peterson and Cohoon, 1999; Peterson
et al., 1999, 2001, 2002a,b,c; Godown and Peterson,
2000; Sánchez-Cordero and Martı́nez-Meyer, 2000;
Peterson, 2001; Elith and Burgman, 2002; Feria-A.
and Peterson, 2002; Stockwell and Peterson, 2002a,b;
but see Lim et al., 2002). Chen and Peterson
(2000), Peterson and Vieglais (2001), andAnderson
et al. (2002a)provide general explanations of the
GARP modeling process and interpretation of po-
tential distributions; seeStockwell and Noble (1992)
and Stockwell and Peters (1999)for technical
details.

GARP reduces error in predicted distributions by
maximizing both significance and predictive accuracy,
a novel goal for such analytical systems (Stockwell
and Peters, 1999). The algorithm is largely successful
in doing so without overfitting or overly specializing
rules, which is especially important when models are

http://biodi.sdsc.edu/
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based on occurrence data compiled without a fixed
study design (Peterson and Cohoon, 1999). Owing to
stochastic elements in the algorithm (such as muta-
tion and crossing over;Holland, 1975; Stockwell and
Noble, 1992), however, no unique solution is pro-
duced; indeed, the underdetermination of the system
yields multiple solutions holding the same value
for the optimization criterion. Hence, the variability
among resulting models (typical of most machine-
learning problems) requires careful examination of
possible sources of error in order to select the most
predictive models.

A common strategy for evaluating model quality
has been to divide known localities randomly into
two groups:training data used to create the model
and an independenttest data set used to evaluate
model quality (Fielding and Bell, 1997; Fielding,
2002). One-tailedχ2-statistics (or binomial probabil-
ities, if sample sizes are small) are often employed to
determine whether test points fall into regions of pre-
dicted presence more often than expected by chance,
given the proportion of map pixels predicted present
by the model (e.g.Peterson et al., 1999; Anderson
et al., 2002a). These tests using independent test data
thus provideextrinsicmeasures of model significance
(departure from random predictions). However, by
excluding part of the data set from the model-building
stage, the algorithm cannot take advantage of all
known locality records. Clearly, an optimal model
would incorporate data from all available records of
the species.

One tactic for managing the variability among mod-
els has been to make multiple models and determine
how many models predict particular pixels as present
(Anderson et al., 2002a; Lim et al., 2002; Peterson
et al., unpublished data).Anderson et al. (2002a)tem-
pered among-model variation by making three GARP
models per species and creating a composite predic-
tion based on all three models. In further analyses,
map pixels predicted present by at least two of the
models were then considered “predicted presence”.
Similarly, Lim et al. (2002)created five models per
species and deemed pixels predicted by three or more
of them as predicted presence in subsequent analyses.
More recently, Peterson et al. (unpublished data) have
made larger numbers of models and summed them
(for each model, value of 1 for a pixel of presence;
value of 0 for predicted absence). In such an approach,

Table 1
Elements of a confusion matrixa

Predicted Actual

Present Absent

Present a b
Absent c d

a In GARP, map pixels are re-sampled with replacement to pro-
duce the elements of the confusion matrix. Elementa represents
known distributional areas correctly predicted as present. Like-
wise, d reflects regions where the species has not been found
and that are classified by the model as absent. Elementc denotes
omission: map pixels of known distribution predicted absent by
the model. Conversely,b reflects areas from which the species is
not known but that are predicted present (commission, both true
and apparent—seeSection 1.3).

the value of a pixel in the composite (summed) map
thus equals the number of models predicting presence
in that cell. Summing models may reveal a consistent
signal that holds up across many different indepen-
dent random walks of model generation. The above
methods weigh all model replicates equally; in con-
trast, we herein compare such equal-weight tactics
with a best-subsets approach.

1.3. Error components

Two types of error are possible in predictive mod-
els of species’ distributions: false negatives (omission
error or underprediction) and false positives (commis-
sion error or overprediction). The relative proportions
of these errors are typically expressed in aconfusion
matrix, or error matrix (Fielding and Bell, 1997).
Four elements are present in a confusion matrix
(Table 1). Elementa represents known distributional
areas correctly predicted as present, andd reflects
regions where the species has not been found and that
are classified by the model as absent. Thus,a and
d are considered correct classifications; in contrast,
c and b are usually interpreted as errors. Elementc
denotes omission: pixels of known distribution pre-
dicted absent by the model. Conversely,b is a mea-
sure of areas of absence (or “pseudo-absence”—see
below) incorrectly predicted present (commission).
Unfortunately, when known presence points are few
in number and true absence points are not available,
problems arise with some measures derived from the
confusion matrix (Fielding and Bell, 1997).



214 R.P. Anderson et al. / Ecological Modelling 162 (2003) 211–232

GARP creates a confusion matrix by intrinsically
re-sampling map pixels with replacement. First, 1250
map pixels are chosen randomly with replacement
from those pixels holding localities of known occur-
rence (training points). The quantitya is the number
of those pixels that coincide with areas of predicted
presence; the number falling outside the prediction
equalsc. Thus,a + c = 1250 for GARP models in
which all pixels are predicted as either present or
absent (in some models, the rule-set may not make a
decision for every pixel; such pixels are then coded
as “no data” in the prediction—see below). Likewise,
1250 pixels are re-sampled with replacement from
the remaining pixels of the study area (any pixels
without confirmed presence data in the training set).
These pixels are referred to as background points or
pseudo-absence points (Stockwell and Peters, 1999),
highlighting the difference between models based on
typical biodiversity information (positive occurrence
records from zoological museums or herbaria, as
here) and those that also include true absence data
(e.g. Corsi et al., 1999; Fertig and Reiners, 2002).
Background pixels that fall into regions of predicted
presence yieldb, whereas background pixels of pre-
dicted absence produced; b + d = 1250 for models
with a presence/absence prediction for all pixels (but
less if not all cells are predicted either present or
absent).

As mentioned above, distributional-modeling algo-
rithms like GARP are often used with only presence
data. For most species, data regarding absence are
not available (Stockwell and Peters, 1999; Peterson,
2001). In addition, when apotentialdistribution based
on the species’ fundamental niche is desired, use of ab-
sence data could adversely affect the model-building
process by inhibiting inclusion of areas that hold suit-
able environmental conditions where the species is
not present due to historical restrictions or biological
interactions (Peterson et al., 1999; Anderson et al.,
2002b). However, despite the practical necessity and
theoretical justification for using only presence data
in modeling ecological niches, this asymmetry in
input data (errors in pseudo-absences but not in pres-
ences) requires that interpretation of the confusion
matrix be amended. In such cases, whereas elementc
represents pure omission error, elementb includes the
contributions of both true and apparent commission
error.

Apparent commission error derives from poten-
tially habitable regions correctly predicted as pres-
ence, but that cannot be demonstrated as such because
no verification of the species exists there. The lack of
verification of the species may have various causes
(Karl et al., 2002). In certain cases, some areas lack-
ing documentation of the species stem from historical
causes or biotic interactions (Peterson, 2001). For
example, disjunct areas of potential habitat with no
records of the species often correspond to historical
restrictions or the historical effects of speciation (e.g.
failure of the species to disperse to a region of suitable
habitat;Peterson et al., 1999; Peterson and Vieglais,
2001; Anderson et al., 2002a). Similarly, competition
between related species showing parapatric distribu-
tions likely restricts many species’ realized distribu-
tions (Peterson, 2001; Anderson et al., 2002b). Other
biological interactions—such as predation in some
parts of the potential range but not in others—may
also limit some species’ distributions. In addition to
historical and biotic causes, apparent commission er-
ror can also derive from inadequate sampling: map
pixels of real presence (at least at some time of the
year in some subhabitat) lacking documentation of
the species because they have not been adequately
sampled by biologists (Karl et al., 2002). This latter
form of apparent commission error has recently been
recognized in presence/absence data sets where in-
ventories were extensive yet incomplete (Boone and
Krohn, 1999; Karl et al., 2000; Schaefer and Krohn,
2002; Stauffer et al., 2002). By definition, it reaches
maximum manifestation in presence-only modeling
applications like current implementations of GARP.
As the goal of presence-only potential-distribution
modeling is to determine which of the background
(pseudo-absence) pixels actually represent suitable
areas for a species—whether or not it actually in-
habits them—interpreting measures of commission is
critical.

1.4. Intrinsic and extrinsic measures of model
performance

1.4.1. Measures including both omission and
commission (composite indices)

One measure of overall model performance is the
correct classification rateof Fielding and Bell (1997)
(see Table 2). GARP provides an intrinsic correct
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Table 2
Quantitative measures used in this studya

Measure Calculation

Intrinsic
Overall performance (correct classification rate) (a + d)/(a + b + c + d)
Omission error (false negative rate) c/(a + c)
Commission index (false positive rate) b/(b + d)

Extrinsic
Overall performance (significance)

∑
[(observed− expected)2/expected] for test points

Omission error outtest/ntest

Commission index Proportion of pixels predicted present

a Intrinsic measures (based on training data used to make the model) are given above and extrinsic equivalents (based on independent
test data) below. Measures of overall performance include contributions of both omission and commission.

classification rate derived from the confusion matrix:
(a + d)/(a + b + c + d)—equal to the “accuracy” of
Stockwell and Peterson (2002b), not that ofAnderson
et al. (2002a). This quantity ranges from 0 to 1 and is
designed to measure overall model adequacy, includ-
ing contributions of both omission and commission in
the denominator. Note that, correct classification rate
= (1 minus sum of error terms)/(sum of all terms).
However, because elementb is overestimated by the
preponderance of background (pseudo-absence) pix-
els, this statistic is necessarily biased with data sets
that lack true absence data (common with biodiver-
sity information;Peterson, 2001; Ponder et al., 2001;
Stockwell and Peterson, 2002a). Likewise, the over-
all Kappa (κ)-statistic of Fielding and Bell (1997)
includes elements of both omission and commission
and thus suffers from the same problem (see also
Fielding, 2002).

Theχ2-statistic based on independent test data can
be used as an extrinsic measure of overall perfor-
mance, because it incorporates both omission (of test
points) and commission (via expected frequencies;
Table 2). However, this statistic is highly sensitive to
the proportional extent of predicted presence, making
highly significant results possible with unacceptably
high omission rates (e.g. models that only include the
core ecological distribution of the species). In addi-
tion, χ2-significance values are related to sample size
(Peterson, 2001). Hence, it is likely that neither cor-
rect classification rates,κ-statistics (both potentially
intrinsic), norχ2-significance values (typically extrin-
sic) represent reliable measures of overall model per-
formance.

1.4.2. Measures of omission and commission
To assess model performance more adequately,

other indices that provide intrinsic estimates of
each error component can be derived from the con-
fusion matrix (Table 2; reviewed in Fielding and
Bell, 1997). The quantityc/(a + c) represents thein-
trinsic omission errorrate, andb/(b + d) represents
what we here term theintrinsic commission index
(false negative and false positive rates, respectively,
of Fielding and Bell (1997)). The intrinsic omission
error reflects the proportion of known localities (train-
ing points) that fall outside the predicted region (by
re-sampling with replacement to produce the confu-
sion matrix). The intrinsic commission index mirrors
the proportion of pixels predicted present by the
model (proportion of re-sampled background points
falling into regions of predicted presence). Owing
to the general scarcity of confirmed presence data,
however, this latter index includes contributions of
(1) true commission error (overprediction) as well as
of (2) apparent commission error (correctly predicted
areas not verifiable as such, primarily because of the
lack of adequate sampling). The aim of predictive
modeling is precisely to determine this latter quantity,
as well as the geographic distribution of those pixels.
To emphasize the dual nature ofb/(b + d), we term
it the intrinsic commissionindexrather than intrinsic
commissionerror. One of our aims is to discriminate
between its two components.

Extrinsic measures of omission and commission
exist parallel to the respective intrinsic ones (Table 2).
Where outtest = the number of test points falling
outside predicted areas andntest = the number of
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test points, outtest/ntest representsextrinsic omission
error. Likewise, the proportion of pixels predicted
present can serve as anextrinsic commission index.
In fact, because the number of training points is usu-
ally extremely small in comparison with the number
of background pixels in the overall study region,
the intrinsic commission index will converge on this
extrinsic measure with adequate re-sampling.

In the present study, we evaluate model perfor-
mance based on both intrinsic and extrinsic criteria,
with the goal of identifying optimal models based
on intrinsic measures only. If that were possible,
optimal models could then be identified even when
generated using all known locality data. We approach
this problem by examining measures of omission and
commission, as well as composite indices designed
to reflect both quantities. Because measures of com-
mission are dependent on the proportional extent of
areas potentially inhabitable by the species within
the study region, we examine in detail three cases
whose modeled ecological niches show geographic
manifestations occupying varying proportions of the
respective study areas. Current implementations of
GARP represent the modification of a general algo-
rithm for the specific case of presence-only (generally
museum) data. The present research is also germane
to evaluation of other distributional-modeling tech-
niques that use presence-only data. In addition, it may
be broadly relevant to machine-learning applications
with asymmetrical input data (asymmetrical errors).

2. Methods

2.1. Study species

The spiny pocket mouseHeteromys anomalus
(Heteromyidae) is a common, medium-sized rodent
(50–100 g) that is widespread along the Caribbean
coast of South America in northern Colombia and
Venezuela, as well as on the nearby islands of Trinidad,
Tobago, and Margarita. It has been documented in de-
ciduous forest, evergreen rainforest, cloud forest, and
some agricultural areas, typically from sea level to
approximately 1600 m (Anderson, 1999, unpublished
data; Anderson and Soriano, 1999). We examine its
distribution in northeastern Colombia and northwest-
ern Venezuela (7◦30′–12◦30′N, 68◦30′–76◦00′W). In

most of this region, it is the onlyHeteromyspresent,
simplifying interpretations of its potential and real-
ized distributions (Anderson, 1999; Anderson et al.,
2002b). Although H. anomalusis widespread in the
region, inventories strongly suggest that it is absent
from higher montane regions (e.g. above 2000 m in
the Sierra Nevada de Santa Marta, Serranı́a de Perijá,
and Cordillera de Mérida), dry lowland scrub habitat,
swampy areas, and open tropical savannas (llanos) of
the Orinoco basin (Bangs, 1900; Allen, 1904; Handley,
1976; August, 1984; D́ıaz de Pascual, 1988, 1994;
Soriano and Clulow, 1988; Anderson, 1999).

Microryzomys minutus(Muridae) is a small-bodied
rodent (10–20 g) known from medium-to-high eleva-
tions of the Andes and associated mountain chains
from Venezuela to Bolivia (Carleton and Musser,
1989). It occupies an elevational range of approxi-
mately 1000–4000 m and has been recorded primarily
in wet montane and submontane forests, as well as
occasionally in mesic páramo habitats above tree-
line. We evaluate the central and northern extent of
its distribution, from northern Peru to Colombia and
Venezuela (9◦S to 13◦N, 51–82◦W). A congeneric
species,M. altissimus, occupies generally higher el-
evations in much of this region, but occasionally the
two have been found in sympatry.M. minutushas not
been encountered in lowland regions (below approxi-
mately 1000 m). Likewise, it is apparently absent from
dry puna habitat above treeline, and obviously from
permanent glaciers on the highest mountain peaks.

Carpodacus mexicanus(Fringillidae) is a relatively
small passerine bird distributed throughout western
North America south to southern Mexico (AOU,
1998). On its native range, it is generally found in
arid landscapes (often associated with humans) and
is typically absent from higher elevations and humid
areas. As an introduced species, it has successfully
invaded humid regions such as Hawaii and eastern
North America. We analyze its native geographic
distribution in Mexico, where it is clearly associated
with dry habitats and human habitation.

2.2. Model building

We employed the Genetic Algorithm for Rule-Set
Prediction (GARP; http://biodi.sdsc.edu/; but see
http://beta.lifemapper.org/desktopgarp/for current
software download) to model potential distributions

http://biodi.sdsc.edu/
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of the three study species (Stockwell and Noble,
1992; Stockwell and Peters, 1999). GARP searches
for non-random associations between environmen-
tal characteristics of localities of known occurrence
versus those of the overall study region. It works
in an iterative process of rule selection, evaluation,
testing, and incorporation or rejection to produce
a heterogeneous rule-set characterizing the species’
ecological requirements (Peterson et al., 1999). First,
a method is chosen from a set of possibilities (e.g. lo-
gistic regression, bioclimatic rules), and it is applied
to the data. Then, a rule is developed and predic-
tive accuracy sensu (Stockwell and Peters, 1999) is
evaluated via training points intrinsically re-sampled
from both the known distribution and from the study
region as a whole. The change in predictive accuracy
from one iteration to the next is used to evaluate
whether a particular rule should be incorporated into
the model (rule-set). As implemented here, the algo-
rithm runs either 2500 iterations or until addition of
new rules has no appreciable effect on the intrinsic
accuracy measure (convergence). The final rule-set,
or ecological-niche model, is then projected onto
a digital map as the species’ potential geographic
distribution, exported as an ASCII raster grid, and
imported into ArcView 3.1 (ESRI, 1998) using the
Spatial Analyst Extension for visualization.

The base environmental data comprise a variety
of geographic coverages (digitized maps). ForH.
anomalusand M. minutus, we used 21 environmen-
tal coverages. These coverages have a pixel size of
0.04◦ × 0.04◦ (about 4.5 km × 4.5 km) and consist
of elevation, slope, aspect, soil conditions, geologi-
cal ages, geomorphology, coarse potential vegetation
zones, and a series of coverages for solar radiation,
temperature, and precipitation. For the latter three,
separate coverages representing upper and lower
bounds of isopleth intervals were included (for mean
annual solar radiation, mean annual temperature,
mean monthly temperature in January and July, mean
annual precipitation, and mean monthly precipitation
in January and July). ForC. mexicanus, models were
based on four coverages: elevation, potential vege-
tation type, average annual temperature, and mean
annual precipitation. The pixel size forC. mexicanus
was 0.06◦ × 0.06◦ (about 7 km× 7 km).

Unique localities of species’ occurrences came from
Anderson (1999, unpublished data; 85 localities) for

H. anomalus; Carleton and Musser (1989; 72 locali-
ties) forM. minutus; and theAtlas of the Distribution
of Mexican Birds(Peterson et al., 1998; 333 locali-
ties) forC. mexicanus(museums are cited in Acknowl-
edgements). We divided collection localities randomly
into training and test data sets (50% each) for each
species. Twenty models were made for each species
using their respective training sets; the same training
set was used to create each of the 20 models for a
species. Test points were withheld completely from
GARP’s model-building and internal evaluation pro-
cess, and were used only for evaluating final models.

2.3. Model evaluation

2.3.1. Intrinsic values
For each model, we obtained the elements of the

confusion matrix and calculated values of the cor-
rect classification rate ((a + d)/(a + b + c + d)), the
intrinsic omission error (c/(a + c)) and the intrinsic
commission index (b/(b + d)) (Table 2). In some
models, GARP failed to predict every pixel as either
present or absent; such pixels are categorized as “no
data” in the resultant map and reclassified as predicted
absence in further geographic analyses (warranted
because the models were based only on presence and
pseudo-absence data; Ricardo Scachetti-Pereira, per-
sonal communication). These unpredicted pixels do
not enter into the confusion matrix (seeSection 1).

2.3.2. Extrinsic values and expert evaluation
Applying a one-tailedχ2-statistic to the test data,

we evaluated the significance of each model against a
null hypothesis of no relationship between the predic-
tion and the test data points. More precisely, we tested
whether test points fell into areas predicted present
more often than expected at random, given the overall
proportion of pixels predicted present versus predicted
absent for that species (modified fromPeterson et al.,
1999). Theχ2-value represented our extrinsic compos-
ite measure of overall model performance (including
contributions of both omission and commission—see
Anderson et al., 2002a). We used the proportion of
test points falling outside the prediction (outtest/ntest)
as our extrinsic measure of omission error (= 1 minus
the “accuracy” ofAnderson et al., 2002a). Likewise,
we calculated the extrinsic commission index as the
proportion of land surface predicted present (Table 2).
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In addition, each model was evaluated subjectively
by specialists (RPA and DL for mammals; ATP for
birds) according to our understanding of the species’
autecology and known distribution and the geogra-
phy of major climatic and biotic zones. Evaluations
were made blind to the model statistics to be as-
sessed. We classified models as good, medium, or
poor. Good models excluded areas where experts be-
lieved a species probably does not exist and included
most or all known areas of distribution. Poor mod-
els excluded large areas of true distribution or in-
cluded large areas of likely unsuitable habitat. Medium
models suffered from lesser problems of either type.
Models were not penalized for including suitable ar-
eas without records for the species—e.g. regions in-
habited by congeneric species or regions of likely
suitable conditions to which the species has failed
to disperse (Peterson et al., 1999; Anderson et al.,
2002a).

For each species, we plotted the following combi-
nations of intrinsic and extrinsic measures for each
model: (1) extrinsic performance (χ2) versus intrinsic
correct classification rate ((a + d)/(a + b + c + d));
(2) intrinsic omission error (c/(a + c)) versus intrinsic
commission index (b/(b + d)); and (3) extrinsic omis-
sion error (outtest/ntest) versus extrinsic commission
index (proportion of study region predicted present).
Models in each plot were flagged according to the in-
dependent expert evaluation of quality. In addition, we
calculated correlations between intrinsic and extrinsic
measures of omission, commission, and overall per-
formance. To assess how well intrinsic measures of
omission and commission predicted extrinsic ones, we
regressed the latter onto the former in simple linear
regressions.

2.4. Concordance among models

Given the variability present among GARP models,
we considered the possibility that a suite of 20 models
might predict the potential distribution better than any
single model, by revealing a consistent signal present
in most models (seeSection 1). Thus, we extended the
equal-weight approaches ofAnderson et al. (2002a),
Lim et al. (2002), and Peterson et al. (unpublished
data) by summing the 20 models for each species
(value of 1 for a pixel of predicted presence; value of
0 for predicted absence). This procedure produced a

composite map comprised of pixels with values rang-
ing from 0 to 20, representing the number of models
that predicted the species’ presence in the pixel. For
visualization of these results, we present maps show-
ing various thresholds of concordance among models:
(1) distribution of pixels predicted present by at least
6/20 models; (2) pixels predicted present by at least
11/20 models; and (3) pixels predicted present by at
least 16/20 models.

3. Results

3.1. Composite measures of performance

Extrinsic performance measures (χ2) were almost
always significant. Seventeen of the 20 models for
H. anomalusshowed significant deviations from ran-
dom predictions, in the desired direction (χ2 for sig-
nificant models= 4.07–16.95;P < 0.05; one-tailed
critical valueχ2

1,0.05 = 2.706; the other three models
showed non-significant departures in the desired di-
rection). All models were highly significant for both
M. minutus(χ2 = 177.02–684.74;P � 0.05) and
C. mexicanus(χ2 = 42.29–164.50;P � 0.05). The
latter species had an extremely large number of test
points, which resulted in high statistical power. Mod-
els for M. minutus were highly significant despite
the moderate number of test points, due to almost
all test points falling in a very small predicted area
relative to the study region. Because of the propor-
tionately large geographic extent ofH. anomalusin
its study area and a moderate number of test points,
the tests of significance for that species had relatively
lower statistical power than those for the other two
examples.

However, no consistent trend was observed between
intrinsic and extrinsic measures of overall model per-
formance (Fig. 1). The graphs suggest a generally pos-
itive relationship forC. mexicanus(r = 0.80), but the
correlation between the two measures was low forH.
anomalus(r = 0.45) andM. minutus(r = 0.32). In all
three cases, however, variation in intrinsic overall per-
formance was minimal compared with the great vari-
ation in the extrinsic measure of overall performance
(χ2). Likewise, no uniform trend existed between these
composite measures of performance and model qual-
ity as judged by expert classification (Fig. 1).
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Fig. 1. Plots of intrinsic and extrinsic measures of overall per-
formance for models of the three species. Individual models are
flagged by categories of model quality (good, medium, poor) from
expert evaluations, which were made blind to the numeric values.

3.2. Omission and commission

Within each species, intrinsic and extrinsic evalua-
tions showed consistent patterns between omission er-
rors and commission indices (Fig. 2). ForH. anomalus
andC. mexicanus(the two species with relatively large
potential distributions within their respective study
regions), omission and commission values were in-
versely related, with the data swarm slightly concave
upward in each case. ForM. minutus, all models were
clustered at low values, with no clear trends within
the tight clusters. The best models, as evaluated by
specialists, occupied different portions of the omis-
sion/commission graphs depending on the relative ge-
ographic extent of the species’ potential distribution.
For the two species with relatively large potential dis-
tributions (H. anomalusand C. mexicanus), the best
models were found with low omission and relatively
high commission values. In contrast, all models for the
geographically restrictedM. minutusshowed a more
equal balance between omission and commission, with
low values for both.

Likewise, extrinsic values for omission and com-
mission tracked the corresponding intrinsic values for
the widespread species but not forM. minutus. ForH.
anomalusandC. mexicanus, the intrinsic and extrinsic
omission values were highly correlated (r = 0.64 and
0.78, respectively), and regressions of extrinsic esti-
mates onto intrinsic ones were significant (P < 0.01).
Although average extrinsic and intrinsic omission val-
ues were similar forC. mexicanus, extrinsic omission
for H. anomaluswas much greater than the intrinsic
omission estimate (probably due to the moderate num-
ber of training points, insufficient for adequately por-
traying the species’ niche). In contrast to those two
species, intrinsic and extrinsic omission errors were
only weakly correlated forM. minutus(r = 0.20), and
the regression of the latter onto the former was not
significant (P = 0.39).

Paralleling the results for omission, intrinsic and
extrinsic commission values were strongly associated
for the two widespread species but not forM. minutus.
Correlations between the two measures forH. anoma-
lus andC. mexicanuswere very high (r = 0.98 and
0.85, respectively), with highly significant regressions
of extrinsic measures onto intrinsic ones (P � 0.001).
For M. minutus, intrinsic and extrinsic commission
values showed only weak correlation (r = 0.43), and
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Fig. 2. Intrinsic and extrinsic plots of omission error vs. commission index, for each of the three species. Individual models are flagged
by categories of model quality from expert evaluations (good, medium, poor), which were made blind to the numeric values.
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the regression was non-significant but nearly so (P =
0.06).

3.3. Ecogeographic interpretation of model quality

Expert evaluation found clear differences in qual-
ity among the 20 models for each species. We here
discuss the patterns found forH. anomalusas an ex-
ample. Poor models typically predicted presence in
all montane regions but almost no lowland regions.
Thus, in addition to piedmont regions (where the
species is present and commonly collected), they im-
plausibly included areas too high for the species in
the Sierra Nevada de Santa Marta, Serranı́a de Per-

Fig. 3. Maps of the modeled potential distribution ofH. anomalusin the study area. Panels A–C show various thresholds of concordance
among the 20 models (at least 6/20, 11/20, and 16/20 models predicting presence, respectively). Training localities (used to build the
model) are denoted by circles; independent, randomly chosen test localities are represented by triangles. Low thresholds (e.g. 6/20) include
areas where the species’ presence is doubtful, such as high montane regions of the Sierra Nevada de Santa Marta, Serranı́a de Perij́a,
and Cordillera de Ḿerida (arrows in A). Higher thresholds (e.g. 16/20) suffer by missing areas of lowland distribution (C). In contrast,
Model 13 (shown in D), succeeded in predicting presence for most of the lowland distribution of the species and predicting absence in
high montane regions.

ijá, and Cordillera de Mérida (Bangs, 1900; Allen,
1904; Handley, 1976; D́ıaz de Pascual, 1988, 1994;
Anderson, 1999). At the same time, they failed to
include areas of true distribution in lowland decidu-
ous forests. Models were extremely variable in the
Venezuelan llanos, where the open savannas (unin-
habitable forH. anomalus) and gallery forests (from
which H. anomalusis known) comprise a mosaic of
habitats not adequately reflected in our coarse en-
vironmental coverages (Anderson et al., 2002a). In
contrast, in addition to correctly predicting presence
in the piedmont, the best models succeeded in pre-
dicting absence in high montane regions while also
including lowland regions of deciduous forest (where
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the species is known). These high-quality models gen-
erally excluded both extremely dry scrub habitats and
swampy areas around the lower Cauca/Magdalena
(Colombia) and Catatumbo (Venezuela) drainages
from which the species is not known and where its
presence is unlikely.

Fig. 4. Maps of the modeled potential distribution ofM. minutusin the study area. Panels A–C show various thresholds of concordance
among the 20 models (at least 6/20, 11/20, and 16/20 models predicting presence, respectively). Triangles are used to depict training
localities, and circles denote test localities. Low thresholds (e.g. 6/20) include areas where the species’ presence is doubtful, such as arid
areas of western Peru and Ecuador and northern Venezuela (arrows in A). Higher thresholds (e.g. 16/20) suffer by missing real distributional
areas at intermediate elevations (C). In contrast, Model 9 succeeded in effectively predicting presence for the species’ known distribution,
as well as areas of similar conditions in the Guianan highlands (tepui formations; arrows in D).

3.4. Concordance among multiple models (composite
approach)

Applying various thresholds of concordance among
models, no suitable balance between omission and
commission was achieved for any of the species. For
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Fig. 5. Maps of the modeled potential distribution ofC. mexicanusin the study area. Panels A–C show various thresholds of concordance among the 20 models (at least 6/20,
11/20, and 16/20 models predicting presence, respectively). Training localities are indicated by circles; triangles depict test localities. Evenlow thresholds of concordance
among models (e.g. at least 6/20, A) fail to accurately predict the species’ distribution in northeastern Mexico (arrows in A); this problem is especially severe at stricter
thresholds (e.g. 16/20, C). In contrast, Model 6 (D) correctly predicted presence for the species in northeastern Mexico, as well as in disjunct areasof similar habitat southeast
of the Isthmus of Tehuantepec and on the Penı́nsula de Baja California (arrows in D).
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H. anomalus, the map of pixels predicted by at least
6 of the 20 models yielded a composite model with a
satisfactory prediction of the lowland distribution of
the species (Fig. 3A), but that erroneously indicated
potential habitat in high montane regions. The map of
pixels predicted present in 11 or more models showed
only a slight indication of predicting absence in high
mountain regions, and lost predicted presence in suit-
able lowland regions (Fig. 3B). Converse to results of
the first threshold, a composite model with a threshold
of 16 or more models (Fig. 3C) gave a map that cor-
rectly predicted the species’ absence in high montane
regions, but omitted the known lowland distribution.

The same limitations of this approach were ap-
parent with the other species. A composite model
with a threshold of six forM. minutuspredicted pres-
ence in some lowland areas of extremely unlikely
distribution (e.g. Chocoan rainforest; arid regions in
northwestern Peru, southwestern Ecuador, and north-
ern Colombia and Venezuela;Fig. 4A). The stricter
threshold of 11 models lost those lowland regions, but
still overpredicted presence in some extremely high ar-
eas (including permanent glaciers) not habitable by the
species (Fig. 4B). The composite map of pixels pre-
dicted present by at least 16 of the 20 models (Fig. 4C)
indicated absence in the extremely high mountain re-
gions, but also predicted absence some lower montane
regions of known distribution (such as the Cordillera
de la Costa in Venezuela). Composite models forC.
mexicanusconsistently underestimated pixels of pres-
ence for the species’ distribution in Mexico (Fig. 5).
All three thresholds of composite models failed to pre-
dict presence in the northern and eastern portions of
the Chihuahua Desert, and the coast of southwestern
Mexico was predicted absent in the composite with a
16-model threshold (Fig. 5C). Hence, the range of this
broadly distributed species was underestimated by the
equal-weight composite approach.

In contrast to the results from the superimposed
models, at least one single model for each species re-
flected the species’ distributions well, as judged by
experts (Figs. 3–5D). For H. anomalus, Model 13
(Fig. 3D) correctly excluded most high montane areas
while still including acceptable lowland predictions.
Likewise, Model 9 forM. minutusavoided predicting
presence in lowland or very high regions and main-
tained predicted presence of intermediate elevations
(Fig. 4D). Finally, Model 6 forC. mexicanuscorrectly

predicted the species’ distribution in northern and east-
ern Mexico without neglecting the species’ distribu-
tional areas along the coast of Guerrero and Oaxaca
(Fig. 5D). These models all had low omission values,
but the commission index varied by species.

4. Discussion

4.1. Measures of overall performance

Considerable variation was present among GARP
models, as predicted by the theoretical background
of genetic algorithms (Holland, 1975) and indicated
by previous work (e.g.Anderson et al., 2002a). Thus,
the algorithm generally performed as expected un-
der this domain. Below, however, we consider issues
regarding error quantification in this special case of
presence-only data. Furthermore, we explore rela-
tionships between various indices and expert-judged
model quality.

Neither extrinsic nor intrinsic measures of overall
performance provided an effective means for identi-
fying the best models. Extrinsic model significance
(χ2) probably varied among the species in part due
to the power afforded by varying sample sizes in the
test data sets, and also according to the relative extent
of suitable habitat for each species (Peterson, 2001).
Models with highest significance (lowestP-value) did
not consistently include the best models identified by
experts (Fig. 1). Models with highest significance of-
ten included the core ecological distribution of that
species, but excluded ecologically peripheral parts of
the known distribution. For example, highly signifi-
cant models forH. anomalusincluded montane re-
gions (especially the piedmont, where the majority of
the localities are found) without extending into known
distributions in the lowlands (from which fewer points
were present). Thus, although theχ2-measure of sig-
nificance indicates departure from a random predic-
tion, it is not a reliable indicator of model quality.

Likewise, the intrinsic measure of overall model
performance did not identify the best models either
(Fig. 1). In fact, the value (a + d)/(a + b + c + d)
varied little among models within species. This re-
sult is consistent with the findings ofStockwell and
Peterson (2002b), who found that this quantity (their
“accuracy”) reached an apparent plateau with sample
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sizes of 20–50 localities. Thus, this measure also fails
as a measure of quality to discriminate among a suite
of final GARP models.

4.2. Utility of omission/commission graphs

In contrast to overall performance measures, both
intrinsic and extrinsic plots of omission versus com-
mission may be useful for selecting optimal models,
at least for species with medium-to-large proportional
potential distributions in the study region. For the two
widespread species, the best models were found in
the same regions of the respective intrinsic and ex-
trinsic omission/commission graphs (Fig. 2), and in-
trinsic and extrinsic measures were highly correlated.
Because patterns in intrinsic measures are repeated in
the independent extrinsic ones, intrinsic measures hold
potential for assessing model quality when all avail-
able data points are used for model construction.

Whereas the best models for the two widespread
species combined low measures of omission with
fairly high levels of commission, all models forM.
minutus showed low values of both omission and
commission. ForM. minutus(a montane species with
an extremely small proportional distribution within
the study area), optimal GARP models minimize
omission without increasing commission excessively
(because pixels of predicted presence represent a
small fraction of the study region). In contrast, for
species with medium-to-large proportional potential
distributions in the study region (exemplified here by
H. anomalusandC. mexicanus), large areas must be
included as predicted presence (yielding high values
in the commission index) in order to reduce omission
to acceptable levels without overfitting the data.

4.3. Separating the commission index into error and
overfitting

While high values of commission may at first seem
an undesirable tradeoff to reduce omission, we return
to the dual nature of the commission index. In addi-
tion to true commission error, this index also reflects
areas of potential distribution correctly predicted but
not verifiable owing to lack of occurrence records—
which can result either from: (1) inadequate sampling
in areas of real distribution; or (2) historical restric-
tions or biotic interactions in areas of potential but

not realized distribution (seeapparent commission er-
ror of Karl et al. (2002)and of Peterson (2001), as
discussed above). In an ideal model, the commission
index, b/(b + d), should equal the true proportion of
pixels potentially habitable by the species in the study
region. Thus, as long as the number of known occur-
rence points is small with respect to the species’ po-
tential range, we propose that the ideal value of the
commission index equals the true proportion of pixels
that hold potential distribution for the species, such
that true proportion= pixels of true distribution/total
pixels in the study area. For example, for a species with
a true potential distribution that encompasses half of
the study area, the optimal value for the intrinsic com-
mission index (b/(b+d)) would be 0.50. Therefore, on
average, true commissionerror only exists above that
value. True commissionerror can be estimated as the
commissionindex minus the true proportion of pix-
els habitable for the species, orintrinsic commission
error = b/(b + d) minustrue proportion.

Models that exceed zero commissionerror gener-
ally commit true commission, whereas those with val-
ues to the left of zero tend to overfit the data, some
quite severely. For example, a model that predicts the

Fig. 6. Plot of values of intrinsic omission error vs. intrinsic com-
mission index, for 112 new models ofH. anomalus. Models falling
into the optimal region are marked with a solid diamond, with
all others flagged by a shaded square. The present data swarm
confirms the general inverse, slightly concave-up relationship be-
tween omission and commission found in preliminary analyses.
SeeFig. 7 for geographic portrayal of the optimal models.
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entire study region would include commission error
for all species that have a true proportion<100% of
the study region. In contrast, a severely overfit model
would include the most or all of the training points and
small regions around them, failing to predict presence
in other regions of suitable habitat (typically holding
fewer training points). Models forH. anomalusthat
only predicted presence in piedmont regions repre-
sent examples of the latter, sacrificing moderate num-
bers of ecologically peripheral localities while still
predicting most of the remaining localities in a rela-
tively small geographic area. Our results suggest that,
for species with a potential distribution that occupies
a large proportional extent of the study region, many
models overfit the preponderance of the data and fail
to include the species’ full potential distribution. How-
ever, some models do effectively reduce omission er-
ror while still predicting only a reasonable proportion

Fig. 7. Map of 20 optimal potential-distribution models forH. anomalusin the study area, selected from 112 new models (Fig. 6). Various
thresholds of concordance among the 20 models are shown in increasing color intensity matching the separate panels ofFig. 3 (at least
6/20, pale gray; 11/20, medium gray; and 16/20, black). Circles denote training localities, and triangles are used to plot test localities. Note
that even low thresholds (e.g. 6/20) begin to exclude high montane areas where the species’ presence is doubtful, in contrast toFig. 3A
(the 20 original models). Higher thresholds (e.g. 16/20) here succeed in predicting absence in high montane regions while maintaining
predicted presence in areas of lowland distribution, in contrast toFig. 3C (the 20 original models). The optimal models show the same
general geographic characteristics as Model 13, the best single model in preliminary analyses (seeFig. 3D).

of the study region (i.e. not suffering excessive com-
mission error).

Obviously, the goal of predictive modeling is tode-
terminethe true proportion of pixels of potential pres-
ence for the species, as well as their location. It may be
possible to approximate this value empirically. Of the
four “good” models forH. anomaluswith the lowest
intrinsic omission errors (<5%;Fig. 2), expert inspec-
tion suggested that the ones with lower values on the
intrinsic commission index included slightly too few
areas of predicted presence. In contrast, the higher two
somewhat overestimated areas of potential presence.
The average commission of these four models seems
to give a reasonable estimate of the true extent of
the species’ potential distribution, (true proportion=
0.68 via intrinsic commission index; 0.65 via propor-
tion of pixels predicted present). The average of all 20
models, however, gives a biased (lower) estimate, as
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the models with higher omission error are too restric-
tive and underestimate the true potential distribution
(0.49 via intrinsic commission index; 0.50 via propor-
tional extent).

4.4. Selecting optimal models

To test an operational method of selecting opti-
mal models, we produced more GARP models forH.
anomalus, using the same training data set. We made
models until finding 20 that fell in a region of the in-
trinsic omission/commission graph that we identified
as theoptimal region, as defined below. We arbitrar-
ily only accepted models with 5% or less intrinsic
omission error and selected an interval of the intrinsic
commission index centered on the approximate esti-
mated proportion of pixels of potential distribution for
the species (true proportion≈ 2/3, from first set of
analyses—see above). Around that value (0.67), we
arbitrarily set a deviation of 0.10 to produce an ac-
ceptable interval from 0.57 to 0.77.

To obtain 20 new models that fell into the op-
timal region of the omission/commission graph, we
made a total of 112 additional models ofH. anoma-
lus. These models formed a slightly concave-up data
swarm (Fig. 6) similar to that intimated by the origi-
nal 20 models for the species. Upon inspection, the 20
models from this round of modeling that fell into the
optimal region presented the general geographic char-
acteristics identified by the experts as necessary for a
good model (similar to the best model of the first 20,
shown inFig. 3D). As a whole, they avoided the er-
rors that plagued the medium and poor models from
the original set.

Additionally, the superposition of all 20 optimal
models from the second set (Fig. 7) did not show
the tradeoffs suffered by the superposition of the 20
original models (Fig. 3A–C). Rather, we interpret the
new composite map as a relatively unbiased density
surface related to the probability of suitable environ-
mental conditions for the species. For example, pixels
predicted present by 16 or more models (Fig. 7) cor-
rectly indicate absence in high montane regions, while
maintaining a more realistic distribution in the low-
lands. The few test localities that fall outside areas of
predicted presence derive from drier regions that, by
random chance, were not represented by any of the
training points. In sum, the best-subsets selection pro-

cedure is superior to an equal-weight approach (used
in Anderson et al., 2002a; Lim et al., 2002; Peterson
et al., unpublished data).

5. Conclusions and recommendations

In the terminology of genetic algorithms, modifica-
tion of GARP for use with presence-only occurrence
data can result in a highly atypical fitness surface.
When visualized in omission/commission space, the
repercussions of pseudo-absences sometimes create a
fitnessridge, rather than the typical global fitnesspeak.
For GARP distributional models, this ridge is likely
present for most species having medium-to-large po-
tential distributions in the study region. Solutions
along the ridge show similar values for intrinsic over-
all performance (= correct classification rate, which
is highly correlated with the optimization criterion).
However, solutions at opposite endpoints of the ridge
differ dramatically in error composition as well as
qualitative aspects of the geographic prediction—with
error in models at one extreme of the ridge including a
great deal of omission and ones at the other comprised
entirely of commission. Because much commission
“error” is not real but rather apparent (due especially
to undersampling), only solutions with low omission
represent correct ones.

Hence, our results indicate that identification of an
optimal region of the intrinsic omission/commission
graph holds promise as a way to select high-quality
GARP models without resorting to an extrinsic test
data set. This approach allows all occurrence data to be
used in generating models, thus increasing the predic-
tive capacity of GARP in cases where occurrence data
are scarce. When occurrence data are sufficient to per-
mit independent testing without reducing the training
data set excessively, extrinsic measures can be used
in the same best-subsets selection procedure. In ei-
ther case, high-quality models can potentially be cho-
sen without expert supervision. Minimally, only two
parameters would have to be provided by the user: a
maximum acceptable level of omission error, and the
width of the optimal interval on the commission index.

Towards that end, we here propose an operational
protocol for generation and selection of a best subset
of optimal GARP ecological-niche models and distri-
butional predictions.
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• Step 1: Arbitrarily set an acceptable level of intrin-
sic omission error (e.g. 5%), representing the upper
limit of the optimal region along that axis.

• Step 2: Approximate the true proportion of the
species’ potential distribution in the study region,
as the mean value on the commission index (or
median, if density function is skewed) for those
preliminary models with an acceptable level of
intrinsic omission (from Step 1). This value then
represents the center of the optimal region on the
intrinsic-commission-index axis.

• Step 3: Arbitrarily set the acceptable width of the op-
timal region of the intrinsic-commission-index axis
(e.g.±0.1 in this study).

• Step 4: Make models until the desired number of
models falling within the optimal region is reached.

• Step 5: Superimpose the selected models to create a
composite prediction showing the number of opti-
mal models predicting presence in each pixel across
the study region.

Although unsupervised model building (without
subjective expert evaluation) remains premature, we
hope that this approach will allow selection of better
models and stimulate research that will make opera-
tional, unsupervised modeling possible in the future.
In particular, the process outlined above provides
an objective means of model evaluation at least for
species with moderate-to-large potential distributions
in the study region. Such species, upon both theoretical
and empirical grounds, are likely to show an inverse
association between omission and commission (nec-
essary for the current selection procedure). Species
with very small potential distributions relative to the
study region, likeM. minutus, represent a challenge
for future research, because all models are likely to
lie within a small region of the omission/commission
graph. Future studies should evaluate the generality
of the present results, considering that at least the
following factors may affect patterns of model qual-
ity: geographic extent of the study region; proportion
of the species’ range encompassed in the study re-
gion; proportional extent of the potential distribution
of the species in the study region; resolution and
composition of the physical, climatic, and biotic GIS
coverages (base data); niche breadth of the species;
number of localities available; and degree of spatial
autocorrelation (and thus bias) among collection lo-

calities (e.g. disproportionate collection effort near
roads and rivers;Funk et al., 1999; Lim et al., 2002).
In the meantime, applications of this method should
continue to graph omission and commission errors
and examine the geographic predictions visually.

Our model-selection approach is based on vari-
ous measures of accuracy and error derived from the
confusion matrix and does not address model sig-
nificance. While one motive of our research was to
allow the use of all occurrence data in distributional
modeling, we still recommend the production of pre-
liminary models based on training data (following
Fielding and Bell, 1997). Such preliminary models
allow for the assessment of significance (departure
from random predictions) with an independent test
data set using techniques such as aχ2-test (Peterson
et al., 1999) or ROC analysis (Zweig and Campbell,
1993; Pearce et al., 2002). After significance has
been demonstrated, species with only moderate num-
bers of available occurrence points are probably best
modeled using all available localities. However, the
model-selection process we propose here can be used
to identify optimal models made either with all avail-
able occurrence points (using intrinsic measures of
omission and commission for model selection) or
with a training subset of the data points (using extrin-
sic measures to select optimal models). Future work
should extend the research ofStockwell and Peterson
(2002b)in light of the current conclusions, exploring
ways to determine how many occurrence points are
necessary for adequate modeling.

The crux of the current findings clearly lies with
asymmetry of the input data (presence-only occur-
rence records). Here, we modify the evaluation of
distributional models produced with such data by a
non-deterministic algorithm (one that produces mul-
tiple solutions given the same input data). By defini-
tion, model selection per se would not be necessary
for deterministic algorithms that identify only one
solution (distributional prediction), such as general-
ized linear models, bioclimatic-envelope methods,
and others (Busby, 1986; Nicholls, 1989; Walker and
Cocks, 1991; Box et al., 1993; Carpenter et al., 1993;
Jarvis and Robertson, 1999; Elith and Burgman,
2002). However, when based on presence-only data,
evaluation of such models and valid comparison
with models produced by other techniques requires
consideration of the dual nature of the commission
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index. In addition, a best-subsets selection procedure
would likely be useful for identifying correct models
produced by deterministic algorithms when jackknif-
ing or bootstrapping of input data (of occurrence
records and/or environmental predictor variables)
introduces variation into the system. Finally, in ad-
dition to applications with distributional modeling,
researchers should critically examine components of
error with other machine-learning techniques (espe-
cially genetic algorithms) that have been modified for
use with asymmetrical input data, to determine if a
similar best-subsets approach is warranted in those
cases.
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