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Introduction

If you read the scientific literature on seed dispersal, you will find that it is full of
statistics. The articles and books are full of acronyms like ANOVA, LSD (it is not a
drug!), HSD, and letters (p, q, F and χ2) It is safe to say that you cannot truly understand
this literature without some knowledge of what statistics are and what their purpose is.
Worse, you cannot publish in the scientific literature without knowing statistics. The two
lectures that I will give you about statistics should give you enough background to get
started in thinking about the world in a statistical fashion. They should also help you to
read –and understand, at least some of the statistical sections in the scientific literature. I
must warn you. The two lectures are not a substitute for a detailed course (or courses) in
statistics. You may be understandably annoyed when you learn that you need to learn a
lot of statistics. After all, your goal is to understand the natural world. For good or bad,
statistics are an essential part of your toolbox as a biologist. Without them, it is very
unlikely that you will make a big contribution to ecology. Ecology is a complicated
subject and ecological systems are variable. Variability makes statistics absolutely
necessary.

Before I even begin the lectures I must make a disclaimer. The few lectures that I will
give you are incomplete, even as an introduction. There are many important topics that I
will not discuss. For example, I will never talk about what the normal, t, and F
distributions are, and why we can use them to make statistical inferences. I will use them,
but I will not justify their use. Because understanding these distributions is essential to
fully comprehend statistical procedures, the lecture will have a bit of a magical flavor.
You plug in data in the computer or in formulas and out come statistics and p-values. I do
not thing that this is a good situation, but it is unavoidable. I have placed an annotated list
of books and references at the end of these notes. The list includes the books and articles
that I believe should be in any practicing ecologist’s library. Reading these books and
articles will give you a better understanding of statistics. I hope that these lectures will do
3 things:

1) Give you an idea of why you need to think statistically (i.e. think of scientific
questions as questions that must be addressed by observations and experiments that yield
data that can be analyzed with statistics).

2) Provide you with a few basic statistical tools, so that you can begin designing your
own observations and experiments, and analyzing the data resulting from them.

And
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3) Motivate you to take more statistics courses and to learn more about statistics on your
own.

Statistics: what are they good for? It is sensible to begin this lecture by asking: why do
we need statistics in ecology? There are two approaches to answer this question. I will
begin by the cynical one. There are 4 bad reasons to learn statistics:

1) using statistics makes your papers more difficult to read, and hence, makes them
scientifically respectable.

2) Everyone else uses statistics.
3) Computers make it easy to get a bunch of numbers, and it is easier to spend time

sitting in front of a computer (in an air-conditioned room) than sweating in the
field or thinking.

4) You cannot publish a scientific paper if you do not use statistics and you need to
publish if you want to get a job that will allow you to sit in front of a computer.

Of course, these reasons are not really valid. A less disrespectful view recognizes that we
need statistics for two interrelated reasons: The first one has to do with the tendency that
humans have to find pattern in nature, sometimes even when it does not exist. We need a
tool that can tell us if differences among classes of phenomena in nature are associated
with understandable processes or are simply the result of random variation. If you are a
half-decent scientists, you discover regular patterns in nature and pose hypotheses to
explain them all the time. Statistics give you a tool to determine if the patterns that you
discover are really regular and if your hypotheses to explain them are correct. The second
reason is that science is about making measurements that are repeatable and about
making predictions. Statistics allow us to determine the repeatability of our
measurements and the accuracy of our predictions.

In summary, statistics are important and useful because they allow us to evaluate the
confidence that we can place on the regularity a pattern, and because they allow us to
determine if our hypotheses are supported or not by reality.

Know your data: describing pattern
Ecology is a quantitative science. It deals with numbers. Before you do an experiment to
test a hypothesis you  have to describe a phenomenon. Phenomena in ecology are
described with numbers. These numbers describe, hopefully in a more accurate fashion,
your qualitative observations. How do we describe pattern? First we need a collection of
observations. An observation is often called a datum, and a collection of observations is a
sample. This sample is a subset of all possible observations about which you want to
draw a conclusion. The set of all possible observations is a statistical population or
sampling universe.

Types of data.- Your data will be numbers and can be of several types. It is important to
recognize the types of variables that you are using because these will determine the kind
of statistical analysis that you will use. Data can be divided into two broad classes:
categorical variables and measurement variables.
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Categorical (or nominal) variables are characteristics of an object that can be broken
down into classes or categories (fruit can be green, red, and purple, it can be juicy or
fatty). Binary variables are categorical variables for which only two categories exists
(alive or dead, parasitized or non-parasitized). Measurement variables are associated with
measurements on an object and that are associated with a number. Measurement variables
can be of many different types:

1) Continuous ratio scale data. This category includes lengths, volumes, weights,
capacities, rates, and so on. All data for which you can unambiguously assign a 0
and that you can express as a real number are of this type.

2) Discrete data. Whenever you count objects, you obtain discrete data that has the
same properties as the natural numbers (0, 1, 2, 3, 4,…, etc.).

3) Ordinal data. Some measurements are better expressed as ordered sets. Plant A is
smaller than plant B, and plant C is bigger than plant B (A < B < C). We can
assign the numbers 1, 2, and 3 to plants A, B, and C. Note, however, that all we
can say is that C is bigger than B, but we cannot say by how much. Continuous
ratio scale data and discrete data contain more information (we can say that a tree
has 3 times more fruit than another, or a fruit is twice as long).

Getting a representative sample is not as easy as it may seem, but it is something that you
should strive to do. The main problem that plagues samples is lack of statistical
independence. This problem is best illustrated with and example. Suppose that you would
like to know the sugar concentration in the fruit of a plant. You measure this continuous
variable (mg of sugar/100 mg of fruit pulp) in 100 fruits from one tree and in 5 of
another. The measurements that you have done on each tree are not statistically
independent. The fruits in each tree are more likely to be more similar to each other than
to fruits in other trees. Your sample is biased because one tree is better represented than
the other. To obtain a representative sample you would have to measure 1 fruit per tree in
a 100 trees. In subsequent sections we will ask the question, how big should your sample
be (i.e. how many fruits and trees should you measure). In addition to being
representative, some tests may require that you have a random sample. To achieve a
random sample, you may want to number 1000 trees and draw a random sample of a 100.
Although obtaining random samples can be very important, it is sometimes not possible.
For some problems you may want to measure many fruits per tree in many trees, and then
ask the question how much of the variation in sugar content is explained by variation
within and among trees. This is a question that we will address later. For now, it is
sufficient to emphasize that when you collect samples, you should attempt to keep them
as statistically independent as possible. If you cannot do this (say, it is impossible to find
100 trees, you can only find 5 individuals), then you should always identify all the
possible sources of variation. That is you need to identify which fruit came from which
tree. As we will see determining the contribution of different sources of variations to the
total variation in a sample is one of the goals (and one of the useful tools) is statistical
analysis. Assuming that data are independent when they are not in statistical analysis is
called pseudoreplication (Hulbert 1983). It is considered an ugly sin by most ecologist,
who nevertheless continue committing it. We have our first commandment:
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First Commandment: You shall not pseudoreplicate.

Here I must make a very important comment. In general, it is not a good idea to go out
and collect a data set without knowing in advance how you will analyze it. Many of the
following sections will describe how to conduct certain statistical tests. You should use
them as guides to how to design a study. Few things irritate statisticians more than having
a biologist come with a big table of numbers and asking the statistician how to analyze
them.  As a general rule, you must know the statistical test that you will use before you
even collect a single observation.

Second commandment: you should think about how you will analyze your data
before gathering it.

Describing the data.- How can you make sense of the data and communicate it to others?
We are primates, and hence we are a very visual species. One of the first
recommendations that I can give you is to always draw a picture of your data. In this case
a picture would be a histogram. A histogram or bar graph is a pictorial description of the
frequency distribution of values in your sample. Making a histogram is a bit of an art, but
once you have a bit of experience it will be second nature. To make a histogram, you
must first divide the values into intervals. For discrete or categorical values, these
intervals are really easy to construct. They are {0, 1, 2, 3,….,N} or {green, yellow, red,
and black }. When you have continuous variables, it is a bit more difficult. Using too
many or too few intervals, will obscure the shape of the distribution (which is something
that sometimes can be of interest). There are some rules of thumb about how to construct
these intervals, but the choice is generally left to good judgment, bearing in mind that 10
to 20 groups is about right for biological work (but please use your judgment!). In
general, intervals of the same size should be used. Once you have determined the
intervals, you must determine the absolute frequency in each interval. The absolute
frequency is the number of observations or  measurements in each interval. The best way
to do this is to place the results in a table.  The following two data sets are examples of
what your data tables will look like:

TABLE 1
Category    Absolute frequency     Relative frequency
(fruit color)                                   Absolute frequency/N
A=green 56        0.27
B=yellow 60        0.28
C = red 46        0.22
D=black 49        0.23

________
Total = N 211

0
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80
Number of fruit
 (observations)

A B C D

Fruit color
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TABLE 2
Category         
(number of 
ripe fruit
per tree)                     fi                               Fi            cumulative

0 0.00707547 3 3

1 0.00235849 1 4

2 0.00235849 1 5

3 0.00235849 1 6

4 0.00471698 2 8

5 0.00707547 3 11

6 0.01179245 5 16

7 0.01650943 7 23

8 0.01886792 8 31

9 0.0259434 11 42

10 0.02358491 10 52

11 0.0259434 11 63

12 0.03066038 13 76

13 0.02830189 12 88

14 0.03773585 16 104

15 0.03066038 13 117

16 0.03301887 14 131

17 0.03773585 16 147

18 0.03537736 15 162

19 0.03301887 14 176

20 0.04009434 17 193

21 0.04245283 18 211

22 0.05424528 23 234

23 0.04009434 17 251

24 0.04481132 19 270

25 0.04245283 18 288

26 0.04481132 19 307

27 0.0495283 21 328

28 0.04245283 18 346

29 0.03066038 13 359

30 0.02358491 10 369

31 0.03301887 14 383

32 0.02122642 9 392

33 0.02358491 10 402

34 0.08018868 34 436

35 0.01179245 5 441

36 0.00943396 4 445

37 0.00235849 1 446

38 0.00471698 2 448
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39 0.00235849 1 449

40 0 0 449

4 1 0.00235849 1 450
 

In a histogram you plot the absolute frequencies (often denoted by Fi) for each interval
(or category i) as a bar in the y axis and the intervals in the x axis. The height of the bars
is proportional to the value of the frequency. You will sometimes find that sometimes
researchers use relative frequencies (fi = Fi/N) or percentages (%i = [Fi/N]x100) instead
of absolute frequency. Another way that you will find is plots of the cumulative
frequency against the interval:

i
Cumulative frequencyi = ∑ Fj = F1 + F2 + F3 + F4 +…+Fi.

j=0
The symbol ∑ means sum, and the expression means the sum of the frequencies Fj from j
equal to 0 to i where i is the number of the interval (1,2,3,…, up to N, where N is the
number of observations). These plots are called cumulative frequency distributions.

Third commandment: Always provide a visual representation of your data.

Parameters and statistics.- I cannot overemphasize the importance of making a pictorial
representation of your data. However, you will also have to give numerical summaries of
large data sets. These numerical summaries that, ideally,  characterize your data can be
divided into several types: the two most widely used are 1) measures of central tendency
(arithmetic mean, median and mode), and 2) measures of  dispersion (variance, standard
deviation, coefficient of variation, and range). A quantity such as a measure of dispersion
is called a statistic. Lets begin by describing measures of central tendency. The most
commonly used measure of central tendency is the arithmetic mean or average:

           N
Arithmetic mean = X  = 1/N(∑xi) = (1/N)(x0+ x1+ x2+…xN).

               i = 0

Where N is the total number of observations and xi equals the value of each one of the
observations. If your measurements are discrete, a handy formula for the arithmetic mean
is

K                  K

Arithmetic mean = X  = 1/N(∑Fii) = (∑fii) = f00 + f11 + f22 +….+fKK
                                                                     i = 0                i = 0

In this equation you have N observations (or data points) that can be divided into K
catergories, each one of which has an absolute frequency Fi and a relative frequency fi.
For example you can calculate the arithmetic mean for the data set   in table 2 as

X = (0+0+0+1+2+3+4+4+5+5+5+…..+41)/450 = 23.0

or you can calculate it as
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X  = (3/450)0 + (1/450)1 + (1/450)2+ (2/450)4 + (3/450)5 +…..= 23.0.

It is the same thing.

In addition to the mean, it is useful to consider the median and the mode as measures of
central tendency. The median is defined as the value that divides your observations into
two sets of equal size. 50% of your observations have a value that is lower than the
median and 50% have a value that is higher than the median. For example if you take a
look at table 2, you will find that 50% of the observations (i.e. 225 observations) fall
below about 21.5. If N is odd, the median will be an integer. If it is even (as is the case
that we have just calculated) it will be a half integer. The mode is defined as the most
frequently occurring measurement in a data set, and can be found by taking a look at the
frequency distribution. The data in table 3 has a mode when x = 22. The data that we
have used are very well behaved in that all the measurements of central tendency (the
mean, the median, and the mode) are about the same. When data have a mound-shaped,
or approximately “normal” distribution, this is the case (the definition of normal in
statistics is different than that in normal life). If the distribution is not normal, the values
of the mean, median, and mode will not be the same. The next figure, which I
shamelessly stole from Zar’s (1996. Biostatistical analysis. Prentice Hal) excellent
statistics textbook, shows some instances in which these measurements of central
tendency differ. This figure illustrates several additional noteworthy comments. Often
your data will have asymmetrical distributions, and often they will have more than one
mode. A lot of interesting biological processes create asymmetrical and multimodal
distributions.
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In addition to having a statistic that measures central tendency (or “average”), it is useful
to have measurements of how far variable the data set is. A measurement of variability
indicates how spread out measurements are around the average or center of the
distribution. The four most commonly used statistics used to measure dispersion are the
range, the variance, the standard deviation, and the coefficient of variation. The range is
the difference between the highest and the lowest value of a data set. For example the
range of the data in table 2 is 41. Rather –or in addition to, reporting the range as a
number, I prefer to report the range of values by mentioning the lower and upper limits of
the measurements in a data set. For the data set in table 3, I would report the range with a
sentence:
                          “The number of fruits per tree ranged from 0 to 41”

The range, by itself, can be ambiguous. You can have the same range if trees produce
from 1000 to 1041 fruits, or if they produce from 0 to 41 fruits. The variance (s2) is
defined as follows:

Variance = s2 = SS/N = [1/(N-1)] {∑(xi – X)2} = [1/(N-1)]{∑xi
2 – (1/N)(∑xi)

2},

or using relative frequencies

s2 = SS/N = ∑fi(i – X)2

In words, the variance equals the sum of the squares of the deviations (called the sum of
squares and denoted by SS) around the mean (i.e. the sum of (xi – X)2 for all i) divided
by N-1. We use N-1 rather than N,  because using N yields a biased estimate. N-1 is often
called the degrees of freedom. The variance, in essence, is the average of the squared
deviations from the mean. Perhaps the standard deviation (denoted by s or SD) is used
more frequently. The standard deviation is simply the square root of the variance, and
therefore has the same units as the measurements in your data set:

Standard deviation = s = √s2.

For normally (i.e. mound shaped) distributed data sets, about 70% (68.27%) of the data
lie within one standard deviation from the mean, and about 95% (95.44%) of the data lie
within 2 standard deviations from the mean.

 Because this observation is true only for data that are normal, you must view with
caution. But it is useful in back of the envelope calculations. The last measure of
dispersion that we will consider is the coefficient of variation (or CV). In contrast with s
which gives you absolute variation, CV tells you how variable a data set is (in %) relative
to the mean:

Coefficient of variation = CV = (standard deviation/mean)100 = (s/X)100.
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Statistical inferences: getting started
One of the most difficult tasks when you are beginning to do science is to select a
research topic. Because you are in this course, I assume that you are interested in seed-
dispersal in particular and in ecology in general. After you have selected a research topic,
you have another difficult chore: selecting a specific question that can be answered.
Asking good, interesting, and relevant questions that can be answered is one of the traits
that characterizes good scientists.

Variables.- The questions that you will ask most frequently involve associations between
variables. Variables can be divided into control (or independent) variables, and response
(or dependent) variables.  This distinction is better illustrated with examples:
Example 1.- Do ripe and unripe fruits of Phoradendron sp differ in sugar content?
The control variable is degree of ripeness which we can measure as a nominal variable
(ripe and unripe), or as a an ordinal one (unripe (1), a little ripe (2), ripe (3), very ripe (4),
rotten(5)). The response variable is sugar content and is a continuous variable.
Example 2.- Does the rate at which birds visit fruit-bearing trees increase with the size of
a fruit crop?
Control variable: fruit crop size (discrete [1000, 2225, 8000 fruits) or ordinal [no fruits, a
few fruits, many fruits, gazillions of fruits]).
Response variable: visitation rate (continuous, visits/time).
Example 3.- Is the abundance of Cecropia sp. seedlings higher in tree-fall gaps than in
the forest interior?
Control variable: Nominal (interior or gap)
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Response variable: Abundance of seedlings (seedlings/m2, continuous).

The null hypothesis.- The logic of the traditional scientific framework is based on the
rejection of hypotheses (I do not believe in this philosophy, but you must be aware of it
and use it). Therefore your questions must be framed as “falsifiable” hypothesis. It is a
good exercise to always ask yourself when you pose a hypothesis if there is a set of
observations that can show that the hypothesis is wrong. If you cannot think of a data set
that can potentially show that the hypothesis is not true, you may want to change the
question. Untestable hypothesis that cannot be contrasted with reality (i.e. with a set of
measurements on real objects) are not the material of science.  This restrictive definition
of science forces every hypothesis that you have to be accompanied by a null hypothesis.
The null hypothesis (denoted by H0) is a hypothesis of no difference (or no association
between the control and the response variable). Normally as you plan your experiment or
observation you may reduce your project to a form of shorthand. If we call the alternative
hypothesis Ha then for Example 1 you have several possible outcomes that depend on
your data set:
Example 1:
H0: There is no difference in sugar content in fruits of different degrees of ripeness.
Ha: At least one of the degrees of ripeness has higher (or lower) sugar content.
If you are using a binary variable (ripe or unripe), then Ha may take the form
Ha: sugar content(ripe) ≠ sugar content(unripe)
For many reasons that will become clearer (I hope!) a bit later, it is better to frame
alternative hypothesis in a directional fashion. So instead of asking whether there is a
difference, you make a prediction of the direction that the difference will have:
Ha: sugar content(ripe) > sugar content(unripe)
(i.e. sugar content will be higher in ripe than in unripe fruit).
You can even pose a directional alternative hypothesis for ordinal or continuous
variables. In the case of example 1 this hypothesis takes the form:
Ha: sugar content will increase with degree of ripeness.
You can restate this hypothesis as follows:
Ha: there will be a positive correlation (or association between sugar content and degree
of ripeness).

Making your questions “falsifiable” (i.e. having a null hypothesis) is necessary, but it
does not make a scientific question good. Many studies pose dumb uninteresting
questions, that nonetheless, can be framed as valid testable hypothesis. In addition to
making your questions testable, you must make sure that they are interesting and worthy
of your time and effort. Asking interesting questions is something that comes from
intuition, experience, and good luck. It cannot be taught in a few hours. Some people
never learn.

Population and sample statistics.- Statistical methods attempt to do something difficult.
They attempt to make inferences about populations from samples.  You use
measurements in a sample to estimate a statistic that (hopefully…) describes a
population. It is useful to have a notation that distinguishes population statistics from
their estimates that you calculate from samples. Statisticians use Greek symbols for
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population statistics and Roman letters for their estimates. Sometimes, researchers put a
hat on a letter (e.g. ŷ) to denote that this value is an estimate. Some commonly used
symbols are shown in the following table:

Statistic          population          sample estimate
Mean    µ                          X
Variance            σ2              s2

Std. Deviation   σ                            s
Slope                β0                         β̂0

Intercept           β1                         β̂1

Is it a question of differences or a question of correlation? One of the first decisions that
you will have to make is what is the kind of question that you want to ask. As the
examples described above illustrates, we can coarsely divide questions into questions of
differences or questions of correlation (and regression).

Is it a question of

correlations
(and regression)

differences

Once again lets use example 1 to illustrate the meaning of correlation and differences.
Recall that one of our alternative hypothesis was a positive correlation between degree of
ripeness (which was the independent variable) and sugar content. The following figure
shows three possible outcomes for this hypothesis:

Degree of ripeness

1 2 3 4 5

Sugar
content (%)

1 2 3 4 5 1 2 3 4 5

positive
correlation no

correlation

negative
correlation

These diagrams illustrates that sugar content can increase, decrease, or remain the same
with degree of ripeness. In following sections, we will describe how we can differentiate
among these three possibilities. Before we discuss the question of differences, it is worth
mentioning the difference between questions in correlations and questions in regression.
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These questions are related, but they are not the same. Questions of correlation simply
address the question of whether a dependent variable increases (or decreases) when
another one does. Questions of regression attempt to establish the mathematical form of
the relationship between two variables, and therefore allows you to make quantitative
predictions (if the value of x is such, then the value of y will be….). It also allows you to
estimate the degree of uncertainty in your predictions. As we will see, regression is a very
powerful tool. Because one of the key ingredients of good science is quantitative
prediction, understanding regression is tremendously important.

The questions of differences take three different forms. 1) You can ask whether two (or
more) measurements of central tendency differ or if a mean differs from what you expect
(for simplicity we will call this difference between, or among, means). In addition, you
can ask if the distribution of values in the data set differs from an expected theoretical
distribution. Finally, you may want to know if two samples differ in variation.

It is a question of
differences

means variancesdistributions

One sample and paired tests.- Once again lets use example 1 to illustrate how one goes
about testing differences between a mean and an expected value. Suppose that you
predict that sugar content will be different between ripe and unripe fruit. There are many
ways to test this hypothesis. The two simplest ones are as follows: 1) you collect unripe
fruit from 100 trees and ripe fruit  from 100 different trees and then test if there is a
difference in average sugar content between the two samples. You need to use two
different set of trees because the data points must be independent. We will discuss how
you would analyze this measurement design in the following section (comparing between
two or more means). The second alternative is to collect 1 ripe and 1 one unripe fruit
from each of a hundred trees. This alternative is preferable for two reasons. First, it
requires less effort. Second (and much more importantly) if you use a paired design you
control for the variation among trees. You end up with the following table:
Tree      ripe   unripe  ripe-unripe        score
1           x1       y1            x1-y1                 +
2           x2       y2            x2-y2                 -
3            x3      y3             x3-y3                +
4            x4      y4             x4-y4                0
.
.
100       x100     y100         x100-y100            +
____________________________________

in which xi and yi are the sugar contents in the ripe and unripe fruit of tree i, respectively.
The table also includes the difference between xi  and yi, and a score. We assign a + is
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this difference is positive (xi-yi > 0) a – if the difference is negative (xi-yi < 0), and a 0 if
there is no difference.

What are our hypothesis? If you have a directional prediction then:

H0: There is no difference in the mean sugar content between ripe and  unripe fruits of
different degrees of ripeness (i.e µ −x y  = 0). (remember that x y−  is an estimate of µ −x y )

Ha1: The mean sugar content of ripe fruits is higher than that of unripe fruits (µ −x y  > 0)

If you do not have a directional prediction Ha is transformed into
Ha2: The mean sugar content of ripe fruits and unripe fruits is different (µ −x y  ≠ 0).

These two alternatives are tested differently. We call a test that starts with a directional
prediction a one-tailed test. If the test presumes difference, but has no prediction about
the direction of this difference, we call it a two-tailed test. We will see why in a moment.
Depending on the structure of our data and on our goal we can use a parametric or a non-
parametric test to test the hypotheses that we have posed. Lets begin by describing the
parametric test, then we will describe the non-parametric one, and we will finish the
section with a discussion about when to use one or the other.

The appropriate parametric test is called a paired-t test. To conduct a paired t test you
estimate the t-statistic. You will find this test in books as

tv, α = (( x y− ) -µ)/s(x-y)

where v equals the degrees of freedom (in this case n-1), µ is the expected mean with
which we are comparing our variable of interest (in this case µ = 0), and s(x-y) is called the
standard error (SE) associated with the mean difference between x and y, and equals the
ratio of the standard deviation of the differences (not of the values of x and y, but of their
difference):

s(x-y) = s/√N.

What the paired t-test is asking is what is the probability (the chance) that you would get
such a t value if the sample was gathered from a population with mean (µ) equal to 0. If
the probability is small, then you have a good reason to reject the null hypothesis. The
symbol α needs a bit of an explanation. Scientists are very worried about rejecting a null
hypothesis when it is true (believeing that there is a difference when there is none).
Rejecting a null hypothesis when it is true is called committing a type I error. To that
effect, they usually set a fixed and relatively low rejection level. α is the rejection level
and it is customary to set it at α = 0.05. What this means is that we are willing to reject
the null hypothesis if the test tells us that there is a probability of 0.05 or less than the
sample that we have comes from a population with mean equal to 0 (that is only 5 (or
less) in a hundred samples of size N in a population with mean 0 show a mean that is
equal that you found in your sample). The custom of setting an α level of 0.05 is, to a
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certain extent, the consequence of lack of computers. In the old days, you had to look in a
table that listed t values for different values of α and v. Now the computer gives you an
exact probability. If p (the probability of getting such a t value) is lower than 0.05, you
say that you found a statistically significant result.

The way you would report the results of this test would be:

“I found that ripe fruits had significantly higher sugar contents than unripe fruits (mean
difference ± SD = 15%, paired two-tailed t = 6.7, p < 0.02, N = 100)”

Note that this sentence includes several elements:

1) the mean difference (or effect size).
2) the type of test and the value of the t statistic.
3) The probability of getting such a difference under the null hypothesis of no difference.
4) whether the test was 1 or 2-tailed
and
5) N, the sample size.

Make absolutely sure to always include these ingredients when reporting the results of a
parametric statistical test. As we will see, non-parametric test may not allow you to report
the effect size, but you must include all the other ingredients. If you have a directional
prediction, the value of t that you need for statistical significance is smaller (remember,
the higher the value of t, the lower the p value will be). Always mention if you used 1 or
two tailed tests. If you do not mention if the test is one or two tailed, readers will assume
that the test is two-tailed.

In addition to this sentence, you may want to include a histogram or a table showing the
mean sugar composition of ripe and unripe fruit in your results. Many people get so
happy to find a significant result, that they forget to describe what they found. Here I
must make a really important point.

Fourth commandment: Do not confuse statistical significance
with biological significance

I used big bold letters to really emphasize this point. You must attempt to report effect
sizes and mean values, because without them it is often (not always, but often) not
possible to know what the biological significance of your result is. For example, the
difference in sugar composition between ripe and unripe fruit may be statistically
significant, but very small and hence make no difference to fruit eating birds.

The paired t-test is very powerful and very easy to use but it has some requirements and
assumptions. The requirement is that the variables in question are continuous data. The
assumption is that the sample comes from a normally distributed population. If your
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sample is big enough (say N > 30), this assumption is not crucial and the test works just
fine.

Fifth commandment: Know the assumption of the statistical test that you are using.

In many cases, you may be comparing paired samples and measuring an ordinal or even a
binary variable. For example, you may be looking at the preferences of birds between
ripe and unripe fruits (or between two fruit species). The birds will either accept (+) or
reject (-) the fruit. Or you may have an unsensitive instrument that simply tells you that
the content of sugar in fruit is none (0), a little (1), or a lot (3). You can still use a paired
design and the appropriate test is a sign test. Sign tests are very easy to use, simply count
the + and – (ignore the 0s), and look at the enclosed figure.

If the sample size is bigger than 60 you can use a “normal” approximation:

Z
X N

N
=

− 2

4

Where X is the number of +.  If Z > 1.96 you can reject the null hypothesis with p < 0.05.

The sign test examines the following null hypothesis:

Ho: The sample comes from a population in which 50% of the observations (paired
comparisons) show a + and 50% show a – (i.e. ripe fruit and an unripe fruit are as likely
to be preferred by birds. The sugar content in ripe fruit and unripe fruit is about equal and
hence when you compare them, one is as likely to have a high sugar content as the other).
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Ha: The sample comes from a population in which more (or less) than 50% of the
individuals. Ripe and unripe fruit have consistently different sugar contents, birds
consistently prefer either ripe or unripe fruit over its alternative.

You should report a sign test differently than a paired t-test:

“I found that ripe fruit had more sugar than unripe fruit. In 27 out of 31 pairs of fruits the
ripe fruit had a higher sugar content  (sign test, p < 0.05)”.

Note that in this case you are reporting the type of test, the probability of getting such a
difference under the null hypothesis of no difference, and N the sample size (N = 31).
Because you do not mention whether the test is 1- or 2-tailed, the reader assumes that you
used a 2-tailed test. You are not reporting the effect size because the test does not
estimate the mean difference. You should use a sign test whenever 1) you have small
sample sizes and you suspect that the difference between pairs is not normally
distributed, and/or 2) when the response variable is binary or ordinal. The price that you
pay from adopting the non-parametric alternative is that you cannot estimate the effect
size and that often the test is less powerful.

Confidence intervals.- The parametric alternative allows you to do something very useful,
it allows you to construct a confidence interval for the population (not the sample mean).
It allows you to say with some probability p, that the population mean estimated by x  is
within a certain interval. Often you will see data reported as

x CI± 95%

This expression gives you the sample mean ± a 95% confidence interval (CI). It allows
you to say that the population mean is between the numbers x CI− 95%  and x CI+ 95%
with a probability of 0.95. The confidence interval for a mean is really easy to calculate.
If the population has a normal distribution, then

95%CI = t0.05,v SE = t  ( )0.05,v

s

N
.

Note that the paired t-test asks whether 0 is included in the confidence interval for µ −x y .

This confidence interval ranges from  ( x y
s

N
− − t  ( )0.05,v ) to ( x y

s

N
− + t  ( )0.05,v ).

The question of power.- We have now used the word “powerful” twice when referring to
statistical tests. What do statisticians mean by “statistical power”? To answer this
question, we must introduce what statisticians refer to as a type II error. A type two error
is failing to reject the null hypothesis when you should have rejected it. Most statistics
textbooks pay little attention to type II errors. However ecologists and, especially,
managers and conservation biologists must pay some attention to it. Why? Biologists
may be fooled into believing that there is no pattern simply because the samples size that
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they used is too small or because the test that they used is not powerful enough (I am
using the word powerful again!).

Imagine that you conduct a test to determine if some human intervention (hunting or
logging) has an effect on the abundance of a frugivore. You do this by comparing a large
number of hunted and unhunted (or logged and unlogged) plots. You fail to reject the null
hypothesis and hence you conclude that this human intervention has no effect. The effect
is that the human intervention continues. You used the statistics that scientists always
use, and that tend to minimize a or the probability of committing a type I error. Now
suppose that the frugivore is endangered. If your conclusion is wrong (i.e. you committed
a type II error) and is used to support continued logging, the frugivore goes extinct. It is
useful to know the probability of committing a type one error. This probability is called β
and there are many statistical methods to estimate it. The statistical power of a test is

Power = 1-β.

Thus, a powerful test is one in which β is small and therefore, one in which the
probability of committing a type II error is small. Calculating β and power can be
complicated mathematically. Some of the good computer programs include these
calculations. The following web site lists many interactive web sites that allow you to
compute power for a given test and data set:

 http://members.aol.com/johnp71/javastat.html#Power.

Sixth commandment: Use the most powerful test available, but take care not to
violate its assumptions.

Testing for differences between 2 means.- We now have two tests that allow us to
compare between measures of central tendency for paired designs. Paired designs are
very powerful and you should try to use them whenever you can. It is not always possible
to use a paired design, so we need to examine tests that compare among measures of
central tendency and that are not based on a paired design.
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It is a question of
means

Paired design unpaired comparison 
between measures
of central tendency

sign test
(non-parametric)

paired-t test
(parametric)

The unpaired t-test (also called the two sample t-test) can be used to test for differences
between two means. We have already outlined how to do a one sample test in which we
compare a mean to an expected value, so describing a two sample t-test is easy. The test
requires that 1) all observations are independent, 2) that you are dealing with continuous
data, 3) that the data come from normally distributed populations (although if each
sample is larger than about 30m this requirement is not crucial), and if the variances
differ significantly, you must use a slightly different formula. After this section, we will
explain how to find out if two variances are statistically different.

The procedure is as follows. Go to the field and/or do an experiment in the lab, and when
you come back you will have the following table:

Sample Treatment  Response
number (independent (dependent

variable) variable)
-----------------------------------------------------
1   ripe    xr1

2   ripe                   xr2

.

.

.
N1   ripe                   xrN1

1   unripe    xu1

2   unripe               xu2

.

.

.
N2   unripe               xuN2

---------------------------------------------------------------------------------
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 You have N1 and N2 measurements o your two treatments. In this case, I have called the
treatments ripe and unripe, but in general, you may want to associate a number with the
treatments. It is a good idea to keep N1 and N2 equal or as similar as possible. The null
hypothesis, of course, is that there is no difference between the means of samples
(H0: µ µ1 2- ). Once again, you can use one- or two-tailed tests. If the variances are equal
use the following formula:

t
X X

N s N s

N N N N

=
−( )

−( ) + −

+ −
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1 2

1 1
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1 1
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The test has N1+N2 – 2 degrees of freedom (d.f.). This formula looks really complicated,
but do not worry, you will never have to calculate it. The computer will do it for you. If
the variances are unequal, the formula to calculate t becomes easier, but calculating the
degrees of freedom (d.f.) becomes difficult:
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Again, please do not worry about having to use these horrible formulas. The computer
will calculate them for you. You must remember, however to make sure that the
computer is using the correct formulas (you must “tell” the program to do so). Some
programs will perform a test for equality of variances and conduct the appropriate test. If
you are using a computer, the machine will calculate the p value. If you are not, you can
consult the tables in a book ( I recommend Zar’s (1996)). I printed one of these tables so
that you can practice. Note that if the sample size is small, the value of t needed to reach
statistical significance is very large. For values of d.f. > 100, you can use a t value of 1.96
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as the cut-off for significance at the p < 0.05 level.   The way you report t tests is as
follows:

“Ripe and unripe fruit had significantly different sugar contents (2-tailed t-test, t = 3.7, p
< 0.02). Ripe fruit had higher (mean ± SD = 30 ± 7 %, N = 75) content than unripe fruit
mean ± SD = 5 ± 3 %, N = 75)”.

Note that, once again, the ingredients in these sentences: test, p-value, mean values, and
sample sizes.

Seventh commandment: Always report the test that you used, the statistic for the
test, the sample size, the p value, and the effect size of your treatments.
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Suppose that your data does not satisfy some of the assumptions of a t-test. For example
your data may be ordinal, rather than discrete or continuous, or maybe the data set is
small (Ni < 30) and does not have a normal distribution (you can check this with a formal
test or simply by looking at the frequency distribution of your measurements and finding
out if it looks “mound shaped”). Then you can use a non-parametric alternative called the
Mann-Witney-U test. Like many statistical tests, you begin this test by ranking the data
from highest to lowest. The largest value is given a rank of 1, the second largest the rank
of 2,…, until the smallest value which is ranked as N (clearly, N = N1 + N2). You then
calculate the Mann-Whitney U statistic U as
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U N N
N N

R= +
−

−1 2
1 1

1

1
2

( )

where R1 equals the sum of the ranks in sample 1. For a two-tailed test, you must also
compute a statistic called U’

U N N
N N

R'
( )

= +
−

−1 2
2 2 1

2
2

where R2 equals the sum of the ranks of sample 2.  If either U or U’ are as great or greater
than Uα/2, N1, N2 (which you must get in tables) than you have the two samples differ
significantly. Once again, the computer will perform all these calculations for you. I have
described the test in some detail, because you must know something about how the test is
done in order to interpret the computer’s output. Because you use ranks (rather than the
actual measurements) in this test, the test does not allow you to estimate effect size. A
statistically significant Mann-Whitney U test, tells you that the distribution of the two
samples are shifted relative to each other. Therefore, it is perhaps appropriate to always
present the results of this test accompanied by a figure showing both distributions. The
results of this test can be written as:

“Ripe fruit and unripe fruit differed sin sugar content (Mann-Whitney U = 36, p < 0.05).
Ripe fruit had higher sugar content than unripe fruit (Fig. 1)”

You must add the sample sizes to the figure.

If the assumptions of a parametric t-test are satisfied, use it. The parametric procedure, in
general, will be more powerful than the non-parametric one. However, if your data set
does not meet the assumptions of the parametric test, the non-parametric test is
preferable.

Comparing 2 variances.- Recall that sometimes to choose a statistical test you will need
to assess if the variances of two samples are equal. Sometimes it may be really interesting
to know if two samples differ in variation. There is a very simple test that answers this
question. This test relies on a statistic that will play a central role in the next section (F).
This test has equality of variances as a null hypothesis (H0: σ1

2 = σ2
2). Choose the largest

value between s1
2 and s2

2 and divide this number by the smaller one. As an example let’s
assume that s2

2 > s1
2:

F
s

sN N− − =1 1
2
2

1
2, 

This test has degrees of freedom for the numerator (N2-1) and for the denominator (N1-1).
If Fcalculated is smaller than the Fcritical that you can find in tables, then you cannot reject the

F
s

sN

N
2

1

1

1

2
2

1
2−

−

=
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null hypothesis. Because F values are associated with two sets of degrees of freedom,
they can be tricky to use. We will illustrate how to use them in the next section.

Paired design unpaired comparison 
between  measures
of central tendency

sign test
(non-parametric)

paired-t test
(parametric)

unpaired comparison 
between measures
of central tendency

two means

parametric
(t-test)

non-
parametric

(Mann-
Whitney 
U-test)

More than
two means

It is a question of
differences

means
distributionsvariances

F test

Comparing among more than 2 means.- The parametric test that we will use to test for
differences between means is called analysis of variance and is often simply referred to as
ANOVA. There are many modes of ANOVA. Here I will describe the simplest ANOVA
that we will use to determine if two or more means are different from each other.
Suppose that you have k treatments (1, 2, 3,…,k), then the null hypothesis is:

H0: µ = µ = µ = = µ1 2 3 ... k

The alternative hypothesis is not that all the means differ, but that at least one of them is
different from another.

Although one way ANOVA is a fairly robust test, (meaning that you can violate
assumptions a little bit), you must recognize its assumptions. 1) Individual observations
must be statistically independent of one another; 2) The observations must be from a
continuous scale of measurement (or discrete if the sample in each treatment is large, ni >
20);  3) The observations must be normally distributed (again, this assumption can be
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violated if ni is large), and; 3) The variances of the samples are approximately equal. You
can check this assumption with and F test (see Comparing 2 variances) by dividing the
largest s2 and dividing it by the smallest one.

Here you may ask yourselves, why do we call a test about means “analysis of variance”?
The reason is subtle. The test asks whether the variation that you find among means is
large relative to the variation within treatments. If this value is large, you conclude that
there are significant differences among the means.

x1 x2
x3

x1 x2 x3

X

X

In the upper panel, the variation among means is large relative to the variation within
each treatment. In the lower panel, the variation within means is larger than the variation
among means. Suppose that you have k groups (or treatments), each one of which
contains ni observations (n1+n2+n3+…+nk= N). ANOVA uses an F test to compare the
variation among means with the variation within treatments:

F
groups

errork N k( ),( )− − =1

 MS
 MS

Groups MS in this equation refers to an estimate of the variation among groups:

group MS
group degrees of freedom

=
−

−
==

∑ n x X

k

SSi ii

N

group
( )

1

2

1

The term SSgroup ( n x Xi ij

N
( )

=
∑ −

1

2) is called the among-group sum of squares and has k-1

degrees of freedom (DFgroup=k-1).

 Errors MS refers to an estimate of the variation within treatments (or groups):
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error MS
error degrees of freedom
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2( ) ) is called the error sum of squares.

There is another sum of squares that is worth mentioning. Total sum of squares (denoted
by SStotal) is associated with total degrees of freedom (DFerror=N-1) and is calculated as:

SS x Xtotal
j

n

iji

k
i

= −
=

=
∑∑

1
1

2( )

This number is useful because it recognizes that the deviation from the grand mean ( X )
of all data is attributable to a deviation of that datum from its group mean plus the
deviation of that group from the grand mean ( ( ) ( ) ( )x X x x x Xij ij i i− = − + − ). The

consequence of this is that the total sums of squares equals that sum of the group and
error sums of squares:

SStotal =  SSgroups + SSerror

with degrees of freedom

DFtotal = DFgroup + DFerror = N-1

You will rarely have to use the total degrees of freedom in a test. Then, why do I mention
it? The reason is that in many cases, it is very interesting to find out what fraction of the
total variation in a sample is accounted for by variation among groups.

The F test has k-1 and N-k degrees of freedom and is conducted as described in the
Comparing 2 variances section. Once again, a high F value (given the appropriate degrees
of freedom) leads you to reject the null hypothesis and to conclude that there are
significant differences among the means. This does not mean that all the means are
different from each other. All you know is that at least one mean differs from another.
For example suppose that you have 3 treatments and you reject H0: µ = µ = µ1 2 3. It can be
that  x x x x x x x x x1 2 3 1 2 3 1 2 3= ≠ ≠ = ≠ ≠ or  or .. You may be tempted to compare between
pairs of means using a t-test. AVOID THIS TEMPTATION. Comparing means in pairs
will lead to a very high type I error. The following section will describe how to compare
pairs of means after you the ANOVA revealed a significant difference.

Multiple comparisons among means.-  Often after finding significance in an ANOVA
you will want to conduct multiple comparisons. There are many, many, ways to do
multiple comparisons. I will just describe the one that I use more often. It is called
Tukey’s honestly significant test (or Tukey’s HSD). It considers the null hypothesis
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H0: µ µi j= . The test is fairly simple. 1) rank the means from highest to lowest
( x x x xa c d b> > > ) and compare the two that are the most different using the formula:

q
x x

SE
a b=
−

where

SE
MS

n n
error

a b

= +
2

1 1
( )

and DF = N-k. The critical value of q (that is the minimal value that will allow you to
reject H0) depends on k (the number of treatments) and DF.  The following table shows
the critical values of q for α < 0.05. More extensive tables can be found in Zar (1996).
The conclusions reached by multiple comparisons testing depend on the order in which
you do the comparisons. You should first compare the largest against the smallest, then
the largest agains the second smallest, and so on.
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Reporting ANOVA results correctly often requires a sentence and one or more tables.
Suppose that you want to compare the seed content (as % of total weight) in 5 species of
fruits:

spp1 spp2 spp3 spp4 spp 5
-------------------------------------------
28.2 39.6 46.3 41.0 56.3
33.2 40.8 42.1 44.1 54.1
36.4 37.9 43.5 46.4 59.4
34.6 37.1 48.8 40.2 62.7
29.1 43.6 43.7 38.6 60.0
31.0 42.4 40.1 36.3 57.3

Means
32.1 40.2 44.1 41.1 58.3
n1=n2=n3=n4=n5=6

Source of variation SS DF MS
Total 2437.57 29
     Groups 2193.44 4 548.36
      Error 244.13 25 9.76
F=548.36/9.76=56.2

The critical value for F4,25=2.76, and hence H0 is rejected.

To conduct a q test, you rank the means

Species 1 2 4 3 5
Mean% 32.1 40.2 41.1 44.1 58.3

you calculate SE =
9 7652

6
1 28

.
.=

and for the comparison between species 1 and 5

q
x x

SE
=

−
=

−
=5 1 58 3 32 1

1 28
20 47

. .
.

.

Because q0.05,24,5 ≈ 4.16, we reject the null hypothesis and conclude that µ ≠µ5 1. You have
to do that for all combinations of means. If you do it, you will find that species 1 had
lower mean seed content than species 2, 4, and 3. You will also find that these 3 species
did not differ from each other, but that species 5 had higher content than all the other
species. Because the results are complicated, reporting ANOVA results can be
cumbersome. This is the way that I would report these results:
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“The percentage of seeds, relative to the total weight of the fruit, differed among species
(One way ANOVA, F4,25= 56.2, p < 0.01, table X). Table Y lists the mean percentage of
seeds for each species. Briefly, spp. 5, contained the highest percentage of seeds whereas,
spp.3 contained the lowest percentage of seeds”.

Table X is the “sources of variation” shown above. Many researchers report this table to
help readers reconstruct their analysis.

Table X.- The percentage of seeds relative to total fresh weight differed significantly
among species. Lines connect means that did not differ from each other (Tukey’s HSD
test, p < 0.05). {OR means with the same letter did not differ from each other (Tukey’s
HSD test, p < 0.05)}.
Species 1 2 4 3 5

32.1a 40.2b    41.1b    44.1b 58.3c

I encourage to reconstruct these results either by hand, or using a computer.

Non-parametric analysis of variance (the Kruskal –Wallis test).-The Kruskal-Wallis test
is often called an “analysis of variance by ranks”. It can be used on ordinal data and with
continuous or discrete data if the assumptions of one way ANOVA are not met. If the
assumptions of ANOVA are met, use ANOVA because it is more powerful. However, if
the samples are small (n1 < 20) and come from populations that are clearly not normal, or
if you reject the null hypothesis of equality of variances, then the Kruskal-Wallis test is
an appropriate alternative. As in other non-parametric tests, we do not use population
parameters in statements of hypothesis, and neither parameters nor sample statistics are
used in the test calculations. The Kruskal-Wallis test statistic, H, is calculated as

H
N N

R

n
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k
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where ni is the number of observations in group i, N = ni
i

k

=

∑
1

, and Ri is the sum of the

ranks of the ni observations in group i. Note that if k=2, the Kruskal-Wallis test becomes
a Mann-Whitney U test. For intermediate to large samples (i.e. ni > 20). H can be tested
using a χ2 table with degrees of freedom equal to k-1. You I added this table to the end of
these notes. You can conduct multiple comparisons after a Kruskal-Wallis test. However,
these comparisons allow you to determine whether the sum of the ranks between two
groups differ. I find these comparisons difficult to interpret. Most statistics packages have
the Kruskal-Wallis test in their menus.

An opinionated note on parametric VS. non-parametric tests.- Although many researchers
prefer non-parametric tests, I do not. I attempt, as frequently as possible to use parametric
tests. The reason is that I am more interested in measuring effect sizes and in making
predictions. As we have seen, non-parametric tests allow making statistical inferences,
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but in general they do not allow to estimate size effects.  The next section discusses some
of the most basic statistical tools that you need to make predictions.

distributions

Paired design unpaired comparison 
between  measures
of central tendency

sign test
(non-parametric)

paired-t test
(parametric)

unpaired comparison 
between measures
of central tendency

two means

parametric
(t-test)

non-
parametric

(Mann-
Whitney 
U-test)

More than
two means

It is a question of
differences

means variances

F test

parametric
(one-way
ANOVA)

non-
parametric
(Kruskal-

Wallis 
test)

Correlation and regression.- You ask questions of correlation and regression when you
have measured two variables in each member of a sample (correlation and regression are
methods on paired data). For example you may predict that the number (or biomass) of
mistletoe parasites per tree host increases with the size of the tree (measured as diameter
at breast height [DBH], or total height). In each tree you measure height (x) and parasite
load (y). There are many, many questions that you can approach using correlation. When
two variables are correlated, the magnitude of one changes with the magnitude of the
other. However, we can establish no cause and effect relationships (to do so requires,
often requires doing experiment). In questions of correlation, we are simply interested in
asking whether the two variables increase or decrease together. Regression is a powerful
statistical technique that allows you to estimate the mathematical form of the relationship
between a dependent (response) variable (y= the number of mistletoes per tree) and an
independent (control) variable (x = the size of the tree). Regression allows you to
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estimate how accurate your predictions will be. It allows you to determine how well can
you predict y from knowing x. Correlation and regression are closely related, but they are
not the same.

Very often you will be confronted with situations in which you are interested in the
relationship between 2 variables. Then you will have to ask yourself two questions: 1) am
I interested simply in knowing if the variables are positively (or negatively correlated)?
or 2) am I interested in the functional (mathematical) form of the relationship between
these two variables? Sometimes you may be interested in answering 2) but your data set
may not satisfy the assumptions of regression. If that is the case, you may have to
simplify your question to one of correlation. I hope to convince you that if your data set
satisfies the conditions for regression then you should use it. Independently of whether
the question that you have is one of correlation of regression, always plot your data.
The characteristics of your data and the form of this plot should tell you a lot about
whether to ask questions of correlation or of regression.

There are several situations in which you have no alternative but to ask a question of
correlation:

A) One (or both) of the variables is ordinal. For example you may ask if small, medium
sized , or large trees have no mistletoes (1), a few mistletoes (2), or lots of mistletoes (3).

B) One (or both) of the variables is discrete or the independent variable is binary. In the
past 15 years a large number of methods have been developed that allow using regression
methods on discrete and binary response variables (they are called logistic and Poisson
regression methods). These methods are relatively new, and therefore they are not
described in most of the introductory statistics textbooks. However, they are
tremendously important and their use is becoming widespread among ecologists.
Because they are advanced, we cannot deal with them here. I recommend Ramsey and
Schafer (1997. The statistical Sleuth. Duxbury Press. ) as an introduction to these
regression methods.

C) The relationship between x and y is clearly non-linear. In a subsequent section we will
describe a few methods that will allow you to diagnose linearity. Sometimes if the
relationship is non-linear, you can still fit a function. You can use very simple regression
methods to fit polynomials (i.e. functions of the form y = β0+ β 1X + β 2X

2 +…+ β nX
n) or

you can use more complicated methods to fit other non-linear functions. Again, these
notes will not deal with non-linear procedures. I recommend Motulsky and Ransanas
(1987. FASEB Journal 1: 365-374) as a friendly and non-mathematical introduction to
non-linear regression.

Lets begin by assuming that one or more of these caveats apply, and you must conduct a
correlation rather than a regression analysis. The test that I recommend is the Spearman
Rank Correlation. It is a simple non-parametric test. You can use this test for data that are
ordinal, discrete , or continuous. The individual data points must be independent. The test
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statistic is indicated by “rs”. And the null hypothesis is that there is no correlation
between the two variables (H0: rs =0). To do this test, you need to
1) Rank the variables for each data point within the two groups. Tied absolute values,
each get the average rank of thos two values if they had not been tied. If this is not clear,
see the example that follows.
2) Calculate the difference between the ranks (di) and calculate its square (di

2)

3) Sum the square of the differences( di
i

N
2

1=

∑ )

4) apply the following formula:

r
d

N Ns

i
i

N

= −
−



















=

∑
1

6 2

1
3

5) Compare the calculated statistic rs with the critical value given in the following table
for the appropriate sample size.

In the following example, you are interested in finding out if visit rate (number of birds
arriving to a tree per hour) is correlated with fruit abundance (measured as the number of
ripe fruits per tree) in Virola sebifera. Because it is unclear if the relationship is linear or
not (see figure), you decide to conduct a Spearman rank correlation test.

                  Tree                # fruit                   Vi/h           Rank x            Rank y                  d              d2

1 30 10 7.5 21 -13.5 182.25
2 60 1.5 21 12 9 81
3 45 1.5 16 12 4 16
4 35 0 10.5 3.5 7 49
5 40 3 12 17.5 -5.5 30.25
6 45 1 16 9 7 49
7 0 0 1.5 3.5 -2 4
8 45 2 16 14 2 4
9 30 1.5 7.5 12 -4.5 20.25

10 0 0 1.5 3.5 -2 4
11 45 4 16 19 -3 9
12 45 7 16 20 -4 16
13 35 2.5 10.5 15.5 -5 25
14 50 2.5 20 15.5 4.5 20.25
15 45 3 16 17.5 -1.5 2.25
16 45 0 16 3.5 12.5 156.25
17 15 1 4 9 -5 25
18 10 0 3 3.5 -0.5 0.25
19 20 1 5 9 -4 16
20 30 0.5 7.5 7 0.5 0.25
21 30 0 7.5 3.5 4 16
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Note how you you calculate the ranks: In the fruit # column, 2 trees had no fruit. Their

ranks would have been 1 and 2, and hence their rank is 
1 2

2
1 5

+
= . . In the visits/h column

(Vi/h), 6 trees received no visits and hence their rank is 
1 2 3 4 5 6

6
3 5

+ + + + +
= . .

di
i

N
2

1=

∑ = 726

and therefore

rs = −
−









 =1

6 726
21 21

0 533

( )
.

because 0.53 > 0.435 (from the enclosed table), you reject H0 and conclude that there is a
positive correlation. How would you report this result?

“ In Viola sebifera, visitation rate by
frugivores increased significantly with
the number of ripe fruits per tree (rs =
0.53, p < 0.05, N = 21, Fig. G).”

I hope that you have noted that I always
report results using the past tense. Editors
are reviewers of your manuscripts expect
you to do it as well.
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In regression analysis we are interested in two objectives: First, we are interested in
finding out if there is a relationship between 2 variables (or between a dependent variable
and several independent variables. Second, we also would like to find out, given a model
to describe the data, what are the best possible estimates for the statistics in this model. In
the case of linear regression, our model is a function of the form

Y = β1X + β0

In which β1 is the slope, and β0 is the intercept. The meaning of the slope is the change in
y when x increases by 1 unit. Its units are (units of y/units of x). If β1 > 0, y increases
with x. If β1 < 0, y decreases as a a function of x. The meaning of the intercept is the
estimated value of y when x = 0.

∆y

∆x

β1 > 0

β0 = y(0)=intercept slope
y

x
= =

∆
∆

β1

One of the purposes of linear regression analysis is to estimate the “best” value for m and
b. The line that you derive using regression analysis is called the “line of best fit”. The
line of best fit is obtained by finding the numbers a and b that minimize the following
sum of squares:

SSE y y y xi
i

N

i i
i

N

i= − = − +
= =

∑ ∑( ˆ ) ( [ ])
1

2

1
1 0

2β β

Where ŷi is the predicted value of y for x = xi ( ŷi = mx bi + ). In words this means that
the line of best fit is that for which the sum of the squares of the distance between the
points and the line is as small as possible. Panel (a) describes a good fit in which the
distance between the points and the regression line is small. In contrast, panel (b)
describes a poor fit between the points and the regression line.
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The assumptions of linear regression analysis are:

1) Pairs of measurements (x, y) are independent from each other.
2) The value of X is measured without error (or with a small relative error).
3) The y scale must be continuous (x can be discrete or continuous).
4)The test assumes that the variance around the regression line is the same (i.e that the
scatter of points around the regression line is more or less the same for all values of x).

You calculate the following statistics:

ˆ
( )

( )( )
β1

2

1

1

= =
−

− −

=

=

∑

∑
SS

SS

x x

x x y y

x

xy

i
i

N

i i
i

N

and

ˆ ˆβ β0 1= −y x .

You can then test the following null hypotheses:
1) H0: β1 = 0 (this means that the slope = 0) using

t
SSE

N

SSx=

−



















β̂1

2

with DF=N-2.

2)  H0: β0=0 (is the intercept 0?)
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t
SSE

N N

x

SSx

=

−









 +










β̂0

2
1

with N-2 degrees of freedom.
I would be very surprised if you ever have to calculate these statistics by hand (that is
what computers are for!). But it is useful to know that they exist.

A very useful statistic in linear regression is the coefficient of determination r2. You may
decide to ignore many of the formulas that I have placed in this handout. DO NOT
IGNORE THIS ONE.

r
SS SSE

SS

y y y y

y y

y

y

i
i

N

i
i

N

i

i
i

N
2

2

1 1

2

2

1

=
−

=
− − −

−

= =

=

∑ ∑

∑

( ) ( ˆ )

( )

It is useful to write this equation in words:

r2 =  
variation in y -  variation in y explained by the regression line

variation in y

The coefficient of determination r2 varies from 0 to 1 and it tells you what fraction of the
total variation in the dependent variable y is accounted for by the relationship between y
and x. The coefficient of determination r2 is a very important number because it tells you
how well your linear model fits your data. If r2 =0.71, for example, this means that 71%
of the variation in y is accounted for by the relationship between x and y.

Another statistic that you will encounter is r, the Pearson product moment coefficient of
correlation (or simply correlation coefficient):

r =  r2

The coefficient of correlation ranges from –1 to 1. If its value is negative, x and y are
negatively correlated. If it is positive, x and y are positively correlated. The coefficient of
correlation is the parametric equivalent of the Speraman rank coefficient of correlation.
You can test the null hypothesis of no correlation (H0: r = 0) with the following test:

t
r

r

N

=
−
−

1
2

2
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which has N-2 degrees of freedom. I do not use r very frequently, but some researchers
do.

Lets illustrate what we have learned about linear regression with an example. Susan
Moegenburg hypothesized that the fruits of the palm Euterpe oleracea leached nutrients
to water in flooded forests. She placed fruit in water and measured the percent nitrogen in
fruit after different time intervals. The following table shows her results (frm
Moegenburg 2002. Pp. 479-494 In Levey, Silva, and Galetti (eds.) Seed dispersal and
frugivory. CABI Publishing).

Time         % Nitrogen
0 0.75
1 0.82
5 0.77
7 0.736
9 0.725
8 0.75
15 0.7
20 0.68
23 0.704
40 0.65
55 0.63
78 0.56

The results of a regression analysis are:

Parameter estimates     estimate t              probability
β0        0.77                                       78.1          <0.001
β1     -0.003            8.8          <0.001

r2 = 0.89

You conclude that fruit’s nitrogen content decreases linearly with the time that it spends
submerged in water. The relationship describing % nitrogen as a function of time is:

% Nitrogen = 0.77-0.003(time).

 Note that variation in time “explains” about 90% of the variation in nitrogen content.
The slope tells you that 0.003 % Nitrogen is lost per day.
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distributions

Paired design unpaired comparison 
between  measures
of central tendency

sign test
(non-parametric)

paired-t test
(parametric)

two means

parametric
(t-test)

non-
parametric

(Mann-
Whitney 
U-test)

More than
two means

It is a question of
differences

means variances

F test

parametric
(one-way
ANOVA)

non-
parametric
(Kruskal-

Wallis test)

correlations
(and regression)

correlation
(Spearmank Rank 

correlation)

regression
(linear 

regression)

Is it a question of

The figure in this page is almost complete. We have discussed questions of correlation
between variables, and of differences between means and variances. We will finish these
notes by describing how to compare between frequency distributions.

Comparing an observed distribution with an expected one.- Lets use an example to
motivate our description of these methods. Imagine that you are studying whether
previous parasitism by a mistletoe influences the frequency with which birds deposit
mistletoe seeds into tree hosts. You conduct a census and obtain the following data set:

                          Parasitized     Non-parasitized   Total
                       ----------------------------------------
Seeds present      19                         5        24

No seeds             25                        76                    101
                        ---------------------------------------
Total                   44                       81                    125

This table is called a 2X2 contingency table (it has 2 factors and two levels in each
factor). A 2X2 contingency table contains 4 cells representing all possible outcomes.
You can construct contingency tables of any size (N1XN2XNn). They are easy to analyze
and almost impossible to interpret. I would stick to small contingency tables.

You are interested in finding out if seeds fall disproportionately into already parasitized
trees. One possible way of answering this question is to compare the observed frequency
(or distribution) with the distribution of frequencies that you would find if the trees
received trees in proportion to their abundance. How can you construct this expected
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distribution?  To obtain the expected distribution we use the following elementary rule of
probability: if two events are independent, the probability of their joint occurrence is
equal to the product of their individual probabilities. For example, you know that 0.192 =
24/125 of all trees received seeds. You also know that 44/125 =0.152 of all trees was
parasitized. Therefore the probability of being parasitized and receiving seeds equals:

24
125

44
125

0 0292

















 = .

and the expected number of parasitized trees receiving seeds should equal:

125(0.0292)  = 3.65.

Lets call the levels of parasitism. Lets call the total number of observations N, and
assume that each cell can be characterized by its two levels: i (i can be parasitized or non
parasitized) and j (j can be received seeds or no seeds). For example nparasitized, no seeds = 5. In
general, you can easily estimate the expected value for each cell (Eij) as:

E N
n

N

n

N

n n

Nij
i j i j=


















 =

To compare between observed and expected values, we can place the expected values in
parenthesis in the contingency table:

                           Parasitized     Non-parasitized   Total
                       ----------------------------------------
Seeds present      19(3.65)              5(15.52)           24=nseeds

No seeds             25(35.55)            76(65.45)         101=nno seeds

                        ---------------------------------------
Total                   44                       81                    125

                         nparasitized                              n non parasitized

This new table indicates that your conjecture may be correct. Parasitized host trees seem
to have received more seeds that you would expect given their frequency and non-
parasitized trees fewer seeds. You can test this conjecture using the following formula:

χ 2

2
2

=
−( )

=
−∑∑ ∑

O E

E

observed ected

ected
ij ij

iji

c

j

r ( exp )
exp

Where Oij and Eij are the observed and expected absolute frequencies in a cell in column i
and row j (I assumed a table with c columns and r rows). This test has (r-1)(c-1) degrees
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of freedom. In the case of a 2X2 table, DF=1.  Then you compare the value of χ2 with a
critical value from the enclosed table. In the example above

χ 2
2 2 2 219 3 65

3 65
25 35 5

35 5
5 15 52

15 52
76 65 45

65 45
76 48=

−
+

−
+

−
+

−
=

( . )
.

( . )
.

( . )
.

( . )
.

.

Because the critical value for
χ2 at the α=0.05 level is
3.84, we reject the null
hypothesis. In this case the
null hypothesis is that
parasitized and unparasitized
host trees receive mistletoe
seeds in proportion to their
abundance (H0: Oij = Eij for
all i and j). The χ2 test ie
enormously useful. It can be
used in all cases in which you
would like to compare and
observed distribution with an
expected one. Always report
both the observed and the
expected values when you
conduct a contingency table
(or distribution comparison)
analysis.


